WO2013080877A1 - 系統連系装置 - Google Patents

系統連系装置 Download PDF

Info

Publication number
WO2013080877A1
WO2013080877A1 PCT/JP2012/080283 JP2012080283W WO2013080877A1 WO 2013080877 A1 WO2013080877 A1 WO 2013080877A1 JP 2012080283 W JP2012080283 W JP 2012080283W WO 2013080877 A1 WO2013080877 A1 WO 2013080877A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
circuit
power
phase line
arm circuit
Prior art date
Application number
PCT/JP2012/080283
Other languages
English (en)
French (fr)
Inventor
良典 則竹
剛 神村
清磨 山岸
小川 智広
隆史 白川
健雄 石田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201290001017.3U priority Critical patent/CN204046188U/zh
Priority to JP2013547119A priority patent/JP5887501B2/ja
Publication of WO2013080877A1 publication Critical patent/WO2013080877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a grid interconnection device that converts DC power output from a DC power source such as a solar cell, a fuel cell, or a storage battery into AC power and superimposes the AC power on a commercial system.
  • a DC power source such as a solar cell, a fuel cell, or a storage battery
  • a grid interconnection device that converts DC power output from a DC power source such as a solar cell, a fuel cell, or a storage battery into AC power and links to a three-phase commercial power system via a grid interconnection relay. Is provided.
  • the grid interconnection device includes an inverter circuit, a filter circuit, a grid interconnection relay, a control circuit control circuit, and the like.
  • the inverter circuit converts the DC power output from the DC power source into three-phase AC power having U phase, V phase, and W phase, and this AC power is converted into three lines of U phase line, V phase line, and W phase line. Output to the output line.
  • the filter circuit has a plurality of filter capacitors, and a part of the output current of the inverter circuit is allowed to flow from the output line to the filter capacitor, and the current from which the harmonic component of the output current has been removed is allowed to flow to the output line.
  • the grid interconnection relay is connected between the filter circuit and the commercial power system, and disconnects / connects the DC power source and the commercial power system by opening and closing the relay.
  • the control circuit is composed of a microcomputer, gives a signal to the inverter circuit and the grid connection relay, and controls the operation of the inverter circuit and the grid connection relay.
  • some three-phase grid interconnection devices perform a self-sustained operation in which a commercial power system is disconnected from the commercial power system and supplied to a load when the power is interrupted (Patent Document 1).
  • a load is connected to three wirings branched from three output lines via a relay for independent operation.
  • the grid interconnection relay is opened to disconnect the commercial power system and the grid interconnection device, the autonomous operation relay is closed, and three-phase AC power is supplied to the three wires.
  • This invention is an invention made in view of the above-mentioned problem, and it aims at providing the grid connection apparatus which can utilize easily the load which operate
  • the DC power is converted into a three-phase AC power having a U phase, a V phase, and a W phase, and the AC power is output to three outputs of the U phase line, the V phase line, and the W phase line.
  • An inverter circuit that outputs to a line, a grid interconnection relay that intervenes between the three output lines and connects / disconnects a commercial power system and the inverter circuit, and two of the three output lines Each of which is branched from the output line and connected to a load via a relay for independent operation, and when the commercial power system and the inverter circuit perform a linked operation, the grid interconnection relay And disconnecting the self-sustained operation relay, the inverter circuit superimposes the three-phase AC power on the commercial power system, disconnects the inverter circuit from the commercial power system, and supplies power to the load.
  • Resshi solution to chromatography connecting the autonomous operation relay, said inverter circuit, and outputs the DC power to the wiring is converted into AC power of single-phase.
  • the single-phase AC power is supplied to the wiring for the independent operation instead of the three-phase AC power during the independent operation, it is possible to easily use the load that operates with the single-phase AC power. it can.
  • the commercial power system is a V-connected power supply system in which a V-phase is grounded
  • the inverter circuit includes a first arm circuit in which two switch elements are connected in series and two switch elements.
  • the second arm circuit connected in series with each other and the series circuit connected in series with two capacitors are connected in parallel, and the connection point between the two switch elements of the first arm circuit and the U-phase line are connected.
  • the connection point of the two switch elements of the second arm circuit and the W-phase line are connected, the connection point of the two capacitors of the series circuit and the V-phase line are connected, and the U-phase line and the The wiring is branched from the W-phase line.
  • the switching timing of the switch element of the first arm circuit is determined based on the line current flowing through the U-phase line
  • the second arm circuit When switching timing of the switch element is determined based on a line current flowing through the W-phase line, and when performing the independent operation, the switching timing of the switch element of the first arm circuit and the switch element of the second arm circuit is determined. , And determining based on a voltage applied to the U-phase line and the W-phase line.
  • the inverter circuit includes a first arm circuit in which two switch elements are connected in series, a second arm circuit in which two switch elements are connected in series, and a third arm circuit in which two switch elements are connected in series.
  • the arm circuit is connected in parallel, the connection point of the two switch elements of the first arm circuit and the U-phase line are connected, the connection point of the two switch elements of the second arm circuit and the W A phase line is connected, a connection point of two switch elements of the third arm circuit is connected to the W phase line, and when performing the self-sustained operation, it is connected to an output line without branching of the wiring Cutting off the switch element of the arm circuit, and PWM controlling the switching element of the arm circuit connected to the output line where the wiring branches, and supplying the single-phase AC power to the wiring And butterflies.
  • a selection circuit for branching a wiring from each of the three output lines and selecting the two from the three wirings and connecting to the load.
  • the wiring selected by the selection circuit is changed for each of the independent operations or for each determined number of independent operations.
  • FIG. 1 is a configuration diagram illustrating a photovoltaic power generation system 100 according to the first embodiment.
  • the photovoltaic power generation system 100 includes a solar cell 1 (DC power supply) and a grid interconnection device 2.
  • the grid interconnection device 2 includes a booster circuit 4, an inverter circuit 5, a filter circuit 6, a grid interconnection relay 7, a stand-alone operation relay 8, and a control circuit 9.
  • the grid interconnection device 2 performs a grid operation in which three-phase AC power output from the inverter circuit 5 is superimposed on the commercial power grid 3 via the grid interconnection relay 7. Further, when the commercial power system 3 has a power failure, the inverter circuit 5 and the commercial power system 3 are disconnected, and a self-sustained operation for supplying single-phase AC power to the load 10 is performed.
