WO2013084288A1 - 発電システム - Google Patents

発電システム Download PDF

Info

Publication number
WO2013084288A1
WO2013084288A1 PCT/JP2011/078134 JP2011078134W WO2013084288A1 WO 2013084288 A1 WO2013084288 A1 WO 2013084288A1 JP 2011078134 W JP2011078134 W JP 2011078134W WO 2013084288 A1 WO2013084288 A1 WO 2013084288A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
output
windmill
cycle
control command
Prior art date
Application number
PCT/JP2011/078134
Other languages
English (en)
French (fr)
Inventor
明 八杉
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN2011800363194A priority Critical patent/CN103249946A/zh
Priority to JP2012507504A priority patent/JP5449532B2/ja
Priority to KR1020127034228A priority patent/KR20130098189A/ko
Priority to PCT/JP2011/078134 priority patent/WO2013084288A1/ja
Priority to US13/399,312 priority patent/US20130144450A1/en
Publication of WO2013084288A1 publication Critical patent/WO2013084288A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/13Combinations of wind motors with apparatus storing energy storing gravitational potential energy
    • F03D9/14Combinations of wind motors with apparatus storing energy storing gravitational potential energy using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power generation system, and more particularly to a power generation system including a windmill.
  • a power generation system that combines a windmill and a power storage device, reduces short-period output fluctuations of the windmill by the power storage device, and realizes stable power supply.
  • US Pat. No. 7,239,035 discloses a power generation system that combines a windmill and a pumped-storage power generation.
  • the windmill has short cycle output fluctuation and long cycle output fluctuation.
  • Short-period output fluctuations can be reduced by a power storage device as in the past.
  • long-period output fluctuations have a large fluctuation amount, an attempt to cope with power storage devices requires a large-capacity power storage device, which is not preferable from an economic viewpoint.
  • An object of the present invention is to provide a power generation system capable of reducing short cycle and long cycle output fluctuations.
  • a first aspect of the present invention includes a wind turbine, a variable output power generation facility for leveling long-cycle output fluctuations of the wind turbine, and a power storage facility for leveling short-cycle output fluctuations of the wind turbine. And a central control means for giving a control command to the windmill, the variable output power generation facility, and the power storage facility, and outputs of the windmill, the variable output power generation facility, and the power storage facility are supplied to a common power system.
  • the long cycle is a power generation system in which one cycle is several minutes or longer, and the short cycle is one cycle shorter than the long cycle.
  • a wind turbine having a function of suppressing a short cycle output fluctuation, a variable output power generation facility for leveling a long cycle output fluctuation of the wind turbine, the wind turbine, and the variable output power generation.
  • Central control means for giving a control command to the facility, the outputs of the wind turbine and the variable output power generation facility are supplied to a common power system, and the long cycle is one or more minutes, and the short cycle is 1
  • the power generation system has a cycle shorter than the long cycle.
  • FIG. 1 It is a figure showing the whole power generation system composition concerning one embodiment of the present invention. It is the functional block diagram which extracted and showed the function regarding control of a pumped storage power generation equipment and an electric power storage equipment among the functions with which a central control apparatus is provided. It is the figure which showed an example of the table with which the wind speed and the windmill output were linked
  • FIG. 1 is a diagram illustrating an overall configuration of a power generation system according to the present embodiment.
  • a power generation system 1 includes a windmill 2, a pumped-storage power generation facility (variable output power generation facility) 3 for leveling long-period output fluctuations of the windmill 2, and a short-cycle output of the windmill 2.
  • a power storage facility 4 for leveling fluctuations and a central control device (central control means) 5 are provided as main components.
  • the long cycle means, for example, that one cycle is several minutes or longer, and in this embodiment, 20 minutes or longer is assumed.
  • the short cycle means a cycle shorter than the long cycle, and in the present embodiment, one cycle assumes a range of several seconds to several tens of seconds.
  • the output from the wind turbine 2, the pumped storage power generation facility 3, and the power storage facility 4 is supplied to the common power system 6 through the common connection point A.
  • FIG. 1 illustrates the case where one windmill 2 is provided, but a plurality of windmills 2 may be provided.
  • the pumped storage power generation facility 3 and the power storage facility 4 operate so as to equalize the long-cycle and short-cycle output fluctuations in the total output of the plurality of wind turbines 2.
  • a plurality of pumped-storage power generation facilities 3 and power storage facilities 4 may be provided.
  • the pumped storage power generation facility 3 includes a pump 31, a lower reservoir 32, an upper reservoir 33, and a control device 34 as main components.
  • the pumped storage power generation facility 3 generates power by pumping water from the lower reservoir 32 to the upper reservoir 33 using the pump 31 and dropping the water from the upper reservoir 33 to the lower reservoir 32.
  • the pump 31 When a command to consume power is received from the central controller 5, the pump 31 is driven to consume water by pumping water from the lower reservoir 32 to the upper reservoir 33. When an instruction to supply is received, the generated power obtained by dropping water from the upper reservoir 33 to the lower reservoir 32 is supplied to the power system 6. Control of power consumption, power generation, and the like in the pumped storage power generation facility 3 is performed by the control device 34.
  • the power storage facility 4 includes a power storage device 41 such as a battery or a capacitor (capacitor), a power conversion device 42, and a control device 43.
  • a power storage device 41 such as a battery or a capacitor (capacitor)
  • a power conversion device 42 When a command to consume the output of the windmill 2 is received from the central controller 5, when power is stored in the power storage device 41 via the power converter 42 and a command to supply power is received from the central controller 5
  • the power stored in the power storage device 41 is supplied to the power system 6 via the power conversion device 42. Control of the power converter 42 is performed by the controller 43.
  • the central control device 5 outputs, for example, the output at the connection point A based on the requested output information and the frequency information at the connection point A notified from the power management room (for example, an electric power company) that manages the power system 6. Are generated and transmitted to the windmill 2 respectively. Thereby, the windmill 2 controls the output voltage and the output current based on the output command given from the central controller 5.
  • the power management room for example, an electric power company
