WO2013092067A1 - Auslöseeinheit zum betätigen einer mechanischen schalteinheit einer vorrichtung - Google Patents

Auslöseeinheit zum betätigen einer mechanischen schalteinheit einer vorrichtung Download PDF

Info

Publication number
WO2013092067A1
WO2013092067A1 PCT/EP2012/073052 EP2012073052W WO2013092067A1 WO 2013092067 A1 WO2013092067 A1 WO 2013092067A1 EP 2012073052 W EP2012073052 W EP 2012073052W WO 2013092067 A1 WO2013092067 A1 WO 2013092067A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
plunger
force
coil
printed circuit
Prior art date
Application number
PCT/EP2012/073052
Other languages
English (en)
French (fr)
Inventor
Wolfgang Feil
Martin Maier
Klaus Pfitzner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP12798206.4A priority Critical patent/EP2764527B1/de
Priority to CN201280063119.2A priority patent/CN104185891B/zh
Priority to BR112014015020-6A priority patent/BR112014015020B1/pt
Priority to US14/363,479 priority patent/US9117612B2/en
Priority to IN1161KON2014 priority patent/IN2014KN01161A/en
Publication of WO2013092067A1 publication Critical patent/WO2013092067A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/01Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2481Electromagnetic mechanisms characterised by the coil design
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/02Non-polarised relays
    • H01H51/04Non-polarised relays with single armature; with single set of ganged armatures
    • H01H51/06Armature is movable between two limit positions of rest and is moved in one direction due to energisation of an electromagnet and after the electromagnet is de-energised is returned by energy stored during the movement in the first direction, e.g. by using a spring, by using a permanent magnet, by gravity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/32Electromagnetic mechanisms having permanently magnetised part
    • H01H71/321Electromagnetic mechanisms having permanently magnetised part characterised by the magnetic circuit or active magnetic elements
    • H01H71/322Electromagnetic mechanisms having permanently magnetised part characterised by the magnetic circuit or active magnetic elements with plunger type armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F2007/068Electromagnets; Actuators including electromagnets using printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/2454Electromagnetic mechanisms characterised by the magnetic circuit or active magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/28Electromagnetic mechanisms with windings acting in conjunction

