WO2013088996A1 - In-vehicle electronic control device - Google Patents

In-vehicle electronic control device Download PDF

Info

Publication number
WO2013088996A1
WO2013088996A1 PCT/JP2012/081443 JP2012081443W WO2013088996A1 WO 2013088996 A1 WO2013088996 A1 WO 2013088996A1 JP 2012081443 W JP2012081443 W JP 2012081443W WO 2013088996 A1 WO2013088996 A1 WO 2013088996A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
constant voltage
power supply
current
abnormality
Prior art date
Application number
PCT/JP2012/081443
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 関根
佐藤 千尋
修一 宮岡
吉孝 徳永
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2013088996A1 publication Critical patent/WO2013088996A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0887Arrangements for conveying and conditioning developer in the developing unit, e.g. agitating, removing impurities or humidity
    • G03G15/0889Arrangements for conveying and conditioning developer in the developing unit, e.g. agitating, removing impurities or humidity for agitation or stirring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0865Arrangements for supplying new developer
    • G03G15/0874Arrangements for supplying new developer non-rigid containers, e.g. foldable cartridges, bags
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/06Developing structures, details
    • G03G2215/066Toner cartridge or other attachable and detachable container for supplying developer material to replace the used material
    • G03G2215/0682Bag-type non-rigid container

Definitions

  • the present invention relates to an in-vehicle electronic control device including a constant voltage generation circuit that outputs a constant voltage using electric power supplied from an external power source.
  • in-vehicle electronic control devices are equipped with two types: a first microcomputer that performs input / output signal processing and a second microcomputer that monitors the operation of the first microcomputer.
  • the interface portion between the first and second microcomputers and their peripheral IC (Integrated Circuit) group is configured to have the same input / output voltage level.
  • a constant voltage generation circuit used in an on-vehicle electronic control device needs a protection function against abnormal factors such as a GND short circuit.
  • this protective function operates and the destruction of the constant voltage generation circuit can be avoided, the constant voltage generation circuit cannot output a specified voltage unless the cause of abnormality is removed.
  • the electronic control device loses its function. In order to prevent this function from being lost, there is a desire to continue operating all or part of the function even if the constant voltage generation circuit is destroyed or stopped.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to maintain the function of an electronic control device even when an abnormality occurs in the constant voltage generation circuit and its surroundings. .
  • the on-vehicle electronic control device supplies a first power line for supplying power to the first arithmetic device via the first constant voltage circuit, and supplies power to the second arithmetic device via the second constant voltage circuit.
  • a second power line, and a current interrupt circuit that interrupts the power line in which an abnormality has occurred and continues to supply power from the other power line to the first and second arithmetic devices.
  • the on-vehicle electronic control device by making the constant voltage generation circuit redundant, even if an abnormality occurs in one constant voltage generation circuit, power supply is continued from the other constant voltage circuit. be able to. Thereby, the function of a vehicle-mounted electronic control apparatus can be maintained.
  • FIG. 1 is a circuit diagram of an on-vehicle electronic control device 100 according to Embodiment 1.
  • FIG. It is a figure which shows the electric current which flows into electric current detection resistance R1 and R2 when the GND short 1 generate
  • FIG. It is a circuit diagram of the vehicle-mounted electronic control apparatus 100 which concerns on Embodiment 3.
  • FIG. It is a circuit diagram of the vehicle-mounted electronic control apparatus 100 which concerns on Embodiment 4.
  • FIG. 1 is a circuit diagram of an in-vehicle electronic control device 100 according to Embodiment 1 of the present invention.
  • the on-vehicle electronic control device 100 operates using an external power source such as a battery B and an alternator, or a voltage Vin (external input voltage) obtained by stepping up or down an external power source voltage (not shown) as a power source.
  • an external power source such as a battery B and an alternator
  • Vin external input voltage obtained by stepping up or down an external power source voltage (not shown) as a power source.
  • the voltage Vin is supplied in parallel to the two constant voltage generation circuits 10 and 20.
  • a current cutoff circuit 11 having a current detection resistor R1 and a MOS transistor 1 is arranged.
  • a current cutoff circuit 12 having a current detection resistor R2 and a MOS transistor 2 is disposed.
  • a current cutoff circuit 21 having a current detection resistor R3 and a MOS transistor 3 is arranged.
  • a current cutoff circuit 22 having a current detection resistor R4 and a MOS transistor 4 is arranged.
  • Each MOS transistor can switch a current conduction state / non-conduction state.
  • the input line of the constant voltage generation circuit 10 is V100 and the output line is V110 (first power supply line).
  • the input line of the constant voltage generation circuit 20 is set to V200, and the output line is set to V210 (second power supply line).
  • the output voltage V1 of the output line V110 is supplied to the microcomputer 101 (first arithmetic unit), and the output voltage V2 of the output line V210 is supplied to the microcomputer 102 (second arithmetic unit).
  • a third power supply line that connects these output lines in parallel to the power supply is connected between the downstream side of the current cutoff circuit 12 of the output line V110 and the downstream side of the current cutoff circuit 22 of the output line V210. ing.
  • Current interrupting circuits 31 and 32 are connected in series on the third power supply line.
  • a voltage V3 is supplied to the peripheral IC group 103 (for example, an electronic circuit such as an EEPROM) from the contact between the current interrupt circuits 31 and 32.
  • the current interrupt circuit 31 has a current detection resistor R5 and a MOS transistor 5.
  • the current interruption circuit 32 includes a current detection resistor R6 and a MOS transistor 6. Each MOS transistor can switch a current conduction state / non-conduction state.
  • the voltages across the current detection resistors R1 to R6 are connected to the current detection blocks 40a to 40f constituting the current detection block 40, respectively, as shown in FIG.
  • the current detection blocks 40a to 40f detect the amount of current flowing through the current detection resistors R1 to R6 and the current direction. When the current amount exceeds a preset threshold value for each current direction, an abnormality has occurred at that location.
  • the abnormality detection signal is output to the control circuit 50.
  • the control circuit 50 switches the conduction state / non-conduction state of the MOS transistors 1 to 6 according to the abnormality state, cuts off the current path leading to the abnormality portion, and detects the abnormality portion. Is electrically isolated. This isolation operation will be described in detail later.
  • the control circuit 50 can turn on / off the constant voltage generation circuits 10 and 20 via the control circuits 13 and 23, respectively.
  • the “detection circuit” in the present invention corresponds to each constant voltage generation circuit, a circuit for detecting an abnormality occurring in the periphery thereof, and the control circuit 50. The same applies to the following embodiments.
  • FIG. 2 is a diagram showing the current flowing through the current detection resistors R1 and R2 and the outputs of the current detection blocks 40a and 40b when the GND short 1 occurs on the input line V100.
  • 2A and 2B show currents flowing through the current detection resistors R1 and R2, respectively, and
  • FIGS. 2C and 2D show outputs of the current detection blocks 40a and 40b, respectively.
  • the constant voltage generating circuit 10 cannot output a predetermined voltage, and as shown in FIG. A large current flows toward the point of occurrence. As a result, a large current exceeding a preset threshold value flows in the forward direction in the current detection resistor R1.
  • the constant voltage generation circuit 20 is also directed to one GND short. A large current flows and the constant voltage generation circuit 20 cannot output a specified voltage. As a result, a large current exceeding a preset threshold value flows in the current detection resistor R2, contrary to the forward direction.
  • the current detection blocks 40a and 40b respectively send an overcurrent detection signal to the control circuit 50 as shown in FIGS. 2 (c) and 2 (d) when the currents flowing in R1 and R2 exceed the overcurrent threshold in each current direction. Output. The operation is the same for the other current detection blocks 40c to 40f.
  • the MOS transistor 1 on the input line V110 is turned off so that power is not supplied to the constant voltage generation circuit 10 and the output of the constant voltage generation circuit 10 is stopped. is required.
  • a reverse overcurrent tends to flow from the constant voltage generation circuit 20 side toward the GND short 1, so that the operation of the constant voltage generation circuit 20 is maintained normally.
  • the MOS transistor 2 on the output line V110 also needs to be turned off.
  • the MOS transistor 2 on the output line V110 is turned off to cut off the reverse overcurrent, and on the input line V100. It is necessary to cut off the overcurrent from the power source to the abnormal location by turning off the MOS transistor 1.
  • the following patterns can be considered as a method by which the current detection block 40 detects an overcurrent.
  • the current detection block 40 determines that there is an abnormality when the amount of current flowing through the current detection resistors R1 to R6 exceeds a preset threshold value (threshold value in each direction in FIG. 2), and sends an overcurrent detection signal to the control circuit 50. Output.
  • the current detection block 40 monitors the current flowing through the current detection resistors R1 to R6 and the direction of the current. When the current flows in the direction opposite to the preset current direction, and the current amount exceeds a preset threshold value, Is determined to be abnormal, and an abnormality detection signal is output to the control circuit 50.
  • the control circuit 50 compares the amount of current flowing through each of the input-side current detection resistor and the output-side current detection resistor, and determines that an abnormality occurs when the ratio of the current amounts exceeds a preset threshold value. Output an overcurrent detection signal.
  • the ratio between the input current and the output current of the constant voltage generation circuit is approximately 1: 1. Therefore, when this ratio deviates from 1: 1 and deviates from a preset threshold value, it is determined as abnormal. For example, when a rare short 1 that shorts to GND via a certain resistance occurs on the output line V110, the current IR1 that flows through the current detection resistor R1 increases, and the relationship with the current IR2 that flows through the current detection resistor R2 becomes IR1> IR2. Further, for example, when a leak 1 in which a current leaks from another circuit occurs on the output line V110, the current IR2 increases and IR1 ⁇ IR2.
  • the ratio of the currents IR1 and IR2 is detected by the current detection blocks 40a and 40b and the control circuit 50. If an abnormality occurs in this ratio, the control circuit 50 switches the MOS transistors 1 and 2 to non-conductive, and the rare short 1 Alternatively, the part where the leak 1 is generated is electrically isolated. The same applies when these abnormalities occur on the constant voltage generation circuit 20 side.