  • the commercial power system 3 is a V-connected commercial power system having a U phase, a V phase, and a W phase as shown in the figure, and the V phase is grounded.
  • the U phase has a phase advanced by 120 ° with respect to the V phase
  • the W phase has a phase delayed by 120 ° with respect to the V phase.
  • the booster circuit 4 boosts the DC voltage output from the solar cell 1. Then, the booster circuit 4 outputs the boosted DC voltage to the inverter circuit 5.
  • the booster circuit 4 includes a reactor 41, a switch element 42 such as an IGBT (insulated gate bipolar transistor), and a diode 43.
  • a solar cell 1 is connected to the input side of the booster circuit 4, and a reactor 41 and a diode 43 are connected in series with the positive electrode of the solar cell 1.
  • the switch element 42 is connected between the connection point of the reactor 41 and the diode 43 and the negative electrode of the solar cell 1, and opens and closes between them.
  • the operation of the booster circuit 4 is controlled by the control circuit 9. Specifically, the control circuit 9 determines the ON duty ratio and periodically applies a pulse signal having the duty ratio to the gate of the switch element 42. Then, the switch element 42 is periodically opened and closed, and the booster circuit 4 obtains a predetermined boost ratio corresponding to (for example, proportional to) the duty ratio.
  • the inverter circuit 5 includes two capacitors 51 and 52 and a plurality of switch elements 53 to 56, and converts the DC power output from the solar cell 1 through the booster circuit 4 into three-phase AC power.
  • Capacitors 51 and 52 are connected in series to form a series circuit. This series circuit is connected to the diode 43 and the negative electrode of the solar cell 1.
  • the switch element 53 and the switch element 54 are connected in series to form a first arm circuit, and the switch element 55 and the switch element 56 are connected in series to form a second arm circuit.
  • the inverter circuit 5 forms a half-bridge type three-phase inverter circuit by connecting the series circuit, the first arm circuit, and the second arm circuit in parallel.
  • connection point between the two capacitors 51 and 52 in the series circuit is connected to the V-phase line Lv
  • connection point between the two switching elements 53 and 54 in the first arm circuit is connected to the U-phase line Lu
  • a connection point between the two switching elements 55 and 56 of the circuit is connected to the W-phase line Lw.
  • switch elements 53 to 56 of the inverter circuit 5 a switch element such as an IGBT may be used.
  • the operation of the inverter circuit 5 is controlled by the control circuit 9. The operation of the inverter circuit 5 will be described later.
  • the filter circuit 6 includes reactors 61 and 62 and three filter capacitors 63a, 63b, and 63c.
  • the filter circuit 6 is connected to the connection point of the switch element 51 and the switch element 52, the connection point of the switch element 53 and the switch element 54, and the connection point of the capacitor 51 and the capacitor 51 (output of the inverter circuit 5). Provided on the side).
  • reactor 61 is interposed in U-phase line Lu
  • reactor 62 is interposed in W-phase line Lw.
  • Each of the filter capacitors 63a, 63b, 63c is connected between three output lines Lu, Lv, Lw.
  • capacitors having the same capacity are used for the filter capacitors 63a to 63c.
  • the filter circuit 6 divides the output current of the inverter circuit 5 into a capacitor current flowing through the filter capacitors 63a, 63b, and 63c and a filter current flowing through the output lines Lu, Lv, and Lw.
  • the filter current from which the harmonic component of the output current of the inverter circuit 5 is removed flows from the filter circuit 6 to the output lines Lu, Lv, Lw on the commercial power system 3 side and is supplied to the commercial power system 30.
  • the grid connection relay 7 is connected to the output lines Lu, Lv, Lw connected to the commercial power system 3 (intervened between the filter circuit 6 and the commercial power system 3) by the contact pieces. Open and close Lw.
  • the system interconnection relay 7 is controlled to be closed or open by a control signal from the control circuit 9, and connects (links) or disconnects the inverter circuit 5 and the commercial system 30.
  • the self-sustaining operation relay 8 opens and closes the wirings La and Lb with the contact pieces interposed in the wirings La and Lb branched from the U-phase line Lu and the W-phase line Lw, respectively.
  • the self-sustained operation relay 8 is controlled to be closed or open by a control signal from the control circuit 9 and connects or disconnects the inverter circuit 5 and the load 10.
  • the control circuit 9 controls the operations of the booster circuit 4, the inverter circuit 5, the grid interconnection relay 7, and the independent operation relay 8, as described above.
  • the control circuit 9 connects the grid interconnection relay 7 and disconnects the independent operation relay. Further, when performing the autonomous operation, the control circuit 9 disconnects the grid interconnection relay 7 and connects the autonomous operation relay.
  • the control circuit 9 causes the booster circuit 4 to perform an MPPT operation so that the output power of the solar cell is maximized.
  • the MPPT operation is performed by calculating the power Pn from the input current Iin of the booster circuit and the input voltage Vin of the booster circuit, and adjusting the boost ratio of the booster circuit so that the power Pn is maximized.
  • the control circuit 9 changes the operation of the inverter circuit 5 between the case of performing the interconnected operation and the case of performing the independent operation.
  • the control circuit 9 periodically conducts / cuts off the switching elements 53 to 56 according to PWM (Pulse Width Modulation) control and performs DC power output from the solar cell when performing the interconnection operation. Is converted into three-phase AC power. Thereby, the inverter circuit 5 outputs the converted three-phase AC power to the three output lines Lu, Lv, and Lw.
  • PWM Pulse Width Modulation
  • the PWM control in the case of performing the interconnection operation includes a current flowing through the U-phase line Lu downstream of the filter circuit 6 (hereinafter referred to as U-phase line current Iu) and a current flowing through the W-phase line Lu downstream of the filter circuit 6 (hereinafter referred to as W-phase line current Iw) is detected, and current control is performed so that the line currents Iu and Iw become target values Iut and Iwt, respectively.
  • the switching timing of the switch elements 53 and 54 of the first arm circuit is determined based on the line current Iu
  • the switching timing of the switch elements 55 and 56 of the second arm circuit is determined by the line current Iw.
  • the control circuit 9 creates command values Iut and Iwt for each arm circuit, and controls the switch timing of the switch elements of each arm circuit.
  • the inverter circuit 5 When the control circuit 9 performs a self-sustained operation, the inverter circuit 5 periodically turns on / off the switch elements 51 to 54 in accordance with PWM (Pulse Width Modulation) control, and directs the DC power output from the solar cell. Convert to single-phase AC power. Thereby, the inverter circuit 5 outputs the converted single-phase AC power to the U-phase line Lu and the W-phase line Lw.
  • PWM Pulse Width Modulation
