WO2013084382A1 - 光変調器、それを用いた光変調器モジュール、及び光変調信号の補正方法 - Google Patents

光変調器、それを用いた光変調器モジュール、及び光変調信号の補正方法 Download PDF

Info

Publication number
WO2013084382A1
WO2013084382A1 PCT/JP2012/005514 JP2012005514W WO2013084382A1 WO 2013084382 A1 WO2013084382 A1 WO 2013084382A1 JP 2012005514 W JP2012005514 W JP 2012005514W WO 2013084382 A1 WO2013084382 A1 WO 2013084382A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
correction
signal
phase modulation
optical phase
Prior art date
Application number
PCT/JP2012/005514
Other languages
English (en)
French (fr)
Inventor
知行 山瀬
栄実 野口
安部 淳一
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013084382A1 publication Critical patent/WO2013084382A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass

Definitions

  • the present invention relates to an optical modulator, an optical modulator module using the optical modulator, and an optical modulation signal correction method.
  • optical fiber communication system it is important to reduce the installation cost of an optical fiber, which is an optical transmission line, and to increase the transmission band utilization efficiency per optical fiber. For this reason, a wavelength multiplexing technique that multiplexes and transmits a plurality of signal lights having different wavelengths is widely used.
  • Optical transmitters for WDM optical fiber communication systems are capable of high-speed optical modulation, are less dependent on the wavelength of the signal light, and minimize unnecessary modulation components that cause deterioration of the received light waveform during long-distance signal transmission.
  • An optical modulator is required.
  • an MZ type optical intensity modulator in which an optical waveguide type optical phase modulator is incorporated in an optical waveguide type Mach-Zehnder (hereinafter referred to as MZ) interferometer is practical.
  • an optical waveguide is formed on the surface of a substrate made of lithium niobate (LiNbO3, hereinafter referred to as LN), which is a typical electro-optic crystal whose refractive index changes in proportion to the applied electric field strength. It has been done.
  • LN lithium niobate
  • problems such as a low degree of integration and a high drive voltage. Therefore, an optical waveguide type MZ type light intensity modulator using a semiconductor such as gallium arsenide (GaAs) or indium phosphorus (InP) useful as a light source element is also known.
  • phase velocity vo of the modulated optical signal and the phase velocity vm of the modulated electrical signal are made as close as possible (phase velocity).
  • a so-called traveling wave electrode structure is required.
  • the voltage of the modulated electric signal is lowered to reduce power consumption, it is necessary to lengthen the electrodes in order to hold the output signal having the same light intensity amplitude.
  • problems such as signal deterioration due to an increase in capacity and difficulty in phase speed matching become obvious.
  • Patent Document 1 discloses an MZ light intensity modulator in which a delay is also added to a modulated electric signal applied to each electrode so that the electrode is divided into a plurality of electrodes and matched to the propagation delay of light. . With such a configuration, the above-described problems of signal degradation and phase velocity matching can be solved.
  • the MZ type light intensity modulator disclosed in Patent Document 1 has a problem that the output intensity of the optical signal does not become a desired value due to the manufacturing variation of the optical phase modulation unit, and the accuracy is lowered. .
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a more accurate optical modulator.
  • An optical modulator that is one embodiment of the present invention includes: An optical waveguide through which the optical signal passes; M (m is a natural number) optical phase modulators arranged side by side on the optical waveguide and driven independently according to a drive control signal; A correction optical phase modulation that is arranged on the optical waveguide and corrects the output intensity of the optical signal by applying a predetermined correction voltage for each value of the drive control signal in accordance with the value of the drive control signal.
  • An optical modulation signal correction method includes: Determining a correction voltage for each value of a drive control signal for driving m (m is a natural number) optical phase modulation units arranged side by side on an optical waveguide through which an optical signal propagates; According to the value of the drive control signal, each of the m optical phase modulators is independently driven, and the correction voltage is applied to the correction optical phase modulator disposed on the optical waveguide. is there.
  • a more accurate optical modulator can be provided.
  • FIG. 1 is a configuration diagram of a light intensity modulator 1 according to Embodiment 1.
  • FIG. It is a graph which shows the relationship between the drive number of an optical phase modulation part, and an output level (output signal light intensity).
  • 6 is a block diagram showing a configuration of a light intensity modulator module 200 according to Embodiment 2.
  • FIG. 3 is a block diagram showing an internal configuration of an output correction unit 50.
  • FIG. It is a block diagram of the output correction
  • It is a block diagram of the output correction
  • FIG. 6 is a correspondence table between a code of a digital correction signal Dadj input to the DAC 54 and an analog correction voltage Vadj (V) output from the DAC 54.
  • 3 is a correspondence table between a drive control signal D and a final digital correction signal Dadjf in the example of FIG. 6 is a block diagram showing a configuration of a light intensity modulator module 300 according to Embodiment 3.
  • FIG. FIG. 6 is a block diagram showing a configuration of a light intensity modulator module 400 according to a fourth embodiment.
  • 3 is a block diagram showing an internal configuration of an output correction unit 501.
  • FIG. FIG. 10 is a block diagram showing a configuration of a light intensity modulator module 500 according to a fifth embodiment.
  • FIG. 10 is a block diagram showing a configuration of a light intensity modulator 20 according to a sixth embodiment.
  • FIG. 1 is a configuration diagram of a light intensity modulator 1 according to the first embodiment.
  • the light intensity modulator 1 includes a semiconductor optical waveguide 11, a waveguide type correction optical phase modulation unit 140, and waveguide type optical phase modulation units 141 to 147.
  • the input signal light Lin is input to the correction optical phase modulator 140, sequentially passes through the optical phase modulators 141 to 147, and is output from the optical phase modulator 147 as the output signal light Lout.
  • the semiconductor optical waveguide 11 has a core layer and a clad layer that sandwiches the core layer from above and below (not shown).
  • the refractive index of the signal light propagating through the core layer can be changed by applying an electric field to the core layer or injecting a current.
  • Seven optical phase modulators 141 to 147 are provided in the semiconductor optical waveguide 11 in order from the input side.
  • the seven optical phase modulators 141 to 147 are designed to have the same shape.
  • the intensity (output level) of the output signal light Lout output from the optical intensity modulator 1 can be changed by changing the drive number of the optical phase modulators 141 to 147.
  • FIG. 2 is a graph showing the relationship between the drive number of the optical phase modulator and the output level (output signal light intensity).
  • the graph indicated by the solid line is the ideal output level A.
  • the ideal output level means an output level intended in the design.
  • the ideal output level In the light intensity modulator 1 of FIG. 1, when the number of drive of the optical phase modulator is zero, the ideal output level is the lowest. As the number of driving optical phase modulation units increases, the ideal output level also increases. When the number of driving optical phase modulation units is seven at the maximum, the ideal output level is designed to be the highest.
  • digital signals D1 to D7 are input to the optical phase modulators 141 to 147.
  • the digital signals D1 to D7 constitute a drive control signal D.
  • the digital signals D1 to D7 are applied to the optical phase modulators 141 to 147 in accordance with the propagation speed of the signal light propagating through the semiconductor optical waveguide 11, respectively. Details will be described later in the second embodiment.
  • the intensity (output level) of the output signal light Lout is determined by the number of optical phase modulation units 141 to 147 to be driven. Specifically, when driving zero optical phase modulation units, the code of the drive control signal D (D1, D2, D3, D4, D5, D6, D7) is uniquely determined to be 0000000. On the other hand, when one optical phase modulation unit is driven, there are seven possible codes for the drive control signal D: 1000000, 0100000,. In the example of FIG. 1, 1000000 for driving the optical phase modulator 141 is used.
  • the correction optical phase modulation unit 140 is an optical phase modulation unit for correcting the intensity (output level) of the output signal light Lout.
  • a final analog correction voltage Vadjf for correcting the intensity (output level) of the output signal light Lout is applied to the correction optical phase modulator 140.
  • the correction optical phase modulator 140 is provided on the most input side in the semiconductor optical waveguide 11. In other words, it is provided on the input side of the seven optical phase modulation units 141 to 147.
  • the installation position of the correction optical phase modulation unit 140 may be on the most output side or between the seven optical phase modulation units 141 to 147, and is not limited at all.
  • the function of the correcting optical phase modulation unit 140 will be described with reference to FIG.
  • the above-described ideal output level A is indicated by a solid line
  • the output level B before correction is indicated by a dotted line.
  • the output level B before correction shown in FIG. 2 is merely an example.
  • the output level B before correction does not necessarily match the ideal output level A. This is considered to be due to manufacturing variations such as the shape (particularly the length) of the optical phase modulators 141 to 147. In other words, with an optical modulator that does not include the correction optical phase modulation unit 140 as in the past, high-precision light intensity modulation cannot be realized.
  • the output level can be brought close to the ideal output level A.
  • the difference between the ideal output level A and the output level B before correction that is, the correction amount ⁇ differs for each drive number of the optical phase modulation unit (that is, the code of the drive control signal D). Therefore, the final analog correction voltage Vadjf for correcting the output level is also different for each drive number of the optical phase modulator. That is, the final analog correction voltage Vadjf is determined in advance for each drive number of the optical phase modulation unit (that is, the code of the drive control signal D), and is dynamically switched according to the code of the drive control signal D. ing.
  • the light intensity modulator 1 according to the present embodiment can realize light intensity modulation with higher accuracy than ever before.
  • FIG. 3 is a block diagram showing a configuration of the light intensity modulator module 200 according to the second embodiment.
  • the light intensity modulator module 200 according to the second embodiment includes the light intensity modulator 1 according to the first embodiment.
  • the light intensity modulator module 200 according to the second embodiment includes a light intensity modulator 1, seven drivers (drive units) DR1 to DR7, a driver control unit 30, an output light intensity monitor 40, and an output.