  • the current flowing through each MOS transistor can be detected using the resistance between the input and output of each MOS transistor.
  • it is possible to indirectly measure the current flowing through each MOS transistor by configuring a mirror MOS transistor through which the same current as each MOS transistor flows and measuring the current flowing through each mirror MOS transistor.
  • FIG. 3 is a diagram for explaining a correspondence relationship between an output signal from the current detection block 40 when the GND short 1 occurs and an operation in which the control circuit 50 switches the conduction / non-conduction of the MOS transistor in response thereto. .
  • the control circuit 50 determines a location where the GND short 1 is generated from at least the detection results of the current detection blocks 40a and 40b, switches the MOS transistors 1 and 2 to non-conduction, and electrically connects the location where the GND short 1 is generated from the power supply circuit. Isolated.
  • the control circuit 50 continues to supply power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 via the current cutoff circuits 31 and 32 by turning on the MOS transistors 3 to 6. The function of the on-vehicle electronic control device 100 can be maintained.
  • FIG. 3b shows the operation when the GND short 2 occurs on the input line V200. Since this operation is the same as the operation when the GND short 1 occurs on the input line V100, description thereof is omitted.
  • FIGS. 3c to 3e show that when a GND short 3 occurs at the connection point between the microcomputer 101 and the output line 110, or when a GND short 4 occurs at the connection point between the microcomputer 102 and the output line 210.
  • the operation when the GND short 5 occurs at the connection point between the peripheral IC group 103 and the third power supply line is shown. Since these abnormalities cannot be compensated by a redundant configuration, power cannot be supplied to a circuit that is supplied with power from a power supply line in which a GND short has occurred, but power supply can be continued for other power supply lines. it can. That is, at least one of the microcomputers continues to operate, and some of the functions of the in-vehicle electronic control device 100 can operate.
  • the on-vehicle electronic control device 100 electrically isolates the location where an abnormality has occurred by the current interrupt circuits 11 to 22, and the constant voltage generation circuit on the side where no abnormality has occurred.
  • the function of the on-vehicle electronic control device 100 can be maintained by continuing the power supply.
  • the in-vehicle electronic control device 100 since the in-vehicle electronic control device 100 according to the first embodiment includes current interrupt circuits on both the input side and the output side of the constant voltage generation circuit, it is assumed that an abnormality has occurred on either the input side or the output side. However, both forward and reverse overcurrents can be cut off. As a result, the constant voltage generation circuit on the side where no abnormality has occurred can be prevented from operating abnormally due to reverse overcurrent, and normal operation can be continued.
  • the abnormality is determined by detecting the amount of current flowing through the current detection resistor and the current direction.
  • the output voltage V 1 of the output line V 110 that supplies power to the microcomputer 101 the output voltage V 2 of the output line V 210 that supplies power to the microcomputer 102, and the first that supplies power to the peripheral IC group 103.
  • a configuration example will be described in which an abnormality is determined by monitoring the output voltage V3 of the three power supply lines.
  • FIG. 4 is a circuit diagram of the on-vehicle electronic control device 100 according to the second embodiment.
  • the voltage detection circuits 60 to 62 monitor the output voltages V1 to V3, respectively.
  • the voltage detection circuits 60 to 62 determine an abnormality when the output voltages V1 to V3 deviate from a predetermined voltage range set in advance, and output an abnormality detection signal to the control circuit 50.
  • the voltage detection circuit 60 when an abnormal voltage is generated in the output voltage V1, the voltage detection circuit 60 outputs an abnormality detection signal to the control circuit 50.
  • the control circuit 50 switches at least the MOS transistors 1 and 2 to non-conduction in order to isolate the constant voltage generation circuit 10 generating the output voltage V1 from the power supply.
  • the control circuit 50 keeps supplying the power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 3 to 6, and maintains the function of the on-vehicle electronic control device 100. it can.
  • the control circuit 50 isolates the abnormal part as in the case where the abnormal voltage occurs in the output voltage V1, and one of the constant voltage generation circuits supplies power.
  • a power supply route is formed so as to supply power to the target.
  • FIG. 5 is a circuit diagram of the on-vehicle electronic control device 100 according to the third embodiment.
  • the over-temperature detection circuits 70 and 71 are arranged as close as possible to the constant voltage generation circuits 10 and 20, respectively, and detect temperatures in the vicinity of the constant voltage generation circuits 10 and 20, respectively.
  • the overtemperature detection circuits 70 and 71 determine that an abnormality has occurred when the detected temperature exceeds a preset threshold value, and output an abnormality detection signal to the control circuit 50.
  • the overtemperature detection circuit 70 when an overtemperature occurs in the constant voltage generation circuit 10, the overtemperature detection circuit 70 outputs an abnormality detection signal indicating that an abnormal temperature has been detected to the control circuit 50.
  • the control circuit 50 stops at least the constant voltage generation circuit 10 and isolates the MOS transistors 1 and 2 from non-conduction in order to isolate the overvoltage constant voltage generation circuit 10 from the power supply.
  • the control circuit 50 keeps supplying the power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 3 to 6, and maintains the function of the on-vehicle electronic control device 100. it can.
  • the control circuit 50 isolates the constant voltage generation circuit 20 from the power supply, and, in the same way as when the overtemperature occurs in the constant voltage generation circuit 10, further, the constant voltage generation circuit A power supply route is formed so that 10 supplies power to the power supply target.
  • FIG. 6 is a circuit diagram of the on-vehicle electronic control device 100 according to the fourth embodiment.
  • the voltage comparator V10 acquires the potential difference between the constant voltages V1 and V2
  • the voltage comparator V20 acquires the potential difference between the constant voltages V1 and V3
  • the voltage comparator V30 acquires the potential difference between the constant voltages V2 and V3. Even if the constant voltages V1 mV2 and V3 are each within a predetermined voltage level range, if each potential difference exceeds a preset threshold value, it is determined as abnormal.
  • the control circuit 50 determines that the constant voltage V1 is abnormal and generates a constant voltage V1. 10 is stopped at least, and the MOS transistors 1 and 2 are switched off.
  • the control circuit 50 keeps supplying the power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 3 to 6, and maintains the function of the on-vehicle electronic control device 100. it can.
  • the control circuit 50 determines that the constant voltage V2 is abnormal and generates a constant voltage V2.
  • the voltage generation circuit 20 is stopped at least, and the MOS transistors 3 and 4 are switched to non-conduction.
  • the control circuit 50 keeps supplying power from the constant voltage generation circuit 10 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 1 and 2 and 5 to 6, and the in-vehicle electronic control device 100. Can maintain the function.
  • the control circuit 50 determines that the constant voltage V3 is abnormal and isolates the peripheral IC group 103 from the power supply circuit. Therefore, at least the MOS transistors 5 and 6 are switched to non-conduction.
  • the control circuit 50 continues to supply power from the constant voltage generation circuit 10 to the microcomputer 101 and from the constant voltage generation circuit 20 to the microcomputer 102 by turning on the MOS transistors 1 to 4, and both microcomputers are connected to the on-board electronics.
  • the control device 100 can be shifted to a safe state.
  • the control circuit 50 switches the MOS transistors 1 to 6 to non-conduction and electrically isolates the constant voltage generation circuits 10 and 20 from the external circuit. Further, the function of the on-vehicle electronic control device 100 can be maintained by connecting to a power source outside the on-vehicle electronic control device 100 and supplying power to the microcomputers 101, 2 and the peripheral IC group 103.
  • a communication function is added to the constant voltage generation circuit, the current detection block 40, the voltage detection circuits 60 to 62, the over temperature detection circuits 70 to 71, the abnormality detection signal output from the voltage comparators V10 to V30, and the conduction of each MOS transistor /
  • the microcomputers 101 and 2 can be notified of the non-conduction state. Receiving this notification, the microcomputers 101 to 2 recognize the state of the constant voltage generation circuit, and based on this, can control the conduction / non-conduction of each MOS transistor via the communication function.
  • a specific aspect of the communication function may be, for example, wireless communication, or each constant voltage generation circuit and the microcomputers 101 to 2 may be connected by circuit wiring.
  • Each MOS transistor that has detected an abnormality and switched to a non-conducting state automatically returns to the conducting state automatically after a preset time has elapsed.
  • the vehicle-mounted electronic control apparatus 100 can be returned to a normal state by maintaining.
  • each MOS transistor is temporarily returned to the conducting state by a command from the microcomputers 101 and 2, and when the abnormality that has occurred is recovered, the conducting state is maintained and the in-vehicle electronic control device 100 is initialized. It can also be returned to.
  • Embodiments 1 to 4 two constant voltage generation circuits are provided to support three power supply destinations, but three or more constant voltage generation circuits may be provided. For example, when three constant voltage generation circuits are provided, four power supply destinations can be supported.
  • the constant voltage generation circuit is configured by a series regulator, but may be configured by a switching regulator. Further, a switching regulator and a series regulator can be connected in series so that a low voltage for a microcomputer can be generated from a high external input voltage.
  • one external power supply supplies power to two constant voltage generation circuits.
  • a plurality of external power supplies respectively supply power to the same number of constant voltage generation circuits as external power supplies. It can also be configured.
  • At least a part of the circuit configuration except the battery B, the microcomputers 101 to 102, and the peripheral IC group 103 can be integrated on a single semiconductor integrated circuit. it can.
  • the present invention is not limited to the above-described embodiments, and various designs are possible without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment.
  • the configuration of another embodiment can be added to the configuration of a certain embodiment.