  • the PWM control detects the voltage V (or the voltage between the wirings La and Lb) applied to the U-phase line Lu and the W-phase line Lw downstream from the filter circuit 6, and this voltage V Is performed by voltage control so as to be the target value Vt. Specifically, the switching timing of the switch elements 53 and 54 of the first arm circuit and the switch elements 55 and 56 of the second arm circuit is determined based on the voltage V. That is, the control circuit 9 creates a command value Vt common to both the first and second arm circuits, and controls the switch timing of the switch elements of both the first and second arm circuits.
  • a single-phase AC power is supplied instead of a three-phase AC power during a self-sustained operation. Therefore, a load that operates with a single-phase AC power is easily used. be able to.
  • the first embodiment operates as a full-bridge type single-phase inverter circuit when performing a self-sustained operation, it can operate without worrying about the voltage balance of the capacitors 51 and 52. Can be used.
  • FIG. 2 is a diagram showing a connection when a switching relay 70 having a switching contact piece is used.
  • the switchable relay 70 shown in FIG. 2 has three switchable pieces. The switchable relay 70 switches the output path by selecting and connecting the input side contact of each piece and one of the two output side contacts corresponding to each input side contact.
  • Respective output lines Lu, Lw, Lv are connected to the input side contacts of the switchable relay 70, and output lines Lu, Lw, Lv respectively connected to the commercial power system 3 are connected to one of the two output side contacts. Is connected.
  • wiring La, Lb connected to the load 10 is connected to the other of the two output side contacts, and the AC power converted by the inverter circuit 5 is switched by switching the connection destination of the contact piece of the switching relay 70. The supply destination can be switched.
  • the wirings La and Lb are connected to the output side contacts connected to the output lines Lu and Lw, and nothing is connected to the output side contact connected to the output line Lv, and the circuit is open. In the independent operation, AC power is supplied to the wirings La and Lb from the output lines Lu and Lw connected to the first and second arm circuits.
  • the switching relay 70 connects the inverter circuit 5 and the load 10 when not performing the interconnection operation, such as when performing the independent operation, so as to connect the inverter circuit 5 and the commercial power system 3 when performing the interconnection operation. Switch the piece to connect.
  • the switching relay 70 is interposed in the output lines Lu, Lv, Lw and the wirings La, Lb, and also serves as a grid interconnection relay and a self-sustaining operation relay.
  • the relay 71 has three open / close type contact pieces, and these three contact pieces are interposed in the output lines Lu, Lv, and Lw.
  • the relay 71 is for disconnecting the grid interconnection device 2 from the commercial power system 3 and the load 10.
  • the relay 71 connects the output lines Lu, Lv, and Lw when the inverter circuit 5 is operated (including during linked operation and independent operation), and the output lines Lu, Lv when the inverter circuit 5 is stopped. , Lw is opened.
  • FIG. 3 is a configuration diagram illustrating a photovoltaic power generation system 100b according to the second embodiment.
  • the full-bridge three-phase inverter circuit 5a uses a capacitor 59 and a third arm circuit in which two switch elements 57 and 58 are connected in series instead of the series circuit including the capacitors 51 and 52.
  • the full-bridge type three-phase inverter circuit 5a is configured by connecting the capacitor 59, the third arm circuit, the first arm circuit, and the second arm circuit in parallel. At this time, the V-phase line Lv is connected to a connection point between the two switching elements 57 and 58 of the third arm circuit.
  • the PWM control when performing the interconnection operation detects the U-phase line current Iu, the W-phase line current Iw, and the current flowing through the V-phase line Lv downstream from the filter circuit 6a (hereinafter referred to as V-phase line current Iv).
  • Line currents Iu, Iv, Iw are performed by current control so as to be the target values Iut, Ivt, Iwt, respectively.
  • the switching timing of the switch elements 53 and 54 of the first arm circuit is determined based on the line current Iu
  • the switching timing of the second arm circuit is determined based on the line current Iw
  • the switching timing of the three-arm circuit is determined based on the line current Iv. That is, the control circuit 9 creates command values Iut, Ivt, Iwt for each arm circuit, and controls the switch timing of the switch elements of each arm circuit.
  • the PWM control detects the voltage V (or the voltage between the wirings La and Lb) applied to the U-phase line Lu and the W-phase line Lu downstream from the filter circuit 6, and this voltage V Is performed by voltage control so as to be the target value Vt.
  • the switching timing of the switch elements 53 and 54 of the first arm circuit and the switch elements 55 and 56 of the second arm circuit is determined based on the voltage V, and the switching elements 57 and 58 of the third arm circuit are cut off (OFF). ) Controlled to the state. That is, the control circuit 9 creates a command value Vt common to the two arm circuits (first and second arm circuits) connected to the output lines Lu and Lw lines branched from the lines La and Lb.
  • the switch timing of the switching elements 53 to 56 of the two-arm circuit is controlled (PWM control). Further, the switch elements 57 and 58 of the arm circuit connected to the output line Lv without branching of the wirings La and Lb are cut off.
  • a single-phase AC power is supplied instead of a three-phase AC power during a self-sustained operation, and thus a load that operates with a single-phase AC power is easily used. be able to.
  • the lines Lc, La, and Lb are branched from the three output lines Lu, Lv, and Lw, respectively, and two lines are selected from the three lines and connected to the load. Single-phase AC power may be supplied to the load. Even in this case, two of the three output lines are branched.
  • FIG. 4 is a diagram showing the connection of the selection circuit 80 for selecting two wirings.
  • the selection circuit 80 also serves as a self-sustained interconnection relay and has four pieces 81 to 84.
  • One end of the contact piece 81 is connected to the wiring La, and the other end is connected to one end of the load 10.
  • One end of the contact piece 82 is connected to the wiring Lc, and the other end is connected to the other end of the load 10.
  • One end of the contact piece 83 is connected to the wiring Lc, and the other end is connected to one end of the load 10.
  • One end of the contact piece 84 is connected to the wiring Lb, and the other end is connected to the other end of the load 10.
  • an operating arm circuit can be selected. Therefore, one of the first, second, and third arm circuits can be rested.
  • the switching elements 53 to 58 can be used on average.
  • DC power supply for example, in this embodiment, although the example which uses the solar cell 1 as a DC power supply was given, other DC power supplies, such as a fuel cell and a storage battery, can also be used, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】 単相の交流電力にて動作する負荷を容易に利用することができる系統連系装置を提供することを目的とする。 【解決手段】 交流電力をU相線Lu、V相線Lv、W相線Lwの3本の出力線Lu、Lv、Lwに出力するインバータ回路5と、3本の出力線Lu、Lv、Lwに介在し、商用電力系統3とインバータ回路5との接続/解列を行う系統連系用リレー7と、3本の出力線Lu、Lv、Lwの内2本の出力線から夫々分岐し、自立運転用リレー8を介して負荷と接続される配線La、Lbと、を備え、商用電力系統3とインバータ回路5とが連系運転を行う場合に、インバータ回路5は、三相の交流電力を商用電力系統3へ重畳し、商用電力系統3からインバータ回路5を切り離して負荷へ電力を供給する自立運転を行う場合に、インバータ回路5は、直流電力を単相の交流電力に変換して配線La、Lbに出力することを特徴とする。 

Description

系統連系装置
 本発明は、太陽電池、燃料電池、或いは蓄電池等の直流電源から出力される直流電力を交流電力に変換して、この交流電力を商用系統へ重畳する系統連系装置に関する。
 従来より、太陽電池、燃料電池、或いは蓄電池等の直流電源が出力する直流電力を交流電力に変換し、系統連系用リレーを介して三相の商用電力系統へ連系する系統連系装置が提供されている。
 系統連系装置は、インバータ回路、フィルタ回路、系統連系用リレー、及び制御回路制御回路等からなる。インバータ回路は、直流電源から出力される直流電力をU相、V相、W相を有する三相の交流電力へ変換し、この交流電力をU相線、V相線、W相線の3本の出力線に出力する。フィルタ回路は、複数のフィルタ用コンデンサを有し、インバータ回路の出力電流の一部を出力線からフィルタ用コンデンサに流し、出力電流の高調波成分を除去した電流を出力線に流す。系統連系用リレーは、フィルタ回路と商用電力系統との間に接続され、その開閉により直流電源と商用電力系統との解列/接続を行う。制御回路は、マイコンから成り、インバータ回路及び系統連系用リレーに信号を与え、インバータ回路及び系統連系用リレーの動作の制御を行う。
 また、三相の系統連系装置には、商用電力系統が停電した場合に、商用電力系統と切り離して負荷へ供給する自立運転を行うものがある(特許文献1)。このような三相の系統連系装置は、3本の出力線から夫々分岐する3本の配線に、自立運転用のリレーを介して負荷を接続している。そして、自立運転を行う場合は、系統連系用リレーを開いて商用電力系統と系統連系装置とを切り離し、自立運転用リレーを閉じて3本の配線に三相の交流電力を供給する。
特開平11-27957号公報
 しかしながら、停電になった場合に用いられる負荷は、非常用のものであるため、消費電力が小さい単相の交流電力を利用するものが多い。このため、自立運転時には単相の交流電力を利用する負荷を容易に利用できることが求められる。
 本発明は上述の問題に鑑みて成された発明であり、単相の交流電力にて動作する負荷を容易に利用することができる系統連系装置を提供することを目的とする。
 上記目的を達成するために、直流電力をU相、V相、W相を有する三相の交流電力へ変換し、該交流電力をU相線、V相線、W相線の3本の出力線に出力するインバータ回路と、前記3本の出力線に介在し、商用電力系統と前記インバータ回路との接続/解列を行う系統連系用リレーと、前記3本の出力線の内2本の出力線から夫々分岐し、自立運転用リレーを介して負荷と接続される配線と、を備え、前記商用電力系統と前記インバータ回路とが連系運転を行う場合に、前記系統連系用リレーを接続し、前記自立運転用リレーを解列し、前記インバータ回路は、前記三相の交流電力を前記商用電力系統へ重畳し、前記商用電力系統から前記インバータ回路を切り離して前記負荷へ電力を供給する自立運転を行う場合に、前記系統連系用リレーを解列し、前記自立運転用リレーを接続し、前記インバータ回路は、前記直流電力を単相の交流電力に変換して前記配線に出力することを特徴とする。
 本発明によれば、自立運転時には三相の交流電力ではなく、単相の交流電力を自立運転用の配線に供給するため、単相の交流電力にて動作する負荷を容易に利用することができる。
 また、上述の発明において、前記商用電力系統は、V相が接地されるV結線の電源系統であり、前記インバータ回路は、2つのスイッチ素子を直列接続した第1アーム回路と、2つのスイッチ素子を直列接続した第2アーム回路と、2つのコンデンサを直列接続した直列回路と、を並列接続してなり、前記第1アーム回路の2つのスイッチ素子の接続点と前記U相線とが接続され、前記第2アーム回路の2つのスイッチ素子の接続点と前記W相線とが接続され、前記直列回路の2つのコンデンサの接続点と前記V相線とが接続され、前記U相線と前記W相線から前記配線が分岐することを特徴とする。
 また、上述の発明において、前記連系運転を行う場合は、前記第1アーム回路のスイッチ素子のスイッチングのタイミングを、前記U相線に流れる線電流に基づいて決定し、前記第2アーム回路のスイッチ素子のスイッチングのタイミングを、前記W相線に流れる線電流に基づいて決定し、前記自立運転を行う場合は、第1アーム回路のスイッチ素子、及び第2アーム回路のスイッチ素子のスイッチングタイミングを、前記U相線とW相線とに印加される電圧に基づいて決定することを特徴とする。
 また、上述の発明において、前記インバータ回路は、2つのスイッチ素子を直列接続した第1アーム回路と、2つのスイッチ素子を直列接続した第2アーム回路と、2つのスイッチ素子を直列接続した第3アーム回路と、を並列接続してなり、前記第1アーム回路の2つのスイッチ素子の接続点と前記U相線とが接続され、前記第2アーム回路の2つのスイッチ素子の接続点と前記W相線とが接続され、前記第3アーム回路の2つのスイッチ素子の接続点と前記W相線とが接続され、前記自立運転を行う場合に、前記配線の分岐のない出力線に接続される前記アーム回路のスイッチ素子を遮断し、前記配線の分岐する出力線に接続される前記アーム回路のスイッチング素子をPWM制御して前記単相の交流電力を前記配線に供給することを特徴とする。
 また、上述の発明において、前記3本の出力線の中から夫々配線を分岐し、3本の前記配線から前記2本を選択して負荷へ接続する選択回路を備えることを特徴とする。
 また、上述の発明において、前記自立運転毎、或いは決められた前記自立運転の運転回数毎に、前記選択回路により選択される配線を変えることを特徴とする。
 本発明によれば、単相の交流電力にて動作する負荷を容易に利用することができる系統連系装置を提供することができる。
第1の実施形態に係る太陽光発電システム100を示す構成図である。 切替式の接片を有するリレーを用いた場合の接続を示す図である。 第2の実施形態に係る太陽光発電システム100aを示す構成図である。 2本の配線を選択する選択回路80の接続を示す図である。
(第1の実施形態)
 以下、図面に基づき本発明の第1の実施形態を詳述する。図1は第1の実施形態に係る太陽光発電システム100を示す構成図である。この図に示すように太陽光発電システム100は、太陽電池1(直流電源)、系統連系装置2を備える。
 系統連系装置2は、昇圧回路4、インバータ回路5、フィルタ回路6、系統連系用リレー7、自立運転用リレー8、制御回路9を備える。系統連系装置2は、系統連系用リレー7を介してインバータ回路5の出力する三相の交流電力を商用電力系統3へ重畳する連系運転を行う。また、商用電力系統3が停電している場合は、インバータ回路5と商用電力系統3とを切り離して負荷10へ単相の交流電力を供給する自立運転を行う。
 商用電力系統3は、図に示すようにU相、V相、W相を有するV結線の商用電力系統であり、V相が接地されている。U相は、V相よりも120°進んだ位相を有し、W相はV相よりも120°遅れた位相を有する。
 昇圧回路4は、太陽電池1から出力された直流電圧を昇圧する。そして、昇圧回路4は、この昇圧した直流電圧をインバータ回路5へ出力する。昇圧回路4は、図1に示すように、リアクトル41、IGBT(絶縁ゲートバイポーラトランジスタ)のようなスイッチ素子42、及びダイオード43を有して構成される。昇圧回路4の入力側には、太陽電池1が接続され、太陽電池1の正極と直列にリアクトル41とダイオード43とが接続される。スイッチ素子42は、リアクトル41及びダイオード43の接続点と太陽電池1の負極との間に接続され、その間を開閉する。
 昇圧回路4は、制御回路9によって動作が制御される。具体的には、制御回路9がONデューティ比を決定し、そのデューティ比を有するパルス信号をスイッチ素子42のゲートに周期的に与える。すると、スイッチ素子42は、周期的に開閉し、昇圧回路4は、デューティ比に応じた(例えば、比例した)所定の昇圧比を得る。
 インバータ回路5は、2つのコンデンサ51、52、及び複数のスイッチ素子53~56を有し、昇圧回路4を介して太陽電池1から出力される直流電力を三相の交流電力へ変換する。コンデンサ51と52は、直列に接続されて直列回路を成している。この直列回路は、ダイオード43と太陽電池1の負極とに接続される。また、スイッチ素子53とスイッチ素子54は直列接続され第1アーム回路を成しており、スイッチ素子55とスイッチ素子56は直列接続され第2アーム回路を成している。インバータ回路5は、これらの直列回路、第1アーム回路、及び第2アーム回路を夫々並列に接続して、ハーフブリッジ型の三相インバータ回路を構成している。また、直列回路の2つのコンデンサ51、52の接続点はV相線Lvに接続され、第1アーム回路の2つのスイッチング素子53、54の接続点はU相線Luに接続され、第2アーム回路の2つのスイッチング素子55、56の接続点は、W相線Lwに接続される。
 インバータ回路5のスイッチ素子53~56には、IGBTのようなスイッチ素子を用いると良い。インバータ回路5は、制御回路9によってその動作が制御される。インバータ回路5の動作については後述する。
 フィルタ回路6は、リアクトル61、62、及び3つのフィルタ用コンデンサ63a、63b、63cを有する。また、フィルタ回路6は、スイッチ素子51及びスイッチ素子52の接続点と、スイッチ素子53及びスイッチ素子54の接続点と、コンデンサ51及びコンデンサ51の接続点とに接続される(インバータ回路5の出力側に設けられる)。具体的には、U相線Luにリアクトル61が介在し、W相線Lwにリアクトル62が介在している。各フィルタ用コンデンサ63a、63b、63cは3本の出力線Lu、Lv、Lwの夫々の間に結線される。また、各フィルタ用コンデンサ63a~63cは等しい容量のコンデンサが用いられる。フィルタ回路6は、インバータ回路5の出力電流をフィルタ用コンデンサ63a、63b、63cに流れるコンデンサ電流と、出力線Lu、Lv、Lwに流れるフィルタ電流とに分ける。これにより、インバータ回路5の出力電流の高調波成分が除去されたフィルタ電流が、フィルタ回路6より商用電力系統3側の出力線Lu、Lv、Lwに流れ、商用電力系統30に供給される。
 系統連系用リレー7は、商用電力系統3に接続される出力線Lu、Lv、Lwに介在(フィルタ回路6と商用電力系統3との間に介在)する接片により出力線Lu、Lv、Lwの開閉を行う。この系統連系用リレー7は、制御回路9からの制御信号によって閉状態と開状態が制御され、インバータ回路5と商用系統30とを接続(連系)または解列するものである。
 自立運転用リレー8は、U相線Lu、及びW相線Lwから夫々分岐する配線La、Lbに介在する接片により配線La、Lbの開閉を行う。この自立運転用リレー8は、制御回路9からの制御信号によって閉状態と開状態が制御され、インバータ回路5と負荷10とを接続または解列するものである。
 制御回路9は、上述したように、昇圧回路4、インバータ回路5、系統連系用リレー7、及び自立運転用リレー8の動作を制御する。制御回路9は、インバータ回路5と商用電力系統3とを接続して連系運転を行う場合に、系統連系用リレー7を接続し、自立運転用リレーを解列する。また、制御回路9は自立運転を行う場合に、系統連系用リレー7を解列し、自立運転用リレーを接続する。
 制御回路9は、太陽電池の出力電力が最大になるように昇圧回路4をMPPT動作させる。MPPT動作は、昇圧回路の入力電流Iinと、昇圧回路の入力電圧Vinにより電力Pnを演算し、電力Pnが最大になるよう昇圧回路の昇圧比を調整することにより行う。
 制御回路9は、連系運転を行う場合と、自立運転を行う場合とでインバータ回路5の動作を変える。制御回路9は、連系運転を行う場合は、インバータ回路5を、PWM(Pulse Width Modulation)制御にしたがって各スイッチ素子53~56を周期的に導通/遮断し、太陽電池から出力される直流電力を三相の交流電力に変換する。これにより、インバータ回路5は、変換した三相の交流電力を3本の出力線Lu、Lv、Lwに出力する。
 連系運転を行う場合のPWM制御は、フィルタ回路6より後段のU相線Luを流れる電流(以下、U相線電流Iu)とフィルタ回路6より後段のW相線Luを流れる電流(以下、W相線電流Iw)とを検出し、線電流Iu、Iwが、夫々目標値Iut、Iwtになるような電流制御により行われる。具体的には、第1アーム回路のスイッチ素子53、54のスイッチングのタイミングは、線電流Iuに基づいて決定され、第2アーム回路のスイッチ素子55、56のスイッチングのタイミングは、線電流Iwに基づいて決定される。即ち、制御回路9は、各アーム回路毎に指令値Iut、Iwtを作成し、各アーム回路のスイッチ素子のスイッチタイミングを制御する。
 制御回路9は、自立運転を行う場合は、インバータ回路5を、PWM(Pulse Width Modulation)制御にしたがって各スイッチ素子51~54を周期的に導通/遮断し、太陽電池から出力される直流電力を単相の交流電力に変換する。これにより、インバータ回路5は、変換した単相の交流電力をU相線LuとW相線Lwとに出力する。
 自立運転を行う場合のPWM制御は、フィルタ回路6より後段のU相線LuとW相線Lwとに印加される電圧V(或いは、配線La、Lb間の電圧)を検出し、この電圧Vが、目標値Vtになるような電圧制御により行われる。具体的には、第1アーム回路のスイッチ素子53、54、及び第2アーム回路のスイッチ素子55、56のスイッチングのタイミングは、電圧Vに基づいて決定される。即ち、制御回路9は、両第1、第2アーム回路に共通の指令値Vtを作成し、両第1、第2アーム回路のスイッチ素子のスイッチタイミングを制御する。
 以上のように、第1の実施形態によれば、自立運転時には三相の交流電力ではなく、単相の交流電力を供給するため、単相の交流電力にて動作する負荷を容易に利用することができる。
 また、ハーフブリッジ型の三相インバータ回路により、自立運転を行う場合に、三相の交流電力を生成し、各相の交流電力から単相の交流電力を取り出して負荷に電力を供給すると、各相に接続される負荷が平衡していない場合、コンデンサ51、52の電圧バランスが崩れて負荷へ電力の供給ができなくなる(即ち、接続する負荷が大きく制限される)。しかしながら、第1の実施例においては、自立運転を行う場合に、フルブリッジ型の単相インバータ回路として動作するため、コンデンサ51、52の電圧バランスを気にすることなく動作できるため、様々な負荷を利用することができる。
 また、第1の実施形態では、系統連系用リレー7と自立運転用リレー8とに開閉式の接片を有するリレーを用いる例を説明したが、複数の出力経路の内1つを選択して切り替える切替式の接片を有するリレーを用いても良い。図2は切替式の接片を有する切替式リレー70を用いた場合の接続を示す図である。図2に示す切替式リレー70は、切替式の接片を3つ有している。切替式リレー70は、各接片の入力側接点と各入力側接点に対応する2つの出力側接点の内1つとを選択して接続することにより出力経路を切り替える。
 切替式リレー70の各入力側接点には夫々の出力線Lu、Lw、Lvが接続され、2つの出力側接点の内一方には夫々商用電力系統3に接続される出力線Lu、Lw、Lvが接続される。また、2つの出力側接点の内他方には負荷10に接続される配線La、Lbが接続され、切替式リレー70の接片の接続先を切り替えることによりインバータ回路5により変換された交流電力の供給先を切り替えることができる。具体的には、出力線Lu、Lwに接続される出力側接点に配線La、Lbが接続され、出力線Lvに接続される出力側接点には何も接続されず開放状態になっている。自立運転時には、第1、第2アーム回路に接続される出力線Lu、Lwから配線La、Lbに交流電力が供給される。
 切替式リレー70は、連系運転を行う場合にインバータ回路5と商用電力系統3とを接続するように、自立運転を行う場合など連系運転を行わない場合にインバータ回路5と負荷10とを接続するように接片を切り替える。切替式リレー70は、出力線Lu、Lv、Lw及び配線La、Lbに介在することになり、系統連系用リレーと自立運転用リレーを兼ねることになる。
 リレー71は、3つの開閉式の接片を有し、この3つの接片は、出力線Lu、Lv、Lwに介在している。リレー71は、系統連系装置2と商用電力系統3及び負荷10とを切り離すためのものである。リレー71は、インバータ回路5が動作する際(連系運転時、及び自立運転時を含む)に出力線Lu、Lv、Lwを接続状態にし、インバータ回路5が停止する際に出力線Lu、Lv、Lwを開放状態にする。
(第2の実施形態)
 第1の実施形態では、インバータ回路5に、ハーフブリッジ型の三相インバータ回路を適用したが、第2の実施形態では、フルブリッジ型の三相インバータ回路を適用する例について述べる。図3は、第2の実施形態に係る太陽光発電システム100bを示す構成図である。
 フルブリッジ型の三相インバータ回路5aは、コンデンサ51、52からなる直列回路に変えて、コンデンサ59と、2つのスイッチ素子57、58を直列に接続した第3アーム回路とを用いる。フルブリッジ型の三相インバータ回路5aは、これらのコンデンサ59、及び第3アーム回路と、第1アーム回路、及び第2アーム回路とを並列に接続することで構成される。このときV相線Lvは、第3アーム回路の2つのスイッチング素子57、58の接続点に接続される。
 連系運転を行う場合のPWM制御は、U相線電流Iu、W相線電流Iw、及びフィルタ回路6aより後段のV相線Lvを流れる電流(以下、V相線電流Iv)とを検出し、線電流Iu、Iv、Iwが、夫々目標値Iut、Ivt、Iwtになるような電流制御により行われる。具体的には、第1アーム回路のスイッチ素子53、54のスイッチングのタイミングは、線電流Iuに基づいて決定され、第2アーム回路のスイッチングのタイミングは、線電流Iwに基づいて決定され、第3アーム回路のスイッチングのタイミングは、線電流Ivに基づいて決定される。即ち、制御回路9は、各アーム回路毎に指令値Iut、Ivt、Iwtを作成し、各アーム回路のスイッチ素子のスイッチタイミングを制御する。
 自立運転を行う場合のPWM制御は、フィルタ回路6より後段のU相線LuとW相線Luに印加される電圧V(或いは、配線La、Lb間の電圧)とを検出し、この電圧Vが、目標値Vtになるような電圧制御により行われる。第1アーム回路のスイッチ素子53、54、及び第2アーム回路のスイッチ素子55、56のスイッチングのタイミングは、電圧Vに基づいて決定され、第3アーム回路のスイッチング素子57、58は遮断(OFF)状態に制御される。即ち、制御回路9は、配線La、Lb分岐する出力線Lu、Lw線に接続される2つのアーム回路(第1、第2アーム回路)に共通の指令値Vtを作成し、第1、第2アーム回路のスイッチング素子53~56のスイッチタイミングを制御する(PWM制御する)。また、配線La、Lbの分岐のない出力線Lvに接続されるアーム回路のスイッチ素子57、58を遮断する。
 以上のように、第2の実施形態によれば、自立運転時には三相の交流電力ではなく、単相の交流電力を供給するため、単相の交流電力にて動作する負荷を容易に利用することができる。
 また、第2の実施形態において、3本の出力線Lu、Lv、Lwから夫々配線Lc、La、Lbを分岐し、この3本の配線から2本の配線を選択して負荷へ接続し、単相の交流電力を負荷へ供給するようにしても良い。このようにしても実質、3本の出力線の内2本の出力線が夫々分岐することになる。図4は、2本の配線を選択する選択回路80の接続を示す図である。
 図4に示すように、選択回路80は、自立連系用リレーを兼ねており、4つの切片81~84を有している。接片81の一端は、配線Laに接続され、他端は、負荷10の一端に接続されている。接片82の一端は、配線Lcに接続され、他端は、負荷10の他端に接続されている。接片83の一端は、配線Lcに接続され、他端は負荷10の一端に接続されている。接片84の一端は配線Lbに接続され、他端は負荷10の他端に接続されている。
 接片81、82を閉じ、接片83、84を開くと配線Lc、Laから単相の交流電力を負荷10に供給可能になり、第2アーム回路を休ませることができる。また、接片81、82を開き、接片83、84を閉じると配線Lc、Lbから単相の交流電力を負荷10に供給可能になり、第1アーム回路を休ませることができる。また、接片81、84を閉じ、接片82、83を開くと配線Lb、Laから単相の交流電力を負荷10に供給可能になり、第3アーム回路を休ませることができる。また、接片81~84を全て開くとインバータ回路5と負荷10とを切り離すことができる。
 このように3本の配線から2本の配線を選択できるようにすることで、動作するアーム回路を選択することができる。このため、第1、第2、第3アーム回路の内1つを休ませることができる。
 また、自立運転毎、或いは決められた自立運転の運転回数毎に、選択する配線(PWM制御で利用されるアーム回路)を変えると、平均的にスイッチ素子53~58を利用することができる。
 以上、本発明の一実施形態について説明したが、以上の説明は本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。 
 例えば、本実施形態において、直流電源として太陽電池1を利用する例を挙げたが、例えば、燃料電池や蓄電池など、その他の直流電源を利用することもできる。
 
1      太陽電池
2   系統連系装置
3      商用電力系統
4   昇圧回路
5      インバータ回路
6      フィルタ回路
7      系統連系用リレー
8      自立運転用リレー
9      制御回路
10  負荷
 

Claims (6)

  1.  直流電力をU相、V相、W相を有する三相の交流電力へ変換し、該交流電力をU相線、V相線、W相線の3本の出力線に出力するインバータ回路と、
     前記3本の出力線に介在し、商用電力系統と前記インバータ回路との接続/解列を行う系統連系用リレーと、
     前記3本の出力線の内2本の出力線から夫々分岐し、自立運転用リレーを介して負荷と接続される配線と、を備え、
     前記商用電力系統と前記インバータ回路とが連系運転を行う場合に、前記系統連系用リレーを接続し、前記自立運転用リレーを解列し、前記インバータ回路は、前記三相の交流電力を前記商用電力系統へ重畳し、
     前記商用電力系統から前記インバータ回路を切り離して前記負荷へ電力を供給する自立運転を行う場合に、前記系統連系用リレーを解列し、前記自立運転用リレーを接続し、前記インバータ回路は、前記直流電力を単相の交流電力に変換して前記配線に出力することを特徴とする系統連系装置。
  2.  前記商用電力系統は、V相が接地されるV結線の電源系統であり、
     前記インバータ回路は、2つのスイッチ素子を直列接続した第1アーム回路と、2つのスイッチ素子を直列接続した第2アーム回路と、2つのコンデンサを直列接続した直列回路と、を並列接続してなり、
     前記第1アーム回路の2つのスイッチ素子の接続点と前記U相線とが接続され、
     前記第2アーム回路の2つのスイッチ素子の接続点と前記W相線とが接続され、
     前記直列回路の2つのコンデンサの接続点と前記V相線とが接続され、
     前記U相線と前記W相線から前記配線が分岐することを特徴とする請求項1に記載の系統連系装置。
  3.  前記連系運転を行う場合は、前記第1アーム回路のスイッチ素子のスイッチングのタイミングを、前記U相線に流れる線電流に基づいて決定し、前記第2アーム回路のスイッチ素子のスイッチングのタイミングを、前記W相線に流れる線電流に基づいて決定し、
     前記自立運転を行う場合は、第1アーム回路のスイッチ素子、及び第2アーム回路のスイッチ素子のスイッチングタイミングを、前記U相線とW相線とに印加される電圧に基づいて決定することを特徴とする請求項2に記載の系統連系装置。
  4.  前記インバータ回路は、2つのスイッチ素子を直列接続した第1アーム回路と、2つのスイッチ素子を直列接続した第2アーム回路と、2つのスイッチ素子を直列接続した第3アーム回路と、を並列接続してなり、
     前記第1アーム回路の2つのスイッチ素子の接続点と前記U相線とが接続され、
     前記第2アーム回路の2つのスイッチ素子の接続点と前記W相線とが接続され、
     前記第3アーム回路の2つのスイッチ素子の接続点と前記V相線とが接続され、
     前記自立運転を行う場合に、前記配線の分岐のない出力線に接続される前記アーム回路のスイッチ素子を遮断し、前記配線の分岐する出力線に接続される前記アーム回路のスイッチング素子をPWM制御して前記単相の交流電力を前記配線に供給することを特徴とする請求項1に記載の系統連系装置。
  5.  前記3本の出力線の中から夫々配線を分岐し、3本の前記配線から前記2本を選択して負荷へ接続する選択回路を備えることを特徴とする請求項4に記載の系統連系装置。
  6.  前記自立運転毎、或いは決められた前記自立運転の運転回数毎に、前記選択回路により選択される配線を変えることを特徴とする請求項5に記載の系統連系装置。
     
     
     
PCT/JP2012/080283 2011-11-29 2012-11-22 系統連系装置 WO2013080877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201290001017.3U CN204046188U (zh) 2011-11-29 2012-11-22 并网装置
JP2013547119A JP5887501B2 (ja) 2011-11-29 2012-11-22 系統連系装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011259816 2011-11-29
JP2011-259816 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013080877A1 true WO2013080877A1 (ja) 2013-06-06

Family

ID=48535336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080283 WO2013080877A1 (ja) 2011-11-29 2012-11-22 系統連系装置

Country Status (3)

Country Link
JP (1) JP5887501B2 (ja)
CN (1) CN204046188U (ja)
WO (1) WO2013080877A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560511A (zh) * 2013-11-15 2014-02-05 北京国电通网络技术有限公司 离/并网一体化太阳能发电子系统及系统
JP2015027197A (ja) * 2013-07-26 2015-02-05 シャープ株式会社 電力変換装置
JP2015188307A (ja) * 2014-03-26 2015-10-29 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG 3相インバータの単相非常時運転、および対応するインバータ
JP2017515454A (ja) * 2014-05-08 2017-06-08 アーベーベー シュヴァイツ アクツィエンゲゼルシャフト 設定可能なインバータ装置、該インバータ装置を備える太陽光発電システム
JP2018191447A (ja) * 2017-05-09 2018-11-29 住友電気工業株式会社 電力変換装置および電力変換システム
JP2019193432A (ja) * 2018-04-25 2019-10-31 シンフォニアテクノロジー株式会社 電源回路及びそれを備えたパーツフィーダ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102513991B1 (ko) 2016-04-15 2023-03-23 엘에스일렉트릭(주) 태양광 전압 제어 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018859A (ja) * 2001-06-27 2003-01-17 Japan Storage Battery Co Ltd 太陽光発電用パワーコンディショナ
JP2003116222A (ja) * 2001-10-04 2003-04-18 Nissin Electric Co Ltd 分散型電源装置の自立運転制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003018859A (ja) * 2001-06-27 2003-01-17 Japan Storage Battery Co Ltd 太陽光発電用パワーコンディショナ
JP2003116222A (ja) * 2001-10-04 2003-04-18 Nissin Electric Co Ltd 分散型電源装置の自立運転制御方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015027197A (ja) * 2013-07-26 2015-02-05 シャープ株式会社 電力変換装置
CN103560511A (zh) * 2013-11-15 2014-02-05 北京国电通网络技术有限公司 离/并网一体化太阳能发电子系统及系统
JP2015188307A (ja) * 2014-03-26 2015-10-29 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG 3相インバータの単相非常時運転、および対応するインバータ
JP2017515454A (ja) * 2014-05-08 2017-06-08 アーベーベー シュヴァイツ アクツィエンゲゼルシャフト 設定可能なインバータ装置、該インバータ装置を備える太陽光発電システム
JP2018191447A (ja) * 2017-05-09 2018-11-29 住友電気工業株式会社 電力変換装置および電力変換システム
JP2019193432A (ja) * 2018-04-25 2019-10-31 シンフォニアテクノロジー株式会社 電源回路及びそれを備えたパーツフィーダ
JP7011168B2 (ja) 2018-04-25 2022-01-26 シンフォニアテクノロジー株式会社 電源回路及びそれを備えたパーツフィーダ

Also Published As

Publication number Publication date
JP5887501B2 (ja) 2016-03-16
JPWO2013080877A1 (ja) 2015-04-27
CN204046188U (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5887501B2 (ja) 系統連系装置
CA2965488C (en) Multi-mode energy router
US9461556B2 (en) Stable regenerative bi-directional cell for bridge power inverters
US8044535B2 (en) Backup power system
JP5919483B2 (ja) 系統連系装置
US9041251B2 (en) Boost converter with multiple inputs and inverter circuit
US12009690B2 (en) Power converters and methods of controlling same
US9035578B2 (en) System for coupling at least one DC source to a controllable energy store and associated operating method
US9793731B2 (en) Attenuation circuit for an energy storage device and method for attenuating oscillations of the output current of an energy storage device
WO2014017417A1 (ja) 分散電源システム及び運転方法
WO2019069394A1 (ja) 電力変換装置
JP6124909B2 (ja) 単相、二相または三相単極電気を供給するよう協調的に制御される単相インバータ
CN109247052B (zh) 用于能量储存系统的电力转换器拓扑
EP3012941B1 (en) System and method for parallel power supply control for auxiliary converters of motor train unit in presence of interconnecting lines
CN111211705A (zh) 一种适用于分相电网的双向变换结构及输出控制方法
JPH0336930A (ja) 3相変換装置
US20140103886A1 (en) Method for producing reactive current with a converter and converter arrangement and energy supply plant
JP2015015782A (ja) 系統連系インバータ装置
JP3805953B2 (ja) パワーコンディショナおよびこれを用いた太陽光発電システム
JP2007104822A (ja) 電力変換装置の並列化システム
KR20090044126A (ko) 에이치-브릿지 멀티레벨 인버터 삼상 불 평형 제어방법 및장치
US8575781B2 (en) Photovoltaic inverter with option for switching between a power supply system with a fixed frequency and a load variable frequency
US9325273B2 (en) Method and system for driving electric machines
Machado et al. Fault-tolerant Utility Interface power converter for low-voltage microgrids
JP2009219174A (ja) モータ駆動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201290001017.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854451

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201403733

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 12854451

Country of ref document: EP

Kind code of ref document: A1