WO2013084328A1 - Multiplex communication system, transmission device, and receiving device - Google Patents

Multiplex communication system, transmission device, and receiving device Download PDF

Info

Publication number
WO2013084328A1
WO2013084328A1 PCT/JP2011/078369 JP2011078369W WO2013084328A1 WO 2013084328 A1 WO2013084328 A1 WO 2013084328A1 JP 2011078369 W JP2011078369 W JP 2011078369W WO 2013084328 A1 WO2013084328 A1 WO 2013084328A1
Authority
WO
WIPO (PCT)
Prior art keywords
random number
bit string
transmission
data
trigger signal
Prior art date
Application number
PCT/JP2011/078369
Other languages
French (fr)
Japanese (ja)
Inventor
重元 廣田
伸夫 長坂
泰章 今寺
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2013548014A priority Critical patent/JP5909243B2/en
Priority to PCT/JP2011/078369 priority patent/WO2013084328A1/en
Publication of WO2013084328A1 publication Critical patent/WO2013084328A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • H04L1/242Testing correct operation by comparing a transmitted test signal with a locally generated replica
    • H04L1/244Testing correct operation by comparing a transmitted test signal with a locally generated replica test sequence generators

Definitions

  • the present invention relates to a multiplexed communication system, a transmission device, and a reception device that evaluate the quality of a transmission line in parallel with data communication related to actual use.
  • a technique for specifying at least two different triggers for transmitting a measurement report from the mobile station to the network is disclosed.
  • the trigger is preferably a threshold above or below a parameter of the radio signal, and sends a measurement report in response to detecting that the measured value exceeds its upper threshold or is lower than its lower threshold (Patent Document 1, etc.).
  • a quality degradation alarm indicating degradation of transmission quality is issued based on the received data, the issued quality degradation alarms are collected, and the transmission path is determined based on the number of issued quality degradation alarms.
  • Patent Document 2 A technique for controlling the issuance of a transmission path quality degradation alarm indicating that the quality of the network is degraded is disclosed (Patent Document 2, etc.).
  • Patent Document 1 relates to a mobile communication network including a plurality of mobile stations and a plurality of base stations.
  • measurement at the mobile station is used as a measurement report timing for reporting to the base station. For example, when the measured value of the parameter of the radio signal exceeds the upper threshold and when the value falls below the lower threshold, the measurement report timing is set.
  • Patent Document 2 determines the transmission quality of the optical transmission line and determines that the quality of the transmission line has deteriorated in response to an alarm that the quality has deteriorated in the determination at a plurality of locations. It is.
  • Patent Document 1 only describes that a measurement report is performed under each of a plurality of trigger conditions. There is no description regarding the difference in communication timing between the measurement report and the normal data communication, and it is not assumed that both are performed simultaneously.
  • Patent Document 2 only describes that quality degradation of a transmission path is determined by a plurality of determinations. There is no description regarding the difference in communication timing between the measurement report and the normal data communication, and it is not assumed that both are performed simultaneously.
  • the present invention has been made in view of the above problems, and by multiplexing data for evaluating transmission quality with data for actual use, the transmission path quality check is performed simultaneously with normal data processing for actual use. It is an object of the present invention to provide a multiplexed communication system, a transmission device, and a reception device that can be performed.
  • the multiplex communication system made in view of the above problems is a transmission-side random number generator in which activation / stop of generation of a random number bit string is instructed by a trigger signal input from the outside on the transmission side And a multiplexing unit that multiplexes the transmission data, the random number bit string, and the trigger signal.
  • a restoration unit that restores transmission data, a random number bit string, and a trigger signal from the multiplexed signal, and a start / stop command according to the trigger signal, and a comparison random number bit string having the same bit arrangement as the random number bit string
  • a reception-side random number generator to be generated and a bit error rate measuring device that is instructed to start and stop in response to a trigger signal and measure the bit error rate of the random number bit string with respect to the comparison random number bit string.
  • the multiplexed communication system is the multiplexed communication system according to claim 1, wherein the multiplexed data sequence generated by the multiplexing unit is arranged on the transmission side to arrange the transmission data.
  • the first data area is secured and the second data area is secured for arranging the random number bit string.
  • the second data area is an area in which a plurality of sets of random number bit strings obtained by replicating random number bit strings in a predetermined number are arranged.
  • the bit error rate measuring instrument measures the bit error rate for each of a plurality of sets of random number bit strings.
  • the multiplexed communication system according to claim 3 is the multiplexed communication system according to claim 1 or 2, wherein the multiplexing unit multiplexes a plurality of sets of trigger signals obtained by duplicating the trigger signal. .
  • the transmission device is provided in the multiplexed communication system.
  • a transmission-side random number generator instructed to start / stop generation of a random number bit string by an externally input trigger signal, and a multiplexing unit that multiplexes transmission data, a random number bit string, and a trigger signal are provided.
  • processing related to the transmission data is performed, and start / stop is commanded according to the trigger signal, and the bit error rate is measured for the random number bit string.
  • the receiving device is provided in a multiplexed communication system.
  • a restoration unit that restores the transmitted data, a random number bit string, and a trigger signal that commands the start / stop of generation of the random number bit string, and a start / stop command according to the trigger signal.
  • a receiving-side random number generator that generates a comparative random number bit string having the same bit arrangement as the bit string, and a bit error rate measuring unit that is instructed to start / stop in response to a trigger signal and measures the bit error rate of the random number bit string relative to the comparative random number bit string, It has.
  • a random number bit string generated by a transmission-side random number generator on the transmission side is multiplexed with transmission data and a trigger signal and transmitted by a trigger signal input from the outside.
  • the comparison random number bit string generated by the receiving side random number generator is compared with the transmitted random number bit string in response to the trigger signal. Since the comparison random number bit string has the same bit arrangement as the random number bit string generated by the transmission side random number generator, the bit error rate measuring device detects the bit error that occurred in the random number bit string by being transmitted, and the bit error The rate can be measured.
  • the bit error rate can be measured in an actual use state.
  • a random number bit string can be multiplexed and transmitted with normal transmission data
  • the bit error rate can be measured even during operation of the device by normal data transmission.
  • the transmission quality during operation can be grasped, and the operation reliability of the system can be improved.
  • the bit error rate can be measured on the receiving side according to the transmitted trigger signal. The start / end of bit error rate measurement between transmission and reception can be controlled by an external command to the transmission side.
  • the multiplexed data string includes a first data area reserved for arranging transmission data and a second data area reserved for arranging random number bit strings. Since the transmission data is configured to be included, transmission data for actual use and a random number bit string for measuring the bit error rate can be mixed and multiplexed.
  • the second data area includes an area where a plurality of sets of random number bit sequences can be arranged, and the bit error rate measuring device measures the bit error rate for each of the plurality of sets of random number bit sequences.
  • a plurality of sets are multiplexed by duplicating the random number bit string generated by the transmission-side random number generator, a plurality of sets of bit error rates can be measured with one multiplexed data string.
  • the number of bit error rate measurements that can be performed by transmitting one multiplexed data string can be increased according to the number of sets of multiplexed random number bit strings.
  • the measurement time per bit error rate can be shortened, and the total measurement accuracy of the bit error rate can be improved.
  • the trigger signal is duplicated at the time of transmission, and a plurality of sets are multiplexed.
  • the trigger signal is recognized only when a plurality of duplicate trigger signals are prepared. For this reason, it is possible to prevent a signal different from the original trigger signal from being erroneously recognized as the trigger signal due to a bit error.
  • the transmission device according to claim 4 and the reception device according to claim 5 can constitute the multiplexed communication system described in the present application. Thus, it is not necessary to provide a dedicated measuring device for measuring the bit error rate due to data transmission. In addition, the bit error rate can be measured while the device is operating by normal data transmission. The transmission quality during operation can be grasped, and the operation reliability of the system can be improved.
  • FIG. 1 is a perspective view showing an electronic component mounting apparatus configured by arranging two electronic component mounting machines to which an electronic component supply apparatus is attached, and is an apparatus to which the multiplexed communication system of the present invention can be applied.
  • It is a top view which shows a part of tape feeder of the electronic component supply apparatus shown in FIG. 1, and the tape-ized components sent out by the tape feeder.
  • It is a perspective view which shows the electronic component supply apparatus shown in FIG.
  • FIG. is sectional drawing which shows the tape feeder shown in FIG.
  • It is a block diagram which shows the control apparatus with which the electronic component mounting machine shown in FIG. 1 is provided.
  • It is a block diagram which shows the apparatus with which a transmission side is equipped.
  • It is a block diagram which shows the apparatus with which a receiving side is equipped.
  • It is a circuit diagram which shows an example of a PRBS generator. It is the figure which showed the flow of data processing typically.
  • FIG. 1 shows an electronic component mounting apparatus (hereinafter, may be abbreviated as “mounting apparatus”) 10.
  • the figure is a perspective view in which a part of the exterior component of the mounting apparatus 10 has been removed.
  • the mounting apparatus 10 includes one system base 12 and two electronic component mounting machines (hereinafter, may be abbreviated as “mounting machines”) 16 arranged side by side adjacent to each other on the system base 12. In other words, the electronic component is mounted on the circuit board.
  • the direction in which the mounting machines 16 are arranged is referred to as an X-axis direction
  • a horizontal direction perpendicular to the direction is referred to as a Y-axis direction.
  • Each of the mounting machines 16 included in the mounting apparatus 10 mainly includes a mounting machine main body 24 configured to include a frame unit 20 and a beam unit 22 overlaid on the frame unit 20, and a circuit board in the X-axis direction.
  • a transport device 26 that transports and fixes the set position at a set position, a mounting head 28 that mounts an electronic component on a circuit board fixed by the transport device 26, and an X-axis mounted head 28 disposed on the beam unit 22.
  • a moving device 30 that moves in the direction and the Y-axis direction, and an electronic component supply device 32 that is disposed in front of the frame portion 20 and supplies electronic components to the mounting head 28 (hereinafter, may be abbreviated as “supply device”) It has.
  • the transport device 26 includes two conveyor devices 40 and 42, and the two conveyor devices 40 and 42 are parallel to each other and extend in the X-axis direction, so that the central portion in the Y-axis direction of the frame portion 20. It is arranged.
  • Each of the two conveyor devices 40 and 42 has a structure in which a circuit board supported by each conveyor device 40 and 42 is conveyed in the X-axis direction by an electromagnetic motor 44 (see FIG. 5). Further, each of the conveyor devices 40 and 42 has a substrate holding device 46 (see FIG. 5), and is configured to hold the circuit board in a fixed position.
  • the mounting head 28 is for mounting electronic components on the circuit board held by the transport device 26, and has a suction nozzle 50 for sucking the electronic components on the lower surface.
  • the suction nozzle 50 communicates with negative pressure air and a positive pressure air passage via a positive / negative pressure supply device 52 (see FIG. 5), and sucks and holds the electronic component at a negative pressure, so that a slight positive pressure is supplied. In this way, the held electronic component is detached.
  • the mounting head 28 includes a nozzle lifting device (see FIG. 5) 54 that lifts and lowers the suction nozzle 50 and a nozzle rotation device (see FIG. 5) 56 that rotates the suction nozzle 50 about its axis. It is possible to change the vertical position of the electronic component to be held and the holding posture of the electronic component.
  • the suction nozzle 50 is attachable to and detachable from the mounting head 28, and can be changed according to the size and shape of the electronic component.
  • the moving device 30 moves the mounting head 28 to an arbitrary position on the frame unit 20, an X-axis direction slide mechanism (not shown) for moving the mounting head 28 in the X-axis direction, and the mounting head. And a Y-axis direction slide mechanism (not shown) for moving 28 in the Y-axis direction.
  • the Y-axis direction slide mechanism has a Y-axis slider (not shown) provided in the beam portion 22 so as to be movable in the Y-axis direction, and an electromagnetic motor (see FIG. 5) 64 as a drive source.
  • the Y-axis slider can be moved to an arbitrary position in the Y-axis direction by the electromagnetic motor 64.
  • the X-axis direction slide mechanism has an X-axis slider 66 provided on the Y-axis slider so as to be movable in the X-axis direction, and an electromagnetic motor (see FIG. 5) 68 as a drive source.
  • the motor 68 enables the X-axis slider 66 to move to an arbitrary position in the X-axis direction.
  • the mounting head 28 is attached to the X-axis slider 66, so that the mounting head 28 can be moved to an arbitrary position on the frame unit 20 by the moving device 30.
  • the mounting head 28 can be attached to and detached from the X-axis slider 66 with a single touch, and can be changed to a different type of work head, such as a dispenser head.
  • the supply device 32 is disposed at the front end of the frame portion 20 as a base, and is a feeder-type supply device.
  • the supply device 32 accommodates a taped part 70 (see FIG. 2) in which electronic parts are taped and accommodated in a state in which the taped part 70 is wound around a reel 72, and is accommodated in each of the plurality of tape feeders 74.
  • a plurality of delivery devices (see FIG. 5) 75 for feeding out the taped component 70, and the electronic components are sequentially supplied from the taped component 70 to the supply position to the mounting head 28. .
  • the taped component 70 includes a carrier tape 82 in which a large number of receiving recesses 78 and feed holes 80 are formed at an equal pitch, an electronic component 84 received in the receiving recess 78, and a carrier tape 82.
  • the top cover tape 86 covers the housing recess 78 in which the electronic component 84 is housed.
  • the tape feeder 74 has a reel holding portion 88 for holding a reel 72 around which the taped component 70 is wound, and a taped component 70 drawn out from the reel 72 on the upper end surface. It is composed of a feeder main body 90 that is extended.
  • a sprocket 92 that engages with a feed hole 80 formed in the carrier tape 82 of the taped component 70 is built in the feeder main body 90, and the sprocket 92 is rotated.
  • the taped component 70 with the top cover tape 86 attached to the carrier tape 82 is sent out in the direction away from the reel 72 on the upper end surface of the feeder main body 90.
  • the accommodation recesses 78 in which the electronic components 84 are accommodated are sequentially released at the tip of the upper end surface of the feeder main body 90.
  • the electronic component 84 is taken out by the suction nozzle 50 from the opened accommodation recess 78.
  • the tape feeder 74 is detachable from a tape feeder mounting base (hereinafter sometimes abbreviated as “mounting base”) 100 fixedly provided at the front end of the frame portion 20.
  • the mounting base 100 includes a slide portion 102 provided on the upper surface of the frame portion 20 and a standing surface portion 106 erected on an end portion of the slide portion 102 on the side close to the conveying device 26.
  • a plurality of slide grooves 108 are formed in the slide portion 102 so as to extend in the Y-axis direction, and the lower edge portion of the feeder main body 90 of the tape feeder 74 is fitted into each of the plurality of slide grooves 108. It is possible to slide in the state.
  • the side wall surface by the side of the sending direction which is the sending direction of the taped component 70 of the feeder main body 90 is made to slide in the direction which approaches the standing surface part 106 in the state which fitted the lower edge part of the feeder main body 90. 110 is attached to the standing surface portion 106.
  • the tape feeder 74 is mounted on the mounting table 100.
  • the standing surface portion 106 is provided with a plurality of connector connecting portions 112 corresponding to the plurality of slide grooves 108.
  • the connector 114 is provided on the side wall surface 110 of the tape feeder 74 attached to the standing surface portion 106, and when the side wall surface 110 of the tape feeder 74 is attached to the standing surface portion 106, the connector 114 is connected to the connector 114.
  • the connection unit 112 is connected.
  • a pair of upright pins 116 are provided on the side wall surface 110 of the tape feeder 74 so as to sandwich the connector 114 in the vertical direction, and the connector connection portion 112 of the upright surface portion 106 of the mounting base 100 is connected in the vertical direction. Are fitted into a pair of fitting holes 118 formed so as to be sandwiched between the two.
  • a cover 120 is provided on the top of the mounting base 100 so as to be opened and closed.
