WO2013085034A1 - 高電界殺菌装置 - Google Patents

高電界殺菌装置 Download PDF

Info

Publication number
WO2013085034A1
WO2013085034A1 PCT/JP2012/081795 JP2012081795W WO2013085034A1 WO 2013085034 A1 WO2013085034 A1 WO 2013085034A1 JP 2012081795 W JP2012081795 W JP 2012081795W WO 2013085034 A1 WO2013085034 A1 WO 2013085034A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
electric field
high electric
rotating roller
passage
Prior art date
Application number
PCT/JP2012/081795
Other languages
English (en)
French (fr)
Inventor
重信 井川
Original Assignee
Ikawa Shigenobu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011268741A external-priority patent/JP5907374B2/ja
Application filed by Ikawa Shigenobu filed Critical Ikawa Shigenobu
Publication of WO2013085034A1 publication Critical patent/WO2013085034A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/32Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a high electric field sterilizer for sterilizing a substance using a high electric field.
  • a plasma sterilization apparatus uses a method of destroying and sterilizing bacterial cell membranes.
  • the conventional sterilization apparatus has various problems such as a change in quality when used for food such as fresh fruit juice. There is also a problem that some sterilizers can be used only for liquid or gas.
  • an object of this invention is to provide the high electric field sterilizer which sterilizes a substance which can be safely used for both gas and a liquid without changing quality at low cost.
  • a first metal plate to be a negative electrode and a second metal plate to be a positive electrode are arranged at a predetermined interval and connected to the first metal plate and the second metal plate.
  • a high electric field is generated in a passage formed between the first metal plate and the second metal plate by a pulse power supply device, and a substance containing bacteria is passed through the passage in which the high electric field is generated.
  • a high electric field sterilization device that sterilizes by causing a potential difference in the bacterial cell membrane contained in the substance and destroying the cell membrane, on the surface of the first metal plate facing the second metal plate, A dielectric layer made of a dielectric material is formed by firing.
  • the pulse supplied by the pulse power supply device is temporarily interrupted between the falling edge and the rising edge of the pulse, and the high electric field is a high electric field generated by a DC power supply or a bipolar pulse power supply. Preferably there is.
  • the dielectric layers are formed on both surfaces of the first metal plate to be a negative electrode, and two second metal plates to be a positive electrode are disposed on both surfaces of the first metal plate at a predetermined interval, Two passages through which the substance passes are formed between the first metal plate and the two second metal plates, and a high electric field is generated in each of the two passages by the pulse power supply device to It is also possible to pass through and perform sterilization.
  • a partition plate is disposed between the first metal plate and the second metal plate in parallel with the first metal plate and the second metal plate to form a plurality of passages, and the pulse power supply device It is also possible to perform a sterilization process by generating a high electric field between the first metal plate and the second metal plate and passing the substance through the plurality of passages.
  • the dielectric layer is formed on both surfaces of the first metal plate to be a negative electrode, a second metal plate to be a positive electrode is disposed at a predetermined interval from the first metal plate, and a plurality of the metal plates are arranged.
  • a first metal plate and a plurality of the second metal plates are alternately arranged to form a passage through which the substance passes between the first metal plate and the two second metal plates, and the pulse A high electric field is generated in each of the two passages by the power supply device to allow the substance to pass and sterilize.
  • the first metal plate is formed in a columnar shape or a cylindrical shape
  • the dielectric layer is formed on a surface of the columnar shape or the cylindrical shape
  • the second metal surrounds the first metal plate.
  • an annular passage is formed by forming it in a cylindrical shape, and a high electric field is generated in the annular passage by the pulse power supply device to allow the substance to pass therethrough for sterilization.
  • the dielectric layer is formed on both surfaces of the first metal plate, and the first metal plate and the second metal plate arranged at a predetermined interval are wound in a state of maintaining a predetermined interval.
  • a spiral passage having a spiral cross section is formed, and a high electric field is generated in the annular passage by the pulse power supply device to allow liquid or gas to pass through to perform sterilization.
  • the first metal plate is formed into a columnar shape or a cylindrical shape to form a rotating roller
  • the dielectric layer is formed on the surface of the rotating roller made of the first metal plate
  • the second metal plate is formed into a curved surface.
  • the passage is formed between the rotation roller and the second metal plate by disposing the rotation roller at a predetermined interval, and a high electric field is generated in the passage by the pulse power supply device.
  • the material is passed through the passage by rotating the rotating roller to perform sterilization.
  • the first metal plate and the second metal plate may be reversed to form a rotating roller made of the second metal plate.
  • the first metal plate is formed into a columnar shape or a cylindrical shape to form a first rotating roller
  • the dielectric layer is formed on a surface of the first rotating roller made of the first metal plate
  • the second metal plate is
  • a second rotating roller is formed by forming into a columnar shape or a cylindrical shape, and the first rotating roller and the second rotating roller are arranged at a predetermined interval between the first rotating roller and the second rotating roller.
  • a passage is formed between the two, a high electric field is generated in the passage by the pulse power supply device, and the substance is passed through the passage by rotating the first rotating roller and the second rotating roller, thereby sterilizing treatment.
  • a first metal plate to be a negative electrode and a second metal plate to be a positive electrode are arranged at a predetermined interval and connected to the first metal plate and the second metal plate.
  • a high electric field is generated in a passage formed between the first metal plate and the second metal plate by a pulse power supply device, and a substance containing bacteria is passed through the passage in which the high electric field is generated.
  • a high electric field sterilization device that sterilizes by causing a potential difference in the bacterial cell membrane contained in the substance and destroying the cell membrane, on the surface of the first metal plate facing the second metal plate, By forming a dielectric layer made of a dielectric material by firing, it becomes possible to realize quality-invariant and safe sterilization at room temperature with a low-energy and inexpensive device, and further supplied by the pulse power supply device. Pulse Between the fall of the pulse rise, by pulsed supply of the is temporarily interrupted, it is possible to perform more efficiently sterilized.
  • the dielectric layers are formed on both surfaces of the first metal plate to be a negative electrode, and two second metal plates to be a positive electrode are disposed on both surfaces of the first metal plate at a predetermined interval, Two passages through which the substance passes are formed between the first metal plate and the two second metal plates, and a high electric field is generated in each of the two passages by the pulse power supply device to Sterilizing by passing, or forming the dielectric layer on both surfaces of the first metal plate to be a negative electrode, and a second metal plate to be a positive electrode at a predetermined interval from the first metal plate A plurality of first metal plates and a plurality of second metal plates arranged alternately, and a passage through which the substance passes between the first metal plates and the two second metal plates. And the high power is supplied to each of the two passages by the pulse power supply device.
  • the amount of the substance that can be sterilized at a time can be increased by generating a boundary and allowing the substance to pass through to perform the sterilization process.
  • a partition plate is disposed between the first metal plate and the second metal plate in parallel with the first metal plate and the second metal plate to form a plurality of passages, and the pulse power supply device A high electric field is generated between the first metal plate and the second metal plate, and the substance is passed through the plurality of passages for sterilization, thereby efficiently sterilizing without dispersing the high electric field. Will be able to.
  • the first metal plate is formed in a columnar shape or a cylindrical shape
  • the dielectric layer is formed on a surface of the columnar shape or the cylindrical shape
  • the second metal is surrounded by the cylindrical shape so as to surround the first metal plate.
  • An annular passage is formed, and a high electric field is generated in the annular passage by the pulse power supply device to allow liquid or gas to pass through, or sterilization is performed, or both surfaces of the first metal plate
  • the dielectric layer is formed on the first metal plate and the second metal plate, which are arranged at a predetermined interval, are wound in a state of maintaining a predetermined interval to form a spiral shape.
  • the outer shape of the high electric field sterilization device can be made into a pipe shape by forming and generating a high electric field in the annular passage by the pulse power supply device and passing the liquid or gas to perform sterilization treatment. And gas efficiency Passed through a Ku passage, effectively sterilizing treatment can be performed.
  • the first metal plate is formed into a columnar shape or a cylindrical shape to form a rotating roller
  • the dielectric layer is formed on the surface of the rotating roller made of the first metal plate
  • the second metal plate is formed into a curved surface.
  • the passage is formed between the rotation roller and the second metal plate by disposing the rotation roller at a predetermined interval, and a high electric field is generated in the passage by the pulse power supply device.
  • the sterilization treatment is performed by causing the substance to pass through the passage by rotating the rotary roller, or the first metal plate is formed into a columnar shape or a cylindrical shape to form a first rotary roller,
  • the dielectric layer is formed on a surface of a first rotating roller made of one metal plate
  • the second metal plate is formed into a columnar shape or a cylindrical shape to form a second rotating roller
  • the first rotating roller and the first rotating roller are formed.
  • Two rotation rollers at predetermined intervals A passage is formed between the first rotation roller and the second rotation roller, and a high electric field is generated in the passage by the pulse power supply device, so that the first rotation roller and the second rotation are generated.
  • the sterilizing process is performed by passing a liquid having a high viscosity, a liquid containing solid, or a solid as a material to be sterilized by the rotating roller. Processing can be performed.