Abstract

In order for it to be possible for the functions of an electronic control device to be maintained even if an abnormality occurs in a constant-voltage generating circuit and in the periphery thereof, an in-vehicle electronic control device according to the present invention is provided with: a first power source line that supplies power to a first computation device by way of a first constant-voltage circuit; a second power source line that supplies power to a second computation device by way of a second constant-voltage circuit; and a current interrupting circuit that interrupts a power source line having an abnormality, and connects a power supply to the first and second computation devices from the other power source line.

Description

車載用電子制御装置In-vehicle electronic control unit
 本発明は、外部電源から供給される電力を用いて一定電圧を出力する定電圧生成回路を備えた車載用電子制御装置に関する。 The present invention relates to an in-vehicle electronic control device including a constant voltage generation circuit that outputs a constant voltage using electric power supplied from an external power source.
 従来より、車載用電子制御装置には、入出力信号処理を実施する第1マイクロコンピュータと、第1マイクロコンピュータの動作を監視する第2マイクロコンピュータの2つが搭載されている。第1および第2マイクロコンピュータとその周辺IC(Integrated Circuit)群との間のインターフェース部分は、入出力電圧レベルが同一になるように構成されている。 2. Description of the Related Art Conventionally, in-vehicle electronic control devices are equipped with two types: a first microcomputer that performs input / output signal processing and a second microcomputer that monitors the operation of the first microcomputer. The interface portion between the first and second microcomputers and their peripheral IC (Integrated Circuit) group is configured to have the same input / output voltage level.
 上記回路構成では、1つの定電圧生成回路が第1および第2マイクロコンピュータと周辺IC群へ電源を供給しているため、その定電圧生成回路に異常が発生し規定の電圧を出力できなくなった場合、第1および第2マイクロコンピュータともに機能を停止してしまい、電子制御装置の機能を失ってしまう。 In the above circuit configuration, since one constant voltage generation circuit supplies power to the first and second microcomputers and the peripheral IC group, an abnormality has occurred in the constant voltage generation circuit and a specified voltage cannot be output. In this case, both the first and second microcomputers stop functioning and lose the function of the electronic control unit.
 一般に、車載用電子制御装置で使用される定電圧生成回路には、GNDショートなどの異常要因に対する保護機能が必要となる。しかし、この保護機能が動作し、定電圧生成回路の破壊を回避できても、異常要因を取り除かない限り定電圧生成回路は規定の電圧を出力できない。その結果、電子制御装置は機能を失ってしまう。この機能が失われることを防ぐため、定電圧生成回路が破壊または停止しても、機能の全てまたは一部を動作させ続けることへの要望がある。 Generally, a constant voltage generation circuit used in an on-vehicle electronic control device needs a protection function against abnormal factors such as a GND short circuit. However, even if this protective function operates and the destruction of the constant voltage generation circuit can be avoided, the constant voltage generation circuit cannot output a specified voltage unless the cause of abnormality is removed. As a result, the electronic control device loses its function. In order to prevent this function from being lost, there is a desire to continue operating all or part of the function even if the constant voltage generation circuit is destroyed or stopped.
 この要求を満たすため、2系統のスイッチング回路を構成し、それぞれが独立した2つの電子制御回路に電力を供給する技術がある。下記特許文献1では、2つのスイッチング回路を構成し、1系統のスイッチング回路が故障しても、他方のスイッチング回路を動作させることにより、機能を維持できるようにしている。 In order to satisfy this requirement, there is a technology that configures two switching circuits and supplies power to two independent electronic control circuits. In the following Patent Document 1, two switching circuits are configured, and even if one switching circuit fails, the function can be maintained by operating the other switching circuit.
 同文献1に記載されている技術では、電子制御装置内に2系統のスイッチング回路を準備し、それぞれがマイクロコンピュータを搭載した2つの電子制御回路に対して電源を供給している。1系統のスイッチング回路でGNDショートが発生し、1系統の電子制御回路が動作を停止した場合でも、もう1系統のスイッチング回路が動作しているため、もう1系統の電子制御回路は動作することができる。 In the technique described in the document 1, two systems of switching circuits are prepared in an electronic control device, and each supplies power to two electronic control circuits equipped with a microcomputer. Even if a GND short circuit occurs in one switching circuit and the operation of one electronic control circuit stops, the other switching circuit operates, so that the other electronic control circuit operates. Can do.
特開2006-321350号公報JP 2006-321350 A
 上記特許文献1に記載されている技術では、GNDショートがスイッチング回路内で発生した場合、GNDショートが発生した1系統のスイッチング回路を停止させる必要がある。そのため、停止したスイッチング回路から電源を供給されていた電子制御回路は機能が維持できなくなるという課題がある。 In the technique described in Patent Document 1, when a GND short occurs in the switching circuit, it is necessary to stop the one system switching circuit in which the GND short occurs. Therefore, there is a problem that the electronic control circuit that has been supplied with power from the stopped switching circuit cannot maintain its function.
 本発明は、上記のような課題を解決すべくなされたものであり、定電圧生成回路およびその周辺で異常が発生しても、電子制御装置の機能を維持できるようにすることを目的とする。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to maintain the function of an electronic control device even when an abnormality occurs in the constant voltage generation circuit and its surroundings. .
 本発明に係る車載電子制御装置は、第1定電圧回路を介して第1演算装置に電力を供給する第1電源ラインと、第2定電圧回路を介して第2演算装置に電力を供給する第2電源ラインと、異常が発生した電源ラインを遮断して他方の電源ラインから第1および第2演算装置へ電力供給を継続する電流遮断回路と、を備える。 The on-vehicle electronic control device according to the present invention supplies a first power line for supplying power to the first arithmetic device via the first constant voltage circuit, and supplies power to the second arithmetic device via the second constant voltage circuit. A second power line, and a current interrupt circuit that interrupts the power line in which an abnormality has occurred and continues to supply power from the other power line to the first and second arithmetic devices.
 本発明に係る車載電子制御装置によれば、定電圧生成回路を冗長化することにより、1系統の定電圧生成回路で異常が発生しても、他系統の定電圧回路から電力供給を継続することができる。これにより、車載電子制御装置の機能を維持することができる。 According to the on-vehicle electronic control device according to the present invention, by making the constant voltage generation circuit redundant, even if an abnormality occurs in one constant voltage generation circuit, power supply is continued from the other constant voltage circuit. be able to. Thereby, the function of a vehicle-mounted electronic control apparatus can be maintained.
実施形態1に係る車載電子制御装置100の回路図である。1 is a circuit diagram of an on-vehicle electronic control device 100 according to Embodiment 1. FIG. GNDショート1が発生した場合に電流検出抵抗R1およびR2に流れる電流と、電流検知ブロック40aおよび40bの出力を示す図である。It is a figure which shows the electric current which flows into electric current detection resistance R1 and R2 when the GND short 1 generate | occur | produces, and the output of electric current detection blocks 40a and 40b. GNDショート1が発生した場合の電流検知ブロック40からの出力信号とMOSトランジスタの導通/非導通を切り替える動作との対応関係を説明する図である。It is a figure explaining the correspondence of the output signal from the electric current detection block 40 when the GND short 1 generate | occur | produces, and the operation | movement which switches conduction / non-conduction of a MOS transistor. 実施形態2に係る車載電子制御装置100の回路図である。It is a circuit diagram of the vehicle-mounted electronic control apparatus 100 which concerns on Embodiment 2. FIG. 実施形態3に係る車載電子制御装置100の回路図である。It is a circuit diagram of the vehicle-mounted electronic control apparatus 100 which concerns on Embodiment 3. FIG. 実施形態4に係る車載電子制御装置100の回路図である。It is a circuit diagram of the vehicle-mounted electronic control apparatus 100 which concerns on Embodiment 4. FIG.
<実施の形態1>
 図1は、本発明の実施形態1に係る車載電子制御装置100の回路図である。車載電子制御装置100は、バッテリB、オルターネータなどの外部電源、または図示しない外部電源電圧を昇降圧した電圧Vin(外部入力電圧)を電源として動作する。
<Embodiment 1>
FIG. 1 is a circuit diagram of an in-vehicle electronic control device 100 according to Embodiment 1 of the present invention. The on-vehicle electronic control device 100 operates using an external power source such as a battery B and an alternator, or a voltage Vin (external input voltage) obtained by stepping up or down an external power source voltage (not shown) as a power source.
 電圧Vinは、2系統の定電圧生成回路10と20へ並列に供給される。定電圧生成回路10の入力側には、電流検出抵抗R1とMOSトランジスタ1を有する電流遮断回路11が配置されている。定電圧生成回路10の出力側には、電流検出抵抗R2とMOSトランジスタ2を有する電流遮断回路12が配置されている。定電圧生成回路20の入力側には、電流検出抵抗R3とMOSトランジスタ3を有する電流遮断回路21が配置されている。定電圧生成回路20の出力側には、電流検出抵抗R4とMOSトランジスタ4を有する電流遮断回路22が配置されている。各MOSトランジスタは、電流の導通状態/非導通状態を切り替えることができる。 The voltage Vin is supplied in parallel to the two constant voltage generation circuits 10 and 20. On the input side of the constant voltage generation circuit 10, a current cutoff circuit 11 having a current detection resistor R1 and a MOS transistor 1 is arranged. On the output side of the constant voltage generation circuit 10, a current cutoff circuit 12 having a current detection resistor R2 and a MOS transistor 2 is disposed. On the input side of the constant voltage generation circuit 20, a current cutoff circuit 21 having a current detection resistor R3 and a MOS transistor 3 is arranged. On the output side of the constant voltage generation circuit 20, a current cutoff circuit 22 having a current detection resistor R4 and a MOS transistor 4 is arranged. Each MOS transistor can switch a current conduction state / non-conduction state.
 定電圧生成回路10の入力ラインをV100、出力ラインをV110とする(第1電源ライン)。定電圧生成回路20の入力ラインをV200、出力ラインをV210とする(第2電源ライン)。出力ラインV110の出力電圧V1はマイクロコンピュータ101(第1演算装置)へ供給され、出力ラインV210の出力電圧V2はマイクロコンピュータ102(第2演算装置)へ供給される。 Suppose that the input line of the constant voltage generation circuit 10 is V100 and the output line is V110 (first power supply line). The input line of the constant voltage generation circuit 20 is set to V200, and the output line is set to V210 (second power supply line). The output voltage V1 of the output line V110 is supplied to the microcomputer 101 (first arithmetic unit), and the output voltage V2 of the output line V210 is supplied to the microcomputer 102 (second arithmetic unit).
 出力ラインV110の電流遮断回路12よりも下流側と、出力ラインV210の電流遮断回路22よりも下流側との間には、これら出力ラインを電源に対して並列接続する第3電源ラインが接続されている。第3電源ライン上には、電流遮断回路31と32が直列接続されている。電流遮断回路31と32の間の接点からは、周辺IC群103(例えばEEPROMなどの電子回路)へ電圧V3が供給される。 A third power supply line that connects these output lines in parallel to the power supply is connected between the downstream side of the current cutoff circuit 12 of the output line V110 and the downstream side of the current cutoff circuit 22 of the output line V210. ing. Current interrupting circuits 31 and 32 are connected in series on the third power supply line. A voltage V3 is supplied to the peripheral IC group 103 (for example, an electronic circuit such as an EEPROM) from the contact between the current interrupt circuits 31 and 32.