  • the cover 120 is attached to the end portion on the front side of the beam portion 22 of the mounting machine 16 so as to be rotatable about an axis extending in the X-axis direction, and the closed position covering the mounting table 100 and the mounting table 100 are opened. It is possible to rotate between the open position.
  • the cover 120 is closed while the tape feeder 74 is mounted on the mounting base 100, the feeder main body 90 of the tape feeder 74 that is mounted is covered by the cover 120.
  • a display portion 124 provided with three display lamps 122 (only one is shown in the figure) is attached to the lower end portion of the cover 120, and the tape feeder 74 is attached to the attachment base 100.
  • the display unit 124 is positioned above the feeder main body 90.
  • a plurality of display units 124 are provided corresponding to the plurality of slide grooves 108, and the display lamps 122 of the plurality of display units 124 are turned on when the tape feeder 74 is mounted on the mounting base 100, It is used as a guide to which of the plurality of slide grooves 108 the tape feeder 74 should be attached.
  • the mounting machine 16 includes a mark camera (see FIG. 5) 130 and a parts camera (see FIGS. 1 and 5) 132.
  • the mark camera 130 is fixed to the lower surface of the X-axis slider 66 so as to face downward, and is moved by the moving device 30 so that the surface of the circuit board can be imaged at an arbitrary position. Yes.
  • the parts camera 132 is provided between the transport device 26 of the frame unit 20 and the supply device 32 in a state of facing upward, and images the electronic component sucked and held by the suction nozzle 50 of the mounting head 28. It is possible.
  • the image data obtained by the mark camera 130 and the image data obtained by the parts camera 132 are processed by the image processing device 134 (see FIG. 5), and information on the circuit board, the holding position of the circuit board by the board holding device 46. An error, a holding position error of the electronic component by the suction nozzle 50, and the like are acquired.
  • the mounting machine 16 includes a control device 140 as shown in FIG.
  • the control device 140 includes a controller 142 mainly composed of a computer having a CPU, ROM, RAM, etc., the electromagnetic motors 44, 64, 68, the substrate holding device 46, the positive / negative pressure supply device 52, the nozzle lifting / lowering device 54, the nozzle rotation.
  • a plurality of drive circuits 144 corresponding to each of the device 56 and the delivery device 75 and a plurality of control circuits 146 corresponding to each of the plurality of display lamps 122 provided in the plurality of display units 124 are provided.
  • the controller 142 is connected to a drive source such as a transfer device or a moving device via each drive circuit 144, and can control the operation of the transfer device, the moving device, or the like.
  • the controller 142 is connected to a plurality of display lamps 122 via each control circuit 146, and each of the plurality of display lamps 122 can be lit up in a controllable manner.
  • the plurality of display units 124 may be provided with various switches (not shown), and various control signals accompanying switch inputs are sent to the control circuits 146.
  • an image processing device 134 that processes image data obtained by the mark camera 130 and the part camera 132 is connected to the controller 142.
  • the mounting machine 16 With the configuration described above, it is possible to perform an electronic component mounting operation with the mounting head 28 on the circuit board held by the transport device 26. More specifically, the circuit board is first transported to the mounting work position by the transport device 26, and the circuit board is fixedly held at that position. Next, the mounting device 28 is moved onto the circuit board by the moving device 30, and the circuit board is imaged by the mark camera 130. By the imaging, the type of the circuit board and the holding position error of the circuit board by the transfer device 26 are acquired. An electronic component corresponding to the acquired type of circuit board is supplied by the tape feeder 74 of the supply device 32, and the mounting head 28 is moved by the moving device 30 to the supply position of the electronic component. Thereby, the electronic component is sucked and held by the suction nozzle 50 of the mounting head 28.
  • the mounting head 28 holding the electronic component is moved onto the parts camera 132 by the moving device 30, and the electronic component held by the mounting head 28 is imaged by the parts camera 132.
  • the holding position error of the electronic component is acquired by the imaging.
  • the moving device 30 moves the mounting head 28 to the mounting position on the circuit board, and the mounting head 28 rotates the mounting nozzle 50 based on the holding position error between the circuit board and the electronic component. Installed.
  • the multiplexed communication system of the present application can be applied to an electronic component mounting apparatus, an electronic component mounting apparatus exemplified in the electronic component mounting apparatus 10 described above, or an automatic machine that operates in various other production lines. It is a possible system.
  • various data are transmitted from the control device 140 to the various electromagnetic motors 44, 64, 68 and other movable devices and the display lamp 122 to control these devices. Is done.
  • the control device 140 receives various data (not shown) from the mark camera 130, the parts camera 132, various electromagnetic motors 44, 64, 68, other movable devices, the display unit 124, and the like for control. Provide.
  • operation command data is issued from each drive circuit 144 of the control device 140 to various electromagnetic motors 44, 64, 68 and other movable devices, and drive control is performed. Further, lighting control data is emitted from the control circuit 146 of the control device 140 to the display lamp 122, and lighting control is performed.
  • the control device 140 receives image data from the mark camera 130 and the parts camera 132, and receives device information data such as torque information and position information from various electromagnetic motors 44, 64, 68 and other movable devices.
  • Various input data are received from sensors (not shown) or the like (not shown) provided in each device.
  • a pseudo error that measures a bit error rate (hereinafter abbreviated as BER) of a transmission line at the time of data communication a pseudo error that measures a bit error rate (hereinafter abbreviated as BER) of a transmission line at the time of data communication.
  • PRBS signal a random code (hereinafter abbreviated as PRBS signal.
  • PRBS is an abbreviation representing Pseudo-Random Binary Sequence) is transmitted together. The device and the receiving device will be described.
  • FIG. 6 is a block diagram showing an apparatus provided on the transmission side.
  • a PRBS signal PRBS1 for BER measurement is generated and the actual data D1, D2,. It is a control part that performs the function of multiplexing and transmitting together with Dn.
  • Real data D1, D2,..., Dn are sent to a multiplexing unit B11, which will be described later, via an input buffer B1.
  • the actual data D1, D2,..., Dn are the following data.
  • the transmission side is the control device 140, for example, it is operation command data for driving and controlling the electromagnetic motors 44, 64, 68 and other movable devices, and lighting control data for controlling the lighting of the display lamp 122.
  • the transmission side is not the control device 140, it is image data output from the mark camera 130 or the parts camera 132, and various device information data emitted from the electromagnetic motors 44, 64, 68 and other movable devices, Various input data from sensors and switches (not shown) provided in each device.
  • the transmission side is further provided with a PRBS replication unit B3, a trigger replication unit B5, a PRBS generator B7, a storage unit B9, and a multiplexing unit B11 for BER measurement.
  • the trigger duplication unit B5 activates the PRBS generator B7 and duplicates the external trigger signal TR (X) to generate two trigger signals Tr1 (X) and Tr2 (X).
  • the trigger signal is generated at each timing of the start of BER measurement and the end of measurement.
  • X is expressed as “S” when indicating the start of BER measurement
  • X is expressed as “E” when indicating the end of BER measurement.
  • the notation is “X”.
  • the PRBS generator B7 reads the initial value stored in the storage unit B9 in response to the external trigger signal TR (S) for starting the BER measurement, and starts generating the PRBS signal PRBS1.
  • the generated PRBS signal PRBS1 is continued until an external trigger signal TR (E) instructing the end of generation is input.
  • the generated PRBS signal PRBS1 is sent to the PRBS duplicator B3 and duplicated.
  • FIG. 6 illustrates a case where the duplication is performed in triplicate.
  • the generated triple PRBS signals PRBS1, PRBS2, and PRBS3 are sent to the multiplexing unit B11.
  • the trigger duplication unit B5 duplicates the external trigger TR (X) to generate the trigger signals Tr1 (X) and Tr2 (X).
  • the generated trigger signals Tr1 (X) and Tr2 (X) are sent to the multiplexing unit B11.
  • the multiplexing unit B11 multiplexes the input real data D1, D2,..., Dn, PRBS signals PRBS1, PRBS2, PRBS3, and trigger signals Tr1 (X), Tr2 (X).
  • the multiplexed multiplexed data string is transmitted by the communication transceiver B15 after the error correction code is added in the error correction coding unit B13.
  • FIG. 7 is a block diagram showing an apparatus provided on the receiving side.
  • the multiplexed data sequence received by the communication transceiver B21 is subjected to error detection and correction by the error correction decoding unit B23.
  • the receiving side further includes a multiplexing restoration unit B25, a trigger detection unit B27, a PRBS generator B29, a storage unit B31, a BER measuring device B33, and a BER determination unit B35 for BER measurement.
  • the error-corrected multiplexed data sequence is restored by the multiplexing composite unit B25, and individual real data D1, D2,..., Dn, PRBS signals PRBS1, PRBS2, PRBS3, and trigger signals Tr1 (X), Tr2 Separated into (X).
  • the actual data D1, D2,..., Dn are transferred as they are to various devices of the electronic component mounting apparatus 10 in the operating state. Thereby, the operating state is continued.
  • Trigger signals Tr1 (X) and Tr2 (X) are input to the trigger detection unit B27.
  • the trigger detection unit B27 determines that the PRBS signals PRBS1, PRBS2, and PRBS3 for BER measurement have been received in response to the input of both duplicated trigger signals Tr1 (X) and Tr2 (X). can do. This prevents the data value from being inverted due to a bit error or the like that occurs during transmission, so that a signal that is not the original trigger signal is misrecognized as a trigger signal and BER measurement is not started or ended. can do.
  • the trigger signal Tr (X) generated according to the trigger signals Tr1 (X) and Tr2 (X) is input to the PRBS generator B29 and the BER measuring device B33.
  • the PRBS generator B29 has the same configuration as the PRBS generator B7.
  • the initial value stored in the storage unit B31 is the same as the initial value stored in the storage unit B9. Therefore, the same PRBS signal PRBS1 as the PRBS signal PRBS1 generated by the PRBS generator B7 is generated according to the trigger signal Tr (S).
  • the generated PRBS signal PRBS1 is continued until a trigger signal Tr (E) instructing the end of generation is input.
  • the PRBS signal PRBS1 generated by the PRBS generator B29 is sent to the BER measuring device B33.
  • the PRBS signal PRBS1 generated by the PRBS generator B29 is compared with each of the received PRBS signals PRBS1, PRBS2, and PRBS3, and BER measurement is performed.
  • the BER is measured by measuring the number of bits different from the PRBS signal PRBS1 generated by the PRBS generator B29 in the bit string of the received PRBS signals PRBS1, PRBS2, and PRBS3.
  • the measured value of BER measured by the BER measuring device B33 is compared with a prescribed value stored in the storage unit B31 in the BER determination unit B35. Thereby, it is determined whether or not the transmission quality is acceptable, and a determination result is output.
  • the determination result output from the BER determination unit B35 is displayed by a display device such as a display lamp, a display board, or a display monitor.
  • FIG. 8 is a circuit diagram showing an example of PRBS generators B7 and B29.
  • the PRBS signal is a bit string defined by the ITU-T standard, and several standards are established depending on the length of the bit string.
  • the circuit diagram shown in FIG. 8 is a generator that generates a (2 9 -1) type bit string.
  • Nine D-type latches 1DL to 9DL are connected in series to form a shift register, and the fifth-stage D-type latch 5DL and the ninth-stage D-type latch 9DL are input to the exclusive OR gate XOR.
  • the output signal of the exclusive OR gate XOR is fed back to the first-stage D-type latch 1DL.
  • the shift operation is continued in accordance with the clock signal CLK.
  • the output signal OUT of the 9th stage D-type latch 9DL updated every cycle is output as a PRBS signal.
  • the PRBS signal output at this time is a bit string defined as the (2 9 -1) type.
  • FIG. 9 is a diagram schematically showing the flow of data processing in the present embodiment.
  • actual data D1, D2, which are various data (device data) transmitted in the operating state of the electronic component mounting apparatus 10 such as operation command data, lighting control data, image data, device information data, and input data.
  • trigger signals Tr1 (X) and Tr2 (X) generated based on PRBS signal PRBS1 for BER measurement and external trigger signal TR (X) indicating measurement start / end are multiplexed. To be sent.
  • the PRBS signal PRBS1 and the external trigger signal TR (X) are duplicated.
  • the PRBS signal PRBS1 is duplicated to generate PRBS signals PRBS1, PRBS2, and PRBS3.
  • the external trigger signal TR (X) is duplicated to generate trigger signals Tr1 (X) and Tr2 (X).
  • the real data D1, D2,..., Dn, the triple replicated PRBS signals PRBS1, PRBS2, PRBS3, and the double replicated trigger signals Tr1 (X), Tr2 (X) are multiplexed. It communicates by propagating through the transmission line.
  • the PRBS signals being transmitted are the triple replicated PRBS signals PRBS1, PRBS2, and PRBS3. For this reason, BER measurement can be performed in triplicate, and BER measurement with higher accuracy can be performed. Further, triple BER measurement can be embedded in one unit of the multiplexed data string, and the BER measurement time can be shortened.
  • the trigger signals being transmitted are trigger signals Tr1 (X) and Tr2 (X) duplicated. Since the trigger signal is duplicated, the possibility that a signal that is not the original trigger signal is erroneously recognized as a trigger signal due to a bit error during transmission or the like is reduced, and the trigger timing can be reliably transmitted.
  • the multiplexed data string is combined and separated into individual data.
  • the actual data D1, D2,..., Dn are transferred to each device, and the operation and control in the normal operation state are continued. Is called.
  • the electronic component mounting apparatus 10 in the normal operating state in triplicate according to the measurement start / end timing determined by the trigger signals Tr1 (X) and Tr2 (X). BER measurement is performed on each of the replicated PRBS signals PRBS1, PRBS2, and PRBS3.
  • the PRBS signal PRBS1 generated by the PRBS generator B7 on the transmission side is multiplexed with the actual data D1, D2,.
  • the BER measuring instrument B33 can measure the BER without affecting the normal operating state of the device associated with the actual data D1, D2,..., Dn.
  • the PRBS generator B7 on the transmission side and the PRBS generator B29 on the reception side have the same configuration, and the initial values stored in the storage units B7 and B31 are also the same.
  • the PRBS signal PRBS1 is the same bit string. Thereby, in the BER measuring device B33, the bit error which occurred in the middle of transmission can be confirmed, and BER can be measured.
  • the BER can be measured in the actual operation state, and the transmission quality of the transmission line in the actual operation state can be accurately grasped.
  • the transmission quality during operation can be grasped, and the operational reliability of the system can be improved.
  • the PRBS signal PRBS1 can be duplicated and transmitted, only one PRBS signal PRBS1 can be generated by the PRBS generator B7, and BER measurement can be performed in a multiplexed manner. It is possible to increase the number of BER measurements that can be performed by transmitting. The measurement time per BER measurement can be shortened and the total measurement accuracy can be improved.
  • the external trigger signal TR (X) is duplicated and transmitted, it is possible to prevent a signal that is not the original trigger signal from being erroneously recognized as the trigger signal due to a bit error during transmission.
  • the actual data D1, D2,..., Dn are examples of transmission data
  • the PRBS3 signal PRBS1 is an example of a random number bit string and a comparison random number bit string.
  • the PRBS generator B7 is an example of a transmission side random number generator
  • the PRBS generator B29 is an example of a reception side random number generator.
  • the multiplexing unit B11 is an example of a multiplexing unit
  • the multiplexing restoration unit B25 is an example of a restoration unit.
  • the BER measuring device B33 is an example of a bit error rate measuring device.
  • the region where the actual data D1, D2,..., Dn are arranged in the multiplexed data sequence is an example of the first data region of the multiplexed data sequence, and the PRBS signals PRBS1, PRBS2, PRBS3 in the multiplexed data sequence. Is an example of the second data area of the multiplexed data string.
  • the present invention is not limited to the above-described embodiment, and various modifications and changes can be made without departing from the spirit of the present invention.
  • the number of replicas of the PRBS signal PRBS1 is tripled and the number of replicas of the external trigger signal TR (X) is doubled.
  • the present application is not limited to this. Needless to say, multiple copies can be made.
  • the replicated PRBS signal and trigger signal do not have to be the same data. You may comprise so that the bit value of at least one part of data may be changed with replication. In this case, if a change rule is defined in advance on the receiving side, BER measurement can be performed on the receiving side without any problem.
  • the transmission of the PRBS signal PRBS1 has been described as being multiplexed with the transmission of the actual data D1, D2,..., Dn, but the present application is not limited to this. It is also possible to set so that a PRBS signal is transmitted in a state where no actual data is transmitted.
  • Electromagnetic motor 122 Display lamp 124: Display unit 130: Mark camera 132: Parts camera 140: Control device B1: Input buffer B3: PRBS replication unit B5: Trigger replication unit B7: PRBS generator B9, B31: storage unit B11: multiplexing unit B13: error correction coding unit B15, B21: communication transceiver B23: error correction decoding unit B25: multiplexing restoration unit B27: trigger detection unit B29: PRBS generator B33: BER measuring device B35: BER determination unit D1, D2,..., Dn: actual data PRBS1, PRBS2, PRBS3: PRBS signal TR (X): external trigger signal Tr1 (X), Tr2 (X), Tr (X) : Trigger signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