  • FIG. 1 is a perspective view showing the entire high electric field sterilizer of the first embodiment of the present invention
  • FIG. 2 is a schematic sectional view showing the structure of the high electric field sterilizer 1 of the first embodiment
  • FIG. It is the schematic which shows the mechanism of a sterilization process.
  • the high electric field sterilizer 1 of the present invention has a case 2 in which a first metal plate 3 serving as a negative electrode and a second metal plate 4 serving as a positive electrode are separated by a predetermined distance. And generating a high electric field between the first metal plate 3 and the second metal plate 4 using a pulse power supply device 8 connected to the first metal plate 3 and the second metal plate 4 The space formed between the first metal plate 3 and the second metal plate 4 serves as a liquid or gas passage 6 for performing sterilization treatment.
  • a dielectric layer 5 is formed on the surface of the first metal plate 3 facing the second metal plate 4 by baking a dielectric material by firing.
  • a dielectric material by firing stainless steel or the like is used as the first metal plate 3 and the second metal plate 4.
  • the dielectric layer 5 may be formed by, for example, a method of firing ceramic when manufacturing a ceramic capacitor when ceramic is used as a dielectric material.
  • the type of dielectric material and the firing method are not particularly limited to these, and other dielectric materials and firing methods can also be used.
  • the same effect as that of the dielectric layer formed by sintering the ceramic or the like can be obtained by using coating, for example, melamine coating or enamel processing. Can do.
  • the dielectric layer 5 used in the present invention is uniform even if a binder material is used in the middle of the formation, so that no binder material remains in the finally formed dielectric layer 5. It is arranged on the surface of the metal plate.
  • the high electric field sterilizer 1 is sterilized by supplying a pulse by the pulse power supply device 8 to the passage 6 formed by the first metal plate 3 and the second metal plate 4 in the case 2. It becomes possible.
  • a pulse a general pulse having a waveform as shown in FIGS. 4 (a) and 4 (b) is supplied, a high electric field is repeatedly generated in the passage 6, and a liquid or Bacteria contained in the liquid or gas are sterilized by allowing the gas substance to pass through the passage 6.
  • a pulse supplied by the pulse power supply 8 for example, a pulse having an output frequency of 500 Hz and a pulse width of 20 ⁇ s is used.
  • the potential difference generated in the passage 6 by the pulse supplied from the pulse power supply device 8 is not sufficiently lowered when the pulse wave falls due to various factors such as pulse conditions. There is a fear that it does not bring about a bactericidal effect. Therefore, in order to enhance the sterilizing effect, the pulse power supply device 8 cuts off the supply of the pulse once between the falling edge of the pulse and the rising edge, as shown in FIGS. It is preferable to supply things continuously. Thereby, by reducing the potential difference generated between the first metal plate 3 and the second metal plate 4 to some extent, a potential difference for destroying the bacterial cell membrane is reliably generated when a high electric field is generated. And the sterilizing effect can be enhanced.
  • the high electric field in the high electric field sterilizer of the present invention can be either a high DC field using a DC power source or a high electric field using a bipolar pulse power source. It is preferable to interrupt the supply of the pulse once between the falling edge of the pulse and the rising edge and continuously supply the discharged one.
  • a liquid or gas which is a substance to be sterilized is supplied from the storage tank to the high electric field sterilizer 1 using a pump or the like, and the liquid or gas is passed through the passage 6 of the high electric field sterilizer 1.
  • the bacteria 30 included in the liquid or gas passing through the high electric field generated in the passage 6 by the pulse power supply device 8 connected to the first metal plate 3 and the second metal plate 4 constitutes the bacteria 30.
  • a potential difference having a magnitude proportional to the inner and outer film thicknesses of the cell membrane 31 and the diameter and electric field strength of the bacteria 30 is generated, and the cell membrane 31 of the bacteria 30 is destroyed by the potential difference as shown in FIG.
  • the cytoplasmic liquid 32 that constitutes is released to the outside, and the bacteria 30 are sterilized.
  • the leakage rate indicating the rate at which the cell membrane 31 is broken and the cytoplasmic fluid 32 inside leaks can be realized to near 0.5 at this stage, the cell membrane is almost destroyed, but further experiments It is possible to increase the leakage rate by repeating the steps.
  • the voltage supplied by the pulse power supply device 8 is a low voltage of 1.0 to 5.0 KV
  • the distance between the first metal plate 3 and the second metal plate 4 is, for example, 0.
  • the interval is about 3 to 5 mm, but may be set appropriately according to the magnitude of the voltage and the amount of sterilization treatment, and is not particularly limited thereto. Since it is possible to perform a sterilization process at such a low voltage, a sterilization process that has been conventionally performed at a high temperature due to a high voltage can realize a sterilization process at a normal temperature.
  • the survival rate of bacteria by the high electric field sterilization apparatus 1 has been lowered to about several percent so far, and it is considered that the survival rate can be further reduced to 0 by further experiments.
  • the high electric field sterilization apparatus 1 according to the present invention makes it possible to sterilize liquids and gases at room temperature safely and reliably with an inexpensive apparatus.
  • the high electric field sterilizers 1 ′ and 1 ′′ of the second and third embodiments provided with a plurality of passages 6 and 6 ′ will be described.
  • the high electric field sterilization apparatus 1 ′ of the second embodiment includes a first metal plate 3 having dielectric layers 5 and 5 ′ formed on both sides, which are negative electrodes in the case 2.
  • a first metal plate 3 having dielectric layers 5 and 5 ′ formed on both sides, which are negative electrodes in the case 2.
  • liquid or gas is applied to both surfaces of the first metal plate 3.
  • a pulse power supply device (not shown) is connected to the first metal plate 3 and the two second metal plates 4 and 4 ′, and a high electric field is generated in each of the two passages 6 and 6 ′ to perform sterilization treatment. I do.
  • the method of forming the dielectric layers 5 and 5 ' is formed by sintering a dielectric material as in the first embodiment.
  • a high electric field is generated in each of the two passages 6 and 6 ′ formed between the first metal plate 3 and the two second metal plates 4 and 4 ′ using a pulse power supply device (not shown).
  • a pulse power supply device not shown.
  • the liquid or gas passing through the two passages 6 and 6 ' can be sterilized at the same time.
  • the processing amount per unit time can be increased as compared with the high electric field sterilization apparatus 1 of the first embodiment.
  • a pulse having a pulse wave shown in FIG. 4 can be used as the pulse supplied by the pulse power supply device.
  • a partition plate parallel to the first metal plate 3 and the second metal plate 4 is disposed between the first metal plate 3 and the second metal plate 4.
  • This is a high electric field sterilizer 1 ′′ of the third embodiment.
  • the high electric field sterilizer 1 '' of the third embodiment is obtained by providing two partition plates 7 to the high electric field sterilizer 1 of the first embodiment, By arranging two partition plates at equal intervals between the first metal plate 3 having the conductive layer 5 formed on the surface and the second metal plate 4 serving as a positive electrode, the first metal plate 3 and the second metal plate 4 are formed with three passages 6 ′′ having the same size.
  • the structure other than the partition plate 7 is the same as that of the first embodiment.
  • a pulse power supply device (not shown) is connected to the first metal plate 3 and the second metal plate 4 to generate a high electric field between the first metal plate 3 and the second metal plate 4.
  • the partition plate 7 is a simple plate-like member that is not connected to a pulse power supply device (not shown) and is not formed with a conductive layer. At this time, if there is only one passage 6 as in the first embodiment, since a plate-like electrode is used, a high electric field is generated non-uniformly in the passage 6 (for example, a plate-like electrode).
  • the partition plate 7 Since the high electric field is generated via the, the bias of the high electric field is alleviated, and as a result, the sterilization efficiency can be increased.
  • FIG. 7 shows a high electric field sterilizer 10 according to the fourth embodiment.
  • the high electric field sterilizer 10 of the fourth embodiment arranges a cylindrical first metal plate 13 as a negative electrode in a cylindrical case 12 at the center of the case 12.
  • a second metal plate 14 having a cylindrical shape as a positive electrode is disposed so as to surround the first metal plate 13 having a cylindrical shape, whereby the first metal plate 13, the second metal plate 14, An annular passage 16 that allows liquid or gas to pass therethrough is formed therebetween.
  • the conductive layer 15 is formed on the surface of the cylindrical first metal plate 13 to be a negative electrode by sintering. Then, a pulse power supply device (not shown) is connected to the first metal plate 13 serving as the negative electrode and the second metal plate 14 serving as the positive electrode to supply pulses, and a high electric field is generated in the annular passage 16. By causing the potential difference to occur, the liquid or gas passing through the annular passage 16 is sterilized.
  • the first metal plate 13 formed in a cylindrical shape is used as the negative electrode as in this embodiment, a high electric field is uniformly generated in the passage 16, thereby increasing the current collection effect and passing through the passage 16. All of the liquid or gas can be sterilized uniformly, and the effect of sterilization can be enhanced.
  • the case 12 is formed in a cylindrical shape, so that the case 12 is disposed between a storage tank for storing liquid or gas to be sterilized and a filling device for filling the container or the like with sterilized liquid or gas. Since the high electric field sterilizer 10 (excluding the pulse power supply device) can be formed in a pipe shape, the high electric field sterilizer 10 can be efficiently arranged in a small space.
  • FIG. 8 is a perspective view of a high electric field sterilizer 10 ′ of the fifth embodiment.
  • the high electric field sterilization apparatus 10 ′ of the fifth embodiment is a negative electrode, a first metal plate 13 ′ having conductive layers 15 and 15 ′ formed by sintering on both surfaces, and a second metal plate that becomes a positive electrode. 14 'are arranged at a predetermined interval, and as shown in FIG. 8, the first metal plate 13' and the second metal plate 14 'are wound in a spiral shape while maintaining a predetermined interval.
  • the passage 16 ′ disposed between the first metal plate 13 ′ and the second metal plate 14 ′ is disposed in the case 12, and the cross section is formed in two spiral shapes in the case 2. Has been.
  • a pulse power supply device is connected to the first metal plate 13 ′ serving as a negative electrode and the second metal plate 14 ′ serving as a positive electrode, and the first metal plate 13 ′ and the first metal plate 13 ′ are formed in a spiral shape.
