WO2013080518A1 - フェライト系ステンレス鋼 - Google Patents

フェライト系ステンレス鋼 Download PDF

Info

Publication number
WO2013080518A1
WO2013080518A1 PCT/JP2012/007593 JP2012007593W WO2013080518A1 WO 2013080518 A1 WO2013080518 A1 WO 2013080518A1 JP 2012007593 W JP2012007593 W JP 2012007593W WO 2013080518 A1 WO2013080518 A1 WO 2013080518A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
corrosion resistance
steel
stainless steel
rolled
Prior art date
Application number
PCT/JP2012/007593
Other languages
English (en)
French (fr)
Inventor
福田 國夫
孝 寒川
太田 裕樹
知洋 石井
尾形 浩行
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147017639A priority Critical patent/KR20140117370A/ko
Priority to ES12852604.3T priority patent/ES2602800T3/es
Priority to EP12852604.3A priority patent/EP2787096B1/en
Priority to IN959KON2014 priority patent/IN2014KN00959A/en
Priority to JP2013546991A priority patent/JP5713118B2/ja
Priority to US14/359,782 priority patent/US20140294661A1/en
Priority to CN201280059270.9A priority patent/CN103975086B/zh
Publication of WO2013080518A1 publication Critical patent/WO2013080518A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel (ferritic stainless steel) which is excellent in corrosion resistance (corrosion) resistance) of the welded portion with austenitic stainless steel (austenitic stainless steel) and excellent in surface properties (surface quality) among corrosion resistances. Is.
  • austenitic stainless steel SUS304 (18% Cr-8% Ni) (Japanese Industrial Standard, JIS G 4305) is widely used due to its excellent corrosion resistance.
  • this steel type is expensive because it contains a large amount of Ni.
  • stainless steel described in Patent Document 1 has been developed as a steel type having excellent corrosion resistance equivalent to SUS304.
  • Patent Document 1 as component composition, C: 0.03% or less, Si: 1.0% or less, Mn: 0.5% or less, P: 0.04% or less, S: 0.02% or less, Al: 0.1% or less, Cr: 20.5% or more, 22.5% or less, Cu: 0.3% or more, 0.8% or less, Ni: 1.0% or less, Ti: 4 ⁇ (C % + N%) or more, 0.35% or less, Nb: 0.01% or less, N: 0.03% or less, C + N: 0.05% or less, the balance being Fe and inevitable impurities
  • a stainless steel sheet is disclosed.
  • ferritic stainless steels such as JIS-SUS444 and JIS-SUS430J1L are also less sensitive to stress corrosion cracking (Stress Corrosion Cracking) than austenitic stainless steel, and do not contain Ni, which has a large price fluctuation. It is widely used as a material for automobile exhaust system members, water tanks, and construction materials.
  • austenitic stainless steel is used for difficult-to-work parts that cannot be molded with ferritic stainless steel.
  • a welding method TIG welding (Tungsten Inert Gas welding) is mainly used, and good corrosion resistance is required for the welded portion as well as the base material. It is done.
  • the ferritic stainless steel disclosed in Patent Document 1 has good corrosion resistance in welded parts of the same steel type.
  • the corrosion resistance of the welded part may be lower than that of the base material.
  • the corrosion resistance of the welded portion is determined by the thermal history during welding, in which C and N in the steel are combined with Cr to form Cr carbide (Cr 23 C 6, for example), or Cr nitride (Cr- (precipitates at the grain boundaries) as nitrides) (CrN 2 etc.), resulting in a so-called sharpness caused by a Cr depletion layer having a lower Cr concentration than the base material at the grain boundaries. This is due to sensitization and deterioration of its corrosion resistance.
  • Ti and N in the molten steel may react during solidification to precipitate as TiN.
  • This TiN is poor in ductility at high temperature, and becomes a surface flaw in the hot rolling process and deteriorates the surface properties.
  • the scratches generated in this way are deep and will not disappear even after hot-rolled sheet annealing (acidal pickling), subsequent cold rolling, cold-rolled sheet annealing, pickling, etc.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a ferritic stainless steel which is excellent in corrosion resistance of a welded portion and excellent in surface properties even when welded to austenitic stainless steel.
  • the present inventors have developed the corrosion resistance of the base metal part and the welded part and the surface defects of the steel sheet (scab, pin hole, pin scab, linear scab, Through careful investigation and examination of the influence of the chemical composition of steel on the occurrence of titanium stringer shape anomalies and white stripe pattern color defects, the following findings were obtained. (1) By optimizing the concentration of the ferrite phase promoting element, the so-called ferrite former element, the structure of the welded portion between the austenitic stainless steel and the ferritic stainless steel is reduced to the C and N solid solubility limit. It should be possible to prevent sensitization to some extent by using a large martensite phase.
  • the ferritic stainless steel having excellent corrosion resistance and surface properties of the welded portion according to the above [1], further comprising Al: 0.01% to 0.5% by mass.
  • the ferrite having excellent corrosion resistance and surface properties of the welded portion according to the above [1] or [2], further comprising Sb: 0.05% to 0.30% by mass% Stainless steel.
  • the ferritic stainless steel of the present invention is suitable for kitchen equipment, building interior materials, industrial machinery, automobile parts and the like because it is excellent in corrosion resistance and surface properties of the welded portion even when welded with austenitic stainless steel.
  • C 0.003-0.012%
  • C is easy to combine with Cr to form Cr carbide, and when Cr carbide is formed in the heat-affected zone during welding, it causes intergranular corrosion. Therefore, C is preferably as low as possible. Therefore, C is set to 0.012% or less. On the other hand, even if it is too low, a great amount of time is required for refining, so the C content is in the range of 0.003 to 0.012%. Preferably, it is in the range of 0.003 to 0.010%.
  • Si 0.30 to 0.60% Si is an important element in the present invention.
  • Si the solubility product of Ti and N in the molten steel is lowered, and precipitation of the Ti nitrocarbon compound is promoted at a high temperature before columnar crystals are formed.
  • N in the molten steel is lowered, and TiN is less likely to precipitate at the columnar grain boundaries during the subsequent columnar crystal growth.
  • Si by adding 0.30% or more of Si, it is possible to suppress the precipitation of TiN on the columnar crystal grain boundaries that cause titanium stringer defects.
  • the Si amount is in the range of 0.30 to 0.60%. Preferably it is 0.40 to 0.50% of range.
  • Mn 0.10 to 0.35% Since Mn has a deoxidizing action, 0.10% or more is added. Further, since it is an austenite phase promoting element (austenite former element), it promotes the formation of a martensite phase in a welded portion (hereinafter referred to as a different steel type welded portion) with austenitic stainless steel. However, it combines with S present in the steel excessively to form MnS, which is a soluble sulfide, and lowers the corrosion resistance. Therefore, the Mn content is in the range of 0.10 to 0.35%. Preferably it is 0.10 to 0.25% of range.
  • P 0.040% or less
  • P is an element harmful to corrosion resistance. Furthermore, it is an element that reduces hot workability. In particular, these tendencies become prominent when it exceeds 0.040%. For this reason, the amount of P is made into 0.040% or less. Preferably it is 0.030% or less.
  • S 0.020% or less S is an element harmful to corrosion resistance.
  • MnS MnS is formed, which becomes a starting point of pitting corrosion and deteriorates corrosion resistance. Such an effect becomes remarkable when it exceeds 0.020%.
  • the amount of S is made into 0.020% or less.
  • it is 0.010% or less. More preferably, it is 0.006% or less.
  • Cr 17.0 to 19.0% Cr is an element indispensable for forming a passive film on the surface of stainless steel and increasing the corrosion resistance of the base material. In order to obtain good corrosion resistance, addition of 17.0% or more is necessary, but addition exceeding 19.0% prevents martensite from being formed in a dissimilar steel type weld with SUS304 and prevents deterioration of corrosion resistance. Disappear. For this reason, the Cr content is in the range of 17.0 to 19.0%. Preferably it is 17.5 to 18.5% of range.
  • Ni Over 0.10% to 0.30% Ni is an element that contributes to improvement of crevice corrosion resistance. Furthermore, since it is an austenite phase promoting element (austenite former element) like Mn, it promotes the formation of the martensite phase in the welded zone of different steel types. However, when added over 0.30%, SCC sensitivity increases. It is also an expensive element. For this reason, the Ni content is in the range of more than 0.10% to 0.30%. Preferably it is 0.20 to 0.30% of range.
  • Nb 0.005% to less than 0.050%
  • a small amount of Nb is also an important factor in the present invention.
  • Nb preferentially forms carbonitride over Cr and Ti.
  • Nb begins to form carbonitride at a temperature higher than that of Ti in a weld metal and a heat affected zone of a different steel type weld. The reason is not clear, but Ti generates this small amount of Nb carbonitride as a nucleation site in the subsequent cooling process. That is, the formation of Ti carbonitride is promoted by adding a small amount of Nb. Therefore, compared with the case where Nb is not included, the ability to fix C and N by the molten pool of the different steel type welded portion and Ti of the heat affected zone is increased.
  • the Nb amount is set to 0.005% or more.
  • the recrystallization temperature of the cold-rolled sheet is increased, and in order to obtain good mechanical properties, annealing must be performed at a higher temperature than when Nb is not added. You won't get. Therefore, it grows thicker than in the case where the oxide film produced during annealing is not added. For this reason, the pickling property of the cold-rolled sheet in the high-speed pickling method used in the carbon steel manufacturing facility described above is deteriorated and the productivity is lowered. Therefore, the Nb content is set to a range of 0.005 to less than 0.050%. Preferably it is 0.01% or more and less than 0.050% of range.
  • Ti 0.10 to 0.40% Ti must be added in an amount of 0.10% or more in order to ensure the corrosion resistance of a welded part of a different steel type with austenitic stainless steel (to prevent sensitization). However, if added over 0.40%, TiN is formed at the columnar grain boundaries, the titanium stringer defects become stronger, and the surface of the hot rolled annealed pickled plate must be ground with a grinder to obtain good surface quality. I will have to. For this reason, the Ti amount is set to a range of 0.10 to 0.40%. Preferably it is 0.20 to 0.40% of range.
  • Mo 0.20% or less
  • Mo is an element that strengthens the passivation film and significantly improves the corrosion resistance, and the effect is obtained by adding 0.01% or more.
  • Mo is a ferrite phase promoting element, a so-called ferrite former element, and if added over 0.20%, the welded zone of the different steel type with the austenitic stainless steel does not become martensite, and the solid solution amount of C and N Therefore, it becomes impossible to prevent sensitization. Therefore, Mo is 0.20% or less.
  • Mo since Mo also reduces the toughness of a hot-rolled sheet, it is preferably 0.10% or less.
  • N 0.005 to 0.015%
  • N is likely to combine with Cr to form Cr nitride.
  • Cr nitride When Cr nitride is formed in the welded zone and the heat-affected zone during welding, it causes grain boundary corrosion, so N is preferably as low as possible.
  • the N content is in the range of 0.005 to 0.015%.
  • the content is 0.005 to 0.012%.
  • Cu 0.3% to 0.5%
  • Cu is an element that enhances corrosion resistance, particularly corrosion resistance when an aqueous solution or weakly acidic water droplets adhere. This is presumed that Cu dissolves at a certain electrochemical potential in an aqueous solution or weakly acidic water droplets, and Cu reattaches to the base iron to suppress dissolution resistance.
  • the Cu amount is set in the range of 0.3 to 0.5%. Preferably it is 0.3 to 0.4% of range.
  • Mg Less than 0.0005% Mg is an impurity mainly mixed from bricks in the converter. Mg becomes the starting point of a wide variety of inclusions, and even if the amount is mixed, it becomes a nucleation site for other inclusions, and it is difficult to re-dissolve even if annealing is performed, hot-rolled annealing pickling plate, cold-rolling annealing pickling Deteriorates the surface properties of the plate. Therefore, the Mg content is less than 0.0005%. Preferably it is less than 0.0003%.
  • the above are the basic chemical components of the present invention, and the balance consists of Fe and inevitable impurities.
  • Al and Sb may be added as selective elements.