  • the central control device 5 obtains the output prediction of the windmill 2 based on the wind condition prediction information of the installation area of the windmill 2, and uses the output prediction to equalize the long-cycle and short-cycle output fluctuations of the windmill 2.
  • Such a control command for the pumped storage power generation facility 3 and a control command for the power storage facility 4 are calculated, and these control commands are output to the pumped storage power generation facility 3 and the power storage facility 4, respectively.
  • FIG. 2 is a functional block diagram in which functions related to the control of the pumped storage power generation facility 3 and the power storage facility 4 are extracted from the various functions included in the central control device 5.
  • the central control device 5 includes a windmill output prediction unit 11, a long-period component extraction unit 12, a first control command generation unit 13, a second control command generation unit 14, and a transmission unit 15.
  • the windmill output prediction unit 11 acquires the wind condition prediction information of the installation area of the windmill 2 as input information, and predicts the output of the windmill 2 from this wind condition prediction information. For example, the windmill output prediction unit 11 repeatedly performs output prediction of the windmill 2 from a present time until a certain time later (for example, 12 hours later) at a predetermined time interval.
  • the windmill output prediction unit 11 has, for example, a table or function in which wind speed and windmill output are associated with each other, and predicts the output of the windmill 2 using this table or function.
  • FIG. 3 is a diagram showing an example of a table in which the wind speed and the wind turbine output are associated with each other.
  • FIG. 4 is an example of the wind condition prediction input to the wind turbine output prediction unit 11 and the output of the wind turbine 2 with respect to the wind condition prediction. It is the figure which showed an example of prediction.
  • wind condition prediction information of a mesoscale model provided by the Japan Meteorological Agency can be used as the wind condition prediction information.
  • the weather data provided by the Japan Meteorological Agency and the topographic data in the installation area of the windmill 2 it is possible to make a more accurate wind condition prediction considering the topography and adopt this wind condition prediction information.
  • the long cycle component extraction unit 12 extracts a long cycle component from the output prediction of the wind turbine 2 obtained by the wind turbine output prediction unit 11.
  • the long cycle component extraction unit 12 can extract a long cycle component by using a low-pass filter.
  • FIG. 5 shows an example of output prediction of the wind turbine 2 input to the long cycle component extraction unit 12 and an example of the long cycle component output from the long cycle component extraction unit 12.
  • the long cycle component extracted by the long cycle component extraction unit 12 is output to the first control command generation unit 13 and the second control command generation unit 14.
  • the first control command generation unit 13 generates a first control command that is an output control command to the pumped storage power generation facility 3 from the long cycle component from the long cycle component extraction unit 12 and the target output. More specifically, the first control command generation unit 13 creates schedule information in which the time and the first control command are associated with each other over a predetermined period (for example, 6 hours or 12 hours). This schedule information is obtained by subtracting the long period component from the target output, as shown in equation (1).
  • Pc (t) is a first control command that is an output control command to the pumped storage power generation facility
  • Pr (t) is a target output
  • Pw L (t) is extracted by the long-period component extraction unit 12. Long-period component.
  • the target output may be a constant value determined in advance as shown in FIG. 6, or may be changed at predetermined intervals based on the long period component as shown in FIG.
  • the value may be determined automatically.
  • the long period component is divided at predetermined time intervals, and a value obtained by leveling the long period component for each section is set as the target output.
  • the time of the said 1 section can be set arbitrarily, for example, may be set to the control cycle of the pumped storage power generation equipment 3, and may be set based on the command from the system side.
  • the length of each section may be constant or may vary.
  • the second control command generation unit 14 acquires the long cycle component from the long cycle component extraction unit 12 and the actual measurement output of the wind turbine 2 as input information, and is a second output control command to the power storage facility 4 from these information. Generate control commands. For example, the second control command generation unit 14 sets a value obtained by subtracting the actual measurement output of the windmill 2 from the long-period component as shown in the equation (2) as the output control command.
  • Pb (t) is a second control command that is an output control command to the power storage facility 4
  • Pw (t) is an actual measurement output of the windmill 2
  • Pw L (t) is a long-period component extraction unit 12 is a long-period component extracted at 12.
  • the method for calculating the second control command is not limited to the above example.
  • the second control command is not scheduled over a predetermined period like the first control command, but is determined each time based on the measured output of the wind turbine 2 and the long-period component. is there.
  • the first control command and the second control command generated by the first control command generation unit 13 and the second control command generation unit 14 are transmitted to the control unit 34 of the pumped storage power generation facility 3 and the power storage facility 4 by the transmission unit 15. Each is output to the device 43.
  • the control device 34 controls the pump 31 and the like based on the schedule information of the first control command received from the central control device 5, so that power consumption or power supply according to the first control command is performed.
  • the pump 31 is driven to move the water in the lower reservoir 32 to the upper reservoir 33, thereby consuming the output from the windmill 2 and
  • the power generated by dropping the water stored in the upper reservoir 33 into the lower reservoir 32 is supplied to the interconnection point A.
  • control is performed so that the long-cycle fluctuation component of the windmill 2 as shown in FIGS. 6 and 7 matches the target output, and the output fluctuation of the windmill 2 in the long period can be leveled. Become.
  • the control device 43 controls the power conversion device 42 based on the second control command received from the central control device 5, thereby performing charging / discharging according to the second control command. Specifically, in the case of a command for consuming electric power, the output of the windmill 2 is charged to the power storage device 41 via the power conversion device 42, and in the case of a command for supplying power, the power storage is performed via the power conversion device 42. Electric power is supplied to the interconnection point A by discharging the electric power of the device 41.
