WO2023281988A1 - Work machine system - Google Patents

Work machine system Download PDF

Info

Publication number
WO2023281988A1
WO2023281988A1 PCT/JP2022/023601 JP2022023601W WO2023281988A1 WO 2023281988 A1 WO2023281988 A1 WO 2023281988A1 JP 2022023601 W JP2022023601 W JP 2022023601W WO 2023281988 A1 WO2023281988 A1 WO 2023281988A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
bucket
earth
controller
sand
Prior art date
Application number
PCT/JP2022/023601
Other languages
French (fr)
Japanese (ja)
Inventor
展弘 福尾
耕治 山下
大輔 野田
Original Assignee
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コベルコ建機株式会社 filed Critical コベルコ建機株式会社
Priority to EP22837406.2A priority Critical patent/EP4345218A1/en
Priority to CN202280044955.XA priority patent/CN117561358A/en
Publication of WO2023281988A1 publication Critical patent/WO2023281988A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles

Definitions

  • the present invention relates to a work machine system for automatic operation of work machines.
  • Patent Literature 1 discloses a working machine that calculates the load of a work object held by a tip attachment based on thrust force information of an actuator, and estimates whether or not a load has been spilled during transportation of the work object. It is
  • the amount of the work object held by the tip attachment will be less than the target value at the time the tip attachment releases the work object.
  • An object of the present invention is to provide a work machine system that can identify factors that cause the amount of work objects held by the tip attachment to be less than the target value.
  • a work machine system includes a lower traveling body, an upper revolving body rotatably attached to an upper portion of the lower traveling body, and a tip attachment capable of holding a work object.
  • a rotatably mounted attachment a controller, wherein the controller directs the upper rotating bed and the attachment such that the upper rotating bed and the attachment perform a series of motions having a plurality of phases of motion; to detect the amount of the work object held by the tip attachment, set a target amount that is the target amount of the work object, and control the amount of the work object held by the tip attachment to the above
  • the operating phases less than the target amount are identified as abnormal phases.
  • the upper rotating body and the attachment are controlled so that they perform a series of motions having multiple motion phases. Then, an operation phase in which the amount of the work object held by the tip attachment is less than the target amount is specified as an abnormal phase. Therefore, an operation phase in which the amount of the work object held by the tip attachment is smaller than the target value can be specified from among the plurality of operation phases. Thereby, it is possible to identify the factor that the amount of the work object held by the tip attachment is less than the target value. For example, in a series of operations including excavation, scooping up, lifting and turning, and earth dumping, if a load spills during turning and the amount of earth and sand becomes less than the target amount, turning is regarded as an abnormal phase. identified. Also, when the excavated amount of earth and sand is less than the target amount, excavation is specified as an abnormal phase.
  • FIG. 1 is a circuit diagram of a work machine and a cockpit;
  • FIG. It is a figure showing the time change of the amount of earth and sand which a bucket holds, and is a figure in the case of excavation being an abnormal phase.
  • FIG. 4 is a diagram showing changes over time in the amount of earth and sand held by the bucket, and is a diagram when the amount of earth and sand that the bucket is trying to hold is not sufficient.
  • a work machine system is a system for automatic operation of a work machine.
  • This working machine system includes a working machine 20 and a cockpit 71 .
  • the working machine 20 is a machine that performs work with an attachment 30, such as a hydraulic excavator.
  • the working machine 20 has a machine main body 24 having a lower travel body 21 and an upper revolving body 22 , an attachment 30 and a cylinder 40 .
  • the lower traveling body 21 is a part that allows the working machine 20 to travel, and includes, for example, crawlers.
  • the upper revolving body 22 is rotatably attached to the upper part of the lower traveling body 21 via a revolving device 25 .
  • a cab (driver's cab) 23 is provided in the front portion of the upper revolving body 22 .
  • the attachment 30 is attached to the upper rotating body 22 so as to be rotatable around a vertically extending rotating shaft.
  • the attachment 30 has a boom 31 , an arm 32 and a bucket 33 .
  • the boom 31 is attached to the upper revolving body 22 so as to be vertically rotatable (up and down).
  • the arm 32 is attached to the boom 31 so as to be vertically rotatable.
  • the bucket 33 is a tip attachment that is the tip of the attachment 30 and can hold earth and sand (work target).
  • the bucket 33 is attached to the arm 32 so as to be rotatable in the front-rear direction.
  • the bucket 33 is a part for excavating, smoothing, scooping, and the like.
  • the object to be worked held by the bucket 33 is not limited to earth and sand, and may be stones or waste (industrial waste, etc.).
  • the tip attachment is not limited to the bucket 33, but may be a grapple, a lifting magnet, or the like.
  • the cylinder 40 can hydraulically rotate the attachment 30 .
  • the cylinder 40 is a hydraulic telescopic cylinder.
  • the cylinder 40 includes a boom cylinder 41 , an arm cylinder 42 and a bucket cylinder 43 .
  • the boom cylinder 41 rotates the boom 31 with respect to the upper swing body 22 .
  • a base end portion of the boom cylinder 41 is rotatably attached to the upper swing body 22 .
  • a tip portion of the boom cylinder 41 is rotatably attached to the boom 31 .
  • the arm cylinder 42 rotates the arm 32 with respect to the boom 31 .
  • a base end of the arm cylinder 42 is rotatably attached to the boom 31 .
  • a tip portion of the arm cylinder 42 is rotatably attached to the arm 32 .
  • the bucket cylinder 43 rotates the bucket 33 with respect to the arm 32 .
  • a base end of the bucket cylinder 43 is rotatably attached to the arm 32 .
  • a tip portion of the bucket cylinder 43 is rotatably attached to a link member 34 rotatably attached to the bucket 33 .
  • the working machine 20 also has an angle sensor 52 and an inclination sensor 60 .
  • the angle sensor 52 detects the turning angle of the upper turning body 22 with respect to the lower traveling body 21 .
  • the angle sensor 52 is, for example, an encoder, resolver, or gyro sensor.
  • the turning angle of the upper turning body 22 when the front of the upper turning body 22 coincides with the front of the lower traveling body 21 is 0°.
  • the tilt angle sensor 60 detects the orientation of the attachment 30 .
  • the tilt angle sensor 60 includes a boom tilt angle sensor 61 , an arm tilt angle sensor 62 and a bucket tilt angle sensor 63 .
  • a boom tilt angle sensor 61 is attached to the boom 31 and detects the attitude of the boom 31 .
  • the boom tilt angle sensor 61 is a sensor that acquires the tilt angle of the boom 31 with respect to the horizontal line, and is, for example, a tilt sensor (acceleration sensor).
  • the boom tilt angle sensor 61 may be a rotation angle sensor that detects the rotation angle of the boom foot pin (boom base end) or a stroke sensor that detects the stroke amount of the boom cylinder 41 .
  • the arm tilt angle sensor 62 is attached to the arm 32 and detects the posture of the arm 32 .
  • the arm tilt angle sensor 62 is a sensor that acquires the tilt angle of the arm 32 with respect to the horizontal line, and is, for example, a tilt sensor (acceleration sensor).
  • the arm tilt angle sensor 62 may be a rotation angle sensor that detects the rotation angle of the arm connecting pin (arm proximal end) or a stroke sensor that detects the stroke amount of the arm cylinder 42 .
  • the bucket tilt angle sensor 63 is attached to the link member 34 and detects the attitude of the bucket 33 .
  • the bucket tilt angle sensor 63 is a sensor that acquires the tilt angle of the bucket 33 with respect to the horizontal line, and is, for example, a tilt sensor (acceleration sensor).
  • the bucket tilt angle sensor 63 may be a rotation angle sensor that detects the rotation angle of the bucket connecting pin (bucket proximal end) or a stroke sensor that detects the stroke amount of the bucket cylinder 43 .
  • the work machine 20 has a LiDAR55.
  • the LiDAR 55 Light Detection and Ranging or Laser Imaging Detection and Ranging
  • the LiDAR 55 acquires point cloud data indicating the distance from the position where the LiDAR 55 is attached to the dirt in the bucket 33 .
  • a stereo camera, a TOF (Time Of Flight) sensor, or the like may be used instead of the LiDAR 55 .
  • Such a working machine 20 is remotely taught by an operator from a cockpit 71 installed at a location away from the working machine 20 .
  • the work machine 20 performs automatic operation based on the content of the work that has been taught.
  • the working machine system includes a controller.
  • the controller of this work machine system includes control means, quantity detection means, target quantity setting means, identification means, and notification means.
  • the controllers of the work machine system include a work machine controller 11 provided in the work machine 20 and a cockpit controller 72 provided in the cockpit 71 .
  • FIG. 2 is a circuit diagram of the work machine 20 and the cockpit 71, the work machine 20 has the work machine controller 11, the work machine communication device 12, and the storage device 13.
  • Information regarding the turning angle (attitude) of the upper rotating body 22 with respect to the lower traveling body 21 detected by the angle sensor 52 is input to the controller 11 . Further, the controller 11 receives information regarding the posture of the boom 31 detected by the boom tilt angle sensor 61 . Further, the controller 11 receives information regarding the posture of the arm 32 detected by the arm tilt angle sensor 62 . In addition, information regarding the attitude of the bucket 33 detected by the bucket tilt angle sensor 63 is input to the controller 11 .
  • the point cloud data acquired by the LiDAR 55 is input to the controller 11 .
  • the controller 11 operates the turning device 25 and the attachment 30 based on the work content taught from the cockpit 71 .
  • the work machine side communication device 12 can communicate with a later-described cockpit side communication device 74 of the cockpit 71 .
  • the storage device 13 stores the contents of work remotely taught from the cockpit 71 .
  • the cockpit 71 has the cockpit-side controller 72 , an operating device 73 , a cockpit-side communication device 74 and a display 75 .
  • the operating device 73 includes devices necessary for remotely operating the working machine 20, such as operating levers and operating buttons.
  • the cockpit-side communication device 74 can communicate with the work-machine-side communication device 12 of the work machine 20 .
  • the work machine 20 When performing teaching from the cockpit 71, the work machine 20 is set to the teaching mode by remote control from the cockpit 71.
  • the operator remotely controls work machine 20 by operating operation device 73 .
  • the scenery of the car window (scenery outside the window) photographed by the camera provided in the cab 23 of the work machine 20 is displayed on the display 75 .
  • Operation contents by remote operation are stored in the storage device 13 .
  • the work machine 20 is set to the automatic operation mode by remote control from the cockpit 71 .
  • the work machine 20 When the work machine 20 is set to the automatic operation mode, the work machine 20 automatically operates. That is, the controller 11 of the work machine 20 automatically operates the work machine 20 by controlling the operations of the upper revolving body 22 and the attachment 30 based on the taught work content (the work content stored in the storage device 13). .
  • the content of the automatic operation performed by the work machine 20 is to excavate the earth and sand from the earth and sand pit (not shown) with the bucket 33 and move the upper revolving body 22 to the dump truck (not shown) while holding the earth and sand. After the earth is dumped onto the loading platform (not shown) of the dump truck, the upper rotating body 22 is rotated toward the earth and sand pit.
  • a series of actions by automated driving has multiple action phases.
  • a plurality of operation phases include excavating, scooping, lifting and turning, and earth discharging.
  • the controller 11 controls the upper slewing body 22 and the attachment 30 so that the upper slewing body 22 and the attachment 30 perform a series of operations having a plurality of operation phases.
  • the controller 11 detects the amount of earth and sand held by the bucket 33 . Specifically, the controller 11 detects the shape of the earth and sand in the bucket 33 from the point cloud data acquired by the LiDAR 55, for example. The controller 11 then calculates the amount of earth and sand in the bucket 33 from the shape of the earth and sand in the bucket 33 .
  • the method by which the controller 11 detects the amount of earth and sand is not limited to the above specific example.
  • the controller 11 may detect the amount of earth and sand in the bucket 33 using, for example, the measurement result of a pressure sensor (not shown) that measures the pressure of the boom cylinder 41 .
  • the controller 11 sets a target amount, which is a target amount of earth and sand.
  • the target amount is set via the cockpit 71 during teaching.
  • the set target amount is stored in the storage device 13 .
  • the controller 11 (the means for identifying the controller) identifies an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target amount as an abnormal phase.