  • a correction unit 50 is provided.
  • the driver control unit 30 outputs a drive control signal D (D1, D2, D3, D4, D5, D6, D7) to the drivers DR1 to DR7 and the output correction unit 50.
  • the driver DR1 receives the clock signal CLK1 and the digital signal D1 that constitutes the drive control signal D output from the driver control unit 30.
  • the driver DR1 outputs a digital signal D1 to the optical phase modulation unit 141 at a timing according to the clock signal CLK1.
  • the driver DR1 outputs a clock signal CLK2 obtained by delaying the clock signal CLK1 in accordance with the propagation speed of the signal light to the driver DR2.
  • a clock signal CLK2 and a digital signal D2 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR2.
  • the driver DR2 outputs a digital signal D2 to the optical phase modulation unit 142 at a timing according to the clock signal CLK2.
  • the driver DR2 outputs a clock signal CLK3 obtained by delaying the clock signal CLK2 in accordance with the propagation speed of the signal light to the driver DR3.
  • the clock signal CLK3 and the digital signal D3 that constitutes the drive control signal D output from the driver control unit 30 are input to the driver DR3.
  • the driver DR3 outputs a digital signal D3 to the optical phase modulator 143 at a timing according to the clock signal CLK3.
  • the driver DR3 outputs a clock signal CLK4 obtained by delaying the clock signal CLK3 in accordance with the propagation speed of the signal light to the driver DR4.
  • a clock signal CLK4 and a digital signal D4 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR4.
  • the driver DR4 outputs a digital signal D4 to the optical phase modulation unit 144 at a timing according to the clock signal CLK4.
  • the driver DR4 outputs to the driver DR5 a clock signal CLK5 obtained by delaying the clock signal CLK4 in accordance with the propagation speed of the signal light.
  • a clock signal CLK5 and a digital signal D5 that constitutes the drive control signal D output from the driver control unit 30 are input to the driver DR5.
  • the driver DR5 outputs a digital signal D5 to the optical phase modulator 145 at a timing according to the clock signal CLK5.
  • the driver DR5 outputs a clock signal CLK6 obtained by delaying the clock signal CLK5 in accordance with the propagation speed of the signal light to the driver DR6.
  • a clock signal CLK6 and a digital signal D6 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR6.
  • the driver DR6 outputs a digital signal D6 to the optical phase modulator 146 at a timing according to the clock signal CLK6.
  • the driver DR6 outputs a clock signal CLK7 obtained by delaying the clock signal CLK6 in accordance with the propagation speed of the signal light to the driver DR7.
  • the clock signal CLK7 and the digital signal D7 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR7.
  • the driver DR7 outputs a digital signal D7 to the optical phase modulator 147 at a timing according to the clock signal CLK7.
  • the drivers DR1 to DR7 can be constituted by, for example, D-flip flops as disclosed in Patent Document 1. Also, as disclosed in Patent Document 1, various variations are possible.
  • the output light intensity monitor 40 detects the intensity (output level) of the output signal light Lout and outputs an output level signal to the output correction unit 50.
  • the output light intensity monitor 40 is used to determine the final analog correction voltage Vadjf at the time of non-normal operation such as system startup. Therefore, it is not necessary to operate during normal operation.
  • the output correction unit 50 analogizes the correction optical phase modulation unit 140 from the output level signal output from the output light intensity monitor 40 and the drive control signal D output from the driver control unit 30.
  • the correction voltage Vadj is output.
  • the final analog correction voltage Vadjf is determined so as to minimize the difference from the ideal output level for each number of driving of the optical phase modulation unit.
  • a final analog correction voltage Vadjf predetermined for each drive number of the optical phase modulation unit is output to the correction optical phase modulation unit 140 in accordance with the drive control signal D.
  • FIG. 4 is a block diagram illustrating an internal configuration of the output correction unit 50.
  • FIG. 5 is a block diagram of the output correction unit 50 showing the signal flow when determining the correction voltage.
  • FIG. 6 is a block diagram of the output correction unit 50 showing the signal flow during normal operation.
  • functional blocks indicated by dotted lines indicate that they are not operating. That is, FIG. 4 shows FIG. 5 and FIG. 6 together.
  • the output correction unit 50 includes a reference signal generation unit 51, a determination unit 52, a correction code determination unit 53, a D / A (digital / analog) converter (DAC) 54, and a lookup table (LUT) 55. It has.
  • the reference signal generation unit 51 generates a reference signal corresponding to the ideal output level for each drive number of the optical phase modulation unit from the drive control signal D when determining the correction voltage. As shown in FIG. 6, the reference signal generator 51 is not operating during normal operation.
  • the determination unit 52 compares the reference signal output from the reference signal generation unit 51 with the output level signal output from the output intensity monitor 40 when determining the correction voltage. If the detected output level is smaller than the ideal output level as a result of the comparison, an UP signal for increasing the analog correction voltage Vadj is output to the correction code determination unit 53. On the other hand, when the detected output level is higher than the ideal output level, a DOWN signal for lowering the analog correction voltage Vadj is output to the correction code determination unit 53. Further, when the detected output level matches the ideal output level, both the UP signal and the DOWN signal are simultaneously output to the correction code determination unit 53.
  • the determination unit 52 may be configured to always output only one of the UP signal and the DOWN signal. Also, as shown in FIG. 6, the determination unit 52 is not operating during normal operation.
  • the correction code determination unit 53 increases the code of the digital correction signal Dadj to be output to the DAC 54 when the UP signal is received when determining the correction voltage, and when the DOWN signal is received, On the other hand, the code of the digital correction signal Dadj to be output is lowered.
  • the final digital correction signal Dadjf determined for each drive number of the optical phase modulation unit is output to the LUT 55.
  • the correction code determination unit 53 is not operating during normal operation.
  • the DAC 54 converts the digital correction signal Dadj output from the correction code determination unit 53 into an analog correction voltage Vadj and outputs the analog correction voltage Vadj to the correction optical phase modulation unit 140. Further, as shown in FIG. 6, during normal operation, the final digital correction signal Dadjf output from the LUT 55 according to the code of the drive control signal D is converted into the final analog correction voltage Vadjf, and the optical phase modulation unit 140 for correction is used. Output for.
  • the LUM 55 is a storage unit that stores a final digital correction signal Dadjf for each drive number of the optical phase modulation unit (that is, the code of the drive control signal D) determined when the correction voltage is determined. Specifically, it is composed of, for example, a RAM (Random Access Memory) or the like. Further, as shown in FIG. 6, during the normal operation, the final digital correction signal Dadjf is output to the DAC 54 in accordance with the drive control signal D.
  • FIG. 7 is a flowchart showing a method for determining the final digital correction signal Dadjf.
  • the correction code determination unit 53 initializes the code of the digital correction signal Dadj (step S1).
  • the initial code is preferably a code near the center of the possible codes.
  • the digital correction signal Dadj is 3 bits, it is 011 or 100, and when it is 4 bits, it is 0111 or 1000.
  • the output level is detected by the output light intensity monitor 40, and the determination unit 52 compares the reference signal output from the reference signal generation unit 51 with the output level signal output from the output intensity monitor 40 (step S2). ). If the output level is higher than the ideal output level (YES in step S2), the determination unit 52 outputs a DOWN signal, and the correction code determination unit 53 lowers the code of the digital correction signal Dadj by 1 (step S3). And step S2 is performed again.
  • step S4 determines whether or not the output level is lower than the ideal output level.
  • the determination unit 52 determines whether or not the output level is lower than the ideal output level (step S4).
  • the determination unit 52 outputs an UP signal, and the correction code determination unit 53 increases the code of the digital correction signal Dadj by 1 (step S5). And step S4 is performed again.
  • the correction code determination unit 53 determines the current code as the final digital correction signal Dadjf (step S6).
  • the determination unit 52 when the output level is neither higher nor lower than the ideal output level, that is, when the output level matches the ideal output level, the determination unit 52 outputs both the UP signal and the DOWN signal, for example, and the correction code determination unit 53. Determines the current code as the final digital correction signal Dadjf. Also, when the output of the determination unit 52 is switched from the UP signal to the DOWN signal and when the output from the DOWN signal is switched to the UP signal, the correction code determination unit 53 determines the current code as the final digital correction signal Dadjf.
  • the above series of operations is performed for each number of driving of the optical phase modulator (that is, the code of the drive control signal D).
  • FIG. 8 is a correspondence table between the code of the digital correction signal Dadj input to the DAC 54 and the analog correction voltage Vadj (V) output from the DAC 54.
  • 4-bit digital correction signal Dadj 0000 is 0.15V
  • 0001 is 0.20V
  • 0010 is 0.25V
  • 0011 is 0.30V
  • 0100 is 0.35V.
  • 0101 is 0.40V
  • 0110 is 0.45V
  • 0111 is 0.50V
  • 1000 is 0.55V
  • 1001 is 0.60V
  • 1010 is 0.65V
  • 1011 is 0.70V
  • 1100 is assigned 0.75V
  • 1101 is assigned 0.80V
  • 1110 is assigned 0.85V
  • 1111 is assigned 0.90V.
  • the code of the digital correction signal Dadj is increased by 1 to 1000, and the analog correction voltage Vadj applied to the correction optical phase modulator 140 is set to 0.55V.
  • the output level increases.
  • the code of the digital correction signal Dadj is lowered by 1 to 0110, and the analog correction voltage Vadj applied to the correction optical phase modulation unit 140 is set to 0.45V.
  • the final digital correction signal Dadjf that is, the final analog correction voltage Vadjf is determined by repeating the above operation.
  • FIG. 2 will be described as an example.
  • the ideal output level is also 0 when the number of driving of the optical phase modulation unit is 0.
  • FIG. 9 is a correspondence table between the drive control signal D and the final digital correction signal Dadjf in the example of FIG.
  • the number of driving of the optical phase modulation unit is 2, 4, and 5 is specifically illustrated.
  • the correspondence relationship between the drive control signal D and the final digital correction signal Dadjf is stored in the LUT 55.
  • the final digital correction signal Dadjf that is, the final analog correction voltage Vadjf is determined in advance for each drive number of the optical phase modulation unit, and can be dynamically switched according to the code of the drive control signal D. .
  • FIG. 10 is a block diagram showing a configuration of the light intensity modulator module 300 according to the third embodiment.