  • control is performed such that the short-cycle fluctuation component of the wind turbine 2 as shown in FIG. 8 matches the target output, and the fluctuation in output of the wind turbine 2 in the short cycle can be leveled.
  • the following control is repeatedly executed by the central controller 5.
  • wind condition prediction information is input to the wind turbine output prediction unit 11 of the central controller 5, and output prediction of the wind turbine 2 is obtained from this wind condition prediction information.
  • the long cycle component extraction unit 12 extracts a long cycle component from the output prediction of the wind turbine 2, and the extracted long cycle component is output to the first control command generation unit 13 and the second control command generation unit 14.
  • schedule information of the first control command is generated from the long period component and the target output, and the schedule information of the first control command is transmitted to the control device of the pumped storage power generation facility 3 via the transmission unit 15.
  • the second control command generator 14 receives the long-period component and the actual measurement output of the windmill 2 and generates a second control command from these pieces of information. The second control command is transmitted to the control device 43 of the power storage facility 4 via the transmission unit 15.
  • the pumped storage power generation facility 3 is controlled based on the schedule information of the first control command, and the power storage facility 4 is controlled based on the second control command.
  • the output prediction of the wind turbine 2 is performed from the wind condition prediction information in the wind turbine installation area, and the long-period output fluctuation component is extracted from the output prediction. Then, a first control command for leveling the long-cycle output fluctuation is generated and transmitted to the pumped storage power generation equipment 3, and the short-cycle obtained by subtracting the long-cycle output fluctuation from the actual measurement output of the wind turbine 2 A second control command for leveling the output fluctuation is generated and transmitted to the power storage facility 4.
  • the pumped storage power generation equipment 3 and the power storage equipment 4 are controlled based on the first control command and the second control command, the short-cycle and long-cycle output fluctuations of the windmill are leveled, and stable power Can be supplied to the electric power system 6.
  • the power storage facility 4 has a faster response speed than the pumped storage power generation facility 3 and is excellent in leveling output fluctuations in a short cycle.
  • the pumped storage power generation facility 3 has a larger capacity than the power storage facility 4 and is excellent in leveling output fluctuation of a large capacity. Therefore, by using the power storage equipment 4 for leveling the short-term output fluctuations and the pumped-storage power generation equipment 3 for leveling the long-period output fluctuations, the power generation equipment having an appropriate response and an appropriate scale can be obtained. It is possible to achieve leveling of the used output fluctuation. Thereby, the cost of a system can be reduced compared with the conventional case where the fluctuation
  • the pumped storage power generation facility 3 is controlled based on the schedule information of the first control command, it is possible to grasp in advance the scheduled power generation time and the amount of water required. Thereby, for example, it is possible to suppress power consumption accompanying useless movement of water by moving a necessary amount of water to the upper reservoir 33 in advance according to the schedule information.
  • the pumped storage power generation facility 3 is controlled based on the schedule information of the first control command.
  • the difference is converted into power. It will be absorbed by the storage facility 4 (see formula (2) above).
  • the second control command calculated by the above equation (2) exceeds the capacity of the power storage facility 4, Even the power storage facility 4 cannot absorb the fluctuations. Therefore, in such a case, the wind turbine output prediction is performed again, the schedule information of the first control command for the pumped storage power generation facility 3 is created again, and the schedule information of the new first control command is output to the pumped storage power generation facility 3. It is good as well.
  • the wind turbine output is predicted based on the wind condition prediction information.
  • the present invention is not limited to this example.For example, a wind turbine output several minutes or tens of minutes ahead is predicted from the output history of the past wind turbine, A long-period component may be extracted based on the prediction result, and the pumped-storage power generation facility 3 and the power storage facility 4 may be controlled using the long-period component.
  • the pumped-storage power generation equipment 3 was used as an equipment for leveling the fluctuation
  • a power generation facility or the like that can intentionally vary the output may be used.
  • the power storage facility 4 is used for leveling the short-term output fluctuations.
  • so-called “Gradient Power Control” is used in wind turbine control. It is good as well.
  • This “Gradient Power Control” is described in IEC6140025-2 as C.I. 2 is a control method defined in the item b of FIG. 2, and is a control method for suppressing the short-cycle output fluctuation of the windmill as shown in FIG.
  • FIG. 10 shows a functional block diagram of the wind turbine controller 20 adopting Gradient Power Control.
  • the low-pass filter (variation suppressing means) 21 is provided to suppress the fluctuation of the output command value.
  • the windmill control device 20 includes a low-pass filter 21 and a rotation speed-output conversion table 22.
  • the shaft rotational speed of the wind turbine 2 or the rotor rotational speed of the generator is leveled by passing through the low-pass filter 21, and an output command value corresponding to the speed after leveling. Is determined using the rotational speed-output conversion table 22.
  • the determined output command value is output to a generator control device (not shown) and a pitch angle control device (not shown), and the generator and blade pitch angles are controlled.
  • the rotational speed that is the input information is leveled by passing through a low-pass filter, and the output command value is set based on this level. Events can occur where the output does not increase accordingly. In such a case, surplus energy is used to increase the rotational speed of the rotor. At this time, the pitch angle is controlled to prevent the occurrence of excessive rotation.
  • a low-pass filter 21 may be provided after the rotation speed-output conversion table 22.
  • a rate limiter fluctuation suppression means
  • the rate limiter can be provided at the position of the low-pass filter 21 shown in FIGS.
  • the set value of the rate limiter is preferably set to a rate of change (for example, about 200 kW / sec) that contributes to suppression of short period fluctuations.
  • the output command value is determined based on the rotational speed.
  • the output command value may be determined based on the wind speed.
  • a wind speed-output conversion table in which the wind speed is associated with the output command value is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