  • a high electric field is generated between the two metal plates 14 ′, and the bacterial cell membrane contained in the liquid or gas passing through the passage 16 ′ is destroyed by a potential difference to perform sterilization.
  • the passage 16 ' is not as wide as the passage 16 of the fourth embodiment, but the narrow portions overlap each other. Therefore, in order to destroy the cell membrane, 1 V per 1 ⁇ m is used. Considering that it is necessary to generate the above potential difference, it is possible to bring about the same effect with a smaller potential difference than the high electric field sterilization apparatus 10 ′ of the fourth embodiment. That is, even when the external appearance is the same pipe shape, the high electric field sterilization apparatus 10 ′ of the fifth embodiment can perform sterilization treatment at a lower voltage. However, when the first metal plate 13 ′ and the second metal plate 14 ′ are wound in a spiral shape while maintaining a predetermined interval, it is difficult to keep the interval uniform. Costs can increase.
  • FIG. 9 is a cross-sectional view of the high electric field sterilizer 1a in the transverse direction.
  • the high-stage sterilization apparatus 1a performs sterilization treatment by alternately arranging a plurality of first metal plates 3a serving as minus electrodes and a plurality of second metal plates 4a serving as plus electrodes.
  • a plurality of passages 6a through which a substance passes are formed.
  • Dielectric layers 5a are formed on both surfaces of the first metal plate 3a to be a negative electrode, and the second metal plate 4a to be a positive electrode is spaced from the first metal plate 3a by a spacer 9 at a predetermined interval. It arrange
  • a pulse power supply device (not shown) is connected to the first metal plate 3a serving as the negative electrode and the second metal plate 4a serving as the positive electrode, and a high electric field is generated in each of the passages 6a to perform sterilization treatment. Do.
  • the dielectric layer 5a is formed by sintering a dielectric material as in the first embodiment. In the present embodiment, a pulse having a pulse wave shown in FIG. 4 can be used as the pulse supplied by the pulse power supply device.
  • the high electric field sterilization apparatus 1a of 6th Embodiment arrange
  • the number and size of the first metal plate 3a and the second metal plate 4a can be freely changed according to the processing amount.
  • FIG. 10 is a schematic cross-sectional view of the high electric field sterilizer 10a of the seventh embodiment.
  • the first metal plate 13a to be a negative electrode is formed into a columnar shape or a cylindrical shape to form the rotating roller 17, and the sterilizing treatment is performed using the rotating roller 17. It is a structure that moves substances.
  • a dielectric layer 15a is formed on the surface of the rotating roller 17 made of the first metal plate 13a to be a negative electrode. Then, the second metal plate 14 a serving as a positive electrode is formed to have a curved shape matching the surface of the rotating roller 17. As shown in FIG. 10, when a plurality of rotating rollers 17 are arranged, one second metal plate 14a is formed in a corrugated shape and arranged so as to have a predetermined distance from each rotating roller 17. A wall 18 is formed between the adjacent rotating rollers 17 so as to have a predetermined distance from the second metal plate 17a.
  • a passage 16a is formed between the second metal plate 14a and the rotating roller 17 and the wall 18 made of the first metal plate 13a.
  • the rotating roller 17 is configured to be rotated by a driving device, and the substance passing through the passage 16a is allowed to pass through the passage 16a using a high viscosity liquid, a liquid containing solid, or a solid solid pump. When it is difficult, the substance to be sterilized by the rotation of the rotating roller 17 can pass through the passage 16a.
  • a pulse power supply device (not shown) is applied to the first metal plate 13a serving as the minus electrode and the second metal plate 14a serving as the plus electrode.
  • the substance is moved by the rotation of the rotating roller 17 and passes through the passage 16a, so that a substance such as a solid can be sterilized. .
  • the rotating roller 17 by using the rotating roller 17, it is possible to sterilize a substance such as a highly viscous liquid, a liquid containing a solid, or a solid.
  • various substances other than liquid and gas can be sterilized by the high electric field sterilizer 10a.
  • the wall 18 may be formed by the first metal plate 13a serving as a negative electrode, and the dielectric layer 15a may be formed on the surface thereof, so that the structure can be sterilized even between the adjacent rotating rollers 17. .
  • the rotary roller 17 is formed by the first metal plate 13a serving as a negative electrode.
  • the rotary roller 17 is formed by a second metal plate 14a serving as a positive electrode.
  • the first metal plate 13a serving as the negative electrode may be formed to have a curved shape matching the surface of the rotating roller 17, and the dielectric layer 15a may be formed on the surface.
  • a passage 16a through which a substance to be sterilized passes is formed between the first metal plate 13a and the rotating roller 17 and the wall 18 made of the second metal plate 14a.
  • a pulse power supply device (not shown) is applied to the first metal plate 13a serving as a negative electrode and the second metal plate 14a serving as a positive electrode.
  • a substance such as a solid can be sterilized by passing a substance to be sterilized in a state where a high electric field is generated in the passage 16a.
  • the wall 18 is formed by the second metal plate 14a serving as a positive electrode, so that a structure in which sterilization treatment is performed between the adjacent rotary rollers 17 can also be made.
  • FIG. 12 is a schematic cross-sectional view of the high electric field sterilizer 10a of the eighth embodiment.
  • the first metal plate 13b to be a negative electrode is formed into a columnar shape or a cylindrical shape to form a first rotating roller 17b, and further, a second metal to be a positive electrode.
  • the plate 14b is formed into a columnar shape or a cylindrical shape to form the second rotating roller 19, and a structure for moving a material to be sterilized using the first rotating roller 17b and the second rotating roller 19 is used. is there.
  • a dielectric layer 15b is formed on the surface of the first rotating roller 17b made of the first metal plate 13b serving as a negative electrode.
  • the said 2nd rotation roller 19 used as a plus electrode is arrange
  • a plurality of the first rotating roller 17b and the second rotating roller 19 which are paired are arranged as shown in FIG.
  • each 1st rotation roller 17b is arrange
  • a curved wall 25 matching the curved surface of the second rotating roller 19 is disposed between the adjacent first rotating rollers 17b so as to face the second rotating roller 19, and the adjacent second rotating rollers 19 are arranged.
  • a curved wall 26 matched with the curved surface of the first rotating roller 17b is disposed so as to face the first rotating roller 17b. Accordingly, a passage 16b through which a substance to be sterilized passes is formed between the first rotating roller 17b and the wall 25, and the second rotating roller 19 and the wall 26.
  • a driving device for rotating the first rotating roller 17b and the second rotating roller 19 is provided, and the first rotating roller 17b and the second rotating roller 19 are in opposite directions (directions indicated by arrows in FIG. 12).
  • a pulse power supply device (not shown) is connected to the first metal plate 13b serving as the negative electrode and the second metal plate 14b serving as the positive electrode, and the first rotating roller 17b in the passage 16b.
  • sterilization processing can be performed at two locations on one first rotating roller 17b.
  • the high electric field sterilizer 10b of this embodiment can move the substance which passes the channel
  • the wall 25 is formed by the first metal plate 13b serving as the negative electrode, the dielectric layer 15b is formed on the surface, and the wall 26 is formed by the second metal plate 14b serving as the positive electrode. Sterilization treatment is performed not only between the first rotating roller 17b and the second rotating roller 19, but also between the first rotating roller 17b and the wall 26, and between the second rotating roller 19 and the wall 25. A structure is also possible.
  • a high electric field sterilizer 20 of the ninth embodiment shown in FIG. 13 is a combination of two high electric field sterilizers 10 of the fourth embodiment. As described in the description of the high electric field sterilization apparatus 10 according to the fourth embodiment, the high electric field sterilization apparatus 20 according to the present embodiment utilizes this advantage that can be formed into a pipe shape. Since the two high electric field sterilizers 10 used in the present embodiment use the high electric field sterilizer 10 of the fourth embodiment as described above, the description of the structure is omitted.
  • the high electric field sterilizer 20 includes a storage tank 21 that stores liquid or gas to be sterilized and a filling device 22 that fills a container or the like with sterilized liquid or gas.
  • Two high electric field sterilizers 10 are arranged, and the first high electric field sterilizer 10 is arranged so that liquid or gas flows upward from a pipe 23 extending in a horizontal direction from the storage tank 21,
  • the 2nd high electric field sterilizer 10 is arrange
  • the liquid or gas sent out from the storage tank 21 by the pump is sterilized for the first time while passing through the first high electric field sterilizer 10 from the bottom to the top, and the inverted U-shaped pipe.
  • the second sterilization process is performed while passing through the second high electric field sterilizer 10 from the top to the bottom.
  • the number of bacteria is further reduced. Therefore, the survival rate of bacteria can be obtained by repeatedly sterilizing as in this embodiment. Can be further reduced.
  • the two high electric field sterilizers 10 are arranged in parallel rather than in a straight line, they can be accommodated in a smaller space, so that a compact high electric field sterilizer 20 can be realized.
  • the high electric field sterilization apparatus 20 using two high electric field sterilization apparatuses 10 according to the fourth embodiment has been described.
  • the other high electric field sterilization apparatuses according to the first to third and fifth to eighth embodiments are each 2 Can be used, and different types of high-field sterilizers can be combined.
  • a plurality of high electric field sterilizers are combined into one high electric field sterilizer, and it becomes possible to further reduce the survival rate of bacteria by repeatedly sterilizing, thereby performing more effective sterilization. be able to.
  • the high electric field sterilization apparatus of the present invention uses various forms to reduce the target substance for sterilization treatment, such as liquid, gas, solid, and liquid containing solids. It can be effectively sterilized by voltage, and can be safely sterilized without changing the quality of the treated material. Moreover, the manufacturing cost is also low, and the cost of sterilization can be reduced. Due to such advantages, it can be considered to be used in various fields such as fluid drinks, food processing, water treatment, medical equipment, indoor environment, and electronic equipment manufacturing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