  • the light intensity modulator module 300 according to the third embodiment includes a light intensity modulator 10 that is a more specific form of the light intensity modulator 1 according to the first and second embodiments.
  • the light intensity modulator 10 has an MZ interferometer structure including two single-mode semiconductor optical waveguides 11a and 11b and two-input two-output optical multiplexers / demultiplexers 121 and 122.
  • the semiconductor optical waveguide 11a is provided with a correction optical phase modulation unit 140a and optical phase modulation units 141a to 147a in order from the input side
  • the semiconductor optical waveguide 11b is provided with a correction optical phase modulation unit 140b and an optical phase modulation unit. Portions 141b to 147b are provided in order from the input side.
  • the input signal light Lin is input to one input of the optical multiplexer / demultiplexer 121.
  • the semiconductor optical waveguide 11a is connected to one output of the optical multiplexer / demultiplexer 121, and the semiconductor optical waveguide 11b is connected to the other output.
  • the semiconductor optical waveguide 11a is connected to one input of the optical multiplexer / demultiplexer 122, and the semiconductor optical waveguide 11b is connected to the other input.
  • the output signal light Lout is output from one output of the optical multiplexer / demultiplexer 121.
  • the driver DR1 receives the clock signal CLK1 and the digital signal D1 that constitutes the drive control signal D output from the driver control unit 30.
  • the driver DR1 outputs the inverted signal / D1 of the digital signal D1 to the optical phase modulation unit 141a and the digital signal D1 to the optical phase modulation unit 141b at a timing according to the clock signal CLK1.
  • the driver DR1 outputs a clock signal CLK2 obtained by delaying the clock signal CLK1 in accordance with the propagation speed of the signal light to the driver DR2.
  • a clock signal CLK2 and a digital signal D2 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR2.
  • the driver DR2 outputs the inverted signal / D2 of the digital signal D2 to the optical phase modulation unit 142a and the digital signal D2 to the optical phase modulation unit 142b at a timing according to the clock signal CLK2.
  • the driver DR2 outputs a clock signal CLK3 obtained by delaying the clock signal CLK2 in accordance with the propagation speed of the signal light to the driver DR3.
  • the clock signal CLK3 and the digital signal D3 that constitutes the drive control signal D output from the driver control unit 30 are input to the driver DR3.
  • the driver DR3 outputs the inverted signal / D3 of the digital signal D3 to the optical phase modulator 143a and the digital signal D3 to the optical phase modulator 143b at a timing according to the clock signal CLK3.
  • the driver DR3 outputs a clock signal CLK4 obtained by delaying the clock signal CLK3 in accordance with the propagation speed of the signal light to the driver DR4.
  • a clock signal CLK4 and a digital signal D4 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR4.
  • the driver DR4 outputs the inverted signal / D4 of the digital signal D4 to the optical phase modulation unit 144a and the digital signal D4 to the optical phase modulation unit 144b at a timing according to the clock signal CLK4.
  • the driver DR4 outputs to the driver DR5 a clock signal CLK5 obtained by delaying the clock signal CLK4 in accordance with the propagation speed of the signal light.
  • a clock signal CLK5 and a digital signal D5 that constitutes the drive control signal D output from the driver control unit 30 are input to the driver DR5.
  • the driver DR5 outputs the inverted signal / D5 of the digital signal D5 to the optical phase modulator 145a and the digital signal D5 to the optical phase modulator 145b at a timing according to the clock signal CLK5.
  • the driver DR5 outputs a clock signal CLK6 obtained by delaying the clock signal CLK5 in accordance with the propagation speed of the signal light to the driver DR6.
  • a clock signal CLK6 and a digital signal D6 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR6.
  • the driver DR6 outputs an inverted signal / D6 of the digital signal D6 to the optical phase modulation unit 146a and a digital signal D6 to the optical phase modulation unit 146b at a timing according to the clock signal CLK6.
  • the driver DR6 outputs a clock signal CLK7 obtained by delaying the clock signal CLK6 in accordance with the propagation speed of the signal light to the driver DR7.
  • the clock signal CLK7 and the digital signal D7 constituting the drive control signal D output from the driver control unit 30 are input to the driver DR7.
  • the driver DR7 outputs the inverted signal / D7 of the digital signal D7 to the optical phase modulation unit 147a and the digital signal D7 to the optical phase modulation unit 147b at a timing according to the clock signal CLK7.
  • the output correction unit 50 analogizes the correction optical phase modulation unit 140b with the output level signal output from the output light intensity monitor 40 and the drive control signal D output from the driver control unit 30.
  • the correction voltage Vadj is output.
  • the final analog correction voltage Vadjf is determined so as to minimize the difference from the ideal output level for each number of driving of the optical phase modulation unit.
  • a final analog correction voltage Vadjf predetermined for each drive number of the optical phase modulation unit is output to the correction optical phase modulation unit 140b according to the drive control signal D.
  • a predetermined fixed voltage for example, an initial value of the analog correction voltage Vadj
  • the output destination of the analog correction voltage Vadj and the final analog correction voltage Vadjf may be the correction optical phase modulation unit 140a instead of the correction optical phase modulation unit 140b. Since other configurations are the same as those of the second embodiment, description thereof is omitted.
  • the analog correction voltage Vadj and the final analog correction voltage Vadjf output from the output correction unit 50 are input only to the correction optical phase modulation unit 140b.
  • the analog correction voltage Vadj1 and the final analog correction voltage Vadjf1 output from the output correction unit 501 are supplied to the correction optical phase modulation unit 140b and the analog correction voltage Vadj2.
  • the final analog correction voltage Vadjf2 is input to the correction optical phase modulation unit 140a.
  • Other configurations are the same as those of the third embodiment.
  • FIG. 12 is a block diagram illustrating an internal configuration of the output correction unit 501. As illustrated in FIG. 12, the output correction unit 501 includes two DACs 541 and 542.
  • the correction code determination unit 53 changes the codes of the digital correction signals Dadj1 and Dadj2 to be output to the DACs 541 and 542 based on the UP signal or the DOWN signal output from the determination unit 52 when determining the correction voltage, respectively.
  • Digital correction signals Dadjf1 and Dadjf2 are determined. Further, the final digital correction signals Dadjf1 and Dadjf2 determined for each drive number of the optical phase modulation unit are output to the LUT 55.
  • the DAC 541 converts the digital correction signal Dadj1 output from the correction code determination unit 53 into an analog correction voltage Vadj1, and outputs the analog correction voltage Vadj1 to the correction optical phase modulation unit 140b.
  • the final digital correction signal Dadjf1 output from the LUT 55 according to the drive control signal D is converted into the final analog correction voltage Vadjf1 and output to the correction optical phase modulator 140b.
  • the DAC 542 converts the digital correction signal Dadj2 output from the correction code determination unit 53 into an analog correction voltage Vadj2, and outputs the analog correction voltage Vadj2 to the correction optical phase modulation unit 140a.
  • the final digital correction signal Dadjf2 output from the LUT 55 according to the drive control signal D is converted into a final analog correction voltage Vadjf2 and output to the correction optical phase modulation unit 140a.
  • the LUM 55 stores final digital correction signals Dadjf1 and Dadjf2 for each optical phase modulation unit drive number (that is, the code of the drive control signal D) determined when the correction voltage is determined.
  • Each of the final digital correction signals Dadjf1 and Dadjf2 is sequentially determined by the determination method described with reference to FIGS. 7 to 9 in the second embodiment. Since other configurations are the same as those of the third embodiment, description thereof is omitted.
  • FIG. 13 is a block diagram showing a configuration of a light intensity modulator module 500 according to the fifth embodiment.
  • the driver control unit 30 includes a digital signal D1 for the driver DR1, a digital signal D2 for the driver DR2, a digital signal D3 for the driver DR3, and a digital signal for the driver DR4.
  • the digital signal D5 is output to the driver D5, the digital signal D6 to the driver DR6, and the digital signal D7 to the driver DR7.
  • the driver control unit 30 performs the digital signal D1 and the inverted signal / D1 of the digital signal D1 for the driver DR1, and the digital signal D2 and the digital signal for the driver DR2.
  • each of the drivers DR1 to DR7 has a differential input and a differential output. Thereby, noise tolerance improves. Since other configurations are the same as those of the fourth embodiment, description thereof is omitted.
  • FIG. 14 is a block diagram showing a configuration of the light intensity modulator 20 according to the sixth embodiment.
  • the optical phase modulators 148a and 148b for offset adjustment are arranged before the correction optical phase modulators 140a and 140b in the light intensity modulator 10 according to the third to fifth embodiments. Is provided. Offset voltages Vof1 and Vof2 for adjusting the phase offset of the input signal light Lin are applied to the optical phase modulators 148a and 148b for offset adjustment, respectively.
  • the offset voltages Vof1 and Vof2 are fixed values and do not dynamically switch according to the code of the drive control signal D. With such a configuration, the output level can be made closer to the ideal output level, and the accuracy is further improved. Since other configurations are the same as those of the light intensity modulator 10, the description thereof is omitted.
  • the seven optical phase modulation units 141 to 147 have the same shape.
  • the present invention can also be applied to a case where some or all of the shapes of the seven optical phase modulation units 141 to 147 are different. That is, even if the seven optical phase modulation units 141 to 147 have different shapes, the ideal output level when each optical phase modulation unit is driven is compared with the actual output level. Thus, the correction amount can be determined. Therefore, even when a plurality of optical phase modulation units include different shapes, a high-accuracy optical modulator can be configured by performing correction.
  • the above is the same for the third to sixth embodiments including two optical waveguides.
  • the optical phase modulators 141a to 147a and 141b to 147b each have an arbitrary shape, and are corrected with a correction amount determined by comparing the ideal output level with the actual output level, regardless of the shape. By doing so, a highly accurate optical modulator can be configured.
  • optical modulator and the optical modulator module according to the present invention can be provided to an optical transmitter for a wavelength division multiplexing optical fiber communication system.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 本発明の一態様に係る光変調器は、光信号が通過する光導波路11と、光導波路11上に並んで配置され、かつ、駆動制御信号Dに応じてそれぞれ独立に駆動されるm個(mは自然数)の光位相変調部141~147と、光導波路11上に配置され、前記駆動制御信号の値に応じて、前記駆動制御信号の値毎に予め定められた補正電圧が印加され、光信号の出力強度を補正する補正用光位相変調部140と、を備える。これにより、より高精度の光変調器を提供することができる。