 短周期および長周期の出力変動を低減することのできる発電システムを提供することを目的とする。風車(2)の長周期の出力変動を平準化するための揚水発電設備(3)と、風車(2)の短周期の出力変動を平準化するための電力貯蔵設備(4)と、風車(2)、揚水発電設備(3)、および電力貯蔵設備(4)に制御指令を与える中央制御装置(5)とを備える発電システム(1)を提供する。

Description

発電システム
 本発明は、発電システムに係り、特に、風車を備える発電システムに関するするものである。
 従来、風車と蓄電装置とを組み合わせ、風車の短周期的な出力変動を蓄電装置により緩和し、安定した電力供給を実現するような発電システムが知られている。
 また、米国特許第7,239,035号明細書には、風車と揚水発電とを組み合わせた発電システムが開示されている。
米国特許第7,239,035号明細書
 ところで、風車は短周期の出力変動と長周期の出力変動がある。短周期の出力変動については、従来のように蓄電装置により低減することが可能である。しかしながら、長周期の出力変動については、変動量が大きいため、蓄電装置により対応しようとすると、大容量の蓄電装置が必要となり、経済的観点から好ましくない。
 本発明は、短周期および長周期の出力変動を低減することのできる発電システムを提供することを目的とする。
 本発明の第1の態様は、風車と、前記風車の長周期の出力変動を平準化するための可変出力発電設備と、前記風車の短周期の出力変動を平準化するための電力貯蔵設備と、前記風車、前記可変出力発電設備、および前記電力貯蔵設備に制御指令を与える中央制御手段とを備え、前記風車、前記可変出力発電設備、および前記電力貯蔵設備の出力は共通の電力系統に供給され、前記長周期は1周期が数分以上であり、前記短周期は1周期が前記長周期よりも短い発電システムである。
 本発明の第2の態様は、短周期の出力変動を抑制する機能を有する風車と、前記風車の長周期の出力変動を平準化するための可変出力発電設備と、前記風車及び前記可変出力発電設備に制御指令を与える中央制御手段とを備え、前記風車及び前記可変出力発電設備の出力は共通の電力系統に供給され、前記長周期は1周期が数分以上であり、前記短周期は1周期が前記長周期よりも短い発電システムである。
 本発明によれば、短周期および長周期の出力変動を低減することができるという効果を奏する。
本発明の一実施形態に係る発電システムの全体構成を示す図である。 中央制御装置が備える機能のうち、揚水発電設備と電力貯蔵設備の制御に関する機能を抽出して示した機能ブロック図である。 風速と風車出力とが関連付けられたテーブルの一例を示した図である。 風車出力予測部に入力される風況予測の一例と、その風況予測に対する風車出力の一例を示した図である。 長周期成分抽出部に入力される風車の出力予測と、長周期成分抽出部から出力される長周期成分の一例を示した図である。 第1制御指令生成部で取り扱われる目標出力の一例を示した図である。 第1制御指令生成部で取り扱われる目標出力の一例を示した図である。 短周期の出力変動の一例を示した図である。 Gradient Power Controlの効果について説明するための図である。 本発明の他の態様に係る発電システムが備える風車制御装置の一構成例を示した図である。 本発明の他の態様に係る発電システムが備える風車制御装置の一構成例を示した図である。
 以下、本発明の一実施形態に係る発電システムについて図面を参照して説明する。
 図1は、本実施形態に係る発電システムの全体構成を示す図である。図1に示されるように、発電システム1は、風車2と、風車2の長周期の出力変動を平準化するための揚水発電設備(可変出力発電設備)3と、風車2の短周期の出力変動を平準化するための電力貯蔵設備4と、中央制御装置(中央制御手段)5とを主な構成として備えている。
 長周期とは、例えば、1周期が数分以上をいい、本実施形態では20分以上を想定している。また、短周期とは、長周期よりも短い周期をいい、本実施形態では、1周期が数秒から数十秒の範囲を想定している。
 風車2、揚水発電設備3、および電力貯蔵設備4からの出力は、共通の連系点Aを通じて、共通の電力系統6に供給される。
 図1では、1台の風車2を備えている場合を例示しているが、風車2は複数台設けられていても良い。複数の風車2を有する場合には、揚水発電設備3および電力貯蔵設備4は、複数の風車2の総出力における長周期、短周期の出力変動をそれぞれ平準化するように作動する。また、揚水発電設備3および電力貯蔵設備4についても、それぞれ複数台設けられていてもよい。
 揚水発電設備3は、ポンプ31、下部貯水池32、上部貯水池33、および制御装置34を主な構成として備えている。揚水発電設備3は、ポンプ31を利用して下部貯水池32から上部貯水池33へ水を汲み上げ、上部貯水池33から下部貯水池32へ水を落とすことで発電する。
 中央制御装置5から電力を消費する旨の指令を受けた場合には、ポンプ31を駆動させ、下部貯水池32から上部貯水池33へ水を汲み上げることにより電力を消費し、中央制御装置5から電力を供給する旨の指令を受けた場合には、上部貯水池33から下部貯水池32へ水を落とすことで得られた発電電力を電力系統6に供給する。揚水発電設備3における電力消費、発電等の制御は、制御装置34により行われる。
 電力貯蔵設備4は、バッテリ、キャパシタ(コンデンサ)等の蓄電装置41と、電力変換装置42と、制御装置43とを備えている。中央制御装置5から風車2の出力を消費する指令を受けた場合には、電力変換装置42を介して電力を蓄電装置41に蓄電し、中央制御装置5から電力供給を行う指令を受けた場合には、蓄電装置41に蓄電されている電力を電力変換装置42を介して電力系統6に供給する。電力変換装置42の制御は、制御装置43により行われる。
 中央制御装置5は、電力系統6を管理する電力管理室(例えば、電力会社等)から通知される連系点Aにおける要求出力情報及び周波数情報等に基づいて、例えば、連系点Aにおける出力が目標電力となるような風車2の出力指令を生成し、風車2に対してそれぞれ送信する。これにより、風車2が、中央制御装置5から与えられた出力指令に基づいて出力電圧及び出力電流を制御する。
 また、中央制御装置5は、風車2の設置エリアの風況予測情報に基づいて風車2の出力予測を得、この出力予測を用いて風車2の長周期及び短周期の出力変動を平準化させるような揚水発電設備3の制御指令及び電力貯蔵設備4の制御指令をそれぞれ算出し、これら制御指令を揚水発電設備3および電力貯蔵設備4にそれぞれ出力する。