Provided are: a multiplex communication system capable of simultaneously performing a quality check on a transmission line, and performing normal data processing for actual use, by multiplexing data for evaluating transmission quality with data for actual use; a transmission device; and a receiving device. A random bit sequence generated by a transmission-side random number generator on the transmission side is multiplexed with transmission data and transmitted. On the receiving side, the transmitted random bit sequence is compared to a comparative random bit sequence generated by a receiving-side random number generator. The comparative random bit sequence has the same bit sequence as the random bit sequence generated by the transmission-side random number generator; hence, a bit error rate tester is capable of detecting bit errors occurring in random bit sequences during transmission, and measuring the bit error rate.

Description

多重化通信システム、送信装置、および受信装置Multiplexed communication system, transmitter, and receiver
 本発明は、実使用に係るデータ通信と並行して伝送路の品質の評価を行なう多重化通信システム、送信装置、および受信装置に関するものである。 The present invention relates to a multiplexed communication system, a transmission device, and a reception device that evaluate the quality of a transmission line in parallel with data communication related to actual use.
 従来より、通信品質を評価する技術が開示されている。例えば、複数の移動局と複数の基地局とを含むネットワークについて、移動局からネットワークに測定報告を送信するための少なくとも2つの異なるトリガを指定する技術が開示されている。トリガは好適には無線信号のパラメータの上下の閾値であり、測定された値がその上限の閾値を超え、または下限の閾値より低いことが検出されることに応答して、測定報告を送信するものである(特許文献1など)。 Conventionally, techniques for evaluating communication quality have been disclosed. For example, for a network including a plurality of mobile stations and a plurality of base stations, a technique for specifying at least two different triggers for transmitting a measurement report from the mobile station to the network is disclosed. The trigger is preferably a threshold above or below a parameter of the radio signal, and sends a measurement report in response to detecting that the measured value exceeds its upper threshold or is lower than its lower threshold (Patent Document 1, etc.).
 また、光伝送装置において、受信データに基づいて伝送品質の劣化を示す品質劣化警報を発出し、発出された品質劣化警報を収集して、発出されている品質劣化警報の数に基づいて伝送路の品質が劣化していること示す伝送路品質劣化警報の発出を制御する技術が開示されている(特許文献2など)。 Further, in the optical transmission apparatus, a quality degradation alarm indicating degradation of transmission quality is issued based on the received data, the issued quality degradation alarms are collected, and the transmission path is determined based on the number of issued quality degradation alarms. A technique for controlling the issuance of a transmission path quality degradation alarm indicating that the quality of the network is degraded is disclosed (Patent Document 2, etc.).
特表2002-504792号公報Japanese translation of PCT publication No. 2002-504792 特許第4780518号公報Japanese Patent No. 4780518
 上記特許文献1に例示される背景技術は、複数の移動局と複数の基地局とを含む移動体通信のネットワークに関するものである。異なる複数のトリガ条件が検出されることに応じて移動局での測定を基地局に報告する測定報告のタイミングとするものである。例えば、無線信号のパラメータに関して測定された値が、上限の閾値を超えた場合および下限の閾値を下回った場合のそれぞれを測定報告のタイミングとして設定するものである。 The background art exemplified in Patent Document 1 relates to a mobile communication network including a plurality of mobile stations and a plurality of base stations. In response to detection of a plurality of different trigger conditions, measurement at the mobile station is used as a measurement report timing for reporting to the base station. For example, when the measured value of the parameter of the radio signal exceeds the upper threshold and when the value falls below the lower threshold, the measurement report timing is set.
 また、上記特許文献2に例示される背景技術は、光伝送路の伝送品質を判定し複数個所での判定において品質が劣化したとの警報に応じて伝送路の品質が劣化したと判断するものである。 Further, the background art exemplified in Patent Document 2 determines the transmission quality of the optical transmission line and determines that the quality of the transmission line has deteriorated in response to an alarm that the quality has deteriorated in the determination at a plurality of locations. It is.
 しかしながら、特許文献1に例示される背景技術は、複数のトリガ条件の各々において測定報告を行なうことが記載されているに過ぎない。測定報告と通常のデータ通信との通信タイミングの異同に関しては何ら記載されておらず、両者を同時に行なうことは想定されていない。また、特許文献2に例示される背景技術は、伝送路の品質劣化を複数の判定において判断することが記載されているに過ぎない。測定報告と通常のデータ通信との通信タイミングの異同に関しては何ら記載されておらず、両者を同時に行なうことは想定されていない。 However, the background art exemplified in Patent Document 1 only describes that a measurement report is performed under each of a plurality of trigger conditions. There is no description regarding the difference in communication timing between the measurement report and the normal data communication, and it is not assumed that both are performed simultaneously. In addition, the background art exemplified in Patent Document 2 only describes that quality degradation of a transmission path is determined by a plurality of determinations. There is no description regarding the difference in communication timing between the measurement report and the normal data communication, and it is not assumed that both are performed simultaneously.
 上記の特許文献に例示される背景技術は何れも、実使用に係るデータに並行して伝送品質を評価するデータを多重化して、実使用上の通常のデータ処理と同時に伝送路の品質チェックを行なうことに関しては何ら開示・示唆はされていない。実使用に係るデータの伝送に多重化して伝送品質を評価するデータを並行に伝送する際の課題については何ら解決を図るものではない。 Any of the background arts exemplified in the above-mentioned patent documents multiplexes data for evaluating transmission quality in parallel with data for actual use, and checks the quality of the transmission path simultaneously with normal data processing for actual use. There is no disclosure or suggestion regarding what to do. There is no solution to the problem in parallel transmission of data whose transmission quality is evaluated by multiplexing the transmission of data related to actual use.
 本発明は、上記の課題に鑑みてなされたものであり、実使用に係るデータに伝送品質を評価するデータを多重化することにより実使用上の通常のデータ処理と同時に伝送路の品質チェックを行なうことを可能とする多重化通信システム、送信装置、および受信装置を提供することを目的とする。 The present invention has been made in view of the above problems, and by multiplexing data for evaluating transmission quality with data for actual use, the transmission path quality check is performed simultaneously with normal data processing for actual use. It is an object of the present invention to provide a multiplexed communication system, a transmission device, and a reception device that can be performed.
 上記課題を鑑みてなされた本願の請求項1に記載の多重化通信システムは、送信側において、外部から入力されるトリガ信号により乱数ビット列の生成の起動・停止が指令される送信側乱数発生器と、送信データ、乱数ビット列、および前記トリガ信号を多重化する多重化部とを備えている。受信側では、多重化された信号から、送信データ、乱数ビット列、およびトリガ信号を復元する復元部と、トリガ信号に応じて起動・停止が指令され、乱数ビット列と同じビット配列の比較乱数ビット列を生成する受信側乱数発生器と、トリガ信号に応じて起動・停止が指令され、比較乱数ビット列に対する乱数ビット列のビットエラーレートを測定するビットエラーレート測定器とを備えている。 The multiplex communication system according to claim 1 of the present application made in view of the above problems is a transmission-side random number generator in which activation / stop of generation of a random number bit string is instructed by a trigger signal input from the outside on the transmission side And a multiplexing unit that multiplexes the transmission data, the random number bit string, and the trigger signal. On the receiving side, a restoration unit that restores transmission data, a random number bit string, and a trigger signal from the multiplexed signal, and a start / stop command according to the trigger signal, and a comparison random number bit string having the same bit arrangement as the random number bit string A reception-side random number generator to be generated, and a bit error rate measuring device that is instructed to start and stop in response to a trigger signal and measure the bit error rate of the random number bit string with respect to the comparison random number bit string.
 また、請求項2に記載の多重化通信システムは、請求項1に記載の多重化通信システムにおいて、送信側では、多重化部により生成される多重化データ列は、送信データを配列するために確保される第1データ領域と、乱数ビット列を配列するために確保される第2データ領域とを含んで構成されている。ここで、第2データ領域は、乱数ビット列が予め定められた数で複製されて得られる複数組の乱数ビット列が配列される領域である。また、ビットエラーレート測定器は、複数組の乱数ビット列の各々についてビットエラーレートを測定する。 The multiplexed communication system according to claim 2 is the multiplexed communication system according to claim 1, wherein the multiplexed data sequence generated by the multiplexing unit is arranged on the transmission side to arrange the transmission data. The first data area is secured and the second data area is secured for arranging the random number bit string. Here, the second data area is an area in which a plurality of sets of random number bit strings obtained by replicating random number bit strings in a predetermined number are arranged. The bit error rate measuring instrument measures the bit error rate for each of a plurality of sets of random number bit strings.
 また、請求項3に記載の多重化通信システムは、請求項1または2に記載の多重化通信システムにおいて、多重化部は、トリガ信号が複製されて得られる複数組のトリガ信号を多重化する。 The multiplexed communication system according to claim 3 is the multiplexed communication system according to claim 1 or 2, wherein the multiplexing unit multiplexes a plurality of sets of trigger signals obtained by duplicating the trigger signal. .
 また、請求項4に記載の送信装置は、多重化通信システムに備えられるものである。外部から入力されるトリガ信号により乱数ビット列の生成の起動・停止が指令される送信側乱数発生器と、送信データ、乱数ビット列、およびトリガ信号を多重化する多重化部とを備えている。受信側において、送信データに係る処理を行なうと共に、トリガ信号に応じて起動・停止が指令され、乱数ビット列についてビットエラーレートの測定が行なわれる。 Further, the transmission device according to claim 4 is provided in the multiplexed communication system. A transmission-side random number generator instructed to start / stop generation of a random number bit string by an externally input trigger signal, and a multiplexing unit that multiplexes transmission data, a random number bit string, and a trigger signal are provided. On the receiving side, processing related to the transmission data is performed, and start / stop is commanded according to the trigger signal, and the bit error rate is measured for the random number bit string.
 また、請求項5に記載の受信装置は、多重化通信システムに備えられるものである。送信データ、乱数ビット列、および乱数ビット列の生成の起動・停止を指令するトリガ信号を含んで送信された多重化データ列を復元する復元部と、トリガ信号に応じて起動・停止が指令され、乱数ビット列と同じビット配列の比較乱数ビット列を生成する受信側乱数発生器と、トリガ信号に応じて起動・停止が指令され、比較乱数ビット列に対する乱数ビット列のビットエラーレートを測定するビットエラーレート測定器とを備えている。 Further, the receiving device according to claim 5 is provided in a multiplexed communication system. A restoration unit that restores the transmitted data, a random number bit string, and a trigger signal that commands the start / stop of generation of the random number bit string, and a start / stop command according to the trigger signal. A receiving-side random number generator that generates a comparative random number bit string having the same bit arrangement as the bit string, and a bit error rate measuring unit that is instructed to start / stop in response to a trigger signal and measures the bit error rate of the random number bit string relative to the comparative random number bit string, It has.
 請求項1に記載の多重化通信システムでは、外部から入力されるトリガ信号により送信側にある送信側乱数発生器で生成した乱数ビット列を送信データおよびトリガ信号と共に多重化して送信する。受信側では、トリガ信号に応じて、受信側乱数発生器により生成した比較乱数ビット列を送信された乱数ビット列と比較する。比較乱数ビット列は送信側乱数発生器で生成した乱数ビット列と同じビット配列を有しているので、ビットエラーレート測定器により、伝送されることによって乱数ビット列に生じたビットエラーを検出してビットエラーレートを測定することができる。 In the multiplexed communication system according to claim 1, a random number bit string generated by a transmission-side random number generator on the transmission side is multiplexed with transmission data and a trigger signal and transmitted by a trigger signal input from the outside. On the receiving side, the comparison random number bit string generated by the receiving side random number generator is compared with the transmitted random number bit string in response to the trigger signal. Since the comparison random number bit string has the same bit arrangement as the random number bit string generated by the transmission side random number generator, the bit error rate measuring device detects the bit error that occurred in the random number bit string by being transmitted, and the bit error The rate can be measured.