【課題】低価格で品質を変化させることなく安全に様々な物質の殺菌処理を行うことが可能な高電界殺菌装置を提供する。 【解決手段】本発明の高電界殺菌装置は、マイナス電極となる第1金属板と、プラス電極となる第2金属板とを所定の間隔で配置し、前記第1金属板と前記第2金属板に接続したパルス電源装置によって前記第1金属板と前記第2金属板との間に形成された通路に高電界を発生させ、前記高電界が発生した前記通路の中を細菌を含んだ物質を通過させて、前記物質に含まれる細菌の細胞膜に電位差を生じさせて前記細胞膜を破壊することで殺菌を行う高電界殺菌装置であって、前記第1金属板の前記第2金属板と対向する表面に、焼成によって誘電材からなる誘電層を形成する。

Description

高電界殺菌装置
 本発明は、高電界を用いて物質を殺菌する高電界殺菌装置に関する。
 従来の殺菌装置として、高温度、薬剤、紫外線、オゾン、プラズマ、電解等、様々な方法を用いたものが存在する。例えば、薬剤として塩素等を使用した化学殺菌処理は、浄水場で水道水の処理等として幅広く用いられている。また高電界殺菌装置としては、プラズマを用いたものが存在する(特許文献1参照)。プラズマを用いたこうでんかい殺菌装置は、細菌の細胞膜を破壊して殺菌する方法を用いている。
特開2003-340454号公報
 塩素等を使用した化学殺菌処理では、装置の濃度管理や安定効果に問題があった。また、プラズマを用いた殺菌装置は、7.0~50KVという高電圧でプラズマを発生させるために、数百W以上の高電力装置が必要となり、大規模で高価になると言う問題があった。また、殺菌の際にオゾンが発生すると言う問題もある。
 その他にも、従来の殺菌装置では、生果汁等の食品に使用するには品質が変化する等の様々な問題があった。また、殺菌装置によっては液体あるいは気体のどちらかにしか使用できないと言う問題もあった。
そこで、本発明は、低価格で品質を変化させることなく安全に気体と液体の両方に使用することができる、物質を殺菌する高電界殺菌装置を提供することを目的とする。
 本発明の高電界殺菌装置は、マイナス電極となる第1金属板と、プラス電極となる第2金属板とを所定の間隔で配置し、前記第1金属板と前記第2金属板に接続したパルス電源装置によって前記第1金属板と前記第2金属板との間に形成された通路に高電界を発生させ、前記高電界が発生した前記通路の中を細菌を含んだ物質を通過させて、前記物質に含まれる細菌の細胞膜に電位差を生じさせて前記細胞膜を破壊することで殺菌を行う高電界殺菌装置であって、前記第1金属板の前記第2金属板と対向する表面に、焼成によって誘電材からなる誘電層を形成したことを特徴とする。
 さらに、前記パルス電源装置によって供給されるパルスは、パルスの立下りから立ち上がりの間で、パルスの供給が一時的に遮断されており、前記高電界は、直流電源あるいはバイポーラパルス電源による高電界であることが好ましい。
 そして、マイナス電極となる前記第1金属板の両面に前記誘電層を形成し、前記第1金属板の両面に所定の間隔で、プラス電極となる2枚の第2金属板を配置し、前記第1金属板と2枚の前記第2金属板との間に、前記物質が通過する2つの通路を形成し、前記パルス電源装置によって2つの前記通路にそれぞれ高電界を発生させて前記物質を通過させて殺菌処理を行うことも可能である。
 また、前記第1金属板と前記第2金属板との間に、前記第1金属板および前記第2金属板と平行に仕切り板を配置して複数の通路を形成し、前記パルス電源装置によって前記第1金属板と前記第2金属板との間に高電界を発生させ、前記複数の通路に前記物質を通過させて殺菌処理を行うことも可能である。
 別の形態として、マイナス電極となる前記第1金属板の両面に前記誘電層を形成し、前記第1金属板と所定の間隔で、プラス電極となる第2金属板を配置し、複数の前記第1金属板と複数の前記第2金属板を交互に配置して、前記第1金属板と2枚の前記第2金属板との間に、前記物質が通過する通路を形成し、前記パルス電源装置によって2つの前記通路にそれぞれ高電界を発生させて前記物質を通過させて殺菌処理を行う。
 さらに別の形態として、前記第1金属板を円柱形または円筒形に形成し、前記円柱形または前記円筒形の表面に前記誘電層を形成し、前記第2金属を前記第1金属板を取り囲むように円筒形に形成することで環状の通路を形成し、前記パルス電源装置によって前記環状の通路に高電界を発生させて前記物質を通過させて殺菌処理を行う。
 その他の形態として、前記第1金属板の両面に前記誘電層を形成し、所定の間隔で配置された前記第1金属板と前記第2金属板とを、所定の間隔を保った状態で巻いて渦巻状にし、断面が渦巻状の通路を形成し、前記パルス電源装置によって前記環状の通路に高電界を発生させて液体または気体を通過させて殺菌処理を行う。
 前記第1金属板を円柱形または円筒形に成形して回転ローラを形成し、前記第1金属板からなる回転ローラの表面に前記誘電層を形成し、前記第2金属板を曲面に形成して、前記回転ローラと所定の間隔を有するように配置することで、前記回転ローラと前記第2金属板との間に通路を形成し、前記パルス電源装置によって前記通路に高電界を発生させて、前記回転ローラを回転させることにより前記通路に前記物質を通過させて殺菌処理を行う。前記第1金属板と前記第2金属板を逆にして、前記第2金属板からなる回転ローラとしてもよい。
 前記第1金属板を円柱形または円筒形に成形して第1回転ローラを形成し、前記第1金属板からなる第1回転ローラの表面に前記誘電層を形成し、前記第2金属板を円柱形または円筒形に成形して第2回転ローラを形成し、前記第1回転ローラと前記第2回転ローラを所定の間隔で配置することで、前記第1回転ローラと前記第2回転ローラとの間に通路を形成し、前記パルス電源装置によって前記通路に高電界を発生させて、前記第1回転ローラおよび前記第2回転ローラを回転させることにより前記通路に前記物質を通過させて殺菌処理を行う
 複数の前記高電界殺菌装置を組み合わせることも可能であり、この場合、複数の殺菌処理装置を直列に接続して、液体または気体を繰り返し殺菌処理することを特徴とする。
 本発明の高電界殺菌装置は、マイナス電極となる第1金属板と、プラス電極となる第2金属板とを所定の間隔で配置し、前記第1金属板と前記第2金属板に接続したパルス電源装置によって前記第1金属板と前記第2金属板との間に形成された通路に高電界を発生させ、前記高電界が発生した前記通路の中を細菌を含んだ物質を通過させて、前記物質に含まれる細菌の細胞膜に電位差を生じさせて前記細胞膜を破壊することで殺菌を行う高電界殺菌装置であって、前記第1金属板の前記第2金属板と対向する表面に、焼成によって誘電材からなる誘電層を形成したことにより、常温下において品質不変で安全な殺菌処理を、低エネルギーの安価な装置で実現することが可能となり、さらに、前記パルス電源装置によって供給されるパルスは、パルスの立下りから立ち上がりの間で、パルスの供給が一時的に遮断されていることで、より効率良く殺菌処理を行うことが可能となる。
 そして、マイナス電極となる前記第1金属板の両面に前記誘電層を形成し、前記第1金属板の両面に所定の間隔で、プラス電極となる2枚の第2金属板を配置し、前記第1金属板と2枚の前記第2金属板との間に、前記物質が通過する2つの通路を形成し、前記パルス電源装置によって2つの前記通路にそれぞれ高電界を発生させて前記物質を通過させて殺菌処理を行うこと、あるいは、マイナス電極となる前記第1金属板の両面に前記誘電層を形成し、前記第1金属板と所定の間隔で、プラス電極となる第2金属板を配置し、複数の前記第1金属板と複数の前記第2金属板を交互に配置して、前記第1金属板と2枚の前記第2金属板との間に、前記物質が通過する通路を形成し、前記パルス電源装置によって2つの前記通路にそれぞれ高電界を発生させて前記物質を通過させて殺菌処理を行うにより、一度に殺菌処理できる前記物質の量を増加させることができる。
 また、前記第1金属板と前記第2金属板との間に、前記第1金属板および前記第2金属板と平行に仕切り板を配置して複数の通路を形成し、前記パルス電源装置によって前記第1金属板と前記第2金属板との間に高電界を発生させ、前記複数の通路に前記物質を通過させて殺菌処理を行うことにより、高電界を分散させることなく効率良く殺菌処理することができるようになる。
 あるいは、前記第1金属板を円柱形または円筒形に形成し、前記円柱形または前記円筒形の表面に前記誘電層を形成し、前記第2金属を前記第1金属板を取り囲むように円筒形に形成することで環状の通路を形成し、前記パルス電源装置によって前記環状の通路に高電界を発生させて液体または気体を通過させて殺菌処理を行うこと、または、前記第1金属板の両面に前記誘電層を形成し、所定の間隔で配置された前記第1金属板と前記第2金属板とを、所定の間隔を保った状態で巻いて渦巻状にし、断面が渦巻状の通路を形成し、前記パルス電源装置によって前記環状の通路に高電界を発生させて液体または気体を通過させて殺菌処理を行うことにより、高電界殺菌装置の外形をパイプ状とすることができるので、液体および気体を効率良く通路を通過させて、効果的に殺菌処理を行うことができる。