 図2は、中央制御装置5が備える各種機能のうち、揚水発電設備3及び電力貯蔵設備4の制御に関する機能を抽出して示した機能ブロック図である。図2に示すように、中央制御装置5は、風車出力予測部11、長周期成分抽出部12、第1制御指令生成部13、第2制御指令生成部14、送信部15を備えている。
 風車出力予測部11は、風車2の設置エリアの風況予測情報を入力情報として取得し、この風況予測情報から風車2の出力を予測する。例えば、風車出力予測部11は、現在から一定時間後(例えば、12時間後)までの風車2の出力予測を所定の時間間隔で繰り返し行う。
 風車出力予測部11は、例えば、風速と風車出力とが関連付けられたテーブルまたは関数を有しており、このテーブルまたは関数を用いて風車2の出力を予測する。図3は、風速と風車出力とが関連付けられたテーブルの一例を示した図、図4は、風車出力予測部11に入力される風況予測の一例と、その風況予測に対する風車2の出力予測の一例を示した図である。
 ここで、風況予測情報としては、例えば、気象庁から提供されるメソスケールモデルの風況予測情報を用いることが可能である。また、気象庁から提供される気象データと、風車2の設置エリアにおける地形データとに基づいて、地形を考慮したより精度の高い風況予測を行い、この風況予測情報を採用することとしてもよい。
 長周期成分抽出部12は、風車出力予測部11で得られた風車2の出力予測から長周期成分を抽出する。例えば、長周期成分抽出部12は、ローパスフィルタを用いることで長周期成分を抽出することが可能である。図5に、長周期成分抽出部12に入力される風車2の出力予測と、長周期成分抽出部12から出力される長周期成分の一例を示す。
 長周期成分抽出部12によって抽出された長周期成分は、第1制御指令生成部13及び第2制御指令生成部14に出力される。
 第1制御指令生成部13は、長周期成分抽出部12からの長周期成分及び目標出力とから揚水発電設備3への出力制御指令である第1制御指令を生成する。より具体的には、第1制御指令生成部13は、ある所定の期間(例えば、6時間、或いは12時間など)にわたって、時刻と第1制御指令とが関連付けられたスケジュール情報を作成する。
 このスケジュール情報は、(1)式に示すように、目標出力から長周期成分を減算することにより求められる。
 Pc(t)=Pr(t)-Pw(t)  (1)
 上記(1)式において、Pc(t)は揚水発電設備への出力制御指令である第1制御指令、Pr(t)は目標出力、Pw(t)は長周期成分抽出部12で抽出された長周期成分である。
 ここで、目標出力は、図6に示されるように、予め決定されている一定の値であってもよいし、図7に示されるように、長周期成分に基づいて所定の期間毎に動的に決定される値であってもよい。例えば、図7に示されるように、長周期成分を所定の時間毎に区切り、区間毎に長周期成分を平準化した値を目標出力として設定する。上記1区間の時間は、任意に設定することが可能であり、例えば、揚水発電設備3の制御サイクルに設定されてもよいし、系統側からの指令に基づいて設定されてもよい。また、各区間の長さは一定でもよいし、変動してもよい。
 第2制御指令生成部14は、長周期成分抽出部12からの長周期成分及び風車2の実測出力を入力情報として取得し、これらの情報から電力貯蔵設備4への出力制御指令である第2制御指令を生成する。例えば、第2制御指令生成部14は、(2)式に示すように、長周期成分から風車2の実測出力を減算した値を出力制御指令とする。
 Pb(t)=Pw(t)-Pw(t)   (2)
 上記(2)式において、Pb(t)は電力貯蔵設備4への出力制御指令である第2制御指令、Pw(t)は風車2の実測出力、Pw(t)は長周期成分抽出部12で抽出された長周期成分である。
 なお、上記第2制御指令の算出方法については、上記例に限定されない。例えば、蓄電装置41を用いて短周期における風車2の出力変動を低減させる公知の技術を適用することが可能である。
 このように、第2制御指令は、上記第1制御指令のように所定期間に渡ってスケジューリングされるものではなく、風車2の実測出力と長周期成分とに基づいてその都度決定されるものである。
 第1制御指令生成部13及び第2制御指令生成部14によって生成された第1制御指令及び第2制御指令は、送信部15により、揚水発電設備3の制御装置34及び電力貯蔵設備4の制御装置43にそれぞれ出力される。
 揚水発電設備3では、制御装置34が中央制御装置5から受信した第1制御指令のスケジュール情報に基づいて、ポンプ31等を制御することにより、第1制御指令に応じた電力消費又は電力供給を行う。具体的には、第1制御指令が電力を消費する指令の場合は、ポンプ31を駆動させて下部貯水池32の水を上部貯水池33に移動させることで風車2からの出力を消費し、電力を供給する指令の場合は、上部貯水池33に貯められている水を下部貯水池32に落とすことによる発電電力を連系点Aへ供給する。
 これにより、図6、図7に示したような風車2の長周期の変動成分が目標出力に一致するような制御が行われ、長周期における風車2の出力変動を平準化することが可能となる。
 また、電力貯蔵設備4では、制御装置43が中央制御装置5から受信した第2制御指令に基づいて電力変換装置42を制御することにより、第2制御指令に応じた充放電を行う。具体的には、電力を消費する指令の場合は、電力変換装置42を介して風車2の出力を蓄電装置41に充電し、電力を供給する指令の場合は、電力変換装置42を介して蓄電装置41の電力を放電することで、連系点Aへ電力を供給する。
 これにより、図8に示したような風車2の短周期の変動成分が目標出力に一致するような制御が行われ、短周期における風車2の出力変動を平準化することが可能となる。
 このような構成を備える発電システム1においては、以下のような制御が中央制御装置5により繰り返し実行される。
 まず、中央制御装置5の風車出力予測部11に風況予測情報が入力され、この風況予測情報から風車2の出力予測が得られる。続いて、長周期成分抽出部12において、風車2の出力予測から長周期成分が抽出され、この抽出された長周期成分が第1制御指令生成部13及び第2制御指令生成部14に出力される。
 第1制御指令生成部13では、長周期成分と目標出力とから第1制御指令のスケジュール情報が生成され、この第1制御指令のスケジュール情報が送信部15を介して揚水発電設備3の制御装置34に送信される。
 また、第2制御指令生成部14では、長周期成分と風車2の実測出力が入力され、これらの情報から第2制御指令が生成される。第2制御指令は送信部15を介して電力貯蔵設備4の制御装置43に送信される。
 これにより、第1制御指令のスケジュール情報に基づいて揚水発電設備3が制御され、第2制御指令に基づいて電力貯蔵設備4が制御される。
 以上、説明してきたように、本実施形態に係る発電システム1によれば、風車の設置エリアにおける風況予測情報から風車2の出力予測を行い、この出力予測から長周期の出力変動成分を抽出し、この長周期出力変動を平準化させるような第1制御指令を生成して揚水発電設備3へ送信するとともに、風車2の実測出力から長周期の出力変動を減算することにより得られる短周期の出力変動を平準化させるような第2制御指令を生成して電力貯蔵設備4へ送信する。
 このように、揚水発電設備3及び電力貯蔵設備4が、第1制御指令及び第2制御指令に基づいて制御されるので、風車の短周期及び長周期の出力変動が平準化され、安定した電力を電力系統6に供給することが可能となる。
 また、電力貯蔵設備4は揚水発電設備3に比べて応答速度が速く、短周期の出力変動の平準化に優れている。また、揚水発電設備3は、電力貯蔵設備4に比べて容量が大きく、大容量の出力変動の平準化に優れている。
 従って、短周期の出力変動の平準化に電力貯蔵設備4を、長周期の出力変動の平準化に揚水発電設備3を利用することにより、適切な応答性と適切な規模とを有する発電設備を用いた出力変動の平準化を実現させることが可能となる。これにより、長周期及び短周期の変動の平準化を電力貯蔵設備のみで行う従来の場合に比べて、システムのコストを低減することができる。
 更に、揚水発電設備3を第1制御指令のスケジュール情報に基づいて制御するので、発電予定時間と必要となる水の量とを予め把握することができる。これにより、例えば、スケジュール情報に従って事前に必要な水量を上部貯水池33へ移動させることにより、無駄な水の移動に伴う電力消費を抑えることが可能となる。
 本実施形態に係る発電システム1では、揚水発電設備3を第1制御指令のスケジュール情報に基づいて制御するが、風車2の実際の出力が風車の予測出力と異なる場合には、その差分を電力貯蔵設備4で吸収することとなる(上記(2)式参照)。
 しかしながら、風車2の実際の出力と風車の予測出力とがあまりにも乖離している場合には、上記(2)式で算出される第2制御指令が電力貯蔵設備4の容量を超えてしまい、電力貯蔵設備4によっても変動を吸収しきれなくなってしまう。そこで、このような場合には、風車の出力予測を再度やり直し、揚水発電設備3に対する第1制御指令のスケジュール情報を再度作成し、新しい第1制御指令のスケジュール情報を揚水発電設備3へ出力することとしてもよい。
 本実施形態では、風況予測情報に基づいて風車出力を予測したが、この例に限定されず、例えば、過去の風車の出力履歴から数分または数十分先の風車出力を予測し、この予測結果に基づいて長周期成分を抽出し、この長周期成分を用いて上述した揚水発電設備3及び電力貯蔵設備4の制御を行うこととしてもよい。
 また、本実施形態では、風車2の長周期の変動を平準化するための設備として揚水発電設備3を用いることとしたが、これに代えて、大型の電力貯蔵設備、例えば、火力発電等の出力を意図的に変動できる発電設備等を用いることとしてもよい。
 また、本実施形態では、短周期の出力変動の平準化に電力貯蔵設備4を利用していたが、これに代えて、風車の制御における所謂「Gradient Power Control(ランプレート制御)」を採用することとしてもよい。
 この「Gradient Power Control」は、IEC6140025-2においてC.2のb項に規定されている制御方法であり、図9に示すように、風車の短周期の出力変動を抑制する制御方法である。
 図10に、Gradient Power Controlを採用した風車制御装置20の機能ブロック図を示す。図10に示すように、回転数から出力指令値を決定するまでの処理工程において、ローパスフィルタ(変動抑制手段)21を設けることで、出力指令値の変動を抑制する。具体的には、風車制御装置20は、ローパスフィルタ21と、回転数-出力変換テーブル22とを備えている。
 このような構成を備える風車制御装置20において、風車2の軸回転数または発電機のロータ回転数がローパスフィルタ21を通過することによって平準化され、平準化後の回転数に応じた出力指令値が回転数-出力変換テーブル22を用いて決定される。決定された出力指令値は、発電機制御装置(図示略)及びピッチ角制御装置(図示略)に出力され、発電機及び翼のピッチ角が制御される。
 例えば、Gradient Power Controlでは、入力情報である回転数をローパスフィルタを通過させることにより平準化し、これに基づいて出力指令値を設定していることから、回転数が上昇したにもかかわらず、風車出力がそれに応じて上昇しないような事象が起こり得る。このような場合、余剰エネルギーはロータの回転数上昇に使われるが、この際、ピッチ角を制御して、過回転の発生を防止する。
 以上説明したように、電力貯蔵装設備4に代えて風車の制御によって短周期の出力変動を平準化することにより、電力貯蔵設備4を不要にでき、システムの簡素化を図ることが可能となる。
 なお、図10に示した構成の他、例えば、図11に示すように、回転数-出力変換テーブル22の後段にローパスフィルタ21を設けることとしても良い。
 また、上記ローパスフィルタ21に代えて、レートリミッタ(変動抑制手段)を用いることとしても良い。この場合、レートリミッタは、図10、図11に示したローパスフィルタ21の位置に設けることが可能である。レートリミッタの設定値は、短周期変動の抑制に寄与する変化率(例えば、200kW/sec程度)に設定することが好ましい。
 また、上記例では、回転数に基づいて出力指令値を決定していたが、これに代えて、風速に基づいて出力指令値を決定することとしても良い。この場合、回転数-出力変換テーブル22に代えて、風速と出力指令値とを関連付けた風速-出力変換テーブルを適用する。
1 発電システム
2 風車
3 揚水発電設備
4 電力貯蔵設備
5 中央制御装置
6 電力系統
20 風車制御装置
21 ローパスフィルタ
22 回転数-出力変換テーブル
31 ポンプ
32 下部貯水池
33 上部貯水池
34、43 制御装置
41 蓄電装置
42 電力変換装置