Description

光変調器、それを用いた光変調器モジュール、及び光変調信号の補正方法
 本発明は光変調器、それを用いた光変調器モジュール、及び光変調信号の補正方法に関する。
 インターネットや映像配信等の広帯域マルチメディア通信サービスの爆発的な需要増加に伴い、長距離大容量かつ高信頼な光ファイバ通信システムの導入が進んでいる。光ファイバ通信システムでは、光伝送路である光ファイバの敷設コスト低減や、光ファイバ1本当たりの伝送帯域利用効率を高めることが重要である。このため、複数の異なる波長の信号光を多重化して伝送する、波長多重技術が広く用いられている。
 波長多重光ファイバ通信システム向け光送信機には、高速光変調が可能で、その信号光波長依存性が小さく、さらに長距離信号伝送時の受信光波形劣化を招く不要な変調成分が極力抑えられた光変調器が要求される。こうした用途には、光導波路型のマッハツェンダ(以下MZ:Mach-Zehnder)型干渉計に光導波路型の光位相変調器を組み込んだ、MZ型光強度変調器が実用的である。
 一般的なMZ型光強度変調器は、印加された電場強度に比例して屈折率が変化する電気光学結晶の代表であるニオブ酸リチウム(LiNbO3、以下LN)からなる基板表面に光導波路が形成されたものである。しかし、集積度が低い点や駆動電圧が高い点などが問題となっている。そのため、光源素子として有用なガリウム砒素(GaAs)やインジウム燐(InP)などの半導体を用いた光導波路型のMZ型光強度変調器も知られている。
 他方、電極に印加する変調電気信号の周波数が1GHzを超えるような高速光変調を行う場合、被変調光信号の位相速度voと変調電気信号の位相速度vmとを可能な限り近づけた(位相速度整合させた)、いわゆる進行波型電極構造が必要となる。ここで、低消費電力化のために変調電気信号を低電圧化した場合、同じ光強度振幅を有する出力信号を保持するには、電極を長くする必要がある。しかしながら、電極を長くすると、容量増加による信号劣化や、位相速度整合が困難になるなどの問題が顕在化する。
 特許文献1には、電極を複数個に分割した上で、光の伝播遅延に整合するように、各電極に印加する変調電気信号にも遅延を付加したMZ光強度変調器が開示されている。このような構成により、上述の信号劣化や位相速度整合の問題を解決することができる。
国際公開第2011/043079号
 しかしながら、特許文献1に開示されたMZ型光強度変調器では、光位相変調部の製造ばらつきに起因し、光信号の出力強度が所望の値にならず、精度が低下するという問題があった。
 本発明は上記の課題に鑑みてなされたものであり、本発明の目的は、より高精度な光変調器を提供することである。
 本発明の一態様である光変調器は、
 光信号が通過する光導波路と、
 前記光導波路上に並んで配置され、かつ、駆動制御信号に応じてそれぞれ独立に駆動されるm個(mは自然数)の光位相変調部と、
 前記光導波路上に配置され、前記駆動制御信号の値に応じて、前記駆動制御信号の値毎に予め定められた補正電圧が印加され、前記光信号の出力強度を補正する補正用光位相変調部と、を備えるものである。
 本発明の一態様である光変調信号の補正方法は、
 光信号が伝播する光導波路上に並んで配置されたm個(mは自然数)の光位相変調部を駆動するための駆動制御信号の値毎に補正電圧を決定し、
 前記駆動制御信号の値に応じて、前記m個の光位相変調部のそれぞれを独立に駆動するとともに、前記光導波路上に配置された補正用光位相変調部に前記補正電圧を印加するものである。
 本発明によれば、より高精度の光変調器を提供することができる。
実施の形態1に係る光強度変調器1の構成図である。 光位相変調部の駆動数と出力レベル(出力信号光強度)との関係を示すグラフである。 実施の形態2に係る光強度変調器モジュール200の構成を示すブロック図である。 出力補正部50の内部構成を示すブロック図である。 補正電圧決定時における信号の流れを示す出力補正部50のブロック図である。 通常動作時における信号の流れを示す出力補正部50のブロック図である。 最終デジタル補正信号Dadjfの決定方法を示すフローチャートである。 DAC54に入力されるデジタル補正信号DadjのコードとDAC54から出力されるアナログ補正電圧Vadj(V)との対応表である。 図2の例での駆動制御信号Dと最終デジタル補正信号Dadjfとの対応表である。 実施の形態3に係る光強度変調器モジュール300の構成を示すブロック図である。 実施の形態4に係る光強度変調器モジュール400の構成を示すブロック図である。 出力補正部501の内部構成を示すブロック図である。 実施の形態5に係る光強度変調器モジュール500の構成を示すブロック図である。 実施の形態6に係る光強度変調器20の構成を示すブロック図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
(実施の形態1)
 まず、図1を参照して、実施の形態1に係る光強度変調器について説明する。図1は、実施の形態1に係る光強度変調器1の構成図である。図1に示すように、光強度変調器1は、半導体光導波路11、導波路型の補正用光位相変調部140、導波路型の光位相変調部141~147を備えている。入力信号光Linは、補正用光位相変調部140に入力され、光位相変調部141~147を順に通過して、出力信号光Loutとして光位相変調部147から出力される。
 半導体光導波路11は、コア層及びコア層を上下から挟み込むクラッド層を有する(不図示)。半導体光導波路11では、コア層に電場を印加することにより、あるいは電流を注入することにより、コア層を伝搬する信号光の屈折率を変化させることができる。
 7個の光位相変調部141~147は、半導体光導波路11に入力側から順に設けられている。7個の光位相変調部141~147は、等しい形状となるように設計されている。ここで、光位相変調部141~147の駆動数を変化させることにより、光強度変調器1から出力される出力信号光Loutの強度(出力レベル)を変化させることができる。図1の例では、7個の光位相変調部141~147のうち0~7個を駆動することができるから、光強度変調器1は、8=2つまり3ビットの出力レベルを有している。より一般化すると、(2-1)個(nは自然数)の光位相変調部を設けることにより、出力レベルをnビットとすることができる。
 図2は、光位相変調部の駆動数と出力レベル(出力信号光強度)との関係を示すグラフである。実線で示されたグラフが、理想出力レベルAである。ここで、理想出力レベルとは設計において意図する出力レベルをいう。図1の光強度変調器1では、光位相変調部の駆動数が0個の場合、理想出力レベルが最低となる。光位相変調部の駆動数が増えるにつれて、理想出力レベルも高くなる。そして、光位相変調部の駆動数が最大の7個の場合、理想出力レベルも最高となるように設計されている。
 図1に示すように、光位相変調部141~147には、デジタル信号D1~D7が入力されている。デジタル信号D1~D7は、駆動制御信号Dを構成している。デジタル信号D1~D7は、それぞれ1=H(High)又は0=L(Low)の2つの値を取り得る。デジタル信号D1~D7は、半導体光導波路11を伝播する信号光の伝播速度に合わせて、それぞれ光位相変調部141~147に印加される。詳細については、実施の形態2において後述する。
 上述のように、出力信号光Loutの強度(出力レベル)は、駆動される光位相変調部141~147の個数によって決定される。具体的には、0個の光位相変調部を駆動する場合、駆動制御信号D(D1、D2、D3、D4、D5、D6、D7)のコードは、一義的に定まり、0000000となる。他方、1個の光位相変調部を駆動する場合、駆動制御信号Dのコードとしては、1000000、0100000、・・・、0000001の7通りが考えられる。図1の例では、光位相変調部141を駆動する1000000を用いる。
 同様に、2個の光位相変調部を駆動する場合も、駆動制御信号Dのコードは複数考えられるが、図1の例では、光位相変調部141、142を駆動する1100000を用いる。以下同様に、駆動制御信号Dのコードとして、3個の光位相変調部を駆動する場合、光位相変調部141~143を駆動する1110000を用いる。4個の光位相変調部を駆動する場合、光位相変調部141~144を駆動する1111000を用いる。5個の光位相変調部を駆動する場合、光位相変調部141~145を駆動する1111100を用いる。6個の光位相変調部を駆動する場合、光位相変調部141~146を駆動する1111110を用いる。最後に、7個全ての光位相変調部141~147を駆動する場合、駆動制御信号Dのコードは、一義的に定まり、1111111となる。
 補正用光位相変調部140は、出力信号光Loutの強度(出力レベル)を補正するための光位相変調部である。補正用光位相変調部140には、出力信号光Loutの強度(出力レベル)を補正するための最終アナログ補正電圧Vadjfが印加される。図1の例では、補正用光位相変調部140は、半導体光導波路11において、最も入力側に設けられている。換言すると、7個の光位相変調部141~147の入力側に設けられている。なお、補正用光位相変調部140の設置位置は、最も出力側であっても、7個の光位相変調部141~147の間であってもよく、何ら限定されない。
 図2を用いて、補正用光位相変調部140の機能について説明する。図2には、上述の理想出力レベルAが実線で示されているのに加え、補正前の出力レベルBが点線で示されている。図2に示された補正前の出力レベルBは、あくまでも一例である。図2に示すように、補正用光位相変調部140を用いて出力レベルの補正を行わない場合、補正前の出力レベルBは、必ずしも理想出力レベルAと一致していない。これは、光位相変調部141~147の形状(特に長さ)などの製造ばらつきによるものであると考えられる。つまり、これまでのような補正用光位相変調部140を備えない光変調器では、高精度な光強度変調が実現できなかった。
 他方、補正用光位相変調部140を備える本実施の形態に係る光強度変調器1では、出力レベルを理想出力レベルAへ近づけることができる。ここで、図2に示すように、理想出力レベルAと補正前の出力レベルBとの差すなわち補正量Δは、光位相変調部の駆動数(つまり駆動制御信号Dのコード)毎に異なる。従って、出力レベルを補正するための最終アナログ補正電圧Vadjfも光位相変調部の駆動数毎に異なる。つまり、最終アナログ補正電圧Vadjfは、光位相変調部の駆動数(つまり駆動制御信号Dのコード)毎に予め定められており、駆動制御信号Dのコードに応じて、ダイナミックに切り換わるようになっている。このような構成により、本実施の形態に係る光強度変調器1では、これまでになく高精度な光強度変調が実現できる。
(実施の形態2)
 次に、図3を参照して、実施の形態2に係る光強度変調器モジュールについて説明する。図3は、実施の形態2に係る光強度変調器モジュール200の構成を示すブロック図である。実施の形態2に係る光強度変調器モジュール200は、実施の形態1に係る光強度変調器1を含んでいる。図3に示すように、実施の形態2に係る光強度変調器モジュール200は、光強度変調器1、7つのドライバ(駆動部)DR1~DR7、ドライバ制御部30、出力光強度モニタ40、出力補正部50を備えている。
 ドライバ制御部30は、駆動制御信号D(D1、D2、D3、D4、D5、D6、D7)をドライバDR1~DR7及び出力補正部50に出力する。
 ドライバDR1には、クロック信号CLK1とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D1とが入力される。ドライバDR1は、クロック信号CLK1に応じたタイミングで、光位相変調部141に対してデジタル信号D1を出力する。また、ドライバDR1は、クロック信号CLK1を信号光の伝播速度に合わせて遅延させたクロック信号CLK2を、ドライバDR2に対して出力する。
 同様に、ドライバDR2には、クロック信号CLK2とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D2とが入力される。ドライバDR2は、クロック信号CLK2に応じたタイミングで、光位相変調部142に対してデジタル信号D2を出力する。また、ドライバDR2は、クロック信号CLK2を信号光の伝播速度に合わせて遅延させたクロック信号CLK3を、ドライバDR3に対して出力する。
 同様に、ドライバDR3には、クロック信号CLK3とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D3とが入力される。ドライバDR3は、クロック信号CLK3に応じたタイミングで、光位相変調部143に対してデジタル信号D3を出力する。また、ドライバDR3は、クロック信号CLK3を信号光の伝播速度に合わせて遅延させたクロック信号CLK4を、ドライバDR4に対して出力する。
 同様に、ドライバDR4には、クロック信号CLK4とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D4とが入力される。ドライバDR4は、クロック信号CLK4に応じたタイミングで、光位相変調部144に対してデジタル信号D4を出力する。また、ドライバDR4は、クロック信号CLK4を信号光の伝播速度に合わせて遅延させたクロック信号CLK5を、ドライバDR5に対して出力する。
 同様に、ドライバDR5には、クロック信号CLK5とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D5とが入力される。ドライバDR5は、クロック信号CLK5に応じたタイミングで、光位相変調部145に対してデジタル信号D5を出力する。また、ドライバDR5は、クロック信号CLK5を信号光の伝播速度に合わせて遅延させたクロック信号CLK6を、ドライバDR6に対して出力する。
 同様に、ドライバDR6には、クロック信号CLK6とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D6とが入力される。ドライバDR6は、クロック信号CLK6に応じたタイミングで、光位相変調部146に対してデジタル信号D6を出力する。また、ドライバDR6は、クロック信号CLK6を信号光の伝播速度に合わせて遅延させたクロック信号CLK7を、ドライバDR7に対して出力する。
 そして、ドライバDR7には、クロック信号CLK7とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D7とが入力される。ドライバDR7は、クロック信号CLK7に応じたタイミングで、光位相変調部147に対してデジタル信号D7を出力する。
 ドライバDR1~DR7は、特許文献1に開示されているように、例えば、D-フリップフロップから構成することができる。また、特許文献1に開示されているように、種々のバリエーションが可能である。
 出力光強度モニタ40は、出力信号光Loutの強度(出力レベル)を検出し、出力レベル信号を出力補正部50に対して出力する。出力光強度モニタ40は、システム起動時などの非通常動作時に、最終アナログ補正電圧Vadjfを決定するために用いられる。そのため、通常動作時に動作する必要はない。
 出力補正部50は、補正電圧決定時には、出力光強度モニタ40から出力された出力レベル信号とドライバ制御部30から出力された駆動制御信号Dとから、補正用光位相変調部140に対してアナログ補正電圧Vadjを出力する。そして、光位相変調部の駆動数毎に、理想出力レベルとの差が最も小さくなるような最終アナログ補正電圧Vadjfを決定する。一方、通常動作時には、駆動制御信号Dに応じて、光位相変調部の駆動数毎に予め定められた最終アナログ補正電圧Vadjfを補正用光位相変調部140に対して出力する。
 次に、図4~6を参照して、出力補正部50についてさらに詳細に説明する。図4は、出力補正部50の内部構成を示すブロック図である。図5は、補正電圧決定時における信号の流れを示す出力補正部50のブロック図である。図6は、通常動作時における信号の流れを示す出力補正部50のブロック図である。図6において点線で示した機能ブロックは、動作していないことを示している。つまり、図4は、図5と図6とを合わせて示したものである。図4に示すように、出力補正部50は、基準信号生成部51、判定部52、補正コード決定部53、D/A(デジタル/アナログ)コンバータ(DAC)54、ルックアップテーブル(LUT)55を備えている。
 図5に示すように、基準信号生成部51は、補正電圧決定時に、駆動制御信号Dから光位相変調部の駆動数毎の理想出力レベルに対応した基準信号を生成する。なお、図6に示すように、通常動作時には、基準信号生成部51は動作していない。
 図5に示すように、判定部52は、補正電圧決定時に、基準信号生成部51から出力された基準信号と、出力強度モニタ40から出力された出力レベル信号とを比較する。比較の結果、検出された出力レベルが、理想出力レベルよりも小さい場合、アナログ補正電圧Vadjを高くするためのUP信号を補正コード決定部53に対して出力する。一方、検出された出力レベルが、理想出力レベルよりも大きい場合、アナログ補正電圧Vadjを低くするためのDOWN信号を補正コード決定部53に対して出力する。さらに、検出された出力レベルが、理想出力レベルに一致している場合、UP信号とDOWN信号の両方を補正コード決定部53に対して同時に出力する。なお、判定部52がUP信号とDOWN信号とのうち、必ず一方のみを出力する構成としてもよい。また、図6に示すように、通常動作時には、判定部52は動作していない。
 図5に示すように、補正コード決定部53は、補正電圧決定時に、UP信号を受信した場合、DAC54に対して出力するデジタル補正信号Dadjのコードを上げ、DOWN信号を受信した場合、DAC54に対して出力するデジタル補正信号Dadjのコードを下げる。また、UP信号とDOWN信号とを同時に受信した場合あるいはUP信号とDOWN信号とが切り換わった場合、光位相変調部の駆動数毎に決定された最終デジタル補正信号DadjfをLUT55に対して出力する。なお、図6に示すように、通常動作時には、補正コード決定部53は動作していない。
 図5に示すように、DAC54は、補正電圧決定時には、補正コード決定部53から出力されたデジタル補正信号Dadjをアナログ補正電圧Vadjに変換し、補正用光位相変調部140に対して出力する。また、図6に示すように、通常動作時には、駆動制御信号Dのコードに応じてLUT55から出力された最終デジタル補正信号Dadjfを、最終アナログ補正電圧Vadjfに変換し、補正用光位相変調部140に対して出力する。
 図5に示すように、LUM55は、補正電圧決定時に決定された光位相変調部の駆動数(つまり駆動制御信号Dのコード)毎の最終デジタル補正信号Dadjfが格納される記憶部である。具体的には、例えばRAM(Random Access Memory)などから構成される。また、図6に示すように、通常動作時には、駆動制御信号Dに応じて最終デジタル補正信号Dadjfを、DAC54に対して出力する。
 次に、図7を参照して、最終デジタル補正信号Dadjfすなわち最終アナログ補正電圧Vadjfの決定方法について説明する。図7は、最終デジタル補正信号Dadjfの決定方法を示すフローチャートである。
 図7に示すように、まず、補正コード決定部53はデジタル補正信号Dadjのコードを初期化する(ステップS1)。ここで、初期コードは取り得るコードの中央付近のコードとすることが好ましい。例えば、デジタル補正信号Dadjが3ビットである場合、011又は100、4ビットの場合0111又は1000などとなる。このように中央付近のコードとすることにより、アナログ補正電圧Vadjを上昇させること及び低下させることの両方を行うことが容易になる。デジタル補正信号Dadjが4ビットである場合の具体例については、後述する。