 これにより、データ伝送によるビットエラーレートを測定するために、専用の測定装置を備えることは必要ない。送信側の機器に送信側乱数発生器を備え、受信側の機器に受信側乱数発生器およびビットエラーレート測定器を備えることにより、実使用の状態でビットエラーレートを測定することができる。この場合、通常の送信データに乱数ビット列を多重化して送信することができるので、通常のデータ伝送による機器の稼働中でもビットエラーレートの測定を行なうことができる。稼働中の伝送品質を把握することができ、システムの稼働信頼性を高めることができる。また、送信されたトリガ信号に応じて受信側でビットエラーレートの測定を行なうことができる。送信側への外部指令より送受信間でのビットエラーレートの測定の開始・終了を制御することができる。 Therefore, it is not necessary to provide a dedicated measuring device to measure the bit error rate due to data transmission. By providing a transmission-side random number generator in the transmission-side device and a reception-side random number generator and a bit error rate measuring device in the reception-side device, the bit error rate can be measured in an actual use state. In this case, since a random number bit string can be multiplexed and transmitted with normal transmission data, the bit error rate can be measured even during operation of the device by normal data transmission. The transmission quality during operation can be grasped, and the operation reliability of the system can be improved. Further, the bit error rate can be measured on the receiving side according to the transmitted trigger signal. The start / end of bit error rate measurement between transmission and reception can be controlled by an external command to the transmission side.
 請求項2に記載の多重化通信システムでは、多重化データ列は、送信データを配列するために確保される第1データ領域と、乱数ビット列を配列するために確保される第2データ領域とを含んで構成されているので、実使用に供される送信データとビットエラーレートを測定するための乱数ビット列とを混在させて多重化した上で送信することができる。 In the multiplexed communication system according to claim 2, the multiplexed data string includes a first data area reserved for arranging transmission data and a second data area reserved for arranging random number bit strings. Since the transmission data is configured to be included, transmission data for actual use and a random number bit string for measuring the bit error rate can be mixed and multiplexed.
 また、第2データ領域は、乱数ビット列を複数組配列できる領域を備えおり、ビットエラーレート測定器は、複数組の乱数ビット列の各々についてビットエラーレートを測定する。これにより、送信側乱数発生器で生成した乱数ビット列を複製して複数組を多重化してやれば、1つの多重化データ列で複数組のビットエラーレートを測定することができる。多重化される乱数ビット列の組数に応じて1つの多重化データ列の送信で実行できるビットエラーレートの測定回数を増やすことができる。ビットエラーレートの1回当りの測定時間を短縮することができると共に、ビットエラーレートのトータルの測定精度を向上させることができる。 The second data area includes an area where a plurality of sets of random number bit sequences can be arranged, and the bit error rate measuring device measures the bit error rate for each of the plurality of sets of random number bit sequences. Thus, if a plurality of sets are multiplexed by duplicating the random number bit string generated by the transmission-side random number generator, a plurality of sets of bit error rates can be measured with one multiplexed data string. The number of bit error rate measurements that can be performed by transmitting one multiplexed data string can be increased according to the number of sets of multiplexed random number bit strings. The measurement time per bit error rate can be shortened, and the total measurement accuracy of the bit error rate can be improved.
 請求項3に記載の多重化通信システムでは、トリガ信号は送信の際、複製されて複数組が多重化される。これにより、複製された複数組のトリガ信号が整って初めてトリガ信号が認識される。このため、ビットエラーにより本来のトリガ信号とは異なる信号がトリガ信号として誤認識されることを防止することができる。 In the multiplex communication system according to claim 3, the trigger signal is duplicated at the time of transmission, and a plurality of sets are multiplexed. Thus, the trigger signal is recognized only when a plurality of duplicate trigger signals are prepared. For this reason, it is possible to prevent a signal different from the original trigger signal from being erroneously recognized as the trigger signal due to a bit error.
 請求項4に記載の送信装置、および請求項5に記載の受信装置では、本願に記載の多重化通信システムを構成することができる。これにより、データ伝送によるビットエラーレートを測定するために専用の測定装置を備えることは必要ない。また、通常のデータ伝送による機器の稼働中にビットエラーレートの測定を行なうことができる。稼働中の伝送品質を把握することができ、システムの稼働信頼性を高めることができる。 The transmission device according to claim 4 and the reception device according to claim 5 can constitute the multiplexed communication system described in the present application. Thus, it is not necessary to provide a dedicated measuring device for measuring the bit error rate due to data transmission. In addition, the bit error rate can be measured while the device is operating by normal data transmission. The transmission quality during operation can be grasped, and the operation reliability of the system can be improved.
電子部品供給装置が取り付けられた電子部品装着機が2台並べられて構成されている電子部品装着装置を示す斜視図であり、本発明の多重化通信システムを適用することが可能な装置である。1 is a perspective view showing an electronic component mounting apparatus configured by arranging two electronic component mounting machines to which an electronic component supply apparatus is attached, and is an apparatus to which the multiplexed communication system of the present invention can be applied. . 図1に示す電子部品供給装置のテープフィーダの一部および、そのテープフィーダによって送り出されるテープ化部品を示す平面図である。It is a top view which shows a part of tape feeder of the electronic component supply apparatus shown in FIG. 1, and the tape-ized components sent out by the tape feeder. 図1に示す電子部品供給装置を示す斜視図である。It is a perspective view which shows the electronic component supply apparatus shown in FIG. 図3に示すテープフィーダを示す断面図である。It is sectional drawing which shows the tape feeder shown in FIG. 図1に示す電子部品装着機の備える制御装置を示すブロック図である。It is a block diagram which shows the control apparatus with which the electronic component mounting machine shown in FIG. 1 is provided. 送信側に備えられる装置を示すブロック図である。It is a block diagram which shows the apparatus with which a transmission side is equipped. 受信側に備えられる装置を示すブロック図である。It is a block diagram which shows the apparatus with which a receiving side is equipped. PRBSジェネレータの一例を示す回路図である。It is a circuit diagram which shows an example of a PRBS generator. データ処理の流れを模式的に示した図である。It is the figure which showed the flow of data processing typically.
 以下、本発明の実施形態として、図を参照しつつ詳しく説明する。初めに、本願の多重化通信システムを適用することが可能な例として、図1ないし図5を参照して、電子部品装着装置の構成について説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, as an example to which the multiplexed communication system of the present application can be applied, the configuration of an electronic component mounting apparatus will be described with reference to FIGS. 1 to 5.
 図1に、電子部品装着装置(以下、「装着装置」と略す場合がある)10を示す。その図は、装着装置10の外装部品の一部を取り除いた斜視図である。装着装置10は、1つのシステムベース12と、そのシステムベース12の上に互いに隣接されて並んで配列された2つの電子部品装着機(以下、「装着機」と略す場合がある)16とを含んで構成されており、回路基板に電子部品を装着する作業を行うものとされている。なお、以下の説明において、装着機16の並ぶ方向をX軸方向とし、その方向に直角な水平の方向をY軸方向と称する。 FIG. 1 shows an electronic component mounting apparatus (hereinafter, may be abbreviated as “mounting apparatus”) 10. The figure is a perspective view in which a part of the exterior component of the mounting apparatus 10 has been removed. The mounting apparatus 10 includes one system base 12 and two electronic component mounting machines (hereinafter, may be abbreviated as “mounting machines”) 16 arranged side by side adjacent to each other on the system base 12. In other words, the electronic component is mounted on the circuit board. In the following description, the direction in which the mounting machines 16 are arranged is referred to as an X-axis direction, and a horizontal direction perpendicular to the direction is referred to as a Y-axis direction.
 装着装置10の備える装着機16の各々は、主に、フレーム部20とそのフレーム部20に上架されたビーム部22とを含んで構成された装着機本体24と、回路基板をX軸方向に搬送するとともに設定された位置に固定する搬送装置26と、その搬送装置26によって固定された回路基板に電子部品を装着する装着ヘッド28と、ビーム部22に配設されて装着ヘッド28をX軸方向およびY軸方向に移動させる移動装置30と、フレーム部20の前方に配設され装着ヘッド28に電子部品を供給する電子部品供給装置(以下、「供給装置」と略す場合がある)32とを備えている。 Each of the mounting machines 16 included in the mounting apparatus 10 mainly includes a mounting machine main body 24 configured to include a frame unit 20 and a beam unit 22 overlaid on the frame unit 20, and a circuit board in the X-axis direction. A transport device 26 that transports and fixes the set position at a set position, a mounting head 28 that mounts an electronic component on a circuit board fixed by the transport device 26, and an X-axis mounted head 28 disposed on the beam unit 22. A moving device 30 that moves in the direction and the Y-axis direction, and an electronic component supply device 32 that is disposed in front of the frame portion 20 and supplies electronic components to the mounting head 28 (hereinafter, may be abbreviated as “supply device”) It has.
 搬送装置26は、2つのコンベア装置40、42を備えており、それら2つのコンベア装置40、42は、互いに平行、かつ、X軸方向に延びるようにフレーム部20のY軸方向での中央部に配設されている。2つのコンベア装置40、42の各々は、電磁モータ44(図5参照)によって各コンベア装置40、42に支持される回路基板をX軸方向に搬送する構造とされている。さらに、コンベア装置40、42の各々は、基板保持装置46(図5参照)を有しており、所定の位置において回路基板を固定的に保持する構造とされている。 The transport device 26 includes two conveyor devices 40 and 42, and the two conveyor devices 40 and 42 are parallel to each other and extend in the X-axis direction, so that the central portion in the Y-axis direction of the frame portion 20. It is arranged. Each of the two conveyor devices 40 and 42 has a structure in which a circuit board supported by each conveyor device 40 and 42 is conveyed in the X-axis direction by an electromagnetic motor 44 (see FIG. 5). Further, each of the conveyor devices 40 and 42 has a substrate holding device 46 (see FIG. 5), and is configured to hold the circuit board in a fixed position.
 また、装着ヘッド28は、搬送装置26によって保持された回路基板に対して電子部品を装着するものであり、下面に電子部品を吸着する吸着ノズル50を有している。吸着ノズル50は、正負圧供給装置52(図5参照)を介して負圧エア、正圧エア通路に通じており、負圧にて電子部品を吸着保持し、僅かな正圧が供給されることで保持した電子部品を離脱する構造とされている。さらに、装着ヘッド28は、吸着ノズル50を昇降させるノズル昇降装置(図5参照)54および吸着ノズル50をそれの軸心回りに自転させるノズル自転装置(図5参照)56を有しており、保持する電子部品の上下方向の位置および電子部品の保持姿勢を変更することが可能とされている。なお、吸着ノズル50は、装着ヘッド28に着脱可能とされており、電子部品のサイズ、形状等に応じて変更することが可能とされている。 The mounting head 28 is for mounting electronic components on the circuit board held by the transport device 26, and has a suction nozzle 50 for sucking the electronic components on the lower surface. The suction nozzle 50 communicates with negative pressure air and a positive pressure air passage via a positive / negative pressure supply device 52 (see FIG. 5), and sucks and holds the electronic component at a negative pressure, so that a slight positive pressure is supplied. In this way, the held electronic component is detached. Furthermore, the mounting head 28 includes a nozzle lifting device (see FIG. 5) 54 that lifts and lowers the suction nozzle 50 and a nozzle rotation device (see FIG. 5) 56 that rotates the suction nozzle 50 about its axis. It is possible to change the vertical position of the electronic component to be held and the holding posture of the electronic component. The suction nozzle 50 is attachable to and detachable from the mounting head 28, and can be changed according to the size and shape of the electronic component.
 移動装置30は、その装着ヘッド28をフレーム部20上の任意の位置に移動させるものであり、装着ヘッド28をX軸方向に移動させるためのX軸方向スライド機構(図示省略)と、装着ヘッド28をY軸方向に移動させるためのY軸方向スライド機構(図示省略)とを備えている。Y軸方向スライド機構は、Y軸方向に移動可能にビーム部22に設けられたY軸スライダ(図示省略)と、駆動源としての電磁モータ(図5参照)64とを有しており、その電磁モータ64によって、Y軸スライダがY軸方向の任意の位置に移動可能とされている。また、X軸方向スライド機構は、X軸方向に移動可能にY軸スライダに設けられたX軸スライダ66と、駆動源としての電磁モータ(図5参照)68とを有しており、その電磁モータ68によって、X軸スライダ66がX軸方向の任意の位置に移動可能とされている。そして、そのX軸スライダ66に装着ヘッド28が取り付けられることで、装着ヘッド28は、移動装置30によって、フレーム部20上の任意の位置に移動可能とされている。なお、装着ヘッド28は、X軸スライダ66にワンタッチで着脱可能とされており、種類の異なる作業ヘッド、例えば、ディスペンサヘッド等に変更することが可能とされている。 The moving device 30 moves the mounting head 28 to an arbitrary position on the frame unit 20, an X-axis direction slide mechanism (not shown) for moving the mounting head 28 in the X-axis direction, and the mounting head. And a Y-axis direction slide mechanism (not shown) for moving 28 in the Y-axis direction. The Y-axis direction slide mechanism has a Y-axis slider (not shown) provided in the beam portion 22 so as to be movable in the Y-axis direction, and an electromagnetic motor (see FIG. 5) 64 as a drive source. The Y-axis slider can be moved to an arbitrary position in the Y-axis direction by the electromagnetic motor 64. The X-axis direction slide mechanism has an X-axis slider 66 provided on the Y-axis slider so as to be movable in the X-axis direction, and an electromagnetic motor (see FIG. 5) 68 as a drive source. The motor 68 enables the X-axis slider 66 to move to an arbitrary position in the X-axis direction. The mounting head 28 is attached to the X-axis slider 66, so that the mounting head 28 can be moved to an arbitrary position on the frame unit 20 by the moving device 30. The mounting head 28 can be attached to and detached from the X-axis slider 66 with a single touch, and can be changed to a different type of work head, such as a dispenser head.