 電流遮断回路31は、電流検出抵抗R5とMOSトランジスタ5を有する。電流遮断回路32は、電流検出抵抗R6とMOSトランジスタ6を有する。各MOSトランジスタは、電流の導通状態/非導通状態を切り替えることができる。 The current interrupt circuit 31 has a current detection resistor R5 and a MOS transistor 5. The current interruption circuit 32 includes a current detection resistor R6 and a MOS transistor 6. Each MOS transistor can switch a current conduction state / non-conduction state.
 電流検出抵抗R1~R6の両端電圧は、図1に示すように、それぞれ電流検知ブロック40を構成する電流検知ブロック40a~40fに接続される。電流検知ブロック40a~40fは、電流検出抵抗R1~R6に流れる電流量と電流方向を検知し、電流量が電流方向毎にあらかじめ設定された閾値を超えたときその箇所において異常が発生していると判定し、異常検出信号をコントロール回路50へ出力する。 The voltages across the current detection resistors R1 to R6 are connected to the current detection blocks 40a to 40f constituting the current detection block 40, respectively, as shown in FIG. The current detection blocks 40a to 40f detect the amount of current flowing through the current detection resistors R1 to R6 and the current direction. When the current amount exceeds a preset threshold value for each current direction, an abnormality has occurred at that location. The abnormality detection signal is output to the control circuit 50.
 コントロール回路50は、電流検知ブロック40a~40fが異常を検出すると、その異常状態に応じてMOSトランジスタ1~6の導通状態/非導通状態を切り替え、異常箇所につながる電流パスを遮断し、異常箇所を電気的に隔離する。この隔離動作については後に詳述する。また、コントロール回路50は、それぞれ制御回路13と23を介して、定電圧生成回路10と20をON/OFFすることができる。 When the current detection blocks 40a to 40f detect an abnormality, the control circuit 50 switches the conduction state / non-conduction state of the MOS transistors 1 to 6 according to the abnormality state, cuts off the current path leading to the abnormality portion, and detects the abnormality portion. Is electrically isolated. This isolation operation will be described in detail later. The control circuit 50 can turn on / off the constant voltage generation circuits 10 and 20 via the control circuits 13 and 23, respectively.
 本発明における「検出回路」は、各定電圧生成回路およびその周辺に生じた異常を検出するための回路、およびコントロール回路50がこれに相当する。以下の実施形態においても同様である。 The “detection circuit” in the present invention corresponds to each constant voltage generation circuit, a circuit for detecting an abnormality occurring in the periphery thereof, and the control circuit 50. The same applies to the following embodiments.
 図2は、入力ラインV100上でGNDショート1が発生した場合に電流検出抵抗R1およびR2に流れる電流と、電流検知ブロック40aおよび40bの出力を示す図である。図2(a)(b)はそれぞれ電流検出抵抗R1とR2に流れる電流、図2(c)(d)はそれぞれ電流検知ブロック40aと40bの出力を示す。 FIG. 2 is a diagram showing the current flowing through the current detection resistors R1 and R2 and the outputs of the current detection blocks 40a and 40b when the GND short 1 occurs on the input line V100. 2A and 2B show currents flowing through the current detection resistors R1 and R2, respectively, and FIGS. 2C and 2D show outputs of the current detection blocks 40a and 40b, respectively.
 定電圧生成回路10の入力ラインV100上でGNDショート1が発生した場合、定電圧生成回路10は所定の電圧を出力できなくなり、図2(a)に示すように、バッテリBからGNDショート1の発生箇所に向かって大電流が流れる。その結果、電流検出抵抗R1には順方向に、あらかじめ設定した閾値を超える大電流が流れる。 When the GND short 1 occurs on the input line V100 of the constant voltage generating circuit 10, the constant voltage generating circuit 10 cannot output a predetermined voltage, and as shown in FIG. A large current flows toward the point of occurrence. As a result, a large current exceeding a preset threshold value flows in the forward direction in the current detection resistor R1.
 さらに、出力ラインV110と出力ラインV210は電流遮断回路31と32を経由して接続されているため、図2(b)に示すように、定電圧生成回路20からもGNDショート1箇所に向かって大電流が流れ、定電圧生成回路20も規定の電圧を出力できなくなる。その結果、電流検出抵抗R2には順方向とは逆に、あらかじめ設定した閾値を超える大電流が流れる。 Further, since the output line V110 and the output line V210 are connected via the current cutoff circuits 31 and 32, as shown in FIG. 2 (b), the constant voltage generation circuit 20 is also directed to one GND short. A large current flows and the constant voltage generation circuit 20 cannot output a specified voltage. As a result, a large current exceeding a preset threshold value flows in the current detection resistor R2, contrary to the forward direction.
 電流検知ブロック40aと40bはそれぞれ、R1とR2それぞれに流れる電流が各電流方向の過電流閾値を超えたとき、図2(c)(d)に示すように過電流検知信号をコントロール回路50へ出力する。その他の電流検知ブロック40c~40fについても動作は同様である。 The current detection blocks 40a and 40b respectively send an overcurrent detection signal to the control circuit 50 as shown in FIGS. 2 (c) and 2 (d) when the currents flowing in R1 and R2 exceed the overcurrent threshold in each current direction. Output. The operation is the same for the other current detection blocks 40c to 40f.
 入力ラインV100にGNDショート1が発生した場合、入力ラインV110上のMOSトランジスタ1を非導通状態にして定電圧生成回路10に電源を供給しないようにし、定電圧生成回路10の出力を停止することが必要である。一方、図1に示す回路構成の下では、定電圧生成回路20側からもGNDショート1に向かって逆過電流が流れようとするので、定電圧生成回路20の動作を正常に保つためには、出力ラインV110上のMOSトランジスタ2も非導通状態にする必要がある。 When the GND short 1 occurs in the input line V100, the MOS transistor 1 on the input line V110 is turned off so that power is not supplied to the constant voltage generation circuit 10 and the output of the constant voltage generation circuit 10 is stopped. is required. On the other hand, under the circuit configuration shown in FIG. 1, a reverse overcurrent tends to flow from the constant voltage generation circuit 20 side toward the GND short 1, so that the operation of the constant voltage generation circuit 20 is maintained normally. The MOS transistor 2 on the output line V110 also needs to be turned off.
 同様に、出力ラインV110上でレアショート1、リーク1、またはGNDショートが発生した場合、出力ラインV110上のMOSトランジスタ2を非導通状態にして逆過電流を遮断するとともに、入力ラインV100上のMOSトランジスタ1を非導通状態にして電源から異常箇所に向かう過電流を遮断する必要がある。 Similarly, when a rare short 1, leak 1, or GND short occurs on the output line V110, the MOS transistor 2 on the output line V110 is turned off to cut off the reverse overcurrent, and on the input line V100. It is necessary to cut off the overcurrent from the power source to the abnormal location by turning off the MOS transistor 1.
 このように、定電圧生成回路の入出力側双方に電流遮断回路を設けることにより、定電圧生成回路の入力側と出力側いずれにおいて異常が発生しても、その異常箇所および対応する定電圧生成回路を電力供給先から隔離し、他方の定電圧生成回路の動作を正常に継続することができる。 In this way, by providing current interrupting circuits on both the input and output sides of the constant voltage generation circuit, even if an abnormality occurs on either the input side or the output side of the constant voltage generation circuit, the abnormal location and the corresponding constant voltage generation The circuit is isolated from the power supply destination, and the operation of the other constant voltage generation circuit can be continued normally.
 なお、電流検知ブロック40が過電流を検出する手法として、以下のようなパターンが考えられる。 In addition, the following patterns can be considered as a method by which the current detection block 40 detects an overcurrent.
(過電流検出手法その1)
 電流検知ブロック40は、電流検知抵抗R1~R6に流れる電流量があらかじめ設定した閾値(図2の各方向の閾値)を超えた場合には異常と判定し、コントロール回路50に過電流検知信号を出力する。
(Overcurrent detection method 1)
The current detection block 40 determines that there is an abnormality when the amount of current flowing through the current detection resistors R1 to R6 exceeds a preset threshold value (threshold value in each direction in FIG. 2), and sends an overcurrent detection signal to the control circuit 50. Output.
(過電流検出手法その2)
 電流検知ブロック40は、電流検出抵抗R1~R6に流れる電流およびその電流方向を監視し、あらかじめ設定した電流方向とは逆向きに電流が流れ、さらにその電流量があらかじめ設定した閾値を超えた場合には異常と判定し、コントロール回路50に異常検知信号を出力する。
(Overcurrent detection method 2)
The current detection block 40 monitors the current flowing through the current detection resistors R1 to R6 and the direction of the current. When the current flows in the direction opposite to the preset current direction, and the current amount exceeds a preset threshold value, Is determined to be abnormal, and an abnormality detection signal is output to the control circuit 50.
(過電流検出手法その3)
 通常動作時、定電圧生成回路の入力側と出力側に流れる電流はほぼ一定である。コントロール回路50は、入力側の電流検出抵抗と出力側の電流検出抵抗それぞれに流れる電流量を比較し、その電流量の比があらかじめ設定した閾値を超えた場合に異常と判定し、コントロール回路50に過電流検知信号を出力する。
(Overcurrent detection method 3)
During normal operation, the current flowing through the input side and output side of the constant voltage generation circuit is substantially constant. The control circuit 50 compares the amount of current flowing through each of the input-side current detection resistor and the output-side current detection resistor, and determines that an abnormality occurs when the ratio of the current amounts exceeds a preset threshold value. Output an overcurrent detection signal.
(過電流検出手法その3:補足)
 通常状態では、定電圧生成回路の入力電流と出力電流の比はほぼ1:1の関係となる。よって、この比が1:1から外れてあらかじめ設定した閾値を逸脱した場合は、異常と判定する。例えば、出力ラインV110上で、ある抵抗分を経由してGNDへショートするレアショート1が発生した場合、電流検出抵抗R1に流れる電流IR1が増加し、電流検出抵抗R2に流れる電流IR2との関係は、IR1>IR2となる。また、例えば出力ラインV110上に他回路から電流がリークするリーク1が発生した場合、電流IR2が増加し、IR1<IR2となる。電流IR1とIR2の比を、電流検知ブロック40aと40bおよびコントロール回路50が検出し、この比に異常が発生した場合は、コントロール回路50がMOSトランジスタ1と2を非導通に切替え、レアショート1またはリーク1が発生している箇所を電気的に隔離する。定電圧生成回路20側にこれら異常が発生した場合についても同様である。
(Overcurrent detection method 3: supplement)
In the normal state, the ratio between the input current and the output current of the constant voltage generation circuit is approximately 1: 1. Therefore, when this ratio deviates from 1: 1 and deviates from a preset threshold value, it is determined as abnormal. For example, when a rare short 1 that shorts to GND via a certain resistance occurs on the output line V110, the current IR1 that flows through the current detection resistor R1 increases, and the relationship with the current IR2 that flows through the current detection resistor R2 Becomes IR1> IR2. Further, for example, when a leak 1 in which a current leaks from another circuit occurs on the output line V110, the current IR2 increases and IR1 <IR2. The ratio of the currents IR1 and IR2 is detected by the current detection blocks 40a and 40b and the control circuit 50. If an abnormality occurs in this ratio, the control circuit 50 switches the MOS transistors 1 and 2 to non-conductive, and the rare short 1 Alternatively, the part where the leak 1 is generated is electrically isolated. The same applies when these abnormalities occur on the constant voltage generation circuit 20 side.
(過電流検出手法その4)
 電流検出抵抗R1~R6に代えて、各MOSトランジスタの入出力間抵抗を用いて各MOSトランジスタに流れる電流を検出することもできる。あるいは、各MOSトランジスタと同じ電流が流れるミラーMOSトランジスタを構成し、各ミラーMOSトランジスタに流れる電流を測定することによって、各MOSトランジスタに流れる電流を間接的に測定することもできる。