Definitions

  • Tripping unit for actuating a mechanical switching unit of a device
  • the invention relates to a trip unit for actuating a mechanical switching unit of a device for interrupting a supply line of a consumer.
  • a device for interrupting a supply line of a consumer is in particular a thermal overload relay, by means of which a motor or line protection is made possible.
  • the corresponding supply line of the motor to be monitored or the line to be monitored is passed over the device and monitored by means of a monitoring device for thermal overload. If a thermal overload on the motor or on the line is detected by the monitoring device, a mechanical switching unit is actuated by the monitoring device, so that the supply line routed via the device is interrupted by means of the mechanical switching unit.
  • an electrically conductive connection between an input terminal and an output terminal of the device can be interrupted by means of the mechanical switching unit.
  • the electrically conductive connection between the input terminal and the output terminal of the device in this case forms the supply line to be monitored.
  • the mechanical switching unit is usually triggered by an actuating element, so that then interrupted by the mechanical switching unit of the supply line (the guided over the device phase).
  • a mechanical force is exerted on the actuating element of the mechanical switching unit.
  • thermo-mechanical release (bimetallic release) is usually used as a monitoring device and trip unit due to the favorable cost level.
  • the bimetal trigger is placed in the supply line to be monitored by means of the overload relay. Since the bimetallic release in the supply line (in the main flow path of the
  • the bimetallic release in particular its bimetal, is deformed by the increased current flow in the supply line in such a way that a mechanical force is exerted on the actuating element of the mechanical switching unit by the bimetallic release, so that it thereby exerts is triggered. Consequently, the monitored supply line is interrupted by means of the mechanical switching unit.
  • overload relays with electromagnetic tripping units are known in which the mechanical switching unit can be triggered by an electromagnetic release of the tripping unit. It can be distinguished between two trip units. There are trip units that provide the tripping energy to actuate the actuator of the mechanical switch unit directly from the tripping unit's trip electronics, and tripping units that are triggered electromechanically
  • the electromagnetic trip units usually contain a coil body which is attached to a coil body.
  • the coil terminals must be additionally connected via lines (coil connecting cables) and / or connectors to the electronics of the trip unit.
  • An object of the present invention is an improved trip unit for actuating a mechanical
  • This trip unit should preferably be compact, inexpensive and energy-optimized, so that it requires no electrical energy in the normal state and in the tripped state. Furthermore, the mechanical switching unit should be able to be triggered with the lowest possible electrical release energy.
  • a trip unit for actuating a mechanical switching unit of a device for interrupting a supply line of a consumer, wherein the trip unit a movably mounted plunger, which can take a first and a second stop position, a Force accumulator, in particular a spring, a holding means, in particular a permanent magnet, and a printed circuit board coil, wherein the trip unit can assume a tripped state and a normal state, wherein the plunger in the tripped state in the first stop position and in the normal state in the first In the normal state of the first force accumulator acts on the plunger with an energy storage force (Fl) in the direction of the first stop position and the holding means the plunger with a holding force (F2) in the second n stop position, wherein by activating the printed circuit board coil a printed circuit board coil force can be generated, wherein the energy storage, the holding means and the printed circuit board coil are formed such that in the inactive state of the printed circuit board coil
  • the device is preferably an overload relay.
  • An overload relay can be used to monitor the supply line of a consumer (eg electric motor) or a line for thermal overload. If a thermal overload is detected by the device, the supply line routed via the device is interrupted. To detect the thermal overload, the device comprises a monitoring device by means of which the load or the line can be monitored for thermal overload.
  • the trip unit includes the plunger, the energy accumulator, the holding means and the PCB coil. If an overload is detected by the monitoring device, then the mechanical switching unit of the device is actuated by means of the tripping unit so that the monitored supply line is interrupted. The triggering of the mechanical switching unit takes place in particular via an actuating element of the mechanical switching unit. The actuating element is preferably actuated / triggered directly by means of the plunger.
  • a printed circuit board coil force is generated via the printed circuit board coil, so that the plunger changes from the second stop position to the first stop position.
  • a mechanical force is exerted on the mechanical switching unit, in particular on the actuating element, so that triggers the mechanical switching unit and the supply line is interrupted.
  • the printed circuit board coil and preferably its supply lines are formed by the printed circuit board fall in particular the currently customary separate components: bobbin, wound coil, coil connecting cables and connectors.
  • Another advantage is that the actuation / release of the mechanical switching unit by means of an electronic pulse is possible. If the plunger is in the normal state, there is an overall force F ges acting on the plunger, which acts in the direction of the second stop (the holding force is greater than the force-storing force). If the energy store is a spring and the holding force is a permanent magnet, then the device can keep this position stable without additional electrical energy.
  • the circuit board coil is activated, ie it is traversed by current. Consequently, a magnetic field is formed by the PCB coil.
  • This magnetic field (PCB coil force) of the printed circuit board coil can be used, on the one hand, in such a way that the holding force of the holding means acting on the tappet is weakened.
  • the magnetic force (holding force) of the permanent magnet acting on the plunger is reduced by the magnetic field of the activated circuit board coil.
  • a force can be exerted on the plunger in the direction of the first stop position by the magnetic field of the printed circuit board coil.
  • a printed circuit board coil force force of the magnetic field of the PCB coil
  • F force of the magnetic field of the PCB coil
  • the movably mounted plunger is consequently moved in the direction of the first stop position.
  • the holding means is a permanent magnet and the force storage is a spring, it increases with increasing Removal of the holding means facing the end of the plunger from the force applied to the plunger force (F2) of the holding means from. The plunger thus automatically assumes the first stop position.
  • the printed circuit board coil force would thus have to be applied only for a period of time until the force-storing force Fl acting on the tappet is greater than the holding force F2 acting on the tappet.
  • the printed circuit board coil force therefore only has to be applied until the total force F tot is over-weighed in the direction of the first stop position.
  • the PCB coil force can be maintained longer.
  • the plunger In the triggered state, the plunger is in the first stop position, the force storage force (Fl) is greater than the holding force (F2). The plunger is thus in
  • the mechanical switching unit is preferably placed inside the device in such a way that the actuation of the mechanical switching unit takes place by taking the first stop position through the plunger, so that an interruption of the supply line is brought about via the mechanical switching unit.
  • a state change for the plunger from the second stop position to the first stop position can thus be brought about by a brief activation of the printed circuit board coil by means of a current pulse.
  • the total force F ges acting on the plunger approaches the force-storing force (Fl) with increasing distance from the holder.
  • the force accumulator is designed such that the actuation of the mechanical switching element takes place only by the force acting on the plunger force storage force (Fl).
  • An energy-optimized device can be provided, as there is no need for a constant electrical power supply for the trip unit, since preferably only for the tripping operation electrical energy must be provided in the form of a current pulse for the PCB coil.
  • the triggered state is preferably maintained by the force storage force (Fl) of the energy storage.
  • the normal state is maintained by the holding force (F2) of the holding means.
  • a mechanical force must preferably be exerted on the ram by the customer so that the latter assumes the second stop position.
  • the plunger is preferably pushed into the second stop position.
  • the plunger is preferably made of ferromagnetic material.
  • the holding force F2 acting on the plunger is directed in particular in the direction of the second stop position of the plunger.
  • the force acting on the plunger force storage force Fl is directed in particular in the direction of the first stop position of the plunger.
  • the first and second stop position of the movably mounted plunger is preferably in each case the end position of the plunger within the device.
  • the holding force (F2) acting on the plunger is greater than the force-storing force (F1) acting on the plunger, so that the plunger lingers in the second stop position. There is thus no PCB coil force.
  • the force acting on the plunger total force F ges is directed in the direction of the two stop of the plunger.
  • the plunger is thus kept in the normal state only by the holding force F2 of the holding means. If the holding means is in the form of a permanent magnet and the force store is a spring, then no electrical energy source is necessary to maintain the normal state.
  • the force-storing force (F1) acting on the plunger is greater than that acting on the plunger. kende holding force (F2), so that the plunger lingers in the first stop position. There is no PCB coil force. The force acting on the plunger total force F ges is directed in the direction of the first stop of the plunger. The plunger is thus held only by the force storage force Fl in the triggered state. If the holding means is designed as a permanent magnet and the energy store as a spring, then no electrical energy source is necessary for holding the tripped state.
  • the circuit board coil is formed in multiple layers.
  • a PCB coil can be laminated on one side. If the printed circuit board coil has a multilayer structure, layers of the turns of the coil are arranged in different planes of the printed circuit board. If the printed circuit board coil is laminated on two sides, for example, or layers of the turns of the coil are formed inside the printed circuit board, a multilayer printed circuit board coil is present.
  • the circuit board coil is formed within the circuit board. The layers of the turns of the printed circuit board coil are thus arranged within the printed circuit board.
  • the printed circuit board of the printed circuit board coil comprises an evaluation unit for controlling the printed circuit board coil.
  • the evaluation unit By means of the evaluation unit, the printed circuit board coil can be activated, so that a current flows through the windings of the circuit board coil and a magnetic field (printed circuit board coil force) is generated.
  • the evaluation unit also carries out the evaluation by means of the monitoring device detected quantities of the supply line.
  • connection lines between the evaluation unit and the circuit board coil, in particular their connection points, are also formed by the circuit board.
  • the evaluation unit activates the printed circuit board coil upon detection of a thermal overload of the consumer supplied with power via the device, so that the supply line to the consumer is interrupted.
  • a pot of ferromagnetic material surrounds the plunger.
  • the plunger is surrounded in particular on its lateral surface and its side facing the retaining means from the pot.
  • the pot In the normal state, the pot preferably surrounds the lateral surface of the tappet 80%.
  • the bottom of the pot is preferably arranged below the holding means, so that the holding means is arranged between the end of the tappet facing the holding means and the bottom of the pot.
  • the ram protrudes easily out of the pot, but it may also be completely surrounded by the pot as well.
  • the pot of ferromagnetic material in particular the magnetic field of the PCB coil force is amplified. Furthermore, a targeted steering of the magnetic field of the printed circuit board coil, so that there is also an improved electromagnetic compatibility.
  • the trip unit in a pot consisting of ferromagnetic material to capsules.
  • the printed circuit board of the printed circuit board coil angren- zend at the outermost turn of the PCB coil at least one breakthrough and the pot is mechanically connected via this at least one breakthrough with the circuit board.
  • a good compromise between the best possible shielding and the requirements for mechanical stability is a printed circuit board coil connected to the rest of the printed circuit board via two to four bridges. In the openings, in particular slots, between the webs, the ferromagnetic pot is inserted through and is as well mechanically connected to the circuit board.
  • the printed circuit board coil is preferably mechanically connected to the printed circuit board only by means of two or three webs.
  • the aperture is preferably formed parallel to the outermost turn.
  • the holding means is arranged on a side surface of the printed circuit board coil and between the holding means and the printed circuit board coil, a plate of ferromagnetic material is arranged.
  • the magnetic field of the printed circuit board coil can thereby be improved and steered.
  • the plate of ferromagnetic material preferably completely covers the side of the holding means facing the printed circuit board and / or the windings of the printed circuit board coil on the side facing the holding means.
  • a part of the lateral surface of the plunger is framed by the circuit board coil in the normal state.
  • the plunger preferably protrudes in the normal state with its aligned to the holding means end through the PCB coil.
  • the holding means In the triggered state of the plunger that protrudes the holding means preferably facing the end of the plunger no longer into the PCB coil inside.
  • the guidance of the plunger takes place via the side surface of the pot facing towards the plunger.
  • the energy store is arranged between the pot and the plunger.
  • the energy accumulator is connected to the lateral surface of the plunger.
  • the force accumulator is an elastic element, in particular a spring, and / or the holding means is a magnet, in particular a permanent magnet.
  • a device in particular a thermal overload relay, for interrupting a supply line of a consumer, a mechanical switching unit and a trip unit, the trip unit in the tripped condition actuates the mechanical switching unit, so that the device the supply line of the consumer interrupts.
  • the trip unit serves to actuate the mechanical switching unit of the device. By means of the mechanical switching unit of the device, the supply line routed via the device is interrupted when the mechanical switching unit is actuated.
  • the device is in particular a thermal overload relay.
  • a supply current path (phase) is provided via an input-side and output-side connection of the device.
  • a consumer can be performed by the device, wherein in the normal state of the trip unit, the input-side terminal is electrically connected to the output-side terminal and in the tripped state of the tripping unit, the electrically conductive connection between the input-side terminal is interrupted with the output-side terminal.
  • the mechanical switching unit is actuated by the plunger. The operation of the mechanical switching unit breaks the supply current path.
  • FIG. 1 shows a schematic representation of a trip unit for actuating a mechanical switching unit of a device in the normal state
  • FIG. 2 shows a schematic representation of the tripping unit shown in FIG. 1 in the tripped state
  • FIG. 3 shows a schematic representation of a plan view of the circuit board of the trip unit of FIG. 1 and 2.
  • the trip unit comprises a movably mounted plunger 1 made of ferromagnetic material, a pot 5 made of ferromagnetic material, a permanent magnet 3 as a holding means 3, a spring 2 as energy storage 2, a plate 6 made of ferromagnetic material, a printed circuit board 8, which a printed circuit board coil 4 a Evaluation unit 9 and a connecting line 11 includes.
  • the printed circuit board coil 4 is connected via the connecting line 11 to the evaluation unit 9.
  • the evaluation unit 9 can activate the circuit board coil 4, so that a magnetic field is generated by the circuit board coil 4.
  • the printed circuit board coil 4 is multi-layered (four-layered). In other words, layers 41, 42, 43, 44 are arranged on turns of the printed circuit board coil 4 in different planes of the printed circuit board 8.
  • the two outer sides of the printed circuit board 8 each have a layer 41,44 of turns.
  • two layers 42,43 are arranged on turns within the circuit board 8.
  • the circuit board 8 is thus laminated on two sides and has within the circuit board 8 also two layers 42,43 on turns on.
  • the individual turns of the layers 41,42,43,44 of the printed circuit board coil 4 are interconnected.
  • the layer 41, 44 applied to the outer side of the printed circuit board comprises in each case one connection point 13. This connection point 13 is in particular the beginning of the outer turn of the respective layer 41, 44.
  • the inner turn of the layers 41, 44 applied to the outside of the printed circuit board are each connected to the inner turn of the adjacent layer 42, 43 on turns.
  • the inner layers 42,43 of turns are each connected to each other via the outer winding.
  • connection of the printed circuit board coil 4 with the evaluation unit 9 takes place via the connecting line 11.
  • the connecting line 11 is integrated in the printed circuit board 8, so that the printed circuit board coil 4, in particular their connection points 13, is electrically conductively connected to the evaluation unit 9 applied to the printed circuit board.
  • the evaluation unit 9 thus the circuit board coil 4 can be activated.
  • FIG. 1 the connection point 13 of the layer 41 applied to the upper side of the printed circuit board 8 is shown on turns.
  • the trip unit is used to actuate the mechanical switching unit of the thermal overload relay.
  • actuating the mechanical switching unit By actuating the mechanical switching unit, a supply line routed via the thermal overload relay can be interrupted.
  • a mechanical force must be exerted on an actuating element of the mechanical switching unit.
  • This mechanical force is exerted by the plunger 1 of the trip unit on the actuator.
  • the plunger 1 must take the first stop position (tripped state).
  • the plunger 1 is movably mounted within the trip unit.
  • the plunger 1 can take two positions.
  • a first stop position (tripped state) and a second stop position (normal state). 1 shows the normal state of the plunger 1.
  • the triggered state is indicated by the dashed line.
  • the plunger 1 can only be moved one of its longitudinal extent.
  • a force is exerted on the one hand by the spring 2 and by the permanent magnet 3.
  • the spring 2 which surrounds the plunger on its lateral surface exerts a spring force Fl in the direction of the first stop position on the plunger 1.
  • the spring 2 rests with one of its ends on the printed circuit board 8 and is in mechanical operative connection with the other of its ends with the plunger 1. In the normal state, the spring 2 is in the compressed state.
  • the permanent magnet 3 is arranged on the underside of the printed circuit board 8 net and holds the ferromagnetic plunger 1 in the second stop position. In the inactive state of the circuit board coil acting on the plunger total force F ges is directed toward the second stop position, so that the plunger maintains the normal state.
  • the force acting on the plunger 1 holding force F2 of the permanent magnet 3 is thus greater than the force acting on the plunger 1 spring force Fl of the spring 2 in the normal state of the plunger 1.
  • the plunger 1 protrudes with its end facing the permanent magnet 3 in the PCB coil 4 inside.
  • the plunger 1 can also protrude through the circuit board coil 4 with this end; ie the end of the plunger 1 (the end face) is below the bottom of the circuit board. 8
  • the plunger 1 is encapsulated in a ferromagnetic pot 5. This ferromagnetic pot is a ferromagnetic pot 5.
  • a ferromagnetic plate 6 is arranged between the permanent magnet 3 and the printed circuit board coil 4. Through the ferromagnetic plate
  • the PCB coil force is amplified, the magnetic field of the PCB coil 4 is specifically directed and provided an optimized electromagnetic compatibility for the adjacent modules.
  • the supply line monitored by the overload relay must be opened, so that the electrically conductive connection to the load is prevented.
  • the mechanical switching unit must be actuated.
  • the evaluation unit 9 thus activates the printed circuit board coil 4, so that the total force F ges acting on the tappet 1 is changed.
  • the evaluation unit 9 only has to send a current pulse via the printed circuit board coil 4.
  • the current flow in the turns of the individual layers 41, 42, 43, 44 of the printed circuit board coil 4 generates a magnetic field (printed circuit board coil force) which reduces / dampens the magnetic force F 2 of the permanent magnet 3 acting on the push rod 1.
  • the force acting on the plunger 1 holding force F2 is thereby minimized so that the spring force Fl is greater than the holding force F2 formed.
  • the total force F ges acting on the plunger thus changes the direction so that the movably mounted plunger 1 moves in the direction of the first stop position.
  • the pot 5, the PCB coil 4 and the plate 6 can also be exercised by the PCB coil 4 a PCB coil force on the plunger 1 in the direction of the first stop position are the.
  • the total force F ges acting on the tappet 1 is modified in such a way that it is aligned in the direction of the first stop position.
  • FIG. 2 shows a schematic representation of the tripping unit shown in FIG. 1 in the tripped state. It can be seen that the plunger 1 protrudes further out of the pot 5 in the tripped state of the tripping unit than in the normal state of the tripping unit. The plunger 1 is now in the first stop position. The second stop position of the plunger 1 is indicated by the dashed line. It can be seen that the ram 1 is further from the permanent Neten 3 is spaced than in the normal state of the trip unit.
  • the spring force Fl acting on the plunger 1 is greater in the tripped state than the holding force F2 acting on the plunger 1, so that the total force F ges acting on the plunger 1 is aligned in the same direction as the spring force F1.
  • the plunger is in self-holding. In this condition, no board coil force is necessary.
  • FIG 3 shows a schematic representation of a plan view of the circuit board 8 of the trip unit of FIG 1 and 2.
  • the trip unit without pot, spring, permanent magnet and plate is shown.
  • the plunger 1 the circuit board 8
  • the evaluation unit 9 the connecting line 11, the PCB coil 4 and openings 7 and webs 10 of the circuit board 8 can be seen.
  • the evaluation unit 9 is connected by means of the connecting line 11 to a connection point 13 of the printed circuit board coil 4.
  • This connection point 13 establishes an electrically conductive connection to the outer turn 12 of the layer 41 of the printed circuit board coil 4 arranged on the upper side of the printed circuit board 8.
  • This layer 41 on turns of the printed circuit board coil 4 has a contact point 14 at its innermost turn 15. With this contact point 14, the electrically conductive contact with the underlying layer of turns of the printed circuit board coil takes place 4.
  • a connection point of the arranged on the underside of the circuit board 8 layer of turns as well as contacting with the evaluation unit 9, so that there is a closed circuit.
  • the individual turns of the layers of the printed circuit board coil 4 are formed equivalent to the illustrated layer 41 on turns of the printed circuit board coil.
  • the individual turns of the layers of the Leiteplattenspule are arranged in particular parallel to each other. Furthermore, they are preferably congruent in plan view, i. not laterally offset from each other, arranged. With a congruent arrangement of the windings, a straight line guided by a turn orthogonal to the printed circuit board would also cut the corresponding turn of the winding lying above or below it, provided that the turns of the individual layers are aligned parallel to the printed circuit board.
  • the printed circuit board 8 has four apertures 7 and four webs 10 adjacent to the outermost turn 12 of the upper layer 41.
  • the pot of the trip unit is formed in two parts and is guided with a first part through the openings 7.
  • the protruding through the openings 7 parts of the pot are mechanically firmly connected to a bottom of the pot (second part of the pot), so that between the bottom of the circuit board, first a plate, then the permanent magnet and finally the bottom of the pot is arranged. In this way, a compact design can be achieved.
  • the circuit board coil 4 can be kept stable. In addition, it is ensured that the force exerted by the spring on the printed circuit board 8 leads to no damage to the printed circuit board 8. Via a web 10, the contacting of the connecting line 11 with the printed circuit board coil 4 is also carried out.
  • the trip unit can be made more compact and cheaper compared to conventional tripping units.
  • the trip unit is energy-optimized, since it requires no electrical energy in the normal state and in the tripped state. Only for actuating the mechanical switching unit, the PCB coil must be activated so that the plunger 1 can actuate the actuator. The energy required to actuate the actuating element is applied by the spring, so that only a small electrical release energy is required to trigger the plunger 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Breakers (AREA)
  • Electromagnets (AREA)
  • Portable Nailing Machines And Staplers (AREA)
  • Relay Circuits (AREA)