  • Zr and V may be added as selective elements for the purpose of improving the corrosion resistance of the different steel type welds.
  • Ca 0.0020% or less is acceptable.
  • Al 0.01 to 0.5% Al needs to be added when the gas shield for TIG welding is insufficient.
  • TIG welding welding is generally performed by shielding the rear surface and the front surface with gas.
  • the shield is not sufficient, and N in the atmosphere is mixed into the molten pool, exceeding the solid solution limit of martensite. May not be able to be prevented.
  • it is effective to add Al in advance to prevent sensitization. This is because the added Al reacts with N to produce AlN and captures N mixed in the molten pool. This effect can be obtained by adding 0.01% or more.
  • the content is preferably in the range of 0.01 to 0.5%. More preferably, it is in the range of 0.1 to 0.5%. More preferably, it is in the range of 0.15 to 0.25%.
  • Sb 0.05 to 0.30% Sb, like Al, has an effect of capturing N mixed in from the atmosphere when the gas shield for TIG welding is insufficient, and is an element that should be added in the case of a structure having a complicated shape.
  • the Sb content is preferably in the range of 0.05 to 0.30%. More preferably, it is in the range of 0.05 to 0.15%.
  • Zr 0.01 to 0.60%
  • Zr forms carbonitride preferentially over Cr like Ti and improves corrosion resistance in welds of the same steel type and different steel types, and is an element to be added in consideration of the corrosion resistance of welds.
  • Zr is considerably more expensive than Ti, and if added too much, an intermetallic compound is produced, and the toughness of the hot-rolled sheet deteriorates. Therefore, when Zr is added, the Zr content is preferably in the range of 0.01 to 0.60%. More preferably, it is in the range of 0.1 to 0.35%.
  • V 0.01 to 0.50%
  • V forms carbonitride preferentially over Cr and improves the corrosion resistance of welds of the same steel type and different steel types.
  • the effect can be obtained by adding 0.01% or more. However, adding over 0.50% degrades the mechanical properties. Therefore, when V is added, the content is preferably in the range of 0.01% to 0.50%. More preferably, it is in the range of 0.02 to 0.05%.
  • a preferred method for producing the steel of the present invention will be described.
  • the steel having the above component composition is melted by a known method such as a converter, electric furnace, vacuum melting furnace or the like, and is made into a steel material (slab) by a continuous casting method or an ingot-bundling method.
  • the steel material is then heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled to form a hot-rolled sheet without heating.
  • the hot-rolled sheet is usually subjected to hot-rolled sheet annealing at 800 to 1100 ° C. for 1 to 10 minutes. However, depending on the application, the hot-rolled sheet annealing may be omitted.
  • the hot-rolled sheet after pickling the hot-rolled sheet, it is cold-rolled by cold rolling, and then recrystallized and annealed to obtain a product.
  • a reduction rate in thickness of cold rolling can be achieved at a reduction rate of 50% or more in order to obtain good elongation, bendability and press formability, and for the purpose of shape correction. desirable.
  • the recrystallization annealing of the cold-rolled sheet is preferably performed at 800 to 950 ° C. from the viewpoint of obtaining good mechanical properties and pickling properties in the case of the 2B product.
  • the annealing temperature at this time is 800 Most preferably, it is carried out at ⁇ 900 ° C. Further, it is effective to perform BA annealing (Bright Annealing) for finishing the member where the luster is desired. Further, as described above, it is disadvantageous in terms of cost to further improve the surface properties after cold rolling and after processing, but there is no problem even if polishing is performed.
  • Welding voltage 10V
  • Welding current 90-110A
  • Welding speed 600 mm / min
  • Electrode 1.6 mm tungsten electrode
  • Shielding gas Front bead side Ar 20 L / min
  • Welding speed 600 mm / min
  • Electrode 1.6 mm tungsten electrode
  • Shielding gas Front bead side Ar 20 L / min
  • Welding speed 600 mm / min
  • Electrode 1.6 mm tungsten electrode
  • Shielding gas Front bead side Ar 20 L / min
  • the same specimen was subjected to a corrosion resistance test for a welded portion of a different steel type with SUS304.
  • a plate taken from each test material and SUS304 having a thickness of 1.0 mmt were joined by TIG welding, and their surfaces were polished with # 600 abrasive paper, and then examined for corrosion resistance by CCT.
  • TIG welding conditions are substantially the same
  • the salt spray cycle test was performed by spraying 5% NaCl solution (35 ° C., 2 h) (spraying 5% NaCl aqueous solution at 35 ° C., 2 hr) ⁇ drying (60 ° C., 4 h, relative humidity 20-30%) (drying at 60 °C, 4hr, relative humidity 20 to 30%) ⁇ Wetting (40 °C, 2h, relative humidity 95% or more) .
  • Table 2 The results are shown in Table 2.
  • the criteria for each test are as follows. (1) Appearance after pickling with cold-rolled annealing: Judged by the ratio of the length of the portion with surface defects to the total length of the plate, the defect rate is less than 5% ⁇ (pass: super good), the defect rate is 5% or more, 10 % (Pass: good), defect rate 10% or more, less than 20% was ⁇ (fail), and defect rate 20% or more was judged as x (fail: very bad).
  • Salt spray cycle test results of cold-rolled annealed pickling plate and # 600 polishing plate Rust area after 15-cycle test is less than 10% wrinkle rate ⁇ (pass: super good), 10% or more , Less than 20% was judged as ⁇ (pass: good), 20% or more, less than 30% was judged as ⁇ (failure), and 30% or more was judged as x (failure).
  • pickling After being immersed in (sulfuric acid solution) for 120 seconds, pickling is performed by immersing in a mixed acid composed of 15 mass% nitric acid and 3 mass% hydrofluoric acid at a temperature of 55 ° C for 60 seconds. Then, descaling was performed to obtain a hot rolled annealed pickled coil. Further, the steel sheet was then cold rolled to a thickness of 1.0 mm, annealed in a coke oven gas combustion atmosphere with an air ratio of 1.3 at 900 ° C. for 2 minutes, and at a temperature of 80 ° C. and 20 mass% Na 2 SO 4 .
  • Corrosion resistance was evaluated by CCT using this cold-rolled annealed pickling plate.
  • the surface of the cold-rolled annealed pickling plate was polished with # 600 polishing paper, and corrosion resistance evaluation, welded portion corrosion resistance test, and SUS304 different steel type welded portion corrosion resistance test were performed. Table 4 shows the results obtained as described above.
  • the criteria for each test are as follows. (1) Appearance after pickling with cold-rolled annealing: Judged by the ratio of the length of the portion with surface defects to the total length of the plate, the defect rate is less than 5% ⁇ (pass: super good), the defect rate is 5% or more, 10 % (Pass: good), defect rate 10% or more, less than 20% was ⁇ (fail), and defect rate 20% or more was judged as x (fail: very bad).
  • Salt spray cycle test results of cold-rolled annealed pickling plate and # 600 polishing plate Rust area after 15-cycle test is less than 10% wrinkle rate ⁇ (pass: super good), 10% or more Less than 20% was judged as ⁇ (passed: good), 20% or more, less than 30% was judged as ⁇ (failed), and 30% or more was judged as x (failed: very bad).
  • Corrosion resistance test results for the same steel type welds TIG butt welding between the same steel types, the temper color of the welds was removed with # 600 abrasive paper, and the same steel type welds were welded after 15 cycles of the salt spray cycle test.
  • the defect rate is less than 10% ⁇ (pass: super good) 10% or more, less than 20% is ⁇ (pass: good), 20% or more, less than 30% is ⁇ (fail), 30% or more ⁇ (not good) Pass: very bad)
  • Corrosion resistance test result of dissimilar steel type welded part with SUS304 After tempering the TIG butt weld with SUS304 and removing the temper color of the welded part with # 600 abrasive paper, the different steel type welded part after 15 cycles of salt spray cycle test , The sprout rate is less than 10% ⁇ (pass: super good) 10% or more, less than 20% ⁇ (pass: good), 20% or more, less than 30% ⁇ (fail), 30% or more ⁇ (Fail: very bad).
  • This cold-rolled annealed plate was descaled by performing electrolysis (10 A / dm 2 ⁇ 2 seconds) twice in a solution comprising a temperature of 50 ° C., 15 mass% nitric acid and 0.5 mass% hydrochloric acid, and cold-rolled annealed acid A washboard was obtained.
  • Corrosion resistance was evaluated by CCT using this cold-rolled annealed pickling plate. Further, after polishing the surface with # 600 polishing paper, the corrosion resistance was evaluated by CCT, and the TIG welded corrosion resistance test was conducted on the same steel type. In this test, two plates taken from each test material were joined by TIG welding, their surfaces were polished with # 600 abrasive paper, and the corrosion resistance was examined by CCT.
  • the TIG welding conditions were as follows, and the welding current was controlled so that the back bead width was 3 mm or more.
  • the evaluation surface was a back bead surface.
  • Welding voltage 10V
  • Welding current 90-110A
  • Welding speed 600 mm / min
  • Electrode 1.6 mm tungsten electrode
  • Shielding gas Front bead side Ar + 20 vol% N 2 20 L / min
  • the same specimen was subjected to a corrosion resistance test for a welded portion of a different steel type with SUS304.
  • a plate taken from each test material and SUS304 having a thickness of 1.0 mm were joined by TIG welding, and their surfaces were polished with # 600 abrasive paper, and the corrosion resistance was investigated by CCT.
  • TIG welding conditions are substantially the same as the above-described welding conditions for the same steel type.
  • the salt spray cycle test consists of 5% NaCl solution spray (35 ° C, 2h) ⁇ dry (60 ° C, 4h, relative humidity 20-30%) ⁇ wet (40 ° C, 2h, relative humidity 95% or more) in one cycle. As a result, 15 cycles were performed. The results are shown in Table 6.
  • the criteria for each test are as follows. (1) Appearance after pickling with cold-rolled annealing: Judged by the ratio of the length of the portion with surface defects to the total length of the plate, the defect rate is less than 5% ⁇ (pass: super good), the defect rate is 5% or more, 10 % (Pass: good), defect rate 10% or more, less than 20% was ⁇ (fail), and defect rate 20% or more was judged as x (fail: very bad).
  • Salt spray cycle test results of cold-rolled annealed pickling plate and # 600 polishing plate Rust area after 15-cycle test is less than 10% wrinkle rate ⁇ (pass: super good), 10% or more Less than 20% was judged as ⁇ (passed: good), 20% or more, less than 30% was judged as ⁇ (failed), and 30% or more was judged as x (failed: very bad).
  • Corrosion resistance test results for the same steel type welds TIG butt welding between the same steel types, the temper color of the welds was removed with # 600 abrasive paper, and the same steel type welds were welded after 15 cycles of the salt spray cycle test.
  • the defect rate is less than 10% ⁇ (pass: super good) 10% or more, less than 20% is ⁇ (pass: good), 20% or more, less than 30% is ⁇ (fail), 30% or more ⁇ (not good) Pass: very bad) (4) Results of corrosion resistance test of welded part of different steel type with SUS304: TIG butt welding was performed with SUS304, and the temper color of the welded part was removed with # 600 abrasive paper.
  • the weld rate after 15 cycles of the salt spray cycle test is less than 10% of the cracking rate ⁇ (pass: super good), 10% or more, less than 20% ⁇ (pass: good), 20% or more, Less than 30% was judged as ⁇ (failed), and 30% or more was judged as ⁇ (failed: very bad).
  • Steel grades 23 to 28 and 33 within the scope of the present invention are cold-rolled annealed pickled plates, polished plates, welds of the same grade when the gas shield is insufficient, and SUS304 when the gas shield is insufficient. It was excellent in corrosion resistance and surface properties even in the welded zone of different steel types. In particular, the symbols 25 to 28 and 33 to which Al, Sb, Zr, and V were added were particularly excellent in corrosion resistance even in a dissimilar steel weld with SUS304 when the gas shield was insufficient. On the other hand, Comparative Example No. with a low Cr content of 16.8%. No. 29 had a large rusting area and poor corrosion resistance. Moreover, comparative steel No. with a high Cr addition amount of 19.8%. No.
  • the ferritic stainless steel plate having good corrosion resistance of the base metal, corrosion resistance of the same steel type welded portion, corrosion resistance of the different steel type welded portion with SUS304, and surface properties of the cold-rolled annealed pickled plate is hot rolled. It has been clarified that any of the properties that can be obtained without grinding an annealed pickling plate is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

フェライト系ステンレス鋼にオーステナイト系ステンレス鋼を溶接した場合に溶接部の耐食性と表面性状に優れたフェライト系ステンレス鋼を提供する。 質量%で、C:0.003~0.012%、Si:0.30~0.60%、Mn:0.10~0.35%、P:0.040%以下、S:0.020%以下、Cr:17.0~19.0%、Ni:0.10超~0.30%、Ti:0.10~0.40%、Nb:0.005~0.050%未満、Mo:0.20%、N:0.005~0.015%、Cu:0.3~0.5%、Mg:0.0005%未満を含有し、残部Feおよび不可避的不純物からなることを特徴とする溶接部の耐食性および表面性状に優れたフェライト系ステンレス鋼。

Description

フェライト系ステンレス鋼
 本発明は、耐食性のうち、特にオーステナイト系ステンレス鋼(austenitic stainless steel)との溶接部の耐食性(corrosion resistance)に優れるとともに表面性状(surface quality)に優れたフェライト系ステンレス鋼(ferritic stainless steel)に関するものである。
 ステンレス鋼の中では、その優れた耐食性によりオーステナイト系ステンレス鋼のSUS304(18%Cr-8%Ni)(日本工業規格、JIS G 4305)が広く使われている。しかし、この鋼種は、Niを多量に含むため高価である。このためSUS304相当の優れた耐食性を持つ鋼種として、特許文献1に記載のステンレス鋼が開発された。
 特許文献1には、成分組成として、C:0.03%以下、Si:1.0%以下、Mn:0.5%以下、P:0.04%以下、S:0.02%以下、Al:0.1%以下、Cr:20.5%以上、22.5%以下、Cu:0.3%以上、0.8%以下、Ni:1.0%以下、Ti:4×(C%+N%)以上、0.35%以下、Nb:0.01%以下、N:0.03%以下、C+N:0.05%以下を含有し、残部がFeおよび不可避的不純物からなるフェライト系ステンレス鋼板が開示されている。
 また、JIS-SUS444、JIS-SUS430J1L等のフェライト系ステンレス鋼も、オーステナイト系ステンレス鋼と比較して、応力腐食割れ(Stress Corrosion Cracking)の感受性が小さい、価格変動の大きいNiを含まない等の特徴を有し、自動車の排気系部材の材料や水タンク、建築の材料として広く使用されている。
 しかし、一般にはオーステナイト系ステンレス鋼よりも加工性、特に伸びが劣ることから、フェライト系ステンレス鋼では成型できない難加工性部品にはオーステナイト系ステンレス鋼が使用されており、オーステナイト系ステンレス鋼とフェライト系ステンレス鋼とを組み合わせて、一つの構成品とする場合が多い。この場合、各部材は溶接により結合される場合がほとんどであり、溶接方法としては、主にTIG溶接(Tungsten Inert Gas welding)が用いられ、溶接部にも母材と同様に良好な耐食性が求められる。
特許第4396676号公報 特許第2842787号公報
特許文献1に開示されたフェライト系ステンレス鋼は、同一鋼種での溶接部は良好な耐食性を有するが、SUS304等の異鋼種とTIG溶接した場合、溶接部の耐食性が母材より低下する場合が起こるという問題がある。
これは、溶接部の耐食性は、溶接時の熱履歴で鋼中のC,NがCrと結合してCr炭化物(Cr-carbides)(例えばCr23等)、またはCr窒化物(Cr-nitrides)(CrN等)として粒界に析出する(precipitates at the grain boundaries)ことにより、粒界に母材よりCr濃度が低くなるCr欠乏層(chromium depletion layer)が生じることにより起こる、いわゆる鋭敏化(sensitization)をおこし、その耐食性を劣化させることによるものである。
 この溶接部での耐食性劣化を防ぐために、鋼中のC、Nを低減するとともに適量のTiを添加して、C、NをTi炭窒化物として固定してCr炭化物、Cr窒化物の生成を防止する方法が取られる。この方法により、特許文献1に開示されたフェライト系ステンレス鋼板同士でのTIG溶接部は、良好な耐食性を示す。
しかし、この鋼板のC含有量が0.01%程度なのに対して、SUS304等はCの含有量が0.04~0.05%と高いために、通常、SUS304等の高C含有ステンレス鋼との接合で、同様のTi添加で鋭敏化を回避(防止)するためには、Ti添加量を1.0%程度までに高めなければならなくなる。
 しかし、フェライト系ステンレス鋼にTiを1.0%程度まで添加すると、凝固中に溶鋼中のTiとNが反応して、TiNとなって析出することがある。この、TiNは高温での延性に乏しく、熱延工程(hot rolling)で表面傷となり表面性状が悪化する。このようにして発生した傷は深く、熱延板焼鈍(annealing)、酸洗(acid pickling)、その後の冷間圧延、冷延板焼鈍、酸洗などでも消えることがないので、グラインダー研削(surface grinding)等で熱延焼鈍酸洗板表面を多量に削る処理を行わない限り、いわゆるチタンストリンガー(stringer caused by titanium nitrides)と呼ばれる傷となり、冷延焼鈍酸洗板での表面性状を著しく劣化させる。
 また、TIG溶接の場合、表、裏面とも一般に不活性ガスでシールドし、溶接部にテンパーカラー(temper color)と呼ばれる薄い酸化皮膜(oxide layer)が付着しない条件で溶接を行うことが推奨されている。しかし、実際の工程では、このガスシールドは十分でなく、空気中のNの混入により、先に述べた鋭敏化が助長されてしまうという問題もある。
また、高価なTiを多量に添加することは、高価なNiを用いないという鋼種の利点を損なうことになるという問題もある。
 本発明はかかる事情に鑑みてなされたものであり、オーステナイト系ステンレス鋼と溶接した場合にも溶接部の耐食性に優れ、さらに表面性状に優れたフェライト系ステンレス鋼を提供することを目的とする。
 本発明者らは、上記した課題を達成するために、母材部と溶接部の耐食性および鋼板の表面欠陥(ヘゲ(scab)、ピンホール(pin hole)、線ヘゲ(linear scab)、チタンストリンガーの形状異常、白筋模様の色異常(color defect))発生挙動に及ぼす鋼の化学成分の影響ついて、綿密な調査、検討を行って、以下の知見を得た。
(1)フェライト相促進元素、いわゆるフェライトフォーマー(ferritic former)元素の濃度を適正化することにより、オーステナイト系ステンレス鋼とフェライト系ステンレス鋼との溶接部の組織をC、Nの固溶限の大きなマルテンサイト相(martensite phase)とすることにより、鋭敏化をある程度防止できること。
(2)極微量のNbを添加すると、Tiより高温でNと析出物を生成し、その後の冷却過程でTi炭窒化物の核生成サイトとなり、Tiとの複合炭窒化物を生成し、Tiの鋭敏化防止効果が得られること。
(3)極微量のNbの添加であれば、鋼板の再結晶温度を上げる副作用はほとんどなく、例えば特許文献2に開示されるような炭素鋼の製造設備を用いた安価な高速焼鈍酸洗手法が適用できること。
(4)ガスシールドが不完全で大気中のNが溶接部に混入しても、Alの添加により溶接部にAlNが生成して鋭敏化を防止できること。Sbの添加でも溶接部にSbとNの化合物が生成して鋭敏化を防止できること。
(5)チタンストリンガー欠陥の主たる原因は柱状晶粒界部(columnar grain boundary)に発達したTiNによるものである。柱状晶部分のTiNは大きく発達するためである。柱状晶粒界部以外の部分のTiNは、通常の後工程の熱延板酸洗、冷延板酸洗で除去できる率が大きく、チタンストリンガー欠陥をほとんど起こさない。
(6)Si添加量を多くすると、溶鋼中でのTi、Nの溶解度積(solubility product)が下がり、柱状晶が生成する前の高温でTi炭窒化合物の析出が促進される。その結果溶鋼中のNが下がり、のちの柱状晶成長時に柱状晶粒界部にTiNが析出しにくくなる。このため、Si添加量を多くすると、Ti量がある程度高くても、チタンストリンガー欠陥の原因となる柱状晶結晶粒界へのTiNの析出を抑えることができる。
 以上より、溶接部においても良好な耐食性を持ち、熱延焼鈍酸洗板で表面研削を行うことなく、良好な表面品質の冷延焼鈍酸洗板を製作でき、Ni系のオーステナイト系ステンレス鋼に比較して安価なフェライト系ステンレス鋼が得られることを知見した。
本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
 [1]質量%で、C:0.003~0.012%、Si:0.30~0.60%、Mn:0.10~0.35%、P:0.040%以下、S:0.020%以下、Cr:17.0~19.0%、Ni:0.10超~0.30%、Ti:0.10~0.40%、Nb:0.005~0.050%未満、Mo:0.20%以下、N:0.005~0.015%、Cu:0.3~0.5%、Mg:0.0005%未満を含有し、残部Feおよび不可避的不純物からなることを特徴とする溶接部の耐食性および表面性状に優れたフェライト系ステンレス鋼。
[2]更に、質量%で、Al:0.01%~0.5%を含有することを特徴とする上記[1]に記載の溶接部の耐食性および表面性状に優れたフェライト系ステンレス鋼。
[3]更に、質量%で、Sb:0.05%~0.30%を含有することを特徴とする上記[1]または[2]に記載の溶接部の耐食性および表面性状に優れたフェライト系ステンレス鋼。
[4]更に、質量%で、Zr:0.01%~0.60%、V:0.01%~0.50%の一種または二種を含有することを特徴とする上記[1]乃至[3]の何れかに記載の溶接部の耐食性および表面性状に優れたフェライト系ステンレス鋼。
 本発明のフェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と溶接しても、溶接部の耐食性および表面性状に優れるので、厨房機器、建築内装材、産業機械、自動車部品などに好適である。
以下に本発明の各構成要件の限定理由について説明する。
 1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
 C:0.003~0.012%
Cは、Crと結合してCr炭化物を形成しやすく、溶接時に熱影響部にCr炭化物が形成されると粒界腐食の原因となるので、Cは低い程望ましい。そこで、Cは0.012%以下とする。一方、低すぎても精錬において多大な時間を必要とするため、C量は、0.003~0.012%の範囲とする。好ましくは、0.003~0.010%の範囲である。
 Si:0.30~0.60%
Siは、本発明の中で重要な元素である。Siは適量添加すると、溶鋼中でのTi、Nの溶解度積が下がり、柱状晶が生成する前の高温でTi炭窒化合物の析出が促進される。その結果、溶鋼中のNが下がり、のちの柱状晶成長時に柱状晶粒界部にTiNが析出しにくくなる。本発明鋼の成分範囲では、Siを0.30%以上添加することにより、チタンストリンガー欠陥の原因となる柱状晶結晶粒界へのTiNの析出を抑えることができる。しかし、0.60%を超えて添加すると、前述した普通鋼製造設備で用いられる高速酸洗方法においての冷延板の酸洗性を劣化させ生産性を低下させる。また、添加しすぎると材質が硬くなり、加工性が劣化する。よって、Si量は0.30~0.60%の範囲とする。好ましくは0.40~0.50%の範囲である。
 Mn:0.10~0.35%
Mnは、脱酸作用があるので0.10%以上添加する。また、オーステナイト相促進元素(オーステナイトフォーマー元素)であるので、オーステナイト系ステンレス鋼との溶接部(以下異鋼種溶接部と呼ぶ)のマルテンサイト相の形成を促進させる。しかし、過剰に鋼中に存在するSと結合して、可溶性硫化物であるMnSを形成し、耐食性を低下させるので、Mn量は0.10~0.35%の範囲とする。好ましくは0.10~0.25%の範囲である。
 P:0.040%以下
Pは、耐食性に有害な元素である。さらには、熱間加工性を低下させる元素である。特に、これらの傾向は、0.040%を超えると顕著になる。このため、P量は0.040%以下とする。好ましくは0.030%以下である。
 S:0.020%以下
Sは、耐食性に有害な元素である。特に、Mnと同時に存在する場合、MnSを形成し、孔食の起点となり、耐食性を劣化させる。このような効果は0.020%を超えると顕著になる。このため、S量は0.020%以下とする。好ましくは0.010%以下である。さらに好ましくは0.006%以下である。
 Cr:17.0~19.0%
Crは、ステンレスの表面に不動態皮膜を形成させ、母材の耐食性を上げるのに不可欠な元素である。良好な耐食性を得るためには17.0%以上の添加が必要であるが、19.0%を超えての添加はSUS304との異鋼種溶接部でマルテンサイトが生成しなくなり耐食性低下を防止できなくなる。このため、Cr量は17.0~19.0%の範囲とする。好ましくは17.5~18.5%の範囲である。
 Ni:0.10%超~0.30%
Niは、耐隙間腐食性の改善に寄与する元素である。さらには、Mnと同じく、オーステナイト相促進元素(オーステナイトフォーマー元素)であるので、異鋼種溶接部のマルテンサイト相の形成を促進させる。しかし、0.30%を超えて添加するとSCC感受性が高くなる。また高価な元素でもある。このため、Ni量は0.10%超~0.30%の範囲とする。好ましくは0.20~0.30%の範囲である。
 Nb:0.005%~0.050%未満
Nbの微量添加も本発明に重要な要素の一つである。Nbは、Cr、Tiよりも優先的に炭窒化物を形成する。特に異鋼種溶接部の溶融池(weld metal)、熱影響部(Heat Affected Zone)において、NbはTiより高温で炭窒化物の生成が始まる。理由は明らかではないが、後の冷却過程においてTiはこの微量のNb炭窒化物を核生成サイトとして生成する。つまり、微量のNb添加によって、Ti炭窒化物の生成が促進される。よって、Nbを含まない場合に比較して異鋼種溶接部の溶融池、熱影響部のTiによるC、Nの固定能力が増長されることになるのである。このためNb量は0.005%以上とする。
一方、Nbを0.050%以上添加すると、冷間圧延板の再結晶温度が上がり、良好な機械的性質を得るためには、Nbを添加しない場合に比較して、高温で焼鈍せざるを得なくなる。よって、この焼鈍時に生成する酸化皮膜が無添加の場合に比較して厚く成長する。このため、前述した炭素鋼製造設備で用いられる高速酸洗方法においての冷延板の酸洗性を劣化させ生産性を低下させる。よって、Nb量は0.005~0.050%未満の範囲とする。好ましくは0.01%以上、0.050%未満の範囲である。
 Ti:0.10~0.40%
Tiは、オーステナイト系ステンレス鋼との異鋼種溶接部の耐食性を確保するため(鋭敏化防止のため)に0.10%以上添加しなければならない。しかし、0.40%を超えて添加すると、TiNが柱状晶粒界に生成し、チタンストリンガー欠陥が強くなり、良好な表面品質を得るために熱延焼鈍酸洗板をグラインダーによる表面研削しなければならなくなる。このため、Ti量は0.10~0.40%の範囲とする。好ましくは0.20~0.40%の範囲である。
 Mo:0.20%以下
Moは、不動態皮膜(passivation film)を強固にし、耐食性を顕著に向上させる元素でありその効果は0.01%以上の添加で得られる。しかし、Moはフェライト相促進元素、いわゆるフェライトフォーマー元素であり、0.20%を超えて添加するとオーステナイト系ステンレス鋼との異鋼種溶接部がマルテンサイトにならなくなり、C、Nの固溶量の低いフェライト相となってしまい、鋭敏化を防ぐことができなくなる。よって、Moは0.20%以下とする。また、Moは熱延板の靭性をも低下させることから、好ましく0.10%以下である。
 N:0.005~0.015%
Nは、Crと結合してCr窒化物を形成しやすい。溶接時、異鋼種溶接部および熱影響部にCr窒化物が形成されると粒界腐食の原因となるので、Nは低い程望ましい。また、チタンストリンガー欠陥の原因とも成る元素であるので、できるだけ減らした方が良い。しかし、低すぎても精錬において多大な時間を必要とするため、N量は0.005~0.015%の範囲とする。好ましくは0.005~0.012%である。
 Cu:0.3%~0.5%
Cuは、耐食性、特に水溶液中や弱酸性の水滴が付着した場合の耐食性を高める元素である。これは、Cuが水溶液や弱酸性水滴中のある電気化学的電位で溶解し、Cuが地鉄に再付着し耐溶解性を抑えるものと推定される。一方、Cuを0.5%超えて添加すると、熱間加工性が低下する他、熱延時に赤スケール(red scale)と呼ばれるCu起因の低融点酸化物が熱延スラブ上に生成し、表面欠陥の原因ともなる。よって、Cu量は0.3~0.5%の範囲とする。好ましくは0.3~0.4%の範囲である。
 Mg:0.0005%未満
Mgは主に転炉の中のレンガより混入する不純物である。Mgは多種多様の介在物の起点となり、混入する量は微量でも他の介在物の核生成サイトとなり、焼鈍などを行っても再溶解しにくく、熱延焼鈍酸洗板、冷延焼鈍酸洗板の表面性状を劣化させる。よって、Mg量は0.0005%未満とする。好ましくは0.0003%未満である。
 以上が本発明の基本化学成分であり、残部はFe及び不可避的不純物からなる。TIG溶接のガスシールドと異鋼種溶接部の鋭敏化防止の観点からAl、Sbを選択元素として添加してもよい。更に、異鋼種溶接部の耐食性向上の目的でZr、Vを選択元素として添加してもよい。なお不可避的不純物としては、Ca:0.0020%以下が許容できる。
 Al:0.01~0.5%
AlはTIG溶接のガスシールドが不十分な場合に、添加が必要となる。前述したようにTIG溶接の場合裏面、表面ガスシールドして溶接が行われるのが一般的である。しかし、異鋼種溶接部の形状が複雑な場合にはシールドが十分でなく、大気中のNが溶融池に混入し、マルテンサイトの固溶限を超え、あらかじめ添加したTiのみでは鋭敏化を完全に防止できなくなる場合がある。こうした場合には、あらかじめAlを添加しておくのが鋭敏化防止に効果的である。これは添加したAlがNと反応しAlNを生成し、溶融池に混入したNを捕らえるためである。この効果は0.01%以上の添加で得られる。しかし、Alを添加しすぎると、スラブ段階での非金属系介在物が生成し、表面性状が悪化する。また、熱延板への靭性をも悪化させる。このため、Alを添加する場合は、0.01~0.5%の範囲とすることが好ましい。より好ましくは0.1~0.5%の範囲である。さらに好ましくは0.15~0.25%の範囲である。
 Sb:0.05~0.30%
SbもAlと同じく、TIG溶接のガスシールドが不十分な場合に大気中より混入するNを捕らえる効果があり、複雑な形状を持った構成体の場合には添加したほうが良い元素である。しかし、一方でSbを添加しすぎると、スラブ段階での非金属系介在物が生成し、表面性状が悪化する。また、熱延板の靭性をも悪化させる。このため、Sbを添加する場合は、Sb量は0.05~0.30%の範囲とすることが好ましい。より好ましくは0.05~0.15%の範囲である。
 Zr:0.01~0.60%
Zrは、Tiと同様にCrよりも優先的に炭窒化物を形成し、同鋼種、異鋼種溶接部などでは耐食性を向上させるので、溶接部の耐食性を考慮した場合添加したい元素である。しかし、ZrはTiに比較してかなり高価であること、および添加しすぎると金属間化合物を生成し、熱延板の靭性が劣化する。このため、Zrを添加する場合は、Zr量は0.01~0.60%の範囲とすることが好ましい。より好ましくは0.1~0.35%の範囲である。
 V:0.01~0.50%
VもTi同様にCrよりも優先的に炭窒化物を形成し、同鋼種、異鋼種溶接部の耐食性を向上させる。その効果は0.01%以上の添加で得られる。しかし、0.50%を超えて添加すると機械的性質を劣化させる。このためVを添加する場合には、0.01%~0.50%の範囲とすることが好ましい。より好ましくは0.02~0.05%の範囲である
 2.製造条件について
次に本発明鋼の好適製造方法について説明する。上記した成分組成の鋼を、転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。この鋼素材を、その後1100~1250℃×1~24時間の加熱をするか、あるいは加熱することなく直接、熱間圧延して熱延板とする。
熱延板には、通常、800~1100℃×1~10分の熱延板焼鈍が施される。しかし、用途によっては熱延板焼鈍を省略してもよい。ついで、熱延板酸洗後、冷間圧延により冷延板としたのち、再結晶焼鈍を施して、製品とする。冷間圧延の圧下率(a reduction rate in thickness of cold rolling)は良好な伸び性、曲げ性、プレス成形性を得るため、および形状矯正の目的から50%以上の圧下率で圧延を行うことが望ましい。冷延板の再結晶焼鈍は、一般的には2B品の場合、良好な機械的性質を得ること、および酸洗性の面から800~950℃で焼鈍を行うのが好ましい。
 しかし、機能品(functional product)の場合には、炭素鋼製造設備を利用した前述の炭素鋼焼鈍酸洗ラインの高速酸洗を用いた安価プロセスによる製造が最も好ましく、この際の焼鈍温度は800~900℃で行うのが最も好ましい。
また、より光沢を求める箇所の部材には仕上げにBA焼鈍(Bright Annealing)を行うことが有効である。また、前述したが、冷間圧延後、および加工後に更に表面性状を上げるために、コスト的に不利にはなるが、研磨等を施しても何ら問題は無い。
表1に示す発明例No.1~8、比較例No.9~12の組成を有するフェライト系ステンレス鋼を50kg小型真空溶解炉で溶製した。これらの鋼塊を、Arガスでパージした炉内で1150℃に加熱後、熱間圧延を施して3.5mm厚の熱延板とした。
ついで、これらの熱延板に対して大気中で950℃×1分間の熱延板焼鈍を施した後、表面をガラスビーズのショットブラスト処理を行った。その後、温度80℃の20質量%硫酸溶液中に120秒浸漬後、15質量%硝酸および3質量%弗酸よりなる温度55℃の混合酸中に60秒浸漬することにより酸洗を行い、脱スケールを行った。
さらに脱スケール後、冷間圧延を行い板厚1.0mmの冷間圧延板とし、大気開放炉で900℃×1分間の焼鈍を行い、冷延焼鈍板を得た。この冷延焼鈍板を、温度80℃、20質量%NaSO中で3A/dm×10秒の電解を三回行った後、5質量%硝酸および3質量%弗酸よりなる温度55℃の混合酸に30秒間浸漬することにより脱スケールを行い、冷延焼鈍酸洗板を得た。
Figure JPOXMLDOC01-appb-T000001
 この冷延焼鈍酸洗板を用いて塩水噴霧サイクル試験(salt spray Cyclic Corrosion Test)による耐食性評価を行った。次に、この冷延焼鈍酸洗板を♯600番の研磨紙で表面を研磨して(polished to #600 finish)、CCTによる耐食性評価を行った。次にこの研磨板を用いて、同材でのTIG溶接部耐食性試験を行った。この試験では、それぞれの供試験材から採取した2枚の板をTIG溶接で接合し、それらの表面を600番の研磨紙で研磨してCCTにより耐食性を調べた。TIG溶接条件は下記の通りで、裏ビード幅が3mm以上になるように、溶接電流を制御した。評価面は、裏ビード面とした。
  溶接電圧  :10V
  溶接電流  :90~110A
  溶接速度  :600mm/min
  電極    :1.6mmタングステン電極
  シールドガス:表ビード側 Ar  20L/min
         裏ビード側 Ar  20L/min
さらに、同じ供試材に対して、SUS304との異鋼種溶接部耐食性試験を行った。この試験では、それぞれの供試験材から採取した板と1.0mmt厚のSUS304をTIG溶接で接合し、それらの表面を♯600番の研磨紙で研磨した後、CCTにより耐食性を調査した。TIG溶接条件は前述した同鋼種同士の溶接条件とほぼ同じである。
塩水噴霧サイクル試験は、5質量%NaCl溶液噴霧(35℃、2h)(spraying 5% NaCl aqueous solution at 35℃, 2hr)→乾燥(60℃、4h、相対湿度20~30%)(drying at 60℃, 4hr, relative humidity 20 to 30%)→湿潤(40℃、2h、相対湿度95%以上)(wetting at 40℃, 2hr, relative humidity 95% or more)を1サイクルとして、15サイクルを行った。
それぞれの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表2において、各試験の判定基準は以下の通りである。
(1)冷延焼鈍酸洗後の外観:表面欠陥がある部分の長さの板全長に対する割合で判断し、欠陥率5%未満が◎(合格:超良好)、欠陥率5%以上、10%未満が○(合格:良好)、欠陥率10%以上、20%未満が△(不合格)、欠陥率20%以上を×(不合格:非常に悪い)と判定した。
 (2)冷延焼鈍酸洗板および♯600番研磨板の塩水噴霧サイクル試験結果:15サイクル試験後の発錆面積が、発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格)と判定した。
 (3)同鋼種溶接部耐食性試験結果:同鋼種同士でTIG突き合わせ溶接を行い♯600番の研磨紙で溶接部のテンパーカラーを除去後、塩水噴霧サイクル試験15サイクル後の同鋼種溶接部の発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
 (4)SUS304との異鋼種溶接部耐食性試験結果:SUS304とTIG突き合わせ溶接を行い♯600番の研磨紙で溶接部のテンパーカラーを除去後、塩水噴霧サイクル試験15サイクル後の異鋼種溶接部の、発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
 発明範囲内のNo.1~8の鋼は、冷延焼鈍酸洗板、研磨板、同鋼種溶接部、SUS304との異鋼種溶接部においても耐食性、表面性状に優れていた。
一方、Cr含有量が16.1%と低い比較例No.9は、発銹面積が多く耐食性が劣っていた。
また、Cr添加量が19.5%と高い比較例No.10は、異鋼種溶接部での発銹面積が多く耐食性が劣っていた。フェライトフォーマー元素であるCr量が高いため、異鋼種溶接部がマルテンサイト化しないことが原因と考えられる。
また、Ti含有量が0.08%と少ない比較鋼No.11は、同鋼種溶接部および異鋼種溶接部での発銹面積が多く耐食性が劣っていた。
さらに、Nbが本発明範囲を超える比較例No.12では、母材の表面に若干のスケール残りが確認され、冷延焼鈍酸洗後の耐食性が劣っていた。
次に、表3に示す発明例No.13~18、比較例No.19~22の組成を有するフェライト系ステンレス鋼を150tonVOD(Vacuum Oxygen Decarburizer)で溶製した後連続鋳造でスラブに鋳造した。これを、1150℃の温度に加熱して熱間圧延を行って板厚3.5mmの熱延コイルとした。さらに、次いで、950℃×1~5分間、空気比1.3のコークス炉ガス燃焼雰囲気中で焼鈍し、表面を鉄球のショットブラスト処理を行った後、温度80℃の20質量%硫酸溶液(sulfuric acid solution)中に120秒浸漬後、15質量%硝酸(nitric acid)および3質量%弗酸(hydrofluoric acid)よりなる温度55℃の混合酸中に60秒浸漬することにより酸洗を行い、脱スケールを行い、熱延焼鈍酸洗コイルとした。
さらに、次いで、冷間圧延で板厚1.0mmとし、900℃×2分間、空気比1.3のコークス炉ガス燃焼雰囲気中で焼鈍し、温度80℃、20質量%NaSO中で3A/dm×10秒の電解を三回行った後、5質量%硝酸および3質量%弗酸よりなる温度55℃の混合酸に30秒間浸漬することにより脱スケールを行い、冷延焼鈍酸洗板を得た。
この段階で、得られた冷延焼鈍酸洗板の表面性状の判定を目視で行った。
Figure JPOXMLDOC01-appb-T000003
この冷延焼鈍酸洗板を用いてCCTによる耐食性評価を行った。
次にこの冷延焼鈍酸洗板の表面を♯600番の研磨紙で研磨して耐食性評価、溶接部耐食性試験、SUS304との異鋼種溶接部耐食性試験を行った。
以上により得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 なお、表4において、各試験の判定基準は以下の通りである。
(1)冷延焼鈍酸洗後の外観:表面欠陥がある部分の長さの板全長に対する割合で判断し、欠陥率5%未満が◎(合格:超良好)、欠陥率5%以上、10%未満が○(合格:良好)、欠陥率10%以上、20%未満が△(不合格)、欠陥率20%以上を×(不合格:非常に悪い)と判定した。
(2)冷延焼鈍酸洗板および♯600番研磨板の塩水噴霧サイクル試験結果:15サイクル試験後の発錆面積が、発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
(3)同鋼種溶接部耐食性試験結果:同鋼種同士でTIG突き合わせ溶接を行い♯600番の研磨紙で溶接部のテンパーカラーを除去後、塩水噴霧サイクル試験15サイクル後の同鋼種溶接部の発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
(4)SUS304との異鋼種溶接部耐食性試験結果:SUS304とTIG突き合わせ溶接を行い♯600番の研磨紙で溶接部のテンパーカラーを除去後、塩水噴霧サイクル試験15サイクル後の異鋼種溶接部の、発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
 発明範囲内のNo.13~18までの鋼は、冷延焼鈍酸洗板、研磨板、同鋼種溶接部、SUS304との異鋼種溶接部においても耐食性、表面性状に優れていた。一方、Mo含有量が0.35%と本発明範囲より高い比較例No.19は、異鋼種溶接部での発銹面積が多く耐食性が劣っていた。
また、Cr添加量が19.7%と高い比較鋼No.20は、異鋼種溶接部での発銹面積が多く耐食性が劣っていた。フェライトフォーマー元素であるCr量が高いため、異鋼種溶接部がマルテンサイト化しないことが原因と考えられる。
また、Si含有量が本発明範囲より少ない比較鋼No.21、および、Si含有量が少なくかつMgが高い比較鋼No.22は表面性状に劣っていた。
表5に示す発明例No.23~28、33、比較例No.29~32の組成を有するフェライト系ステンレス鋼を50kg小型真空溶解炉で溶製した。これらの鋼塊を、Arガスでパージした炉内で1150℃に加熱後、熱間圧延を施して3.5mm厚の熱延板とした。
ついで、これらの熱延板に対しては大気中で950℃×1分間の熱延板焼鈍を施した後、表面をガラスビーズのショットブラスト処理を行った。その後、温度80℃の20質量%硫酸溶液中に120秒浸漬後、15質量%硝酸および3質量%弗酸よりなる温度55℃の混合酸中に60秒浸漬することにより酸洗を行い、脱スケールを行った。
さらに脱スケール後、冷間圧延を行い板厚1.0mmの冷間圧延板とし、還元性雰囲気(H:5%、N:95%、露点-40℃)で900℃×1分間の焼鈍を行い、冷延焼鈍板を得た。この冷延焼鈍板を、温度50℃、15質量%硝酸および0.5質量%塩酸よりなる溶液中で電解(10A/dm×2秒)を2回行う脱スケールを行い、冷延焼鈍酸洗板を得た。
Figure JPOXMLDOC01-appb-T000005
 この冷延焼鈍酸洗板を用いてCCTによる耐食性評価を行った。
さらに、♯600番の研磨紙で表面を研磨した後、CCTにより、耐食性評価、同鋼種でのTIG溶接部耐食性試験を行った。この試験では、それぞれの供試験材から採取した2枚の板をTIG溶接で接合し、それらの表面を♯600番の研磨紙で研磨して、CCTにより耐食性を調べた。TIG溶接条件は下記の通りで、裏ビード幅が3mm以上になるように、溶接電流を制御した。評価面は、裏ビード面とした。
  溶接電圧  :10V
  溶接電流  :90~110A
  溶接速度  :600mm/min
  電極    :1.6mmタングステン電極
  シールドガス:表ビード側 Ar+20vol%N  20L/min
         裏ビード側 Ar+20vol%N  20L/min
 さらに、同じ供試材に対して、SUS304との異鋼種溶接部耐食性試験を行った。この試験では、それぞれの供試験材から採取した板と1.0mm厚のSUS304をTIG溶接で接合し、それらの表面を♯600番の研磨紙で研磨してCCTにより耐食性を調査した。TIG溶接条件は前述した、同鋼種同士の溶接条件とほぼ同じである。塩水噴霧サイクル試験は、5質量%NaCl溶液噴霧(35℃、2h)→乾燥(60℃、4h、相対湿度20~30%)→湿潤(40℃、2h、相対湿度95%以上)を1サイクルとして、15サイクルを行った。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 なお、表6において、各試験の判定基準は以下の通りである。
(1)冷延焼鈍酸洗後の外観:表面欠陥がある部分の長さの板全長に対する割合で判断し、欠陥率5%未満が◎(合格:超良好)、欠陥率5%以上、10%未満が○(合格:良好)、欠陥率10%以上、20%未満が△(不合格)、欠陥率20%以上を×(不合格:非常に悪い)と判定した。
(2)冷延焼鈍酸洗板および♯600番研磨板の塩水噴霧サイクル試験結果:15サイクル試験後の発錆面積が、発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
(3)同鋼種溶接部耐食性試験結果:同鋼種同士でTIG突き合わせ溶接を行い♯600番の研磨紙で溶接部のテンパーカラーを除去後、塩水噴霧サイクル試験15サイクル後の同鋼種溶接部の発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
(4)SUS304との異鋼種溶接部耐食性試験結果:SUS304とTIG突き合わせ溶接を行い♯600番の研磨紙で溶接部のテンパーカラーを除去した。その後、塩水噴霧サイクル試験15サイクル後の異鋼種溶接部の、発銹率10%未満が◎(合格:超良好)、10%以上、20%未満が○(合格:良好)、20%以上、30%未満が△(不合格)、30%以上を×(不合格:非常に悪い)と判定した。
 本発明範囲内の記号23~28、33までの鋼種は、冷延焼鈍酸洗板、研磨板、ガスシールドが不十分な場合の同鋼種溶接部、ガスシールドが不十分な場合のSUS304との異鋼種溶接部においても耐食性、表面性状に優れていた。特に、Al、Sb、Zr、Vを添加した記号25~28、33は特に、ガスシールドが不十分な場合のSUS304との異鋼種溶接部においても耐食性に優れていた。
一方、Cr含有量が16.8%と低い比較例No.29は、発銹面積が多く耐食性が劣っていた。
また、Cr添加量が19.8%と高い比較鋼No.30は、異鋼種溶接部での発銹面積が多く耐食性が劣っていた。フェライトフォーマー元素であるCr量が高いため、異鋼種溶接部がマルテンサイト化しないことが原因と考えられる。
また、Si含有量が0.15%と少なく、Moが0.4%と高い比較鋼No.31、は表面性状も劣り、特にガスシールドが不十分な場合の同鋼種溶接部、ガスシールドが不十分な場合のSUS304との異鋼種溶接部においても耐食性、表面性状が劣っていた。
さらに、Si含有量が0.25%低く、Nbが0.10%と本発明範囲を超える比較鋼No.32では、炭素鋼ラインの高速酸洗ではスケール残りが確認され、母材(冷延焼鈍酸洗後)の耐食性が劣っていた。
 以上より、本発明例では、母材の耐食性、同鋼種溶接部の耐食性、SUS304との異鋼種溶接部の耐食性、冷延焼鈍酸洗板の表面性状も良好なフェライト系ステンレス鋼板が、熱延焼鈍酸洗板を研削することなく得ることが出来るいずれの特性にも優れることが明らかとなった。
器物、厨房機器、建築内外装材、建築金具、エレベーター・エスカレーター内装材、家電、自動車部品等を中心に、耐食性が要求される部材として好適である。

Claims (5)

  1.  質量%で、C:0.003~0.012%、Si:0.30~0.60%、Mn:0.10~0.35%、P:0.040%以下、S:0.020%以下、Cr:17.0~19.0%、Ni:0.10超~0.30%、Ti:0.10~0.40%、Nb:0.005~0.050%未満、Mo:0.20%以下、N:0.005~0.015%、Cu:0.3~0.5%、Mg:0.0005%未満を含有し、残部Feおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。
  2.  更に、質量%で、Al:0.01~0.5%を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。
  3.  更に、質量%で、Sb:0.05~0.30%を含有することを特徴とする請求項1または2に記載のフェライト系ステンレス鋼。
  4.  更に、質量%で、Zr:0.01~0.60%、V:0.01~0.50%の一種または二種を含有することを特徴とする請求項1または2に記載のフェライト系ステンレス鋼。
  5.  更に、質量%で、Zr:0.01~0.60%、V:0.01~0.50%の一種または二種を含有することを特徴とする請求項3に記載のフェライト系ステンレス鋼。
     
PCT/JP2012/007593 2011-11-30 2012-11-27 フェライト系ステンレス鋼 WO2013080518A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147017639A KR20140117370A (ko) 2011-11-30 2012-11-27 페라이트계 스테인리스강
ES12852604.3T ES2602800T3 (es) 2011-11-30 2012-11-27 Acero inoxidable ferrítico
EP12852604.3A EP2787096B1 (en) 2011-11-30 2012-11-27 Ferritic stainless steel
IN959KON2014 IN2014KN00959A (ja) 2011-11-30 2012-11-27
JP2013546991A JP5713118B2 (ja) 2011-11-30 2012-11-27 フェライト系ステンレス鋼
US14/359,782 US20140294661A1 (en) 2011-11-30 2012-11-27 Ferritic stainless steel
CN201280059270.9A CN103975086B (zh) 2011-11-30 2012-11-27 铁素体系不锈钢

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-261799 2011-11-30
JP2011261799 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080518A1 true WO2013080518A1 (ja) 2013-06-06

Family

ID=48535012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007593 WO2013080518A1 (ja) 2011-11-30 2012-11-27 フェライト系ステンレス鋼

Country Status (9)

Country Link
US (1) US20140294661A1 (ja)
EP (1) EP2787096B1 (ja)
JP (1) JP5713118B2 (ja)
KR (1) KR20140117370A (ja)
CN (1) CN103975086B (ja)
ES (1) ES2602800T3 (ja)
IN (1) IN2014KN00959A (ja)
TW (1) TWI519652B (ja)
WO (1) WO2013080518A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151733A (ja) * 2011-12-26 2013-08-08 Jfe Steel Corp オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
WO2014050011A1 (ja) * 2012-09-25 2014-04-03 Jfeスチール株式会社 フェライト系ステンレス鋼
CN105408511A (zh) * 2013-07-29 2016-03-16 杰富意钢铁株式会社 焊接部的耐腐蚀性优良的铁素体系不锈钢
JP5900717B1 (ja) * 2014-12-11 2016-04-06 Jfeスチール株式会社 ステンレス鋼板およびその製造方法
WO2016092713A1 (ja) * 2014-12-11 2016-06-16 Jfeスチール株式会社 ステンレス鋼およびその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080518A1 (ja) * 2011-11-30 2013-06-06 Jfeスチール株式会社 フェライト系ステンレス鋼
US20150023832A1 (en) * 2012-03-13 2015-01-22 Jfe Steel Corporation Ferritic stainless steel
EP3118342B1 (en) * 2014-05-14 2018-12-26 JFE Steel Corporation Ferritic stainless steel
EP3317044B1 (en) * 2015-07-01 2019-08-14 Sandvik Intellectual Property AB A method of joining a fecral alloy with a fenicr alloy using a filler metal by welding
ES2828351T3 (es) * 2016-06-10 2021-05-26 Jfe Steel Corp Chapa de acero inoxidable para separadores de celda de combustible y método de producción para la misma
EP3470539B1 (en) * 2016-06-10 2020-06-17 JFE Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
KR102120695B1 (ko) * 2018-08-28 2020-06-09 주식회사 포스코 산세성이 우수한 페라이트계 스테인리스강
CN113787278B (zh) * 2021-09-01 2023-03-24 武汉轻工大学 一种氮钛复合强化高强钢的混合气体保护焊接工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235450A (ja) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd 低温靭性にすぐれたフエライトステンレス鋼
JP2005089850A (ja) * 2003-09-19 2005-04-07 Nisshin Steel Co Ltd 高強度フェライト系ステンレス鋼
JP2009012070A (ja) * 2007-06-07 2009-01-22 Jfe Steel Kk ステンレス鋼溶接継手の溶接金属およびその形成方法
JP2011173124A (ja) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd フェライト系ステンレス鋼の溶接方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851316A (en) * 1995-09-26 1998-12-22 Kawasaki Steel Corporation Ferrite stainless steel sheet having less planar anisotropy and excellent anti-ridging characteristics and process for producing same
JP2000212704A (ja) * 1999-01-20 2000-08-02 Nippon Steel Corp 加工性および耐食性に優れたフェライト系ステンレス鋼およびその薄鋼板の製造方法
JP3477113B2 (ja) * 1999-06-23 2003-12-10 新日本製鐵株式会社 深絞り成形後の耐二次加工脆性に優れた高純度フェライト系ステンレス鋼板
KR20070116976A (ko) * 2005-06-09 2007-12-11 제이에프이 스틸 가부시키가이샤 벨로스 소관용 페라이트계 스테인리스 강판
KR101179408B1 (ko) * 2006-05-09 2012-09-04 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 내간극 부식성이 우수한 페라이트계 스테인리스 강
WO2013080518A1 (ja) * 2011-11-30 2013-06-06 Jfeスチール株式会社 フェライト系ステンレス鋼
CN104662187A (zh) * 2012-09-25 2015-05-27 杰富意钢铁株式会社 铁素体系不锈钢

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63235450A (ja) * 1987-03-24 1988-09-30 Sumitomo Metal Ind Ltd 低温靭性にすぐれたフエライトステンレス鋼
JP2005089850A (ja) * 2003-09-19 2005-04-07 Nisshin Steel Co Ltd 高強度フェライト系ステンレス鋼
JP2009012070A (ja) * 2007-06-07 2009-01-22 Jfe Steel Kk ステンレス鋼溶接継手の溶接金属およびその形成方法
JP2011173124A (ja) * 2010-02-23 2011-09-08 Nisshin Steel Co Ltd フェライト系ステンレス鋼の溶接方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"AK STEEL 439 ULTRA FORM", ALLOY DIGEST, March 2003 (2003-03-01), pages 11 - 12, XP008171732 *
JUN'ICHI HAMADA ET AL.: "Properties Of Welded Joint Between Ferritic Stainless Steel With High Corrosion Resistance And Other Stainless Steels", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 12, no. 6, 1 September 1999 (1999-09-01), pages 1267, XP008171647 *
KEIICHI YOSHIOKA ET AL.: "Kyokuteitan - Chisso 17% Cr Ferrite-kei Stainless Hagane no Yosetsubu no Jinsei Oyobi Taishokusei ni Oyobosu Gokin Genso no Eikyo", JOURNAL OF THE IRON & STEEL INSTITUTE OF JAPAN, vol. 64, no. 4, 1978, pages S395, XP008171482 *
See also references of EP2787096A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151733A (ja) * 2011-12-26 2013-08-08 Jfe Steel Corp オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
WO2014050011A1 (ja) * 2012-09-25 2014-04-03 Jfeスチール株式会社 フェライト系ステンレス鋼
CN105408511A (zh) * 2013-07-29 2016-03-16 杰富意钢铁株式会社 焊接部的耐腐蚀性优良的铁素体系不锈钢
KR101809812B1 (ko) * 2013-07-29 2017-12-15 제이에프이 스틸 가부시키가이샤 용접부의 내식성이 우수한 페라이트계 스테인레스강
JP5900717B1 (ja) * 2014-12-11 2016-04-06 Jfeスチール株式会社 ステンレス鋼板およびその製造方法
WO2016092713A1 (ja) * 2014-12-11 2016-06-16 Jfeスチール株式会社 ステンレス鋼およびその製造方法
US10626486B2 (en) 2014-12-11 2020-04-21 Jfe Steel Corporation Stainless steel and production method therefor

Also Published As

Publication number Publication date
CN103975086A (zh) 2014-08-06
ES2602800T3 (es) 2017-02-22
EP2787096B1 (en) 2016-10-12
JPWO2013080518A1 (ja) 2015-04-27
TWI519652B (zh) 2016-02-01
EP2787096A4 (en) 2015-07-15
EP2787096A1 (en) 2014-10-08
KR20140117370A (ko) 2014-10-07
TW201331389A (zh) 2013-08-01
CN103975086B (zh) 2016-06-22
US20140294661A1 (en) 2014-10-02
JP5713118B2 (ja) 2015-05-07
IN2014KN00959A (ja) 2015-10-09

Similar Documents

Publication Publication Date Title
JP5713118B2 (ja) フェライト系ステンレス鋼
JP5376099B1 (ja) フェライト系ステンレス鋼
JP5534119B1 (ja) フェライト系ステンレス鋼
WO2008084838A1 (ja) 溶接部耐食性および鋼板の靭性に優れた温水器用フェライト系ステンレス鋼板
CN109415784B (zh) 铁素体系不锈钢板
JP2013133482A (ja) 溶接部の耐食性に優れたフェライト系ステンレス鋼
JP5205953B2 (ja) オーステナイト系ステンレス鋼との異材溶接部の耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
WO2015015735A1 (ja) 溶接部の耐食性に優れたフェライト系ステンレス鋼
JP5556951B2 (ja) フェライト系ステンレス鋼
WO2018147149A1 (ja) フェライト系ステンレス鋼板
JP5205951B2 (ja) オーステナイト系ステンレス鋼との異材溶接部の耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5205952B2 (ja) オーステナイト系ステンレス鋼との異材溶接部の耐食性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5838929B2 (ja) オーステナイト系ステンレス鋼との溶接部の耐食性に優れたフェライト系ステンレス鋼
WO2012172808A1 (ja) フェライト系ステンレス鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013546991

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012852604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012852604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14359782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147017639

Country of ref document: KR

Kind code of ref document: A