(Overcurrent detection method 4)
Instead of the current detection resistors R1 to R6, the current flowing through each MOS transistor can be detected using the resistance between the input and output of each MOS transistor. Alternatively, it is possible to indirectly measure the current flowing through each MOS transistor by configuring a mirror MOS transistor through which the same current as each MOS transistor flows and measuring the current flowing through each mirror MOS transistor.
 図3は、GNDショート1が発生した場合の電流検知ブロック40からの出力信号と、コントロール回路50がこれに応じてMOSトランジスタの導通/非導通を切り替える動作との対応関係を説明する図である。 FIG. 3 is a diagram for explaining a correspondence relationship between an output signal from the current detection block 40 when the GND short 1 occurs and an operation in which the control circuit 50 switches the conduction / non-conduction of the MOS transistor in response thereto. .
 図3aに示すとおり、GNDショート1が発生した場合、少なくとも電流検知ブロック40aは順方向に過電流を検知し、電流検知ブロック40bは逆方向に過電流を検知する。コントロール回路50は、少なくとも電流検知ブロック40aと40bの検出結果からGNDショート1が発生している箇所を判断し、MOSトランジスタ1と2を非導通に切り替え、GNDショート1発生箇所を電源回路から電気的に隔離する。コントロール回路50は、MOSトランジスタ3~6を導通状態にすることにより、電流遮断回路31と32を経由して定電圧生成回路20からマイクロコンピュータ101、2および周辺IC群103へ電力を供給し続け、車載電子制御装置100の機能を維持できる。 As shown in FIG. 3a, when a GND short 1 occurs, at least the current detection block 40a detects an overcurrent in the forward direction, and the current detection block 40b detects an overcurrent in the reverse direction. The control circuit 50 determines a location where the GND short 1 is generated from at least the detection results of the current detection blocks 40a and 40b, switches the MOS transistors 1 and 2 to non-conduction, and electrically connects the location where the GND short 1 is generated from the power supply circuit. Isolated. The control circuit 50 continues to supply power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 via the current cutoff circuits 31 and 32 by turning on the MOS transistors 3 to 6. The function of the on-vehicle electronic control device 100 can be maintained.
 図3bは、入力ラインV200上でGNDショート2が発生した場合の動作を示す。この動作は入力ラインV100上でGNDショート1が発生した場合の動作と同様であるため、説明は省略する。 FIG. 3b shows the operation when the GND short 2 occurs on the input line V200. Since this operation is the same as the operation when the GND short 1 occurs on the input line V100, description thereof is omitted.
 図3c~eは、マイクロコンピュータ101と出力ライン110との間の接続点でGNDショート3が発生した場合、マイクロコンピュータ102と出力ライン210との間の接続点でGNDショート4が発生した場合、および周辺IC群103と第3電源ラインとの間の接続点でGNDショート5が発生した場合の動作をそれぞれ示す。これらの異常は冗長構成によっては補償できないので、GNDショートが発生した電源ラインから電力供給を受けている回路に電源を供給することはできないが、その他の電源ラインについては電力供給を継続することができる。すなわち、少なくともいずれか一方のマイクロコンピュータは動作を継続し、車載電子制御装置100の機能の一部は動作できる。 FIGS. 3c to 3e show that when a GND short 3 occurs at the connection point between the microcomputer 101 and the output line 110, or when a GND short 4 occurs at the connection point between the microcomputer 102 and the output line 210. The operation when the GND short 5 occurs at the connection point between the peripheral IC group 103 and the third power supply line is shown. Since these abnormalities cannot be compensated by a redundant configuration, power cannot be supplied to a circuit that is supplied with power from a power supply line in which a GND short has occurred, but power supply can be continued for other power supply lines. it can. That is, at least one of the microcomputers continues to operate, and some of the functions of the in-vehicle electronic control device 100 can operate.
<実施の形態1:まとめ>
 以上のように、本実施形態1に係る車載電子制御装置100は、電流遮断回路11~22によって、異常が発生した箇所を電気的に隔離し、異常が発生していない側の定電圧生成回路が電力供給を継続して車載電子制御装置100の機能を維持することができる。
<Embodiment 1: Summary>
As described above, the on-vehicle electronic control device 100 according to the first embodiment electrically isolates the location where an abnormality has occurred by the current interrupt circuits 11 to 22, and the constant voltage generation circuit on the side where no abnormality has occurred. However, the function of the on-vehicle electronic control device 100 can be maintained by continuing the power supply.
 また、本実施形態1に係る車載電子制御装置100は、定電圧生成回路の入力側と出力側の双方に電流遮断回路を設けているので、入力側と出力側のいずれに異常が発生したとしても、順方向過電流と逆方向過電流をともに遮断することができる。これにより、異常が発生していない側の定電圧生成回路が逆方向過電流によって異常動作することを避け、正常動作を継続することができる。 In addition, since the in-vehicle electronic control device 100 according to the first embodiment includes current interrupt circuits on both the input side and the output side of the constant voltage generation circuit, it is assumed that an abnormality has occurred on either the input side or the output side. However, both forward and reverse overcurrents can be cut off. As a result, the constant voltage generation circuit on the side where no abnormality has occurred can be prevented from operating abnormally due to reverse overcurrent, and normal operation can be continued.
<実施の形態2>
 実施形態1では、電流検出抵抗に流れる電流量と電流方向を検出して異常判定した。本発明の実施形態2では、マイクロコンピュータ101に電源を供給する出力ラインV110の出力電圧V1、マイクロコンピュータ102に電源を供給する出力ラインV210の出力電圧V2、周辺IC群103に電源を供給する第3電源ラインの出力電圧V3を監視することにより、異常判定する構成例を説明する。
<Embodiment 2>
In the first embodiment, the abnormality is determined by detecting the amount of current flowing through the current detection resistor and the current direction. In the second embodiment of the present invention, the output voltage V 1 of the output line V 110 that supplies power to the microcomputer 101, the output voltage V 2 of the output line V 210 that supplies power to the microcomputer 102, and the first that supplies power to the peripheral IC group 103. A configuration example will be described in which an abnormality is determined by monitoring the output voltage V3 of the three power supply lines.
 図4は、本実施形態2に係る車載電子制御装置100の回路図である。電圧検出回路60~62は、それぞれ出力電圧V1~V3を監視する。電圧検出回路60~62は、出力電圧V1~V3があらかじめ設定した所定の電圧範囲を逸脱した場合に異常と判定し、異常検出信号をコントロール回路50に出力する。 FIG. 4 is a circuit diagram of the on-vehicle electronic control device 100 according to the second embodiment. The voltage detection circuits 60 to 62 monitor the output voltages V1 to V3, respectively. The voltage detection circuits 60 to 62 determine an abnormality when the output voltages V1 to V3 deviate from a predetermined voltage range set in advance, and output an abnormality detection signal to the control circuit 50.
 例えば、出力電圧V1に異常電圧が発生した場合、電圧検出回路60は異常検出信号をコントロール回路50に出力する。コントロール回路50は、出力電圧V1を生成している定電圧生成回路10を電源から隔離するために、少なくともMOSトランジスタ1と2を非導通に切り替える。コントロール回路50は、MOSトランジスタ3~6を導通状態にすることにより、定電圧生成回路20からマイクロコンピュータ101、2および周辺IC群103へ電力を供給し続け、車載電子制御装置100の機能を維持できる。 For example, when an abnormal voltage is generated in the output voltage V1, the voltage detection circuit 60 outputs an abnormality detection signal to the control circuit 50. The control circuit 50 switches at least the MOS transistors 1 and 2 to non-conduction in order to isolate the constant voltage generation circuit 10 generating the output voltage V1 from the power supply. The control circuit 50 keeps supplying the power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 3 to 6, and maintains the function of the on-vehicle electronic control device 100. it can.
 出力電圧V2またはV3に異常電圧が発生した場合は、出力電圧V1に異常電圧が発生した場合と同様に、コントロール回路50がその異常箇所を隔離し、さらにいずれかの定電圧生成回路が電源供給対象に電源を供給するように電源供給ルートを形成する。 When an abnormal voltage occurs in the output voltage V2 or V3, the control circuit 50 isolates the abnormal part as in the case where the abnormal voltage occurs in the output voltage V1, and one of the constant voltage generation circuits supplies power. A power supply route is formed so as to supply power to the target.
<実施の形態3>
 本発明の実施形態3では、定電圧生成回路10と20の温度を監視することにより異常判定する構成例を説明する。
<Embodiment 3>
In the third embodiment of the present invention, a configuration example in which an abnormality is determined by monitoring the temperatures of the constant voltage generation circuits 10 and 20 will be described.
 図5は、本実施形態3に係る車載電子制御装置100の回路図である。過温度検出回路70と71は、それぞれ定電圧生成回路10と20の可能な限り近い箇所に配置され、それぞれ定電圧生成回路10と20の近傍の温度を検出する。過温度検出回路70と71は、検出した温度があらかじめ設定した閾値を超えた場合には異常と判定し、コントロール回路50に異常検出信号を出力する。 FIG. 5 is a circuit diagram of the on-vehicle electronic control device 100 according to the third embodiment. The over-temperature detection circuits 70 and 71 are arranged as close as possible to the constant voltage generation circuits 10 and 20, respectively, and detect temperatures in the vicinity of the constant voltage generation circuits 10 and 20, respectively. The overtemperature detection circuits 70 and 71 determine that an abnormality has occurred when the detected temperature exceeds a preset threshold value, and output an abnormality detection signal to the control circuit 50.
 例えば、定電圧生成回路10に過温度が発生した場合、過温度検出回路70は異常温度を検知した旨を示す異常検出信号をコントロール回路50に出力する。コントロール回路50は、過温度状態の定電圧生成回路10を電源から隔離するため、少なくとも定電圧生成回路10を停止し、さらにMOSトランジスタ1と2を非導通に切り替える。コントロール回路50は、MOSトランジスタ3~6を導通状態にすることにより、定電圧生成回路20からマイクロコンピュータ101、2および周辺IC群103へ電力を供給し続け、車載電子制御装置100の機能を維持できる。 For example, when an overtemperature occurs in the constant voltage generation circuit 10, the overtemperature detection circuit 70 outputs an abnormality detection signal indicating that an abnormal temperature has been detected to the control circuit 50. The control circuit 50 stops at least the constant voltage generation circuit 10 and isolates the MOS transistors 1 and 2 from non-conduction in order to isolate the overvoltage constant voltage generation circuit 10 from the power supply. The control circuit 50 keeps supplying the power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 3 to 6, and maintains the function of the on-vehicle electronic control device 100. it can.
 定電圧生成回路20に過温度が発生した場合は、定電圧生成回路10に過温度が発生した場合と同様に、コントロール回路50が定電圧生成回路20を電源から隔離し、さらに定電圧生成回路10が電源供給対象に電源を供給するように電源供給ルートを形成する。 When the overvoltage occurs in the constant voltage generation circuit 20, the control circuit 50 isolates the constant voltage generation circuit 20 from the power supply, and, in the same way as when the overtemperature occurs in the constant voltage generation circuit 10, further, the constant voltage generation circuit A power supply route is formed so that 10 supplies power to the power supply target.
<実施の形態4>
 本発明の実施形態4では、定電圧出力V1~V3を相互に監視することにより異常判定する構成例を説明する。
<Embodiment 4>
In the fourth embodiment of the present invention, a configuration example will be described in which an abnormality is determined by mutually monitoring the constant voltage outputs V1 to V3.
