WO2013084901A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2013084901A1
WO2013084901A1 PCT/JP2012/081420 JP2012081420W WO2013084901A1 WO 2013084901 A1 WO2013084901 A1 WO 2013084901A1 JP 2012081420 W JP2012081420 W JP 2012081420W WO 2013084901 A1 WO2013084901 A1 WO 2013084901A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
teeth
group
motor
tooth
Prior art date
Application number
PCT/JP2012/081420
Other languages
English (en)
French (fr)
Inventor
憲昭 吉村
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2013548252A priority Critical patent/JP5839298B2/ja
Priority to CN201280058084.3A priority patent/CN103959617B/zh
Publication of WO2013084901A1 publication Critical patent/WO2013084901A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the disclosed embodiment relates to an AC motor.
  • a stator that constitutes a rotary motor is a fixing in which steel plates each having an annular yoke, a plurality of teeth protruding radially inward from the yoke, and a slot formed between adjacent teeth are laminated. Has a child iron core. The winding is wound around the teeth while being inserted into the slot of the stator core.
  • the concentrated winding method is a form in which a winding is wound for each tooth
  • the distributed winding method is a form in which a winding is wound across a plurality of teeth.
  • the winding is wound for each tooth, so that the length of the winding end (coil end) protruding from the end of the stator core is shorter than that of the distributed winding method.
  • the motor can be easily downsized.
  • the space factor composed of the ratio of the winding cross section to the slot cross section can be easily increased and the production efficiency is high.
  • the distributed winding method has an advantage that the magnetic flux density distribution created by the winding can be made closer to a sine wave.
  • the magnetic flux density distribution due to the stator field be close to a sine wave. For this reason, the distributed winding method is generally adopted.
  • the downsizing of the physique of the motor is always required as a general technical problem, and the concentrated winding method is more preferable from this viewpoint. Therefore, an induction motor and a synchronous reluctance motor that can adopt a concentrated winding method that can be downsized have been desired.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an induction motor and a synchronous reluctance motor in which the windings can be concentrated.
  • a motor including a stator and a mover that are opposed to each other so as to be relatively movable via a magnetic gap
  • the stator and the moveable Either one of the children has a yoke, a plurality of teeth provided to protrude from the yoke to the magnetic gap side, and a plurality of windings wound in a concentrated winding manner for each of the teeth
  • the plurality of teeth includes a plurality of teeth arranged in parallel with each other in a direction perpendicular to the relative movement direction, and a group of teeth including a plurality of teeth arranged in parallel in the relative movement direction is adjacent to the direction perpendicular to the relative movement direction.
  • the first tooth group and the second tooth group are applied with motors that are arranged with a 1/2 tooth pitch shift in the relative movement direction.
  • the winding can be concentrated winding in an induction motor or a synchronous reluctance motor.
  • FIG. 2 is a transverse cross-sectional view corresponding to the II-II cross section in FIG. 1.
  • FIG. 13 is a transverse sectional view corresponding to a section taken along line XIII-XIII in FIG. It is explanatory drawing for demonstrating the arrangement structure of a tooth
  • the motor 100 includes a rotating shaft 1, a frame 2, a bracket 3 provided at one end (right side in FIG. 1) of the frame 2, and an outer ring fitted into the bracket 3.
  • a combined bearing 4, a bracket 5 provided at the other end (left side in FIG. 1) of the frame 2, and a bearing 6 in which an outer ring is fitted to the bracket 5 are provided.
  • the rotating shaft 1 is rotatably supported by a bearing 4 and a bearing 6.
  • the rotary shaft 1 is provided with a rotor 10 (corresponding to an example of a mover) so as to have the same axis as the rotary shaft 1.
  • the rotor 10 includes a laminated core body 11 formed by laminating annular steel plates in the axial direction, and a cylindrical conductor 12 made of copper or aluminum fixed to the outer periphery of the laminated core body 11.
  • a stator 20 is provided on the inner periphery of the frame 2. The rotor 10 and the stator 20 are opposed to each other in the radial direction with the magnetic gap S therebetween, and are configured to be relatively movable in the circumferential direction by the rotation of the rotating shaft 1.
  • the configuration of the rotor 10 is not limited to the above, and a structure in which both ends of a plurality of rod-shaped conductors penetrating the outer periphery of the laminated iron core 11 are fixed to an end ring (so-called “cage-shaped structure”) may be used.
  • the stator 20 includes a cylindrical yoke 21, a plurality (12 in this example) of teeth 22 projecting from the yoke 21 toward the magnetic gap S (radially inward), and concentrated winding for each of the teeth 22. And a plurality (12 in this example) of windings 23 wound in a manner.
  • the yoke 21 and the teeth 22 are formed by laminating steel plates in the axial direction.
  • the plurality of teeth 22 is configured by a plurality of teeth groups 24 and 25 including a plurality (6 in this example) of teeth 22 arranged in parallel in the circumferential direction arranged in a plurality of rows (two rows in this example) in the axial direction. .
  • a group of teeth on one axial side (right side in FIG.
  • FIG. 4 shows the teeth 22 and the like arranged in the circumferential direction in a state where they are arranged on a plane for convenience of explanation.
  • the plurality of windings 23 included in the motor 100 includes a first winding group 27 wound around the first tooth group 24 and a second winding group 28 wound around the second tooth group 25.
  • the first winding group 27 and the second winding group 28 are arranged such that the winding direction of the winding 23 is determined in accordance with the slot combination of the motor 100 and the electrical angles of the in-phase are substantially matched. Yes.
  • the slot combination of the motor 100 is a two-pole three-slot (2P3S) as the slot combination in the cross section of the permanent magnet synchronous motor, as shown in FIG.
  • the winding directions of the windings 23 of the group 27 and the second winding group 28 are opposite to each other. Note that U, V, and W shown in FIG.
  • the in-phase tooth pitches of the first tooth group 24 and the second tooth group 25 are arranged so as to deviate from each other by approximately 180 degrees in electrical angle.
  • the first winding group 27 and the second winding group 28 are different from each other in that the windings 23 of the same phase whose winding directions are opposite are shifted by approximately 180 degrees in electrical angle, so that the first teeth group 24 and the second teeth
  • the in-phase teeth pitch of the group 25 is arranged so as to deviate from each other by approximately 180 degrees in electrical angle.
  • 180 degrees (deviation due to the winding direction) ⁇ 180 degrees (deviation due to the teeth pitch) 0 degree.
  • the electrical angle is substantially the same.
  • a magnetic flux crossing member 26 is provided at the tip of each tooth 22 on the magnetic gap S side.
  • the magnetic flux intersecting member 26 is referred to as a magnetic flux interlinking with a winding 23 (hereinafter referred to as “first winding 23” as appropriate) constituting the first winding group 27 (hereinafter referred to as “first magnetic flux” as appropriate).
  • first winding 23 a magnetic flux interlinking with a winding 23 (hereinafter referred to as “second winding 23” as appropriate) constituting the second winding group 28 (hereinafter referred to as “second magnetic flux” as appropriate).
  • FIG. 3 shows the structure of the magnetic flux crossing member 26. For convenience of explanation, FIG.
  • FIG. 3 shows three windings corresponding to the U-phase, V-phase, and W-phase among the six windings 23 arranged in the circumferential direction constituting the winding groups 27 and 28.
  • the windings 23 and the like are extracted, and the windings 23 and the like arranged in the circumferential direction are shown in a state of being arranged on a plane.
  • the magnetic flux crossing member 26 corresponding to the first winding group 27 and the magnetic flux crossing member 26 corresponding to the second winding group 28 are arranged to mesh with each other as shown in FIG.
  • the magnetic flux crossing member 26 is shown separated. Further, in practice, there is a gap between the windings 23 as shown in FIG. 2, but this gap is not shown in FIG.
  • the magnetic flux crossing member 26 extends in the axial direction from the tip of the tooth 22 corresponding to one of the first winding 23 and the second winding 23 toward the tip of the tooth 22 corresponding to the other.
  • This is a comb-like member having a plurality of (three in this example) comb teeth 261.
  • Each comb tooth 261 is formed so that the shape seen from the circumferential direction is a substantially triangular shape with a pointed tip on the side of the opposing tooth 22, and is arranged at substantially equal intervals in the circumferential direction in each tooth 22. Has been. As shown in FIG.
  • each magnetic flux crossing member 26 is located between two magnetic flux crossing members 26, 26 opposed to each other by a comb tooth 261 located at the center, and two concave portions formed by three comb teeth 261.
  • the magnetic flux crossing members 26 are arranged so as to mesh with each other with a predetermined gap therebetween. With such a configuration, the first magnetic flux and the second magnetic flux can be efficiently crossed.
  • the number of the comb teeth 261 of each magnetic flux crossing member 26 is three, but the number is not limited to this, and may be two or more. However, an odd number is preferable to an even number. This is because when the number of the comb teeth 261 is an odd number, the number of the recessed portions 262 to be formed is an even number, so that the same number of comb teeth 261 can be meshed with both sides of the comb teeth 261 located at the center. This is because the member 26 can be disposed in a uniform manner without waste (in other words, there is no excess recess 262).
  • the shape of the comb teeth 261 is substantially triangular as viewed from the circumferential direction.
  • the present invention is not limited to this, and other shapes such as a trapezoidal shape or a rectangular shape may be used. .