  • the controller 11 detects an abnormality based on whether each of the amount of earth and sand held by the bucket 33 at the start point of the operation phase and the amount of earth and sand held by the bucket 33 at the end point of the operation phase is less than the target amount. Identify phases. That is, the controller 11 determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the start point of the operation phase, and determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the end point of the operation phase. It is determined whether or not it is small, and an abnormal phase is specified based on these determination results.
  • Figures 3 and 4 show temporal changes in the amount of earth and sand held by the bucket 33 in each of the operation phases of excavation, scooping up, and lifting and turning.
  • the amount of earth and sand held by the bucket 33 increases from the start point to the end point of the excavation operation phase.
  • the amount of dirt retained by the bucket 33 at the end of the excavation operating phase is less than the target amount indicated by the dashed line.
  • the amount of earth and sand held by the bucket 33 at the start and end points of the operation phase of excavation is less than the target amount, it can be identified that there is a problem with the excavation operation.
  • the bucket 33 is Even if the amount of earth and sand held by the bucket 33 is equal to or greater than the target amount indicated by the dashed line, the amount of earth and sand held by the bucket 33 at the end point of the swing operation phase becomes less than the target amount. In this case, it can be specified that cargo spillage occurred during turning.
  • the controller 11 also controls not only the amount of dirt held by the bucket 33 at the start point of the operation phase and the amount of dirt held by the bucket 33 at the end point of the operation phase, but also the amount of dirt held by the bucket 33 at the intermediate point between the start point and the end point. It may be determined whether the amount of earth and sand held by 33 is less than the target amount. That is, the controller 11 determines the amount of dirt held by the bucket 33 at the start point of the operation phase, the amount of dirt held by the bucket 33 at the end point of the operation phase, and the amount of dirt held by the bucket 33 at the intermediate point between the start point and the end point. An abnormal phase may be identified based on whether each amount of sediment to be measured is less than a target amount.
  • the controller 11 determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the start point of the operation phase, and determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the midpoint of the operation phase. It may be determined whether the amount of earth and sand held by the bucket 33 at the end point of the operation phase is less than the target amount, and based on these determination results, the abnormal phase may be specified. .
  • FIG. 5 also shows temporal changes in the amount of earth and sand held by the bucket 33 in each of the operation phases of excavation, scooping up, and lifting and turning.
  • the operation phase is excavation, it is presumed that there is a problem with the excavation operation if the amount of dirt held by the bucket 33 at the end of the operation phase of excavation is less than the target amount.
  • the amount of earth and sand held by the bucket 33 at the midpoint of the excavation operation phase is less than the target amount, and the amount of earth and sand held by the bucket 33 does not change between the midpoint and the end point of the excavation operation phase. to determine that the bucket 33 was not able to hold a sufficient amount of dirt, not because there was a problem with the excavation operation, but because the bucket 33 was not trying to hold enough dirt in the dirt pit. can be done.
  • the respective timings or positions of the start point, middle point and end point of the operation phase may be stored in the storage device 13 at the time of teaching, for example.
  • the controller 11 determines whether the amount of earth and sand is less than the target amount at the start point of the stored operation phase, and determines whether the amount of earth and sand is less than the target amount at the intermediate point of the stored operation phase. It may be determined whether or not the amount of earth and sand at the stored end point is less than the target amount.
  • the operator may use an input device (not shown) to specify the timing of each of the start point, intermediate point, and end point of the operation phase.
  • the controller 11 determines whether the amount of earth and sand is less than the target amount at the start point of the designated operation phase, and determines whether the amount of earth and sand is less than the target amount at the middle point of the designated operation phase. It may be determined whether or not the amount of earth and sand is less than the target amount at the specified end point.
  • the respective timings or positions of the start point, middle point and end point of the operation phase may be determined by other methods than the above two specific examples.
  • an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target amount is identified as an abnormal phase. Therefore, an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target value can be specified from among the plurality of operation phases. This makes it possible to identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value. For example, as shown in FIG. 4, when cargo spillage occurs during turning and the amount of earth and sand becomes less than the target amount, the turning is identified as an abnormal phase. Further, as shown in FIG. 3, when the excavated amount of earth and sand is less than the target amount, excavation is specified as an abnormal phase.
  • an abnormal A phase is identified. This makes it possible to preferably identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value.
  • the amount of earth and sand held by the bucket 33 at the start point of a certain operation phase is equal to or greater than the target amount and the amount of earth and sand held by the bucket 33 at the end point of this operation phase is less than the target amount, during this operation phase It can be identified that a cargo spill occurred in Further, if the operation phase is an operation phase (excavation) for holding earth and sand, and the amounts of earth and sand held by the bucket 33 at the start and end points of this operation phase are each less than the target amount, there is a problem with the operation for holding earth and sand. It can be specified that there is
  • An abnormal phase may be identified based on whether each of the amounts of sediment held by is less than a target amount. This makes it possible to specify in detail the factors that cause the amount of earth and sand held by the bucket 33 to be less than the target value. For example, as shown in FIG. 5, it is possible to specify that the bucket 33 could not hold a sufficient amount of earth and sand because the amount of earth and sand that the bucket 33 is trying to hold in the earth and sand pit is not sufficient.
  • information on the abnormal phase is stored in the storage device 13 and sent to the cockpit 71 together with the identification number of the work machine 20.
  • the cockpit-side controller 72 (notifying means of the controller) notifies the abnormal phase.
  • cockpit-side controller 72 causes display 75 to display information on the abnormal phase together with the identification number of work machine 20 .
  • This allows the operator to recognize the factor that causes the amount of earth and sand held by the bucket 33 of the relevant work machine 20 to be less than the target value. Accordingly, the operator can teach the work machine 20 again to correct the operations of the upper rotating body 22 and the attachment 30 so that the amount of earth and sand held by the bucket 33 is equal to or greater than the target value. can be done.
  • the abnormal phase identified by the controller 11 is stored in the storage device 13 while the predetermined period has elapsed.
  • the predetermined period is a period longer than the series of operations is performed once.
  • the abnormal phase information stored in the storage device 13 is transmitted to the cockpit 71 and notified by the cockpit controller 72 .
  • the frequency of notification can be reduced compared to the case where the abnormal phase is notified each time the abnormal phase is identified.
  • the operator can concentrate on other work, thereby suppressing a decrease in the efficiency of the operator.
  • the abnormal phase specified by the controller 11 continues to be stored in the storage device 13 until the operator who operates the equipment in the cockpit 71 performs a specific operation. Information of all abnormal phases that have been reported may be reported. According to this, it is possible to make the notification at the operator's desired timing.
  • the upper revolving body 22 and the attachment 30 are arranged such that the upper revolving body 22 and the attachment 30 perform a series of operations having a plurality of operation phases. controlled.
  • An operation phase in which the amount of earth and sand held by the bucket 33 is less than the target amount is specified as an abnormal phase. Therefore, an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target value can be specified from among the plurality of operation phases. This makes it possible to identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value.
  • the turning is identified as an abnormal phase.
  • excavation is specified as an abnormal phase.
  • an abnormal A phase is identified. This makes it possible to preferably identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value.
  • the amount of earth and sand held by the bucket 33 at the start point of a certain operation phase is equal to or greater than the target amount and the amount of earth and sand held by the bucket 33 at the end point of this operation phase is less than the target amount, during this operation phase It can be identified that a cargo spill occurred in Further, if the operation phase is an operation phase for holding earth and sand, and the amount of earth and sand held by the bucket 33 at the start point and the end point of this operation phase is less than the target amount, respectively, it is determined that there is a problem with the operation for holding earth and sand. can be specified.
  • an abnormal phase is identified based on whether each amount of earth and sand held by is less than the target amount. This makes it possible to specify in detail the factors that cause the amount of earth and sand held by the bucket 33 to be less than the target value.
  • the operation phase is an operation phase that holds earth and sand, and the amount of earth and sand held by the bucket 33 increases from the start point to the middle point of this operation phase.
  • the amount of earth and sand is less than the target amount and there is no change in the amount of earth and sand held by the bucket 33 between the middle point and the end point of this operation phase, the amount of earth and sand that the bucket 33 is trying to hold is not sufficient. Therefore, it can be determined that the bucket 33 could not hold a sufficient amount of earth and sand.
  • the abnormal phase is notified.
  • the operator can recognize the factor that the amount of earth and sand held by the bucket 33 is less than the target value. Therefore, it is possible to modify the operations of the upper rotating body 22 and the attachment 30 so that the amount of earth and sand held by the bucket 33 is equal to or greater than the target value.
  • the abnormal phase stored in the storage device 13 is notified.
  • the frequency of notification can be reduced compared to the case where the abnormal phase is notified each time the abnormal phase is identified.
  • the operator often performs other work while the work machine 20 is being automatically operated. By reducing the frequency of notification, the operator can concentrate on other work, thereby suppressing a decrease in the efficiency of the operator.
  • the work machine system includes the work machine 20 and the cockpit 71, but the cockpit 71 is not an essential component in the work machine system and may be omitted.
  • the cockpit-side controller 72 notifies the operator of the abnormal phase by causing the display 75 of the cockpit 71 to display information on the abnormal phase.
  • the work machine system does not have to be equipped with a cockpit when notifying the operator of the abnormal phase in the machine or equipment.
  • machines other than the cockpit 71 include working machines, and examples of devices other than the cockpit 71 include information devices such as personal computers, servers, and personal digital assistants.
  • the operator remotely teaches the operation (operation) of the work machine 20 from the cockpit 71 installed at a location away from the work machine 20.
  • the operation device in the cab 23 By operating the operation device in the cab 23 from the driver's seat in the cab 23 , the work content may be taught to the work machine 20 .
  • the work machine system does not have to include the cockpit 71 .
  • control means the amount detection means, the target amount setting means, and the specifying means are included in the working machine controller 11. All may be included in the cockpit side controller 72 . Further, in the above embodiment, the notification means is included in the cockpit controller 72, but may be included in the work machine controller 11. FIG. Moreover, the working machine side controller 11 and the cockpit side controller 72 may be configured by one controller. In this case, the working machine 20 may include the one controller, and the cockpit 71 may be the one controller. may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