 図6は、本実施形態4に係る車載電子制御装置100の回路図である。電圧比較器V10は定電圧V1とV2の電位差を取得し、電圧比較器V20は定電圧V1とV3の電位差を取得し、電圧比較器V30は定電圧V2とV3の電位差を取得する。定電圧V1mV2、V3がそれぞれ所定の電圧レベルの範囲内にあっても、各電位差があらかじめ設定した閾値を超えた場合には異常と判定する。 FIG. 6 is a circuit diagram of the on-vehicle electronic control device 100 according to the fourth embodiment. The voltage comparator V10 acquires the potential difference between the constant voltages V1 and V2, the voltage comparator V20 acquires the potential difference between the constant voltages V1 and V3, and the voltage comparator V30 acquires the potential difference between the constant voltages V2 and V3. Even if the constant voltages V1 mV2 and V3 are each within a predetermined voltage level range, if each potential difference exceeds a preset threshold value, it is determined as abnormal.
 電圧比較器V10と電圧比較器V20が同時に異常信号を出力している場合には、コントロール回路50は、定電圧V1に異常があると判断し、定電圧V1を生成している定電圧生成回路10を少なくとも停止させ、さらにMOSトランジスタ1と2を非導通に切り替える。コントロール回路50は、MOSトランジスタ3~6を導通状態にすることにより、定電圧生成回路20からマイクロコンピュータ101、2および周辺IC群103へ電力を供給し続け、車載電子制御装置100の機能を維持できる。 When the voltage comparator V10 and the voltage comparator V20 output an abnormal signal at the same time, the control circuit 50 determines that the constant voltage V1 is abnormal and generates a constant voltage V1. 10 is stopped at least, and the MOS transistors 1 and 2 are switched off. The control circuit 50 keeps supplying the power from the constant voltage generation circuit 20 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 3 to 6, and maintains the function of the on-vehicle electronic control device 100. it can.
 同様に、電圧比較器V10と電圧比較器V30が同時に異常信号を出力している場合には、コントロール回路50は、定電圧V2に異常があると判断し、定電圧V2を生成している定電圧生成回路20を少なくとも停止させ、さらにMOSトランジスタ3と4を非導通に切り替える。コントロール回路50は、MOSトランジスタ1~2と5~6を導通状態にすることにより、定電圧生成回路10からマイクロコンピュータ101、2および周辺IC群103へ電力を供給し続け、車載電子制御装置100の機能を維持できる。 Similarly, when the voltage comparator V10 and the voltage comparator V30 output an abnormal signal at the same time, the control circuit 50 determines that the constant voltage V2 is abnormal and generates a constant voltage V2. The voltage generation circuit 20 is stopped at least, and the MOS transistors 3 and 4 are switched to non-conduction. The control circuit 50 keeps supplying power from the constant voltage generation circuit 10 to the microcomputers 101 and 2 and the peripheral IC group 103 by turning on the MOS transistors 1 and 2 and 5 to 6, and the in-vehicle electronic control device 100. Can maintain the function.
 同様に、電圧比較器V20と電圧比較器V30が同時に異常信号を出力している場合には、コントロール回路50は、定電圧V3に異常があると判断し、周辺IC群103を電源回路から隔離するため、少なくともMOSトランジスタ5と6を非導通に切替える。コントロール回路50は、MOSトランジスタ1~4を導通状態にすることにより定電圧生成回路10からマイクロコンピュータ101に、定電圧生成回路20からマイクロコンピュータ102に電源供給を継続し、両マイクロコンピュータが車載電子制御装置100を安全状態へ移行させることができる。 Similarly, when the voltage comparator V20 and the voltage comparator V30 output an abnormal signal at the same time, the control circuit 50 determines that the constant voltage V3 is abnormal and isolates the peripheral IC group 103 from the power supply circuit. Therefore, at least the MOS transistors 5 and 6 are switched to non-conduction. The control circuit 50 continues to supply power from the constant voltage generation circuit 10 to the microcomputer 101 and from the constant voltage generation circuit 20 to the microcomputer 102 by turning on the MOS transistors 1 to 4, and both microcomputers are connected to the on-board electronics. The control device 100 can be shifted to a safe state.
<実施の形態5>
 本発明の実施形態5では、実施形態1~4で説明した構成に追加することができる種々の構成例について説明する。
<Embodiment 5>
In the fifth embodiment of the present invention, various configuration examples that can be added to the configurations described in the first to fourth embodiments will be described.
 定電圧生成回路10と20の双方に異常が発生した場合、コントロール回路50はMOSトランジスタ1~6を非導通に切替え、定電圧生成回路10と20を外部回路から電気的に隔離する。さらに、車載電子制御装置100の外部にある電源と接続してマイクロコンピュータ101、2および周辺IC群103に電源を供給し、車載電子制御装置100の機能を維持できる。 When an abnormality occurs in both the constant voltage generation circuits 10 and 20, the control circuit 50 switches the MOS transistors 1 to 6 to non-conduction and electrically isolates the constant voltage generation circuits 10 and 20 from the external circuit. Further, the function of the on-vehicle electronic control device 100 can be maintained by connecting to a power source outside the on-vehicle electronic control device 100 and supplying power to the microcomputers 101, 2 and the peripheral IC group 103.
 定電圧生成回路に通信機能を付加し、電流検知ブロック40、電圧検出回路60~62、過温度検出回路70~71、電圧比較器V10~V30が出力する異常検知信号、および各MOSトランジスタの導通/非導通状態について、マイクロコンピュータ101~2に通知することもできる。この通知を受けたマイクロコンピュータ101~2は、定電圧生成回路の状態を認識し、これに基づき各MOSトランジスタの導通/非導通を同通信機能経由で制御することができる。通信機能の具体的態様は、例えば無線通信でもよいし、各定電圧生成回路とマイクロコンピュータ101~2を回路配線によって接続してもよい。 A communication function is added to the constant voltage generation circuit, the current detection block 40, the voltage detection circuits 60 to 62, the over temperature detection circuits 70 to 71, the abnormality detection signal output from the voltage comparators V10 to V30, and the conduction of each MOS transistor / The microcomputers 101 and 2 can be notified of the non-conduction state. Receiving this notification, the microcomputers 101 to 2 recognize the state of the constant voltage generation circuit, and based on this, can control the conduction / non-conduction of each MOS transistor via the communication function. A specific aspect of the communication function may be, for example, wireless communication, or each constant voltage generation circuit and the microcomputers 101 to 2 may be connected by circuit wiring.
 異常を検知し非導通状態に切り替わった各MOSトランジスタは、あらかじめ設定された時間の経過後に、自動的に導通状態に仮復帰し、先に発生した異常が回復している場合はそのまま導通状態を維持して車載電子制御装置100を正常状態に戻すことができる。あるいは、マイクロコンピュータ101~2からの指令により各MOSトランジスタを再び導通状態に仮復帰させ、先に発生した異常が回復している場合はそのまま導通状態を維持して車載電子制御装置100を初期状態に戻すこともできる。 Each MOS transistor that has detected an abnormality and switched to a non-conducting state automatically returns to the conducting state automatically after a preset time has elapsed. The vehicle-mounted electronic control apparatus 100 can be returned to a normal state by maintaining. Alternatively, each MOS transistor is temporarily returned to the conducting state by a command from the microcomputers 101 and 2, and when the abnormality that has occurred is recovered, the conducting state is maintained and the in-vehicle electronic control device 100 is initialized. It can also be returned to.
 実施形態1~4では定電圧生成回路を2つ設けて3つの電力供給先をサポートしたが、3つ以上の定電圧生成回路を設けることもできる。例えば定電圧生成回路を3つ設けた場合、電力供給先を4つサポートすることができる。 In Embodiments 1 to 4, two constant voltage generation circuits are provided to support three power supply destinations, but three or more constant voltage generation circuits may be provided. For example, when three constant voltage generation circuits are provided, four power supply destinations can be supported.
 実施形態1~4では、定電圧生成回路をシリーズレギュレータによって構成したが、スイッチングレギュレータによって構成することもできる。さらに、スイッチングレギュレータとシリーズレギュレータを直列に接続し、高い外部入力電圧からマイクロコンピュータ用の低電圧を生成できるような構成とすることもできる。 In the first to fourth embodiments, the constant voltage generation circuit is configured by a series regulator, but may be configured by a switching regulator. Further, a switching regulator and a series regulator can be connected in series so that a low voltage for a microcomputer can be generated from a high external input voltage.
 実施形態1~4では、定電圧生成回路の冗長化について説明したが、冗長化が必要ない電子制御装置の場合には、MOSトランジスタ5または6のいずれかを非導通にして定電圧生成回路10と20を互いに隔離し、定電圧生成回路10と20の出力電圧が異なるようにすることもできる(例えば5Vと3.3V)。この場合、2つの異なる電圧を必要とする電力供給先をサポートすることができる。 In the first to fourth embodiments, redundancy of the constant voltage generation circuit has been described. However, in the case of an electronic control device that does not require redundancy, either the MOS transistor 5 or 6 is made non-conductive and the constant voltage generation circuit 10 And 20 can be isolated from each other, and the output voltages of the constant voltage generation circuits 10 and 20 can be different (for example, 5V and 3.3V). In this case, a power supply destination that requires two different voltages can be supported.
 実施形態1~4では、1つの外部電源が2つの定電圧生成回路に電源を供給する構成としたが、複数の外部電源が、外部電源と同じ数の定電圧生成回路にそれぞれ電源を供給する構成とすることもできる。 In the first to fourth embodiments, one external power supply supplies power to two constant voltage generation circuits. However, a plurality of external power supplies respectively supply power to the same number of constant voltage generation circuits as external power supplies. It can also be configured.
 実施形態1~4で説明した回路構成のうち、バッテリB、マイクロコンピュータ101~102、周辺IC群103をのぞいた部分については、少なくともその一部を単一の半導体集積回路上に統合することができる。 Of the circuit configurations described in the first to fourth embodiments, at least a part of the circuit configuration except the battery B, the microcomputers 101 to 102, and the peripheral IC group 103 can be integrated on a single semiconductor integrated circuit. it can.
 以上、本発明の実施形態について詳述したが、本発明は、前述の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前述の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることができる。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs are possible without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. In addition, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. The configuration of another embodiment can be added to the configuration of a certain embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1~5:MOSトランジスタ、10:定電圧生成回路、11~12:電流遮断回路、13:制御回路、20:定電圧生成回路、21~22:電流遮断回路、23:制御回路、31~32:電流遮断回路、40:電流検知ブロック、50:コントロール回路、60~62:電圧検出回路、70~71:過温度検出回路、100:車載電子制御装置、101~102:マイクロコンピュータ、103:周辺IC群、B:バッテリ、R1~R6:電流検出抵抗、Vin:外部電源入力電圧、V10~V30:電圧比較器、V100:入力ライン、V110:出力ライン、V200:入力ライン、V210:出力ライン。 DESCRIPTION OF SYMBOLS 1-5: MOS transistor, 10: Constant voltage generation circuit, 11-12: Current interruption circuit, 13: Control circuit, 20: Constant voltage generation circuit, 21-22: Current interruption circuit, 23: Control circuit, 31-32 : Current interrupt circuit, 40: Current detection block, 50: Control circuit, 60 to 62: Voltage detection circuit, 70 to 71: Over temperature detection circuit, 100: On-vehicle electronic control device, 101 to 102: Microcomputer, 103: Peripheral IC group, B: battery, R1 to R6: current detection resistor, Vin: external power supply input voltage, V10 to V30: voltage comparator, V100: input line, V110: output line, V200: input line, V210: output line.

