WO2013079694A2 - Procede d'estimation de la consommaton energetique d'un vehicule automobile - Google Patents

Procede d'estimation de la consommaton energetique d'un vehicule automobile Download PDF

Info

Publication number
WO2013079694A2
WO2013079694A2 PCT/EP2012/074153 EP2012074153W WO2013079694A2 WO 2013079694 A2 WO2013079694 A2 WO 2013079694A2 EP 2012074153 W EP2012074153 W EP 2012074153W WO 2013079694 A2 WO2013079694 A2 WO 2013079694A2
Authority
WO
WIPO (PCT)
Prior art keywords
speed
path
vehicle
evolution
estimating
Prior art date
Application number
PCT/EP2012/074153
Other languages
English (en)
Other versions
WO2013079694A3 (fr
Inventor
Giovanni GRANATO
Frédéric BONNANS
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to US14/362,229 priority Critical patent/US9840160B2/en
Priority to EP12795796.7A priority patent/EP2785553B1/fr
Priority to JP2014543924A priority patent/JP6320928B2/ja
Publication of WO2013079694A2 publication Critical patent/WO2013079694A2/fr
Publication of WO2013079694A3 publication Critical patent/WO2013079694A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/52Engine fuel consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a method for estimating the energy consumption of a motor vehicle.
  • Energy consumption may refer to power consumption and / or fuel consumption. In the case of an electric vehicle for example, it may be the amount of charge remaining in the battery, commonly called State of Charge (SOC) in English.
  • SOC State of Charge
  • Energy consumption can depend on several factors.
  • a first problem is to identify the factors that contribute the most to consumption. For example, it is known that for a diesel vehicle, the acceleration of the vehicle from a stop, driving with low speed ratios, sudden acceleration, or driving at low speed are factors which have a significant influence on fuel consumption.
  • a known solution for determining energy consumption is to create a very fine numerical model of the engine that best approximates empirical knowledge. However, even if one has such a model, the behavior of the driver is not taken into consideration.
  • the present invention aims to remedy these disadvantages.
  • the invention thus relates to a method for estimating the energy consumption of a motor vehicle during a given journey.
  • the method comprises the following steps:
  • the step of dividing the path into path portions, the step of assigning a set speed to each path portion and restoring a predetermined driving behavior can be provided by the navigation system of the vehicle.
  • the stage of estimation of the evolution of the speed can be carried out using an ARMA model (autoregressive model with moving average).
  • the step of estimating the evolution of the vehicle speed as a function of time can thus be obtained by averaging several estimates.
  • the ARMA model can evolve in real time depending on the behavior of the driver.
  • the characteristics of the portion of the trip may be the type of trip, the length of the trip, the number of traffic lights, the number of intersections.
  • the estimated values of the evolution of the vehicle speed can be filtered using a low-pass filter.
  • the energy consumption can be an electrical consumption and / or a fuel consumption.
  • FIG. 1 is a diagram useful for understanding the process
  • FIG. 2 is a comparative diagram between velocity evolutions estimated using the method and a measured velocity evolution.
  • the method according to the invention makes it possible to take into account the factors related to the driving style of the driver and the factors related to the characteristics of the path to be covered.
  • the method can in particular allow these factors to be taken into account through two pieces of information: past driving data of the driver and information on the journey coming from the navigation system of the vehicle (called NAV).