This work machine system comprises a lower traveling body (21), an upper rotating body (22) rotatably attached to the upper part of the lower traveling body (21), an attachment (30) that has a bucket (33) capable of holding a work object and that is turnably attached to the upper rotating body (22), and a controller. The controller controls the upper rotating body (22) and the attachment (30) so that the upper rotating body (22) and the attachment (30) perform a series of actions having multiple action phases, detects the amount of the work object held by the bucket (33), sets a target amount, which is a target for the amount of the work object, and specifies an action phase for which the amount of the work object held by the bucket (33) is less than the target amount as an abnormal phase.

Description

作業機械システムworking machine system
 本発明は、作業機械の自動運転のための作業機械システムに関する。 The present invention relates to a work machine system for automatic operation of work machines.
 特許文献1には、アクチュエータの推力情報に基づいて、先端アタッチメントが保持する作業対象物の荷重を演算し、作業対象物の運搬中に荷こぼれが発生したか否かを推定する作業機械が開示されている。 Patent Literature 1 discloses a working machine that calculates the load of a work object held by a tip attachment based on thrust force information of an actuator, and estimates whether or not a load has been spilled during transportation of the work object. It is
 作業対象物の運搬中に荷こぼれが発生した場合、先端アタッチメントが作業対象物を放出する時点で、先端アタッチメントが保持する作業対象物の量は、目標値よりも少なくなっている。しかし、同様のことは、先端アタッチメントが作業対象物を保持した際に、先端アタッチメントに保持された作業対象物の量が目標値よりも少なかった場合や、先端アタッチメントが保持しようとする作業対象物の量が十分でないために、先端アタッチメントに十分な量の作業対象物を保持できなかった場合にも起こりえる。  In the event that a load is spilled while the work object is being transported, the amount of the work object held by the tip attachment will be less than the target value at the time the tip attachment releases the work object. However, the same thing happens when the tip attachment holds a work object and the amount of the work object held by the tip attachment is less than the target value, or when the work object that the tip attachment is trying to hold It may also occur if the tip attachment could not hold a sufficient amount of the work piece due to an insufficient amount of .
特開2019-157362号公報JP 2019-157362 A
 本発明の目的は、先端アタッチメントが保持する作業対象物の量が目標値よりも少ない要因を特定することが可能な作業機械システムを提供することである。 An object of the present invention is to provide a work machine system that can identify factors that cause the amount of work objects held by the tip attachment to be less than the target value.
 本発明に係る作業機械システムは、下部走行体と、前記下部走行体の上部に旋回可能に取り付けられた上部旋回体と、作業対象物を保持可能な先端アタッチメントを有し、前記上部旋回体に回動可能に取り付けられたアタッチメントと、コントローラと、を備え、前記コントローラは、前記上部旋回体および前記アタッチメントが、複数の動作フェーズを有する一連の動作を行うように、前記上部旋回体および前記アタッチメントを制御し、前記先端アタッチメントが保持する前記作業対象物の量を検出し、前記作業対象物の量の目標である目標量を設定し、前記先端アタッチメントが保持する前記作業対象物の量が前記目標量よりも少ない前記動作フェーズを、異常フェーズとして特定する。 A work machine system according to the present invention includes a lower traveling body, an upper revolving body rotatably attached to an upper portion of the lower traveling body, and a tip attachment capable of holding a work object. a rotatably mounted attachment; and a controller, wherein the controller directs the upper rotating bed and the attachment such that the upper rotating bed and the attachment perform a series of motions having a plurality of phases of motion; to detect the amount of the work object held by the tip attachment, set a target amount that is the target amount of the work object, and control the amount of the work object held by the tip attachment to the above The operating phases less than the target amount are identified as abnormal phases.
 本発明によると、上部旋回体およびアタッチメントが、複数の動作フェーズを有する一連の動作を行うように、上部旋回体およびアタッチメントが制御される。そして、先端アタッチメントが保持する作業対象物の量が目標量よりも少ない動作フェーズが、異常フェーズとして特定される。よって、先端アタッチメントが保持する作業対象物の量が目標値よりも少ない動作フェーズを、複数の動作フェーズの中から特定することができる。これにより、先端アタッチメントが保持する作業対象物の量が目標値よりも少ない要因を特定することができる。例えば、土砂の掘削、掬い上げ、持ち上げ旋回、排土を有する一連の動作において、旋回中に荷こぼれが発生し、土砂の量が目標量よりも少なくなった場合には、旋回が異常フェーズとして特定される。また、土砂の掘削量が目標量よりも少ない場合には、掘削が異常フェーズとして特定される。 According to the present invention, the upper rotating body and the attachment are controlled so that they perform a series of motions having multiple motion phases. Then, an operation phase in which the amount of the work object held by the tip attachment is less than the target amount is specified as an abnormal phase. Therefore, an operation phase in which the amount of the work object held by the tip attachment is smaller than the target value can be specified from among the plurality of operation phases. Thereby, it is possible to identify the factor that the amount of the work object held by the tip attachment is less than the target value. For example, in a series of operations including excavation, scooping up, lifting and turning, and earth dumping, if a load spills during turning and the amount of earth and sand becomes less than the target amount, turning is regarded as an abnormal phase. identified. Also, when the excavated amount of earth and sand is less than the target amount, excavation is specified as an abnormal phase.
作業機械の側面図である。It is a side view of a working machine. 作業機械およびコクピットの回路図である。1 is a circuit diagram of a work machine and a cockpit; FIG. バケットが保持する土砂の量の時間変化を表した図であり、掘削が異常フェーズの場合の図である。It is a figure showing the time change of the amount of earth and sand which a bucket holds, and is a figure in the case of excavation being an abnormal phase. バケットが保持する土砂の量の時間変化を表した図であり、旋回が異常フェーズの場合の図である。It is a figure showing the time change of the amount of earth and sand which a bucket holds, and is a figure in the case of a turning abnormal phase. バケットが保持する土砂の量の時間変化を表した図であり、バケットが保持しようとする土砂の量が十分でない場合の図である。FIG. 4 is a diagram showing changes over time in the amount of earth and sand held by the bucket, and is a diagram when the amount of earth and sand that the bucket is trying to hold is not sufficient.
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。 Preferred embodiments of the present invention will be described below with reference to the drawings.
 (作業機械システムの構成)
 本発明の実施形態による作業機械システムは、作業機械の自動運転のためのシステムである。この作業機械システムは、作業機械20と、コクピット71と、を備える。
(Configuration of working machine system)
A work machine system according to an embodiment of the present invention is a system for automatic operation of a work machine. This working machine system includes a working machine 20 and a cockpit 71 .
 作業機械20の側面図である図1に示すように、作業機械20は、アタッチメント30で作業を行う機械であり、例えば油圧ショベルである。作業機械20は、下部走行体21と上部旋回体22とを備えた機械本体24と、アタッチメント30と、シリンダ40と、を有している。 As shown in FIG. 1, which is a side view of the working machine 20, the working machine 20 is a machine that performs work with an attachment 30, such as a hydraulic excavator. The working machine 20 has a machine main body 24 having a lower travel body 21 and an upper revolving body 22 , an attachment 30 and a cylinder 40 .
 下部走行体21は、作業機械20を走行させる部分であり、例えばクローラを備える。上部旋回体22は、下部走行体21の上部に旋回装置25を介して旋回可能に取り付けられる。上部旋回体22の前部には、キャブ(運転室)23が設けられている。 The lower traveling body 21 is a part that allows the working machine 20 to travel, and includes, for example, crawlers. The upper revolving body 22 is rotatably attached to the upper part of the lower traveling body 21 via a revolving device 25 . A cab (driver's cab) 23 is provided in the front portion of the upper revolving body 22 .
 アタッチメント30は、上下方向に延びる旋回軸の回りに回動可能に上部旋回体22に取り付けられる。アタッチメント30は、ブーム31と、アーム32と、バケット33と、を備える。ブーム31は、上下方向に回動可能(起伏可能)に上部旋回体22に取り付けられる。アーム32は、上下方向に回動可能にブーム31に取り付けられる。バケット33は、アタッチメント30の先端部である先端アタッチメントであり、土砂(作業対象物)を保持可能である。バケット33は、前後方向に回動可能にアーム32に取り付けられる。バケット33は、土砂の、掘削、均し、すくい、などの作業を行う部分である。なお、バケット33が保持する作業対象物は、土砂に限定されず、石でもよく、廃棄物(産業廃棄物など)でもよい。また、先端アタッチメントは、バケット33に限られず、グラップルやリフティングマグネット等であってもよい。 The attachment 30 is attached to the upper rotating body 22 so as to be rotatable around a vertically extending rotating shaft. The attachment 30 has a boom 31 , an arm 32 and a bucket 33 . The boom 31 is attached to the upper revolving body 22 so as to be vertically rotatable (up and down). The arm 32 is attached to the boom 31 so as to be vertically rotatable. The bucket 33 is a tip attachment that is the tip of the attachment 30 and can hold earth and sand (work target). The bucket 33 is attached to the arm 32 so as to be rotatable in the front-rear direction. The bucket 33 is a part for excavating, smoothing, scooping, and the like. The object to be worked held by the bucket 33 is not limited to earth and sand, and may be stones or waste (industrial waste, etc.). Also, the tip attachment is not limited to the bucket 33, but may be a grapple, a lifting magnet, or the like.
 シリンダ40は、アタッチメント30を油圧で回動させることが可能である。シリンダ40は、油圧式の伸縮シリンダである。シリンダ40は、ブームシリンダ41と、アームシリンダ42と、バケットシリンダ43と、を備える。 The cylinder 40 can hydraulically rotate the attachment 30 . The cylinder 40 is a hydraulic telescopic cylinder. The cylinder 40 includes a boom cylinder 41 , an arm cylinder 42 and a bucket cylinder 43 .
 ブームシリンダ41は、上部旋回体22に対してブーム31を回動させる。ブームシリンダ41の基端部は、上部旋回体22に回動可能に取り付けられる。ブームシリンダ41の先端部は、ブーム31に回動可能に取り付けられる。 The boom cylinder 41 rotates the boom 31 with respect to the upper swing body 22 . A base end portion of the boom cylinder 41 is rotatably attached to the upper swing body 22 . A tip portion of the boom cylinder 41 is rotatably attached to the boom 31 .
 アームシリンダ42は、ブーム31に対してアーム32を回動させる。アームシリンダ42の基端部は、ブーム31に回動可能に取り付けられる。アームシリンダ42の先端部は、アーム32に回動可能に取り付けられる。 The arm cylinder 42 rotates the arm 32 with respect to the boom 31 . A base end of the arm cylinder 42 is rotatably attached to the boom 31 . A tip portion of the arm cylinder 42 is rotatably attached to the arm 32 .
 バケットシリンダ43は、アーム32に対してバケット33を回動させる。バケットシリンダ43の基端部は、アーム32に回動可能に取り付けられる。バケットシリンダ43の先端部は、バケット33に回動可能に取り付けられたリンク部材34に、回動可能に取り付けられる。 The bucket cylinder 43 rotates the bucket 33 with respect to the arm 32 . A base end of the bucket cylinder 43 is rotatably attached to the arm 32 . A tip portion of the bucket cylinder 43 is rotatably attached to a link member 34 rotatably attached to the bucket 33 .
 また、作業機械20は、角度センサ52と、傾斜角センサ60と、を有している。 The working machine 20 also has an angle sensor 52 and an inclination sensor 60 .
 角度センサ52は、下部走行体21に対する上部旋回体22の旋回角度を検出する。角度センサ52は、例えば、エンコーダ、レゾルバ、又は、ジャイロセンサである。本実施形態では、上部旋回体22の前方が下部走行体21の前方と一致するときの上部旋回体22の旋回角度を0°としている。 The angle sensor 52 detects the turning angle of the upper turning body 22 with respect to the lower traveling body 21 . The angle sensor 52 is, for example, an encoder, resolver, or gyro sensor. In this embodiment, the turning angle of the upper turning body 22 when the front of the upper turning body 22 coincides with the front of the lower traveling body 21 is 0°.
 傾斜角センサ60は、アタッチメント30の姿勢を検出する。傾斜角センサ60は、ブーム傾斜角センサ61と、アーム傾斜角センサ62と、バケット傾斜角センサ63と、を備える。 The tilt angle sensor 60 detects the orientation of the attachment 30 . The tilt angle sensor 60 includes a boom tilt angle sensor 61 , an arm tilt angle sensor 62 and a bucket tilt angle sensor 63 .
 ブーム傾斜角センサ61は、ブーム31に取り付けられ、ブーム31の姿勢を検出する。ブーム傾斜角センサ61は、水平線に対するブーム31の傾斜角度を取得するセンサであり、例えば傾斜センサ(加速度センサ)等である。なお、ブーム傾斜角センサ61は、ブームフットピン(ブーム基端)の回転角度を検出する回転角度センサや、ブームシリンダ41のストローク量を検出するストロークセンサであってもよい。 A boom tilt angle sensor 61 is attached to the boom 31 and detects the attitude of the boom 31 . The boom tilt angle sensor 61 is a sensor that acquires the tilt angle of the boom 31 with respect to the horizontal line, and is, for example, a tilt sensor (acceleration sensor). The boom tilt angle sensor 61 may be a rotation angle sensor that detects the rotation angle of the boom foot pin (boom base end) or a stroke sensor that detects the stroke amount of the boom cylinder 41 .