Abstract

Die Erfindung betrifft eine Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung zur Unterbrechung eines Versorgungsstrangs eines Verbrauchers. Um eine verbesserte Auslöseeinheit für eine mechanische Schalteinheit bereitzustellen, wird vorgeschlagen, dass die Auslöseeinheit einen beweglich gelagerten Stößel (1), einen Kraftspeicher (2), ein Haltemittel (3) und eine Leiterplattenspule (4) umfasst, wobei die Auslöseeinheit einen ausgelösten Zustand und einen Normalzustand einnehmen kann, wobei sich der Stößel (1) im ausgelösten Zustand in einer ersten Anschlagposition und im Normalzustand in einer der ersten Anschlagposition entgegengesetzten zweiten Anschlagposition befindet, wobei im Normalzustand der erste Kraftspeicher (2) den Stößel (1) mit einer Kraftspeicherkraft (F1) in Richtung der ersten Anschlagposition beaufschlagt und das Haltemittel (3) den Stößel (1) mit einer Haltekraft (F2) in der zweiten Anschlagposition hält, wobei durch ein Aktivieren der Leiterplattenspule (4) eine Leiterplattenspulenkraft erzeugbar ist, wobei der Kraftspeicher (2), das Haltemittel (3) und die Leiterplattenspule (4) derart ausgebildet sind, dass im inaktiven Zustand der Leiterplattenspule (4) der Stößel (1) in der zweiten Anschlagposition verweilt und durch ein Aktiveren der Leiterplattenspule (4) der Stößel (1) die erste Anschlagposition einnimmt, so dass der ausgelöste Zustand vorliegt.