Claims (17)

  1.  車両に搭載され前記車両の動作を電子的に制御する装置であって、
     電源から電力供給を受けて一定電圧を出力する第1および第2定電圧回路と、
     前記第1定電圧回路を介して第1演算装置に電力を供給する第1電源ラインと、
     前記第2定電圧回路を介して第2演算装置に電力を供給する第2電源ラインと、
     前記第1電源ラインと前記第2電源ラインを前記電源に対して並列接続し、前記第1演算装置および前記第2演算装置以外の電子回路に電力を供給する第3電源ラインと、
     前記第1および第2電源ラインに発生した異常を検出する検出回路と、
     前記検出回路が異常を検出した箇所を遮断してその箇所を前記第1演算装置、前記第2演算装置、前記電子回路から隔離する電流遮断回路と、
     を備え、
     前記電流遮断回路は、
      前記第1電源ラインにおいて異常が発生した場合は、その異常箇所に電流が流れないように回路接続を遮断するとともに、前記第2電源ラインおよび前記第3電源ラインを介して、前記第1演算装置、前記第2演算装置、前記電子回路への電力供給を継続し、
      前記第2電源ラインにおいて異常が発生した場合は、その異常箇所に電流が流れないように回路接続を遮断するとともに、前記第1電源ラインおよび前記第3電源ラインを介して、前記第1演算装置、前記第2演算装置、前記電子回路への電力供給を継続する
     ことを特徴とする車載電子制御装置。
    An apparatus mounted on a vehicle for electronically controlling the operation of the vehicle,
    First and second constant voltage circuits for receiving a power supply from a power source and outputting a constant voltage;
    A first power supply line for supplying power to the first arithmetic unit via the first constant voltage circuit;
    A second power supply line for supplying power to the second arithmetic unit via the second constant voltage circuit;
    A third power supply line for connecting the first power supply line and the second power supply line in parallel to the power supply and supplying power to an electronic circuit other than the first arithmetic device and the second arithmetic device;
    A detection circuit for detecting an abnormality occurring in the first and second power supply lines;
    A current interrupting circuit that shuts off the location where the detection circuit has detected an abnormality and isolates the location from the first computing device, the second computing device, and the electronic circuit;
    With
    The current interrupt circuit is
    When an abnormality occurs in the first power supply line, the circuit connection is cut off so that no current flows through the abnormal portion, and the first arithmetic unit is connected via the second power supply line and the third power supply line. , Continuing to supply power to the second arithmetic unit and the electronic circuit,
    When an abnormality occurs in the second power supply line, the circuit connection is interrupted so that no current flows through the abnormal portion, and the first arithmetic unit is connected via the first power supply line and the third power supply line. The on-vehicle electronic control device characterized by continuing the power supply to the second arithmetic device and the electronic circuit.
  2.  前記電流遮断回路は、前記第1と第2定電圧生成回路それぞれの入力側と出力側双方に電流検出抵抗とMOSトランジスタをともに備えており、
     前記検出回路は、前記電流検出抵抗の両端電圧を検出することにより、前記第1および第2定電圧生成回路の異常を検出し、
     前記電流遮断回路は、
      前記第1および第2定電圧生成回路のうち、前記検出回路が異常を検出した側が備える入力側および出力側の前記MOSトランジスタをそれぞれ非導通にすることにより、前記第1および第2定電圧生成回路のうち前記検出回路が異常を検出した側を、前記第1演算装置、前記第2演算装置、前記電子回路から電気的に隔離する
     ことを特徴とする請求項1記載の車載電子制御装置。
    The current interrupt circuit includes both a current detection resistor and a MOS transistor on both the input side and the output side of each of the first and second constant voltage generation circuits,
    The detection circuit detects an abnormality in the first and second constant voltage generation circuits by detecting a voltage across the current detection resistor,
    The current interrupt circuit is
    Of the first and second constant voltage generation circuits, the MOS transistors on the input side and the output side provided on the side where the detection circuit detects an abnormality are made non-conductive, respectively, thereby generating the first and second constant voltage generation circuits. The on-vehicle electronic control device according to claim 1, wherein a side of the circuit where the detection circuit detects an abnormality is electrically isolated from the first arithmetic device, the second arithmetic device, and the electronic circuit.
  3.  前記検出回路は、
      前記第1および第2定電圧生成回路の入力側と出力側に流れる電流を、入力側と出力側それぞれの前記電流検出抵抗の両端電圧を測定することによってそれぞれ測定し、
      前記入力側に流れる電流と前記出力側に流れる電流の比があらかじめ設定された閾値を超えた場合は、前記異常が発生していると判定する
     ことを特徴とする請求項2記載の車載電子制御装置。
    The detection circuit includes:
    Measuring the current flowing through the input side and the output side of the first and second constant voltage generation circuits by measuring the voltages across the current detection resistors on the input side and the output side, respectively;
    The in-vehicle electronic control according to claim 2, wherein when the ratio of the current flowing to the input side and the current flowing to the output side exceeds a preset threshold, it is determined that the abnormality has occurred. apparatus.
  4.  前記検出回路は、
      前記第1および第2定電圧生成回路の入力側と出力側に流れる電流およびその電流方向を、入力側と出力側それぞれの前記電流検出抵抗の両端電圧を測定することによってそれぞれ測定し、
      前記電流が前記電流方向毎にあらかじめ設定された閾値を超えた場合は、前記異常が発生していると判定する
     ことを特徴とする請求項2記載の車載電子制御装置。
    The detection circuit includes:
    The current flowing in the input side and the output side of the first and second constant voltage generation circuits and the current direction thereof are respectively measured by measuring both end voltages of the current detection resistors on the input side and the output side,
    The in-vehicle electronic control device according to claim 2, wherein when the current exceeds a threshold set in advance for each current direction, it is determined that the abnormality has occurred.
  5.  前記検出回路は、
      前記第1および第2定電圧生成回路の入力側と出力側に流れる電流を、入力側と出力側それぞれの前記MOSトランジスタの入出力間抵抗の両端電圧を測定することによってそれぞれ測定する
     ことを特徴とする請求項2記載の車載電子制御装置。
    The detection circuit includes:
    The current flowing through the input side and the output side of the first and second constant voltage generation circuits is measured by measuring the voltage across the input / output resistance of the MOS transistors on the input side and the output side, respectively. The on-vehicle electronic control device according to claim 2.
  6.  前記第1および第2定電圧生成回路は、前記MOSトランジスタのミラーとして構成されたミラーMOSトランジスタを備えており、
     前記検出回路は、前記ミラーMOSトランジスタに流れる電流を測定することにより、前記第1および第2定電圧生成回路に流れる電流を測定する
     ことを特徴とする請求項2記載の車載電子制御装置。
    The first and second constant voltage generation circuits include a mirror MOS transistor configured as a mirror of the MOS transistor,
    The on-vehicle electronic control device according to claim 2, wherein the detection circuit measures a current flowing through the first and second constant voltage generation circuits by measuring a current flowing through the mirror MOS transistor.
  7.  前記第1および第2電源ラインの出力電圧を監視する電圧検出回路を備え、
     前記検出回路は、前記電圧検出回路が検出した出力電圧があらかじめ設定された電圧範囲外となったか否かにより前記第1および第2定電圧生成回路の異常を検出し、
     前記電流遮断回路は、
      前記第1および第2定電圧生成回路のうち、前記検出回路が異常を検出した側が備える入力側および出力側の前記MOSトランジスタをそれぞれ非導通にすることにより、前記第1および第2定電圧生成回路のうち前記検出回路が異常を検出した側を、前記第1演算装置、前記第2演算装置、前記電子回路から電気的に隔離する
     ことを特徴とする請求項1記載の車載電子制御装置。
    A voltage detection circuit for monitoring output voltages of the first and second power supply lines;
    The detection circuit detects an abnormality in the first and second constant voltage generation circuits depending on whether or not the output voltage detected by the voltage detection circuit is outside a preset voltage range,
    The current interrupt circuit is
    Of the first and second constant voltage generation circuits, the MOS transistors on the input side and the output side provided on the side where the detection circuit detects an abnormality are made non-conductive, respectively, thereby generating the first and second constant voltage generation circuits. The on-vehicle electronic control device according to claim 1, wherein a side of the circuit where the detection circuit detects an abnormality is electrically isolated from the first arithmetic device, the second arithmetic device, and the electronic circuit.
  8.  前記第1および第2定電圧回路の温度を検出する過温度検出回路を備え、
     前記検出回路は、前記過温度検出回路が検出した温度があらかじめ設定された温度範囲外となったか否かにより前記第1および第2定電圧生成回路の異常を検出し、
     前記電流遮断回路は、
      前記第1および第2定電圧生成回路のうち、前記検出回路が異常を検出した側が備える入力側および出力側の前記MOSトランジスタをそれぞれ非導通にすることにより、前記第1および第2定電圧生成回路のうち前記検出回路が異常を検出した側を、前記第1演算装置、前記第2演算装置、前記電子回路から電気的に隔離する
     ことを特徴とする請求項1記載の車載電子制御装置。
    An over temperature detection circuit for detecting the temperature of the first and second constant voltage circuits;
    The detection circuit detects an abnormality of the first and second constant voltage generation circuits depending on whether or not the temperature detected by the overtemperature detection circuit is outside a preset temperature range,
    The current interrupt circuit is
    Of the first and second constant voltage generation circuits, the MOS transistors on the input side and the output side provided on the side where the detection circuit detects an abnormality are made non-conductive, respectively, thereby generating the first and second constant voltage generation circuits. The on-vehicle electronic control device according to claim 1, wherein a side of the circuit where the detection circuit detects an abnormality is electrically isolated from the first arithmetic device, the second arithmetic device, and the electronic circuit.
  9.  前記第1、第2、および第3電源ラインの出力電圧間の差分をそれぞれ取得する電圧比較器を備え、
     前記検出回路は、前記差分があらかじめ設定された電圧範囲外となったか否かにより前記第1および第2定電圧生成回路の異常を検出し、
     前記電流遮断回路は、
      前記第1および第2定電圧生成回路のうち、前記検出回路が異常を検出した側が備える入力側および出力側の前記MOSトランジスタをそれぞれ非導通にすることにより、前記第1および第2定電圧生成回路のうち前記検出回路が異常を検出した側を、前記第1演算装置、前記第2演算装置、前記電子回路から電気的に隔離する
     ことを特徴とする請求項1記載の車載電子制御装置。
    A voltage comparator for respectively obtaining a difference between output voltages of the first, second and third power supply lines;
    The detection circuit detects an abnormality in the first and second constant voltage generation circuits depending on whether the difference is outside a preset voltage range,
    The current interrupt circuit is
    Of the first and second constant voltage generation circuits, the MOS transistors on the input side and the output side provided on the side where the detection circuit detects an abnormality are made non-conductive, respectively, thereby generating the first and second constant voltage generation circuits. The on-vehicle electronic control device according to claim 1, wherein a side of the circuit where the detection circuit detects an abnormality is electrically isolated from the first arithmetic device, the second arithmetic device, and the electronic circuit.
  10.  前記電流遮断回路は、
      前記第1および第2定電圧生成回路ともに異常が発生した場合、
      前記第1および第2定電圧生成回路を隔離するとともに、前記電源以外の電源に接続して電力供給を受け、前記第1演算装置、前記第2演算装置、前記電子回路への電力供給を継続する
     ことを特徴とする請求項1記載の車載電子制御装置。
    The current interrupt circuit is
    When an abnormality occurs in both the first and second constant voltage generation circuits,
    The first and second constant voltage generation circuits are isolated and connected to a power source other than the power source to receive power supply, and power supply to the first arithmetic device, the second arithmetic device, and the electronic circuit is continued. The on-vehicle electronic control device according to claim 1.
  11.  前記電流遮断回路は、
      前記第1電源ラインと前記第1演算装置の接続箇所、前記第2電源ラインと前記第2演算装置の接続箇所、または前記第3電源ラインと前記電子回路の接続箇所において異常が発生した場合、
      その異常箇所に接続されている電源ラインを隔離するとともに、その他の電源ラインの動作を継続する
     ことを特徴とする請求項1記載の車載電子制御装置。
    The current interrupt circuit is
    When an abnormality occurs at a connection point between the first power line and the first arithmetic unit, a connection point between the second power line and the second arithmetic unit, or a connection point between the third power line and the electronic circuit,
    The vehicle-mounted electronic control device according to claim 1, wherein the power supply line connected to the abnormal part is isolated and the operation of the other power supply line is continued.
  12.  前記検出回路の検出結果と前記電流遮断回路の状態を前記第1または第2演算装置に通知する通信部を備えた
     ことを特徴とする請求項1記載の車載電子制御装置。
    The in-vehicle electronic control device according to claim 1, further comprising a communication unit that notifies a detection result of the detection circuit and a state of the current interruption circuit to the first or second arithmetic device.
  13.  前記第1または第2演算装置は、前記通知に応じて前記電流遮断回路を制御する
     ことを特徴とする請求項12記載の車載電子制御装置。
    The on-vehicle electronic control device according to claim 12, wherein the first or second arithmetic device controls the current interrupt circuit in response to the notification.
  14.  前記MOSトランジスタは、
      前記電流遮断回路によって非導通状態になった後、あらかじめ設定した時間が経過すると、一時的に導通状態に仮復帰し、
     前記電流遮断回路は、
      前記検出回路が検出した異常が復旧している場合は、前記仮復帰したMOSトランジスタをそのまま導通させることにより、異常を検出した前記第1または第2電源ラインを初期状態に復帰させる
     ことを特徴とする請求項2記載の車載電子制御装置。
    The MOS transistor is
    After a predetermined time has elapsed after becoming non-conductive by the current interrupting circuit, temporarily returns to the conductive state temporarily,
    The current interrupt circuit is
    When the abnormality detected by the detection circuit is recovered, the first or second power supply line in which the abnormality is detected is returned to an initial state by conducting the temporarily restored MOS transistor as it is. The on-vehicle electronic control device according to claim 2.
  15.  前記第3電源ラインの電流経路上のうち、前記第1電源ラインから前記電子回路に電力を供給する経路上と、前記第2電源ラインから前記電子回路に電力を供給する経路上とのそれぞれに、電流を遮断する第2電流遮断回路を備えた
     ことを特徴とする請求項1記載の車載電子制御装置。
    Of the current path of the third power supply line, each of a path for supplying power from the first power supply line to the electronic circuit and a path for supplying power from the second power supply line to the electronic circuit. The on-vehicle electronic control device according to claim 1, further comprising a second current cut-off circuit that cuts off the current.
  16.  前記第1および第2定電圧回路は、互いに異なる出力電圧を出力することができるように構成されており、
     前記第2電流遮断回路は、前記第1および第2定電圧回路が互いに異なる出力電圧を出力する場合は、前記第1電源ラインと第2電源ラインの間を遮断する
     ことを特徴とする請求項15記載の車載電子制御装置。
    The first and second constant voltage circuits are configured to output different output voltages from each other,
    The second current cut-off circuit cuts off between the first power supply line and the second power supply line when the first and second constant voltage circuits output different output voltages. 15. The on-vehicle electronic control device according to 15.
  17.  前記第1および第2定電圧回路、前記第1電源ライン、前記第2電源ライン、前記第3電源ライン、前記検出回路、前記電流遮断回路のうち少なくとも一部を半導体集積回路に内蔵した
     ことを特徴とする請求項1記載の車載電子制御装置。
    The semiconductor integrated circuit includes at least a part of the first and second constant voltage circuits, the first power supply line, the second power supply line, the third power supply line, the detection circuit, and the current cutoff circuit. The on-vehicle electronic control device according to claim 1, wherein
PCT/JP2012/081443 2011-12-16 2012-12-05 In-vehicle electronic control device WO2013088996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011275829A JP2013126361A (en) 2011-12-16 2011-12-16 On-vehicle electronic control apparatus
JP2011-275829 2011-12-16