  • a magnetic circuit is configured between the stator 20 of the motor 100 and the laminated iron core body 11, and an eddy current is generated in the cylindrical conductor 12 by passing a magnetic flux through the cylindrical conductor 12.
  • the electromagnetic force generated from the magnetic flux passing through the cylindrical conductor 12 and the magnetic flux generated by the eddy current acts as torque (rotational force) of the rotor 10.
  • Model A shown in FIG. 5 (a) is a model of the general shape of teeth and windings in which the slot combination is a 2-pole 3-slot (2P3S), for example in a permanent magnet synchronous motor.
  • An example model That is, in the model A, three teeth 22 'are provided so as to protrude from the yoke 21' to the magnetic air gap S side (lower side in FIG. 5), and the three windings 23 'are concentrated winding methods for each tooth 22'. Wrapped in.
  • model B shown in FIG. 5B is a model of the tooth and winding shapes corresponding to the present embodiment, which is the same slot combination as model A. That is, in the model B, the first tooth group 24 and the second tooth group 25 are arranged with a 1/2 tooth pitch shift in the relative movement direction. Further, the winding directions of the windings 23 of the first winding group 27 and the second winding group 28 are opposite to each other, and the in-phase windings 23 (the winding direction is opposite) are shifted from each other by approximately 180 degrees in electrical angle. Has been placed. A magnetic flux crossing member 26 having three comb teeth 261 is provided at the tip of each tooth 22.
  • FIG. 6A shows the magnetic flux density distribution of the magnetic air gap S in the central section of the model A and model B steel plate lamination direction (axial direction of the rotating shaft 1).
  • FIG. 6A it can be seen that the magnetic flux density distribution in the model B is closer to a sine wave than in the model A.
  • FIG.6 (b) and FIG.6 (c) the Fourier analysis result about the magnetic flux density distribution of the model A and the model B is shown in FIG.6 (b) and FIG.6 (c), respectively.
  • the magnetic flux density distribution is not a sine wave distribution including only the primary component (fundamental wave) but includes a harmonic component. It can be seen that the secondary component of the harmonic components is about 60% of the primary component and is particularly large.
  • the secondary component is almost 0, and the total of all the harmonic components other than the primary component is 13% or less of the primary component.
  • the primary component of the first magnetic flux interlinked with the first winding 23 and the second magnetic flux interlinked with the second winding 23 have the same electrical angle phase and the same magnitude, but the secondary component is This is because the same magnitude and direction are opposite at the same electrical angle, and the second component can be canceled out by crossing the first magnetic flux and the second magnetic flux by the magnetic flux crossing member 26. Therefore, it can be seen from the Fourier analysis result that the magnetic flux density distribution in model B approaches a sine wave.
  • the stator 20 has a first tooth group 24 and a second tooth group 25 arranged with a 1/2 tooth pitch shifted in the circumferential direction.
  • the wire 23 is wound by a concentrated winding method.
  • the winding directions of the windings 23 of the first winding group 27 and the second winding group 28 wound around the first tooth group 24 and the second tooth group 25 are determined according to the slot combination, and the same It arrange
  • the magnetic flux density distribution can be mainly made of only the primary component, and a magnetic flux density distribution close to a sine wave can be created while the winding 23 is concentrated winding.
  • concentrated winding it is possible to apply concentrated winding to an induction motor or a synchronous reluctance motor which is a motor suitable for rare earth-free, and it is possible to achieve a rare earth-free while miniaturizing the motor.
  • a magnetic flux crossing member 26 is provided at each of the tips of the plurality of teeth 22, and the magnetic flux crossing member 26 links the first magnetic flux interlinked with the first winding 23 and the second winding 23. Cross the intersecting second magnetic flux.
  • the first winding 23 and the second winding 23 can be arranged on one side of the magnetic gap S (in the present embodiment, on the outer peripheral side).
  • one stator 20 is arranged on one side (in this example, radially outside) of the rotor 10, and the first among the stators 20 is arranged.
  • the winding directions of the second winding 23 and the second winding 23 can be opposite to each other, and the first and second windings 23 having the same phase can be arranged so as to deviate from each other by approximately 180 degrees in electrical angle. Therefore, it can be applied to a motor having a widely used structure in which the stator 20 is disposed outside the rotor 10, and there is an advantage that versatility is high.
  • the magnetic flux crossing member 26 is a comb-like member having a plurality of comb teeth 261, whereby the first magnetic flux and the second magnetic flux are efficiently crossed, and the secondary component of the magnetic flux density distribution.
  • the offset effect can be enhanced.
  • the magnetic flux crossing member 26 having a good symmetry, in which one comb tooth 261 is located at the center and the same number of concave portions 262 are symmetrically arranged on both sides thereof. Can do.
  • the magnetic flux crossing members 26 can be disposed in a regular manner with no waste (no extra concave portions 262), and the secondary component canceling effect of the magnetic flux density distribution can be enhanced.
  • the magnetic flux crossing member 26 is a comb-like member having a plurality of comb teeth 261.
  • the shape of the magnetic flux crossing member is limited to this. Not what you want.
  • the magnetic flux crossing member may be a plate-like member. This modification will be described with reference to FIGS. 7 and 8 are shown in a state where the teeth 22 and the like arranged in the circumferential direction are partially extracted and arranged on a plane as in FIG. 3 and the like for convenience of explanation. ing.
  • the magnetic flux crossing member 29 is a plate-like member that connects the tip of the tooth 22 corresponding to the first winding 23 and the tip of the tooth 22 corresponding to the second winding 23 ( As a result of laminating steel plates in the circumferential direction, the whole is formed into a plate shape).
  • the first tooth group 24 and the second tooth group 25 are arranged with a 1/2 tooth pitch shift in the relative movement direction, and the windings of the first winding group 27 and the second winding group 28 are arranged.
  • the winding directions of the wires 23 are opposite to each other, and the in-phase windings 23 (the winding directions are opposite) are arranged so as to be shifted from each other by approximately 180 degrees in electrical angle.
  • FIGS. 8 and 9 An example of the detailed structure of the magnetic flux crossing member 29 is shown in FIGS. 8 and 9, the yoke 21 is not shown.
  • the tooth 22 and the magnetic flux crossing member 29 are formed by laminating three types of steel plates 291, 292, and 293 in the circumferential direction via an adhesive layer 294.
  • the same effect as the above-described embodiment can be obtained.
  • the laminated structure is complicated because the shape of the magnetic flux crossing member 26 is complicated.
  • a plurality of simple shapes of steel plates can be laminated and formed. The structure of the child 20 can be simplified.
  • the slot combination may be applied to a motor having two poles and three slots (2P3S).
  • the tooth pitch is 120 degrees in electrical angle as in the above embodiment
  • the in-phase pitch interval in the first teeth group 24 and the second tooth group 25 is shifted by 1.5 teeth pitch, and the electrical angle is 180 degrees. Degree of deviation (120 degrees x 1.5 teeth pitch).
  • the slot combination may be applied to a motor having four poles and three slots (4P3S).
  • the teeth pitch is 240 degrees in electrical angle
  • the pitch interval of the in-phase in the first teeth group 24 and the second teeth group 25 is shifted by 1.5 teeth pitch
  • the electrical angle is 360 degrees (240 degrees ⁇ 1. 5 teeth pitch).
  • the slot combination may be applied to an 8-pole 9-slot (8P9S) motor.
  • the teeth pitch is 160 degrees in electrical angle
  • the in-phase pitch interval in the first teeth group 24 and the second teeth group 25 is shifted by 4.5 teeth pitch
  • the electrical angle is 720 degrees (160 degrees ⁇ 4. 5 teeth pitch).
  • the slot combination may be applied to a motor having 10 poles and 9 slots (10P9S).
  • the teeth pitch is 200 degrees in electrical angle
  • the in-phase pitch interval in the first teeth group 24 and the second teeth group 25 is shifted by 4.5 teeth pitch
  • the electrical angle is 900 degrees (200 degrees ⁇ 4. 5 teeth pitch).
  • the slot combination may be applied to a motor having 10 poles and 12 slots (10P12S).
  • the teeth pitch is 150 degrees in electrical angle
  • the in-phase pitch interval in the first teeth group 24 and the second teeth group 25 is shifted by 2.5 teeth pitch
  • the electrical angle is 375 degrees (150 degrees ⁇ 2. 5 teeth pitch).
  • the slot combination may be applied to a motor having 14 poles and 12 slots (14P12S).
  • the teeth pitch is 210 degrees in electrical angle
  • the in-phase pitch interval in the first teeth group 24 and the second teeth group 25 is shifted by 2.5 teeth pitch
  • the electrical angle is 525 degrees (210 degrees ⁇ 2. 5 teeth pitch).
  • the motor 200 is a linear induction motor
  • the motor 200 includes a stator 220 and a mover 210 that are opposed to each other so as to be relatively movable in the left-right direction in FIG.
  • the stator 220 includes a flat yoke 221, a plurality of teeth 222 provided so as to protrude from the yoke 221 toward the magnetic gap S, and a plurality of windings 223 wound around each of the teeth 222 by a concentrated winding method.
  • the plurality of teeth 222 is a direction in which the teeth groups 224 and 225 (only the teeth group 224 is shown in FIG. 11) composed of a plurality of teeth 222 arranged in parallel in the relative movement direction (left and right direction in FIG. 11).
  • the first teeth group 224 and the second teeth group 225 which are arranged in a plurality of rows (in a direction perpendicular to the paper surface in FIG.
  • the winding direction of the winding 223 is the same as that of the motor 200. It is determined according to the slot combination, and is arranged so that the electrical angles of the in-phases are substantially the same. Furthermore, a magnetic flux crossing member 226 (not shown) is provided at the tip of each tooth 222 on the magnetic gap S side, as in the above-described embodiment.