 次に、出力レベルを出力光強度モニタ40により検出し、判定部52が基準信号生成部51から出力された基準信号と、出力強度モニタ40から出力された出力レベル信号とを比較する(ステップS2)。ここで、出力レベルが理想出力レベルより高い場合(ステップS2YES)、判定部52はDOWN信号を出力し、補正コード決定部53はデジタル補正信号Dadjのコードを1下げる(ステップS3)。そして、再度ステップS2を実行する。
 一方、出力レベルが理想出力レベルより高くない場合(ステップS2NO)、判定部52は出力レベルが理想出力レベルより低いか否か判定する(ステップS4)。出力レベルが理想出力レベルより低い場合(ステップS4YES)、判定部52はUP信号を出力し、補正コード決定部53はデジタル補正信号Dadjのコードを1上げる(ステップS5)。そして、再度ステップS4を実行する。一方、出力レベルが理想出力レベルより低くない場合(ステップS4NO)、補正コード決定部53は現状のコードを最終デジタル補正信号Dadjfに決定する(ステップS6)。
 ここで、出力レベルが理想出力レベルより高くも低くもない場合、すなわち出力レベルが理想出力レベルに一致する場合、判定部52は例えばUP信号とDOWN信号の両方を出力し、補正コード決定部53は現状のコードを最終デジタル補正信号Dadjfに決定する。また、判定部52の出力がUP信号からDOWN信号へ切り換わった場合及びDOWN信号からUP信号へ切り換わった場合も、補正コード決定部53は現状のコードを最終デジタル補正信号Dadjfに決定する。
 以上の一連の操作を光位相変調部の駆動数(つまり駆動制御信号Dのコード)毎に行う。
 次に、図2、8、9を参照して、最終アナログ補正電圧Vadjfの決定方法の具体例について説明する。なお、当然のことながら、以下の具体例はあくまでも一例であって、具体的な数値自体に特別な意味はなく、種々のバリエーションが可能である。図8は、DAC54に入力されるデジタル補正信号DadjのコードとDAC54から出力されるアナログ補正電圧Vadj(V)との対応表である。図8に示した例では、4ビットのデジタル補正信号Dadj=0000には0.15V、0001には0.20V、0010には0.25V、0011には0.30V、0100には0.35V、0101には0.40V、0110には0.45V、0111には0.50V、1000には0.55V、1001には0.60V、1010には0.65V、1011には0.70V、1100には0.75V、1101には0.80V、1110には0.85V、1111には0.90Vが割り当てられている。
 ここで、図8に示すように、補正電圧決定時におけるデジタル補正信号Dadjの初期コードを0111として、アナログ補正電圧Vadj=0.50Vを補正用光位相変調部140に印加して出力レベルを検出する。検出された出力レベルが理想出力レベルよりも低い場合、デジタル補正信号Dadjのコードを1上げて1000とし、補正用光位相変調部140に印加するアナログ補正電圧Vadjを0.55Vとする。これにより、出力レベルが上昇する。一方、検出された出力レベルが理想出力レベルよりも高い場合、デジタル補正信号Dadjのコードを1下げて0110とし、補正用光位相変調部140に印加するアナログ補正電圧Vadjを0.45Vとする。これにより、出力レベルが低下する。図7を用いて説明したように、以上の操作を繰り返すことにより、最終デジタル補正信号Dadjfすなわち最終アナログ補正電圧Vadjfを決定する。
 ここで、図2を例に説明する。図2において、初期値であるアナログ補正電圧Vadj=0.50Vを補正用光位相変調部140に印加した際の出力レベルが、補正前の出力レベルBであったとする。ここで、補正用光位相変調部140に初期値であるアナログ補正電圧Vadj=0.50Vを印加した状態での理想出力レベルは、補正用光位相変調部140に電圧を印加しない場合(つまり、アナログ補正電圧Vadj=0Vの場合)に比べ、全体的に底上げされた値となる。具体的には、アナログ補正電圧Vadj=0Vであれば、光位相変調部の駆動数が0の場合、理想出力レベルも0となる。しかしながら、図2では、初期値であるアナログ補正電圧Vadj=0.50Vを印加した分、理想出力レベルも底上げされている。図2に示すように、光位相変調部の駆動数が2の場合、出力レベルは理想出力レベルよりも高いため、補正量Δ=d1だけ出力レベルを下げる必要がある。具体的には、図8に示すように、最終デジタル補正信号Dadjf=0010、最終アナログ補正電圧Vadjf=0.25Vとなる。
 また、光位相変調部の駆動数が4の場合、出力レベルが理想出力レベルと同じであって、補正量Δ=d2=0である。そのため、図8に示すように、初期のデジタル補正コードDadj=0111がそのまま最終デジタル補正信号Dadjfとなり、初期のアナログ補正電圧Vadj=0.50Vがそのまま最終アナログ補正電圧Vadjfとなる。
 さらに、光位相変調部の駆動数が5の場合、出力レベルは理想出力レベルよりも低いため、補正量Δ=d3だけ出力レベルを上げる必要がある。具体的には、図8に示すように、最終デジタル補正信号Dadjf=1100、最終アナログ補正電圧Vadjf=0.75Vとなる。
 図9は、図2の例での駆動制御信号Dと最終デジタル補正信号Dadjfとの対応表である。図9では、例として、光位相変調部の駆動数が2、4、5の場合のみ具体的に示している。この駆動制御信号Dと最終デジタル補正信号Dadjfとの対応関係がLUT55に格納されている。
 図9に示すように、光位相変調部の駆動数が2すなわち駆動制御信号D=1100000の場合、最終デジタル補正信号Dadjf=0010、光位相変調部の駆動数が4すなわち駆動制御信号D=1111000の場合、最終デジタル補正信号Dadjf=0111、光位相変調部の駆動数が5すなわち駆動制御信号D=1111100の場合、最終デジタル補正信号Dadjf=1100となる。
 このように、最終デジタル補正信号Dadjfすなわち最終アナログ補正電圧Vadjfは、光位相変調部の駆動数毎に予め定められており、駆動制御信号Dのコードに応じて、ダイナミックに切り換え可能となっている。
(実施の形態3)
 次に、図10を参照して、実施の形態3に係る光強度変調器モジュールについて説明する。図10は、実施の形態3に係る光強度変調器モジュール300の構成を示すブロック図である。実施の形態3に係る光強度変調器モジュール300は、実施の形態1、2に係る光強度変調器1をより具体化した光強度変調器10を含んでいる。
 図10に示すように、光強度変調器10は、2本の単一モードの半導体光導波路11a、11b、2入力2出力の光合分波器121、122を備えたMZ干渉計構造を有する。半導体光導波路11aには、補正用光位相変調部140a、光位相変調部141a~147aが入力側から順に設けられており、半導体光導波路11bには、補正用光位相変調部140b、光位相変調部141b~147bが入力側から順に設けられている。
 光合分波器121の一方の入力には入力信号光Linが入力されている。光合分波器121の一方の出力には半導体光導波路11aが、他方の出力には半導体光導波路11bが接続されている。
 一方、光合分波器122の一方の入力には半導体光導波路11aが、他方の入力には半導体光導波路11bが接続されている。そして、光合分波器121の一方の出力から出力信号光Loutが出力されている。
 ドライバDR1には、クロック信号CLK1とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D1とが入力される。ドライバDR1は、クロック信号CLK1に応じたタイミングで、光位相変調部141aに対してデジタル信号D1の反転信号/D1を、光位相変調部141bに対してデジタル信号D1を出力する。また、ドライバDR1は、クロック信号CLK1を信号光の伝播速度に合わせて遅延させたクロック信号CLK2を、ドライバDR2に対して出力する。
 同様に、ドライバDR2には、クロック信号CLK2とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D2とが入力される。ドライバDR2は、クロック信号CLK2に応じたタイミングで、光位相変調部142aに対してデジタル信号D2の反転信号/D2を、光位相変調部142bに対してデジタル信号D2を出力する。また、ドライバDR2は、クロック信号CLK2を信号光の伝播速度に合わせて遅延させたクロック信号CLK3を、ドライバDR3に対して出力する。
 同様に、ドライバDR3には、クロック信号CLK3とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D3とが入力される。ドライバDR3は、クロック信号CLK3に応じたタイミングで、光位相変調部143aに対してデジタル信号D3の反転信号/D3を、光位相変調部143bに対してデジタル信号D3を出力する。また、ドライバDR3は、クロック信号CLK3を信号光の伝播速度に合わせて遅延させたクロック信号CLK4を、ドライバDR4に対して出力する。
 同様に、ドライバDR4には、クロック信号CLK4とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D4とが入力される。ドライバDR4は、クロック信号CLK4に応じたタイミングで、光位相変調部144aに対してデジタル信号D4の反転信号/D4を、光位相変調部144bに対してデジタル信号D4を出力する。また、ドライバDR4は、クロック信号CLK4を信号光の伝播速度に合わせて遅延させたクロック信号CLK5を、ドライバDR5に対して出力する。