 また、供給装置32は、ベースとしてのフレーム部20の前方側の端部に配設されており、フィーダ型の供給装置とされている。供給装置32は、電子部品がテーピング化されたテープ化部品(図2参照)70をリール72に巻回させた状態で収容する複数のテープフィーダ74と、それら複数のテープフィーダ74の各々に収容されているテープ化部品70を送り出す複数の送出装置(図5参照)75とを有しており、テープ化部品70から電子部品を装着ヘッド28への供給位置に順次供給する構造とされている。 The supply device 32 is disposed at the front end of the frame portion 20 as a base, and is a feeder-type supply device. The supply device 32 accommodates a taped part 70 (see FIG. 2) in which electronic parts are taped and accommodated in a state in which the taped part 70 is wound around a reel 72, and is accommodated in each of the plurality of tape feeders 74. And a plurality of delivery devices (see FIG. 5) 75 for feeding out the taped component 70, and the electronic components are sequentially supplied from the taped component 70 to the supply position to the mounting head 28. .
 テープ化部品70は、図2に示すように、多数の収容凹部78および送り穴80が等ピッチで形成されたキャリアテープ82と、収容凹部78に収容される電子部品84と、キャリアテープ82の電子部品84が収容された収容凹部78を覆うトップカバーテープ86とから構成されている。一方、テープフィーダ74は、図3に示すように、そのテープ化部品70が巻回されるリール72を保持するリール保持部88と、そのリール72から引き出されたテープ化部品70が上端面に延在させられるフィーダ本体90とから構成されている。 As shown in FIG. 2, the taped component 70 includes a carrier tape 82 in which a large number of receiving recesses 78 and feed holes 80 are formed at an equal pitch, an electronic component 84 received in the receiving recess 78, and a carrier tape 82. The top cover tape 86 covers the housing recess 78 in which the electronic component 84 is housed. On the other hand, as shown in FIG. 3, the tape feeder 74 has a reel holding portion 88 for holding a reel 72 around which the taped component 70 is wound, and a taped component 70 drawn out from the reel 72 on the upper end surface. It is composed of a feeder main body 90 that is extended.
 フィーダ本体90内部には、図4に示すように、テープ化部品70のキャリアテープ82に形成された送り穴80に係合するスプロケット92が内蔵されており、そのスプロケット92が回転させられることで、キャリアテープ82にトップカバーテープ86が貼着された状態のテープ化部品70が、フィーダ本体90の上端面において、リール72から離間する方向に送り出される。そして、剥離装置(図示省略)によって、キャリアテープ82からトップカバーテープ86が剥ぎ取られることで、フィーダ本体90の上端面の先端部において、電子部品84が収容された収容凹部78が順次解放され、その解放された収容凹部78から電子部品84が吸着ノズル50によって取り出される。 As shown in FIG. 4, a sprocket 92 that engages with a feed hole 80 formed in the carrier tape 82 of the taped component 70 is built in the feeder main body 90, and the sprocket 92 is rotated. The taped component 70 with the top cover tape 86 attached to the carrier tape 82 is sent out in the direction away from the reel 72 on the upper end surface of the feeder main body 90. Then, when the top cover tape 86 is peeled off from the carrier tape 82 by a peeling device (not shown), the accommodation recesses 78 in which the electronic components 84 are accommodated are sequentially released at the tip of the upper end surface of the feeder main body 90. The electronic component 84 is taken out by the suction nozzle 50 from the opened accommodation recess 78.
 また、テープフィーダ74は、フレーム部20の前方側の端部に固定的に設けられたテープフィーダ装着台(以下、「装着台」と略す場合がある)100に着脱可能とされている。装着台100は、フレーム部20の上面に設けられたスライド部102と、そのスライド部102の搬送装置26に近い側の端部に立設された立設面部106とから構成されている。スライド部102には、Y軸方向に延びるように複数のスライド溝108が形成されており、それら複数のスライド溝108の各々に、テープフィーダ74のフィーダ本体90の下縁部を嵌合させた状態でスライドさせることが可能とされている。そして、フィーダ本体90の下縁部を嵌合させた状態で立設面部106に接近させる方向にスライドさせることで、フィーダ本体90のテープ化部品70の送り出し方向である送出方向の側の側壁面110が立設面部106に取り付けられる。これにより、テープフィーダ74が装着台100に装着される。 Also, the tape feeder 74 is detachable from a tape feeder mounting base (hereinafter sometimes abbreviated as “mounting base”) 100 fixedly provided at the front end of the frame portion 20. The mounting base 100 includes a slide portion 102 provided on the upper surface of the frame portion 20 and a standing surface portion 106 erected on an end portion of the slide portion 102 on the side close to the conveying device 26. A plurality of slide grooves 108 are formed in the slide portion 102 so as to extend in the Y-axis direction, and the lower edge portion of the feeder main body 90 of the tape feeder 74 is fitted into each of the plurality of slide grooves 108. It is possible to slide in the state. And the side wall surface by the side of the sending direction which is the sending direction of the taped component 70 of the feeder main body 90 is made to slide in the direction which approaches the standing surface part 106 in the state which fitted the lower edge part of the feeder main body 90. 110 is attached to the standing surface portion 106. As a result, the tape feeder 74 is mounted on the mounting table 100.
 その立設面部106には、上記複数のスライド溝108に対応して、複数のコネクタ接続部112が設けられている。一方、立設面部106に取り付けられるテープフィーダ74の側壁面110には、コネクタ114が設けられたおり、テープフィーダ74の側壁面110が立設面部106に取り付けられた際に、コネクタ114がコネクタ接続部112に接続されるようになっている。また、テープフィーダ74の側壁面110には、コネクタ114を上下方向に挟むように1対の立設ピン116が設けられており、装着台100の立設面部106のコネクタ接続部112を上下方向に挟むように形成された1対の嵌合穴118に嵌合されるようになっている。 The standing surface portion 106 is provided with a plurality of connector connecting portions 112 corresponding to the plurality of slide grooves 108. On the other hand, the connector 114 is provided on the side wall surface 110 of the tape feeder 74 attached to the standing surface portion 106, and when the side wall surface 110 of the tape feeder 74 is attached to the standing surface portion 106, the connector 114 is connected to the connector 114. The connection unit 112 is connected. Further, a pair of upright pins 116 are provided on the side wall surface 110 of the tape feeder 74 so as to sandwich the connector 114 in the vertical direction, and the connector connection portion 112 of the upright surface portion 106 of the mounting base 100 is connected in the vertical direction. Are fitted into a pair of fitting holes 118 formed so as to be sandwiched between the two.
 また、装着台100の上部には、図4に示すように、カバー120が開閉可能に設けられている。カバー120は、装着機16のビーム部22の前方側の端部に、X軸方向に延びる軸線まわりに回動可能に取り付けられており、装着台100を覆う閉位置と、装着台100を開放する開位置との間で回動可能とされている。装着台100にテープフィーダ74が装着された状態で、カバー120が閉じられると、その装着されているテープフィーダ74のフィーダ本体90がカバー120によって覆われるようになっている。 Further, as shown in FIG. 4, a cover 120 is provided on the top of the mounting base 100 so as to be opened and closed. The cover 120 is attached to the end portion on the front side of the beam portion 22 of the mounting machine 16 so as to be rotatable about an axis extending in the X-axis direction, and the closed position covering the mounting table 100 and the mounting table 100 are opened. It is possible to rotate between the open position. When the cover 120 is closed while the tape feeder 74 is mounted on the mounting base 100, the feeder main body 90 of the tape feeder 74 that is mounted is covered by the cover 120.
 そのカバー120の下端部には、3個の表示ランプ122(図では1個のみ示されている)が設けられた表示部124が取り付けられており、装着台100にテープフィーダ74が装着された状態で、カバー120が閉じられると、その表示部124がフィーダ本体90の上方に位置するようになっている。なお、表示部124は、複数のスライド溝108に対応して、複数設けられており、それら複数の表示部124の表示ランプ122は、テープフィーダ74を装着台100に装着する際に点灯され、複数のスライド溝108のいずれにテープフィーダ74を装着すべきかを案内するものとして使用される。 A display portion 124 provided with three display lamps 122 (only one is shown in the figure) is attached to the lower end portion of the cover 120, and the tape feeder 74 is attached to the attachment base 100. When the cover 120 is closed in this state, the display unit 124 is positioned above the feeder main body 90. A plurality of display units 124 are provided corresponding to the plurality of slide grooves 108, and the display lamps 122 of the plurality of display units 124 are turned on when the tape feeder 74 is mounted on the mounting base 100, It is used as a guide to which of the plurality of slide grooves 108 the tape feeder 74 should be attached.
 また、装着機16は、マークカメラ(図5参照)130およびパーツカメラ(図1、5参照)132を備えている。マークカメラ130は、下方を向いた状態でX軸スライダ66の下面に固定されており、移動装置30によって移動させられることで、回路基板の表面を任意の位置において撮像することが可能となっている。一方、パーツカメラ132は、上を向いた状態でフレーム部20の搬送装置26と供給装置32との間に設けられており、装着ヘッド28の吸着ノズル50によって吸着保持された電子部品を撮像することが可能となっている。マークカメラ130によって得られた画像データおよび、パーツカメラ132によって得られた画像データは、画像処理装置134(図5参照)において処理され、回路基板に関する情報、基板保持装置46による回路基板の保持位置誤差、吸着ノズル50による電子部品の保持位置誤差等が取得される。 The mounting machine 16 includes a mark camera (see FIG. 5) 130 and a parts camera (see FIGS. 1 and 5) 132. The mark camera 130 is fixed to the lower surface of the X-axis slider 66 so as to face downward, and is moved by the moving device 30 so that the surface of the circuit board can be imaged at an arbitrary position. Yes. On the other hand, the parts camera 132 is provided between the transport device 26 of the frame unit 20 and the supply device 32 in a state of facing upward, and images the electronic component sucked and held by the suction nozzle 50 of the mounting head 28. It is possible. The image data obtained by the mark camera 130 and the image data obtained by the parts camera 132 are processed by the image processing device 134 (see FIG. 5), and information on the circuit board, the holding position of the circuit board by the board holding device 46. An error, a holding position error of the electronic component by the suction nozzle 50, and the like are acquired.
 さらに、装着機16は、図5に示すように、制御装置140を備えている。制御装置140は、CPU、ROM、RAM等を備えたコンピュータを主体とするコントローラ142と、上記電磁モータ44、64、68、基板保持装置46、正負圧供給装置52、ノズル昇降装置54、ノズル自転装置56、送出装置75の各々に対応する複数の駆動回路144と、複数の表示部124に設けられた複数の表示ランプ122の各々に対応する複数の制御回路146とを備えている。コントローラ142には、各駆動回路144を介して搬送装置、移動装置等の駆動源が接続されており、搬送装置、移動装置等の作動を制御することが可能とされている。また、コントローラ142には、各制御回路146を介して複数の表示ランプ122に接続されており、それら複数の表示ランプ122の各々を制御可能に点灯することが可能とされている。また、複数の表示部124には図示しない各種のスイッチが設けられる場合もあり、各制御回路146に対してスイッチ入力に伴う各種の制御信号が送られる。さらに、コントローラ142には、マークカメラ130およびパーツカメラ132によって得られた画像データを処理する画像処理装置134が接続されている。 Further, the mounting machine 16 includes a control device 140 as shown in FIG. The control device 140 includes a controller 142 mainly composed of a computer having a CPU, ROM, RAM, etc., the electromagnetic motors 44, 64, 68, the substrate holding device 46, the positive / negative pressure supply device 52, the nozzle lifting / lowering device 54, the nozzle rotation. A plurality of drive circuits 144 corresponding to each of the device 56 and the delivery device 75 and a plurality of control circuits 146 corresponding to each of the plurality of display lamps 122 provided in the plurality of display units 124 are provided. The controller 142 is connected to a drive source such as a transfer device or a moving device via each drive circuit 144, and can control the operation of the transfer device, the moving device, or the like. The controller 142 is connected to a plurality of display lamps 122 via each control circuit 146, and each of the plurality of display lamps 122 can be lit up in a controllable manner. The plurality of display units 124 may be provided with various switches (not shown), and various control signals accompanying switch inputs are sent to the control circuits 146. Further, an image processing device 134 that processes image data obtained by the mark camera 130 and the part camera 132 is connected to the controller 142.
 装着機16では、上述した構成によって、搬送装置26に保持された回路基板に対して、装着ヘッド28によって電子部品の装着作業を行うことが可能とされている。具体的に説明すれば、まず、搬送装置26によって、回路基板を装着作業位置まで搬送するとともに、その位置において回路基板を固定的に保持する。次に、移動装置30によって、装着ヘッド28を回路基板上に移動させ、マークカメラ130によって、回路基板を撮像する。その撮像により回路基板の種類、搬送装置26による回路基板の保持位置誤差が取得される。その取得された回路基板の種類に応じた電子部品を、供給装置32のテープフィーダ74によって供給し、その電子部品の供給位置に、装着ヘッド28を移動装置30によって移動させる。これにより、装着ヘッド28の吸着ノズル50によって電子部品が吸着保持される。 In the mounting machine 16, with the configuration described above, it is possible to perform an electronic component mounting operation with the mounting head 28 on the circuit board held by the transport device 26. More specifically, the circuit board is first transported to the mounting work position by the transport device 26, and the circuit board is fixedly held at that position. Next, the mounting device 28 is moved onto the circuit board by the moving device 30, and the circuit board is imaged by the mark camera 130. By the imaging, the type of the circuit board and the holding position error of the circuit board by the transfer device 26 are acquired. An electronic component corresponding to the acquired type of circuit board is supplied by the tape feeder 74 of the supply device 32, and the mounting head 28 is moved by the moving device 30 to the supply position of the electronic component. Thereby, the electronic component is sucked and held by the suction nozzle 50 of the mounting head 28.