  • the mover 210 includes a secondary conductor 211 made of copper or aluminum, and an iron plate 212 fixed to the side opposite to the magnetic gap S of the secondary conductor 211.
  • a magnetic circuit is formed between the stator 220 and the iron plate 212, and a magnetic flux is passed through the secondary conductor 211, thereby generating an eddy current in the secondary conductor 211 and passing through the secondary conductor 211.
  • An electromagnetic force generated from the magnetic flux generated by the magnetic flux and the eddy current acts as a thrust of the mover 210.
  • the magnetic flux crossing member 26 is provided at the tip of the tooth 22, and the first magnetic flux interlinked with the first winding 23 and the second magnetic flux interlinked with the second winding 23 are crossed.
  • the structure cancels out the secondary component of the magnetic flux density distribution, it is not limited to this.
  • the second embodiment by providing a plurality of slits on the secondary conductor, the induced voltage generated by the secondary component of the magnetic flux density distribution is canceled.
  • the motor 100A is a rotary induction motor using a three-phase alternating current
  • the slot combination in the cross section is a 2-pole 3-slot (a permanent magnet synchronous motor). 2P3S) will be described as an example.
  • the stator 20 includes a cylindrical yoke 21 and a plurality (12 in this example) of teeth protruding from the yoke 21 toward the magnetic gap S (radially inward). 22A and a plurality (12 in this example) of windings 23 wound in a concentrated winding method for each tooth 22A.
  • the yoke 21 and the teeth 22A are formed by laminating steel plates in the axial direction.
  • the plurality of teeth 22A is configured by a plurality of teeth groups 24 and 25 including a plurality (six in this example) of teeth 22A arranged in parallel in the circumferential direction arranged in a plurality of rows (two rows in this example) in the axial direction. .
  • no magnetic flux crossing member is provided at the tip of each tooth 22A on the magnetic gap S side, and each tooth 22A is formed in a prismatic shape.
  • first tooth group 24 the tooth group on one side in the axial direction (right side in FIG. 12) is referred to as a first tooth group 24, and the tooth group on the other side in the axial direction (left side in FIG. 12) is referred to as a second tooth group 25.
  • first teeth group 24 and the second teeth group 25 adjacent to each other in the direction perpendicular to the relative movement direction (the axial direction of the rotary shaft 1; the up-down direction in FIG. 14) Direction (left and right direction in FIG. 14) with a 1/2 tooth pitch shift.
  • FIG. 14 shows the teeth 22 and the like arranged in the circumferential direction on a plane.
  • the plurality of windings 23 included in the motor 100 ⁇ / b> A include a first winding group 27 wound around the first teeth group 24 and a second winding group 28 wound around the second teeth group 25.
  • the first winding group 27 and the second winding group 28 are arranged such that the winding direction of the winding 23 is determined in accordance with the slot combination of the motor 100 and the electrical angles of the in-phase are substantially matched. Yes.
  • the slot combination of the motor 100 is the two-pole three-slot (2P3S) in the cross section of the permanent magnet synchronous motor as described above, as shown in FIG.
  • the winding directions of the windings 23 of the group 27 and the second winding group 28 are opposite to each other. Further, as shown in FIG.
  • the in-phase tooth pitches of the first tooth group 24 and the second tooth group 25 are arranged so as to deviate from each other by approximately 180 degrees in electrical angle.
  • the first winding group 27 and the second winding group 28 are different from each other in that the windings 23 of the same phase whose winding directions are opposite are shifted by approximately 180 degrees in electrical angle, so that the first teeth group 24 and the second teeth
  • the in-phase teeth pitch of the group 25 is arranged so as to deviate from each other by approximately 180 degrees in electrical angle.
  • 180 degrees (deviation due to the winding direction) ⁇ 180 degrees (deviation due to the teeth pitch) 0 degree.
  • the electrical angle is substantially the same.
  • the rotor 10 includes a laminated core body 11 formed by laminating annular steel plates in the axial direction, and a cylindrical conductor 12A (secondary conductor made of copper or aluminum) fixed to the outer periphery of the laminated core body 11. Equivalent to an example).
  • the cylindrical conductor 12 ⁇ / b> A includes a plurality of slits 31 along the direction perpendicular to the relative movement direction (the axial direction of the rotating shaft 1, the direction perpendicular to the paper surface in FIG. 13). Each slit 31 is formed so as to penetrate the cylindrical conductor 12A in the radial direction, and is arranged at substantially equal intervals over the entire circumferential direction of the cylindrical conductor 12A.
  • the cylindrical conductor 12A provided with the slit 31 may be formed by cutting a cylindrical conductor using a circular saw or the like, or formed by arranging rod-shaped conductors having recesses corresponding to the slit 31 in the circumferential direction. May be. In these cases, each slit 31 is a gap. Further, the insulator portion may be the slit 31 by laminating a rod-shaped conductor and an insulator in the circumferential direction. In this case, each slit 31 is filled with an insulator.
  • the other configuration of the motor 100A is the same as that of the motor 100 described above.
  • the area 12A1 on the near side in the figure corresponds to the first winding group 27 wound around the first teeth group 24, and the area 12A2 on the back side in the figure is wound around the second teeth group 25.
  • the first teeth group 24 and the second teeth group 25 are disposed in the respective regions 12A1 and 12A2 of the cylindrical conductor 12A by being displaced by a 1/2 tooth pitch in the relative movement direction (left and right direction in FIG. 15).
  • the induced voltage has a distribution as shown in FIG.
  • the induced voltage generated by the secondary component is canceled out in each current path of the cylindrical conductor 12 ⁇ / b> A between the slits 31, and only the induced voltage generated by the primary component can be extracted. Become. As a result, as shown in FIG. 15B, the distribution of the induced voltage generated in the cylindrical conductor 12A has a shape close to a sine wave.
  • Model A shown in FIG. 16 (a) is the same as that shown in FIG. 5 (a).
  • the cylindrical conductor 12 is not provided with a slit.
  • model C shown in FIG. 16B is a model of the tooth and winding shapes corresponding to the present embodiment, which is the same slot combination as model A. That is, in the model C, the first teeth group 24 and the second teeth group 25 are arranged with a 1/2 tooth pitch shift in the relative movement direction. Further, the winding directions of the windings 23 of the first winding group 27 and the second winding group 28 are opposite to each other, and the in-phase windings 23 (the winding direction is opposite) are shifted from each other by approximately 180 degrees in electrical angle.
  • Each tooth 22 has a prismatic shape, and the cylindrical conductor 12A is provided with a plurality of slits 31 along a direction perpendicular to the relative movement direction.
  • Fig. 17 (a) shows the analysis result of the thrust against the moving part speed of model A.
  • the thrust when the moving part speed is 2.4 m / s is about 20% or less of the thrust when the moving part speed is 0 m / s.
  • the thrust has dropped significantly. That is, it can be seen that in the induction motor employing concentrated winding, the torque (thrust) decreases as the rotor speed (movable part speed) increases.
  • the magnetic flux density distribution includes not only the primary component but also the harmonic component. Therefore, it is presumed that the reason why the thrust is reduced in this way is a harmonic component having a different order from the primary component contributing to the thrust.
  • the cylindrical conductor 12A includes a plurality of slits 31 along a direction perpendicular to the relative movement direction. Thereby, the induced voltage generated by the secondary component of the magnetic flux density is canceled out, and the distribution of the induced voltage generated in the cylindrical conductor 12A can be made a shape close to a sine wave. That is, according to the present embodiment, the magnetic flux density distribution close to a sine wave is created by providing the slit 31 in the cylindrical conductor 12A without providing the magnetic flux crossing member at the tip of the tooth 22 as in the first embodiment. The same effect as that obtained can be obtained.
  • the configuration according to the second embodiment described above can be applied to a linear motor.
  • the secondary conductor 211A of the mover 210 includes a plurality of slits 231 along a direction perpendicular to the relative movement direction (direction perpendicular to the paper surface in FIG. 18).
  • the slits 231 are formed so as to penetrate the secondary conductor 211A and are arranged at substantially equal intervals over the entire relative movement direction of the secondary conductor 211A.
  • the other configuration of the motor 200A is the same as that of the motor 200 shown in FIG. Also in the present modification applied to the linear motor, the same effect as in the second embodiment can be obtained.
  • the configuration according to the second embodiment can be applied to the motors of various slot combinations shown in FIG. 10 as in the first embodiment.
  • the motor is an induction motor
  • the present invention is not limited to this and can be applied to a reluctance motor.
  • the configuration in which the first tooth group and the second tooth group adjacent to each other in the direction perpendicular to the relative movement direction are arranged on the stator side with a shift of 1/2 tooth pitch in the relative movement direction is taken as an example. Although described, it is not limited to this, and it may be provided on the mover side.
  • the motor is an inner rotor type in which the rotor 10 is provided inside the stator 20
  • the rotor 10 is disposed outside the stator 20.
  • the present invention can also be applied to an outer rotor type motor provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】巻線を集中巻きとすることが可能なインダクションモータや同期リラクタンスモータを提供する。 【解決手段】磁気的空隙Sを介して相対移動可能に対向配置された固定子20と回転子10を備えたモータ100であって、固定子20は、ヨーク21と、ヨーク21から磁気的空隙S側に突出して設けられた複数のティース22と、ティース22ごとに集中巻き方式で巻き付けられた複数の巻線23と、を有し、複数のティース22は、円周方向に並列された複数のティース22からなるティース群24,25が軸方向に2列並べられて構成され、軸方向に隣り合う第1ティース群24と第2ティース群25は、円周方向に1/2ティースピッチずれて配置されている。

Description

モータ
 開示の実施形態は、交流モータに関する。
 例えば、回転型モータを構成する固定子は、円環状のヨークと、ヨークから径方向内側に突出する複数のティースと、隣接するティース間に形成されるスロットとを備えた鋼板が積層された固定子鉄心を有する。巻線は、固定子鉄心のスロット内に挿入されつつティースに巻装される。巻線の巻装形態には、集中巻き方式と分布巻き方式がある。集中巻き方式とは、ティースごとに巻線が巻装される形態であり、分布巻き方式とは、複数のティースに跨って巻線が巻装される形態である。これらの方式で巻線が巻装された固定子を有するモータが、例えば特許文献1に記載されている。
特開2001-128404号公報
 一般に、集中巻き方式によれば、ティースごとに巻線が巻装されることから、固定子鉄心端部からの巻線端部(コイルエンド)の突出長を分布巻き方式に比べて短くすることができ、モータの小型化を図り易いという利点がある。また、スロット断面に対する巻線断面の比からなる占積率を高め易く、生産効率も高いという利点もある。一方、分布巻き方式によれば、巻線の作り出す磁束密度分布を正弦波により近くすることができるという利点がある。
 ところで、近年、希土類磁石の原料であるNd(ネオジム)やDy(ジスプロシウム)の高騰により、モータのレアアースフリー化の機運が高まっている。そして、レアアースフリー化に好適なモータとしてよく挙げられるのが、インダクションモータや同期リラクタンスモータである。
 インダクションモータや同期リラクタンスモータに対しては、固定子の界磁による磁束密度分布が正弦波に近い方が好ましいとされている。このため、分布巻き方式が採用されるのが一般的である。しかしながら、モータの体格の小型化は一般的技術課題として常に要請されており、その観点からは集中巻き方式の方がより望ましい。したがって、小型化が可能な集中巻き方式を採用可能なインダクションモータや同期リラクタンスモータが切望されていた。
 本発明はこのような問題点に鑑みてなされたものであり、巻線を集中巻きとすることが可能なインダクションモータや同期リラクタンスモータを提供することを目的とする。
 上記課題を解決するため、本発明の一の観点によれば、磁気的空隙を介して相対移動可能に対向配置された固定子と可動子を備えたモータであって、前記固定子及び前記可動子のいずれか一方は、ヨークと、前記ヨークから前記磁気的空隙側に突出して設けられた複数のティースと、前記ティースごとに集中巻き方式で巻き付けられた複数の巻線と、を有し、前記複数のティースは、相対移動方向に並列された複数のティースからなるティース群が前記相対移動方向に垂直な方向に複数列並べられて構成され、前記相対移動方向に垂直な方向に隣り合う第1ティース群と第2ティース群は、前記相対移動方向に1/2ティースピッチずれて配置されているモータが適用される。
 本発明によれば、インダクションモータや同期リラクタンスモータにおいて巻線を集中巻きとすることができる。
第1の実施形態に係るモータの全体構成を表す縦断面図である。 図1中II-II断面に相当する横断面図である。 ティースの先端に設けた磁束交差部材の構造を説明するための説明図である。 ティース、巻線及び磁束交差部材の配置構成を説明するための説明図である。 磁束密度分布を解析するためのモデルを説明するための説明図である。 磁束密度分布の解析結果を説明するための説明図である。 磁束交差部材を板状部材とする変形例を説明するための説明図である。 板状部材である磁束交差部材の詳細構造の一例を説明するための説明図である。 板状部材である磁束交差部材の積層鋼板の一例を説明するための説明図である。 スロットコンビネーションのバリエーションを説明するための説明図である。 第1の実施形態をリニアモータに適用した場合の全体構成を表す縦断面図である。 第2の実施形態に係るモータの全体構成を表す縦断面図である。 図12中XIII-XIII断面に相当する横断面図である。 ティース、巻線の配置構成を説明するための説明図である。 円筒導体に設けたスリットの機能を説明するための説明図である。 可動部速度に対する推力を解析するためのモデルを説明するための説明図である。 可動部速度に対する推力の解析結果を説明するための説明図である。 第2の実施形態をリニアモータに適用した場合の全体構成を表す縦断面図である。
 <第1の実施形態>
 まず、第1の実施形態について図面を参照して説明する。
  <1-1.モータの構成>
 まず、本実施形態に係るモータ100の全体構成について説明する。本実施形態では、モータ100が3相交流を用いた回転型のインダクションモータであり、断面のスロットコンビネーションが永久磁石同期モータで言うところの2ポール3スロット(2P3S)である場合を一例として説明する。図1及び図2に示すように、モータ100は、回転軸1と、フレーム2と、フレーム2の一方側(図1中右側)端部に設けられたブラケット3と、ブラケット3に外輪が嵌合された軸受4と、フレーム2の他方側(図1中左側)端部に設けられたブラケット5と、ブラケット5に外輪が嵌合された軸受6とを備えている。回転軸1は、軸受4と軸受6により回転自在に支持されている。
 回転軸1には、当該回転軸1と同一軸心となるように回転子10(可動子の一例に相当)が設けられている。回転子10は、円環状の鋼板が軸方向に積層されて形成された積層鉄心体11と、この積層鉄心体11の外周に固定された銅又はアルミ製の円筒導体12とを有している。また、フレーム2の内周には、固定子20が設けられている。回転子10と固定子20とは、磁気的空隙Sを介して半径方向に対向配置されており、回転軸1の回転により円周方向に相対移動可能な構成となっている。
 なお、回転子10の構成は上記に限らず、積層鉄心体11の外周を貫通させた複数の棒状の導体の両端を端絡環に固定した構造(いわゆる「かご形構造」)としてもよい。
 固定子20は、円筒状のヨーク21と、ヨーク21から磁気的空隙S側(半径方向内側)に突出して設けられた複数(この例では12)のティース22と、各ティース22ごとに集中巻き方式で巻き付けられた複数(この例では12)の巻線23とを有している。ヨーク21とティース22は、鋼板を軸方向に積層することで形成されている。複数のティース22は、円周方向に並列された複数(この例では6)のティース22からなるティース群24,25が軸方向に複数列(この例では2列)並べられて構成されている。以下、軸方向一方側(図1中右側)のティース群を第1ティース群24、軸方向他方側(図1中左側)のティース群を第2ティース群25と呼称する。図4に示すように、相対移動方向に垂直な方向(回転軸1の軸方向。図4中上下方向)に隣り合う第1ティース群24と第2ティース群25は、相対移動方向(円周方向。図4中左右方向)に1/2ティースピッチずれて配置されている。なお、図4は、説明の便宜のため、円周方向に配置された各ティース22等を平面上に配置した状態で示している。
 モータ100が有する複数の巻線23は、第1ティース群24に巻き付けられた第1巻線群27と、第2ティース群25に巻き付けられた第2巻線群28を有している。これら第1巻線群27と第2巻線群28とは、巻線23の巻き方向がモータ100のスロットコンビネーションに応じて決定され、同相同士の電気角が略一致するように配置されている。具体的には、モータ100のスロットコンビネーションは上述したように断面のスロットコンビネーションが永久磁石同期モータで言うところの2ポール3スロット(2P3S)であるため、図4に示すように、第1巻線群27と第2巻線群28の巻線23の巻き方向は互いに反対となる。なお、図4に示すU、V、WはU相、V相、W相に対応する各巻線23を示しており、これらと巻き方向が反対である巻線23をそれぞれU、V、Wで図示している(他の図も同様)。また、図4に示すように、第1ティース群24と第2ティース群25の同相のティースピッチは、互いに電気角で略180度ずれるように配置されている。このように、第1巻線群27と第2巻線群28とは、巻き方向が反対である同相の巻線23が電気角で略180度ずれて、第1ティース群24と第2ティース群25の同相のティースピッチは、互いに電気角で略180度ずれるように配置される結果、180度(巻き方向によるずれ)-180度(ティースピッチによるずれ)=0度となり、同相同士の電気角が略一致する配置となっている。
 各ティース22の磁気的空隙S側の先端には、磁束交差部材26がそれぞれ設けられている。磁束交差部材26は、第1巻線群27を構成する巻線23(以下適宜、「第1巻線23」と呼称する。)に鎖交する磁束(以下適宜、「第1磁束」と呼称する。)と、第2巻線群28を構成する巻線23(以下適宜、「第2巻線23」と呼称する)に鎖交する磁束(以下適宜、「第2磁束」と呼称する。)とを、交差させるための部材である。図3に、この磁束交差部材26の構造を示す。なお、図3は、説明の便宜のため、各巻線群27,28を構成する円周方向に並列された6つの巻線23等のうち、U相、V相、W相に対応する3つの巻線23等を抽出すると共に、円周方向に配置された各巻線23等を平面上に配置した状態で示している。また、第1巻線群27に対応する磁束交差部材26と第2巻線群28に対応する磁束交差部材26とは、図4に示すように互いに噛み合うように配置されるが、図3では磁束交差部材26の構造の理解を容易とするために離間させて図示している。さらに、実際には図2に示すように各巻線23間には隙間が存在するが、図3ではこの隙間の図示を省略している。
 図3に示すように、磁束交差部材26は、第1巻線23及び第2巻線23の一方に対応するティース22の先端から他方に対応するティース22の先端に向けて軸方向に延びるように形成された複数(この例では3)の櫛歯261を有する櫛歯状部材である。各櫛歯261は、円周方向から見た形状が、対向するティース22側の先端が尖った略三角形状となるように形成されており、各ティース22において円周方向に略等間隔に配置されている。図4に示すように、各磁束交差部材26は、中心に位置する櫛歯261が対向する2つの磁束交差部材26,26の間に位置し、3つの櫛歯261により形成される2つの凹部262に対向する2つの磁束交差部材26,26の櫛歯261が各々挿入されることで、各磁束交差部材26は所定の間隙を介しつつ噛み合うように配置されている。このような構成により、第1磁束と第2磁束を効率的に交差させることが可能となっている。
 なお、本実施形態では各磁束交差部材26の櫛歯261の数を3としたが、これに限定するものではなく、2以上であればよい。但し、偶数よりも奇数である方が好ましい。これは、櫛歯261が奇数の場合、形成される凹部262の数が偶数となるため、中心に位置する櫛歯261の両側に同数の櫛歯261を噛み合わせることが可能となり、各磁束交差部材26を無駄なく(言い換えれば余った凹部262が無く)均一に噛み合わせて配置することができるからである。
 また、本実施形態では、櫛歯261の形状を円周方向から見て略三角形状となるようにしたが、これに限定するものではなく、台形状あるいは矩形状等、他の形状としてもよい。
 以上のような構成により、モータ100の固定子20と積層鉄心体11との間で磁気回路を構成し、円筒導体12に磁束を通過させることにより、円筒導体12に渦電流を発生させ、この円筒導体12を通過する磁束と渦電流により発生する磁束から生ずる電磁力が回転子10のトルク(回転力)として作用する。
  <1-2.磁束密度分布の解析結果>
 本願発明者等は、ティース形状等の異なる2つのモデルA,Bについて、磁気的空隙Sの磁束密度分布についての解析を行った。この解析結果について、図5及び図6を用いて説明する。なお、図5ではティース形状を見易くするためにヨーク及びティースと巻線とを分離して図示している。
 図5(a)に示すモデルAは、スロットコンビネーションが例えば永久磁石同期モータで言うところの2ポール3スロット(2P3S)であるティース及び巻線の一般的な形状をモデル化したものであり、比較例としてのモデルである。すなわち、モデルAでは、3つのティース22′がヨーク21′から磁気的空隙S側(図5中下側)に突出して設けられ、3つの巻線23′が各ティース22′ごとに集中巻き方式で巻き付けられる。
 一方、図5(b)に示すモデルBは、モデルAと同様のスロットコンビネーションである、本実施形態に対応したティース及び巻線の形状をモデル化したものである。すなわち、モデルBでは、第1ティース群24と第2ティース群25は、相対移動方向に1/2ティースピッチずれて配置されている。また、第1巻線群27と第2巻線群28の巻線23の巻き方向は互いに反対であり、同相の巻線23(巻き方向は反対)は互いに電気角で略180度ずれるように配置されている。そして、各ティース22の先端には、3本の櫛歯261を有する磁束交差部材26がそれぞれ設けられている。
 図6(a)に、モデルA及びモデルBの鋼板積層方向(回転軸1の軸方向)中心断面における磁気的空隙Sの磁束密度分布を示す。図6(a)に示すように、モデルBではモデルAに比べて磁束密度分布が正弦波に近づいているのが分かる。また、モデルA及びモデルBの磁束密度分布についてのフーリエ解析結果を図6(b)及び図6(c)にそれぞれ示す。図6(b)に示すように、モデルAでは、磁束密度分布が1次成分(基本波)のみの正弦波分布とならず、高調波成分を含むものとなる。高調波成分のうち2次成分が1次成分の約60%となっており、特に大きいことが分かる。
 一方、図6(c)に示すように、モデルBでは、2次成分がほぼ0となり、1次成分以外の全ての高調波成分の合計が1次成分の13%以下となっている。これは、第1巻線23に鎖交する第1磁束と第2巻線23に鎖交する第2磁束の1次成分は電気角の位相が同じで同じ大きさとなるが、2次成分は同じ電気角で同じ大きさ且つ向きが反対となるので、磁束交差部材26によって第1磁束と第2磁束を交差させることにより、2次成分を互いに相殺することができるからである。したがって、モデルBでは磁束密度分布が正弦波に近づいていることが、フーリエ解析結果からも分かる。
  <1-3.第1の実施形態の効果>
 本実施形態のモータ100では、固定子20が円周方向に1/2ティースピッチずれて配置された第1ティース群24と第2ティース群25を有しており、これらの各ティース22に巻線23を集中巻き方式で巻き付けた構成とする。そして、第1ティース群24と第2ティース群25にそれぞれ巻き付けられた第1巻線群27と第2巻線群28の巻線23の巻き方向をスロットコンビネーションに応じて決定し、且つ、同相同士の電気角が略一致するように配置する。このようにすることで、上述したように第1磁束と第2磁束とを交差させ、特に影響が大きい2次成分を互いに相殺することができる。したがって、磁束密度分布を主に1次成分のみとすることができ、巻線23を集中巻きとしつつ正弦波に近い磁束密度分布を作り出すことができる。その結果、レアアースフリー化に好適なモータであるインダクションモータや同期リラクタンスモータに集中巻きを適用することが可能となり、モータを小型化しつつ、レアアースフリー化を図ることができる。
 また、本実施形態では特に、複数のティース22の先端に磁束交差部材26をそれぞれ設け、この磁束交差部材26により、第1巻線23に鎖交する第1磁束と第2巻線23に鎖交する第2磁束とを交差させる。これにより、第1巻線23と第2巻線23を磁気的空隙Sの一方側(本実施形態では外周側)に配置することが可能となる。その結果、次のような効果を得る。すなわち、磁束密度分布の2次成分を相殺するために、例えば回転子の軸方向両側又は径方向両側に2つの固定子を対向配置させ、それら2つの固定子同士の間で巻線の巻き方向を互いに反対にすると共に、同相の巻線が電気角で略180度ずれるように配置する構成が考えられる。この場合、回転子の両側に固定子を配置した特殊な構造のモータにしか適用することができず、汎用性が低いという問題がある。これに対し、本実施形態では磁束交差部材26を設けることにより、回転子10の一方側(この例では半径方向外側)に1つの固定子20を配置させ、その固定子20の中で第1及び第2巻線23の巻き方向を互いに反対にすると共に、同相の第1及び第2巻線23が互いに電気角で略180度ずれるように配置することが可能である。したがって、回転子10の外側に固定子20を配置した広く用いられる構造のモータに適用することが可能であり、汎用性が高いという利点がある。
 また、本実施形態では特に、磁束交差部材26を複数の櫛歯261を有する櫛歯状部材とすることにより、第1磁束と第2磁束を効率的に交差させ、磁束密度分布の2次成分の相殺効果を高めることができる。特に、櫛歯261の数を奇数とすることにより、1つの櫛歯261が中心に位置すると共にその両側に同数の凹部262が対称に配置された、対称性のよい磁束交差部材26とすることができる。その結果、各磁束交差部材26を無駄なく(余った凹部262が無く)規則性をもって均一に噛み合わせて配置することが可能となり、磁束密度分布の2次成分の相殺効果を高めることができる。
  <1-4.変形例>
 なお、上記第1の実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。以下、そのような変形例を順を追って説明する。
   (1)磁束交差部材を板状部材とする場合
 上記第1の実施形態では、磁束交差部材26を複数の櫛歯261を有する櫛歯状部材としたが、磁束交差部材の形状をこれに限定するものではない。例えば、磁束交差部材を板状の部材としてもよい。本変形例について、図7乃至図9を用いて説明する。なお、図7及び図8は、説明の便宜のため、前述の図3等と同様に、円周方向に配置された各ティース22等を部分的に抽出して平面上に配置した状態で示している。
 図7に示すように、本変形例では、磁束交差部材29は、第1巻線23に対応するティース22の先端と第2巻線23に対応するティース22の先端を接続する板状部材(円周方向に鋼板を積層した結果、全体として板状に形成される)として構成されている。なお、上記実施形態と同様に、第1ティース群24と第2ティース群25が相対移動方向に1/2ティースピッチずれて配置され、第1巻線群27と第2巻線群28の巻線23の巻き方向は互いに反対であり、同相の巻線23(巻き方向は反対)は互いに電気角で略180度ずれるように配置されている。
 磁束交差部材29の詳細構造の一例を図8及び図9に示す。なお、これら図8及び図9では、ヨーク21の図示を省略している。図8及び図9に示すように、ティース22及び磁束交差部材29は、3種類の形状の鋼板291,292,293を接着層294を介して円周方向に積層することにより形成される。本変形例でも、上記実施形態と同様の効果を得ることができる。さらに、上記実施形態では磁束交差部材26の形状が複雑であるため積層構造が複雑となるが、本変形例によればこのように数種類の単純な形状の鋼板を積層して形成できるため、固定子20の構造を簡素化できる。
   (2)スロットコンビネーションのバリエーション
 上記第1の実施形態では、モータ100のスロットコンビネーションが永久磁石同期モータで言うところの2ポール3スロット(2P3S)である場合を一例として説明したが、これに限定するものではなく、種々のスロットコンビネーションのモータに適用することが可能である。適用可能なスロットコンビネーションの例を図10に示す。
 図10(a)に示すように、スロットコンビネーションが2ポール3スロット(2P3S)のモータに適用してもよい。この場合、上記実施形態と同様に、ティースピッチは電気角で120度となるので、第1ティース群24と第2ティース群25における同相のピッチ間隔を1.5ティースピッチずらし、電気角で180度(120度×1.5ティースピッチ)のずれとする。さらに、第1巻線群27と第2巻線群28の巻線23の巻き方向を互いに反対とし、電気角で略180度ずれるように配置することで、180度(ティースピッチによるずれ)-180度(巻き方向によるずれ)=0度となり、同相同士の電気角を略一致させることができる。
 また図10(b)に示すように、スロットコンビネーションが4ポール3スロット(4P3S)のモータに適用してもよい。この場合、ティースピッチは電気角で240度となるので、第1ティース群24と第2ティース群25における同相のピッチ間隔を1.5ティースピッチずらし、電気角で360度(240度×1.5ティースピッチ)のずれとする。さらに、第1巻線群27と第2巻線群28の巻線23の巻き方向を互いに同一とし、電気角で略0度に配置することで、360度(ティースピッチによるずれ)-0度(巻き方向によるずれ)=360度=0度(電気角)となり、同相同士の電気角を略一致させることができる。
 また図10(c)に示すように、スロットコンビネーションが8ポール9スロット(8P9S)のモータに適用してもよい。この場合、ティースピッチは電気角で160度となるので、第1ティース群24と第2ティース群25における同相のピッチ間隔を4.5ティースピッチずらし、電気角で720度(160度×4.5ティースピッチ)のずれとする。さらに、第1巻線群27と第2巻線群28の巻線23の巻き方向を図10(c)に示すように互いに同一とし、電気角で略0度に配置することで、720度(ティースピッチによるずれ)-0度(巻き方向によるずれ)=720度=0度(電気角)となり、同相同士の電気角を略一致させることができる。
 また図10(d)に示すように、スロットコンビネーションが10ポール9スロット(10P9S)のモータに適用してもよい。この場合、ティースピッチは電気角で200度となるので、第1ティース群24と第2ティース群25における同相のピッチ間隔を4.5ティースピッチずらし、電気角で900度(200度×4.5ティースピッチ)のずれとする。さらに、第1巻線群27と第2巻線群28の巻線23の巻き方向を図10(d)に示すように互いに反対とし、電気角で略180度ずれるように配置することで、900度(ティースピッチによるずれ)-180度(巻き方向によるずれ)=720度=0度(電気角)となり、同相同士の電気角を略一致させることができる。
 また図10(e)に示すように、スロットコンビネーションが10ポール12スロット(10P12S)のモータに適用してもよい。この場合、ティースピッチは電気角で150度となるので、第1ティース群24と第2ティース群25における同相のピッチ間隔を2.5ティースピッチずらし、電気角で375度(150度×2.5ティースピッチ)のずれとする。さらに、第1巻線群27と第2巻線群28の巻線23の巻き方向を図10(e)に示すように互いに同一とし、電気角で略0度に配置することで、375度(ティースピッチによるずれ)-0度(巻き方向によるずれ)=375度(≒0度)となり、同相同士の電気角を近傍範囲内とすることができる。
 また図10(f)に示すように、スロットコンビネーションが14ポール12スロット(14P12S)のモータに適用してもよい。この場合、ティースピッチは電気角で210度となるので、第1ティース群24と第2ティース群25における同相のピッチ間隔を2.5ティースピッチずらし、電気角で525度(210度×2.5ティースピッチ)のずれとする。さらに、第1巻線群27と第2巻線群28の巻線23の巻き方向を図10(f)に示すように互いに反対とし、電気角で略180度ずれるように配置することで、525度(ティースピッチによるずれ)-180度(巻き方向によるずれ)=345度(≒0度)となり、同相同士の電気角を近傍範囲内とすることができる。
 以上のスロットコンビネーションのモータに適用しても、上記第1の実施形態と同様の効果を得ることができる。
   (3)リニアモータに適用する場合
 上述した第1の実施形態及び変形例に係る構成は、リニアモータにも適用することが可能である。本変形例について図11を用いて説明する。
 本変形例では、モータ200がリニアインダクションモータである場合を一例として説明する。図11に示すように、モータ200は、磁気的空隙Sを介して図11中左右方向に相対移動可能に対向配置された固定子220と可動子210を備えている。
 固定子220は、平板状のヨーク221と、ヨーク221から磁気的空隙S側に突出して設けられた複数のティース222と、各ティース222ごとに集中巻き方式で巻き付けられた複数の巻線223とを有している。複数のティース222は、相対移動方向(図11中左右方向)に並列された複数のティース222からなるティース群224,225(図11ではティース群224のみ図示。)が相対移動方向に垂直な方向(図11中紙面に垂直な方向)に複数列並べられて構成され、相対移動方向に垂直な方向に隣り合う第1ティース群224と第2ティース群225は、相対移動方向に1/2ティースピッチずれて配置されている。また、第1ティース群224に巻き付けられた第1巻線群227と、第2ティース群225に巻き付けられた第2巻線群228(図示省略)は、巻線223の巻き方向がモータ200のスロットコンビネーションに応じて決定され、同相同士の電気角が略一致するように配置されている。さらに、各ティース222の磁気的空隙S側の先端には、前述の実施形態と同様に、図示しない磁束交差部材226がそれぞれ設けられている。
 一方、可動子210は、銅又はアルミ製の二次側導体211と、この二次側導体211の磁気的空隙Sとは反対側に固定された鉄板212とを有している。固定子220と鉄板212との間で磁気回路を構成し、二次側導体211に磁束を通過させることにより、二次側導体211に渦電流を発生させ、この二次側導体211を通過する磁束と渦電流により発生する磁束から生ずる電磁力が可動子210の推力として作用する。
 リニアモータに適用した本変形例においても、上記第1の実施形態と同様の効果を得ることができる。
 <第2の実施形態>
 次に、第2の実施形態について図面を参照して説明する。上記第1の実施形態では、ティース22の先端に磁束交差部材26を設け、第1巻線23に鎖交する第1磁束と第2巻線23に鎖交する第2磁束とを交差させて、磁束密度分布の2次成分を相殺する構造としたが、これに限定されない。第2の実施形態は、二次側導体に複数のスリットを設けることで、磁束密度分布の2次成分により発生する誘起電圧を相殺するものである。
  <2-1.モータの構成>
 本実施形態に係るモータ100Aの全体構成について説明する。本実施形態でも、上記第1の実施形態と同様に、モータ100Aが3相交流を用いた回転型のインダクションモータであり、断面のスロットコンビネーションが永久磁石同期モータで言うところの2ポール3スロット(2P3S)である場合を一例として説明する。
 図12及び図13に示すように、固定子20は、円筒状のヨーク21と、ヨーク21から磁気的空隙S側(半径方向内側)に突出して設けられた複数(この例では12)のティース22Aと、各ティース22Aごとに集中巻き方式で巻き付けられた複数(この例では12)の巻線23とを有している。ヨーク21とティース22Aは、鋼板を軸方向に積層することで形成されている。複数のティース22Aは、円周方向に並列された複数(この例では6)のティース22Aからなるティース群24,25が軸方向に複数列(この例では2列)並べられて構成されている。本実施形態では、各ティース22Aの磁気的空隙S側の先端に磁束交差部材は設けられておらず、各ティース22Aは角柱状に形成される。
 以下、軸方向一方側(図12中右側)のティース群を第1ティース群24、軸方向他方側(図12中左側)のティース群を第2ティース群25と呼称する。図14に示すように、相対移動方向に垂直な方向(回転軸1の軸方向。図14中上下方向)に隣り合う第1ティース群24と第2ティース群25は、相対移動方向(円周方向。図14中左右方向)に1/2ティースピッチずれて配置されている。なお、図14は、説明の便宜のため、円周方向に配置された各ティース22等を平面上に配置した状態で示している。
 モータ100Aが有する複数の巻線23は、第1ティース群24に巻き付けられた第1巻線群27と、第2ティース群25に巻き付けられた第2巻線群28を有している。これら第1巻線群27と第2巻線群28とは、巻線23の巻き方向がモータ100のスロットコンビネーションに応じて決定され、同相同士の電気角が略一致するように配置されている。具体的には、モータ100のスロットコンビネーションは上述したように断面のスロットコンビネーションが永久磁石同期モータで言うところの2ポール3スロット(2P3S)であるため、図14に示すように、第1巻線群27と第2巻線群28の巻線23の巻き方向は互いに反対となる。また、図14に示すように、第1ティース群24と第2ティース群25の同相のティースピッチは、互いに電気角で略180度ずれるように配置されている。このように、第1巻線群27と第2巻線群28とは、巻き方向が反対である同相の巻線23が電気角で略180度ずれて、第1ティース群24と第2ティース群25の同相のティースピッチは、互いに電気角で略180度ずれるように配置される結果、180度(巻き方向によるずれ)-180度(ティースピッチによるずれ)=0度となり、同相同士の電気角が略一致する配置となっている。
 回転子10は、円環状の鋼板が軸方向に積層されて形成された積層鉄心体11と、この積層鉄心体11の外周に固定された銅又はアルミ製の円筒導体12A(二次側導体の一例に相当)とを有している。図13に示すように、円筒導体12Aは、相対移動方向に垂直な方向(回転軸1の軸方向。図13中紙面に垂直な方向)に沿った複数のスリット31を備える。各スリット31は、円筒導体12Aを半径方向に貫通して形成され、円筒導体12Aの円周方向全体に亘って略等間隔に配置される。
 スリット31を備えた円筒導体12Aは、円筒状の導体に丸鋸等を用いて切削により形成されてもよいし、スリット31に対応する凹部を有する棒状の導体を円周方向に並べることで形成されてもよい。これらの場合、各スリット31は空隙となる。また、棒状の導体と絶縁体を円周方向に積層することで、絶縁体部分をスリット31としてもよい。この場合、各スリット31には絶縁体が充填された状態となる。モータ100Aの上記以外の構成は、前述したモータ100と同様である。
  <2-2.円筒導体で発生する誘起電圧>
 次に、図15を用いて、スリット31の機能について説明する。なお、図15では、説明の便宜のため、円筒導体12Aを板状とした状態で示している。また、図15中の矢印の長さは誘起電圧の大きさを示す。
 図15(a)において、図中手前側の領域12A1は第1ティース群24に巻き付けられた第1巻線群27に対応し、図中奥側の領域12A2は第2ティース群25に巻き付けられた第2巻線群28に対応する。第1ティース群24と第2ティース群25とが、相対移動方向(図15中左右方向)に1/2ティースピッチずれて配置されることにより、円筒導体12Aの各領域12A1,12A2に発生する誘起電圧は、図15(a)に示すような分布となる。そして、スリット31を設けることにより、各スリット31間における円筒導体12Aの各電流経路において、2次成分により発生する誘起電圧が相殺され、1次成分により発生する誘起電圧のみを取り出すことが可能となる。その結果、図15(b)に示すように、円筒導体12A中に発生する誘起電圧の分布は正弦波に近い形状となる。
  <2-3.回転子速度(可動部速度)に対するトルク(推力)の解析結果>
 本願発明者等は、2つのモデルA,Cについて、回転子速度に対するトルクの検討を行った。ただし、解析の便宜上、本願発明者等はリニアモータとして解析を行っており、可動部速度に対する推力について解析している。この解析結果について、図16及び図17を用いて説明する。なお、図16では説明の便宜上、円筒導体を板状に図示している。
 図16(a)に示すモデルAは、図5(a)に示したものと同様である。そして、円筒導体12にはスリットは設けられていない。一方、図16(b)に示すモデルCは、モデルAと同様のスロットコンビネーションである、本実施形態に対応したティース及び巻線の形状をモデル化したものである。すなわち、モデルCでは、第1ティース群24と第2ティース群25は、相対移動方向に1/2ティースピッチずれて配置されている。また、第1巻線群27と第2巻線群28の巻線23の巻き方向は互いに反対であり、同相の巻線23(巻き方向は反対)は互いに電気角で略180度ずれるように配置されている。そして、各ティース22は角柱状であり、円筒導体12Aには、相対移動方向に垂直な方向に沿った複数のスリット31が設けられている。
 図17(a)に、モデルAの可動部速度に対する推力の解析結果を示す。図17(a)に示すように、モデルAでは、可動部速度が2.4m/sである場合の推力が可動部速度が0m/sである場合の推力の約20%以下となっており、推力が大幅に低下している。すなわち、集中巻きを採用したインダクションモータでは、回転子速度(可動部速度)が大きくなるにつれてトルク(推力)が低下することが分かる。前述の図6(b)に示すように、モデルAでは、磁束密度分布が1次成分のみならず、高調波成分を含む。したがって、このように推力が低下する原因は、主に推力に寄与する1次成分とは次数の異なる高調波成分にあると推測される。つまり、1次成分と2次成分の進行方向は逆方向であるので、回転子速度(可動部速度)を変化させる場合には、1次成分に対するすべり周波数と2次成分に対するすべり周波数のどちらかしか一定にはできない。このため、1次成分に対するすべり周波数を一定として回転子速度(可動部速度)を変化させた場合、2次成分については回転子速度(可動部速度)の変化につれてすべり周波数も変化しており、2次成分が推力に与える影響が変化してトルク(推力)が低下していると考えられる。
 一方、図17(b)に示すように、モデルCでは、可動部速度を0m/sから2.4m/sに変化させても推力の低下がほとんど生じていない。これは、モデルCでは、1次成分のみが推力に寄与し、2次成分が推力に与える影響が排除されているからだと考えられる。したがって、円筒導体12Aにスリット31を設けることにより、磁束密度の2次成分により発生する誘起電圧を相殺できることが分かる。
  <2-4.第2の実施形態の効果>
 本実施形態のモータ100Aでは、円筒導体12Aが相対移動方向に垂直な方向に沿った複数のスリット31を備える。これにより、磁束密度の2次成分により発生する誘起電圧が相殺され、円筒導体12A中に発生する誘起電圧の分布を正弦波に近い形状とすることができる。つまり、本実施形態によれば、第1の実施形態のようにティース22の先端に磁束交差部材を設けずに、円筒導体12Aにスリット31を設けることによって、正弦波に近い磁束密度分布を作り出したのと同様の効果を得ることができる。その結果、レアアースフリー化に好適なモータであるインダクションモータや同期リラクタンスモータに集中巻きを適用することが可能となり、モータを小型化しつつ、レアアースフリー化を図ることができる。また、集中巻きのインダクションリニアモータを実現できるので、分布巻きのインダクションリニアモータに比べて、1次側の銅損を低減でき、組立工数を削減できる効果もある。
  <2-5.変形例>
 なお、上記第2の実施形態に限られるものではなく、その趣旨及び技術的思想を逸脱しない範囲内で種々の変形が可能である。例えば、図18に示すように、上述した第2の実施形態に係る構成は、リニアモータにも適用することが可能である。このモータ200Aでは、可動子210の二次側導体211Aは、相対移動方向に垂直な方向(図18中紙面に垂直な方向)に沿った複数のスリット231を備える。各スリット231は、二次側導体211Aを貫通して形成され、二次側導体211Aの相対移動方向全体に亘って略等間隔に配置される。モータ200Aのその他の構成は、図11に示すモータ200と同様である。リニアモータに適用した本変形例においても、上記第2の実施形態と同様の効果を得ることができる。
 また、上記第2の実施形態に係る構成は、第1の実施形態の同様に、図10に示す種々のスロットコンビネーションのモータに適用することが可能である。
 また、以上の第1及び第2の実施形態では、モータがインダクションモータである場合を一例として説明したが、これに限らず、リラクタンスモータにも適用することが可能である。また以上では、相対移動方向に垂直な方向に隣り合う第1ティース群と第2ティース群が相対移動方向に1/2ティースピッチずれて配置した構成を、固定子側に設けた場合を一例として説明したが、これに限らず、可動子側に設けてもよい。
 また上記第1及び第2の実施形態では、モータが、回転子10を固定子20の内側に備えたインナーロータ型である場合を一例として説明したが、回転子10を固定子20の外側に備えたアウターロータ型のモータに対しても適用可能である。
 また、以上既に述べた以外にも、上記実施形態や各変形例による手法を適宜組み合わせて利用しても良い。
 その他、一々例示はしないが、本発明は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。
 S        磁気的空隙
 10       回転子(可動子)
 12A      円筒導体(二次側導体)
 20       固定子
 21       ヨーク
 22       ティース
 22A      ティース
 23       巻線、第1巻線、第2巻線
 24       第1ティース群
 25       第2ティース群
 26       磁束交差部材
 27       第1巻線群
 28       第2巻線群
 29       磁束交差部材
 31       スリット
 100      モータ
 100A     モータ
 200      モータ
 200A     モータ
 210      可動子
 211A     二次側導体
 220      固定子
 221      ヨーク
 222      ティース
 223      巻線
 224      第1ティース群
 227      第1巻線群
 231      スリット
 261      櫛歯

Claims (7)

  1.  磁気的空隙を介して相対移動可能に対向配置された固定子と可動子を備えたモータであって、
     前記固定子及び前記可動子のいずれか一方は、
     ヨークと、
     前記ヨークから前記磁気的空隙側に突出して設けられた複数のティースと、
     前記ティースごとに集中巻き方式で巻き付けられた複数の巻線と、を有し、
     前記複数のティースは、
     相対移動方向に並列された複数のティースからなるティース群が前記相対移動方向に垂直な方向に複数列並べられて構成され、前記相対移動方向に垂直な方向に隣り合う第1ティース群と第2ティース群は、前記相対移動方向に1/2ティースピッチずれて配置されている
    ことを特徴とするモータ。
  2.  前記複数の巻線は、
     前記第1ティース群に巻き付けられた第1巻線群と、前記第2ティース群に巻き付けられた第2巻線群を有し、前記第1巻線群と前記第2巻線群の巻線の巻き方向はモータのスロットコンビネーションに応じて決定され、同相同士の電気角が略一致又は近傍範囲内となるように配置されている
    ことを特徴とする請求項1に記載のモータ。
  3.  前記複数のティースの先端にそれぞれ設けられ、前記第1巻線群を構成する第1巻線に鎖交する第1磁束と前記第2巻線群を構成する第2巻線に鎖交する第2磁束とを交差させるための磁束交差部材をさらに有する
    ことを特徴とする請求項2に記載のモータ。
  4.  前記磁束交差部材は、
     前記第1巻線及び前記第2巻線の一方に対応する前記ティースの先端から他方に対応する前記ティースの先端に向けて形成された複数の櫛歯を有する櫛歯状部材である
    ことを特徴とする請求項3に記載のモータ。
  5.  前記櫛歯の数は、奇数である
    ことを特徴とする請求項4に記載のモータ。
  6.  前記磁束交差部材は、
     前記第1巻線に対応する前記ティースの先端と前記第2巻線に対応する前記ティースの先端を接続する板状部材である
    ことを特徴とする請求項3に記載のモータ。
  7.  前記固定子及び前記可動子のいずれか他方は、
     前記相対移動方向に垂直な方向に沿った複数のスリットを備えた二次側導体を有する
    ことを特徴とする請求項1又は2に記載のモータ。
PCT/JP2012/081420 2011-12-05 2012-12-04 モータ WO2013084901A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013548252A JP5839298B2 (ja) 2011-12-05 2012-12-04 モータ
CN201280058084.3A CN103959617B (zh) 2011-12-05 2012-12-04 电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-266230 2011-12-05
JP2011266230 2011-12-05

Publications (1)

Publication Number Publication Date
WO2013084901A1 true WO2013084901A1 (ja) 2013-06-13

Family

ID=48574259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081420 WO2013084901A1 (ja) 2011-12-05 2012-12-04 モータ

Country Status (3)

Country Link
JP (1) JP5839298B2 (ja)
CN (1) CN103959617B (ja)
WO (1) WO2013084901A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111921A (ja) * 2014-11-26 2016-06-20 ジョンソン エレクトリック ソシエテ アノニム ブラシレス直流電気モータ及び電動パワーステアリングシステム
JP6085753B1 (ja) * 2016-01-15 2017-03-01 株式会社Ccuリニアモータ研究所 相互結合複合型梅森モータ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI536714B (zh) * 2014-11-14 2016-06-01 財團法人工業技術研究院 混合式馬達結構

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298578A (ja) * 1994-04-28 1995-11-10 Meidensha Corp 回転電機
JP2002512499A (ja) * 1998-04-21 2002-04-23 ホガナス アクチボラゲット 誘導機の固定子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013556A1 (fr) * 1997-09-08 1999-03-18 Matsushita Electric Industrial Co., Ltd. Moteur synchrone a aimant permanent
CN101425736A (zh) * 2008-08-12 2009-05-06 中国科学院电工研究所 一种用于物料管道运输的单边直线感应电动机
CN201910724U (zh) * 2011-01-06 2011-07-27 飞鹿电器(福建)有限公司 一种新型发电机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07298578A (ja) * 1994-04-28 1995-11-10 Meidensha Corp 回転電機
JP2002512499A (ja) * 1998-04-21 2002-04-23 ホガナス アクチボラゲット 誘導機の固定子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111921A (ja) * 2014-11-26 2016-06-20 ジョンソン エレクトリック ソシエテ アノニム ブラシレス直流電気モータ及び電動パワーステアリングシステム
US10560008B2 (en) 2014-11-26 2020-02-11 Johnson Electric International AG Brushless direct current electric motor and electric power steering system
JP6085753B1 (ja) * 2016-01-15 2017-03-01 株式会社Ccuリニアモータ研究所 相互結合複合型梅森モータ

Also Published As

Publication number Publication date
JPWO2013084901A1 (ja) 2015-04-27
JP5839298B2 (ja) 2016-01-06
CN103959617B (zh) 2016-11-09
CN103959617A (zh) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5868513B2 (ja) 永久磁石埋込型電動機
JP6159401B2 (ja) 狭い歯を有する最適化された電気モータ
JP5620759B2 (ja) 電気機械
US9608501B2 (en) Rotary electric machine
JP6097024B2 (ja) 電気機械
US10784737B2 (en) Rotating electrical machine and method for manufacturing same
JP5619046B2 (ja) 回転電機およびそれに用いられるステータの製造方法
JP2013116034A (ja) スイッチドリラクタンスモータ
JP7293371B2 (ja) 回転電機の回転子
WO2017014062A1 (ja) 回転電機の固定子及び回転電機
EP3208918A1 (en) Double stator-type rotary machine
US9917481B2 (en) Synchronous reluctance machine
JP6405748B2 (ja) 回転電機
JP5839298B2 (ja) モータ
JP2005151785A (ja) リング状の電機子コイルを有する同期発電機
JP2015154555A (ja) モータ
JP2009027849A (ja) 永久磁石式回転電機
EP2950431B1 (en) Synchronous electric motor
JP6638615B2 (ja) 同期回転電機
JP2010154648A (ja) モータ
JP2012139102A (ja) 永久磁石式回転電機
JP2023000668A (ja) モータ
JP5818529B2 (ja) シンクロナスリラクタンスモータ
JP5573756B2 (ja) 回転電機
CN117614166A (zh) 转子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855603

Country of ref document: EP

Kind code of ref document: A1