 前記第1金属板を円柱形または円筒形に成形して回転ローラを形成し、前記第1金属板からなる回転ローラの表面に前記誘電層を形成し、前記第2金属板を曲面に形成して、前記回転ローラと所定の間隔を有するように配置することで、前記回転ローラと前記第2金属板との間に通路を形成し、前記パルス電源装置によって前記通路に高電界を発生させて、前記回転ローラを回転させることにより前記通路に前記物質を通過させて殺菌処理を行う、あるいは、前記第1金属板を円柱形または円筒形に成形して第1回転ローラを形成し、前記第1金属板からなる第1回転ローラの表面に前記誘電層を形成し、前記第2金属板を円柱形または円筒形に成形して第2回転ローラを形成し、前記第1回転ローラと前記第2回転ローラを所定の間隔で配置することで、前記第1回転ローラと前記第2回転ローラとの間に通路を形成し、前記パルス電源装置によって前記通路に高電界を発生させて、前記第1回転ローラおよび前記第2回転ローラを回転させることにより前記通路に前記物質を通過させて殺菌処理を行うことにより、殺菌処理を行う物資として、粘度の高い液体、固体を含む液体、または固体を前記回転ローラによって通過させながら殺菌処理を行うことが可能となる。
 複数の前記高電界殺菌装置を組み合わせることも可能であり、この場合、複数の殺菌処理装置を直列に接続して、液体または気体を繰り返し殺菌処理することにより、より確実な殺菌処理を実現することができる。
本発明の第1の実施形態の高電界殺菌装置の全体を示す斜視図図である。 第1の実施形態の高電界殺菌装置の概略断面図である。 第1の実施形態の高電界殺菌装置における殺菌処理を示す概略図である。 パルス波の波形を示す図であり、(a)、(b)が一般的なパルス波、(c)、(d)が一般的なパルス波を一時的に遮断しながら供給した場合の波形を示す。 第2の実施形態の高電界殺菌装置の概略断面図である。 第3の実施形態の高電界殺菌装置の概略断面図である。 第4の実施形態の高電界殺菌装置を途中で切断した概略斜視図である。 第5の実施形態の高電界殺菌装置を途中で切断した概略斜視図である。 第6の実施形態の高電界殺菌装置の概略断面図である。 第7の実施形態の高電界殺菌装置の概略断面図である。 第8の実施形態の高電界殺菌装置の概略断面図である。 図11の高電界殺菌装置において第1金属板と第2金属板を入れ方場合の概略断面図である。 第9の実施形態の高電界殺菌装置の全体を示す斜視図図である。
 本発明を、図を用いて以下に詳細に説明する。図1が本発明の第1の実施形態の高電界殺菌装置の全体を示す斜視図であり、図2が第1の実施形態の高電界殺菌装置1の構造を示す概略断面図、図3が殺菌処理の仕組みを示す概略図である。
 まず初めに、第1の実施形態の高電界殺菌装置1の構造を説明する。図1,2に示すように、本発明の高電界殺菌装置1は、ケース2の中に、マイナス電極となる第1金属板3と、プラス電極となる第2金属板4とを所定の間隔で配置し、前記第1金属板3と前記第2金属板4に接続したパルス電源装置8を用いて前記第1金属板3と前記第2金属板4との間に高電界を発生させるものであり、前記第1金属板3と前記第2金属板4との間に形成された空間が、殺菌処理を行う液体または気体の通路6となる。
 前記第1金属板3の前記第2金属板4と対向する表面には、焼成によって誘電材を焼き付けて誘電層5を形成している。ここでは前記第1金属板3および前記第2金属板4としてはステンレス等を用いている。また、前記誘電層5の形成方法は、例えば、誘電材としてセラミックを用いる場合、セラミックコンデンサの製造の際にセラミックを焼成する方法を用いることができる。誘電材の種類や焼成方法は、特にこれらに限定するものではなく、その他の誘電材や焼成方法を用いることもできる。
 前記誘電層5の形成方法としては、焼結以外にも、塗装、例えばメラミンの塗装、あるいは、ホーロー加工を用いることにより、前記セラミック等の焼結により形成された誘電層と同じ効果をもたらすことができる。いずれの方法を用いた場合でも、本発明で用いる誘電層5は、形成途中でバインダー材を用いたとしても、最終的に形成された誘電層5にはバインダー材が残らないで誘電材が均一に金属板の表面に配置されていることを特徴とする。
 このようにして前記ケース2内に前記第1金属板3と前記第2金属板4によって形成した通路6に前記パルス電源装置8によってパルスを供給することにより、前記高電界殺菌装置1は殺菌処理可能な状態となる。パルスを供給する際に、図4(a)、(b)に示すような波形を有する一般的なパルスを供給し、前記通路6に繰り返し高電界を発生させて、ポンプ等を用いて液体または気体である物質を前記通路6を通過させることで、液体または気体に含まれる細菌を殺菌する。前記パルス電源8によって供給するパルスとしては、例えば、出力周波数が500Hz、パルス幅が20μsのパルスを用いる。
 前記パルス電源装置8から供給されるパルスによって前記通路6に生じる電位差は、パルスの条件等、様々な要因によって、パルス波の立下りの際に十分に下がりきらないで蓄積されることにより、十分な殺菌効果をもたらさない恐れがある。そこで、殺菌効果を高めるために、前記パルス電源装置8によって、図4(c)、(d)に示すような、パルスの立下りから立ち上がりの間で、一度パルスの供給を遮断し、放電したものを連続して供給することが好ましい。これにより、前記第1金属板3と前記第2金属板4の間に生じている電位差をある程度下げることにより高電界を発生させたときに細菌の細胞膜を破壊するための電位差を確実に生じることができ、殺菌効果を高めることが可能となる。
 本発明の高電界殺菌装置における高電界は、直流電源を用いた直流高電界、およびバイポーラパルス電源を用いた高電界のどちらでも可能である。パルスの立下りから立ち上がりの間で、一度パルスの供給を遮断し、放電したものを連続して供給することが好ましい。
 図4(c)に示すような矩形波でパルス電源装置8からパルスが供給される場合には、パルスが低下した状態のところで一度パルスの供給を切断し、直ぐにパルスの供給を再開する。これにより、前記第1金属板3と前記第2金属板4の間の電位差は完全とまではいかなくても一時的に下がった状態となる。また、図4(d)に示すような正弦波でパルスが供給される場合にはマイナスの部分をカットすることで、パルスの立下りから立ち上がりの間でパルスの供給を遮断した状態を作り出すことができる。このようにしてパルスの供給と遮断を繰り返すことにより、前記第1金属板3と前記第2金属板4の間の電位差を保ち、効果的に殺菌処理を行うことが可能になる。
 前記高電界殺菌装置1による殺菌処理について説明する。殺菌処理を行う物質である液体または気体を、貯蔵槽からポンプ等を使用して前記高電界殺菌装置1へと供給し、前記高電界殺菌装置1の通路6に液体または気体を通過させる。この時、前記第1金属板3と前記第2金属板4に接続した前記パルス電源装置8によって前記通路6に生じた高電界を通過する液体または気体に含まれる細菌30は、細菌30を構成する細胞膜31の内外の膜厚と細菌30の直径と電界強度に比例した大きさの電位差が生じ、前記電位差によって、図3に示すように、細菌30の細胞膜31が破壊されて中から細菌30を構成する細胞質内液32が外へ放出され、細菌30が殺菌処理される。前記細胞膜31が破壊されて内部の前記細胞質内液32が漏出する率を示す漏出率が今の段階で、0.5近くまで実現できており、ほぼ細胞膜破壊は出来ているが、更なる実験を重ねれば漏出率を高めることが可能である。
 前記細胞膜31を破壊するには、前記細胞膜31の内外に1μm当たり1V以上の電位差を生じさせる必要がある。また、前記パルス電源装置8によって供給される電圧は1.0~5.0KVの低電圧であることから、前記第1金属板3と前記第2金属板4との間隔は、例えば、0.3~5mm程度の間隔とするが、電圧の大きさや殺菌処理量に応じて適切に設定すればよく、特にこれに限定するものではない。このような低電圧で殺菌処理を行うことが可能であることにより、従来であれば高電圧のために高温下で行われていた殺菌処理が、常温下での殺菌処理を実現可能とする。
 前記高電界殺菌装置1による細菌の生存率は、今のところ数パーセント程度まで下げることを実現しており、さらに実験を重ねることにより、生存率をさらに0に近付けることができると考えている。このように、本発明の高電界殺菌装置1によって、液体および気体を常温下で安全・確実にそして安価な装置で殺菌処理することが可能となる。
 高電界殺菌装置1による殺菌処理の際に時間当たりの処理量を増やすためには、通路6を通過する液体または気体の量を増やすことが考えられる。そこで、複数の通路6,6’を設けた第2,3の実施形態の高電界殺菌装置1’、1’’について説明する。
 第2の実施形態の高電界殺菌装置1’は、図5に示すように、ケース2の中に、マイナス電極となる、両面に誘電層5,5’が形成された第1金属板3と、前記第1金属板3の両面に所定の間隔で、プラス電極となる2枚の第2金属板4,4’を配置することにより、前記第1金属板3の両面に、液体または気体が通過する2つの通路6,6’を形成したものである。前記第1金属板3と2枚の前記第2金属板4,4’に、パルス電源装置(図示せず)を接続し、2つの通路6,6’にそれぞれ高電界を発生させて殺菌処理を行う。前記誘電層5,5’の形成方法は、第1の実施形態と同様に誘電材を焼結することにより形成されている。