 アーム傾斜角センサ62は、アーム32に取り付けられ、アーム32の姿勢を検出する。アーム傾斜角センサ62は、水平線に対するアーム32の傾斜角度を取得するセンサであり、例えば傾斜センサ(加速度センサ)等である。なお、アーム傾斜角センサ62は、アーム連結ピン(アーム基端)の回転角度を検出する回転角度センサや、アームシリンダ42のストローク量を検出するストロークセンサであってもよい。 The arm tilt angle sensor 62 is attached to the arm 32 and detects the posture of the arm 32 . The arm tilt angle sensor 62 is a sensor that acquires the tilt angle of the arm 32 with respect to the horizontal line, and is, for example, a tilt sensor (acceleration sensor). The arm tilt angle sensor 62 may be a rotation angle sensor that detects the rotation angle of the arm connecting pin (arm proximal end) or a stroke sensor that detects the stroke amount of the arm cylinder 42 .
 バケット傾斜角センサ63は、リンク部材34に取り付けられ、バケット33の姿勢を検出する。バケット傾斜角センサ63は、水平線に対するバケット33の傾斜角度を取得するセンサであり、例えば傾斜センサ(加速度センサ)等である。なお、バケット傾斜角センサ63は、バケット連結ピン(バケット基端)の回転角度を検出する回転角度センサや、バケットシリンダ43のストローク量を検出するストロークセンサであってもよい。 The bucket tilt angle sensor 63 is attached to the link member 34 and detects the attitude of the bucket 33 . The bucket tilt angle sensor 63 is a sensor that acquires the tilt angle of the bucket 33 with respect to the horizontal line, and is, for example, a tilt sensor (acceleration sensor). The bucket tilt angle sensor 63 may be a rotation angle sensor that detects the rotation angle of the bucket connecting pin (bucket proximal end) or a stroke sensor that detects the stroke amount of the bucket cylinder 43 .
 また、作業機械20は、LiDAR55を有している。LiDAR55(Light Detection and RangingまたはLaser Imaging Detection and Ranging)は、ブーム31に取り付けられているが、上部旋回体22に取り付けられていてもよい。LiDAR55は、LiDAR55が取り付けられている位置からバケット33の土砂までの距離を示す点群データを取得する。なお、LiDAR55の代わりにステレオカメラやTOF(Time Of Flight)センサ等を用いてもよい。 In addition, the work machine 20 has a LiDAR55. The LiDAR 55 (Light Detection and Ranging or Laser Imaging Detection and Ranging) is attached to the boom 31, but may be attached to the upper swing body 22. The LiDAR 55 acquires point cloud data indicating the distance from the position where the LiDAR 55 is attached to the dirt in the bucket 33 . Note that a stereo camera, a TOF (Time Of Flight) sensor, or the like may be used instead of the LiDAR 55 .
 このような作業機械20は、作業機械20から離れた場所に設置されたコクピット71から、オペレータにより動作が遠隔でティーチングされる。作業機械20は、ティーチングされた作業内容に基づいて、自動運転を行う。 The operation of such a working machine 20 is remotely taught by an operator from a cockpit 71 installed at a location away from the working machine 20 . The work machine 20 performs automatic operation based on the content of the work that has been taught.
 本実施形態に係る作業機械システムは、コントローラを備える。この作業機械システムの前記コントローラは、制御手段と、量検出手段と、目標量設定手段と、特定手段と、報知手段と、を含む。作業機械システムの前記コントローラは、作業機械20が備える作業機械側コントローラ11と、コクピット71が備えるコクピット側コントローラ72と、を含む。 The working machine system according to this embodiment includes a controller. The controller of this work machine system includes control means, quantity detection means, target quantity setting means, identification means, and notification means. The controllers of the work machine system include a work machine controller 11 provided in the work machine 20 and a cockpit controller 72 provided in the cockpit 71 .
 (作業機械およびコクピットの回路構成)
 作業機械20およびコクピット71の回路図である図2に示すように、作業機械20は、前記作業機械側コントローラ11と、作業機械側通信装置12と、記憶装置13と、を有している。
(Working machine and cockpit circuit configuration)
As shown in FIG. 2, which is a circuit diagram of the work machine 20 and the cockpit 71, the work machine 20 has the work machine controller 11, the work machine communication device 12, and the storage device 13.
 コントローラ11には、角度センサ52が検出した、下部走行体21に対する上部旋回体22の旋回角度(姿勢)に関する情報が入力される。また、コントローラ11には、ブーム傾斜角センサ61が検出した、ブーム31の姿勢に関する情報が入力される。また、コントローラ11には、アーム傾斜角センサ62が検出した、アーム32の姿勢に関する情報が入力される。また、コントローラ11には、バケット傾斜角センサ63が検出した、バケット33の姿勢に関する情報が入力される。 Information regarding the turning angle (attitude) of the upper rotating body 22 with respect to the lower traveling body 21 detected by the angle sensor 52 is input to the controller 11 . Further, the controller 11 receives information regarding the posture of the boom 31 detected by the boom tilt angle sensor 61 . Further, the controller 11 receives information regarding the posture of the arm 32 detected by the arm tilt angle sensor 62 . In addition, information regarding the attitude of the bucket 33 detected by the bucket tilt angle sensor 63 is input to the controller 11 .
 また、コントローラ11には、LiDAR55が取得した点群データが入力される。 Also, the point cloud data acquired by the LiDAR 55 is input to the controller 11 .
 コントローラ11は、コクピット71からティーチングされた作業内容に基づいて、旋回装置25およびアタッチメント30を動作させる。 The controller 11 operates the turning device 25 and the attachment 30 based on the work content taught from the cockpit 71 .
 作業機械側通信装置12は、コクピット71の後述するコクピット側通信装置74と通信可能である。記憶装置13は、コクピット71から遠隔でティーチングされた作業内容を記憶する。 The work machine side communication device 12 can communicate with a later-described cockpit side communication device 74 of the cockpit 71 . The storage device 13 stores the contents of work remotely taught from the cockpit 71 .
 コクピット71は、前記コクピット側コントローラ72と、操作装置73と、コクピット側通信装置74と、ディスプレイ75と、を有している。 The cockpit 71 has the cockpit-side controller 72 , an operating device 73 , a cockpit-side communication device 74 and a display 75 .
 操作装置73は、操作レバーや操作ボタンなど、作業機械20を遠隔で操作するのに必要な装置を含む。コクピット側通信装置74は、作業機械20の作業機械側通信装置12と通信可能である。 The operating device 73 includes devices necessary for remotely operating the working machine 20, such as operating levers and operating buttons. The cockpit-side communication device 74 can communicate with the work-machine-side communication device 12 of the work machine 20 .
 コクピット71からティーチングを行う際に、コクピット71からの遠隔操作により、作業機械20がティーチングモードに設定される。作業機械20がティーチングモードに設定されると、オペレータは、操作装置73を操作することで、作業機械20を遠隔操作する。作業機械20を遠隔操作する際には、作業機械20のキャブ23内に設けられたカメラが撮影した車窓の風景(窓の外の風景)が、ディスプレイ75に表示される。遠隔操作による操作内容は、記憶装置13に記憶される。その後、コクピット71からの遠隔操作により、作業機械20が自動運転モードに設定される。作業機械20が自動運転モードに設定されると、作業機械20は自動運転を行う。すなわち、作業機械20のコントローラ11は、ティーチングされた作業内容(記憶装置13に記憶された作業内容)に基づいて上部旋回体22およびアタッチメント30の動作を制御して作業機械20の自動運転を行う。 When performing teaching from the cockpit 71, the work machine 20 is set to the teaching mode by remote control from the cockpit 71. When work machine 20 is set to the teaching mode, the operator remotely controls work machine 20 by operating operation device 73 . When operating the work machine 20 remotely, the scenery of the car window (scenery outside the window) photographed by the camera provided in the cab 23 of the work machine 20 is displayed on the display 75 . Operation contents by remote operation are stored in the storage device 13 . After that, the work machine 20 is set to the automatic operation mode by remote control from the cockpit 71 . When the work machine 20 is set to the automatic operation mode, the work machine 20 automatically operates. That is, the controller 11 of the work machine 20 automatically operates the work machine 20 by controlling the operations of the upper revolving body 22 and the attachment 30 based on the taught work content (the work content stored in the storage device 13). .
 本実施形態において、作業機械20が行う自動運転の内容は、バケット33で土砂ピット(図示せず)から土砂を掘削して、その土砂を保持したまま上部旋回体22をダンプカー(図示せず)の方に旋回させ、ダンプカーの荷台(図示せず)に排土した後に、上部旋回体22を土砂ピットの方に旋回させるといった動作を繰り返すものである。 In this embodiment, the content of the automatic operation performed by the work machine 20 is to excavate the earth and sand from the earth and sand pit (not shown) with the bucket 33 and move the upper revolving body 22 to the dump truck (not shown) while holding the earth and sand. After the earth is dumped onto the loading platform (not shown) of the dump truck, the upper rotating body 22 is rotated toward the earth and sand pit.
 自動運転による一連の動作は、複数の動作フェーズを有する。上記のように土砂の掘削から排土までを行う一連の動作において、複数の動作フェーズは、掘削、掬い上げ、持ち上げ旋回、および、排土を含む。コントローラ11(前記コントローラの制御手段)は、上部旋回体22およびアタッチメント30が、複数の動作フェーズを有する一連の動作を行うように、上部旋回体22およびアタッチメント30を制御する。 A series of actions by automated driving has multiple action phases. In the series of operations from excavating earth and sand to discharging earth and sand as described above, a plurality of operation phases include excavating, scooping, lifting and turning, and earth discharging. The controller 11 (control means of the controller) controls the upper slewing body 22 and the attachment 30 so that the upper slewing body 22 and the attachment 30 perform a series of operations having a plurality of operation phases.
 作業機械20において自動運転が行われている際に、コントローラ11(前記コントローラの量検出手段)は、バケット33が保持する土砂の量を検出する。具体的には、コントローラ11は、例えば、LiDAR55が取得した点群データから、バケット33内の土砂の形状を検出する。そして、コントローラ11は、バケット33内の土砂の形状から、バケット33内の土砂の量を算出する。ただし、コントローラ11による土砂の量(作業対象物の量)の検出方法は、上記の具体例に限られない。コントローラ11は、例えば、ブームシリンダ41の圧力を計測する図略の圧力センサによる計測結果を用いてバケット33内の土砂の量を検出してもよい。 When the work machine 20 is automatically operated, the controller 11 (amount detecting means of the controller) detects the amount of earth and sand held by the bucket 33 . Specifically, the controller 11 detects the shape of the earth and sand in the bucket 33 from the point cloud data acquired by the LiDAR 55, for example. The controller 11 then calculates the amount of earth and sand in the bucket 33 from the shape of the earth and sand in the bucket 33 . However, the method by which the controller 11 detects the amount of earth and sand (the amount of work object) is not limited to the above specific example. The controller 11 may detect the amount of earth and sand in the bucket 33 using, for example, the measurement result of a pressure sensor (not shown) that measures the pressure of the boom cylinder 41 .
 また、コントローラ11(前記コントローラの目標量設定手段)は、土砂の量の目標である目標量を設定する。目標量は、ティーチング時に、コクピット71経由で設定される。設定された目標量は、記憶装置13に記憶される。 In addition, the controller 11 (target amount setting means of the controller) sets a target amount, which is a target amount of earth and sand. The target amount is set via the cockpit 71 during teaching. The set target amount is stored in the storage device 13 .
 自動運転中に、コントローラ11(前記コントローラの特定手段)は、バケット33が保持する土砂の量が目標量よりも少ない動作フェーズを、異常フェーズとして特定する。コントローラ11は、動作フェーズの始点においてバケット33が保持する土砂の量、および、動作フェーズの終点においてバケット33が保持する土砂の量の各々が、目標量よりも少ないか否かに基づいて、異常フェーズを特定する。すなわち、コントローラ11は、動作フェーズの始点においてバケット33が保持する土砂の量が目標量よりも少ないか否かを判定し、動作フェーズの終点においてバケット33が保持する土砂の量が目標量よりも少ないか否かを判定し、これらの判定結果に基づいて異常フェーズを特定する。 During automatic operation, the controller 11 (the means for identifying the controller) identifies an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target amount as an abnormal phase. The controller 11 detects an abnormality based on whether each of the amount of earth and sand held by the bucket 33 at the start point of the operation phase and the amount of earth and sand held by the bucket 33 at the end point of the operation phase is less than the target amount. Identify phases. That is, the controller 11 determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the start point of the operation phase, and determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the end point of the operation phase. It is determined whether or not it is small, and an abnormal phase is specified based on these determination results.
 図3および図4は、掘削、掬い上げ、および、持ち上げ旋回の各々の動作フェーズにおいて、バケット33が保持する土砂の量の時間変化を表したものである。図3に示すように、動作フェーズが掘削の場合、掘削の動作フェーズの始点から終点に向かってバケット33が保持する土砂の量が増加する。しかし、図3では、掘削の動作フェーズの終点においてバケット33が保持する土砂の量は、破線で示される目標量よりも少ない。このように、掘削の動作フェーズの始点および終点においてバケット33が保持する土砂の量がそれぞれ目標量よりも少ない場合、掘削動作に問題があると特定することができる。  Figures 3 and 4 show temporal changes in the amount of earth and sand held by the bucket 33 in each of the operation phases of excavation, scooping up, and lifting and turning. As shown in FIG. 3, when the operation phase is excavation, the amount of earth and sand held by the bucket 33 increases from the start point to the end point of the excavation operation phase. However, in FIG. 3, the amount of dirt retained by the bucket 33 at the end of the excavation operating phase is less than the target amount indicated by the dashed line. Thus, if the amount of earth and sand held by the bucket 33 at the start and end points of the operation phase of excavation is less than the target amount, it can be identified that there is a problem with the excavation operation.
 また、図4に示すように、動作フェーズが旋回(持ち上げ旋回)であって、旋回の動作フェーズの途中でバケット33が保持する土砂の量が減った場合、旋回の動作フェーズの始点においてバケット33が保持する土砂の量は破線で示される目標量以上であっても、旋回の動作フェーズの終点においてバケット33が保持する土砂の量は目標量よりも少なくなる。この場合、旋回中に荷こぼれが発生したと特定することができる。 Further, as shown in FIG. 4, when the operation phase is turning (lifting and turning) and the amount of earth and sand held by the bucket 33 decreases during the turning operation phase, the bucket 33 is Even if the amount of earth and sand held by the bucket 33 is equal to or greater than the target amount indicated by the dashed line, the amount of earth and sand held by the bucket 33 at the end point of the swing operation phase becomes less than the target amount. In this case, it can be specified that cargo spillage occurred during turning.
 また、コントローラ11は、動作フェーズの始点においてバケット33が保持する土砂の量、および、動作フェーズの終点においてバケット33が保持する土砂の量だけでなく、始点と終点との間の中間点においてバケット33が保持する土砂の量が目標量よりも少ないか否かを判定してもよい。つまり、コントローラ11は、動作フェーズの始点においてバケット33が保持する土砂の量、動作フェーズの終点においてバケット33が保持する土砂の量、および、始点と終点との間の中間点においてバケット33が保持する土砂の量の各々が、目標量よりも少ないか否かに基づいて、異常フェーズを特定してもよい。すなわち、コントローラ11は、動作フェーズの始点においてバケット33が保持する土砂の量が目標量よりも少ないか否かを判定し、動作フェーズの中間点においてバケット33が保持する土砂の量が目標量よりも少ないか否かを判定し、動作フェーズの終点においてバケット33が保持する土砂の量が目標量よりも少ないか否かを判定し、これらの判定結果に基づいて異常フェーズを特定してもよい。 The controller 11 also controls not only the amount of dirt held by the bucket 33 at the start point of the operation phase and the amount of dirt held by the bucket 33 at the end point of the operation phase, but also the amount of dirt held by the bucket 33 at the intermediate point between the start point and the end point. It may be determined whether the amount of earth and sand held by 33 is less than the target amount. That is, the controller 11 determines the amount of dirt held by the bucket 33 at the start point of the operation phase, the amount of dirt held by the bucket 33 at the end point of the operation phase, and the amount of dirt held by the bucket 33 at the intermediate point between the start point and the end point. An abnormal phase may be identified based on whether each amount of sediment to be measured is less than a target amount. That is, the controller 11 determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the start point of the operation phase, and determines whether the amount of earth and sand held by the bucket 33 is less than the target amount at the midpoint of the operation phase. It may be determined whether the amount of earth and sand held by the bucket 33 at the end point of the operation phase is less than the target amount, and based on these determination results, the abnormal phase may be specified. .
 図5もまた、掘削、掬い上げ、および、持ち上げ旋回の各々の動作フェーズにおいて、バケット33が保持する土砂の量の時間変化を表したものである。動作フェーズが掘削の場合、掘削の動作フェーズの終点においてバケット33が保持する土砂の量が目標量よりも少なければ、掘削動作に問題があると推定される。しかし、掘削の動作フェーズの中間点においてバケット33が保持する土砂の量が目標量よりも少なく、掘削の動作フェーズの中間点と終点とで、バケット33が保持する土砂の量に変化がない場合には、掘削動作に問題があるのではなく、土砂ピットにおいてバケット33が保持しようとする土砂の量が十分でないために、バケット33に十分な量の土砂を保持できなかったことを特定することができる。 FIG. 5 also shows temporal changes in the amount of earth and sand held by the bucket 33 in each of the operation phases of excavation, scooping up, and lifting and turning. If the operation phase is excavation, it is presumed that there is a problem with the excavation operation if the amount of dirt held by the bucket 33 at the end of the operation phase of excavation is less than the target amount. However, when the amount of earth and sand held by the bucket 33 at the midpoint of the excavation operation phase is less than the target amount, and the amount of earth and sand held by the bucket 33 does not change between the midpoint and the end point of the excavation operation phase. to determine that the bucket 33 was not able to hold a sufficient amount of dirt, not because there was a problem with the excavation operation, but because the bucket 33 was not trying to hold enough dirt in the dirt pit. can be done.
 動作フェーズの始点、中間点および終点のそれぞれのタイミングまたは位置は、例えば、ティーチング時に記憶装置13に記憶されていてもよい。この場合、コントローラ11は、記憶された動作フェーズの始点において土砂の量が目標量よりも少ないか否かを判定し、記憶された動作フェーズの中間点において土砂の量が目標量よりも少ないか否かを判定し、記憶された終点において土砂の量が目標量よりも少ないか否かを判定してもよい。また、自動運転中において、オペレータが図略の入力器を用いて、動作フェーズの始点、中間点および終点のそれぞれのタイミングを指定してもよい。この場合、コントローラ11は、指定された動作フェーズの始点において土砂の量が目標量よりも少ないか否かを判定し、指定された動作フェーズの中間点において土砂の量が目標量よりも少ないか否かを判定し、指定された終点において土砂の量が目標量よりも少ないか否かを判定してもよい。ただし、動作フェーズの始点、中間点および終点のそれぞれのタイミングまたは位置は、上記の2つの具体例以外の他の方法により決定されてもよい。 The respective timings or positions of the start point, middle point and end point of the operation phase may be stored in the storage device 13 at the time of teaching, for example. In this case, the controller 11 determines whether the amount of earth and sand is less than the target amount at the start point of the stored operation phase, and determines whether the amount of earth and sand is less than the target amount at the intermediate point of the stored operation phase. It may be determined whether or not the amount of earth and sand at the stored end point is less than the target amount. Also, during automatic operation, the operator may use an input device (not shown) to specify the timing of each of the start point, intermediate point, and end point of the operation phase. In this case, the controller 11 determines whether the amount of earth and sand is less than the target amount at the start point of the designated operation phase, and determines whether the amount of earth and sand is less than the target amount at the middle point of the designated operation phase. It may be determined whether or not the amount of earth and sand is less than the target amount at the specified end point. However, the respective timings or positions of the start point, middle point and end point of the operation phase may be determined by other methods than the above two specific examples.
 以上のように、バケット33が保持する土砂の量が目標量よりも少ない動作フェーズが、異常フェーズとして特定される。よって、バケット33が保持する土砂の量が目標値よりも少ない動作フェーズを、複数の動作フェーズの中から特定することができる。これにより、バケット33が保持する土砂の量が目標値よりも少ない要因を特定することができる。例えば、図4に示すように、旋回中に荷こぼれが発生し、土砂の量が目標量よりも少なくなった場合には、旋回が異常フェーズとして特定される。また、図3に示すように、土砂の掘削量が目標量よりも少ない場合には、掘削が異常フェーズとして特定される。 As described above, an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target amount is identified as an abnormal phase. Therefore, an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target value can be specified from among the plurality of operation phases. This makes it possible to identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value. For example, as shown in FIG. 4, when cargo spillage occurs during turning and the amount of earth and sand becomes less than the target amount, the turning is identified as an abnormal phase. Further, as shown in FIG. 3, when the excavated amount of earth and sand is less than the target amount, excavation is specified as an abnormal phase.
 また、ある動作フェーズの始点においてバケット33が保持する土砂の量、および、この動作フェーズの終点においてバケット33が保持する土砂の量の各々が、目標量よりも少ないか否かに基づいて、異常フェーズが特定される。これにより、バケット33が保持する土砂の量が目標値よりも少ない要因を好適に特定することができる。例えば、ある動作フェーズの始点においてバケット33が保持する土砂の量が目標量以上であって、この動作フェーズの終点においてバケット33が保持する土砂の量が目標量よりも少ない場合、この動作フェーズ中に荷こぼれが発生したと特定することができる。また、動作フェーズが土砂を保持する動作フェーズ(掘削)であって、この動作フェーズの始点および終点においてバケット33が保持する土砂の量がそれぞれ目標量よりも少ない場合、土砂を保持する動作に問題があると特定することができる。 Further, based on whether each of the amount of earth and sand held by the bucket 33 at the start point of a certain operation phase and the amount of earth and sand held by the bucket 33 at the end point of this operation phase is less than the target amount, an abnormal A phase is identified. This makes it possible to preferably identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value. For example, if the amount of earth and sand held by the bucket 33 at the start point of a certain operation phase is equal to or greater than the target amount and the amount of earth and sand held by the bucket 33 at the end point of this operation phase is less than the target amount, during this operation phase It can be identified that a cargo spill occurred in Further, if the operation phase is an operation phase (excavation) for holding earth and sand, and the amounts of earth and sand held by the bucket 33 at the start and end points of this operation phase are each less than the target amount, there is a problem with the operation for holding earth and sand. It can be specified that there is
 また、ある動作フェーズの始点においてバケット33が保持する土砂の量、この動作フェーズの終点においてバケット33が保持する土砂の量、および、この動作フェーズの始点と終点との間の中間点においてバケット33が保持する土砂の量の各々が、目標量よりも少ないか否かに基づいて、異常フェーズが特定されてもよい。これにより、バケット33が保持する土砂の量が目標値よりも少ない要因を詳しく特定することができる。例えば、図5に示すように、土砂ピットにおいてバケット33が保持しようとする土砂の量が十分でないために、バケット33に十分な量の土砂を保持できなかったことを特定することができる。 Also, the amount of dirt held by the bucket 33 at the start of an operation phase, the amount of dirt held by the bucket 33 at the end of this operation phase, and the amount of dirt held by the bucket 33 at the midpoint between the start and end of this operation phase An abnormal phase may be identified based on whether each of the amounts of sediment held by is less than a target amount. This makes it possible to specify in detail the factors that cause the amount of earth and sand held by the bucket 33 to be less than the target value. For example, as shown in FIG. 5, it is possible to specify that the bucket 33 could not hold a sufficient amount of earth and sand because the amount of earth and sand that the bucket 33 is trying to hold in the earth and sand pit is not sufficient.
 図2に戻って、異常フェーズの情報は、記憶装置13に記憶され、作業機械20の識別番号とともにコクピット71に送信される。コクピット側コントローラ72(前記コントローラの報知手段)は、異常フェーズを報知する。具体的には、コクピット側コントローラ72は、ディスプレイ75に異常フェーズの情報を作業機械20の識別番号とともに表示させる。これにより、オペレータは、該当する作業機械20において、バケット33が保持する土砂の量が目標値よりも少ない要因を認識することができる。これにより、オペレータは、作業機械20に対して再度ティーチングを行うなどして、バケット33が保持する土砂の量が目標値以上となるように、上部旋回体22およびアタッチメント30の動作を修正することができる。 Returning to FIG. 2, information on the abnormal phase is stored in the storage device 13 and sent to the cockpit 71 together with the identification number of the work machine 20. The cockpit-side controller 72 (notifying means of the controller) notifies the abnormal phase. Specifically, cockpit-side controller 72 causes display 75 to display information on the abnormal phase together with the identification number of work machine 20 . This allows the operator to recognize the factor that causes the amount of earth and sand held by the bucket 33 of the relevant work machine 20 to be less than the target value. Accordingly, the operator can teach the work machine 20 again to correct the operations of the upper rotating body 22 and the attachment 30 so that the amount of earth and sand held by the bucket 33 is equal to or greater than the target value. can be done.
 ここで、作業機械20が自動運転を行っている間、コクピット71における種々の機器を操作するオペレータは、他の作業機械をティーチングしたり、他の作業機械を遠隔操作したりしている。そのため、異常フェーズが特定される毎に異常フェーズが報知されていたのでは、オペレータは他の作業に集中することができない。 Here, while the work machine 20 is automatically operating, the operator who operates various devices in the cockpit 71 is teaching other work machines or remotely controlling other work machines. Therefore, if an abnormal phase is notified each time an abnormal phase is specified, the operator cannot concentrate on other work.
 そこで、所定期間が経過する間中、コントローラ11によって特定された異常フェーズが記憶装置13に記憶される。ここで、所定期間は、一連の動作が1回行われるよりも長い期間である。そして、所定期間が経過すると、記憶装置13に記憶されていた異常フェーズの情報が、コクピット71に送信され、コクピット側コントローラ72により報知される。これにより、異常フェーズが特定される毎に異常フェーズが報知される場合に比べて、報知の頻度を低減させることができる。報知の頻度を低減させることで、オペレータは他の作業に集中することができるので、オペレータの能率の低下を抑制することができる。 Therefore, the abnormal phase identified by the controller 11 is stored in the storage device 13 while the predetermined period has elapsed. Here, the predetermined period is a period longer than the series of operations is performed once. Then, after a predetermined period of time has elapsed, the abnormal phase information stored in the storage device 13 is transmitted to the cockpit 71 and notified by the cockpit controller 72 . As a result, the frequency of notification can be reduced compared to the case where the abnormal phase is notified each time the abnormal phase is identified. By reducing the frequency of notification, the operator can concentrate on other work, thereby suppressing a decrease in the efficiency of the operator.
 なお、コクピット71における機器を操作するオペレータによって特定の操作が行われるまで、コントローラ11によって特定された異常フェーズが記憶装置13に記憶され続け、オペレータが特定の操作を行うと、記憶装置13に記憶されていたすべての異常フェーズの情報が報知されてもよい。これによれば、オペレータの所望のタイミングで報知を行わせることができる。 Note that the abnormal phase specified by the controller 11 continues to be stored in the storage device 13 until the operator who operates the equipment in the cockpit 71 performs a specific operation. Information of all abnormal phases that have been reported may be reported. According to this, it is possible to make the notification at the operator's desired timing.
 (効果)
 以上に述べたように、本実施形態に係る作業機械20によれば、上部旋回体22およびアタッチメント30が、複数の動作フェーズを有する一連の動作を行うように、上部旋回体22およびアタッチメント30が制御される。そして、バケット33が保持する土砂の量が目標量よりも少ない動作フェーズが、異常フェーズとして特定される。よって、バケット33が保持する土砂の量が目標値よりも少ない動作フェーズを、複数の動作フェーズの中から特定することができる。これにより、バケット33が保持する土砂の量が目標値よりも少ない要因を特定することができる。例えば、掘削、掬い上げ、持ち上げ旋回、排土を有する一連の動作において、旋回中に荷こぼれが発生し、土砂の量が目標量よりも少なくなった場合には、旋回が異常フェーズとして特定される。また、土砂の掘削量が目標量よりも少ない場合には、掘削が異常フェーズとして特定される。
(effect)
As described above, according to the work machine 20 according to the present embodiment, the upper revolving body 22 and the attachment 30 are arranged such that the upper revolving body 22 and the attachment 30 perform a series of operations having a plurality of operation phases. controlled. An operation phase in which the amount of earth and sand held by the bucket 33 is less than the target amount is specified as an abnormal phase. Therefore, an operation phase in which the amount of earth and sand held by the bucket 33 is less than the target value can be specified from among the plurality of operation phases. This makes it possible to identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value. For example, in a series of operations including excavation, scooping, lifting and turning, and dumping, if a spill occurs during turning and the amount of earth and sand becomes less than the target amount, the turning is identified as an abnormal phase. be. Also, when the excavated amount of earth and sand is less than the target amount, excavation is specified as an abnormal phase.
 また、ある動作フェーズの始点においてバケット33が保持する土砂の量、および、この動作フェーズの終点においてバケット33が保持する土砂の量の各々が、目標量よりも少ないか否かに基づいて、異常フェーズが特定される。これにより、バケット33が保持する土砂の量が目標値よりも少ない要因を好適に特定することができる。例えば、ある動作フェーズの始点においてバケット33が保持する土砂の量が目標量以上であって、この動作フェーズの終点においてバケット33が保持する土砂の量が目標量よりも少ない場合、この動作フェーズ中に荷こぼれが発生したと特定することができる。また、動作フェーズが土砂を保持する動作フェーズであって、この動作フェーズの始点および終点においてバケット33が保持する土砂の量がそれぞれ目標量よりも少ない場合、土砂を保持する動作に問題があると特定することができる。 Further, based on whether each of the amount of earth and sand held by the bucket 33 at the start point of a certain operation phase and the amount of earth and sand held by the bucket 33 at the end point of this operation phase is less than the target amount, an abnormal A phase is identified. This makes it possible to preferably identify the factor that causes the amount of earth and sand held by the bucket 33 to be less than the target value. For example, if the amount of earth and sand held by the bucket 33 at the start point of a certain operation phase is equal to or greater than the target amount and the amount of earth and sand held by the bucket 33 at the end point of this operation phase is less than the target amount, during this operation phase It can be identified that a cargo spill occurred in Further, if the operation phase is an operation phase for holding earth and sand, and the amount of earth and sand held by the bucket 33 at the start point and the end point of this operation phase is less than the target amount, respectively, it is determined that there is a problem with the operation for holding earth and sand. can be specified.
 また、ある動作フェーズの始点においてバケット33が保持する土砂の量、この動作フェーズの終点においてバケット33が保持する土砂の量、および、この動作フェーズの始点と終点との間の中間点においてバケット33が保持する土砂の量の各々が、目標量よりも少ないか否かに基づいて、異常フェーズが特定される。これにより、バケット33が保持する土砂の量が目標値よりも少ない要因を詳しく特定することができる。例えば、動作フェーズが土砂を保持する動作フェーズであって、この動作フェーズの始点から中間点にかけて、バケット33が保持する土砂の量が増加したが、この動作フェーズの中間点においてバケット33が保持する土砂の量が目標量よりも少なく、この動作フェーズの中間点と終点とで、バケット33が保持する土砂の量に変化がない場合には、バケット33が保持しようとする土砂の量が十分でないために、バケット33に十分な量の土砂を保持できなかったことを特定することができる。 Also, the amount of dirt held by the bucket 33 at the start of an operation phase, the amount of dirt held by the bucket 33 at the end of this operation phase, and the amount of dirt held by the bucket 33 at the midpoint between the start and end of this operation phase An abnormal phase is identified based on whether each amount of earth and sand held by is less than the target amount. This makes it possible to specify in detail the factors that cause the amount of earth and sand held by the bucket 33 to be less than the target value. For example, the operation phase is an operation phase that holds earth and sand, and the amount of earth and sand held by the bucket 33 increases from the start point to the middle point of this operation phase. If the amount of earth and sand is less than the target amount and there is no change in the amount of earth and sand held by the bucket 33 between the middle point and the end point of this operation phase, the amount of earth and sand that the bucket 33 is trying to hold is not sufficient. Therefore, it can be determined that the bucket 33 could not hold a sufficient amount of earth and sand.
 また、異常フェーズが報知される。これにより、オペレータは、バケット33が保持する土砂の量が目標値よりも少ない要因を認識することができる。よって、バケット33が保持する土砂の量が目標値以上となるように、上部旋回体22やアタッチメント30の動作を修正するなどすることができる。 Also, the abnormal phase is notified. Thereby, the operator can recognize the factor that the amount of earth and sand held by the bucket 33 is less than the target value. Therefore, it is possible to modify the operations of the upper rotating body 22 and the attachment 30 so that the amount of earth and sand held by the bucket 33 is equal to or greater than the target value.
 また、一連の動作が1回行われるよりも長い期間である所定期間が経過したときに、記憶装置13が記憶する異常フェーズが報知される。これにより、異常フェーズが特定される毎に異常フェーズが報知される場合に比べて、報知の頻度を低減させることができる。オペレータは、作業機械20が自動運転されている間、他の作業を行っている場合が多い。報知の頻度を低減させることで、オペレータは他の作業に集中することができるので、オペレータの能率の低下を抑制することができる。 Also, when a predetermined period of time, which is longer than a series of operations is performed once, has passed, the abnormal phase stored in the storage device 13 is notified. As a result, the frequency of notification can be reduced compared to the case where the abnormal phase is notified each time the abnormal phase is identified. The operator often performs other work while the work machine 20 is being automatically operated. By reducing the frequency of notification, the operator can concentrate on other work, thereby suppressing a decrease in the efficiency of the operator.
 以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。 Although the embodiment of the present invention has been described above, it is merely a specific example and does not particularly limit the present invention, and the specific configuration and the like can be appropriately modified in design. Further, the actions and effects described in the embodiments of the invention are merely enumerations of the most suitable actions and effects resulting from the present invention, and the actions and effects of the present invention are described in the embodiments of the invention. are not limited to those listed.
 前記実施形態では、作業機械システムは作業機械20とコクピット71とを備えるが、コクピット71は、作業機械システムにおいて必須の構成ではなく省略されてもよい。具体的には、前記実施形態では、コクピット側コントローラ72は、コクピット71のディスプレイ75に異常フェーズの情報を表示させることで、オペレータに異常フェーズを報知するが、作業機械システムのコントローラがコクピット71以外の機械又は機器においてオペレータに異常フェーズを報知する場合には、作業機械システムは、コクピットを備えていなくてもよい。コクピット71以外の機械としては例えば作業機械を例示でき、コクピット71以外の機器としては例えばパーソナルコンピューター、サーバー、携帯情報端末などの情報機器を例示できる。また、前記実施形態では、作業機械20は当該作業機械20から離れた場所に設置されたコクピット71から、オペレータにより作業内容(動作)が遠隔でティーチングされるが、例えば、オペレータが作業機械20のキャブ23内の運転席においてキャブ23内の操作装置を操作することで作業機械20に対して作業内容をティーチングしてもよい。この場合、作業機械システムは、コクピット71を備えていなくてもよい。 In the above embodiment, the work machine system includes the work machine 20 and the cockpit 71, but the cockpit 71 is not an essential component in the work machine system and may be omitted. Specifically, in the above-described embodiment, the cockpit-side controller 72 notifies the operator of the abnormal phase by causing the display 75 of the cockpit 71 to display information on the abnormal phase. The work machine system does not have to be equipped with a cockpit when notifying the operator of the abnormal phase in the machine or equipment. Examples of machines other than the cockpit 71 include working machines, and examples of devices other than the cockpit 71 include information devices such as personal computers, servers, and personal digital assistants. In the above-described embodiment, the operator remotely teaches the operation (operation) of the work machine 20 from the cockpit 71 installed at a location away from the work machine 20. By operating the operation device in the cab 23 from the driver's seat in the cab 23 , the work content may be taught to the work machine 20 . In this case, the work machine system does not have to include the cockpit 71 .
 前記実施形態では、制御手段、量検出手段、目標量設定手段、及び特定手段は、作業機械側コントローラ11に含まれるが、制御手段、量検出手段、目標量設定手段及び特定手段の一部又は全部は、コクピット側コントローラ72に含まれていてもよい。また、前記実施形態では、報知手段は、コクピット側コントローラ72に含まれるが、作業機械側コントローラ11に含まれていてもよい。また、作業機械側コントローラ11とコクピット側コントローラ72は、一つのコントローラにより構成されていてもよく、この場合、作業機械20が前記一つのコントローラを備えていてもよく、コクピット71が前記一つのコントローラを備えていてもよい。 In the above embodiment, the control means, the amount detection means, the target amount setting means, and the specifying means are included in the working machine controller 11. All may be included in the cockpit side controller 72 . Further, in the above embodiment, the notification means is included in the cockpit controller 72, but may be included in the work machine controller 11. FIG. Moreover, the working machine side controller 11 and the cockpit side controller 72 may be configured by one controller. In this case, the working machine 20 may include the one controller, and the cockpit 71 may be the one controller. may be provided.

Claims (5)

  1.  下部走行体と、
     前記下部走行体の上部に旋回可能に取り付けられた上部旋回体と、
     作業対象物を保持可能な先端アタッチメントを有し、前記上部旋回体に回動可能に取り付けられたアタッチメントと、
     コントローラと、を備え、
     前記コントローラは、
     前記上部旋回体および前記アタッチメントが、複数の動作フェーズを有する一連の動作を行うように、前記上部旋回体および前記アタッチメントを制御し、
     前記先端アタッチメントが保持する前記作業対象物の量を検出し、
     前記作業対象物の量の目標である目標量を設定し、
     前記先端アタッチメントが保持する前記作業対象物の量が前記目標量よりも少ない前記動作フェーズを、異常フェーズとして特定する、作業機械システム。
    a lower running body;
    an upper revolving body rotatably attached to the upper part of the lower running body;
    an attachment having a tip attachment capable of holding a work object and rotatably attached to the upper revolving body;
    a controller;
    The controller is
    controlling the upper rotating body and the attachment so that the upper rotating body and the attachment perform a series of operations having a plurality of operation phases;
    detecting the amount of the work object held by the tip attachment;
    setting a target amount, which is a target amount of the work object;
    A working machine system, wherein the operation phase in which the amount of the work object held by the tip attachment is smaller than the target amount is specified as an abnormal phase.
  2.  前記コントローラは、前記動作フェーズの始点において前記先端アタッチメントが保持する前記作業対象物の量、および、前記動作フェーズの終点において前記先端アタッチメントが保持する前記作業対象物の量の各々が、前記目標量よりも少ないか否かに基づいて、前記異常フェーズを特定する、請求項1に記載の作業機械システム。 The controller controls that each of the amount of the work object held by the tip attachment at the start point of the operation phase and the amount of the work object held by the tip attachment at the end point of the operation phase is equal to the target amount 2. The work machine system of claim 1, wherein the abnormal phase is identified based on whether it is less than.
  3.  前記コントローラは、さらに、前記始点と前記終点との間の中間点において前記先端アタッチメントが保持する前記作業対象物の量が、前記目標量よりも少ないか否かに基づいて、前記異常フェーズを特定する、請求項2に記載の作業機械システム。 The controller further identifies the abnormal phase based on whether the amount of the work object held by the tip attachment at an intermediate point between the start point and the end point is smaller than the target amount. The work machine system of claim 2, wherein:
  4.  前記コントローラは、前記異常フェーズを報知する、請求項1~3のいずれか1項に記載の作業機械システム。 The work machine system according to any one of claims 1 to 3, wherein said controller notifies said abnormal phase.
  5.  前記一連の動作が1回行われるよりも長い期間である所定期間が経過する間中、前記コントローラによって特定された前記異常フェーズを記憶する記憶装置をさらに備え、
     前記コントローラは、前記所定期間が経過したときに、前記記憶装置が記憶する前記異常フェーズを報知する、請求項4に記載の作業機械システム。
    Further comprising a storage device that stores the abnormal phase identified by the controller during a predetermined period of time that is longer than the series of operations is performed once,
    5. The work machine system according to claim 4, wherein said controller notifies said abnormal phase stored in said storage device when said predetermined period of time has elapsed.
PCT/JP2022/023601 2021-07-09 2022-06-13 Work machine system WO2023281988A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22837406.2A EP4345218A1 (en) 2021-07-09 2022-06-13 Work machine system
CN202280044955.XA CN117561358A (en) 2021-07-09 2022-06-13 Engineering machinery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021113918A JP2023010087A (en) 2021-07-09 2021-07-09 Work machine
JP2021-113918 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023281988A1 true WO2023281988A1 (en) 2023-01-12

Family

ID=84800564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023601 WO2023281988A1 (en) 2021-07-09 2022-06-13 Work machine system

Country Status (4)

Country Link
EP (1) EP4345218A1 (en)
JP (1) JP2023010087A (en)
CN (1) CN117561358A (en)
WO (1) WO2023281988A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033829A1 (en) * 2001-10-18 2003-04-24 Hitachi Construction Machinery Co., Ltd. Hydraulic shovel work amount detection apparatus, work amount detection method, work amount detection result display apparatus
US20140371994A1 (en) * 2013-06-18 2014-12-18 Caterpillar Inc. System and method for dig detection
JP2019157362A (en) 2018-03-07 2019-09-19 日立建機株式会社 Working machine
WO2020203851A1 (en) * 2019-03-29 2020-10-08 住友重機械工業株式会社 Shovel
JP2021056130A (en) * 2019-09-30 2021-04-08 コベルコ建機株式会社 Work machine
JP2021088815A (en) * 2019-12-02 2021-06-10 株式会社小松製作所 Work machine and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033829A1 (en) * 2001-10-18 2003-04-24 Hitachi Construction Machinery Co., Ltd. Hydraulic shovel work amount detection apparatus, work amount detection method, work amount detection result display apparatus
US20140371994A1 (en) * 2013-06-18 2014-12-18 Caterpillar Inc. System and method for dig detection
JP2019157362A (en) 2018-03-07 2019-09-19 日立建機株式会社 Working machine
WO2020203851A1 (en) * 2019-03-29 2020-10-08 住友重機械工業株式会社 Shovel
JP2021056130A (en) * 2019-09-30 2021-04-08 コベルコ建機株式会社 Work machine
JP2021088815A (en) * 2019-12-02 2021-06-10 株式会社小松製作所 Work machine and control method thereof

Also Published As

Publication number Publication date
CN117561358A (en) 2024-02-13
JP2023010087A (en) 2023-01-20
EP4345218A1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
JP6716358B2 (en) Work vehicle, work management system, and work vehicle control method
CN112639210B (en) Control device and control method for loading machine
CN110392756A (en) Work machine
CN107806123B (en) System and method for semi-automatic control of industrial machines
JP6986853B2 (en) Work machine and control method of work machine
US9297145B2 (en) Excavation system providing linkage placement training
CN112424430A (en) Control device, loading machine, and control method
WO2021059730A1 (en) Operation instruction system
WO2023281988A1 (en) Work machine system
JP7360568B2 (en) working machine
JP2023070617A (en) Control system
CN116249813A (en) Work area setting system and operation target detection system
WO2023074176A1 (en) Work machine
WO2023089961A1 (en) Work machine
US20240183123A1 (en) Work machine
WO2023085005A1 (en) Management system
WO2024075639A1 (en) Work machine
WO2023074175A1 (en) Work machine
WO2023106265A1 (en) Work machine
JP2023065962A (en) Work machine
JP2023071147A (en) Control system
JP2023074040A (en) Monitoring area setting system
JP2023066361A (en) Work machine
JP2019060122A (en) Operation supporting device of revolving superstructure
CN118215949A (en) Management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18572517

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280044955.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022837406

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022837406

Country of ref document: EP

Effective date: 20231227

NENP Non-entry into the national phase

Ref country code: DE