Claims (9)

  1.  風車と、
     前記風車の長周期の出力変動を平準化するための可変出力発電設備と、
     前記風車の短周期の出力変動を平準化するための電力貯蔵設備と、
     前記風車、前記可変出力発電設備、および前記電力貯蔵設備に制御指令を与える中央制御手段と
    を備え、
     前記風車、前記可変出力発電設備、および前記電力貯蔵設備の出力は共通の電力系統に供給され、
     前記長周期は1周期が数分以上であり、前記短周期は1周期が前記長周期よりも短い発電システム。
  2.  前記中央制御手段は、前記風車の出力予測から長周期成分を抽出し、抽出した長周期成分を平準化する第1制御指令を前記可変出力発電設備に出力する請求項1に記載の発電システム。
  3.  前記中央制御手段は、所定の期間に渡って、時刻と前記第1制御指令とが対応付けられた第1制御指令のスケジュール情報を前記可変出力発電設備へ出力する請求項2に記載の発電システム。
  4.  前記中央制御手段は、前記風車の立地エリアにおける風況予測情報を取得し、風況予測情報から前記風車の出力予測を得る請求項2または請求項3に記載の発電システム。
  5.  前記中央制御手段は、前記風車の実測出力から前記長周期成分を減算することにより第2制御指令を算出し、前記電力貯蔵設備に出力する請求項2から請求項4のいずれかに記載の発電システム。
  6.  前記中央制御手段は、前記第2制御指令が前記電力貯蔵設備の容量を超えた場合に、前記風車の出力予測をやり直して、前記第1制御指令のスケジュール情報を再度作成し、作成した前記第1制御指令のスケジュール情報を前記可変出力発電設備に出力する請求項5に記載の発電システム。
  7.  前記可変出力発電設備は、揚水発電設備である請求項1から請求項6のいずれかに記載の発電システム。
  8.  短周期の出力変動を抑制する機能を有する風車と、
     前記風車の長周期の出力変動を平準化するための可変出力発電設備と、
     前記風車及び前記可変出力発電設備に制御指令を与える中央制御手段と
    を備え、
     前記風車及び前記可変出力発電設備の出力は共通の電力系統に供給され、
     前記長周期は1周期が数分以上であり、前記短周期は1周期が前記長周期よりも短い発電システム。
  9.  前記風車は、回転数または風速に基づいて出力指令値を決定する風車制御手段を有し、
     前記風車制御手段は、前記出力指令値の変動を許容範囲内に抑制する変動抑制手段を備える請求項8に記載の発電システム。
PCT/JP2011/078134 2011-12-06 2011-12-06 発電システム WO2013084288A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2011800363194A CN103249946A (zh) 2011-12-06 2011-12-06 发电系统
JP2012507504A JP5449532B2 (ja) 2011-12-06 2011-12-06 発電システム
KR1020127034228A KR20130098189A (ko) 2011-12-06 2011-12-06 발전 시스템
PCT/JP2011/078134 WO2013084288A1 (ja) 2011-12-06 2011-12-06 発電システム
US13/399,312 US20130144450A1 (en) 2011-12-06 2012-02-17 Generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078134 WO2013084288A1 (ja) 2011-12-06 2011-12-06 発電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/399,312 Continuation US20130144450A1 (en) 2011-12-06 2012-02-17 Generator system

Publications (1)

Publication Number Publication Date
WO2013084288A1 true WO2013084288A1 (ja) 2013-06-13