 続いて、電子部品を保持した状態の装着ヘッド28を、移動装置30によってパーツカメラ132上に移動させ、パーツカメラ132によって、装着ヘッド28に保持された電子部品を撮像する。その撮像により電子部品の保持位置誤差が取得される。そして、移動装置30によって、装着ヘッド28を回路基板上の装着位置に移動させ、装着ヘッド28によって、回路基板および電子部品の保持位置誤差に基づいて装着ノズル50を自転させた後に、電子部品が装着される。 Subsequently, the mounting head 28 holding the electronic component is moved onto the parts camera 132 by the moving device 30, and the electronic component held by the mounting head 28 is imaged by the parts camera 132. The holding position error of the electronic component is acquired by the imaging. The moving device 30 moves the mounting head 28 to the mounting position on the circuit board, and the mounting head 28 rotates the mounting nozzle 50 based on the holding position error between the circuit board and the electronic component. Installed.
 さて、本願の多重化通信システムは、上記の電子部品装着装置10に例示される電子部品装着装置や電子部品の実装装置、あるいはその他の様々な製造ラインにおいて稼働する自動機などに適用することが可能なシステムである。上述したように、電子部品装着装置10では、制御装置140から、各種の電磁モータ44、64、68やその他の可動装置および表示ランプ122に対して、各種のデータが送信されこれらの機器が制御される。また、制御装置140は、マークカメラ130やパーツカメラ132、各種の電磁モータ44、64、68やその他の可動装置、および表示部124などからの図示しない各種のデータを受信して制御の用に供する。 The multiplexed communication system of the present application can be applied to an electronic component mounting apparatus, an electronic component mounting apparatus exemplified in the electronic component mounting apparatus 10 described above, or an automatic machine that operates in various other production lines. It is a possible system. As described above, in the electronic component mounting apparatus 10, various data are transmitted from the control device 140 to the various electromagnetic motors 44, 64, 68 and other movable devices and the display lamp 122 to control these devices. Is done. The control device 140 receives various data (not shown) from the mark camera 130, the parts camera 132, various electromagnetic motors 44, 64, 68, other movable devices, the display unit 124, and the like for control. Provide.
 具体的には、制御装置140の各駆動回路144から動作指令データが各種の電磁モータ44、64、68やその他の可動装置に発せられ駆動制御が行われる。また、制御装置140の制御回路146から点灯制御データが表示ランプ122に発せられ点灯制御が行われる。一方、制御装置140には、マークカメラ130やパーツカメラ132から画像データが受信され、各種の電磁モータ44、64、68やその他の可動装置からトルク情報や位置情報等の機器情報データが受信され、各機器に備えられるセンサやスイッチなど(不図示)から各種の入力データが受信される。 Specifically, operation command data is issued from each drive circuit 144 of the control device 140 to various electromagnetic motors 44, 64, 68 and other movable devices, and drive control is performed. Further, lighting control data is emitted from the control circuit 146 of the control device 140 to the display lamp 122, and lighting control is performed. On the other hand, the control device 140 receives image data from the mark camera 130 and the parts camera 132, and receives device information data such as torque information and position information from various electromagnetic motors 44, 64, 68 and other movable devices. Various input data are received from sensors (not shown) or the like (not shown) provided in each device.
 以下の実施形態では、こうした様々なデータの通信が行われる稼働状態の電子部品装着装置10において、データ通信の際に、伝送路のビットエラーレート(以下、BERと略記する。)を測定する疑似ランダム符号(以下、PRBS信号と略記する。ここで、PRBSとは、Pseudo-Random Binary Sequenceを表す略記号である。)を合わせて送信するデータ伝送に適用して好適な多重化通信システム、送信装置、および受信装置について説明する。 In the following embodiment, in the electronic component mounting apparatus 10 in an operating state in which such various data communication is performed, a pseudo error that measures a bit error rate (hereinafter abbreviated as BER) of a transmission line at the time of data communication. Multiplex communication system suitable for application to data transmission in which a random code (hereinafter abbreviated as PRBS signal. PRBS is an abbreviation representing Pseudo-Random Binary Sequence) is transmitted together. The device and the receiving device will be described.
 図6は、送信側に備えられる装置を示すブロック図である。稼働状態の電子部品装着装置10において必要とされる実データD1、D2、・・・、Dnに加えて、BER測定のためのPRBS信号PRBS1を生成して実データD1、D2、・・・、Dnと共に多重化して送信する機能を奏する制御部分である。 FIG. 6 is a block diagram showing an apparatus provided on the transmission side. In addition to the actual data D1, D2,..., Dn required in the electronic component mounting apparatus 10 in the operating state, a PRBS signal PRBS1 for BER measurement is generated and the actual data D1, D2,. It is a control part that performs the function of multiplexing and transmitting together with Dn.
 実データD1、D2、・・・、Dnは入力バッファB1を介して後述する多重化部B11に送られる。ここで、実データD1、D2、・・・、Dnとは以下のデータである。送信側が制御装置140である場合には、例えば、電磁モータ44、64、68やその他の可動装置を駆動制御する動作指令データであり、表示ランプ122を点灯制御する点灯制御データである。送信側が制御装置140ではない場合には、マークカメラ130やパーツカメラ132から出力される画像データであり、電磁モータ44、64、68やその他の可動装置から発せられる各種の機器情報データであり、各機器に備えられるセンサやスイッチなど(不図示)から各種の入力データである。 Real data D1, D2,..., Dn are sent to a multiplexing unit B11, which will be described later, via an input buffer B1. Here, the actual data D1, D2,..., Dn are the following data. When the transmission side is the control device 140, for example, it is operation command data for driving and controlling the electromagnetic motors 44, 64, 68 and other movable devices, and lighting control data for controlling the lighting of the display lamp 122. When the transmission side is not the control device 140, it is image data output from the mark camera 130 or the parts camera 132, and various device information data emitted from the electromagnetic motors 44, 64, 68 and other movable devices, Various input data from sensors and switches (not shown) provided in each device.
 送信側にはBER測定のために、更に、PRBS複製部B3、トリガ複製部B5、PRBSジェネレータB7、記憶部B9、および多重化部B11が備えられている。 The transmission side is further provided with a PRBS replication unit B3, a trigger replication unit B5, a PRBS generator B7, a storage unit B9, and a multiplexing unit B11 for BER measurement.
 トリガ複製部B5は外部トリガ信号TR(X)に応じて、PRBSジェネレータB7を起動するとともに、外部トリガ信号TR(X)を複製して2つのトリガ信号Tr1(X)、Tr2(X)を生成する。ここで、トリガ信号は、BER測定開始と測定終了のそれぞれのタイミングで発せられる。以下の説明では、トリガ信号について、BER測定開始を示す場合にはXを「S」と表記し、BER測定終了を示す場合にはXを「E」と表記する。また、何れかを特定しない場合は表記を「X」とする。 In response to the external trigger signal TR (X), the trigger duplication unit B5 activates the PRBS generator B7 and duplicates the external trigger signal TR (X) to generate two trigger signals Tr1 (X) and Tr2 (X). To do. Here, the trigger signal is generated at each timing of the start of BER measurement and the end of measurement. In the following description, regarding the trigger signal, X is expressed as “S” when indicating the start of BER measurement, and X is expressed as “E” when indicating the end of BER measurement. In addition, when any of them is not specified, the notation is “X”.
 PRBSジェネレータB7は、BER測定開始の外部トリガ信号TR(S)に応じて、記憶部B9に格納されている初期値を読出しPRBS信号PRBS1の生成が開始される。尚、生成されるPRBS信号PRBS1は、生成終了を指示する外部トリガ信号TR(E)が入力されるまで継続される。生成されたPRBS信号PRBS1はPRBS複製部B3に送られ複製される。図6では3重に複製される場合を例示する。生成された3重のPRBS信号PRBS1、PRBS2、PRBS3は多重化部B11に送られる。 The PRBS generator B7 reads the initial value stored in the storage unit B9 in response to the external trigger signal TR (S) for starting the BER measurement, and starts generating the PRBS signal PRBS1. The generated PRBS signal PRBS1 is continued until an external trigger signal TR (E) instructing the end of generation is input. The generated PRBS signal PRBS1 is sent to the PRBS duplicator B3 and duplicated. FIG. 6 illustrates a case where the duplication is performed in triplicate. The generated triple PRBS signals PRBS1, PRBS2, and PRBS3 are sent to the multiplexing unit B11.
 一方、トリガ複製部B5では、外部トリガTR(X)を2重に複製してトリガ信号Tr1(X)、Tr2(X)を生成する。生成されたトリガ信号Tr1(X)、Tr2(X)は多重化部B11に送られる。 On the other hand, the trigger duplication unit B5 duplicates the external trigger TR (X) to generate the trigger signals Tr1 (X) and Tr2 (X). The generated trigger signals Tr1 (X) and Tr2 (X) are sent to the multiplexing unit B11.
 多重化部B11は、入力された実データD1、D2、・・・、Dn、PRBS信号PRBS1、PRBS2、PRBS3、およびトリガ信号Tr1(X)、Tr2(X)を多重化する。多重化された多重化データ列は、誤り訂正符号化部B13において誤り訂正符号が付加された上で通信トランシーバB15により送信される。 The multiplexing unit B11 multiplexes the input real data D1, D2,..., Dn, PRBS signals PRBS1, PRBS2, PRBS3, and trigger signals Tr1 (X), Tr2 (X). The multiplexed multiplexed data string is transmitted by the communication transceiver B15 after the error correction code is added in the error correction coding unit B13.
 図7は、受信側に備えられる装置を示すブロック図である。通信トランシーバB21により受信された多重化データ列は、誤り訂正復号化部B23により誤りの検出および訂正が行われる。 FIG. 7 is a block diagram showing an apparatus provided on the receiving side. The multiplexed data sequence received by the communication transceiver B21 is subjected to error detection and correction by the error correction decoding unit B23.
 受信側にはBER測定のために、更に、多重化復元部B25、トリガ検出部B27、PRBSジェネレータB29、記憶部B31、BER測定器B33、およびBER判定部B35が備えられている。 The receiving side further includes a multiplexing restoration unit B25, a trigger detection unit B27, a PRBS generator B29, a storage unit B31, a BER measuring device B33, and a BER determination unit B35 for BER measurement.
 誤り訂正された多重化データ列は多重化複合部B25により復元され、個々の実データD1、D2、・・・、Dnと、PRBS信号PRBS1、PRBS2、PRBS3、およびトリガ信号Tr1(X)、Tr2(X)に分離される。このうち、実データD1、D2、・・・、Dnは、そのまま稼働状態にある電子部品装着装置10の各種の機器に転送される。これにより、稼働状態は継続される。 The error-corrected multiplexed data sequence is restored by the multiplexing composite unit B25, and individual real data D1, D2,..., Dn, PRBS signals PRBS1, PRBS2, PRBS3, and trigger signals Tr1 (X), Tr2 Separated into (X). Of these, the actual data D1, D2,..., Dn are transferred as they are to various devices of the electronic component mounting apparatus 10 in the operating state. Thereby, the operating state is continued.
 また、トリガ信号Tr1(X)、Tr2(X)はトリガ検出部B27に入力される。トリガ検出部B27では、2重に複製されたトリガ信号Tr1(X)、Tr2(X)が共に入力されることに応じてBER測定のためのPRBS信号PRBS1、PRBS2、PRBS3を受信したものと判断することができる。これにより、伝送中に発生するビットエラーなどによりデータ値が反転してしまい、本来のトリガ信号ではない信号をトリガ信号であると誤認識してBER測定の開始・終了がされてしまうことを防止することができる。 Trigger signals Tr1 (X) and Tr2 (X) are input to the trigger detection unit B27. The trigger detection unit B27 determines that the PRBS signals PRBS1, PRBS2, and PRBS3 for BER measurement have been received in response to the input of both duplicated trigger signals Tr1 (X) and Tr2 (X). can do. This prevents the data value from being inverted due to a bit error or the like that occurs during transmission, so that a signal that is not the original trigger signal is misrecognized as a trigger signal and BER measurement is not started or ended. can do.
 トリガ信号Tr1(X)、Tr2(X)に応じて生成されるトリガ信号Tr(X)は、PRBSジェネレータB29およびBER測定器B33に入力される。PRBSジェネレータB29はPRBSジェネレータB7と同じ構成を有している。また、記憶部B31に格納されている初期値は記憶部B9に格納されている初期値と同じである。したがって、トリガ信号Tr(S)に応じて、PRBSジェネレータB7により生成されたPRBS信号PRBS1と同一のPRBS信号PRBS1を生成する。尚、生成されるPRBS信号PRBS1は、生成終了を指示するトリガ信号Tr(E)が入力されるまで継続される。 The trigger signal Tr (X) generated according to the trigger signals Tr1 (X) and Tr2 (X) is input to the PRBS generator B29 and the BER measuring device B33. The PRBS generator B29 has the same configuration as the PRBS generator B7. The initial value stored in the storage unit B31 is the same as the initial value stored in the storage unit B9. Therefore, the same PRBS signal PRBS1 as the PRBS signal PRBS1 generated by the PRBS generator B7 is generated according to the trigger signal Tr (S). The generated PRBS signal PRBS1 is continued until a trigger signal Tr (E) instructing the end of generation is input.
 PRBSジェネレータB29により生成されたPRBS信号PRBS1はBER測定器B33に送られる。BER測定器B33では、PRBSジェネレータB29により生成されたPRBS信号PRBS1と受信したPRBS信号PRBS1、PRBS2、PRBS3の各々とが比較され、BER測定が行われる。受信したPRBS信号PRBS1、PRBS2、PRBS3のビット列のうちPRBSジェネレータB29により生成されたPRBS信号PRBS1とは異なるビット数を計測してBERを測定する。 The PRBS signal PRBS1 generated by the PRBS generator B29 is sent to the BER measuring device B33. In the BER measuring device B33, the PRBS signal PRBS1 generated by the PRBS generator B29 is compared with each of the received PRBS signals PRBS1, PRBS2, and PRBS3, and BER measurement is performed. The BER is measured by measuring the number of bits different from the PRBS signal PRBS1 generated by the PRBS generator B29 in the bit string of the received PRBS signals PRBS1, PRBS2, and PRBS3.