 前記第1金属板3と2枚の第2金属板4,4’との間に形成された2つの通路6,6'にパルス電源装置(図示せず)を用いてそれぞれ高電界を発生させて電位差を生じさせることにより、2つの通路6,6’を通過する液体または気体を同時に殺菌処理することができる。これにより、前記通路6,6’を通過する液体または気体の量が増加するので、第1の実施形態の高電界殺菌装置1に比べて、単位時間当たりの処理量を増加させることができる。第2の実施形態において前記パルス電源装置によって供給されるパルスは、図4に示すパルス波を有するものを用いることができる。
 また、通路を増加させる別の方法として、前記第1金属板3と前記第2金属板4との間に、前記第1金属板3と前記第2金属板4に平行な仕切り板を配置する方法がある。これを第3の実施形態の高電界殺菌装置1’’とする。図6に示すように、第3の実施形態の高電界殺菌装置1’’は、第1の実施形態の高電界殺菌装置1に2枚の仕切り板7を設けたものであり、マイナス電極となる、表面に導電層5が形成された第1金属板3と、プラス電極となる第2金属板4との間に2枚の仕切り板を等間隔で配置することで、前記第1金属板3と前記第2金属板4との間に3つの同じ大きさの通路6’’を形成したものである。前記仕切り板7以外の構造は第1の実施形態と同じものを用いる。
 前記第1金属板3と前記第2金属板4にパルス電源装置(図示せず)を接続し、前記第1金属板3と前記第2金属板4との間に高電界を発生させる。前記仕切り板7はパルス電源装置(図示せず)と接続されておらず、導電層も形成されていない単なる板状の部材である。この時、第1の実施形態のように1つの通路6しか存在しなければ、板状の電極を用いていることから通路6には高電界が不均一に発生する(例えば、板状の電極の両端に高電界が偏って発生する)が、本実施形態のように記第1金属板3と前記第2金属板4との間に仕切板7を配置していると、前記仕切り板7を介して高電界が発生することにより高電界の偏りが緩和されるので、その結果、殺菌効率を高めることが可能となる。
 ここまでは、断面が矩形の通路が形成された高電界殺菌装置について説明してきたが、次に通路の断面形状が環状あるいは渦巻状の高電界殺菌装置について説明する。図7に示すのが、第4の実施形態の高電界殺菌装置10である。
 図7に示すように、第4の実施形態の高電界殺菌装置10は、円筒形のケース12内に、マイナス電極として円筒形にした第1金属板13を前記ケース12の中心に配置し、プラス電極として円筒形にした第2金属板14を、円筒形の前記第1金属板13を取り囲むように配置したものであり、これにより、前記第1金属板13と前記第2金属板14との間には、液体または気体を通過させる環状の通路16が形成される。
 マイナス電極となる円筒形の第1金属板13の表面には、焼結により導電層15を形成する。そして、マイナス電極となる第1金属板13とプラス電極となる第2金属板14とにパルス電源装置(図示せず)を接続してパルスを供給し、前記環状の通路16に高電界を発生させて電位差を生じさせることにより、環状の通路16を通過する液体または気体を殺菌処理する。
 本実施形態のように、マイナス電極として円筒形に形成した第1金属板13を用いると、前記通路16において高電界が均一に発生することにより集電効果が高くなり、前記通路16の通過する液体または気体の全てを均一に殺菌処理することができ、殺菌処理の効果を高めることができる。
 また、本実施形態では前記ケース12を円筒形とすることにより、殺菌処理する液体または気体を貯留する貯蔵槽と、殺菌処理された液体または気体を容器等に充填する充填装置との間に配置する高電界殺菌装置10(パルス電源装置を除く)をパイプ状に形成することができるので、小スペースに効率良く高電界殺菌装置10を配置することができるようになる
 マイナス電極に円筒形の第1金属板13を用いる場合について説明してきたが、マイナス電極として内部が空度となる円筒形だけではなく、円柱形を用いることも可能であり、円柱形とした場合でも同じ効果をもたらすことが可能である。
 次に、第4の実施形態の高電界殺菌装置10と同様に外観をパイプ状とすることができる第5の実施形態の高電界殺菌装置10’について説明する。図8に示すのが第5の実施形態の高電界殺菌装置10'の斜視図である。
 第5の実施形態の高電界殺菌装置10’は、マイナス電極となる、両面に導電層15,15’が焼結により形成された第1金属板13’と、プラス電極となる第2金属板14’とを所定の間隔で配置し、図8に示すように、前記第1金属板13’と前記第2金属板14’とを、所定の間隔を保った状態で巻いて渦巻状にして、ケース12内に配置したものであり、前記第1金属板13’と前記第2金属板14’との間に形成される通路16’は、断面がケース2内で2つの渦巻形状に形成されている。
 このような渦巻状に形成したマイナス電極となる前記第1金属板13’と、プラス電極となる前記第2金属板14’にパルス電源装置を接続し、前記第1金属板13’と前記第2金属板14’との間に高電界を発生させて前記通路16’を通過する液体または気体に含まれる細菌の細胞膜を電位差によって破壊して殺菌処理を行う。
 この時、前記通路16’は第4の実施形態の通路16のように幅が大きいのではなく、幅が狭いのが重なった状態となっているので、細胞膜を破壊するには、1μm当たり1V以上の電位差を生じさせることが必要なことを考えると、第4の実施形態の高電界殺菌装置10’よりも少ない電位差で同じ効果をもたらすことが可能となる。つまり、外観を同じパイプ状とした場合でも、第5の実施形態の高電界殺菌装置10’は、より低電圧で殺菌処理を行うことができる。しかしながら、前記第1金属板13’と前記第2金属板14’とを、所定の間隔を保った状態で巻いて渦巻状に形成する際に、間隔を均一に保つのは難しいために、製造コストは増加する恐れがある。
 次に、第6の実施形態の高電界殺菌装置1aについて説明する。図9に示すのは、前記高電界殺菌装置1aの横断方向の断面図である。図9に示すように、前記高段階殺菌装置1aは、マイナス電極となる複数の第1金属板3aおよびプラス電極となる複数の第2金属板4aを交互に配置することにより、殺菌処理を行う物質が通過する通路6aを複数形成したものである。
 マイナス電極となる前記第1金属板3aの両面に誘電層5aを形成し、プラス電極となる前記第2金属板4aをスペーサー9を用いて前記第1金属板3aと所定の間隔で、前記第1金属板3aと交互に、そして前記第1金属板3aよりも数が1つ多くなるように、ケース2a内に配置する。これにより、複数の通路6a、本実施形態では10個の通路6aが形成される。マイナス電極となる前記第1金属板3aとプラス電極となる前記第2金属板4aに、パルス電源装置(図示せず)を接続し、全ての通路6aにそれぞれ高電界を発生させて殺菌処理を行う。前記誘電層5aの形成方法は、第1の実施形態と同様に誘電材を焼結することにより形成されている。本実施形態において前記パルス電源装置によって供給されるパルスは、図4に示すパルス波を有するものを用いることができる。
 このように、第6の実施形態の高電界殺菌装置1aは、マイナス電極となる複数の第1金属板3aとプラス電極となる第2金属板4aを交互に配置することによって、複数の通路6aを形成することで、一度に大量の物質を殺菌することが可能となる。また処理量に応じて前記第1金属板3aと前記第2金属板4aの数や大きさを自由に変更することができる。
 次に、第7の実施形態の高電界殺菌装置10aについて、図10を用いて説明する。図10に示すのが第7の実施形態の高電界殺菌装置10aの概略断面図である。第7の実施形態の高電界殺菌装置10aは、マイナス電極となる第1金属板13aを円柱形または円筒形に成形して回転ローラ17を形成し、前記回転ローラ17を利用して殺菌処理する物質を移動させる構造である。
 マイナス電極となる前記第1金属板13aからなる回転ローラ17の表面に誘電層15aを形成する。そして、プラス電極となる第2金属板14aを前記回転ローラ17の表面に合わせた曲面形状を有するように形成する。図10に示すように、複数の回転ローラ17を配置する場合には、1枚の第2金属板14aを波型に形成し、各回転ローラ17と所定の間隔を有するように配置する。そして、隣接する回転ローラ17の間には、前記第2金属板17aと所定の間隔を有するように壁18を形成する。
 これにより、前記第2金属板14aと、前記第1金属板13aからなる前記回転ローラ17および前記壁18との間に、殺菌処理を行う物質を通過させる通路16aが形成される。前記回転ローラ17は駆動装置によって回転する構造とし、前記通路16aを通過させる物質が、高粘度の液体、固体を含む液体、または固体と言ったポンプ等を使用して前記通路16aを通過させることが難しい場合に、前記回転ローラ17の回転によって殺菌処理を行う物質を前記通路16aを通過させることができる。
 そして、前記回転ローラ17を図10に矢印で示す方向に回転させながら、マイナス電極となる前記第1金属板13aとプラス電極となる前記第2金属板14aに、パルス電源装置(図示せず)を接続し、前記通路16aに高電界を発生させた状態で、前記回転ローラ17の回転によって物質が移動されて前記通路16aを通過することによって、固体等の物質の殺菌処理を行うことができる。