  • a velocity profile (speed values as a function of the position of the vehicle in each point of the journey) is generated for a given path, for example according to the type of road associated with each of the portions. From this velocity profile, we implement a fairly simple battery model that can describe for example the evolution of the SOC knowing the speed of the vehicle and acceleration.
  • FIG. 1 An example of such a generation of this profile is shown schematically in FIG. 1. The following steps are carried out:
  • the driver enters a destination in the NAV.
  • the NAV provides him with a route to that destination.
  • this path is divided into road segments which are associated with parameters such as, for example, the type of road, a suggested speed, the length of the segment, the indication that it comprises a light or a junction.
  • ARMA models autoregressive moving average models
  • ARMA models are stochastic models, that is, they randomly generate a velocity profile.
  • AR autoregressive part
  • MA middle-mobile part
  • the model is generally noted as ARMA (p, q), where p is the order of the AR part and q is the order of the MA part.
  • Figure 2 illustrates two velocity profiles generated by the same ARMA model for the same path and the profile of the actual velocity measured.
  • Steps 2, 3 and 4 are repeated a large number N times (200 times for example) in order to obtain a mean SOC consumption value, as well as an associated standard deviation.
  • the method may in particular comprise the following steps:
  • ARMA models are classical models that model the future terms of a time series as a linear combination of past terms plus random innovation.
  • ARMA (p, q) considers that the velocity at y_t + 1 is a linear combination of the last p speeds and q terms of innovation:
  • Y_n (y_1, y_2, .., y_n). These values correspond to pre-recorded driver speed values.
  • This series Y_n can be made to be centered, that is to say of zero average. So :
  • the identification of an ARMA model by the historical data of a driver provides most of the information on his driving style.
  • the characteristics of the road also influence consumption. This is why we can identify several ARMA models, each model being associated with a set of characteristics of the road segment. In our case, we can use the speed suggested by the NAV to the driver. In fact, the NAV can offer six different speed values to the driver: 20, 40, 60, 80, 100 and 120 km / h.
  • each segment of the route is associated with one of these values, six different ARMA models can be identified: ARMA20, ARMA40, ARMA60, ARMA80, ARMA100 and ARMA120.
  • Each ARMA model uses a subset of the speed data history for the identification of its coefficients. For example, the subset ⁇ _ ⁇ ⁇ 20 contains all the speed values that were obtained when the driver passed through a segment associated with a suggested speed of 20 km / h. It is the same for other models.
  • the process according to the invention is particularly reliable. For a journey of about 27.4 km, the SOC is estimated with an average accuracy of 1.8% of the value obtained with the measured speeds.
  • the SOC is estimated with an average accuracy of 1.8% of the value obtained with the measured speeds.
  • the difference with the final value of the SOC does not exceed 1.7%.
  • the method according to the invention is used to predict the energy consumption of the vehicle on a given path. This estimated consumption can be used, for example, to estimate the range of the vehicle. Thus circuits can be provided to refill points if necessary.
  • the means for implementing the method according to the invention may comprise:
  • a remote or landed server comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

L'invention a pour objet un procédé d'estimation de la consommation énergétique d'un véhicule automobile pendant un trajet donné, caractérisé en ce qu'il comprend les étapes suivantes: a) une étape de découpage du trajet en portions de trajet, b) une étape d'attribution d'une vitesse de consigne à chaque portion de trajet, en fonction d'au moins une caractéristique de ladite portion, c) une étape d'estimation, pour chaque portion de trajet, de l'évolution de la vitesse du véhicule en fonction du temps, la vitesse étant estimée en fonction d'au moins une caractéristique de la portion de trajet et en fonction d'un comportement de conduite prédéterminé associé à la vitesse de consigne de ladite portion, de manière à établir pour l'ensemble du trajet une estimation de l'évolution de la vitesse du véhicule en fonction du temps, d) une étape d'estimation de la consommation énergétique du véhicule pendant le trajet, en fonction de l'évolution de la vitesse estimée.

Description

PROCEDE D'ESTI MATI ON DE LA CONSOM MATON ENERGETI QUE D'UN
VEHI CULE AUTOMOBI LE
La présente invention a pour objet un procédé d'estimation de la consommation énergétique d'un véhicule automobile.
Dans le contexte de l'estimation de l'autonomie kilométrique d'un véhicule automobile, il apparaît nécessaire de pouvoir prédire de façon fiable la consommation énergétique du véhicule pendant un trajet donné.
La consommation énergétique peut désigner une consommation électrique et/ou une consommation en carburant. Dans le cas d'un véhicule électrique par exemple, il peut s'agir de la quantité de charge restant dans la batterie, couramment appelée State of Charge (SOC) en langue anglaise.
La consommation énergétique peut dépendre de plusieurs facteurs. Un premier problème est d'identifier les facteurs qui contribuent le plus à la consommation. Par exemple, il est connu que pour un véhicule à moteur Diesel, l'accélération du véhicule à partir d'un arrêt, la conduite avec des rapports de vitesse peu élevés, des accélérations trop brusques, ou encore rouler en basse vitesse sont des facteurs qui ont une influence importante dans la consommation de carburant.
Une solution connue pour déterminer la consommation énergétique consiste à créer un modèle numérique très fin du moteur qui s'approche au mieux des connaissances empiriques. Pourtant, même si l'on dispose d'un tel modèle, le comportement du conducteur n'est pas pris en considération.
La présente invention vise à remédier à ces inconvénients.
Elle propose un propose un procédé d'estimation de la consommation énergétique d'un véhicule qui prend en compte le comportement du conducteur et qui est à la fois simple et fiable.
L'invention a ainsi pour objet un procédé d'estimation de la consommation énergétique d'un véhicule automobile pendant un trajet donné.
Le procédé comprend les étapes suivantes :
a) une étape de découpage du trajet en portions de trajet, b) une étape d'attribution d'une vitesse de consigne à chaque portion de trajet, en fonction d'au moins une caractéristique de ladite portion,
c) une étape d'estimation, pour chaque portion de trajet, de l'évolution de la vitesse du véhicule en fonction du temps, la vitesse étant estimée en fonction d'au moins une caractéristique de la portion de trajet et en fonction d'un comportement de conduite prédéterminé associé à la vitesse de consigne de ladite portion, de manière à établir pour l'ensemble du trajet une estimation de l'évolution de la vitesse du véhicule en fonction du temps,
d) une étape d'estimation de la consommation énergétique du véhicule pendant le trajet, en fonction de l'évolution de la vitesse estimée.
L'étape de découpage du trajet en portions de trajet, l'étape d'attribution d'une vitesse de consigne à chaque portion de trajet et rétablissement d'un comportement de conduite prédéterminé peuvent être fournis par le système de navigation du véhicule.
L'étape d'estimation de l'évolution de la vitesse peut être réalisée à l'aide d'un modèle ARMA (modèle autorégressif à moyenne mobile).
L'étape d'estimation de l'évolution de la vitesse du véhicule en fonction du temps peut ainsi être obtenue en faisant la moyenne de plusieurs estimations.
Le modèle ARMA peut évoluer en temps réel en fonction du comportement du conducteur.
La ou les caractéristiques de la portion de trajet peuvent être le type de trajet, la longueur du trajet, le nombre de feux de signalisation, le nombre de carrefours.
Les valeurs estimées de l'évolution de la vitesse du véhicule peuvent être filtrées à l'aide d'un filtre passe-bas.
La consommation énergétique peut être une consommation électrique et/ou une consommation en carburant.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif d'un procédé selon l'invention, la description étant faite en référence aux dessins annexés sur lesquels :
- la figure 1 est un diagramme utile à la compréhension du procédé, et - la figure 2 est un diagramme comparatif entre des évolutions de vitesses estimées à l'aide du procédé et une évolution de vitesse mesurée.
Le procédé selon l'invention permet de prendre en compte les facteurs liés au style de conduite du conducteur et les facteurs liés aux caractéristiques du trajet à parcourir. Le procédé peut permettre en particulier la prise en compte de ces facteurs à travers deux informations : des données de roulages passés du conducteur et des informations sur le trajet provenant du système de navigation du véhicule (appelé NAV).
On génère un profil de vitesses (des valeurs de vitesses en fonction de la position du véhicule dans chaque point du parcours) pour un trajet donné, par exemple en fonction du type de route associé à chacune des portions. A partir de ce profil de vitesses, on met en œuvre un modèle de batterie assez simple qui permet de décrire par exemple l'évolution du SOC en connaissant la vitesse du véhicule et l'accélération.
Un exemple d'une telle génération de ce profil est schématisé à la figure 1. On procède aux étapes suivantes :
1) Le conducteur saisit une destination dans la NAV. La NAV lui fournit un trajet allant à cette destination. Dans la NAV, ce trajet est découpé en segments de route auxquels sont associés des paramètres tels que par exemple le type de route, une vitesse suggérée, la longueur du segment, l'indication selon laquelle il comporte un feu ou un carrefour.
2) Avec cette information, on utilise alors des modèles autorégressifs à moyenne mobile (modèles ARMA) qui permettent de générer un profil de vitesse qui tient compte/ prend en compte les caractéristiques propres au style de conduite (accélération franche/ déplacement rapide de la pédale d'accélérateur, rapport long/ court, paramètres influant sur la consommation énergétque) du conducteur. Les modèles ARMA sont des modèles stochastiques, c'est-à-dire qu'ils génèrent de façon aléatoire un profil de vitesse. Ainsi, si l'on génère deux profils de vitesse avec un même modèle ARMA, ces profils seront différents. Le modèle est composé de deux parties : une partie autorégressive (AR) et une partie moyenne-mobile (MA). Le modèle est généralement noté ARMA(p,q), où p est l'ordre de la partie AR et q l'ordre de la partie MA. La figure 2 illustre deux profils de vitesse générés par le même modèle ARMA pour le même trajet et le profil de la vitesse réelle mesurée.
3) Le profil de vitesse est filtré avec un filtre passe-bas afin d'exclure les accélérations qui ne sont pas réalistes.
4) Une fois le profil de vitesse filtré, il est possible d'appliquer le modèle d'évolution du SOC pour calculer la quantité de charge que le conducteur aurait consommé s'il avait suivi exactement ce profil de vitesse (aux erreurs du modèle de batterie près).
5) Les étapes 2, 3 et 4 sont répétées un grand nombre N de fois (200 fois par exemple) afin d'obtenir une valeur moyenne de consommation de SOC, ainsi qu'un écart-type associé.
Le procédé peut en particulier comprendre les étapes suivantes :
- saisie d'une destination dans la navigation,
- génération d'un trajet par la navigation,
- envoi des données du trajet au serveur débarqué,
- segmentation du parcours par le serveur débarqué et caractérisation de ces segments,
- génération (calcul) des profils de vitesse de chacun des segments selon l'un des modèles ARMA implanté dans la mémoire,
- filtration des résultats à l'aide d'un filtre basse bas,
- association de chacune des vitesses estimées par le modèle ARMA au
SOC, et
- répétition des trois dernières étapes.
La suite de la description est consacrée au détail de la méthode de construction des modèles ARMA.
Les modèles ARMA sont des modèles classiques qui modélisent les termes futurs d'une série temporelle comme étant une combinaison linéaire de termes passés plus une innovation aléatoire.
Notons y_t la vitesse véhicule à l'instant t. On peut imaginer que, étant donné la vitesse y_t, la vitesse du véhicule dans le prochain instant t+ 1 est prédite par la valeur antérieure de vitesse plus un terme aléatoire :
>'t , 1 = «>'r + bet, i. où a et b sont des constantes réelles et le terme e_t+ 1 est une variable aléatoire dite d'innovation, autrement dit, un bruit blanc strict, c'est- à-dire, de moyenne nulle et de variance unitaire.
II s'agit ici d'un modèle ARMA(1,1). Plus généralement, un modèle
ARMA(p,q) considère que la vitesse à y_t+ 1 est une combinaison linéaire des p dernières vitesses et de q termes d'innovation :
F
Λ+i = yt-i + ^ fr β(-ί+ι
i=I j'=I
Dans la suite, on utilise le modèle ARMA(1,1) pour expliquer la procédure d'identification des coefficients a et b, celle-ci étant facilement étendue pour identifier les coefficients a_0,a_1 ,..,a_p et b_0, .., b_q.
Pour l'identification du modèle ARMA(1,1), on dispose d'une base de données avec une suite de valeurs Y_n= (y_1 ,y_2,..,y_n). Ces valeurs correspondent à des valeurs de vitesses du conducteur enregistrées au préalable.
On peut faire en sorte que cette série Y_n soit centrée, c'est-à-dire de moyenne nulle. Ainsi :
¥ar(yt l) = E(y?+i) = a2 = m2 a2 + h2
où les fonctions E(.) et Var(.) désignent respectivement l'espérance et la variance des variables.
11 en découle que : b2 = a2(l - a2}
On doit vérifier la condition /a/ < 1 pour assurer la stabilité du modèle. D'autre part : y(l) =F( ryr + l) = a.E(yt 2} = a-a2
et donc : a =——
a1
Les valeurs de °l et peuvent être estimées à travers les valeurs Y_n. On obtient ainsi les valeurs de a et b.
L'identification d'un modèle ARMA par les données historiques d'un conducteur (ou bien une classe de conducteurs, ou les conducteurs d'un certain véhicule) procure l'essentiel de l'information sur son style de conduite.
Les caractéristiques de la route influent également sur la consommation. C'est pourquoi on peut identifier plusieurs modèles ARMA, chaque modèle étant associé à un ensemble de caractéristiques du segment de route. Dans notre cas, on peut utiliser la vitesse suggérée par la NAV au conducteur. De fait, la NAV peut proposer six valeurs de vitesse différentes au conducteur : 20, 40, 60, 80, 100 et 120 km/h.
Comme chaque segment du parcours est associé à l'une de ces valeurs, on peut identifier six modèles ARMA différents : ARMA20, ARMA40, ARMA60, ARMA80, ARMA100 et ARMA120. Chaque modèle ARMA utilise pour l'identification de ses coefficients un sous-ensemble de l'historique de données de vitesse. Par exemple, le sous-ensemble Υ_ηΛ 20 contient toutes les valeurs de vitesse qui ont été obtenues lorsque le conducteur passait par un segment associé à une vitesse suggérée de 20 km/h. Il y est de même pour les autres modèles.
Le procédé selon l'invention est particulièrement fiable. Pour un trajet d'environ 27.4 km, le SOC est estimé avec une précision moyenne de 1.8% de la valeur obtenue avec les vitesses mesurées. On constate également que lorsqu'on augmente l'ordre des modèles ARMA, il y a une augmentation de la performance : pour les modèles ARMA(1,2) et ARMA(2,1) testés, l'écart avec la valeur finale du SOC ne dépasse pas 1.7% .
Il est possible d'utiliser des modèles ARMA d'ordre plus élevé. De fait, une augmentation de l'ordre du modèle ne ralentit pas l'étape de simulation. C'est l'étape d'identification des modèles qui s'avère plus coûteuse. Or, cette étape se faisant hors-ligne, il peut être avantageux d'utiliser des modèles avec un ordre plus élevé. Un grand nombre de simulations peut être nécessaire afin de s'assurer de la pertinence des résultats. Ce nombre de simulations avant de pouvoir afficher une estimation de la consommation fiable dépend du style de conduite du conducteur. Si le style de conduite est plus régulier, les modèles ARMA seront plus représentatifs, pour un même nombre de simulations.
On peut également imaginer l'intégration de paramètres exogènes autres que la vitesse recommandée par la NAV, comme par exemple les conditions météorologiques ou les conditions du trafic.
Le procédé selon l'invention est utilisé pour prédire la consommation énergétique du véhicule sur un trajet donnée. Cette consommation estimée peut être utilisée, par exemple, pour estimer l'autonomie du véhicule. On peut ainsi peut prévoir des circuits vers de points de recharges si cela s'avère nécessaire.
Les moyens pour mettre en œuvre le procédé selon l'invention peuvent comprendre :
• un véhicule équipé de :
- une navigation,
- un module de communication,
- un réseau mettant en liaison la navigation et le module de communication, et
- un module de détermination du niveau de charge du réservoir de carburant ou électricité,
• un serveur déporté ou débarqué comprenant :
- des moyens de calcul,
- des moyens de mémorisation, et
- un module de communication.

Claims

REVENDI CATI ONS
1. Procédé d'estimation de la consommation énergétique d'un véhicule automobile pendant un trajet donné, caractérisé en ce qu'il comprend les étapes suivantes : a) une étape de découpage du trajet en portions de trajet, b) une étape d'attribution d'une vitesse de consigne à chaque portion de trajet, en fonction d'au moins une caractéristique de ladite portion, c) une étape d'estimation, pour chaque portion de trajet, de l'évolution de la vitesse du véhicule en fonction du temps, la vitesse étant estimée en fonction d'au moins une caractéristique de la portion de trajet et en fonction d'un comportement de conduite prédéterminé associé à la vitesse de consigne de ladite portion, de manière à établir pour l'ensemble du trajet une estimation de l'évolution de la vitesse du véhicule en fonction du temps, d) une étape d'estimation de la consommation énergétique du véhicule pendant le trajet, en fonction de l'évolution de la vitesse estimée.
2. Procédé selon la revendication 1, caractérisé en ce que l'étape de découpage du trajet en portions de trajet, l'étape d'attribution d'une vitesse de consigne à chaque portion de trajet et l'établissement d'un comportement de conduite prédéterminé sont fournis par le système de navigation du véhicule.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape d'estimation de l'évolution de la vitesse est réalisée à l'aide d'un modèle autorégressif à moyenne mobile.
4. Procédé selon la revendication 3, caractérisé en ce que l'étape d'estimation de l'évolution de la vitesse du véhicule en fonction du temps est obtenue en faisant la moyenne de plusieurs estimations.
5. Procédé selon la revendication 3 ou 4, caractérisé en ce que le modèle autorégressif à moyenne mobile évolue en temps réel en fonction du comportement du conducteur.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la ou les caractéristiques de la portion de trajet sont le type de trajet, la longueur du trajet, le nombre de feux de signalisation, le nombre de carrefours.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que les valeurs estimées de l'évolution de la vitesse du véhicule sont filtrées à l'aide d'un filtre passe-bas.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que la consommation énergétique est une consommation électrique et/ou une consommation en carburant.
PCT/EP2012/074153 2011-12-02 2012-11-30 Procede d'estimation de la consommaton energetique d'un vehicule automobile WO2013079694A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/362,229 US9840160B2 (en) 2011-12-02 2012-11-30 Method for estimating the energy consumption of a motor vehicle
EP12795796.7A EP2785553B1 (fr) 2011-12-02 2012-11-30 Procede d'estimation de la consommaton energetique d'un vehicule automobile
JP2014543924A JP6320928B2 (ja) 2011-12-02 2012-11-30 動力車のエネルギー消費量を推定するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1161110 2011-12-02
FR1161110A FR2983614B1 (fr) 2011-12-02 2011-12-02 Procede d'estimation de la consommaton energetique d'un vehicule automobile

Publications (2)

Publication Number Publication Date
WO2013079694A2 true WO2013079694A2 (fr) 2013-06-06
WO2013079694A3 WO2013079694A3 (fr) 2014-01-30

Family

ID=47294888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/074153 WO2013079694A2 (fr) 2011-12-02 2012-11-30 Procede d'estimation de la consommaton energetique d'un vehicule automobile

Country Status (5)

Country Link
US (1) US9840160B2 (fr)
EP (1) EP2785553B1 (fr)
JP (1) JP6320928B2 (fr)
FR (1) FR2983614B1 (fr)
WO (1) WO2013079694A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103660984A (zh) * 2013-11-26 2014-03-26 北京航空航天大学 一种基于远程数据传输的纯电动汽车续驶里程估计装置及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014208757A1 (de) * 2014-05-09 2015-11-12 Continental Automotive Gmbh Verfahren zur Prädiktion eines Treibstoffverbrauchs und der Ankunftszeit für eine Fahrzeugnavigationsvorrichtung
KR20180074373A (ko) * 2016-12-23 2018-07-03 삼성전자주식회사 운송 장치 및 운송 장치 제어 방법
US11420641B2 (en) * 2017-12-21 2022-08-23 Spark EV Technology, Ltd. System and method for determining the energy requirement of a vehicle for a journey
US11060883B2 (en) * 2017-12-21 2021-07-13 Spark EV Technology Ltd. System and method for determining the energy requirement of a vehicle for a journey
CN113276683B (zh) * 2021-07-23 2021-10-08 江铃汽车股份有限公司 电动车电耗计算方法及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609265B2 (ja) * 1998-08-28 2005-01-12 日本電信電話株式会社 交通状況提供方法、システム、および交通状況提供プログラムを記録した記録媒体
JP3654048B2 (ja) 1999-05-20 2005-06-02 日産自動車株式会社 ハイブリッド車両の駆動制御装置
JP2005098749A (ja) 2003-09-22 2005-04-14 Toyota Motor Corp 車両用ナビゲーション装置
US8712650B2 (en) * 2005-11-17 2014-04-29 Invent.Ly, Llc Power management systems and designs
EP2203718B1 (fr) * 2007-10-26 2014-03-12 TomTom International B.V. Procédé pour traiter des données de localisation
DE102007059120A1 (de) * 2007-12-07 2009-06-10 Robert Bosch Gmbh Verfahren zur Bestimmung einer Route und Vorrichtung dazu
JP2009193425A (ja) * 2008-02-15 2009-08-27 Xanavi Informatics Corp 燃費推定装置、経路探索装置
US8330810B2 (en) * 2008-02-27 2012-12-11 Honeywell International Inc. Systems and method for dynamic stabilization of target data detected from a moving platform
EP2221581B1 (fr) * 2009-02-18 2017-07-19 Harman Becker Automotive Systems GmbH Procédé d'évaluation d'un paramètre de fonction associé à la propulsion
DE102010030309A1 (de) * 2010-06-21 2011-12-22 Ford Global Technologies, Llc Verfahren und Vorrichtung zur Ermittlung einer energieverbrauchsoptimierten Route
WO2012009479A1 (fr) * 2010-07-13 2012-01-19 Telenav, Inc. Système de navigation ayant un mécanisme de guidage de destination sur base d'itinéraire écologique et son procédé de fonctionnement
US8755993B2 (en) * 2011-03-08 2014-06-17 Navteq B.V. Energy consumption profiling
US8706416B2 (en) * 2012-04-03 2014-04-22 Ford Global Technologies, Llc System and method for determining a vehicle route
EP2759439B1 (fr) * 2013-01-25 2021-05-19 Volvo Car Corporation Procédé et système d'interface utilisateur d'un véhicule pour fournir un indicateur de niveau d'énergie par rapport à un compteur de distance de véhicule
US9759573B2 (en) * 2014-08-29 2017-09-12 Ford Global Technologies, Llc Route based energy consumption estimation using physical models
US10048082B2 (en) * 2014-08-29 2018-08-14 Ford Global Technologies, Llc Route and model based energy estimation
US9558660B1 (en) * 2015-07-31 2017-01-31 Here Global B.V. Method and apparatus for providing state classification for a travel segment with multi-modal speed profiles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103660984A (zh) * 2013-11-26 2014-03-26 北京航空航天大学 一种基于远程数据传输的纯电动汽车续驶里程估计装置及方法
CN103660984B (zh) * 2013-11-26 2016-12-07 北京航空航天大学 一种基于远程数据传输的纯电动汽车续驶里程估计装置及方法

Also Published As

Publication number Publication date
JP6320928B2 (ja) 2018-05-09
FR2983614A1 (fr) 2013-06-07
EP2785553B1 (fr) 2021-07-21
US20140324328A1 (en) 2014-10-30
FR2983614B1 (fr) 2017-02-03
EP2785553A2 (fr) 2014-10-08
JP2015512027A (ja) 2015-04-23
US9840160B2 (en) 2017-12-12
WO2013079694A3 (fr) 2014-01-30

Similar Documents

Publication Publication Date Title
EP2785553B1 (fr) Procede d&#39;estimation de la consommaton energetique d&#39;un vehicule automobile
EP3315913B1 (fr) Procédé de détermination d&#39;un itinéraire minimisant la dépense énergétique d&#39;un véhicule au moyen d&#39;un graphe adjoint
US10605615B2 (en) Vehicle routing and notifications based on characteristics
EP3317139B1 (fr) Procédé de calcul d&#39;une consigne de gestion de la consommation en carburant et en courant électrique d&#39;un véhicule automobile hybride
EP2790988B1 (fr) Procede de gestion d&#39;energie pour un vehicule electrique
FR2967253A1 (fr) Procede et dispositif pour determiner un trajet de guidage vers une destination
EP3565747A1 (fr) Procede de calcul d&#39;une consigne de gestion de la consommation en carburant et en courant electrique d&#39;un vehicule automobile hybride
EP1463921A1 (fr) Procede et dispositif pour determiner le chemin de cout minimal entre deux points dans un reseau routier
Grubwinkler et al. A modular and dynamic approach to predict the energy consumption of electric vehicles
WO2020064586A1 (fr) Procédé de calcul d&#39;une consigne de gestion de la consommation en carburant et en courant électrique d&#39;un véhicule automobile hybride
WO2020058234A1 (fr) Dispositif de prédiction de trajet le plus probable d&#39;un véhicule
FR3068322A1 (fr) Procede de gestion de la chaine de traction d&#39;un vehicule hybride
EP3599445B1 (fr) Procédé de détermination d&#39;un itineraire minimisant la dépense energetique d&#39;un vehicule hybride au moyen d&#39;un graphe adjoint étendu
FR3119040A1 (fr) Méthodes pour la prédiction de la consommation énergétique d’un véhicule automobile
WO2013190233A1 (fr) Méthode d&#39;estimation d&#39;un temps de parcours d&#39;un véhicule dans un réseau routier
FR2995275A1 (fr) Procede d&#39;apprentissage d&#39;economie d&#39;energie pour la conduite d&#39;un vehicule electrique ou hybride
FR3096315A1 (fr) Procédé et dispositif de gestion de la charge d’un véhicule électrique
FR3089463A1 (fr) Procédé de détermination de l’autonomie d’un véhicule
CN116989817B (zh) 基于数据分析的能源设备安全检测数据传输系统及方法
FR3132760A1 (fr) Systeme de navigation connecte
FR2988060A1 (fr) Procede de gestion d&#39;energie d&#39;un vehicule electrique
KR20230170305A (ko) 차량 운행지수 평가 방법 및 장치
CN117495047A (zh) 一种补能站点确定方法、装置及电子设备
FR3139643A1 (fr) Augmentation de données à partir d’une série temporelle de la vitesse instantanée d’un véhicule automobile
WO2018051017A1 (fr) Procede d&#39;evaluation de l&#39;etat d&#39;usure d&#39;un vehicule

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012795796

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014543924

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14362229

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12795796

Country of ref document: EP

Kind code of ref document: A2