 BER測定器B33において測定されたBERの測定値は、BER判定部B35において、記憶部B31に格納されている規定値と比較される。これにより、伝送品質として許容できる値か否かの判定が行われ、判定結果が出力される。BER判定部B35から出力される判定結果は、表示ランプ、表示板、表示モニタなどの表示装置により表示される。 The measured value of BER measured by the BER measuring device B33 is compared with a prescribed value stored in the storage unit B31 in the BER determination unit B35. Thereby, it is determined whether or not the transmission quality is acceptable, and a determination result is output. The determination result output from the BER determination unit B35 is displayed by a display device such as a display lamp, a display board, or a display monitor.
 図8には、PRBSジェネレータB7、B29の一例を示す回路図である。PRBS信号はITU-Tの標準規格により定められているビット列であり、ビット列の長短により幾つかの規格が制定されている。図8に示す回路図は、(2-1)タイプのビット列を生成するジェネレータである。9つのD型ラッチ1DLないし9DLを直列に連結してシフトレジスタを構成し、5段目のD型ラッチ5DLと9段目のD型ラッチ9DLとを排他的論理和ゲートXORに入力する。排他的論理和ゲートXORの出力信号は1段目のD型ラッチ1DLにフィードバックされる。起動時、格段のD型ラッチ1DLないし9DLに初期値を設定した後、クロック信号CLKに応じてシフト動作が継続される。サイクルごとに更新される9段目のD型ラッチ9DLの出力信号OUTがPRBS信号として出力される。この時出力されるPRBS信号は、(2-1)タイプとして規定されているビット列となる。 FIG. 8 is a circuit diagram showing an example of PRBS generators B7 and B29. The PRBS signal is a bit string defined by the ITU-T standard, and several standards are established depending on the length of the bit string. The circuit diagram shown in FIG. 8 is a generator that generates a (2 9 -1) type bit string. Nine D-type latches 1DL to 9DL are connected in series to form a shift register, and the fifth-stage D-type latch 5DL and the ninth-stage D-type latch 9DL are input to the exclusive OR gate XOR. The output signal of the exclusive OR gate XOR is fed back to the first-stage D-type latch 1DL. At start-up, after initial values are set in the remarkable D-type latches 1DL to 9DL, the shift operation is continued in accordance with the clock signal CLK. The output signal OUT of the 9th stage D-type latch 9DL updated every cycle is output as a PRBS signal. The PRBS signal output at this time is a bit string defined as the (2 9 -1) type.
 図9は、本実施形態におけるデータ処理の流れを模式的に示した図である。本実施形態では、電子部品装着装置10が稼働状態にあることを前提として、稼働状態において伝送路のBER測定を行なうものである。そのため、動作指令データ、点灯制御データ、画像データ、機器情報データ、入力データ等の電子部品装着装置10の稼働状態において伝送される各種のデータ(機器データ)である実データD1、D2、・・・、Dnに加えて、BER測定のためのPRBS信号PRBS1、および測定開始・終了を示す外部トリガ信号TR(X)に基づいて生成されるトリガ信号Tr1(X)、Tr2(X)が多重化されて送信される。 FIG. 9 is a diagram schematically showing the flow of data processing in the present embodiment. In the present embodiment, on the assumption that the electronic component mounting apparatus 10 is in the operating state, the BER measurement of the transmission path is performed in the operating state. Therefore, actual data D1, D2, which are various data (device data) transmitted in the operating state of the electronic component mounting apparatus 10 such as operation command data, lighting control data, image data, device information data, and input data. In addition to Dn, trigger signals Tr1 (X) and Tr2 (X) generated based on PRBS signal PRBS1 for BER measurement and external trigger signal TR (X) indicating measurement start / end are multiplexed. To be sent.
 送信に当たって、PRBS信号PRBS1および外部トリガ信号TR(X)は多重に複製される。本実施形態では、PRBS信号PRBS1は3重に複製されてPRBS信号PRBS1、PRBS2、PRBS3が生成される。また、外部トリガ信号TR(X)は、2重に複製されてトリガ信号Tr1(X)、Tr2(X)が生成される。 During transmission, the PRBS signal PRBS1 and the external trigger signal TR (X) are duplicated. In the present embodiment, the PRBS signal PRBS1 is duplicated to generate PRBS signals PRBS1, PRBS2, and PRBS3. The external trigger signal TR (X) is duplicated to generate trigger signals Tr1 (X) and Tr2 (X).
 実データD1、D2、・・・、Dn、3重に複製されたPRBS信号PRBS1、PRBS2、PRBS3、および2重に複製されたトリガ信号Tr1(X)、Tr2(X)が、多重化されて伝送路を伝搬して通信される。伝送中のPRBS信号は3重に複製されたPRBS信号PRBS1、PRBS2、PRBS3である。このため、BER測定を3重に行なうことができ、より精度の高いBER測定ができる。また、1単位の多重化データ列に3重のBER測定を埋め込むことができ、BER測定時間の短縮を図ることができる。また、伝送中のトリガ信号は2重に複製されたトリガ信号Tr1(X)、Tr2(X)である。トリガ信号が2重化されているので、伝送中のビットエラー等により本来のトリガ信号ではない信号をトリガ信号と誤認識するおそれが低減され、トリガタイミングを確実に送信することができる。 The real data D1, D2,..., Dn, the triple replicated PRBS signals PRBS1, PRBS2, PRBS3, and the double replicated trigger signals Tr1 (X), Tr2 (X) are multiplexed. It communicates by propagating through the transmission line. The PRBS signals being transmitted are the triple replicated PRBS signals PRBS1, PRBS2, and PRBS3. For this reason, BER measurement can be performed in triplicate, and BER measurement with higher accuracy can be performed. Further, triple BER measurement can be embedded in one unit of the multiplexed data string, and the BER measurement time can be shortened. The trigger signals being transmitted are trigger signals Tr1 (X) and Tr2 (X) duplicated. Since the trigger signal is duplicated, the possibility that a signal that is not the original trigger signal is erroneously recognized as a trigger signal due to a bit error during transmission or the like is reduced, and the trigger timing can be reliably transmitted.
 受信側では、多重化データ列が複合され個々のデータに分離される、実データD1、D2、・・・、Dnは各機器に転送され通常の稼働状態での動作、制御が継続して行われる。一方、電子部品装着装置10の通常の稼働状態での動作、制御とは独立して、トリガ信号Tr1(X)、Tr2(X)により定められる測定開始・終了のタイミングに合わせて、3重に複製された各々のPRBS信号PRBS1、PRBS2、PRBS3に対してBER測定が行われる。 On the receiving side, the multiplexed data string is combined and separated into individual data. The actual data D1, D2,..., Dn are transferred to each device, and the operation and control in the normal operation state are continued. Is called. On the other hand, independently of the operation and control of the electronic component mounting apparatus 10 in the normal operating state, in triplicate according to the measurement start / end timing determined by the trigger signals Tr1 (X) and Tr2 (X). BER measurement is performed on each of the replicated PRBS signals PRBS1, PRBS2, and PRBS3.
 以上詳細に説明したように、本実施形態によれば、送信側にあるPRBSジェネレータB7で生成したPRBS信号PRBS1を実データD1、D2、・・・、Dnと共に多重化して送信する。受信側では、実データD1、D2、・・・、Dnに伴う機器の通常の稼働状態に影響を与えることなく、BER測定器B33においてBERを測定することができる。この場合、送信側のPRBSジェネレータB7と受信側のPRBSジェネレータB29とは同一の構成を有しており、各記憶部B7、B31に格納されている初期値も同一であるため、両者から生成されるPRBS信号PRBS1は同じビット列となる。これにより、BER測定器B33では、伝送途中で発生したビットエラーを確認することができ、BERを測定することができる。 As described in detail above, according to the present embodiment, the PRBS signal PRBS1 generated by the PRBS generator B7 on the transmission side is multiplexed with the actual data D1, D2,. On the receiving side, the BER measuring instrument B33 can measure the BER without affecting the normal operating state of the device associated with the actual data D1, D2,..., Dn. In this case, the PRBS generator B7 on the transmission side and the PRBS generator B29 on the reception side have the same configuration, and the initial values stored in the storage units B7 and B31 are also the same. The PRBS signal PRBS1 is the same bit string. Thereby, in the BER measuring device B33, the bit error which occurred in the middle of transmission can be confirmed, and BER can be measured.
 データ伝送における伝送路でのビットエラーを、専用の測定装置を備える必要なく、しかも、電子部品装着装置10の通常の稼働状態において測定することができる。実稼働状態でBERを測定することができ、実稼働状態での伝送路の伝送品質を精度よく把握することができる。また、稼働中の伝送品質を把握することができ、システムの稼働信頼性を高めることができる。 It is possible to measure a bit error in a transmission line in data transmission in the normal operating state of the electronic component mounting apparatus 10 without providing a dedicated measuring apparatus. The BER can be measured in the actual operation state, and the transmission quality of the transmission line in the actual operation state can be accurately grasped. In addition, the transmission quality during operation can be grasped, and the operational reliability of the system can be improved.
 また、PRBS信号PRBS1を多重に複製して送信することができるので、PRBSジェネレータB7において1つのPRBS信号PRBS1を生成するだけで、多重にBER測定を行なうことができ、1回の多重化データ列の送信で実行できるBER測定の回数を増やすことができる。BER測定の1回当りの測定時間を短縮することができると共に、トータルの測定精度を向上させることができる。 Further, since the PRBS signal PRBS1 can be duplicated and transmitted, only one PRBS signal PRBS1 can be generated by the PRBS generator B7, and BER measurement can be performed in a multiplexed manner. It is possible to increase the number of BER measurements that can be performed by transmitting. The measurement time per BER measurement can be shortened and the total measurement accuracy can be improved.
 また、外部トリガ信号TR(X)が多重に複製されて伝送されるので、伝送中においてビットエラーにより本来のトリガ信号ではない信号がトリガ信号として誤認識されることを防止することができる。 In addition, since the external trigger signal TR (X) is duplicated and transmitted, it is possible to prevent a signal that is not the original trigger signal from being erroneously recognized as the trigger signal due to a bit error during transmission.
 ここで、実データD1、D2、・・・、Dnは送信データの一例であり、PRBS3信号PRBS1は乱数ビット列および比較乱数ビット列の一例である。また、PRBSジェネレータB7は送信側乱数発生器の一例であり、PRBSジェネレータB29は受信側乱数発生器の一例である。また、多重化部B11は多重化部の一例であり、多重化復元部B25は復元部の一例である。また、BER測定器B33はビットエラーレート測定器の一例である。また、多重化データ列において実データD1、D2、・・・、Dnが配列される領域は多重化データ列の第1データ領域の一例であり、多重化データ列においてPRBS信号PRBS1、PRBS2、PRBS3が配列される領域は多重化データ列の第2データ領域の一例である。 Here, the actual data D1, D2,..., Dn are examples of transmission data, and the PRBS3 signal PRBS1 is an example of a random number bit string and a comparison random number bit string. The PRBS generator B7 is an example of a transmission side random number generator, and the PRBS generator B29 is an example of a reception side random number generator. The multiplexing unit B11 is an example of a multiplexing unit, and the multiplexing restoration unit B25 is an example of a restoration unit. The BER measuring device B33 is an example of a bit error rate measuring device. In addition, the region where the actual data D1, D2,..., Dn are arranged in the multiplexed data sequence is an example of the first data region of the multiplexed data sequence, and the PRBS signals PRBS1, PRBS2, PRBS3 in the multiplexed data sequence. Is an example of the second data area of the multiplexed data string.
 尚、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内での種々の改良、変更が可能であることは言うまでもない。
例えば、本実施形態では、PRBS信号PRBS1の複製数を3重とし、外部トリガ信号TR(X)の複製数を2重として説明したが、本願はこれに限定されるものではない。更に多重に複製することができることは言うまでもない。
また、複製されるPRBS信号およびトリガ信号は同一のデータである必要はない。複製と共にデータの少なくとも一部のビット値を変更するように構成してもよい。この場合、受信側においてあらかじめ変更のルールを規定しておけば、受信側においても問題なくBER測定を行なうことができる。
また、PRBS信号PRBS1の送信を実データD1、D2、・・・、Dnの送信と共に多重化して送信するものとして説明したが、本願はこれに限られない。実データの送信がない状態でPRBS信号を送信するように設定することも可能である。
Needless to say, the present invention is not limited to the above-described embodiment, and various modifications and changes can be made without departing from the spirit of the present invention.
For example, in the present embodiment, the number of replicas of the PRBS signal PRBS1 is tripled and the number of replicas of the external trigger signal TR (X) is doubled. However, the present application is not limited to this. Needless to say, multiple copies can be made.
Further, the replicated PRBS signal and trigger signal do not have to be the same data. You may comprise so that the bit value of at least one part of data may be changed with replication. In this case, if a change rule is defined in advance on the receiving side, BER measurement can be performed on the receiving side without any problem.
In addition, the transmission of the PRBS signal PRBS1 has been described as being multiplexed with the transmission of the actual data D1, D2,..., Dn, but the present application is not limited to this. It is also possible to set so that a PRBS signal is transmitted in a state where no actual data is transmitted.
 10:電子部品装着装置  44、64、68:電磁モータ  122:表示ランプ  124:表示部  130:マークカメラ  132:パーツカメラ  140:制御装置  B1:入力バッファ  B3:PRBS複製部  B5:トリガ複製部  B7:PRBSジェネレータ  B9、B31:記憶部  B11:多重化部  B13:誤り訂正符号化部  B15、B21:通信トランシーバ  B23:誤り訂正復号化部  B25:多重化復元部  B27:トリガ検出部  B29:PRBSジェネレータ  B33:BER測定器  B35:BER判定部  D1、D2、・・・、Dn:実データ  PRBS1、PRBS2、PRBS3:PRBS信号  TR(X):外部トリガ信号  Tr1(X)、Tr2(X)、Tr(X):トリガ信号  
 