Publications (1)

Publication Number Publication Date
WO2013088996A1 true WO2013088996A1 (en) 2013-06-20

Family

ID=48612450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081443 WO2013088996A1 (en) 2011-12-16 2012-12-05 In-vehicle electronic control device

Country Status (2)

Country Link
JP (1) JP2013126361A (en)
WO (1) WO2013088996A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128308A (en) * 2015-01-09 2016-07-14 トヨタ自動車株式会社 Electric power unit
CN107107842A (en) * 2015-02-05 2017-08-29 日立汽车系统株式会社 Controller of vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6380224B2 (en) * 2015-05-12 2018-08-29 株式会社デンソー Injection control device
KR102481905B1 (en) * 2015-09-22 2022-12-27 주식회사 피엠그로우 Battery diagnosis apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367459A1 (en) * 2002-05-28 2003-12-03 Oki Data Corporation Developer cartridge for an image forming apparatus with a waste toner chamber
WO2011136129A1 (en) * 2010-04-27 2011-11-03 株式会社リコー Powder receptacle, powder conveyance device and image forming device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1367459A1 (en) * 2002-05-28 2003-12-03 Oki Data Corporation Developer cartridge for an image forming apparatus with a waste toner chamber
WO2011136129A1 (en) * 2010-04-27 2011-11-03 株式会社リコー Powder receptacle, powder conveyance device and image forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128308A (en) * 2015-01-09 2016-07-14 トヨタ自動車株式会社 Electric power unit
CN107107842A (en) * 2015-02-05 2017-08-29 日立汽车系统株式会社 Controller of vehicle
JPWO2016125690A1 (en) * 2015-02-05 2017-09-21 日立オートモティブシステムズ株式会社 Vehicle control device
US10427626B2 (en) 2015-02-05 2019-10-01 Hitachi Automotive Systems, Ltd. Vehicle control device

Also Published As

Publication number Publication date
JP2013126361A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
US9413170B2 (en) Redundant module with symmetrical current paths
CN108604516B (en) Relay device
US8699193B2 (en) Protection circuit for a power conversion apparatus
US10811897B2 (en) Relay device and power supply device
CN108604515B (en) Relay device
CN111469783B (en) Power supply device
US11114889B2 (en) Electronic circuit for redundant supply of an electric load
WO2013088996A1 (en) In-vehicle electronic control device
WO2018016225A1 (en) Vehicle-mounted control device
KR102562626B1 (en) Power circuit
JP2020108219A (en) Energization control device
JP4350891B2 (en) Circuit device for monitoring the regulated output voltage of an automobile
JP2019083393A (en) Semiconductor relay failure detection device
JP5904375B2 (en) Power supply control device
JP7420770B2 (en) Power supply control device and semiconductor failure detection method
JP2018182962A (en) Motor control device
KR20210069396A (en) Voltage monitoring circuit
JP2009240007A (en) Power supply circuit
US11777306B2 (en) Load control device for controlling energization of a load using a semiconductor switch
JP2006254658A (en) Power supply unit
JP5466970B2 (en) Semiconductor integrated circuit
US20170329378A1 (en) Load driving device
JP7469535B2 (en) Reference voltage circuit and semiconductor device
WO2016125690A1 (en) Vehicle control device
JP2018143029A (en) Connection circuit of connection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12809866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12809866

Country of ref document: EP

Kind code of ref document: A1