 本実施形態では、上述のように、回転ローラ17を用いることによって、高粘度の液体、固体を含む液体、または固体等の物質を殺菌処理することが可能となる。これにより、高電界殺菌装置10aによって、液体および気体以外の様々な物質を殺菌処理することが可能となる。また、前記壁18をマイナス電極となる第1金属板13aによって形成し、その表面に誘電層15aを形成することによって、隣接する回転ローラ17の間でも殺菌処理する構造とすることも可能である。
 第8の実施形態として、回転ローラ17をマイナス電極となる前記第1金属板13aによって形成しているが、図11に示すように、回転ローラ17をプラス電極となる第2金属板14aによって形成し、マイナス電極となる第1金属板13aを前記回転ローラ17の表面に合わせた曲面形状を有するように形成して、その表面に誘電層15aを形成してもよい。この場合、前記第1金属板13aと、前記第2金属板14aからなる前記回転ローラ17および壁18との間に、殺菌処理を行う物質を通過させる通路16aを形成する。
 そして、前記回転ローラ17を図11に矢印で示す方向に回転させながら、マイナス電極となる前記第1金属板13aとプラス電極となる前記第2金属板14aに、パルス電源装置(図示せず)を接続し、前記通路16aに高電界を発生させた状態で、殺菌処理を行う物質を通過させることによって、固体等の物質の殺菌処理を行うことができる。このような場合、前記壁18をプラス電極となる前記第2金属板14aによって形成することによって、隣接する回転ローラ17の間でも殺菌処理する構造とすることも可能である。
 次に、第7の実施形態と同様に、回転ローラを用いた第8の実施形態の高電界殺菌装置10bについて、図12を用いて説明する。図12に示すのが第8の実施形態の高電界殺菌装置10aの概略断面図である。
 第8の実施形態の高電界殺菌装置10bは、マイナス電極となる第1金属板13bを円柱形または円筒形に成形して第1回転ローラ17bを形成し、さらに、プラス電極となる第2金属板14bを円柱形または円筒形に成形して第2回転ローラ19を形成したものであり、前記第1回転ローラ17bおよび前記第2回転ローラ19を利用して殺菌処理する物質を移動させる構造である。
 マイナス電極となる前記第1金属板13bからなる第1回転ローラ17bの表面に誘電層15bを形成する。そして、前記第1回転ローラ17bと対向するようにプラス電極となる前記第2回転ローラ19を所定の間隔で配置する。このように、対になった前記第1回転ローラ17bと前記第2回転ローラ19を、図12に示すように、複数配置する。この時、各第1回転ローラ17bは、対になった第2回転ローラ19だけでなく、隣に配置された第2回転ローラ19に対しても同じ間隔を有するように配置する。
 そして隣接する第1回転ローラ17bの間に、前記第2回転ローラ19の曲面に合わせた曲面状の壁25を前記第2回転ローラ19と対向するように配置し、隣接する第2回転ローラ19の間に、前記第1回転ローラ17bの曲面に合わせた曲面状の壁26を前記第1回転ローラ17bと対向するように配置する。これにより、前記第1回転ローラ17bおよび前記壁25と、前記第2回転ローラ19と前記壁26との間に、殺菌処理が行われる物質が通過する通路16bが形成される。
 そして、前記第1回転ローラ17bおよび前記第2回転ローラ19を回転させる駆動装置を設けて、前記第1回転ローラ17bおよび前記第2回転ローラ19を互いに反対方向(図12に矢印で示す方向)に回転させながら、マイナス電極となる前記第1金属板13bとプラス電極となる前記第2金属板14bに、パルス電源装置(図示せず)を接続し、前記通路16bの前記第1回転ローラ17bと前記第2回転ローラ19との間に高電界を発生させた状態で、前記第1回転ローラ17および前記第2回転ローラ19の回転によって物質を前記通路16bを通過させると、前記第1回転ローラ17bと前記第2回転ローラ19との間で、物質を殺菌処理することができる。
 このように、前記第1回転ローラ17bと前記第2回転ローラ19を配置することで、1つの第1回転ローラ17bにおいて2箇所で殺菌処理を行うことが可能となる。そして、本実施形態の高電界殺菌装置10bは、対向する第1回転ローラ17bおよび第2回転ローラ19を共に回転させることによって、通路16bを通過する物質をより確実に移動させることができるので、より高粘度の液体、固体を含む液体および固体をスムーズに移動させて、効率良く物質の殺菌処理を行うことが可能となる。
 前記壁25をマイナス電極となる第1金属板13bによって形成し、その表面に誘電層15bを形成し、さらに、前記壁26をプラス電極となる第2金属板14bによって形成することによって、前記第1回転ローラ17bと前記第2回転ローラ19の間だけでなく、前記第1回転ローラ17bと前記壁26との間、そして、前記第2回転ローラ19と前記壁25との間でも殺菌処理する構造とすることも可能である。
 ここまでは、1つの高電界殺菌装置によって液体または気体を処理する場合について説明してきたが,複数の高電界殺菌装置を組み合わせることでより殺菌処理の効果を高める方法について説明する。
 図13に示す第9の実施形態の高電界殺菌装置20は、第4の実施形態の高電界殺菌装置10を2つ組み合わせたものである。第4の実施形態の高電界殺菌装置10は、その説明で述べたように、外観をパイプ状とすることができるこの利点を利用したものが本実施形態の高電界殺菌装置20である。本実施形態で用いている2つの高電界殺菌装置10は、上述のように第4の実施形態の高電界殺菌装置10を用いていることから、構造についての説明は省略する。
 図13に示すように、前記高電界殺菌装置20は、殺菌処理する液体または気体を貯留する貯蔵槽21と、殺菌処理された液体または気体を容器等に充填する充填装置22との間に2つの高電界殺菌装置10を配置したものであり、1つ目の高電界殺菌装置10を、貯蔵槽21から水平方向に出ているパイプ23から上方へと液体または気体が流れるように配置され、2つ目の高電界殺菌装置10を、1つ目の高電界殺菌装置と平行に配置し、その下方に前記充填装置22を配置する。そして、1つ目の高電界殺菌装置10と2つ目の高電界殺菌装置10とを逆U字型のパイプ24で接続する。
 これにより、前記貯蔵槽21からポンプによって送り出される液体または気体は、1つ目の高電界殺菌装置10を下から上へと通過しながら1度目の殺菌処理が行われ、逆U字型のパイプ24を通過した後、2つ目の高電界殺菌装置10を上から下へと通過しながら2度目の殺菌処理が行われる。1つの高電界殺菌装置によって殺菌処理した液体または気体を再び高電界殺菌装置によって殺菌処理すると、細菌の数はさらに減少することから、本実施形態のように繰り返し殺菌処理することで細菌の生存率をさらに低下させることができる。また、2つの高電界殺菌装置10を直線ではなく平行に配置することで、より少ないスペースで納めることができるので、コンパクトな高電界殺菌装置20を実現できる。
 ここでは、第4の実施形態の高電界殺菌装置10を2つ用いた高電界殺菌装置20について説明したが、その他の第1~3,5~8の実施形態の高電界殺菌装置をそれぞれ2つ用いることも可能であり、異なる種類の高電界殺菌装置を組み合わせることも可能である。また、組み合わせる数も2つ以上とすることによりさらなる殺菌効果をもたらすことも可能である。
 いずれの場合にも、複数の高電界殺菌装置を組み合わせて1つの高電界殺菌装置とし、繰り返し殺菌処理することで細菌の生存率をさらに低下させることが可能となり、より効果的な殺菌処理を行うことができる。
 本発明の高電界殺菌装置は、ここまで説明してきたように、様々な形態を用いることで殺菌処理の対象物質を、液体、気体、固体、固体を含む液体等、様々な状態の物質を低電圧で効果的に殺菌処理することが可能であり、さらに、処理された物質の品質を変えることなく安全に殺菌処理することが可能である。また、その製造コストも安価であり、殺菌処理の費用も低コストで可能となる。このような利点により、流体飲料、食品加工、水処理、医療機器、室内環境、電子機器製造等、様々な分野で利用することが考えられる。
 1,1’,1’’,1a 高電界殺菌装置
 2,2a    ケース
 3,3a    第1金属板
 4,4’,4a 第2金属板
 5,5’,5a 誘電層
 6,6’,6’’,6a 通路
 7       仕切り板
 8       パルス電源装置
 9       スペーサー
 10,10’,10a,10b 高電界殺菌装置
 12      ケース
 13,13’,13a,13b 第1金属板
 14,14’,14a,14b 第2金属板
 15,15’,15a,15b 誘電層
 16,16’,16a,16b 通路
 17      回転ローラ
 17b     第1回転ローラ
 18      壁
 19      第2回転ローラ
 20      高電界殺菌装置
 21      貯蔵槽
 22      充填装置
 23,24   パイプ
 25,26   壁