Family

ID=48524578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078134 WO2013084288A1 (ja) 2011-12-06 2011-12-06 発電システム

Country Status (5)

Country Link
US (1) US20130144450A1 (ja)
JP (1) JP5449532B2 (ja)
KR (1) KR20130098189A (ja)
CN (1) CN103249946A (ja)
WO (1) WO2013084288A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184658A (ja) * 2020-05-21 2021-12-02 株式会社東芝 電力制御装置および電力制御方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848478B1 (ja) * 2011-04-14 2011-12-28 三菱重工業株式会社 風力発電設備の出力平準化方法及び風力発電設備の出力平準化装置
EP3096004A1 (en) * 2015-05-18 2016-11-23 ABB Technology AG Wind farm inertial response
WO2017144061A1 (en) 2016-02-24 2017-08-31 Vestas Wind Systems A/S Damping of a wind turbine tower oscillation
JP7075861B2 (ja) * 2018-10-09 2022-05-26 三菱重工エンジン&ターボチャージャ株式会社 ハイブリッド発電システム、及び、ハイブリッド発電システムの制御方法
CN110417028B (zh) * 2019-06-25 2021-01-01 武汉大学 含抽水蓄能电站与风电场的柔直系统协调故障穿越方法
KR20220064070A (ko) 2020-11-11 2022-05-18 (주)하이세븐 소비자 만족도가 뛰어나며 피쉬 콜라겐의 혈중 이행성이 우수한 음료 조성물

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324740A (ja) * 1996-06-10 1997-12-16 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2002027679A (ja) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd 風力発電制御方法及びその装置
JP2004289896A (ja) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp 風力発電システム
JP2006280020A (ja) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The 統括風力発電システム
JP2007135355A (ja) * 2005-11-11 2007-05-31 Mitsubishi Electric Corp 系統安定化装置
US7239035B2 (en) 2005-11-18 2007-07-03 General Electric Company System and method for integrating wind and hydroelectric generation and pumped hydro energy storage systems
JP2008245374A (ja) * 2007-03-26 2008-10-09 Chugoku Electric Power Co Inc:The 発電機出力量決定システム、方法及びプログラム
JP2009174329A (ja) * 2008-01-21 2009-08-06 Univ Of Ryukyus 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP2010096085A (ja) * 2008-10-16 2010-04-30 Toshihisa Shirakawa 化石燃料原則不使用発電設備容量構成割合を可能にするための表面由来発電補完システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324740A (ja) * 1996-06-10 1997-12-16 Mitsubishi Heavy Ind Ltd 風力発電装置
JP2002027679A (ja) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd 風力発電制御方法及びその装置
JP2004289896A (ja) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp 風力発電システム
JP2006280020A (ja) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The 統括風力発電システム
JP2007135355A (ja) * 2005-11-11 2007-05-31 Mitsubishi Electric Corp 系統安定化装置
US7239035B2 (en) 2005-11-18 2007-07-03 General Electric Company System and method for integrating wind and hydroelectric generation and pumped hydro energy storage systems
JP2008245374A (ja) * 2007-03-26 2008-10-09 Chugoku Electric Power Co Inc:The 発電機出力量決定システム、方法及びプログラム
JP2009174329A (ja) * 2008-01-21 2009-08-06 Univ Of Ryukyus 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP2010096085A (ja) * 2008-10-16 2010-04-30 Toshihisa Shirakawa 化石燃料原則不使用発電設備容量構成割合を可能にするための表面由来発電補完システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184658A (ja) * 2020-05-21 2021-12-02 株式会社東芝 電力制御装置および電力制御方法
JP7451297B2 (ja) 2020-05-21 2024-03-18 株式会社東芝 電力制御装置および電力制御方法

Also Published As

Publication number Publication date
JP5449532B2 (ja) 2014-03-19
CN103249946A (zh) 2013-08-14
JPWO2013084288A1 (ja) 2015-04-27
US20130144450A1 (en) 2013-06-06
KR20130098189A (ko) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5449532B2 (ja) 発電システム
EP3317526B1 (en) Methods and systems for generating wind turbine control schedules
CA2858189C (en) System, method and controller for managing and controlling a micro-grid
EP3317519B1 (en) Control method and system for wind turbines
EP3273056B1 (en) Method and apparatus for determining a maximum power level of a wind turbine
US10928816B2 (en) Methods and systems for generating wind turbine control schedules
Yuan et al. Control of variable pitch and variable speed direct‐drive wind turbines in weak grid systems with active power balance
EP3317525B1 (en) Methods and systems for generating wind turbine control schedules
EP3317522B1 (en) Methods and systems for generating wind turbine control schedules
US10578080B2 (en) Initialisation of wind turbine control functions
TWI543492B (zh) 用於藉由風力發電設備或風力發電場將電能饋送至電力供應電網之方法及用於將電能饋送至電力供應電網之風力發電設備及風力發電場
JP2009174329A (ja) 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP2007037226A (ja) 電源システムおよびその制御方法
CN107709765B (zh) 用于生成风力涡轮机控制时间表的方法和系统
WO2017000951A1 (en) Methods and systems for generating wind turbine control schedules
WO2017000950A1 (en) Methods and systems for generating wind turbine control schedules
US20200063712A1 (en) Inertial response for grid stability
EP3853964A1 (en) A hybrid power plant and a method for controlling a hybrid power plant
CN111164846B (zh) 提高电力设施中的功率的方法
JP5342496B2 (ja) 風力発電装置群の制御装置及びその制御方法
EP2923078A2 (en) System and method for extending the operating life of a wind turbine gear train based on energy storage
GB2483315A (en) Control of water current turbines

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012507504

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011817455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127034228

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE