WO2013080574A1 - Continuous unloader - Google Patents

Continuous unloader Download PDF

Info

Publication number
WO2013080574A1
WO2013080574A1 PCT/JP2012/050614 JP2012050614W WO2013080574A1 WO 2013080574 A1 WO2013080574 A1 WO 2013080574A1 JP 2012050614 W JP2012050614 W JP 2012050614W WO 2013080574 A1 WO2013080574 A1 WO 2013080574A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
continuous unloader
swing
bucket
excavating
Prior art date
Application number
PCT/JP2012/050614
Other languages
French (fr)
Japanese (ja)
Inventor
昇 藤澤
岩本 信人
賢一 木元
Original Assignee
三菱重工マシナリーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工マシナリーテクノロジー株式会社 filed Critical 三菱重工マシナリーテクノロジー株式会社
Priority to CN201280014056.1A priority Critical patent/CN103492295B/en
Publication of WO2013080574A1 publication Critical patent/WO2013080574A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G67/00Loading or unloading vehicles
    • B65G67/60Loading or unloading ships
    • B65G67/606Loading or unloading ships using devices specially adapted for bulk material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G65/00Loading or unloading
    • B65G65/02Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads
    • B65G65/06Loading or unloading machines comprising essentially a conveyor for moving the loads associated with a device for picking-up the loads with endless scraping or elevating pick-up conveyors

Definitions

  • the present invention relates to a continuous unloader for continuously excavating and transporting bulk loads loaded on a ship.
  • a continuous unloader is a machine that continuously unloads bulk loads, such as ore and coal, loaded in the bulk of a bulk carrier.
  • the continuous unloader is installed on a quay and includes a bucket for excavating loose loads, an endless chain to which a plurality of buckets are connected, a motor for driving the endless chain, and the like. Then, by driving the endless chain, it is possible to continuously excavate a bulk load in which a plurality of buckets connected to the endless chain are loaded in the hold of the ship.
  • Patent Document 1 discloses a technique for detecting a horizontal excavation force in a continuous unloader and securing a desired cargo handling amount under light load conditions. Further, in Patent Document 2, the unloader excavation section is made to follow the bottom of the ship, and the bottom-up operation is performed at a low cost and without significantly reducing the cargo handling efficiency when the vertical movement of the ship is large at the bottom-up stage. Techniques to do are disclosed.
  • the present invention has been made in view of such circumstances, and is a continuous unloader capable of accurately grasping the movement of a ship during cargo handling and reducing the load applied to the continuous unloader from the ship.
  • the purpose is to provide.
  • the continuous unloader of the present invention employs the following means. That is, the continuous unloader according to the first aspect of the present invention drives a bucket for excavating bulk loads loaded in a ship hold, an endless member connected to a plurality of buckets, and an endless member.
  • Excavation means having a drive unit, swing detection means for detecting the swing of the ship, and display means for visually displaying the detected swing.
  • the endless member when the endless member is driven, a plurality of buckets connected to the endless member continuously excavate the bulk load loaded in the ship hold.
  • the swing detection means detects the swing of the ship that is excavating the loose load, and the detected swing is displayed on the display means, the operation of the drilling means according to the swing of the ship is performed. Can be made accurately.
  • the state of rocking of the ship is transmitted to the operator of the excavation means, which helps the operation of the excavation means during cargo handling.
  • the ship's rocking state is transmitted to an instructor (signal man) to the operator on the ship side, it is possible to assist in operating instructions during cargo handling.
  • the excavation means is operated so as to reduce the load applied to the excavation means from the ship according to the swinging of the ship.
  • the swing detection means may be installed on the excavation means.
  • the excavation means is provided with the swing detection means, it is not necessary to install a signal transmission means from the ship side to the excavation means side, for example, a wireless device on the ship.
  • the continuous unloader which concerns on the 2nd aspect of this invention drives the endless member which excavated the bulk load loaded in the hold of a ship, the endless member to which the several bucket was connected, and the endless member Excavation means having a drive unit, proximity state detection means for detecting the proximity state of the ship and the excavation means, and notification means for notifying the detected proximity state.
  • the operation of the excavation means is changed according to the proximity state of the ship. Can be done accurately.
  • the proximity of the ship is transmitted to the operator of the excavation means, which helps the operation of the excavation means during cargo handling.
  • the excavating means is operated so as to avoid interference according to the proximity state of the ship.
  • the continuous unloader drives a bucket for excavating bulk loads loaded in a ship hold, an endless member connected to a plurality of buckets, and an endless member.
  • Excavation means having a drive unit, oscillation detection means for detecting the amount of oscillation of the ship, and the amount of sagging of the endless member of the excavation means or the distance between the bulk load and the excavation means is changed according to the detected oscillation amount Operating means.
  • the swing detection means detects the swing amount of the vessel on which the bulk load is excavated, and depending on the detected swing amount, the sagging amount of the endless member of the drilling means or the loose load and the excavation means Since the distance is changed, it is possible to accurately change the operation of the excavation means according to the swinging of the ship. As a result, the excavation means is operated so as to reduce the load applied to the excavation means from the ship according to the swinging of the ship.
  • the continuous unloader 1 is installed on the quay 5, and the main body 4 of the continuous unloader 1 is movable along a rail 36 laid on the quay 5.
  • a boom 9 is installed on the upper part of the main body 4, and the boom 9 supports the column 2.
  • the column 2 is provided with excavating means, and the lower part of the column 2 is inserted into the hold through the opening 7 of the ship 6.
  • the excavating means excavates the bulk load loaded in the hold of the ship 6.
  • the ship 6 is, for example, a bulk carrier, and the bulk load is ore or coal.
  • the loose load excavated in the hold and accommodated in the bucket 3 is transferred to a boom conveyor 35 provided along the boom 9. Then, the bulk load is transported by the boom conveyor 35 and the in-machine conveyor provided in the main body 4 and is carried out of the continuous unloader 1.
  • the excavation means includes, for example, a bucket 3 for excavating loose loads, an endless chain 10 to which a plurality of buckets 3 are connected, a motor for driving the endless chain 10, and the like.
  • the endless chain 10 passes through the tip sprocket 32 and the rear end sprocket 33 at the lower part of the excavating means.
  • the front end sprocket 32 and the rear end sprocket 33 are supported by, for example, the bottom piece 31.
  • the ship 6 is anchored along the quay 5 during cargo handling and is affected by sea swells. Therefore, when the sea swell increases, the ship 6 may collide with the continuous unloader 1. For example, there is a possibility that the bucket 3 passing below the bottom piece 31 hits the bottom of the ship or a bulk load, and the bucket 3 further moves upward and collides with the bottom piece 31.
  • the swing detection means detects the swing of the ship 6 that is being handled, and the display means visually displays the detected swing.
  • the display means visually displays the detected swing.
  • the swing detection means includes a laser distance meter 15 and a shake detection camera 16 provided in the continuous unloader 1 and a shake detection target 17 provided in the ship 6. Then, when the deck surface of the ship 6 is the XY plane and the direction perpendicular to the deck surface is the Z direction, the laser rangefinder 15 detects the vertical movement of the ship 6 in the Z direction. Further, the combination of the shake detection camera 16 and the shake detection target 17 detects the swing of the ship 6 in the X direction or the Y direction.
  • the signal relating to the detected movement of the ship 6 is transmitted from the laser distance meter 15 and the shake detection camera 16 to the control unit. Based on the detected signal, the display means displays, for example, the movement of the ship 6 in the X, Y, and Z directions as waveforms.
  • a control part and a display means are installed in the operator room of the continuous unloader 1, for example. The movement of the ship 6 may be displayed not by a waveform but by a numerical value or an indicator.
  • the proximity state detection means detects the proximity state between the continuous unloader 1 during cargo handling and the column 2 of the ship 6, and the notification means (for example, an alarm device) notifies (sounds) the detected proximity state. .
  • the notification means for example, an alarm device
  • cargo handling can be continued even when the swell of the sea is high by operating the excavating means according to the proximity state of the ship notified by the alarm device.
  • the notification means for example, an alarm device
  • the proximity state detecting means includes a light projecting side photoelectric sensor 11 and a light receiving side photoelectric sensor 12 provided at the edge of the opening 7 of the ship 6, and a signal transmitting radio device provided in the ship 6. 13 and a signal receiving radio device 18 (see FIG. 1) provided in the continuous unloader 1.
  • the light projecting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12 detect interference between the column 2 inserted into the opening 7 and the deck 8 of the ship 6.
  • the signals detected by the light projecting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12 are sent to the control unit via the signal transmitting radio device 13 and the signal receiving radio device 18.
  • control unit determines whether or not to notify about interference based on the signals detected by the light projecting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12, and if necessary, the notifying unit detects the continuous unloader 1. And the column 2 of the ship 6 are in close proximity.
  • a control part and a notification means are installed in the operator room of the continuous unloader 1, for example.
  • the swing detection means detects the swing of the ship 6 that is being handled, and the display means visually displays the detected swing.
  • the display means visually displays the detected swing.
  • the swing detection means includes a GPS 21 and a signal transmitting radio device 13 provided in the ship 6, and a signal receiving radio device 18 (see FIG. 1) provided in the continuous unloader 1. .
  • the GPS 21 swings the ship 6 in the X direction and the Y direction and moves the ship 6 in the Z direction up and down. To detect.
  • a signal related to the movement of the ship 6 detected by the GPS 21 is transmitted from the signal transmission wireless device 13 to the control unit via the signal reception wireless device 18. Based on the detected signal, the movement of the ship 6 in the X, Y, and Z directions, for example, is displayed as a waveform on the display means.
  • a control part and a display means are installed in the operator room of the continuous unloader 1, for example. The movement of the ship 6 may be displayed not by a waveform but by a numerical value or an indicator.
  • the swing detection means detects the swing of the ship 6 that is being handled, and the display means visually displays the detected swing.
  • the display means visually displays the detected swing.
  • the swing detection means includes two inclinometers 25 and a signal transmitting radio device 13 provided on the deck 8 of the ship 6, and a signal receiving radio provided in the continuous unloader 1. It consists of a device 18 (see FIG. 1).
  • the inclinometer 25 detects the inclination angle of the ship 6, for example, the pitch angle or the roll angle.
  • a signal related to the movement of the ship 6 detected by the inclinometer 25 is sent from the signal transmission radio device 13 to the control unit via the signal reception radio device 18. Based on the detected signal, the movement of the ship 6 at each pitch angle and roll angle, for example, is displayed as a waveform on the display means.
  • a control part and a display means are installed in the operator room of the continuous unloader 1, for example. The movement of the ship 6 may be displayed not by a waveform but by a numerical value or an indicator.
  • the inclinometer 25 is different from the laser distance meter 15, the blur detection camera 16, and the blur detection target 17 of the first embodiment, and the light emitting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12 of the second embodiment. It is difficult to be affected by (for example, dust caused by loose loads) and has good detection accuracy.
  • the amount of sag of the endless chain 10 is reduced, and when the amount of swing of the ship 6 is large, as shown in FIGS.
  • the amount of sag of the endless chain 10 is increased.
  • the amount of sag of the endless chain 10 is adjusted by a hydraulic cylinder (not shown) that changes the distance and position between the front end sprocket 32 and the rear end sprocket 33.
  • the average interval is an average interval between the time-varying bulk load and the bucket 3.
  • the bucket 3 can excavate the bulk load most.
  • the bucket 3 excavates a bulk load of depth A or depth B. If the average distance between the loose load and the bucket 3 is small, the depth A of FIG. 8 can be excavated when the loose load and the bucket 3 are closest. On the other hand, if the average distance between the bulk load and the bucket 3 is large, even when the bulk load and the bucket 3 are closest to each other, only the depth B in FIG. 8 can be excavated.
  • the risk of the ship 6 colliding with the continuous unloader 1 when the sea swell is high can be reduced.
  • the possibility that the bucket 3 passing under the bottom piece 31 hits the ship bottom or a bulk load loaded thereon, and further the bucket 3 moves upward reduces the possibility of colliding with the bottom piece 31.

Abstract

The purpose of the invention is to provide a continuous unloader making it possible to accurately ascertain movement of a ship during loading and unloading and to reduce the load applied to the continuous unloader from the ship. The continuous unloader (1) is provided with: an excavating means having buckets (3) for excavating a bulk loaded into the hold of a ship (6), an endless chain whereby a plurality of the buckets (3) are connected, and a drive unit for driving the endless chain; a laser rangefinder (15), shake detection camera (16), and shake detection target (17) for detecting swaying of the ship (6); and a display means for visually displaying the detected swaying.

Description

連続式アンローダContinuous unloader
 本発明は、船舶に積載されたバラ荷を連続的に掘削し運搬する連続式アンローダに関するものである。 The present invention relates to a continuous unloader for continuously excavating and transporting bulk loads loaded on a ship.
 連続式アンローダは、バラ積み貨物船の船倉に積載されたバラ荷、例えば鉱石や石炭などを連続して荷揚げする機械である。連続式アンローダは、岸壁に設置されており、バラ荷を掘削するバケットと、複数のバケットが接続された無端状チェーンと、無端状チェーンを駆動するモータなどを備える。そして、無端状チェーンが駆動することによって、無端状チェーンに接続された複数のバケットが船舶の船倉内に積載されたバラ荷を連続的に掘削できる。 A continuous unloader is a machine that continuously unloads bulk loads, such as ore and coal, loaded in the bulk of a bulk carrier. The continuous unloader is installed on a quay and includes a bucket for excavating loose loads, an endless chain to which a plurality of buckets are connected, a motor for driving the endless chain, and the like. Then, by driving the endless chain, it is possible to continuously excavate a bulk load in which a plurality of buckets connected to the endless chain are loaded in the hold of the ship.
 特許文献1では、連続式アンローダにおける水平掘削力を検出し、目標通りの荷役量を軽負荷の条件で確保する技術が開示されている。また、特許文献2では、アンローダ掘削部を船底に追従させて、底ざらえ段階で船舶の上下動が大きい場合に低コストで、かつ、荷役効率を著しく低下させることなく、底ざらえ作業を行う技術が開示されている。 Patent Document 1 discloses a technique for detecting a horizontal excavation force in a continuous unloader and securing a desired cargo handling amount under light load conditions. Further, in Patent Document 2, the unloader excavation section is made to follow the bottom of the ship, and the bottom-up operation is performed at a low cost and without significantly reducing the cargo handling efficiency when the vertical movement of the ship is large at the bottom-up stage. Techniques to do are disclosed.
特開平9-255162号公報JP-A-9-255162 特開2002-37458号公報JP 2002-37458 A
 連続式アンローダによる荷役中に、海のうねりが高くなると、揺動している船舶から連続式アンローダへ荷重がかかる可能性がある。このとき、バケットが無端状チェーンを支持するボトムピースに衝突するなどして、連続式アンローダの部材が破損したり転倒したりする危険性があった。一方、従来、海のうねりの監視は、連続式アンローダのオペレータの目視によって行われており、船舶の揺動、特に船舶の上下動の確認は困難であった。 If the sea swell increases during cargo handling by a continuous unloader, there is a possibility that a load is applied to the continuous unloader from the oscillating ship. At this time, there is a risk that the member of the continuous unloader is damaged or falls due to the bucket colliding with the bottom piece supporting the endless chain. On the other hand, conventionally, monitoring of sea swell has been performed by visual observation by an operator of a continuous unloader, and it has been difficult to confirm the swinging of the ship, particularly the vertical movement of the ship.
 本発明は、このような事情に鑑みてなされたものであって、荷役中の船舶の動きを正確に把握して、船舶から連続式アンローダにかかる荷重を低減することが可能な連続式アンローダを提供することを目的とする。 The present invention has been made in view of such circumstances, and is a continuous unloader capable of accurately grasping the movement of a ship during cargo handling and reducing the load applied to the continuous unloader from the ship. The purpose is to provide.
 上記課題を解決するために、本発明の連続式アンローダは以下の手段を採用する。
 すなわち、本発明の第1の態様に係る連続式アンローダは、船舶の船倉内に積載されたバラ荷を掘削するバケットと、複数のバケットが接続された無端状部材と、無端状部材を駆動する駆動部とを有する掘削手段と、船舶の揺動を検出する揺動検出手段と、検出された揺動を視覚的に表示する表示手段とを備える。
In order to solve the above problems, the continuous unloader of the present invention employs the following means.
That is, the continuous unloader according to the first aspect of the present invention drives a bucket for excavating bulk loads loaded in a ship hold, an endless member connected to a plurality of buckets, and an endless member. Excavation means having a drive unit, swing detection means for detecting the swing of the ship, and display means for visually displaying the detected swing.
 本発明の第1の態様によれば、無端状部材が駆動することによって、無端状部材に接続された複数のバケットが船舶の船倉内に積載されたバラ荷を連続的に掘削する。また、揺動検出手段によってバラ荷の掘削が行われている船舶の揺動が検出され、検出された揺動が表示手段に表示されることから、船舶の揺動に応じた掘削手段の運転の変更を正確に行うことができる。例えば、掘削手段のオペレータに船舶の揺動状態が伝わることで、荷役時の掘削手段の操作の手助けとなる。また、船舶側にいるオペレータへの指示者(合図マン)に船舶の揺動状態が伝わることで、荷役時の操作指示の手助けとなる。具体的には、船舶の揺動に応じて、船舶から掘削手段にかかる荷重を低減するように掘削手段が運転される。 According to the first aspect of the present invention, when the endless member is driven, a plurality of buckets connected to the endless member continuously excavate the bulk load loaded in the ship hold. In addition, since the swing detection means detects the swing of the ship that is excavating the loose load, and the detected swing is displayed on the display means, the operation of the drilling means according to the swing of the ship is performed. Can be made accurately. For example, the state of rocking of the ship is transmitted to the operator of the excavation means, which helps the operation of the excavation means during cargo handling. In addition, when the ship's rocking state is transmitted to an instructor (signal man) to the operator on the ship side, it is possible to assist in operating instructions during cargo handling. Specifically, the excavation means is operated so as to reduce the load applied to the excavation means from the ship according to the swinging of the ship.
 本発明の第1の態様において、揺動検出手段は、掘削手段に設置される構成としてもよい。 In the first aspect of the present invention, the swing detection means may be installed on the excavation means.
 上記構成によれば、掘削手段に揺動検出手段が設けられることから、船舶側から掘削手段側への信号伝送手段、例えば船舶上への無線装置の設置が不要になる。 According to the above configuration, since the excavation means is provided with the swing detection means, it is not necessary to install a signal transmission means from the ship side to the excavation means side, for example, a wireless device on the ship.
 また、本発明の第2の態様に係る連続式アンローダは、船舶の船倉内に積載されたバラ荷を掘削するバケットと、複数のバケットが接続された無端状部材と、無端状部材を駆動する駆動部とを有する掘削手段と、船舶と掘削手段との近接状態を検出する近接状態検出手段と、検出された近接状態を告知する告知手段とを備える。 Moreover, the continuous unloader which concerns on the 2nd aspect of this invention drives the endless member which excavated the bulk load loaded in the hold of a ship, the endless member to which the several bucket was connected, and the endless member Excavation means having a drive unit, proximity state detection means for detecting the proximity state of the ship and the excavation means, and notification means for notifying the detected proximity state.
 本発明の第2の態様によれば、無端状部材が駆動することによって、無端状部材に接続された複数のバケットが船舶の船倉内に積載されたバラ荷を連続的に掘削する。また、近接状態検出手段によってバラ荷の掘削が行われている船舶の近接状態が検出され、検出された近接状態が告知されることから、船舶の近接状態に応じた掘削手段の運転の変更を正確に行うことができる。例えば、掘削手段のオペレータに船舶の近接状態が伝わることで、荷役時の掘削手段の操作の手助けとなる。具体的には、船舶の近接状態に応じて、干渉を回避できるように掘削手段が運転される。 According to the second aspect of the present invention, when the endless member is driven, a plurality of buckets connected to the endless member continuously excavate the bulk load loaded in the ship hold. In addition, since the proximity state of the ship that is excavating loose loads is detected by the proximity state detection means, and the detected proximity state is notified, the operation of the excavation means is changed according to the proximity state of the ship. Can be done accurately. For example, the proximity of the ship is transmitted to the operator of the excavation means, which helps the operation of the excavation means during cargo handling. Specifically, the excavating means is operated so as to avoid interference according to the proximity state of the ship.
 また、本発明の第3の態様に係る連続式アンローダは、船舶の船倉内に積載されたバラ荷を掘削するバケットと、複数のバケットが接続された無端状部材と、無端状部材を駆動する駆動部とを有する掘削手段と、船舶の揺動量を検出する揺動検出手段と、検出された揺動量に応じて掘削手段の無端状部材のたるみ量又はバラ荷と掘削手段との距離を変更する操作手段とを備える。 Further, the continuous unloader according to the third aspect of the present invention drives a bucket for excavating bulk loads loaded in a ship hold, an endless member connected to a plurality of buckets, and an endless member. Excavation means having a drive unit, oscillation detection means for detecting the amount of oscillation of the ship, and the amount of sagging of the endless member of the excavation means or the distance between the bulk load and the excavation means is changed according to the detected oscillation amount Operating means.
 本発明の第3の態様によれば、無端状部材が駆動することによって、無端状部材に接続された複数のバケットが船舶の船倉内に積載されたバラ荷を連続的に掘削する。また、揺動検出手段によってバラ荷の掘削が行われている船舶の揺動量が検出され、検出された揺動量に応じて、掘削手段の無端状部材のたるみ量又はバラ荷と掘削手段との距離が変更されることから、船舶の揺動に応じた掘削手段の運転の変更を正確に行うことができる。その結果、船舶の揺動に応じて、船舶から掘削手段にかかる荷重を低減するように掘削手段が操作される。 According to the third aspect of the present invention, when the endless member is driven, a plurality of buckets connected to the endless member continuously excavate the bulk load loaded in the hold of the ship. Further, the swing detection means detects the swing amount of the vessel on which the bulk load is excavated, and depending on the detected swing amount, the sagging amount of the endless member of the drilling means or the loose load and the excavation means Since the distance is changed, it is possible to accurately change the operation of the excavation means according to the swinging of the ship. As a result, the excavation means is operated so as to reduce the load applied to the excavation means from the ship according to the swinging of the ship.
 本発明によれば、荷役中の船舶の動きを正確に把握して、船舶から連続式アンローダにかかる荷重を低減することができる。 According to the present invention, it is possible to accurately grasp the movement of the ship during cargo handling and reduce the load applied to the continuous unloader from the ship.
本発明の第1実施形態に係る連続式アンローダを示す側面図である。It is a side view showing the continuous type unloader concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る連続式アンローダを示す上面図である。It is a top view which shows the continuous unloader which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る連続式アンローダを示す上面図である。It is a top view which shows the continuous unloader which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る連続式アンローダを示す上面図である。It is a top view which shows the continuous unloader which concerns on 4th Embodiment of this invention. 連続式アンローダの掘削手段下部を示す側面図である。It is a side view which shows the excavation means lower part of a continuous type unloader. 連続式アンローダの掘削手段下部を示す側面図である。It is a side view which shows the excavation means lower part of a continuous type unloader. 連続式アンローダの掘削手段下部を示す側面図である。It is a side view which shows the excavation means lower part of a continuous type unloader. 船舶内のバラ荷の揺動状態を示す説明図である。It is explanatory drawing which shows the rocking | fluctuation state of the bulk load in a ship.
 以下に、本発明に係る実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本発明の第1実施形態について、図1を用いて説明する。
 まず、本実施形態に係る連続式アンローダ1の構成について説明する。
 連続式アンローダ1は岸壁5上に設置されており、連続式アンローダ1の本体部4は岸壁5に敷設されたレール36に沿って移動可能である。連続式アンローダ1は、本体部4の上部にブーム9が設置され、ブーム9はコラム2を支持する。コラム2には掘削手段が設けられ、掘削手段は、コラム2の下部が船舶6の開口部7を介して船倉へ挿入される。そして、掘削手段は、船舶6の船倉内に積載されたバラ荷を掘削する。ここで、船舶6とは、例えばバラ積み貨物船であり、バラ荷は鉱石や石炭などである。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
First, the configuration of the continuous unloader 1 according to the present embodiment will be described.
The continuous unloader 1 is installed on the quay 5, and the main body 4 of the continuous unloader 1 is movable along a rail 36 laid on the quay 5. In the continuous unloader 1, a boom 9 is installed on the upper part of the main body 4, and the boom 9 supports the column 2. The column 2 is provided with excavating means, and the lower part of the column 2 is inserted into the hold through the opening 7 of the ship 6. The excavating means excavates the bulk load loaded in the hold of the ship 6. Here, the ship 6 is, for example, a bulk carrier, and the bulk load is ore or coal.
 船倉で掘削されてバケット3に収容されたバラ荷は、ブーム9に沿って設けられたブームコンベア35へ移される。そして、バラ荷は、ブームコンベア35と、本体部4に設けられた機内コンベアによって運搬され、連続式アンローダ1の外部へ搬出される。 The loose load excavated in the hold and accommodated in the bucket 3 is transferred to a boom conveyor 35 provided along the boom 9. Then, the bulk load is transported by the boom conveyor 35 and the in-machine conveyor provided in the main body 4 and is carried out of the continuous unloader 1.
 掘削手段は、例えば、バラ荷を掘削するバケット3と、複数のバケット3が接続された無端状チェーン10と、無端状チェーン10を駆動するモータなどを備える。無端状チェーン10は、図5に示すように、掘削手段の下部で先端スプロケット32や後端スプロケット33を通過する。先端スプロケット32と後端スプロケット33は、例えばボトムピース31によって支持される。 The excavation means includes, for example, a bucket 3 for excavating loose loads, an endless chain 10 to which a plurality of buckets 3 are connected, a motor for driving the endless chain 10, and the like. As shown in FIG. 5, the endless chain 10 passes through the tip sprocket 32 and the rear end sprocket 33 at the lower part of the excavating means. The front end sprocket 32 and the rear end sprocket 33 are supported by, for example, the bottom piece 31.
 船舶6は、荷役中、岸壁5に沿って停泊しており、海のうねりの影響を受ける。そのため、海のうねりが高くなると、船舶6が連続式アンローダ1に衝突するおそれがある。例えば、ボトムピース31の下側を通過するバケット3が船底や積載されているバラ荷に当たり、更にバケット3が上側に移動して、ボトムピース31に衝突する可能性がある。 The ship 6 is anchored along the quay 5 during cargo handling and is affected by sea swells. Therefore, when the sea swell increases, the ship 6 may collide with the continuous unloader 1. For example, there is a possibility that the bucket 3 passing below the bottom piece 31 hits the bottom of the ship or a bulk load, and the bucket 3 further moves upward and collides with the bottom piece 31.
 本実施形態では、揺動検出手段が荷役中の船舶6の揺動を検出し、表示手段が検出された揺動を視覚的に表示する。その結果、表示手段で表示された船舶の揺動に応じて掘削手段を操作することで、海のうねりが高い場合でも荷役を継続することができる。また、海のうねりの高さによっては、荷役中止の判断を迅速かつ正確に行える。 In this embodiment, the swing detection means detects the swing of the ship 6 that is being handled, and the display means visually displays the detected swing. As a result, by operating the excavating means according to the swing of the ship displayed on the display means, it is possible to continue the cargo handling even when the sea swell is high. In addition, depending on the height of the sea swell, it is possible to quickly and accurately determine whether to stop handling.
 以下、本実施形態に係る揺動検出手段について説明する。
 揺動検出手段は、図1に示すように、連続式アンローダ1に設けられたレーザ距離計15及びぶれ検出カメラ16と、船舶6に設けられたぶれ検出ターゲット17からなる。そして、船舶6の甲板面をXY面とし、甲板面に対して垂直方向をZ方向としたとき、レーザ距離計15がZ方向の船舶6の上下動を検出する。また、ぶれ検出カメラ16とぶれ検出ターゲット17の組み合わせによって、X方向やY方向の船舶6の揺動を検出する。
Hereinafter, the rocking | swiveling detection means which concerns on this embodiment is demonstrated.
As shown in FIG. 1, the swing detection means includes a laser distance meter 15 and a shake detection camera 16 provided in the continuous unloader 1 and a shake detection target 17 provided in the ship 6. Then, when the deck surface of the ship 6 is the XY plane and the direction perpendicular to the deck surface is the Z direction, the laser rangefinder 15 detects the vertical movement of the ship 6 in the Z direction. Further, the combination of the shake detection camera 16 and the shake detection target 17 detects the swing of the ship 6 in the X direction or the Y direction.
 検出された船舶6の動きに関する信号は、レーザ距離計15及びぶれ検出カメラ16から制御部に送信される。そして、検出された信号に基づいて、表示手段は、例えばX,Y,Z方向それぞれの船舶6の動きを波形によって表示する。制御部や表示手段は、例えば連続式アンローダ1のオペレータ室に設置される。船舶6の動きは、波形ではなく、数値やインジケータなどで表示してもよい。 The signal relating to the detected movement of the ship 6 is transmitted from the laser distance meter 15 and the shake detection camera 16 to the control unit. Based on the detected signal, the display means displays, for example, the movement of the ship 6 in the X, Y, and Z directions as waveforms. A control part and a display means are installed in the operator room of the continuous unloader 1, for example. The movement of the ship 6 may be displayed not by a waveform but by a numerical value or an indicator.
 これによって、連続式アンローダ1のオペレータが船舶6の揺動量、周期を把握することができ、荷役時の掘削手段の操作の手助けとなる。また、船舶6の揺動量によって、バラ荷とバケット3との隙間に設ける相対距離の目安を連絡することも可能になる。レーザ距離計15及びぶれ検出カメラ16は、連続式アンローダ1側に取り付けられ、船舶6側に取り付けられないことから信号伝送のための無線装置が不要である。 This makes it possible for the operator of the continuous unloader 1 to grasp the amount and cycle of the ship 6 and to assist the operation of the excavation means during cargo handling. In addition, it is possible to inform the standard of the relative distance provided in the gap between the loose load and the bucket 3 according to the swinging amount of the ship 6. Since the laser distance meter 15 and the shake detection camera 16 are attached to the continuous unloader 1 side and are not attached to the ship 6 side, a wireless device for signal transmission is unnecessary.
[第2実施形態]
 次に、本発明の第2実施形態について、図2を用いて説明する。
 本実施形態は、連続式アンローダ1の本体部4及び掘削手段について、第1実施形態と同様であるため、詳細な説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG.
Since this embodiment is the same as that of 1st Embodiment about the main-body part 4 and excavation means of the continuous unloader 1, detailed description is abbreviate | omitted.
 本実施形態では、近接状態検出手段が荷役中の連続式アンローダ1と船舶6のコラム2との近接状態を検出し、告知手段(例えば警報装置)が検出された近接状態を告知(鳴動)する。その結果、警報装置で告知された船舶の近接状態に応じて掘削手段を操作することで、海のうねりが高い場合でも荷役を継続することができる。また、海のうねりの高さによっては、荷役中止の判断を迅速かつ正確に行える。 In the present embodiment, the proximity state detection means detects the proximity state between the continuous unloader 1 during cargo handling and the column 2 of the ship 6, and the notification means (for example, an alarm device) notifies (sounds) the detected proximity state. . As a result, cargo handling can be continued even when the swell of the sea is high by operating the excavating means according to the proximity state of the ship notified by the alarm device. In addition, depending on the height of the sea swell, it is possible to quickly and accurately determine whether to stop handling.
 近接状態検出手段は、図2に示すように、船舶6の開口部7の縁に設けられた投光側光電センサ11及び受光側光電センサ12と、船舶6に設けられた信号送信用無線装置13と、連続式アンローダ1に設けられた信号受信用無線装置18(図1参照)からなる。そして、投光側光電センサ11及び受光側光電センサ12が、開口部7に挿入されたコラム2と、船舶6の甲板8との干渉を検出する。また、投光側光電センサ11及び受光側光電センサ12で検出された信号が、信号送信用無線装置13と信号受信用無線装置18を介して制御部に送られる。次に、制御部は、投光側光電センサ11及び受光側光電センサ12で検出された信号に基づいて、干渉に関して告知するか否かを判断し、必要な場合、告知手段が連続式アンローダ1と船舶6のコラム2とが近接していることを知らせる。制御部や告知手段は、例えば連続式アンローダ1のオペレータ室に設置される。 As shown in FIG. 2, the proximity state detecting means includes a light projecting side photoelectric sensor 11 and a light receiving side photoelectric sensor 12 provided at the edge of the opening 7 of the ship 6, and a signal transmitting radio device provided in the ship 6. 13 and a signal receiving radio device 18 (see FIG. 1) provided in the continuous unloader 1. The light projecting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12 detect interference between the column 2 inserted into the opening 7 and the deck 8 of the ship 6. The signals detected by the light projecting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12 are sent to the control unit via the signal transmitting radio device 13 and the signal receiving radio device 18. Next, the control unit determines whether or not to notify about interference based on the signals detected by the light projecting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12, and if necessary, the notifying unit detects the continuous unloader 1. And the column 2 of the ship 6 are in close proximity. A control part and a notification means are installed in the operator room of the continuous unloader 1, for example.
 これによって、連続式アンローダ1のオペレータが連続式アンローダ1と船舶6のコラム2との干渉の危険性を把握することができ、荷役時の掘削手段の操作の手助けとなる。また、告知手段として、モータサイレンなどを用いれば、干渉の危険性を周囲に知らせることが可能になる。 This makes it possible for the operator of the continuous unloader 1 to grasp the danger of interference between the continuous unloader 1 and the column 2 of the ship 6 and to assist the operation of the excavation means during cargo handling. Further, if a motor siren or the like is used as the notification means, it is possible to notify the surroundings of the danger of interference.
[第3実施形態]
 次に、本発明の第3実施形態について、図3を用いて説明する。
 本実施形態は、連続式アンローダ1の本体部4及び掘削手段について、第1実施形態と同様であるため、詳細な説明は省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG.
Since this embodiment is the same as that of 1st Embodiment about the main-body part 4 and excavation means of the continuous unloader 1, detailed description is abbreviate | omitted.
 本実施形態では、揺動検出手段が荷役中の船舶6の揺動を検出し、表示手段が検出された揺動を視覚的に表示する。その結果、表示手段で表示された船舶の揺動に応じて掘削手段を操作することで、海のうねりが高い場合でも荷役を継続することができる。また、海のうねりの高さによっては、荷役中止の判断を迅速かつ正確に行える。 In this embodiment, the swing detection means detects the swing of the ship 6 that is being handled, and the display means visually displays the detected swing. As a result, by operating the excavating means according to the swing of the ship displayed on the display means, it is possible to continue the cargo handling even when the sea swell is high. In addition, depending on the height of the sea swell, it is possible to quickly and accurately determine whether to stop handling.
 次に、本実施形態に係る揺動検出手段について説明する。
 揺動検出手段は、図3に示すように、船舶6に設けられたGPS21及び信号送信用無線装置13と、連続式アンローダ1に設けられた信号受信用無線装置18(図1参照)からなる。そして、船舶6の甲板面をXY面とし、甲板面に対して垂直方向をZ方向としたとき、GPS21が、X方向やY方向の船舶6の揺動、Z方向の船舶6の上下動を検出する。
Next, the swing detection means according to this embodiment will be described.
As shown in FIG. 3, the swing detection means includes a GPS 21 and a signal transmitting radio device 13 provided in the ship 6, and a signal receiving radio device 18 (see FIG. 1) provided in the continuous unloader 1. . When the deck surface of the ship 6 is the XY plane and the direction perpendicular to the deck surface is the Z direction, the GPS 21 swings the ship 6 in the X direction and the Y direction and moves the ship 6 in the Z direction up and down. To detect.
 GPS21で検出された船舶6の動きに関する信号は、信号送信用無線装置13から信号受信用無線装置18を介して制御部に送信される。そして、検出された信号に基づいて、表示手段に例えばX,Y,Z方向それぞれの船舶6の動きを波形によって表示する。制御部や表示手段は、例えば連続式アンローダ1のオペレータ室に設置される。船舶6の動きは、波形ではなく、数値やインジケータなどで表示してもよい。 A signal related to the movement of the ship 6 detected by the GPS 21 is transmitted from the signal transmission wireless device 13 to the control unit via the signal reception wireless device 18. Based on the detected signal, the movement of the ship 6 in the X, Y, and Z directions, for example, is displayed as a waveform on the display means. A control part and a display means are installed in the operator room of the continuous unloader 1, for example. The movement of the ship 6 may be displayed not by a waveform but by a numerical value or an indicator.
 これによって、連続式アンローダ1のオペレータが船舶6の揺動量、周期を把握することができ、荷役時の掘削手段の操作の手助けとなる。また、船舶6の揺動量によって、バラ荷とバケット3との隙間に設ける相対距離の目安を連絡することも可能になる。さらに、無線通信手段を使用することによって、船舶6側と連続式アンローダ1側との信号用配線が不要になる。また更に、GPS21について、図3に示すように、例えば4台を船舶6の各所に設置することによって、船舶6全体の揺動量を把握できる。 This makes it possible for the operator of the continuous unloader 1 to grasp the amount and cycle of the ship 6 and to assist the operation of the excavation means during cargo handling. In addition, it is possible to inform the standard of the relative distance provided in the gap between the loose load and the bucket 3 according to the swinging amount of the ship 6. Furthermore, the use of wireless communication means eliminates the need for signal wiring between the ship 6 side and the continuous unloader 1 side. Further, as shown in FIG. 3, for example, by installing four GPS 21 at various locations on the ship 6, the amount of rocking of the entire ship 6 can be grasped.
[第4実施形態]
 次に、本発明の第4実施形態について、図4を用いて説明する。
 本実施形態は、連続式アンローダ1の本体部4及び掘削手段について、第1実施形態と同様であるため、詳細な説明は省略する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG.
Since this embodiment is the same as that of 1st Embodiment about the main-body part 4 and excavation means of the continuous unloader 1, detailed description is abbreviate | omitted.
 本実施形態では、揺動検出手段が荷役中の船舶6の揺動を検出し、表示手段が検出された揺動を視覚的に表示する。その結果、表示手段で表示された船舶の揺動に応じて掘削手段を操作することで、海のうねりが高い場合でも荷役を継続することができる。また、海のうねりの高さによっては、荷役中止の判断を迅速かつ正確に行える。 In this embodiment, the swing detection means detects the swing of the ship 6 that is being handled, and the display means visually displays the detected swing. As a result, by operating the excavating means according to the swing of the ship displayed on the display means, it is possible to continue the cargo handling even when the sea swell is high. In addition, depending on the height of the sea swell, it is possible to quickly and accurately determine whether to stop handling.
 次に、本実施形態に係る揺動検出手段について説明する。
 揺動検出手段は、図4に示すように、船舶6の甲板8上に設けられた2台の傾斜計25及び信号送信用無線装置13と、連続式アンローダ1に設けられた信号受信用無線装置18(図1参照)からなる。そして、傾斜計25が、船舶6の傾斜角度、例えばピッチ角又はロール角を検出する。
Next, the swing detection means according to this embodiment will be described.
As shown in FIG. 4, the swing detection means includes two inclinometers 25 and a signal transmitting radio device 13 provided on the deck 8 of the ship 6, and a signal receiving radio provided in the continuous unloader 1. It consists of a device 18 (see FIG. 1). The inclinometer 25 detects the inclination angle of the ship 6, for example, the pitch angle or the roll angle.
 傾斜計25で検出された船舶6の動きに関する信号は、信号送信用無線装置13から信号受信用無線装置18を介して制御部に送られる。そして、検出された信号に基づいて、表示手段に例えばピッチ角、ロール角それぞれの船舶6の動きを波形によって表示する。制御部や表示手段は、例えば連続式アンローダ1のオペレータ室に設置される。船舶6の動きは、波形ではなく、数値やインジケータなどで表示してもよい。 A signal related to the movement of the ship 6 detected by the inclinometer 25 is sent from the signal transmission radio device 13 to the control unit via the signal reception radio device 18. Based on the detected signal, the movement of the ship 6 at each pitch angle and roll angle, for example, is displayed as a waveform on the display means. A control part and a display means are installed in the operator room of the continuous unloader 1, for example. The movement of the ship 6 may be displayed not by a waveform but by a numerical value or an indicator.
 これによって、連続式アンローダ1のオペレータが船舶6の揺動周期を把握することができ、荷役時の掘削手段の操作の手助けとなる。また、無線通信手段を使用することによって、船舶6側と連続式アンローダ1側との信号用配線が不要になる。更に、傾斜計25は、第1実施形態のレーザ距離計15、ぶれ検出カメラ16及びぶれ検出ターゲット17や、第2実施形態の投光側光電センサ11及び受光側光電センサ12と異なり、周囲環境(例えばバラ荷による粉塵)の影響を受けづらく、検出精度が良い。 This makes it possible for the operator of the continuous unloader 1 to grasp the rocking cycle of the ship 6 and to assist the operation of the excavation means during cargo handling. Further, by using the wireless communication means, signal wiring between the ship 6 side and the continuous unloader 1 side becomes unnecessary. Further, the inclinometer 25 is different from the laser distance meter 15, the blur detection camera 16, and the blur detection target 17 of the first embodiment, and the light emitting side photoelectric sensor 11 and the light receiving side photoelectric sensor 12 of the second embodiment. It is difficult to be affected by (for example, dust caused by loose loads) and has good detection accuracy.
[第5実施形態]
 次に、本発明の第5実施形態について、図5~図8を用いて説明する。
 本実施形態は、連続式アンローダ1の本体部4及び掘削手段について、第1実施形態と同様であるため、詳細な説明は省略する。本実施形態は、第1実施形態又は第3実施形態において検出された船舶6の揺動量を用いて、掘削手段の無端状チェーン10のたるみ量又はバラ荷と掘削手段との距離を変更する操作手段を備える。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIGS.
Since this embodiment is the same as that of 1st Embodiment about the main-body part 4 and excavation means of the continuous unloader 1, detailed description is abbreviate | omitted. In the present embodiment, the amount of sag of the endless chain 10 of the excavation means or the distance between the loose load and the excavation means is changed using the swing amount of the ship 6 detected in the first embodiment or the third embodiment. Means.
 例えば、船舶6の揺動量が小さいときは、図5に示すように、無端状チェーン10のたるみ量を小さくし、船舶6の揺動量が大きいときは、図6や図7に示すように、無端状チェーン10のたるみ量を大きくする。これにより、船舶6の揺動量が大きいとき、バケット3とボトムピース31との間隔を大きくすることができるため、波のうねりが大きいときにバケット3とボトムピース31との衝突の危険性を低減できる。無端状チェーン10のたるみ量は、先端スプロケット32と後端スプロケット33との間の間隔や位置を変更する油圧シリンダ(図示せず。)によって調節される。 For example, when the amount of swing of the ship 6 is small, as shown in FIG. 5, the amount of sag of the endless chain 10 is reduced, and when the amount of swing of the ship 6 is large, as shown in FIGS. The amount of sag of the endless chain 10 is increased. Thereby, since the space | interval of the bucket 3 and the bottom piece 31 can be enlarged when the rocking | fluctuation amount of the ship 6 is large, when the wave | undulation of a wave is large, the danger of the collision with the bucket 3 and the bottom piece 31 is reduced. it can. The amount of sag of the endless chain 10 is adjusted by a hydraulic cylinder (not shown) that changes the distance and position between the front end sprocket 32 and the rear end sprocket 33.
 または、例えば、船舶6の揺動量が小さいときは、バラ荷とバケット3との平均間隔を小さくし、船舶6の揺動量が大きいときは、バラ荷とバケット3との平均間隔を大きくする。船舶6は常に揺動していることから、バラ荷とバケット3の間隔は時間変化する。ここで平均間隔とは、時間変化するバラ荷とバケット3の間隔の平均間隔である。バラ荷とバケット3が最も近接したときに、バケット3が最も多くバラ荷を掘削できる。 Or, for example, when the swing amount of the ship 6 is small, the average interval between the loose load and the bucket 3 is reduced, and when the swing amount of the ship 6 is large, the average interval between the loose load and the bucket 3 is increased. Since the ship 6 is constantly oscillating, the interval between the loose load and the bucket 3 changes over time. Here, the average interval is an average interval between the time-varying bulk load and the bucket 3. When the bulk load and the bucket 3 are closest, the bucket 3 can excavate the bulk load most.
 例えば図8に示すように、バケット3は深さA分又は深さB分のバラ荷を掘削する。バラ荷とバケット3との平均間隔が小さければ、バラ荷とバケット3が最も近接したときに、図8の深さA分を掘削できる。一方、バラ荷とバケット3との平均間隔が大きいと、バラ荷とバケット3が最も近接したときでも、図8の深さB分しか掘削できない。 For example, as shown in FIG. 8, the bucket 3 excavates a bulk load of depth A or depth B. If the average distance between the loose load and the bucket 3 is small, the depth A of FIG. 8 can be excavated when the loose load and the bucket 3 are closest. On the other hand, if the average distance between the bulk load and the bucket 3 is large, even when the bulk load and the bucket 3 are closest to each other, only the depth B in FIG. 8 can be excavated.
 しかし、バラ荷とバケット3との平均間隔を調整することによって、海のうねりが高いとき、船舶6が連続式アンローダ1に衝突するおそれを低減できる。例えば、ボトムピース31の下側を通過するバケット3が船底や積載されているバラ荷に当たり、更にバケット3が上側に移動することによって、ボトムピース31に衝突する可能性を低減できる。 However, by adjusting the average distance between the loose load and the bucket 3, the risk of the ship 6 colliding with the continuous unloader 1 when the sea swell is high can be reduced. For example, the possibility that the bucket 3 passing under the bottom piece 31 hits the ship bottom or a bulk load loaded thereon, and further the bucket 3 moves upward, reduces the possibility of colliding with the bottom piece 31.
1 連続式アンローダ
2 コラム
3 バケット
4 本体部
5 岸壁
6 船舶
7 開口部
8 甲板
9 ブーム
10 無端状チェーン(無端状部材)
11 投光側光電センサ
12 受光側光電センサ
13 信号送信用無線装置
15 レーザ距離計
16 ぶれ検出カメラ
17 ぶれ検出ターゲット
18 信号受信用無線装置
21 GPS
25 傾斜計
31 ボトムピース
32 先端スプロケット
33 後端スプロケット
DESCRIPTION OF SYMBOLS 1 Continuous unloader 2 Column 3 Bucket 4 Main-body part 5 Quay wall 6 Ship 7 Opening part 8 Deck 9 Boom 10 Endless chain (endless member)
DESCRIPTION OF SYMBOLS 11 Light emission side photoelectric sensor 12 Light reception side photoelectric sensor 13 Signal transmission radio | wireless apparatus 15 Laser rangefinder 16 Camera shake detection camera 17 Camera shake detection target 18 Signal reception radio | wireless apparatus 21 GPS
25 Inclinometer 31 Bottom piece 32 Front sprocket 33 Rear sprocket

Claims (4)

  1.  船舶の船倉内に積載されたバラ荷を掘削するバケットと、複数の前記バケットが接続された無端状部材と、前記無端状部材を駆動する駆動部とを有する掘削手段と、
     前記船舶の揺動を検出する揺動検出手段と、
     検出された前記揺動を視覚的に表示する表示手段と、
    を備える連続式アンローダ。
    Excavation means having a bucket for excavating loose loads loaded in the hold of a ship, an endless member to which a plurality of the buckets are connected, and a drive unit for driving the endless member;
    Swing detection means for detecting the swing of the ship;
    Display means for visually displaying the detected swing;
    A continuous unloader.
  2.  前記揺動検出手段は、前記掘削手段に設置される請求項1に記載の連続式アンローダ。 The continuous unloader according to claim 1, wherein the swing detection means is installed in the excavation means.
  3.  船舶の船倉内に積載されたバラ荷を掘削するバケットと、複数の前記バケットが接続された無端状部材と、前記無端状部材を駆動する駆動部とを有する掘削手段と、
     前記船舶と前記掘削手段との近接状態を検出する近接状態検出手段と、
     検出された前記近接状態を告知する告知手段と、
    を備える連続式アンローダ。
    Excavation means having a bucket for excavating loose loads loaded in the hold of a ship, an endless member to which a plurality of the buckets are connected, and a drive unit for driving the endless member;
    Proximity state detection means for detecting a proximity state between the ship and the excavation means;
    A notifying means for notifying the detected proximity state;
    A continuous unloader.
  4.  船舶の船倉内に積載されたバラ荷を掘削するバケットと、複数の前記バケットが接続された無端状部材と、前記無端状部材を駆動する駆動部とを有する掘削手段と、
     前記船舶の揺動量を検出する揺動検出手段と、
     検出された前記揺動量に応じて前記掘削手段の前記無端状部材のたるみ量又は前記バラ荷と前記掘削手段との距離を変更する操作手段と、
    を備える連続式アンローダ。
     
    Excavation means having a bucket for excavating loose loads loaded in the hold of a ship, an endless member to which a plurality of the buckets are connected, and a drive unit for driving the endless member;
    Swing detection means for detecting the swing amount of the ship;
    An operating means for changing the amount of sag of the endless member of the excavating means or the distance between the loose load and the excavating means according to the detected swing amount;
    A continuous unloader.
PCT/JP2012/050614 2011-12-01 2012-01-13 Continuous unloader WO2013080574A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280014056.1A CN103492295B (en) 2011-12-01 2012-01-13 Continous way unloading machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011263797A JP5944148B2 (en) 2011-12-01 2011-12-01 Continuous unloader
JP2011-263797 2011-12-01

Publications (1)

Publication Number Publication Date
WO2013080574A1 true WO2013080574A1 (en) 2013-06-06

Family

ID=48535062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050614 WO2013080574A1 (en) 2011-12-01 2012-01-13 Continuous unloader

Country Status (4)

Country Link
JP (1) JP5944148B2 (en)
CN (1) CN103492295B (en)
TW (1) TWI486295B (en)
WO (1) WO2013080574A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105523396B (en) * 2015-12-29 2018-05-04 广船国际有限公司 A kind of ship unloaders protective device and ship unloaders
CN105645132A (en) * 2015-12-30 2016-06-08 上海航盛船舶设计有限公司 Spiral chute lifting process
CN106429536A (en) * 2016-12-05 2017-02-22 大连华锐重工集团股份有限公司 Upper lifting device of continuous unshipping machine
JP6955448B2 (en) * 2018-01-11 2021-10-27 川崎重工業株式会社 Material handling machine
JP7051468B2 (en) * 2018-02-02 2022-04-11 株式会社Ihi Unloading device
CN111328318B (en) * 2018-02-02 2022-01-07 株式会社Ihi Unloading device
JP7011480B2 (en) * 2018-02-02 2022-01-26 株式会社Ihi Unloading device
JP7442356B2 (en) * 2020-03-18 2024-03-04 住友重機械搬送システム株式会社 unloader

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297023A (en) * 1996-05-02 1997-11-18 Mitsubishi Heavy Ind Ltd Measuring apparatus for relative position of unloader excavating part to hull
JP2002302267A (en) * 2001-04-06 2002-10-18 Hitachi Plant Eng & Constr Co Ltd Oscillation tracking device of unloader

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012423A (en) * 1983-07-01 1985-01-22 Mitsui Miike Mach Co Ltd Method of land equipment following ships
CN1020574C (en) * 1989-06-09 1993-05-12 住友重机械工业株式会社 Bucket elevator type continuous ship unloader
JP2573175Y2 (en) * 1993-02-05 1998-05-28 石川島播磨重工業株式会社 Unloader and ship relative position detector
DE69508570T2 (en) * 1995-06-16 1999-10-21 Ishikawajima Harima Heavy Ind Continuous discharge device
JP3492074B2 (en) * 1996-03-25 2004-02-03 三菱重工業株式会社 Detection method of horizontal excavation force in continuous unloader and continuous unloader using the detection method
TW458159U (en) * 1996-03-29 2001-10-01 Ishikawajima Harima Heavy Ind Continuous unloading machine
JPH11171348A (en) * 1997-12-15 1999-06-29 Ishikawajima Harima Heavy Ind Co Ltd Refuge method when vessel oscillates in continuous automatic unloaded operation and refuge controller
JP2001253548A (en) * 2000-03-14 2001-09-18 Ishikawajima Harima Heavy Ind Co Ltd Continuous unloader
JP4488603B2 (en) * 2000-07-24 2010-06-23 三井造船株式会社 Continuous unloader and operation method of continuous unloader
JP2005239411A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Bucket type crane gear
CN201489359U (en) * 2009-08-07 2010-05-26 上海达华测绘有限公司 Monitoring platform of grab dredger
CN201926444U (en) * 2010-02-09 2011-08-10 九江中船仪表有限责任公司 Ship compass
CN202048897U (en) * 2011-04-27 2011-11-23 宝山钢铁股份有限公司 Laser three-dimensional bulk cargo imaging device for ship unloader

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09297023A (en) * 1996-05-02 1997-11-18 Mitsubishi Heavy Ind Ltd Measuring apparatus for relative position of unloader excavating part to hull
JP2002302267A (en) * 2001-04-06 2002-10-18 Hitachi Plant Eng & Constr Co Ltd Oscillation tracking device of unloader

Also Published As

Publication number Publication date
CN103492295B (en) 2016-01-20
CN103492295A (en) 2014-01-01
JP2013116779A (en) 2013-06-13
TWI486295B (en) 2015-06-01
JP5944148B2 (en) 2016-07-05
TW201323306A (en) 2013-06-16

Similar Documents

Publication Publication Date Title
JP5944148B2 (en) Continuous unloader
EP2912232B1 (en) Wheel loader comprising a grading blade and a machine control system
ZA200507982B (en) Method and apparatus for monitoring a load condition of a dragline or electric shovel
US7631445B2 (en) Underwater dredging system
KR101432416B1 (en) Transporting barge, floating structure installation system, and floating structure installation method
AU2012252544B2 (en) Method for detecting and tracking the position of a movable transferring device/loading device of a bucket-wheel excavator or bucket chain excavator
JP2010138657A (en) Disassembling work machine
US20130167410A1 (en) Clam-link apparatus and methods
JP2010112021A (en) Device and method for recovering dangerous article in water bottom
JP5823841B2 (en) Tunnel face shaping system and shaping method
JP2014101713A (en) Position measuring apparatus for pile driving machine
JP6607799B2 (en) Anti-collision device for continuous unloader
JP2017227035A (en) Contact prevention assist system
JP2017193913A (en) Working ship
JP5936516B2 (en) Emergency unloader for continuous unloader
US11619021B2 (en) Construction device and method for operating a construction device
JP2009191461A (en) Height restricting device for heavy machine
CN116249813A (en) Work area setting system and operation target detection system
JP2012026190A (en) Underwater work method near existing structure and device for underwater work
JP4023885B2 (en) Evacuation method and evacuation control device for ship swinging in continuous unloader automatic operation
JP2003252454A (en) Unloader collision preventing mechanism
CN109183896A (en) Mine excavator crane arm apparatus for detecting position and posture and control method
US20230391588A1 (en) Lifting gear, and method for determining slack rope on the lifting gear
CN113027478A (en) Rail heading device
WO2023281988A1 (en) Work machine system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852574

Country of ref document: EP

Kind code of ref document: A1