Claims (13)

  1.  マイナス電極となる第1金属板と、プラス電極となる第2金属板とを所定の間隔で配置し、前記第1金属板と前記第2金属板に接続したパルス電源装置によって前記第1金属板と前記第2金属板との間に形成された通路に高電界を発生させ、前記高電界が発生した前記通路の中を細菌を含んだ物質を通過させて、前記物質に含まれる細菌の細胞膜に電位差を生じさせて前記細胞膜を破壊することで殺菌を行う高電界殺菌装置であって、
     前記第1金属板の前記第2金属板と対向する表面に、焼成によって誘電材からなる誘電層を形成したことを特徴とする高電界殺菌装置。
  2.  前記パルス電源装置によって供給されるパルスは、パルスの立下りから立ち上がりの間で、パルスの供給が一時的に遮断されていることを特徴とする請求項1に記載の高電界殺菌装置。
  3.  前記高電界は、直流による直流高電界であることを特徴とする請求項1または2に記載の高電界殺菌装置。
  4.  前記高電界は、バイポーラパルス電源による高電界であることを特徴とする請求項2に記載の高電界殺菌装置。
  5.  マイナス電極となる前記第1金属板の両面に前記誘電層を形成し、前記第1金属板の両面に所定の間隔で、プラス電極となる2枚の第2金属板を配置し、前記第1金属板と2枚の前記第2金属板との間に、前記物質が通過する2つの通路を形成し、前記パルス電源装置によって2つの前記通路にそれぞれ高電界を発生させて前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~4のいずれか1項に記載の高電界殺菌装置。
  6.  前記第1金属板と前記第2金属板との間に、前記第1金属板および前記第2金属板と平行に仕切り板を配置して複数の通路を形成し、前記パルス電源装置によって前記第1金属板と前記第2金属板との間に高電界を発生させ、前記複数の通路に前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~5のいずれか1項に記載の高電界殺菌装置。
  7.  マイナス電極となる前記第1金属板の両面に前記誘電層を形成し、前記第1金属板と所定の間隔で、プラス電極となる第2金属板を配置し、複数の前記第1金属板と複数の前記第2金属板を交互に配置して、前記第1金属板と2枚の前記第2金属板との間に、前記物質が通過する通路を形成し、前記パルス電源装置によって2つの前記通路にそれぞれ高電界を発生させて前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~4のいずれか1項に記載の高電界殺菌装置。
  8.  前記第1金属板を円柱形または円筒形に形成し、前記円柱形または前記円筒形の表面に前記誘電層を形成し、前記第2金属を前記第1金属板を取り囲むように円筒形に形成することで環状の通路を形成し、前記パルス電源装置によって前記環状の通路に高電界を発生させて前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~4のいずれか1項に記載の高電界殺菌装置。
  9.  前記第1金属板の両面に前記誘電層を形成し、所定の間隔で配置された前記第1金属板と前記第2金属板とを、所定の間隔を保った状態で巻いて渦巻状にし、断面が渦巻状の通路を形成し、前記パルス電源装置によって前記環状の通路に高電界を発生させて前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~4のいずれか1項に記載の高電界殺菌装置。
  10.  前記第1金属板を円柱形または円筒形に成形して回転ローラを形成し、前記第1金属板からなる回転ローラの表面に前記誘電層を形成し、前記第2金属板を曲面に形成して、前記回転ローラと所定の間隔を有するように配置することで、前記回転ローラと前記第2金属板との間に通路を形成し、前記パルス電源装置によって前記通路に高電界を発生させて、前記回転ローラを回転させることにより前記通路に前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~4のいずれか1項に記載の高電界殺菌装置。
  11.  前記第2金属板を円柱形または円筒形に成形して回転ローラを形成し、前記第1金属板を曲面に形成して、前記曲面の表面に前記誘電層を形成して、前記第1金属板を前記回転ローラと所定の間隔を有するように配置することで、前記回転ローラと前記第1金属板との間に通路を形成し、前記パルス電源装置によって前記通路に高電界を発生させて、前記回転ローラを回転させることにより前記通路に前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~4のいずれか1項に記載の高電界殺菌装置。
  12.  前記第1金属板を円柱形または円筒形に成形して第1回転ローラを形成し、前記第1金属板からなる第1回転ローラの表面に前記誘電層を形成し、前記第2金属板を円柱形または円筒形に成形して第2回転ローラを形成し、前記第1回転ローラと前記第2回転ローラを所定の間隔で配置することで、前記第1回転ローラと前記第2回転ローラとの間に通路を形成し、前記パルス電源装置によって前記通路に高電界を発生させて、前記第1回転ローラおよび前記第2回転ローラを回転させることにより前記通路に前記物質を通過させて殺菌処理を行うことを特徴とする請求項1~4のいずれか1項に記載の高電界殺菌装置。
  13.  請求項1~12のいずれか1項に記載の高電界殺菌装置を複数組み合わせた高電界殺菌装置であって、複数の殺菌処理装置を直列に接続して、繰り返し殺菌処理することを特徴とする高電界殺菌装置。
PCT/JP2012/081795 2011-12-08 2012-12-07 高電界殺菌装置 WO2013085034A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011268741A JP5907374B2 (ja) 2010-12-09 2011-12-08 高電界殺菌装置
JP2011-268741 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013085034A1 true WO2013085034A1 (ja) 2013-06-13

Family

ID=48574932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081795 WO2013085034A1 (ja) 2011-12-08 2012-12-07 高電界殺菌装置

Country Status (1)

Country Link
WO (1) WO2013085034A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060366A1 (en) * 2021-10-15 2023-04-20 Hypertec Systèmes Inc. Electric field sterilizer for pathogens

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140923A (en) 1983-06-01 1984-12-05 Univ Manchester Resistance thermometer testing
WO1998055977A1 (en) 1997-06-04 1998-12-10 Digital Security Controls Ltd. Self diagnostic heat detector
JPH11246984A (ja) * 1998-03-05 1999-09-14 Zipangu Energy:Kk 水の電気分解装置及び水ストーブ並びに電極製造方法
JP2000254657A (ja) * 1999-03-09 2000-09-19 Matsushita Electric Ind Co Ltd 殺菌装置
JP2001017136A (ja) * 1999-07-02 2001-01-23 Nissin Electric Co Ltd 液状物の殺菌装置
JP2003211165A (ja) * 2002-01-23 2003-07-29 Mitsubishi Heavy Ind Ltd 電気化学反応制御方法および電気化学反応装置
US20060104330A1 (en) 2004-11-15 2006-05-18 Palo Alto Research Center Incorporated Method and apparatus for calibrating a thermistor
JP2009106840A (ja) * 2007-10-29 2009-05-21 Hideo Eguchi 水殺菌装置および水殺菌方法
JP2010142446A (ja) * 2008-12-19 2010-07-01 Takenaka Komuten Co Ltd パルス電界殺菌装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140923A (en) 1983-06-01 1984-12-05 Univ Manchester Resistance thermometer testing
WO1998055977A1 (en) 1997-06-04 1998-12-10 Digital Security Controls Ltd. Self diagnostic heat detector
JPH11246984A (ja) * 1998-03-05 1999-09-14 Zipangu Energy:Kk 水の電気分解装置及び水ストーブ並びに電極製造方法
JP2000254657A (ja) * 1999-03-09 2000-09-19 Matsushita Electric Ind Co Ltd 殺菌装置
JP2001017136A (ja) * 1999-07-02 2001-01-23 Nissin Electric Co Ltd 液状物の殺菌装置
JP2003211165A (ja) * 2002-01-23 2003-07-29 Mitsubishi Heavy Ind Ltd 電気化学反応制御方法および電気化学反応装置
US20060104330A1 (en) 2004-11-15 2006-05-18 Palo Alto Research Center Incorporated Method and apparatus for calibrating a thermistor
JP2009106840A (ja) * 2007-10-29 2009-05-21 Hideo Eguchi 水殺菌装置および水殺菌方法
JP2010142446A (ja) * 2008-12-19 2010-07-01 Takenaka Komuten Co Ltd パルス電界殺菌装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060366A1 (en) * 2021-10-15 2023-04-20 Hypertec Systèmes Inc. Electric field sterilizer for pathogens

Similar Documents

Publication Publication Date Title
US7931811B2 (en) Dielectric barrier reactor having concentrated electric field
US6911225B2 (en) Method and apparatus for non-thermal pasteurization of living-mammal-instillable liquids
AU2012359751B2 (en) Purifying Device
JP5907374B2 (ja) 高電界殺菌装置
JP2004522455A (ja) 非加熱低温殺菌の方法および装置
US9168321B2 (en) Toroidal-shaped treatment device for disinfecting a fluid such as air or water
CN101678135A (zh) 以气体放电的等离子体进行水和含水溶液处理的方法及其实施装置
US10596283B2 (en) Sterilization apparatus
MXPA06002888A (es) Metodos y dispositivos de distribucion de producto liquido potable.
KR101669185B1 (ko) 배관용 플라즈마 살균장치
WO2013085034A1 (ja) 高電界殺菌装置
US20210032131A1 (en) Liquid treatment apparatus and method
KR101821865B1 (ko) 회전하는 전극을 이용하여 오염된 피처리물을 처리하는 플라즈마 처리장치
CN102351281A (zh) 一种微间距多层脉冲电场流动处理室
CN112645495A (zh) 一种适用于小型医疗机构的消毒设备
JP2011098274A (ja) オゾン水生成装置
RU2680073C1 (ru) Способ обеззараживания жидких сред
JP2012115777A (ja) 水中の殺菌方法、水中殺菌装置及びそれを用いた冷蔵庫
US20230414811A1 (en) Liquid processing apparatus with atmospheric, low-temperature plasma activation
Chang et al. Effects of atmospheric DBCD plasma on three kinds of typical microorganisms
RU2144002C1 (ru) Устройство для стерилизации жидкости
WO2015048022A1 (en) Pool cleaning application of water purifier
KR20160082653A (ko) 살균수 순간 제조장치
PL236055B1 (pl) Sposób eradykacji bakteryjnych fitopatogenów z zastosowaniem stałoprądowego wyładowania jarzeniowego
Cooper et al. Uniform and filamentary nature of continuous-wave and pulsed dielectric barrier discharge plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856198

Country of ref document: EP

Kind code of ref document: A1