 同様に、ドライバDR5には、クロック信号CLK5とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D5とが入力される。ドライバDR5は、クロック信号CLK5に応じたタイミングで、光位相変調部145aに対してデジタル信号D5の反転信号/D5を、光位相変調部145bに対してデジタル信号D5を出力する。また、ドライバDR5は、クロック信号CLK5を信号光の伝播速度に合わせて遅延させたクロック信号CLK6を、ドライバDR6に対して出力する。
 同様に、ドライバDR6には、クロック信号CLK6とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D6とが入力される。ドライバDR6は、クロック信号CLK6に応じたタイミングで、光位相変調部146aに対してデジタル信号D6の反転信号/D6を、光位相変調部146bに対してデジタル信号D6を出力する。また、ドライバDR6は、クロック信号CLK6を信号光の伝播速度に合わせて遅延させたクロック信号CLK7を、ドライバDR7に対して出力する。
 そして、ドライバDR7には、クロック信号CLK7とドライバ制御部30から出力された駆動制御信号Dを構成するデジタル信号D7とが入力される。ドライバDR7は、クロック信号CLK7に応じたタイミングで、光位相変調部147aに対してデジタル信号D7の反転信号/D7を、光位相変調部147bに対してデジタル信号D7を出力する。
 出力補正部50は、補正電圧決定時には、出力光強度モニタ40から出力された出力レベル信号とドライバ制御部30から出力された駆動制御信号Dとから、補正用光位相変調部140bに対してアナログ補正電圧Vadjを出力する。そして、光位相変調部の駆動数毎に、理想出力レベルとの差が最も小さくなるような最終アナログ補正電圧Vadjfを決定する。一方、通常動作時には、駆動制御信号Dに応じて、光位相変調部の駆動数毎に予め定められた最終アナログ補正電圧Vadjfを補正用光位相変調部140bに対して出力する。ここで、補正用光位相変調部140aには、所定の固定電圧(例えばアナログ補正電圧Vadjの初期値)が与えられる。なお、アナログ補正電圧Vadj及び最終アナログ補正電圧Vadjfの出力先を補正用光位相変調部140bに代えて、補正用光位相変調部140aとしてもよい。
 その他の構成は、実施の形態2と同様であるため、説明を省略する。
(実施の形態4)
 次に、図11を参照して、実施の形態4に係る光強度変調器モジュールについて説明する。図11は、実施の形態4に係る光強度変調器モジュール400の構成を示すブロック図である。なお、図11では、図10に示したクロック信号CLK1~CLK7は省略されている。
 実施の形態3に係る光強度変調器モジュール300では、出力補正部50から出力されたアナログ補正電圧Vadj及び最終アナログ補正電圧Vadjfが補正用光位相変調部140bのみに入力されていた。これに対し、実施の形態4に係る光強度変調器モジュール400では、出力補正部501から出力されたアナログ補正電圧Vadj1及び最終アナログ補正電圧Vadjf1が補正用光位相変調部140bに、アナログ補正電圧Vadj2及び最終アナログ補正電圧Vadjf2が補正用光位相変調部140aに入力されている。その他の構成は実施の形態3と同様である。
 次に、図12を参照して、出力補正部501についてさらに詳細に説明する。図12は、出力補正部501の内部構成を示すブロック図である。図12に示すように、出力補正部501は、2つのDAC541、542を備えている。
 補正コード決定部53は、補正電圧決定時に、判定部52から出力されたUP信号もしくはDOWN信号に基づいて、DAC541、542に対して出力するデジタル補正信号Dadj1、Dadj2のコードをそれぞれ変更し、最終デジタル補正信号Dadjf1、Dadjf2を決定する。また、光位相変調部の駆動数毎に決定された最終デジタル補正信号Dadjf1、Dadjf2をLUT55に対して出力する。
 DAC541は、補正電圧決定時には、補正コード決定部53から出力されたデジタル補正信号Dadj1をアナログ補正電圧Vadj1に変換し、補正用光位相変調部140bに対して出力する。一方、通常動作時には、駆動制御信号Dに応じてLUT55から出力された最終デジタル補正信号Dadjf1を、最終アナログ補正電圧Vadjf1に変換し、補正用光位相変調部140bに対して出力する。
 同様に、DAC542は、補正電圧決定時には、補正コード決定部53から出力されたデジタル補正信号Dadj2をアナログ補正電圧Vadj2に変換し、補正用光位相変調部140aに対して出力する。一方、通常動作時には、駆動制御信号Dに応じてLUT55から出力された最終デジタル補正信号Dadjf2を、最終アナログ補正電圧Vadjf2に変換し、補正用光位相変調部140aに対して出力する。
 LUM55には、補正電圧決定時に決定された光位相変調部の駆動数(つまり駆動制御信号Dのコード)毎の最終デジタル補正信号Dadjf1、Dadjf2が格納される。
 なお、最終デジタル補正信号Dadjf1、Dadjf2のそれぞれが、順次、実施の形態2において図7~9を用いて説明した決定方法により決定される。
 その他の構成は、実施の形態3と同様であるため、説明を省略する。
 補正用光位相変調部140a、140bの両方に補正電圧を印加することにより、出力レベルを理想出力レベルにより一層近づけることができ、さらに精度が向上する。
(実施の形態5)
 図13を参照して、実施の形態5に係る光強度変調器モジュールについて説明する。図13は、実施の形態5に係る光強度変調器モジュール500の構成を示すブロック図である。
 実施の形態4に係る光強度変調器モジュール400では、ドライバ制御部30が、ドライバDR1に対しデジタル信号D1、ドライバDR2に対しデジタル信号D2、ドライバDR3に対しデジタル信号D3、ドライバDR4に対しデジタル信号D4、ドライバDR5に対しデジタル信号D5、ドライバDR6に対しデジタル信号D6、ドライバDR7に対しデジタル信号D7を出力していた。
 これに対し、実施の形態5に係る光強度変調器モジュール500では、ドライバ制御部30が、ドライバDR1に対しデジタル信号D1及びデジタル信号D1の反転信号/D1、ドライバDR2に対しデジタル信号D2及びデジタル信号D2の反転信号/D2、ドライバDR3に対しデジタル信号D3及びデジタル信号D3の反転信号/D3、ドライバDR4に対しデジタル信号D4及びデジタル信号D4の反転信号/D4、ドライバDR5に対しデジタル信号D5及びデジタル信号D5の反転信号/D5、ドライバDR6に対しデジタル信号D6及びデジタル信号D6の反転信号/D6、ドライバDR7に対しデジタル信号D7及びデジタル信号D7の反転信号/D7を出力している。
 つまり、ドライバDR1~DR7のそれぞれは、差動入力、差動出力となる。これにより、ノイズ耐性が向上する。
 その他の構成は実施の形態4と同様であるので説明を省略する。
(実施の形態6)
 図14を参照して、実施の形態6に係る光強度変調器について説明する。図14は、実施の形態6に係る光強度変調器20の構成を示すブロック図である。実施の形態6に係る光強度変調器20では、実施の形態3~5に係る光強度変調器10における補正用光位相変調部140a、140bの前段に、オフセット調整用光位相変調部148a、148bが設けられている。オフセット調整用光位相変調部148a、148bには、入力信号光Linの位相のオフセットを調整するためのオフセット電圧Vof1、Vof2がそれぞれ印加されている。
 なお、このオフセット電圧Vof1、Vof2は固定値であり、駆動制御信号Dのコードに応じて、ダイナミックに切り換わることはない。このような構成により、出力レベルを理想出力レベルにより一層近づけることができ、さらに精度が向上する。
 その他の構成は光強度変調器10と同様であるので説明を省略する。
 なお、第1の実施の形態では、7個の光位相変調部141~147の形状はすべて等しいものとした。しかし、本発明は、7個の光位相変調部141~147の形状の一部又はすべてが異なる場合にも適用することができる。すなわち、7個の光位相変調部141~147の形状に異なるものが含まれる場合であっても、それぞれの光位相変調部を駆動したときの理想出力レベルと、実際の出力レベルを比較することより、補正量を決定することができる。従って、複数の光位相変調部に、形状に異なるものが含まれる場合であっても、補正を行うことにより、高精度の光変調器を構成することができる。
 以上のことは、2本の光導波路を備える、第3乃至第6の実施の形態についても同様である。すなわち、光位相変調部141a~147a、141b~147bは、それぞれ形状は任意であり、どのような形状であっても、理想出力レベルと実際の出力レベルを比較することより決定した補正量で補正することによって、高精度の光変調器を構成することができる。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明に係る光変調器及び光変調器モジュールは、波長多重光ファイバ通信システム向け光送信機に提供することができる。
 この出願は、2011年12月6日に出願された日本出願特願2011-266979を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、10、20 光強度変調器
11、11a、11b 半導体光導波路
30 ドライバ制御部
40 出力光強度モニタ
50 出力補正部
51 基準信号生成部
52 判定部
53 補正コード決定部
121、122 光合分波器
140、140a、140b 補正用光位相変調部
141-147、141a-147a、141b-147b 光位相変調部
148a、148b オフセット調整用光位相変調部
200、300、400、500 光強度変調器モジュール
501 出力補正部
DR1-DR7 ドライバ