Description

Beschreibung
Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung
Die Erfindung betrifft eine Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung zur Unterbrechung eines Versorgungsstrangs eines Verbrauchers. Eine derartige Vorrichtung zur Unterbrechung eines Versorgungs- Strangs eines Verbrauchers ist insbesondere ein thermisches Überlastrelais, mittels welchem ein Motor- bzw. Leitungsschutz ermöglicht wird. Hierfür wird der entsprechende Versorgungsstrang des zu überwachenden Motors bzw. der zu überwachenden Leitung über die Vorrichtung geführt und mittels einer Überwachungsvorrichtung auf thermische Überlast überwacht. Wird durch die Überwachungsvorrichtung eine thermische Überlast am Motor bzw. an der Leitung detektiert, so wird durch die Überwachungsvorrichtung eine mechanische Schalteinheit betätigt, so dass mittels der mechanischen Schalteinheit der über die Vorrichtung geführte Versorgungsstrang unterbrochen wird. Mittels der mechanischen Schalteinheit kann somit eine elektrisch leitende Verbindung zwischen einem Eingangsanschluss und einem Ausgangsanschluss der Vorrichtung unterbrochen werden. Die elektrisch leitende Verbindung zwischen dem Eingangsanschluss und dem Ausgangsanschluss der Vorrichtung bildet hierbei den zu überwachenden Versorgungsstrang ab.
Die mechanische Schalteinheit wird üblicherweise über ein Betätigungselement ausgelöst, so dass hierauf durch die mechanische Schalteinheit der Versorgungsstrang (die über die Vorrichtung geführte Phase) unterbrochen wird. Zum Auslösen der mechanischen Schalteinheit und somit zum Unterbrechen der elektrisch leitenden Verbindung zwischen dem Ausgangs- und Eingangsanschluss der Vorrichtung (überwachter Versorgungsstrang) wird eine mechanische Kraft auf das Betätigungselement der mechanischen Schalteinheit ausgeübt. Durch die Betätigung des Betätigungselements der mechanischen Schalteinheit wird letztendlich ein über die Vorrichtung geführter Versorgungsstrang unterbrochen.
Bei thermischen Überlastrelais wird meist aufgrund des güns- tigen Kostenniveaus eine thermomechanischer Auslöser (Bimetall-Auslöser) als Überwachungsvorrichtung und Auslöseeinheit verwendet. Zur Überwachung des Motors bzw. der Leitung wird der Bimetall -Auslöser mittels des Überlastrelais im zu überwachenden Versorgungsstrang platziert. Da der Bimetall- Auslöser im Versorgungsstrang (in der Hauptstrombahn des
Verbrauchers) liegt wird er in Abhängigkeit des vorliegenden Stromflusses unterschiedlich erhitzt. Liegt eine thermische Überlast am Verbraucher vor, so wird durch den erhöhten Stromfluss im Versorgungsstrang der Bimetallauslöser, insbe- sondere dessen Bimetall, derart verformt, dass durch den Bimetall-Auslöser eine mechanische Kraft auf das Betätigungselement der mechanischen Schalteinheit ausgeübt wird, so dass dieses hierdurch ausgelöst wird. Mittels der mechanischen Schalteinheit wird folglich der überwachte Versor- gungsstrang unterbrochen.
Ebenso sind Überlastrelais mit elektromagnetischen Auslöseeinheiten bekannt, bei denen die mechanische Schalteinheit über einen elektromagnetischen Auslöser der Auslöseeinheit ausgelöst werden kann. Dabei kann zwischen zwei Auslöseeinheiten unterschieden werden. Es gibt Auslöseeinheiten, die die Auslöseenergie zur Betätigung des Betätigungselements der mechanischen Schalteinheit direkt von der Auslöseelektronik der Auslöseeinheit zur Verfügung gestellt bekommen und Auslöseeinheiten, die als elektromechanisch getriggerter
Kraftspeicher (Maglatch) aufgebaut sind. Letztere haben den Vorteil, dass die Auslöseelektronik weniger Auslöseenergie bereitstellen muss als für das Betätigen des Betätigungselements der mechanischen Schalteinheit eigentlich gebraucht wird.
Unabhängig davon beinhalten die elektromagnetischen Auslöseeinheiten üblicherweise eine auf einen Spulenkörper gewi- ekelte Spule, wobei die Spulenanschlüsse zusätzlich über Leitungen (Spulen-Anschlussleitungen) und/oder Steckverbindungen an die Elektronik der Auslöseeinheit angebunden werden müssen.
Eine Aufgabe der vorliegenden Erfindung ist es eine verbesserte Auslöseeinheit zum Betätigen einer mechanischen
Schalteinheit einer Vorrichtung zur Unterbrechung eines Versorgungsstrangs eines Verbrauchers bereitzustellen. Diese Auslöseeinheit soll vorzugsweise kompakt, kostengünstig und energieoptimiert sein, so dass sie im Normalzustand und im ausgelösten Zustand keine elektrische Energie benötigt. Ferner soll die mechanische Schalteinheit mit einer möglichst geringen elektrischen Auslöseenergie ausgelöst werden kön- nen.
Diese Aufgaben werden gelöst durch eine Vorrichtung gemäß Anspruch 1, d.h. durch eine Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung zur Unter- brechung eines Versorgungsstrangs eines Verbrauchers, wobei die Auslöseeinheit einen beweglich gelagerten Stößel, welcher eine erste und eine zweite Anschlagposition einnehmen kann, einen Kraftspeicher, insbesondere eine Feder, ein Haltemittel, insbesondere ein Dauermagneten, und eine Leiter- plattenspule umfasst, wobei die Auslöseeinheit einen ausgelösten Zustand und einen Normalzustand einnehmen kann, wobei sich der Stößel im ausgelösten Zustand in der ersten Anschlagposition und im Normalzustand in der der ersten Anschlagposition entgegen gesetzten zweiten Anschlagposition befindet, wobei im Normalzustand der erste Kraftspeicher den Stößel mit einer Kraftspeicherkraft (Fl) in Richtung der ersten Anschlagposition beaufschlagt und das Haltemittel den Stößel mit einer Haltekraft (F2) in der zweiten Anschlagposition hält, wobei durch ein Aktivieren der Leiterplatten- spule eine Leiterplattenspulenkraft erzeugbar ist, wobei der Kraftspeicher, das Haltemittel und die Leiterplattenspule derart ausgebildet sind, dass im inaktiven Zustand der Leiterplattenspule der Stößel in der zweiten Anschlagposition verweilt und durch ein Aktiveren der Leiterplattenspule der Stößel die erste Anschlagposition einnimmt, so dass der ausgelöste Zustand vorliegt. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen 2 bis 14 angegeben.
Die Vorrichtung ist vorzugsweise ein Überlastrelais. Mit einem Überlastrelais kann der Versorgungsstrang eines Verbrau- chers (z.B. Elektromotor) oder eine Leitung auf thermische Überlast überwacht werden. Wird eine thermische Überlast durch die Vorrichtung detektiert, so wird der über die Vorrichtung geführte Versorgungsstrang unterbrochen. Zur Detek- tion der thermischen Überlast umfasst die Vorrichtung eine Überwachungsvorrichtung mittels welcher der Verbraucher oder die Leitung hinsichtlich einer thermischen Überlast überwacht werden kann. Die Auslöseeinheit umfasst den Stößel, den Kraftspeicher, das Haltemittel und die Leiterplattenspule. Wird eine Überlast durch die Überwachungsvorrichtung de- tektiert, so wird mittels der Auslöseeinheit die mechanische Schalteinheit der Vorrichtung betätigt, so dass der überwachte Versorgungsstrang unterbrochen wird. Das Auslösen der mechanischen Schalteinheit erfolgt insbesondere über ein Betätigungselement der mechanischen Schalteinheit. Das Betäti- gungselement wird vorzugsweise unmittelbar mittels des Stößels betätigt/ausgelöst.
Zur Betätigung der mechanischen Schalteinheit wird über die Leiterplattenspule eine Leiterplattenspulenkraft erzeugt, so dass der Stößel von der zweiten Anschlagsposition in die erste Anschlagposition wechselt. Über diese Positionsänderung des Stößels wird auf die mechanische Schalteinheit, insbesondere auf dessen Betätigungselement, eine mechanische Kraft ausgeübt, so dass das die mechanische Schalteinheit auslöst und der Versorgungsstrang unterbrochen wird.
Dadurch, dass die Leiterplattenspule sowie vorzugsweise deren Zuleitungen durch die Leiterplatte ausgebildet sind ent- fallen insbesondere die derzeit üblichen separaten Komponenten: Spulenkörper, gewickelte Spule, Spulen-Anschlussleitungen und Steckverbindungen. Hierdurch kann eine äußerst kompakte Beform erzielt und ein verbessertes Kosten-Niveau ge- genüber heutigen rein thermomechanisehen Losungen realisiert werden .
Ein weiterer Vorteil besteht darin, dass die Betätigung/Auslösung der mechanischen Schalteinheit mittels eines elektro- nischen Impulses möglich ist. Befindet sich der Stößel im Normalzustand so liegt eine auf den Stößel wirkende Gesamtkraft Fges vor, welche in Richtung des zweiten Anschlags wirkt (die Haltekraft ist größer als die Kraftspeicherkraft) . Ist der Kraftspeicher eine Feder und die Haltekraft ein Dauermagnet, so kann die Vorrichtung diese Position ohne zusätzliche elektrische Energie stabil halten.
Wird eine thermische Überlast durch die Überwachungsvorrichtung detektiert, so wird die Leiterplattenspule aktiviert, d.h. sie wird von Strom durchflössen. Durch die Leiterplattenspule wird folglich ein Magnetfeld gebildet. Dieses Magnetfeld (Leiterplattenspulenkraft) der Leiterplattenspule kann zum einen dahingehend genutzt werden, dass die auf den Stößel wirkende Haltekraft des Haltemittels geschwächt wird. Im Fall des Dauermagneten wird die auf den Stößel wirkende Magnetkraft (Haltekraft) des Dauermagneten durch das Magnetfeld der aktivierten Leiterplattenspule reduziert. Zusätzlich oder alternativ kann durch das Magnetfeld der Leiterplattenspule eine Kraft (Magnetkraft) auf den Stößel in Richtung der ersten Anschlagposition ausgeübt werden. Durch das Aktivieren der Leiterplatte wird somit eine Leiterplattenspulenkraft (Kraft des Magnetfeldes der Leiterplattenspule) erzeugt, welche die auf den Stößel wirkende Gesamtkraft Fges derart ändert, dass die Gesamtkraft Fges in Richtung der ersten Anschlagposition des Stößels wirkt. Der beweglich gelagerte Stößel wird folglich in Richtung der ersten Anschlagposition bewegt. Ist das Haltemittel ein Dauermagnet und der KraftSpeicher eine Feder, so nimmt mit zunehmender Entfernung des dem Haltemittel zugewandten Endes des Stößels die auf den Stößel ausgeübte Kraft (F2) des Haltemittels ab. Der Stößel nimmt somit die erste Anschlagposition automatisch ein. Die Leiterplattenspulenkraft müsste somit ledig- lieh solange aufgebracht werden, bis die auf den Stößel wirkende Kraftspeicherkraft Fl größer als die auf den Stößel wirkende Haltekraft F2 ist. Die Leiterplattenspulenkraft muss somit lediglich solange aufgebracht werden, bis die Gesamtkraft Fges in Richtung der ersten Anschlagposition über- wiegt. Zur Erhöhung der Sicherheit kann jedoch die Leiterplattenspulenkraft länger aufrechterhalten werden. Im ausgelösten Zustand, der Stößel befindet sich in der ersten Anschlagposition, ist die Kraftspeicherkraft (Fl) größer als die Haltekraft (F2) . Der Stößel befindet sich somit in
Selbsthaltung, so dass keine Leiterplattenspulenkraft erforderlich ist.
Die mechanische Schalteinheit ist vorzugsweise derart innerhalb der Vorrichtung platziert, dass durch Einnehmen der ersten Anschlagposition durch den Stößel die Betätigung der mechanischen Schalteinheit erfolgt, so dass über die mechanische Schalteinheit eine Unterbrechung des Versorgungsstrangs herbeigeführt wird. Ein Zustandswechsel für den Stößel von der zweiten Anschlagposition in die erste Anschlagposition kann somit durch ein kurzes Aktivieren der Leiterplattenspule mittels eins Stromimpulses herbeigeführt werden. Die auf den Stößel wirkende Gesamtkraft Fges nähert sich mit zunehmendem Abstand vom Hal- temittel der Kraftspeicherkraft (Fl) an. Vorzugsweise wird der Kraftspeicher derart ausgebildet, dass die Betätigung des mechanischen Schaltelements lediglich durch die auf den Stößel wirkende Kraftspeicherkraft (Fl) erfolgt. Eine energieoptimierte Vorrichtung kann bereitgestellt werden, da keine konstante elektrische Energieversorgung für die Auslöseeinheit benötigt, da vorzugsweise lediglich für den Auslösevorgang elektrische Energie in Form eines Stromimpulses für die Leiterplattenspule bereitgestellt werden muss. Der ausgelöste Zustand wird vorzugsweise durch die Kraftspeicherkraft (Fl) des Kraftspeichers aufrechterhalten. Der Normalzustand wird durch die Haltekraft (F2) des Haltemittels aufrechterhalten .
Zum Herbeiführen des Normalzustands aus dem ausgelösten Zustand muss vorzugsweise seitens des Kunden eine mechanische Kraft auf den Stößel ausgeübt werden, so dass dieser die zweite Anschlagposition einnimmt. Hierfür wird der Stößel vorzugsweise in die zweite Anschlagposition geschoben.
Der Stößel ist vorzugsweise aus ferromagnetischem Material. Die auf den Stößel wirkende Haltekraft F2 ist insbesondere in Richtung der zweiten Anschlagposition des Stößels gerich- tet . Die auf den Stößel wirkende Kraftspeicherkraft Fl ist insbesondere in Richtung der ersten Anschlagposition des Stößels gerichtet.
Die erste und zweite Anschlagposition des beweglich gelager- ten Stößels ist vorzugsweise jeweils die Endstellung des Stößels innerhalb der Vorrichtung.
In einer vorteilhaften Ausführungsform der Erfindung ist im Normalzustand die auf den Stößel wirkende Haltekraft (F2) größer als die auf den Stößel wirkende Kraftspeicherkraft (Fl) , so dass der Stößel in der zweiten Anschlagposition verweilt. Es liegt somit keine Leiterplattenspulenkraft vor. Die auf den Stößel wirkende Gesamtkraft Fges ist in Richtung des zweien Anschlags des Stößels gerichtet. Der Stößel wird somit lediglich durch die Haltekraft F2 des Haltemittels im Normalzustand gehalten. Ist das Haltemittel als Dauermagnet und der Kraftspeicher als Feder ausgebildet, so ist keine elektrische Energiequelle zum Halten des Normalzustandes notwendig .
In einer weiteren vorteilhaften Ausführungsform der Erfindung ist im aktivierten Zustand die auf den Stößel wirkende Kraftspeicherkraft (Fl) größer als die auf den Stößel wir- kende Haltekraft (F2) , so dass der Stößel in der ersten Anschlagposition verweilt. Es liegt keine Leiterplattenspulen- kraft vor. Die auf den Stößel wirkende Gesamtkraft Fges ist in Richtung des ersten Anschlags des Stößels gerichtet. Der Stößel wird somit lediglich durch die Kraftspeicherkraft Fl im ausgelösten Zustand gehalten. Ist das Haltemittel als Dauermagnet und der Kraftspeicher als Feder ausgebildet, so ist keine elektrische Energiequelle zum Halten des ausgelösten Zustands notwendig.
Zum Herbeiführen des Zustandswechsels vom Normalzustand in den ausgelösten Zustand ist lediglich ein Stromimpuls bei der Leiterplattenspule notwendig. In einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Leiterplattenspule mehrlagig ausgebildet. Eine Leiterplattenspule kann einseitig kaschiert sein. Ist die Leiterplattenspule mehrlagig ausgebildet, so sind Lagen der Windungen der Spule in unterschiedlichen Ebenen der Leiter- platte angeordnet. Ist die Leiterplattenspule beispielsweise zweiseitig kaschiert oder innerhalb der Leiterplatte sind Lagen der Windungen der Spule ausgebildet, so liegt eine mehrlagige Leiterplattenspule vor. In einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Leiterplattenspule innerhalb der Leiterplatte ausgebildet ist. Die Lagen der Windungen der Leiterplattenspule sind somit innerhalb der Leiterplatte angeordnet. In einer weiteren vorteilhaften Ausführungsform der Erfindung umfasst die Leiterplatte der Leiterplattenspule eine Auswerteeinheit zur Ansteuerung der Leiterplattenspule. Mittels der Auswerteeinheit kann die Leiterplattenspule aktiviert werden, so dass ein Strom durch die Windungen der Lei- terplattenspule fließt und ein Magnetfeld (Leiterplattenspu- lenkraft) erzeugt wird. Vorzugsweise erfolgt mit der Auswerteeinheit ebenso die Auswertung der mittels der Überwa- chungsvorrichtung detektierten Größen des Versorgungs- strangs .
Vorzugsweise werden die Anschlussleitungen zwischen der Aus- werteinheit und der Leiterplattenspule, insbesondere deren Anschlussstellen, ebenso durch die Leiterplatte ausgebildet.
In einer weiteren vorteilhaften Ausführungsform der Erfindung aktiviert die Auswerteeinheit bei einer Detektion einer thermischen Überlast des über die Vorrichtung mit Energie versorgten Verbrauchers die Leiterplattenspule, so dass der Versorgungsstrang zum Verbraucher unterbrochen wird.
In einer weiteren vorteilhaften Ausführungsform der Erfin- dung umgibt ein Topf aus ferromagnetischem Material den Stößel. Der Stößel wird insbesondere an seiner Mantelfläche und seiner zum Haltemittel gewandten Seite vom Topf umgeben. Vorzugsweise umgibt der Topf im Normalzustand die Mantelfläche des Stößels zu 80 %. Der Boden des Topfs ist vorzugswei- se unterhalb des Haltemittels angeordnet, so dass das Haltemittel zwischen dem zum Haltemittel zugewandten Ende des Stößels und dem Boden des Topfs angeordnet ist. Vorzugsweise ragt im Normalzustand der Stößel leicht aus dem Topf heraus, er kann aber ebenso vom Topf vollständig umgeben sein.
Durch den Topf aus ferromagnetischem Material wird insbesondere das Magnetfeld der Leiterplattenspulenkraft verstärkt. Ferner erfolgt ein gezieltes Lenken des Magnetfelds der Leiterplattenspule, so dass ferner eine verbesserte elektromag- netische Verträglichkeit vorliegt.
Insbesondere für die Realisierung einer elektronisch ausgelösten mechanischen Schaltvorrichtung (Maglatch) ist es vorteilhaft die Auslöseeinheit in einem Topf bestehend aus fer- romagnetischem Material zu Kapseln.
In einer weiteren vorteilhaften Ausführungsform der Erfindung weist die Leiterplatte der Leiterplattenspule angren- zend an der äußersten Windung der Leiterplattenspule mindestens einen Durchbruch auf und der Topf ist über diesen mindestens einen Durchbruch mit der Leiterplatte mechanisch verbunden. Ein guter Kompromiss zwischen einer möglichst op- timalen Abschirmung und den Anforderungen an die mechanische Stabilität ist eine über zwei bis vier Stege an den Rest der Leiterplatte angebundene Leiterplattenspule. In die Durchbrüche, insbesondere Schlitze, zwischen den Stegen wird der ferromagnetische Topf hindurch gesteckt und ist so gut me- chanisch mit der Leiterplatte verbunden.
In einer weiteren vorteilhaften Ausführungsform der Erfindung umrahmt der mindestens eine Durchbruch mindestens 50% der äußersten Windung der Leiterplattenspule. Die Leiter- plattenspule ist vorzugsweise lediglich mittels zwei oder drei Stege mit der Leiterplatte mechanisch verbunden. Der Durchbruch ist vorzugsweise parallel zur äußersten Windung ausgebildet . In einer weiteren vorteilhaften Ausführungsform der Erfindung ist das Haltemittel an einer Seitenfläche der Leiterplattenspule angeordnet und zwischen dem Haltemittel und der Leiterplattenspule ist eine Platte aus ferromagnetischem Material angeordnet. Insbesondere das Magnetfeld der Leiter- plattenspule kann hierdurch verbessert ausgebildet und gelenkt werden. Vorzugsweise deckt die Platte aus ferromagnetischem Material die der Leiterplatte zugewandte Seite des Haltemittels und/oder die Windungen der Leiterplattenspule an der zum Haltemittel gerichteten Seite vorzugsweise voll- ständig ab.
In einer weiteren vorteilhaften Ausführungsform der Erfindung ist im Normalzustand ein Teil der Mantelfläche des Stößels von der Leiterplattenspule umrahmt. Der Stößel ragt vorzugsweise im Normalzustand mit seinem zum Haltemittel ausgerichtetem Ende durch die Leiterplattenspule hindurch. Im ausgelösten Zustand des Stößels ragt das dem Haltemittel zugewandte Ende des Stößels vorzugsweise nicht mehr in die Leiterplattenspule hinein.
In einer weiteren vorteilhaften Ausführungsform der Erfin- dung erfolgt über die zum Stößel gewandte Seitenfläche des Topfs die Führung des Stößels.
In einer weiteren vorteilhaften Ausführungsform der Erfindung ist zwischen dem Topf und dem Stößel der Kraftspeicher angeordnet.
Vorzugsweise ist der Kraftspeicher mit der Mantelfläche des Stößels verbunden. In einer weiteren vorteilhaften Ausführungsform der Erfindung ist der Kraftspeicher ein elastisches Element, insbesondere eine Feder, und/oder das Haltemittel ein Magnet, insbesondere Dauermagnet . In einer weiteren vorteilhaften Ausführungsform der Erfindung umfasst eine Vorrichtung , insbesondere ein thermisches Überlastrelais, zur Unterbrechung eines Versorgungsstrangs eines Verbrauchers eine mechanische Schalteinheit und eine Auslöseeinheit, wobei die Auslöseeinheit im ausgelösten Zu- stand die mechanische Schalteinheit betätigt, so dass die Vorrichtung den Versorgungsstrang des Verbrauchers unterbricht. Die Auslöseeinheit dient der Betätigung der mechanischen Schalteinheit der Vorrichtung. Mittels der mechanischen Schalteinheit der Vorrichtung wird der über die Vor- richtung geführte Versorgungsstrang bei Betätigung der mechanischen Schalteinheit unterbrochen.
Die Vorrichtung ist insbesondere ein thermisches Überlastrelais .
In einer weiteren vorteilhaften Ausführungsform der Erfindung ist über einen eingangsseitigen und ausgangsseitigen Anschluss der Vorrichtung eine Versorgungsstrombahn (Phase) eines Verbrauchers durch die Vorrichtung führbar, wobei im Normalzustand der Auslöseeinheit der eingangsseitige An- schluss mit dem ausgangsseitigen Anschluss elektrisch leitend verbunden ist und im ausgelösten Zustand der Auslöse- einheit die elektrisch leitende Verbindung zwischen dem ein- gangsseitigen Anschluss mit dem ausgangsseitigen Anschluss unterbrochen ist. Durch den Wechsel des Stößels vom Normalzustand in den ausgelösten Zustand wird durch den Stößel die mechanische Schalteinheit betätigt. Durch die Betätigung der mechanischen Schalteinheit wird die Versorgungsstrombahn unterbrochen .
Im Folgenden werden die Erfindung und Ausgestaltungen der Erfindung anhand der in den Figuren dargestellten Ausführungsbeispiele näher beschrieben und erläutert. Es zeigen
FIG 1 eine schematische Darstellung einer Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung im Normalzustand,
FIG 2 eine schematische Darstellung der in FIG 1 gezeigten Auslöseeinheit im ausgelösten Zustand,
FIG 3 eine schematische Darstellung einer Draufsicht auf die Leiterplatte der Auslöseeinheit aus FIG 1 und 2.
FIG 1 zeigt eine schematische Darstellung einer Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung im Normalzustand. Hierbei ist insbesondere eine Seitenansicht eines Schnitts durch die Auslöseeinheit gezeigt. Die Auslöseeinheit umfasst einen beweglich gelagerten Stößel 1 aus ferromagnetischem Material, einen Topf 5 aus ferromagnetischem Material, einen Dauermagneten 3 als Halte- mittel 3, eine Feder 2 als Kraftspeicher 2, eine Platte 6 aus ferromagnetischem Material eine Leiterplatte 8, welche eine Leiterplattenspule 4 eine Auswerteeinheit 9 und eine Anschlussleitung 11 umfasst. Die Leiterplattenspule 4 ist über die Anschlussleitung 11 mit der Auswerteeinheit 9 verbunden. Die Auswerteeinheit 9 kann die Leiterplattenspule 4 aktivieren, so dass durch die Leiterplattenspule 4 ein magnetisches Feld erzeugt wird. Im aktivierten Zustand der Leiterplattenspule 4 wird die Leiteplattenspule 4 von Strom durchflössen. Im nicht aktivierten Zustand der Leiterplattenspule 4 liegt kein Stromfluss durch die Leiterplattenspule 4 vor. Die Leiterplattenspule 4 ist mehrlagig (vierlagig) ausgebildet. D.h. in unterschiedlichen Ebenen der Leiterplatte 8 sind jeweils Lagen 41,42,43,44 an Windungen der Leiterplattenspule 4 angeordnet. Die beiden Außenseiten der Leiterplatte 8 weisen jeweils eine Lage 41,44 von Windungen auf. Ferner sind innerhalb der Leiterplatte 8 zwei Lagen 42,43 an Windungen angeordnet. Die Leiterplatte 8 ist somit zweiseitig kaschiert und weist innerhalb der Leiterplatte 8 ferner zwei Lagen 42,43 an Windungen auf. Es liegen somit vier Lagen 41,42,43,44 an Windungen vor, welche die Leiterplatten- spule 4 bilden. Durch eine derartige Leiterplattenspule 4 kann eine äußerst kompakte Spule bereitgestellt werden.
Die einzelnen Windungen der Lagen 41,42,43,44 der Leiterplattenspule 4 sind miteinander verbunden. Zur Verbindung der Leiterplattenspule 4 mit der Auswerteeinheit 9 umfasst die an der Außenseite der Leiterplatte aufgebrachte Lage 41,44 an Windungen jeweils eine Anschlussstelle 13. Diese Anschlussstelle 13 ist insbesondere der Anfang der äußeren Windung der jeweiligen Lage 41,44. Die innere Windung der an der Leiterplattenaußenseite aufgebrachten Lagen 41,44 ist jeweils mit der inneren Windung der angrenzenden Lage 42,43 an Windungen verbunden. Die inneren Lagen 42,43 an Windungen sind jeweils über deren äußere Windung miteinander verbunden .
Das Anschließen der Leiterplattenspule 4 mit der Auswerteeinheit 9 erfolgt über die Anschlussleitung 11. Dadurch, dass die Leiterplattenspule 4 in der Leiterplatte 8 integ- riert ist, kann eine vereinfachte Anbindung der Leiterplattenspule 4 mit der Auswerteeinheit 9 erfolgen. Hierfür ist die Anschlussleitung 11 in die Leiterplatte 8 integriert, so dass die Leiterplattenspule 4, insbesondere deren Anschluss- stellen 13, mit der auf der Leiterplatte aufgebrachten Auswerteeinheit 9 elektrisch leitend verbunden ist. Durch die Auswerteeinheit 9 kann somit die Leiterplattenspule 4 aktiviert werden. In FIG 1 ist die Anschlussstelle 13 der auf der Oberseite der Leiterplatte 8 aufgebrachten Lage 41 an Windungen abgebildet.
Die Auslöseeinheit dient dem Betätigen der mechanischen Schalteinheit des thermischen Überlastrelais. Durch eine Betätigung der mechanischen Schalteinheit kann ein über das thermische Überlastrelais geführter Versorgungsstrang unterbrochen werden. Hierfür muss eine mechanische Kraft auf ein Betätigungselement der mechanischen Schalteinheit ausgeübt werden. Diese mechanische Kraft wird durch den Stößel 1 der Auslöseeinheit auf das Betätigungselement ausgeübt. Hierfür muss der Stößel 1 die erste Anschlagposition (ausgelöster Zustand) einnehmen.
Der Stößel 1 ist innerhalb der Auslöseeinheit beweglich gelagert. Insbesondere kann der Stößel 1 zwei Positionen ein- nehmen. Eine erste Anschlagposition (ausgelöster Zustand) und eine zweite Anschlagposition (Normalzustand) . FIG 1 zeigt den Normalzustand des Stößels 1. Der ausgelöste Zustand ist durch die gestrichelte Linie angedeutet. Der Stößel 1 kann lediglich ein seiner Längserstreckung bewegt wer- den. Auf den Stößel 1 wird zum einen durch die Feder 2 und durch den Dauermagneten 3 eine Kraft ausgeübt. Die Feder 2, welche den Stößel an seiner Mantelfläche umgibt übt eine Federkraft Fl in Richtung der ersten Anschlagposition auf den Stößel 1 aus. Die Feder 2 liegt mit einer ihrer Enden auf der Leiterplatte 8 auf und ist mit der anderen ihrer Enden mit dem Stößel 1 in mechanischer Wirkverbindung. Im Normalzustand ist die Feder 2 im komprimierten Zustand. Der Dauermagnet 3 ist auf der Unterseite der Leiterplatte 8 angeord- net und hält den ferromagnetischen Stößel 1 in der zweiten Anschlagposition. Im inaktiven Zustand der Leiterplattenspule ist die auf den Stößel wirkende Gesamtkraft Fges in Richtung der zweiten Anschlagposition gerichtet, so dass der Stößel den Normalzustand beibehält. Die auf den Stößel 1 wirkende Haltekraft F2 des Dauermagneten 3 ist somit im Normalzustand des Stößels 1 größer als die auf den Stößel 1 wirkende Federkraft Fl der Feder 2. Der Stößel 1 ragt mit seinem zum Dauermagneten 3 gerichteten Ende in die Leiterplattenspule 4 hinein. Der Stößel 1 kann mit diesem Ende ebenso durch die Leiterplattenspule 4 hindurchragen; d.h. das Ende des Stößels 1 (dessen Stirnseite) liegt unterhalb der Unterseite der Leiterplatte 8.
Zum Verstärken der durch die Leiterplattenspule 4 erzeugten Leiterplattenspulenkraft ist der Stößel 1 in einem ferromag- netischen Topf 5 eingekapselt. Dieser ferromagnetische Topf
5 umgibt den Stößel 1 in seinem Normalzustand nahezu voll- ständig an seiner Mantelfläche. Ferner ist die Unterseite der Leiterplattenspule 4 durch den Boden des Topfs 5 abgedeckt. Der Boden des Topfs 5 liegt hierbei unterhalb des Dauermagneten 3, so dass er sich zwischen dem Stößel 1 und dem Boden des Topfs 5 befindet. Ferner ist zwischen dem Dau- ermagneten 3 und der Leiterplattenspule 4 eine ferromagneti - sehe Platte 6 angeordnet. Durch die ferromagnetische Platte
6 und dem ferromagnetischen Topf 5 wird die Leiterplattenspulenkraft verstärkt, das Magnetfeld der Leiterplattenspule 4 gezielt gelenkt und eine optimierte elektromagnetische Verträglichkeit für die angrenzenden Baugruppen bereitgestellt .
Wird nun durch eine Analyse des Versorgungsstrangs seitens einer Überwachungsvorrichtung des thermischen Überlastrelais eine thermische Überlast des mit dem Überlastrelais überwachten Verbrauchers detektiert, so muss der mittels des Überlastrelais überwachte Versorgungsstrang geöffnet werden, so dass die elektrisch leitende Verbindung zum Verbraucher unterbunden wird. Hierfür muss die mechanische Schalteinheit betätigt werden. Die Auswerteeinheit 9 aktiviert folglich die Leiterplattenspule 4, so dass die auf den Stößel 1 wirkende Gesamtkraft Fges verändert wird. Hierfür muss die Aus- werteeinheit 9 lediglich einen Stromimpuls über die Leiterplattenspule 4 senden. Durch den Stromfluss in den Windungen der einzelnen Lagen 41,42,43,44 der Leiterplattenspule 4 wird ein Magnetfeld (Leiterplattenspulenkraft) erzeugt, welches die auf den Stößel 1 wirkende Magnetkraft F2 des Dauer- magneten 3 reduziert/dämpft. Die auf den Stößel 1 wirkende Haltekraft F2 wird hierdurch derart minimiert, dass die Federkraft Fl größer als die Haltekraft F2 ausgebildet ist. Die auf den Stößel wirkende Gesamtkraft Fges ändert somit die Richtung, so dass sich der beweglich gelagerte Stößel 1 in Richtung der ersten Anschlagposition bewegt. Durch eine entsprechende Anordnung des Stößels 1, des Topfs 5, der Leiterplattenspule 4 sowie der Platte 6 kann ferner durch die Leiterplattenspule 4 eine Leiterplattenspulenkraft auf den Stößel 1 in Richtung der ersten Anschlagposition ausgeübt wer- den. Durch aktivieren der Leiterplattenspule 4 muss jedenfalls sichergestellt werden, dass die auf den Stößel 1 wirkende Gesamtkraft Fges derart abgeändert wird, dass sie in Richtung der ersten Anschlagposition ausgerichtet ist. Mit zunehmenden Abstand des Stößels 1 vom Dauermagneten 3 nimmt die auf den Stößel 1 wirkende Haltekraft F2 des Dauermagneten 3 ab, so dass durch den Stößel 1, insbesondere mittels der auf den Stößel 1 wirkende Federkraft Fl, das Betätigungselement der mechanischen Schalteinheit ausgelöst werden kann. Der Versorgungsstrang wird daraufhin unterbrochen.
FIG 2 zeigt eine schematische Darstellung der in FIG 1 gezeigten Auslöseeinheit im ausgelösten Zustand. Es ist ersichtlich, dass der Stößel 1 im ausgelösten Zustand der Auslöseeinheit weiter aus dem Topf 5 herausragt, als im Normal - zustand der Auslöseeinheit. Der Stößel 1 befindet sich nun in der ersten Anschlagposition. Die zweite Anschlagposition des Stößel 1 ist durch die gestrichelte Linie angedeutet. Es ist ersichtlich, dass der Stößel 1 weiter von dem Dauermag- neten 3 beabstandet ist als im Normalzustand der Auslöseeinheit. Die auf den Stößel 1 wirkende Federkraft Fl ist im ausgelösten Zustand größer als die auf den Stößel 1 wirkende Haltekraft F2 , so dass die auf den Stößel 1 wirkende Gesamt- kraft Fges in die gleiche Richtung ausgerichtet ist wie die Federkraft Fl. Der Stößel befindet sich in Selbsthaltung. In diesem Zustand ist keine Leiterplattenspulenkraft notwendig.
Die auf den Stößel wirkende Gesamtkraft Fges setzt sich ohne Berücksichtigung der Leiterplattenspulenkraft wie folgt zusammen: Fges = Fl + F2
Durch die Positionsänderung des Stößels 1 von der zweiten Anschlagposition in die erste Anschlagposition wird durch den Stößel 1 auf das Betätigungselement der mechanischen Schalteinheit eine Kraft ausgeübt, so dass die mechanische Schalteinheit betätigt wird. Durch die mechanische Schalteinheit wird daraufhin der über die Vorrichtung geführte Versorgungsstrang unterbrochen.
FIG 3 zeigt eine schematische Darstellung einer Draufsicht auf die Leiterplatte 8 der Auslöseeinheit aus FIG 1 und 2. Hierbei ist die Auslöseeinheit ohne Topf, Feder, Dauermagnet und Platte abgebildet. Von der Auslöseeinheit ist der Stößel 1, die Leiterplatte 8, die Auswerteeinheit 9, die Anschlussleitung 11, die Leiterplattenspule 4 und Durchbrüche 7 und Stege 10 der Leiterplatte 8 zu sehen.
Es ist ersichtlich, dass die Auswerteeinheit 9 mittels der Anschlussleitung 11 mit einer Anschlussstelle 13 der Leiterplattenspule 4 verbunden ist. Diese Anschlussstelle 13 stellt eine elektrisch leitende Verbindung zu der äußeren Windung 12 der an der Oberseite der Leiterplatte 8 angeordneten Lage 41 der Leiterplattenspule 4 her. Diese Lage 41 an Windungen der Leiterplattenspule 4 weist an ihrer innersten Windung 15 eine Kontaktstelle 14 auf. Mit dieser Kontaktstelle 14 erfolgt die elektrisch leitende Kontaktierung zur darunter liegenden Lage an Windungen der Leiterplattenspule 4. Mittels einer Anschlussstelle der an der Unterseite der Leiterplatte 8 angeordneten Lage an Windungen erfolgt ebenso eine Kontaktierung mit der Auswerteeinheit 9, so dass ein geschlossener Kreislauf vorliegt.
Die einzelnen Windungen der Lagen der Leiterplattenspule 4 sind äquivalent zur dargestellten Lage 41 an Windungen der Leiterplattenspule ausgebildet. Die einzelnen Windungen der Lagen der Leiteplattenspule sind insbesondere parallel zu- einander angeordnet. Ferner sind sie vorzugsweise in der Draufsicht deckungsgleich, d.h. nicht zueinander seitlich versetzt, angeordnet. Bei einer deckungsgleichen Anordnung der Windungen würde eine durch eine Windung orthogonal zur Leiterplatte geführte Gerade ebenso die entsprechende Win- dung der darüber bzw. darunter liegenden Windung schneiden, sofern die Windungen der einzelnen Lagen parallel zur Leiterplatte ausgerichtet sind.
Die Leiterplatte 8 weist angrenzend an der äußersten Windung 12 der oberen Lage 41 vier Durchbrüche 7 und vier Stege 10 auf. Der Topf der Auslöseeinheit ist zweiteilig ausgebildet und wird mit einem ersten Teil durch die Durchbrüche 7 geführt. Die durch die Durchbrüche 7 ragenden Teile des Topfs werden mit einem Boden des Topfs (zweiter Teil des Topfs) mechanisch fest verbunden, so dass zwischen der Unterseite der Leiterplatte zunächst eine Platte, anschließend der Dauermagnet und abschließend der Boden des Topfs angeordnet ist. Auf diese Weise kann eine kompakte Bauform erzielt werden .
Mittels der vier Stege 10 kann die Leiterplattenspule 4 stabil gehalten werden. Zudem wird sichergestellt, dass die durch die Feder auf die Leiterplatte 8 ausgeübte Kraft zu keiner Beschädigung der Leiterplatte 8 führt. Über einen Steg 10 erfolgt ferner die Kontaktierung der Anschlussleitung 11 mit der Leiterplattenspule 4. Insbesondere durch den Einsatz der Leiterplattenspule 4 kann die Auslöseeinheit im Vergleich zu herkömmlichen Auslöseinheiten kompakter und kostengünstiger ausgebildet werden. Ferner ist die Auslöseeinheit energieoptimiert, da sie im Normalzustand und im ausgelösten Zustand keine elektrische Energie benötigt. Lediglich zum Betätigen der mechanischen Schalteinheit muss die Leiterplattenspule aktiviert werden, so dass der Stößel 1 das Betätigungselement betätigen kann. Die zur Betätigung des Betätigungselements notwendige Ener- gie wird durch die Feder aufgebracht, so dass lediglich eine geringe elektrische Auslöseenergie zum Auslösen des Stößels 1 notwendig ist.

Claims

Patentansprüche
1. Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung zur Unterbrechung eines Versor- gungsstrangs eines Verbrauchers, wobei die Auslöseeinheit einen beweglich gelagerten Stößel (1) , welcher eine erste und eine zweite Anschlagposition einnehmen kann, einen
Kraftspeicher (2) , insbesondere eine Feder (2) , ein Haltemittel (3), insbesondere ein Dauermagneten (3), und eine Leiterplattenspule (4) umfasst, wobei die Auslöseeinheit einen ausgelösten Zustand und einen Normalzustand einnehmen kann, wobei sich der Stößel (1) im ausgelösten Zustand in der ersten Anschlagposition und im Normalzustand in der der ersten Anschlagposition entgegen gesetzten zweiten Anschlag- position befindet, wobei im Normalzustand der erste Kraftspeicher den Stößel (1) mit einer Kraftspeicherkraft (Fl) in Richtung der ersten Anschlagposition beaufschlagt und das Haltemittel (3) den Stößel (1) mit einer Haltekraft (F2) in der zweiten Anschlagposition hält, wobei durch ein Aktivie- ren der Leiterplattenspule (4) eine Leiterplattenspulenkraft erzeugbar ist, wobei der Kraftspeicher (2) , das Haltemittel (3) und die Leiterplattenspule (4) derart ausgebildet sind, dass im inaktiven Zustand der Leiterplattenspule (4) der Stößel (1) in der zweiten Anschlagposition verweilt und durch ein Aktiveren der Leiterplattenspule (4) der Stößel
(1) die erste Anschlagposition einnimmt, so dass der ausgelöste Zustand vorliegt.
2. Auslöseeinheit nach Anspruch 1, wobei im Normalzustand die auf den Stößel (1) wirkende Haltekraft (F2) größer als die auf den Stößel (1) wirkende Kraftspeicherkraft (Fl) ist, so dass der Stößel (1) in der zweiten Anschlagposition verweilt .
3. Auslöseeinheit nach einem der vorhergehenden Ansprüche, wobei im aktivierten Zustand die auf den Stößel (1) wirkende Kraftspeicherkraft (Fl) größer als die auf den Stößel (1) wirkende Haltekraft (F2) ist, so dass der Stößel (1) in der ersten Anschlagposition verweilt.
4. Auslöseeinheit nach einem der vorhergehenden Ansprüche, wobei die Leiterplattenspule (4) mehrlagig ausgebildet ist.
5. Auslöseeinheit nach einem der vorhergehenden Ansprüche, wobei die Leiterplattenspule (4) innerhalb der Leiterplatte
(8) ausgebildet ist.
6. Auslöseeinheit nach einem der vorhergehenden Ansprüche, wobei die Leiterplatte (8) der Leiterplattenspule (4) eine Auswerteeinheit (9) zur Ansteuerung der Leiterplattenspule
(4) umfasst.
7. Auslöseeinheit nach Anspruch 6, wobei die Auswerteeinheit
(9) bei einer Detektion einer thermischen Überlast des über die Vorrichtung mit Energie versorgten Verbrauchers die Leiterplattenspule (4) aktiviert, so dass der Versorgungsstrang zum Verbraucher unterbrochen wird.
8. Auslöseeinheit nach einem der vorhergehenden Ansprüche, wobei ein Topf (5) aus ferromagnetischem Material den Stößel (1) umgibt.
9. Auslöseeinheit nach Anspruch 8, wobei die Leiterplatte (8) der Leiterplattenspule (4) angrenzend an der äußersten Windung (12) der Leiterplattenspule (4) mindestens einen Durchbruch (7) aufweist und der Topf (5) über diesen mindes- tens einen Durchbruch (7) mit der Leiterplatte (8) mechanisch verbunden ist.
10. Auslöseeinheit nach Anspruch 9, wobei der mindestens eine Durchbruch (7) mindestens 50% einer äußersten Windung (12) der Leiterplattenspule (4) umrahmt.
11. Auslöseeinheit nach einem der vorhergehenden Ansprüche, wobei das Haltemittel (3) an einer Seitenfläche der Leiter- plattenspule (4) angeordnet ist und zwischen dem Haltemittel (3) und der Leiterplattenspule (4) eine Platte (6) aus fer- romagnetischem Material angeordnet ist.
12. Auslöseeinheit nach einem der vorhergehenden Ansprüche, wobei im Normalzustand ein Teil der Mantelfläche des Stößels (1) von der Leiterplattenspule (4) umrahmt ist.
13. Vorrichtung , insbesondere thermisches Überlastrelais, zur Unterbrechung eines Versorgungsstrangs eines Verbrauchers, wobei die Vorrichtung eine mechanische Schalteinheit und eine Auslöseeinheit nach einem der vorhergehenden Ansprüche umfasst, wobei die Auslöseeinheit im ausgelösten Zustand die mechanische Schalteinheit betätigt, so dass die Vorrichtung den Versorgungsstrang des Verbrauchers unterbricht .
14. Vorrichtung nach Anspruch 13, wobei über einen eingangs- seitigen und ausgangsseitigen Anschluss der Vorrichtung eine Versorgungsstrombahn (Phase) eines Verbrauchers durch die
Vorrichtung führbar ist, wobei im Normalzustand der Auslöseeinheit der eingangsseitige Anschluss mit dem ausgangsseitigen Anschluss elektrisch leitend verbunden ist und im ausgelösten Zustand der Auslöseeinheit die elektrisch leitende Verbindung zwischen dem eingangsseitigen Anschluss und dem ausgangsseitigen Anschluss unterbrochen ist.
PCT/EP2012/073052 2011-12-20 2012-11-20 Auslöseeinheit zum betätigen einer mechanischen schalteinheit einer vorrichtung WO2013092067A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12798206.4A EP2764527B1 (de) 2011-12-20 2012-11-20 Auslöseeinheit zum betätigen einer mechanischen schalteinheit einer vorrichtung
CN201280063119.2A CN104185891B (zh) 2011-12-20 2012-11-20 用于操控设备的机械开关单元的脱扣单元
BR112014015020-6A BR112014015020B1 (pt) 2011-12-20 2012-11-20 Unidade de disparo para acionar uma unidade de comutação mecânica de um dispositivo para a interrupção de uma fase de alimentação de uma carga e dispositivo
US14/363,479 US9117612B2 (en) 2011-12-20 2012-11-20 Triggering unit for actuating a mechanical switching unit of a device
IN1161KON2014 IN2014KN01161A (de) 2011-12-20 2012-11-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110089251 DE102011089251B4 (de) 2011-12-20 2011-12-20 Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung
DE102011089251.6 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013092067A1 true WO2013092067A1 (de) 2013-06-27

Family

ID=47324075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073052 WO2013092067A1 (de) 2011-12-20 2012-11-20 Auslöseeinheit zum betätigen einer mechanischen schalteinheit einer vorrichtung

Country Status (7)

Country Link
US (1) US9117612B2 (de)
EP (1) EP2764527B1 (de)
CN (1) CN104185891B (de)
BR (1) BR112014015020B1 (de)
DE (1) DE102011089251B4 (de)
IN (1) IN2014KN01161A (de)
WO (1) WO2013092067A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089251B4 (de) * 2011-12-20 2014-05-22 Siemens Aktiengesellschaft Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung
CN107436625B (zh) * 2016-05-26 2022-03-29 富泰华工业(深圳)有限公司 一种触发机构及具有该触发机构的清洁装置
DE102017223316A1 (de) * 2017-12-20 2019-06-27 Siemens Aktiengesellschaft Wicklungsanordnung
DE102021207236B4 (de) 2021-07-08 2023-06-01 Siemens Aktiengesellschaft Magnetauslöser und Schutzschaltgerät mit einem Magnetauslöser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008016518U1 (de) * 2008-12-12 2009-02-26 Bürkert Werke GmbH & Co.KG Elektromagnetischer Aktor
WO2010145756A1 (de) * 2009-06-19 2010-12-23 Ellenberger & Poensgen Gmbh Elektronischer schutzschalter
US20110193661A1 (en) * 2010-02-08 2011-08-11 International Business Machines Corporation Integrated Electromechanical Relays
DE102010012801A1 (de) * 2010-03-19 2011-09-22 Siemens Aktiengesellschaft Schalter, insbesondere Leistungsschalter für Niederspannungen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812690A (en) * 1981-11-20 1989-03-14 G. & E. Engineering Ltd. Solenoid actuators
GB2128406B (en) * 1982-09-08 1986-02-12 Standard Telephones Cables Ltd Electrical contact units
DE19646243C1 (de) * 1996-11-08 1997-10-23 Siemens Ag Elektromagnetischer Differenzstrom-Auslöser
IT1249286B (it) * 1990-07-30 1995-02-22 Bticino Spa Elettromagnete di sgancio a magnete permanente per interruttori automatici
DE9421240U1 (de) * 1994-06-23 1995-08-31 Siemens Ag Leistungsschalter mit einem eisenlosen Stromwandler
DE19520220C1 (de) * 1995-06-01 1996-11-21 Siemens Ag Polarisiertes elektromagnetisches Relais
DE19747166C1 (de) * 1997-10-24 1999-06-02 Siemens Ag Verfahren zur Herstellung eines Relais
IES20020199A2 (en) * 2002-03-21 2003-08-06 Tripco Ltd Resettable switching device
US7069787B2 (en) * 2003-09-29 2006-07-04 Crowson Ii Randolph J Robust low profile shaker
US7973635B2 (en) * 2007-09-28 2011-07-05 Access Business Group International Llc Printed circuit board coil
US8564896B2 (en) * 2010-08-20 2013-10-22 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Compact imaging device
DE102011089251B4 (de) * 2011-12-20 2014-05-22 Siemens Aktiengesellschaft Auslöseeinheit zum Betätigen einer mechanischen Schalteinheit einer Vorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008016518U1 (de) * 2008-12-12 2009-02-26 Bürkert Werke GmbH & Co.KG Elektromagnetischer Aktor
WO2010145756A1 (de) * 2009-06-19 2010-12-23 Ellenberger & Poensgen Gmbh Elektronischer schutzschalter
US20110193661A1 (en) * 2010-02-08 2011-08-11 International Business Machines Corporation Integrated Electromechanical Relays
DE102010012801A1 (de) * 2010-03-19 2011-09-22 Siemens Aktiengesellschaft Schalter, insbesondere Leistungsschalter für Niederspannungen

Also Published As

Publication number Publication date
BR112014015020A2 (pt) 2017-06-13
EP2764527A1 (de) 2014-08-13
BR112014015020B1 (pt) 2021-06-15
US20140321023A1 (en) 2014-10-30
CN104185891A (zh) 2014-12-03
DE102011089251B4 (de) 2014-05-22
DE102011089251A1 (de) 2013-06-20
EP2764527B1 (de) 2015-11-18
US9117612B2 (en) 2015-08-25
IN2014KN01161A (de) 2015-10-16
CN104185891B (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
EP1228519B1 (de) Sicherheitsschaltgerät zum ein- und sicheren ausschalten eines elektrischen verbrauchers, insbesondere einer elektrisch angetriebenen maschine
DD286455A5 (de) Sicherheitsvorrichtung fuer ein durch die verbindung nehmen auswechselbarer bankkastenelemente verwiklichtes schaltgeraet
CH653188A5 (de) Selektive sicherheitsschalteinrichtung zum schutz einer leistungsverteilungsanlage.
EP2764527B1 (de) Auslöseeinheit zum betätigen einer mechanischen schalteinheit einer vorrichtung
EP1801830A1 (de) Befehlsgerät mit Schaltelementüberwachung
WO2009010154A2 (de) Schutzschalter mit magnetfeldsensitivem sensor
DE10244961B3 (de) Selektiver Leitungsschutzschalter
DE102014012454B4 (de) Schaltschütz mit Schnellschalteigenschaften
EP1702409A1 (de) Sicherheitsschalter zum überwachen einer schliessposition zweier relativ zueinander beweglicher teile
DE4022025C2 (de)
EP1860675B1 (de) Leitungsschutzschalter
WO2010012012A1 (de) Schaltgerät
EP3537466B1 (de) Elektromechanisches schutzschaltgerät
DE102010062792A1 (de) Auslösevorrichtung eines Fehlerstromschutzschalters
DE4224046C2 (de) Überstromauslöser für Schutzschaltgeräte
DE102006016657A1 (de) Mehrfachlastschalter für elektrische Bordnetze in Kraftfahrzeugen
DE102013222198A1 (de) Auslösevorrichtung
DE102017202790B4 (de) Elektromechanisches Schutzschaltgerät
DE10062280A1 (de) Sicherheitsschaltung für eine elektrische und/oder elektronische Steuerungsschaltung eines elektrischen Gerätes
DE102018216211B3 (de) Kurzschließereinrichtung und Umrichter
DE102018216223B3 (de) Aktor und Verfahren zur Betätigung eines Hochspannungsschalters
EP1780740B1 (de) Magnetvorsteuerventil für hydromechanische Trennschalter
DE102009020396B4 (de) Fehlerstromschutzschalter
WO2008095454A1 (de) Schutzeinrichtung und verfahren zu deren betrieb
DE102016203505B4 (de) Auslösevorrichtung und elektromechanisches Schutzschaltgerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12798206

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012798206

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14363479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014015020

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014015020

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140620