10: Electronic component mounting device 44, 64, 68: Electromagnetic motor 122: Display lamp 124: Display unit 130: Mark camera 132: Parts camera 140: Control device B1: Input buffer B3: PRBS replication unit B5: Trigger replication unit B7: PRBS generator B9, B31: storage unit B11: multiplexing unit B13: error correction coding unit B15, B21: communication transceiver B23: error correction decoding unit B25: multiplexing restoration unit B27: trigger detection unit B29: PRBS generator B33: BER measuring device B35: BER determination unit D1, D2,..., Dn: actual data PRBS1, PRBS2, PRBS3: PRBS signal TR (X): external trigger signal Tr1 (X), Tr2 (X), Tr (X) : Trigger signal

Claims (5)

  1.  多重化通信システムであって、
     送信側において、
    外部から入力されるトリガ信号により乱数ビット列の生成の起動・停止が指令される送信側乱数発生器と、
    送信データ、前記乱数ビット列、および前記トリガ信号を多重化する多重化部とを備え、
    受信側において、
    多重化された信号から、前記送信データ、前記乱数ビット列、および前記トリガ信号を復元する復元部と、
    前記トリガ信号に応じて起動・停止が指令され、前記乱数ビット列と同じビット配列の比較乱数ビット列を生成する受信側乱数発生器と、
    前記トリガ信号に応じて起動・停止が指令され、前記比較乱数ビット列に対する前記乱数ビット列のビットエラーレートを測定するビットエラーレート測定器とを備えることを特徴とする多重化通信システム。
    A multiplexed communication system,
    On the sending side,
    A random number generator on the transmission side, which is instructed to start / stop generation of a random number bit string by an externally input trigger signal;
    A multiplexing unit for multiplexing transmission data, the random number bit string, and the trigger signal;
    On the receiving side,
    A restoration unit that restores the transmission data, the random number bit string, and the trigger signal from the multiplexed signal;
    Initiating / stopping is commanded according to the trigger signal, and a receiving random number generator that generates a comparative random number bit string having the same bit arrangement as the random number bit string,
    A multiplexed communication system comprising: a bit error rate measuring device that is instructed to start and stop in response to the trigger signal and measures a bit error rate of the random number bit string with respect to the comparison random number bit string.
  2.  送信側において、
     前記多重化部により生成される多重化データ列は、前記送信データを配列するために確保される第1データ領域と、前記乱数ビット列を配列するために確保される第2データ領域とを含み、
     前記第2データ領域は、前記乱数ビット列が予め定められた数で複製されて得られる複数組の前記乱数ビット列が配列される領域であり、
    受信側において、前記ビットエラーレート測定器は、複数組の前記乱数ビット列の各々についてビットエラーレートを測定することを特徴とする請求項1に記載の多重化通信システム。
    On the sending side,
    The multiplexed data sequence generated by the multiplexing unit includes a first data area reserved for arranging the transmission data and a second data area reserved for arranging the random number bit string,
    The second data area is an area where a plurality of sets of random number bit strings obtained by replicating the random number bit string in a predetermined number are arranged,
    2. The multiplexed communication system according to claim 1, wherein, on the receiving side, the bit error rate measuring unit measures a bit error rate for each of a plurality of sets of the random number bit strings.
  3. 前記多重化部は、前記トリガ信号が複製されて得られる複数組の前記トリガ信号を多重化することを特徴とする請求項1または2に記載の多重化通信システム。 The multiplexed communication system according to claim 1, wherein the multiplexing unit multiplexes a plurality of sets of the trigger signals obtained by duplicating the trigger signal.
  4.  多重化通信システムに備えられる送信装置であって、
    外部から入力されるトリガ信号により乱数ビット列の生成の起動・停止が指令される送信側乱数発生器と、
    送信データ、前記乱数ビット列、および前記トリガ信号を多重化する多重化部とを備え、
     受信側において、前記送信データに係る処理を行なうと共に、前記トリガ信号に応じて起動・停止が指令され、前記乱数ビット列についてビットエラーレートの測定が行われることを特徴とする送信装置。
    A transmission device provided in a multiplexed communication system,
    A random number generator on the transmission side, which is instructed to start / stop generation of a random number bit string by an externally input trigger signal;
    A multiplexing unit for multiplexing transmission data, the random number bit string, and the trigger signal;
    A transmission apparatus characterized in that, on the receiving side, processing related to the transmission data is performed, activation and stop are instructed in accordance with the trigger signal, and a bit error rate is measured for the random number bit string.
  5.  多重化通信システムに備えられる受信装置であって、
    送信データ、乱数ビット列、および前記乱数ビット列の生成の起動・停止を指令するトリガ信号を含んで送信された多重化データ列を復元する復元部と、
    前記トリガ信号に応じて起動・停止が指令され、前記乱数ビット列と同じビット配列の比較乱数ビット列を生成する受信側乱数発生器と、
    前記トリガ信号に応じて起動・停止が指令され、前記比較乱数ビット列に対する前記乱数ビット列のビットエラーレートを測定するビットエラーレート測定器とを備えることを特徴とする受信装置。
    A receiving device provided in a multiplexed communication system,
    A restoring unit for restoring the multiplexed data string transmitted including the transmission data, the random number bit string, and a trigger signal for instructing the start / stop of generation of the random number bit string;
    Initiating / stopping is commanded according to the trigger signal, and a receiving random number generator that generates a comparative random number bit string having the same bit arrangement as the random number bit string,
    A receiving apparatus comprising: a bit error rate measuring device which is instructed to start and stop in response to the trigger signal and measures a bit error rate of the random number bit string with respect to the comparison random number bit string.
PCT/JP2011/078369 2011-12-08 2011-12-08 Multiplex communication system, transmission device, and receiving device WO2013084328A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013548014A JP5909243B2 (en) 2011-12-08 2011-12-08 Multiplexed communication system, transmitter, and receiver
PCT/JP2011/078369 WO2013084328A1 (en) 2011-12-08 2011-12-08 Multiplex communication system, transmission device, and receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078369 WO2013084328A1 (en) 2011-12-08 2011-12-08 Multiplex communication system, transmission device, and receiving device

Publications (1)

Publication Number Publication Date
WO2013084328A1 true WO2013084328A1 (en) 2013-06-13

Family

ID=48573732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078369 WO2013084328A1 (en) 2011-12-08 2011-12-08 Multiplex communication system, transmission device, and receiving device

Country Status (2)

Country Link
JP (1) JP5909243B2 (en)
WO (1) WO2013084328A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231446A (en) * 1988-03-11 1989-09-14 Nec Corp Bit error rate measuring instrument for tdma channel
JPH08307369A (en) * 1995-04-27 1996-11-22 Oki Electric Ind Co Ltd Sound encoding system testing circuit
JP2004096426A (en) * 2002-08-30 2004-03-25 Kyushu Ando Denki Kk Bit error rate measurement apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01231446A (en) * 1988-03-11 1989-09-14 Nec Corp Bit error rate measuring instrument for tdma channel
JPH08307369A (en) * 1995-04-27 1996-11-22 Oki Electric Ind Co Ltd Sound encoding system testing circuit
JP2004096426A (en) * 2002-08-30 2004-03-25 Kyushu Ando Denki Kk Bit error rate measurement apparatus

Also Published As

Publication number Publication date
JPWO2013084328A1 (en) 2015-04-27
JP5909243B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
US10033481B2 (en) Multiplexing communication system and substrate working machine
NZ504168A (en) Digital multiplexer/demultiplexer with loopback interface
WO2018179147A1 (en) Component mounting system
JP2017185827A (en) Ink cartridge and ink cartridge set
JP5909243B2 (en) Multiplexed communication system, transmitter, and receiver
CN107409151B (en) Multiplex communication system and work machine
JP5931918B2 (en) Multiplex communication system, transmission device, reception device, and processing device for electronic component mounting device
CN111602371B (en) Multiplexing device, work machine, and communication disconnection method
JP2004047858A (en) Component packaging device
WO2013171826A1 (en) Control system
JP6043794B2 (en) Optical wireless system and electronic component mounting device
KR101943495B1 (en) Automatic system for inspecting Flexible Printed Circuit Board
WO2016207952A1 (en) Condition assessing device and condition assessing method
EP2939836A1 (en) Method and apparatus for controlling light emitting of ink box
JP5957009B2 (en) Multiplexed communication system, transmitter, and receiver
JP5989787B2 (en) Communication system, electronic component mounting apparatus, and error processing method of communication system
JP6095768B2 (en) Database, database construction method, communication apparatus, and electronic component mounting apparatus
WO2022259456A1 (en) Optical multiplex communication device, work machine, and communication method
JP2019149426A (en) Electronic component supply device and electronic component mounting device
WO2023084582A1 (en) Optical communication device, operating machine, and communication method
JP6033877B2 (en) Communication device
JPH08223662A (en) Serial communication equipment
WO2013084330A1 (en) Optical wireless system, imaging device, and control device
JPWO2013084330A1 (en) Optical wireless system, imaging device, and control device
JP2010258113A (en) Method for controlling printed board production line

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548014

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877068

Country of ref document: EP

Kind code of ref document: A1