Claims (18)

  1.  光信号が通過する光導波路と、
     前記光導波路上に並んで配置され、かつ、駆動制御信号に応じてそれぞれ独立に駆動されるm個(mは自然数)の光位相変調部と、
     前記光導波路上に配置され、前記駆動制御信号の値に応じて、前記駆動制御信号の値毎に予め定められた補正電圧が印加され、前記光信号の出力強度を補正する補正用光位相変調部と、を備える光変調器。
  2.  平行に設けられた2本の前記光導波路のそれぞれに、前記m個の光位相変調部と前記補正用光位相変調部とが配置されたマッハツェンダ型光変調器であることを特徴とする請求項1に記載の光変調器。
  3.  2本の前記光導波路に配置された前記補正用光位相変調部のそれぞれに、前記駆動制御信号の値に応じて、前記補正電圧が印加されることを特徴とする請求項2に記載の光変調器。
  4.  前記駆動制御信号の値に応じて、前記m個の光位相変調部の駆動数が0~m個まで変化することを特徴とする請求項1~3のいずれか一項に記載の光変調器。
  5.  2≦mの場合、前記m個の光位相変調部は、前記m個の光位相変調部のそれぞれを前記光信号が通過するタイミングに合わせて入力側から順に駆動されることを特徴とする請求項1~4のいずれか一項に記載の光変調器。
  6.  請求項1乃至5のいずれか一項に記載の光変調器と、
     前記駆動制御信号の値に応じて、前記補正電圧を前記補正用光位相変調部に印加する出力補正部と、を備える光変調器モジュール。
  7.  前記光信号の出力強度を検出する出力光強度モニタをさらに備え、
     前記出力補正部は、前記出力光強度モニタが検出した出力強度に基づいて、前記補正電圧を決定することを特徴とする請求項6に記載の光変調器モジュール。
  8.  前記出力補正部は、
     前記出力光強度モニタが検出した出力強度と、前記駆動制御信号の値毎の理想出力強度とを比較し、いずれが高いもしくは低いかを判定する判定部と、
     前記判定部の判定結果に基づいて、前記補正電圧に対応したデジタル補正信号のコードを決定する補正コード決定部と、を備えていることを特徴とする請求項7に記載の光変調器モジュール。
  9.  前記出力補正部は、
     前記補正電圧に対応した前記デジタル補正信号を格納するルックアップテーブルをさらに備えていることを特徴とする請求項8に記載の光変調器モジュール。
  10.  前記出力補正部は、
     前記ルックアップテーブルに格納された前記デジタル補正信号を前記補正電圧へ変換するデジタル・アナログ変換器をさらに備えていることを特徴とする請求項9に記載の光変調器モジュール。
  11.  光信号が伝播する光導波路上に並んで配置されたm個(mは自然数)の光位相変調部を駆動するための駆動制御信号の値毎に補正電圧を決定し、
     前記駆動制御信号の値に応じて、前記m個の光位相変調部のそれぞれを独立に駆動するとともに、前記光導波路上に配置された補正用光位相変調部に前記補正電圧を印加する光変調信号の補正方法。
  12.  平行に設けられた2本の前記光導波路のそれぞれに、前記m個の光位相変調部と前記補正用光位相変調部とが配置されており、
     2本の前記光導波路に配置された前記補正用光位相変調部のそれぞれに、前記駆動制御信号の値に応じて、前記補正電圧を印加することを特徴とする請求項11に記載の光変調信号の補正方法。
  13.  前記補正電圧を定める際、
     前記駆動制御信号の値毎に前記光信号の出力強度を検出し、
     検出した出力強度に基づいて、前記補正電圧を決定することを特徴とする請求項11又は12に記載の光変調信号の補正方法。
  14.  前記補正電圧を定める際、
     検出した出力強度と、前記駆動制御信号の値毎の理想出力強度とを比較し、いずれが高いもしくは低いかを判定し、
     判定した結果に基づいて、前記補正電圧に対応したデジタル補正信号のコードを決定することを特徴とする請求項13に記載の光変調信号の補正方法。
  15.  前記補正電圧を定める際、
     前記補正電圧に対応した前記デジタル補正信号をルックアップテーブルに格納することを特徴とする請求項14に記載の光変調信号の補正方法。
  16.  前記補正電圧を印加する際、
     前記駆動制御信号の値に応じて、前記ルックアップテーブルに格納された前記デジタル補正信号を前記補正電圧へ変換することを特徴とする請求項15に記載の光変調信号の補正方法。
  17.  前記駆動制御信号の値に応じて、前記m個の光位相変調部の駆動数が0~m個まで変化することを特徴とする請求項11~16のいずれか一項に記載の光変調信号の補正方法。
  18.  2≦mの場合、前記m個の光位相変調部を、前記m個の光位相変調部のそれぞれを前記光信号が通過するタイミングに合わせて入力側から順に駆動することを特徴とする請求項11~17のいずれか一項に記載の光変調信号の補正方法。
PCT/JP2012/005514 2011-12-06 2012-08-31 光変調器、それを用いた光変調器モジュール、及び光変調信号の補正方法 WO2013084382A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-266979 2011-12-06
JP2011266979 2011-12-06

Publications (1)

Publication Number Publication Date
WO2013084382A1 true WO2013084382A1 (ja) 2013-06-13

Family

ID=48573777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005514 WO2013084382A1 (ja) 2011-12-06 2012-08-31 光変調器、それを用いた光変調器モジュール、及び光変調信号の補正方法

Country Status (1)

Country Link
WO (1) WO2013084382A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080089634A1 (en) * 2006-10-07 2008-04-17 Mosinskis Paulius M Segmented optical modulator
JP2010507131A (ja) * 2006-10-19 2010-03-04 シオプティカル インコーポレーテッド マルチレベルの信号出力を使用した光変調器
US20100156679A1 (en) * 2007-06-13 2010-06-24 Ramot At Tel Aviv University Ltd. Linearized optical digital-to-analog modulator
WO2011043079A1 (ja) * 2009-10-09 2011-04-14 日本電気株式会社 光変調器モジュール及び光信号の変調方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080089634A1 (en) * 2006-10-07 2008-04-17 Mosinskis Paulius M Segmented optical modulator
JP2010507131A (ja) * 2006-10-19 2010-03-04 シオプティカル インコーポレーテッド マルチレベルの信号出力を使用した光変調器
US20100156679A1 (en) * 2007-06-13 2010-06-24 Ramot At Tel Aviv University Ltd. Linearized optical digital-to-analog modulator
WO2011043079A1 (ja) * 2009-10-09 2011-04-14 日本電気株式会社 光変調器モジュール及び光信号の変調方法

Similar Documents

Publication Publication Date Title
US7483597B2 (en) Optical modulator utilizing multi-level signaling
EP2684083B1 (en) Optical modulator utilizing unary encoding and auxiliary modulator section for load balancing
JP5340388B2 (ja) 光送信装置および光送信方法
JP5958468B2 (ja) 光変調器モジュール、光変調器駆動用集積回路及び光信号の変調方法
JP5083310B2 (ja) 多値光強度変調器
WO2012165656A1 (ja) 光導波路デバイス、光干渉計及び光導波路デバイスの制御方法
US9413467B2 (en) Optical transmitter, optical transmission/reception system, and drive circuit
EP2639629A1 (en) Optical phase modulation circuit and method of optical phase modulation
EP3136165B1 (en) Electro-optic (e/o) device with an e/o amplitude modulator and associated methods
US10372013B2 (en) Dynamic phase shift compensation for free carrier effect photonic switches
JPWO2013161196A1 (ja) マッハツェンダ型光変調器、光送受信システム、及びマッハツェンダ型光変調器の制御方法
WO2014141337A1 (ja) 光変調器、光送信器、光送受信システム及び光変調器の制御方法
WO2013084382A1 (ja) 光変調器、それを用いた光変調器モジュール、及び光変調信号の補正方法
CN108508675B (zh) 马赫-曾德尔(mz)环形光学调制器
EP1360544B1 (en) Calibrating voltage controllable optical components in communication systems
WO2014097503A1 (ja) 光変調器、光送信器、光送受信システム及び光変調器の制御方法
JP2007114307A (ja) チャープ切り替え回路及び光伝送システム
EP1217425B1 (en) Optical intensity modulation device and method
JP2003131181A (ja) 半導体光変調器、光多重モジュール、およびその制御方法
JP2014122964A (ja) 光変調器、光送信器、光送受信システム及び光変調器の制御方法
CN115061241B (zh) 一种波分复用器
JP2014122965A (ja) 光変調器、光送信器、光送受信システム及び光変調器の制御方法
WO2013140476A1 (ja) 光送信器、光送受信システム及び駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12856057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP