WO2013079405A1 - Verfahren zum betreiben einer verbrennungskraftmaschine sowie zur ausführung des verfahrens eingerichtetes steuergerät - Google Patents

Verfahren zum betreiben einer verbrennungskraftmaschine sowie zur ausführung des verfahrens eingerichtetes steuergerät Download PDF

Info

Publication number
WO2013079405A1
WO2013079405A1 PCT/EP2012/073470 EP2012073470W WO2013079405A1 WO 2013079405 A1 WO2013079405 A1 WO 2013079405A1 EP 2012073470 W EP2012073470 W EP 2012073470W WO 2013079405 A1 WO2013079405 A1 WO 2013079405A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
lambda
probe
value
setpoint
Prior art date
Application number
PCT/EP2012/073470
Other languages
English (en)
French (fr)
Other versions
WO2013079405A8 (de
Inventor
Hermann Hahn
Original Assignee
Volksawgen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volksawgen Ag filed Critical Volksawgen Ag
Priority to US14/361,088 priority Critical patent/US9212584B2/en
Priority to CN201280059333.0A priority patent/CN103958868B/zh
Priority to EP12795389.1A priority patent/EP2786002B1/de
Publication of WO2013079405A1 publication Critical patent/WO2013079405A1/de
Publication of WO2013079405A8 publication Critical patent/WO2013079405A8/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1482Integrator, i.e. variable slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1483Proportional component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay

Definitions

  • the invention relates to a method for operating an internal combustion engine, wherein an exhaust gas generated by the internal combustion engine is guided over a arranged in an exhaust passage 3-way catalyst.
  • Processes for lambda control in internal combustion engines can be used to reduce the emissions of harmful exhaust gases into the environment.
  • at least one catalyst can be arranged in the exhaust system of the internal combustion engine.
  • a lambda probe can be arranged in the exhaust system of the internal combustion engine.
  • FIG. 2 Shown in FIG. 2 is a control method, as is usually used when using leaky lambda probes.
  • the upper curve shows the probe signal versus time and the lower curve the regulator action against time.
  • These probes change the direction of the controller when the probe crosses a predetermined threshold, for example 450mV, which is the stoichiometric point (here at times t1, t2 and t3).
  • a predetermined threshold for example 450mV, which is the stoichiometric point (here at times t1, t2 and t3).
  • the course of the signal above or below the respective threshold is not further used or utilized in the regulation, but the adjustment takes place independently of this pilot-controlled, usually via a fixed P and I share, which in turn depends on other variables such as for example, the operating point.
  • a disadvantage of this method is the comparatively slow control speed, since above or below the control threshold, the absolute signal value no further is considered and thus larger mixture deviations are compensated only with the previously determined control speed. Furthermore, it is disadvantageous that the switching frequency is comparatively high and is essentially determined only by the line transit time to the probe and the probe dead time. Thus, it is not possible to predetermine the oxygen introduction or discharge into the downstream catalyst, so that the conversion efficiency of the catalyst is limited.
  • FIG. 3 shows a control method, as is usually used when probes with an accurate lambda signal are also used outside of the stoichiometric point, that is to say generally broadband lambda probes (lambda actual value from the probe signal: rich dark curve; lambda setpoint value) the probe: narrow dark curve, control variable of the controller: bold bright curve, engine lambda nominal value: narrow rectangle curve).
  • the modulation is set via a variation of the lambda setpoint.
  • the control deviation is determined, which is supplied to a suitable controller (for example PID controller).
  • a consideration of the track behavior takes place, if not the motor target value is used for calculating the difference, but, taking into account the track runtime, the course of the motor target value is related to the position of the probe and this value is used as setpoint at the probe position.
  • FIG. 5 shows a typical characteristic curve of jump lambda probes.
  • this behavior also leads to overshoots in the controller value and, as a result, in the lambda value, as shown at time t5, with the disadvantages described above.
  • an exhaust gas generated by the internal combustion engine is passed over a 3-way catalyst arranged in the exhaust passage.
  • a lambda probe detects a characteristic of an exhaust lambda size before the 3-way catalytic converter and forwards them to an engine control unit with integrated PI or PID controller on.
  • the PI or PID controller of the engine control unit sets a substantially stoichiometric exhaust lambda by specifying a desired value, and the exhaust lambda is adjusted with predetermined periodic setpoint variation alternately deflected in the direction of a lean lambda value and a lambda lambda value (lambda modulation).
  • a pre-controlled P-component with subsequent I-component is preset up to a time t2, the time t2 being set by means of stored parameters characterizing a line-time behavior such that at this time t2 the probe signal or a variable derived therefrom would have reached the setpoint specification.
  • switching is effected to a regulation for a predefinable period of time until the end of the respective desired value variation, which is based on a difference between an actual value and the desired value of the lambda probe or a variable derived therefrom.
  • the invention is based on the finding that a change from the pilot-controlled regulator setting to a (preferably continuous) control brings with it the advantages of the two different controller types without the disadvantages of the two controller types having to be accepted.
  • a size of the P component is determined as a function of a desired amplitude of the setpoint variation.
  • An I component can then be set so that at time t2 the probe signal or a quantity derived therefrom would reach the setpoint.
  • a preferred variant of the method provides that, to determine a reaction time of the lambda probe, a minimum reaction of the lambda probe is defined in comparison to the state before the regulator switchover and the time that has elapsed since the regulator changeover to the minimum reaction of the lambda probe is detected as the reaction time.
  • the response time is preferably only determined if the setpoint specified by the PI or PID controller exceeds a predetermined minimum size. The reaction time can be recorded separately from the lambda probe after a fat-lean jump and a lean-fat jump.
  • control device for controlling an operation of an internal combustion engine, which is set up for carrying out the method according to the invention.
  • the controller may include a computer-readable control algorithm for performing the method.
  • the control unit is an integral part of the engine control unit.
  • Figure 1 shows a schematic structure of an internal combustion engine with an exhaust system and 3-way catalytic converter
  • Figure 2 shows the time course of the exhaust gas lambda upstream of the 3-way catalyst and the regulator intervention according to a first variant of the conventional method
  • Figure 3 is a time course of the exhaust gas lambda upstream of the 3-way catalyst and the regulator engagement according to a second variant of the conventional
  • FIG. 4 Behavior of the controller for the conventional method according to FIG. 3 with inappropriate route parameters
  • FIG. 5 characteristic curve of a jump lambda probe for the conventional method according to FIG.
  • Figure 6 shows the time course of the exhaust gas lambda upstream of the 3-way catalyst and the regulator intervention according to the inventive method.
  • FIG. 7 Determination of the step response time according to the method of the invention.
  • FIG. 1 shows schematically the structure of an internal combustion engine 10 with a downstream exhaust system.
  • the internal combustion engine 10 may be a spark ignition engine (gasoline engine). With regard to their fuel supply, they can have a direct injection fuel supply, so working with internal mixture formation, or have a pilot fuel injection and thus work with external mixture formation.
  • the internal combustion engine 10 can be operated homogeneously, wherein in the entire combustion chamber of a cylinder, there is a homogeneous air-fuel mixture at the ignition point, or in an inhomogeneous mode (stratified charge mode), in which at the time of ignition a comparatively rich air-fuel mixture, especially in the area of a spark plug, is present, which is surrounded by a very lean mixture in the remaining combustion chamber.
  • the internal combustion engine 10 with a substantially stoichiometric air-fuel mixture can be operated, that is, with a mixture with a lambda value close to or equal to 1.
  • the exhaust system comprises an exhaust manifold, which merges the exhaust gas of the individual cylinders of the internal combustion engine 10 into an exhaust gas channel 16.
  • various exhaust gas purifying components may be present.
  • Essential within the scope of the present invention is a 3-way catalyst 20 arranged in the exhaust gas duct 16.
  • the 3-way catalyst 20 has a coating of catalytically active components, such as platinum, rhodium and / or palladium, on a porous catalyst support, for example, from Al 2 0 3 , are applied.
  • the coating further comprises an oxygen storage component, for example cerium oxide (CeO 2 ) and / or zirconium oxide (ZrO 2 ), which determines the oxygen storage capacity (OSC) of the 3-way catalyst 20.
  • an oxygen storage component for example cerium oxide (CeO 2 ) and / or zirconium oxide (ZrO 2 ), which determines the oxygen storage capacity (OSC) of the 3-way catalyst 20.
  • OSC oxygen storage capacity
  • the 3-way catalyst 20 can reduce nitrogen oxides NO x to nitrogen N 2 and oxygen 0 2 .
  • the exhaust duct 16 may contain various sensors, in particular gas and temperature sensors. Shown here is a lambda probe 26, which is arranged at a position close to the engine in the exhaust gas channel 16.
  • the lambda probe 26 can be designed as a step response lambda probe or as a broadband lambda probe and, in a known manner, enables the lambda control of the internal combustion engine 10, for which purpose it measures the oxygen content of the exhaust gas.
  • various parameters of the internal combustion engine 10, in particular the engine speed and the engine load are read from the engine control unit 28.
  • a controller implemented in the engine control unit 28 thus controls the operation of the internal combustion engine 10, in particular regulating the fuel supply and the air supply such that a desired fuel mass and a desired air mass supplied to represent a desired air-fuel mixture (the exhaust target lambda).
  • the air-fuel mixture is determined as a function of the operating point of the internal combustion engine 10, in particular the engine speed and the engine load from maps.
  • the internal combustion engine 10 To improve the cleaning effect of the 3-way catalytic converter 20, provision is made for the internal combustion engine 10 to be operated continuously with a substantially stoichiometric average lambda value, the air-fuel ratio supplied to the internal combustion engine 10 having a predetermined oscillation frequency and a predetermined oscillation amplitude about this mean lambda value is periodically alternately deflected in the direction of a lean lambda value and a lambent lambda value (so-called lambda modulation). The oscillation frequency and the oscillation amplitude are selected so that the 3-way catalyst 20 is regenerated quasi-continuously.
  • a continuous stoichiometric operation of internal combustion engine 10 is understood to mean that it is not switched back and forth between a standard operating mode and a regeneration operating mode, as is conventional in the prior art, but is operated virtually over its entire operating range in the illustrated stoichiometric mode with the lambda oscillation ,
  • the internal combustion engine is driven over at least 98% of all stored in the operating map of the controller 28 operating points in the illustrated stoichiometric operation and this is not interrupted by regeneration intervals.
  • the term quasi-continuous regeneration of the 3-way catalytic converter 20 is understood to mean that its load state remains substantially constant and in particular at an extremely low level. This means that in the time average during a time interval in the size range less lambda oscillations no increasing loading of the 3-way catalyst 20 takes place. Preferably, a limit of at most 50% of the maximum load of the 3-way catalyst 20 is not exceeded.
  • the oscillation frequency and the oscillation amplitude are further selected so that a minimum conversion rate of unburned hydrocarbons (HC) and / or carbon monoxide (CO) and / or nitrogen oxides (NO x ) is present at the 3-way catalytic coating 22, wherein the minimum conversion rate of statutory Limit values.
  • the oscillation frequency is determined as a function of a current operating point of the internal combustion engine 10, in particular as a function of the engine load and / or engine rotational speed.
  • the oscillation amplitude can also be determined as a function of the OSC.
  • a controller implemented in the engine control unit 28 thus controls the operation of the internal combustion engine 10 to represent a desired exhaust target lambda.
  • Controllers automatically influence one or more physical variables to a predetermined level while reducing disturbing influences.
  • controllers within a control loop continuously compare the signal of the setpoint with the measured and returned actual value of the controlled variable and determine from the difference between the two variables - the control deviation (control deviation) - a manipulated variable which influences the controlled system in such a way that the control deviation becomes a minimum .
  • the controller must increase the value of the control deviation and at the same time compensate for the time behavior of the path so that the control variable reaches the desired value in the desired manner. Incorrectly set controllers make the control loop too slow, lead to a large control deviation or to undamped oscillations of the controlled variable and thus possibly to the destruction of the controlled system.
  • the controllers are distinguished according to continuous and unsteady behavior. Among the best-known continuous controllers are the "standard controllers" with P, PI, PD and PID behavior.
  • a linear proportional, integral and derivative (PID) controller is preferably used.
  • the PID controller therefore consists of the proportions of the P-element, the I-element and the D-element.
  • the P element provides a contribution to the manipulated variable, which is proportional to the control deviation.
  • the I-element acts by temporal integration of the control deviation on the manipulated variable with a weighting by the reset time.
  • the D-element is a differentiator, which is only used in conjunction with regulators with P and / or I behavior as a controller. He does not react to the level of the control deviation, but only to the rate of change.
  • lambda modulation takes place as shown in FIG. 6 (actual lambda value from the probe signal: rich dark curve, control variable of the controller: bold bright curve, lambda nominal value ranges: bright rectangles).
  • the switching of the controller direction takes place.
  • P jump P component to reach the setpoint.
  • the size of the P-jump can depend on various parameters. Among others, the P-jump may be dependent on a fixed desired amplitude. In a preferred embodiment, it may be determined here which portion of the specified desired amplitude is to be displayed via the P jump.
  • the current distance of the probe signal or a quantity derived therefrom can be evaluated by the current or future target value or target range, and the P jump can additionally be made dependent on this distance.
  • the magnitude of the P-jump is determined, which is necessary in order to arrive at the future setpoint value from the current lambda actual value, the desired setpoint containing the predetermined proportion, which of the setpoint desired amplitude is assigned to the P-set. Jump was assigned.
  • the controller is further adjusted with a fixed I component. From stored data, the distance running time and the probe reaction time is known. Therefore, the I-component is determined so that at time t2 (without further interference) the probe signal or a quantity derived therefrom (preferably lambda) is expected to reach the target value or the target range, which means setting the full desired nominal amplitude ,
  • the I component depends on both the track characteristics, as well as the fixed portion of the amplitude to the P-jump, since the difference between the total amplitude and the fixed portion of the amplitude for the P-jump over the I component must be adjusted until the time t2.
  • the method combines the advantages of feedforward control and (continuous) control.
  • the data stored for the characterization of the track behavior may, for example, take into account a behavior as shown in FIG. 4 at the time t4.
  • Step response time are used to evaluate the probe dynamics (lambda actual value from the probe signal: rich dark curve, control variable of the controller: bold bright curve, engine lambda nominal value: narrow rectangular curve, At s : step response time).
  • a minimum reaction of the probe is defined in comparison to the state before the government changeover. This can be, for example, a signal change which corresponds to 20 to 50%, preferably 30%, of the pilot-controlled mixture adjustment.
  • the step response time is now the time that has passed since the controller jump until the minimum reaction of the probe has been reached.
  • the actual time of government switching is not used exactly as the time of the control switching for the determination of the minimum reaction of the probe, but taking into account the known line parameters of the reference value of the probe is determined only at a definable later date, which is after the Government switching, but before the modified mixture reaches the probe.
  • a valid step response time is only determined if the pilot-controlled regulator adjustment had at least one predeterminable minimum size.
  • the current time or a substitute variable is likewise evaluated as a valid step response time.
  • the probe signal has a consistently constant value due to an error, that is, the minimum response would never be reached and thus no step response time would be determined.
  • the stored distance dead time can be deducted and so the pure probe reaction time can be determined.
  • the probe response time may be used to generate a maintenance signal if this or a quantity derived therefrom exceeds defined thresholds.
  • the probe reaction time for evaluation can be considered separately after fat-lean jump and lean-fat jump.
  • a further advantage of the method according to the invention is that with dynamically deteriorating probes, the overshoots described in FIG. 4 at times t1 and t2 can be easily avoided, so that the method according to the invention has a higher stability and robustness compared to dynamically deteriorating probes than heretofore known method.
  • a certain security can be added to the course delay parameters to determine the time t2 in Figure 6, ie the switch to the fast controller. This can be done, for example, by multiplicative and / or additive values. Switching to the fast controller is done a little later than would be possible with a fast sensor, but only if a slower reacting sensor had arrived at the signal target value.
  • the probe reaction time determined as described above can be used to adapt the control method.
  • at least one, preferably the larger of the two probe reaction times that is to say reaction times separated according to fat lean or lean fat jump
  • suitable timers for the route parameters are preferably derived.
  • control parameters of the subsequently activated, continuous control are adapted to the probe reaction time.
  • the controller can be made slower for a dynamically worse probe and thus overshoots can be avoided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Verbrennungskraftmaschine. Gemäss dem Verfahren wird ein von der Verbrennungskraftmaschine erzeugtes Abgas über einen im Abgaskanal angeordneten 3-Wege-Katalysator geführt. Eine Lambdasonde erfasst eine für ein Abgaslambda charakteristische Grösse vor dem 3-Wege-Katalysator und leitet diese an ein Motorsteuergerät mit integriertem PI- oder PID-Regler weiter. Mit dem PI- oder PID-Regler des Motorsteuergeräts wird durch Vorgabe eines Sollwertes ein im Wesentlichen stöchiometrisches Abgaslambda eingestellt und das Abgaslambda mit vorgegebener periodischer Sollwertvariation alternierend in Richtung eines Magerlambdawertes und eines Fettlambdawertes ausgelenkt (Lambdamodulation). Zu Beginn einer jeden Sollwertvariation wird ein vorgesteuerter P-Anteil mit anschliessendem I-Anteil bis zu einem Zeitpunkt t2 vorgegeben, wobei der Zeitpunkt t2 mittels hinterlegter, ein Streckenzeitverhalten charakterisierender Parameter so festgelegt wird, dass zu diesem Zeitpunkt t2 das Sondensignal oder eine davon abgeleitete Grösse die Sollwertvorgabe erreicht haben müsste. Vom Zeitpunkt t2 an wird für eine vorgebbare Zeitspanne bis zum Ende der jeweiligen Sollwertvariation auf eine Regelung umgeschaltet, welche auf einer Differenz zwischen einem Istwert und dem Sollwert der Lambdasonde oder einer davon abgeleiteten Grösse beruht.

Description

Beschreibung
Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des
Verfahrens eingerichtetes Steuergerät
Die Erfindung betrifft ein Verfahren zum Betreiben einer Verbrennungskraftmaschine, wobei ein von der Verbrennungskraftmaschine erzeugtes Abgas über einen in einem Abgaskanal angeordneten 3-Wege-Katalysator geführt wird.
Stand der Technik und technologischer Hintergrund
Verfahren zur Lambdaregelung bei Verbrennungsmotoren können eingesetzt werden, um die Emissionen schädlicher Abgase in die Umwelt zu reduzieren. Dazu kann in der Abgasanlage des Verbrennungsmotors zumindest ein Katalysator angeordnet werden. Um den Katalysator in einem optimalen Betriebspunkt zu halten, ist es notwendig, die Gemischaufbereitung des Verbrennungsmotors mit Hilfe einer Lambdaregelung so zu steuern, dass sich zumindest im Mittelwert ein geregelter Lambdawert ergibt, der möglichst nahe bei 1 ,0 liegt. Zum Generieren eines Messsignals kann in der Abgasanlage des Verbrennungsmotors eine Lambdasonde angeordnet sein.
Stand der Technik ist unter anderem die Anwendung eines der beiden nachfolgend beschriebenen Regelverfahren.
In Figur 2 dargestellt ist ein Regelverfahren, wie es üblicherweise bei Verwendung von Sprung- Lambdasonden angewendet wird. Die obere Kurve zeigt das Sondensignal gegen die Zeit und die untere Kurve den Reglereingriff gegen die Zeit. Mit diesen Sonden wird die Richtung des Reglers geändert, wenn das Sondensignal eine vorgegebene Schwelle, zum Beispiel 450mV, kreuzt, was hier dem stöchiometrischen Punkt entspricht (hier zu den Zeiten t1 , t2 und t3). Der Verlauf des Signals oberhalb oder unterhalb der jeweiligen Schwelle wird bei der Regelung nicht weiter verwendet oder verwertet, sondern die Verstellung findet davon unabhängig vorgesteuert statt, in der Regel über einen festgelegten P- und einen I-Anteil, welche wiederum abhängig von weiteren Größen wie zum Beispiel dem Betriebspunkt sein können.
Nachteilig bei diesem Verfahren ist die vergleichsweise langsame Regelgeschwindigkeit, da ober- beziehungsweise unterhalb der Regelschwelle der absolute Signalwert nicht weiter betrachtet wird und somit auch größere Gemischabweichungen nur mit der vorher bestimmten Regelgeschwindigkeit ausgeregelt werden. Des Weiteren ist es nachteilig, dass die Umschaltfrequenz vergleichsweise hoch ist und im Wesentlichen nur von der Streckenlaufzeit bis zur Sonde und der Sondentotzeit bestimmt ist. Somit besteht nicht die Möglichkeit, den Sauerstoffeintrag oder -austrag in den nachgeschalteten Katalysator definiert vorzugeben, so dass die Konvertierungseffizienz des Katalysators eingeschränkt ist.
In Figur 3 ist ein Regelverfahren, wie es üblicherweise bei Verwendung von Sonden mit genauem Lambdasignal auch außerhalb des stöchiometrischen Punktes, also in der Regel Breitband-Lambdasonden angewendet wird, dargestellt (Lambda-Istwert aus dem Sondensignal: fette dunkle Kurve; Lambda-Sollwert an der Sonde: schmale dunkle Kurve; Stellgröße des Reglers: fette helle Kurve; motorischer Lambda-Sollwert: schmale Rechteckkurve). Die Modulation wird über eine Variation des Lambda-Sollwertes eingestellt. Aus der Differenz zwischen dem Sollwert und dem gemessenen Ist-Wert wird die Regelabweichung bestimmt, welche einem geeigneten Regler (zum Beispiel PID-Regler) zugeführt wird. Eine Berücksichtigung des Streckenverhaltens findet statt, wenn nicht der motorische Sollwert zur Differenzberechnung verwendet wird, sondern unter Berücksichtigung der Streckenlaufzeit der Verlauf des motorischen Sollwertes auf die Position der Sonde bezogen wird und dieser Wert als Sollwert an der Sondenposition verwendet wird.
Vorteilhaft an diesem Verfahren ist, dass der gewünschte Lambda-Wert genau eingestellt werden kann und der Regler eine schnelle Regelgeschwindigkeit aufweist. Nachteilig ist, dass es zu Überschwingen des Reglers und stärkeren Schwankungen des Kraftstoff-Luft-Gemisches kommen kann, wenn das hinterlegte Streckenverhalten nicht mit der tatsächlichen Streckendynamik übereinstimmt. Dies ist zum Beispiel der Fall, wenn die Sonde durch Alterung oder Vergiftung dynamisch träger wird. Dies ist beispielhaft in Figur 4 dargestellt (Lambda-Istwert aus dem Sondensignal: fette dunkle Kurve; Stellgröße des Reglers: fette helle Kurve; motorischer Lambda-Sollwert: schmale Rechteckkurve). Das Sondensignal ist hier deutlich träger, als in Figur 3. Zu dem Zeitpunkt t1 , wenn das Sondensignal den Sollwert erreicht, ist daher der Reglerwert bereits stark aufgezogen und es kommt in der Folge zu Überschwingen im Regler und im Lambdawert (Zeitpunkt t2), und erst mit Verzögerung kann der Sollwert stabil eingeregelt werden (Zeitpunkt t3). Dies ist nachteilig für die Effizienz des nachgeschalteten Katalysators, dass heißt es kommt zu erhöhten Emissionen, bei größeren Schwankungen im Kraftstoff- Luft-Verhältnis kann dies auch ein spürbares Ruckeln des Motors bewirken. Wenn das Lambdasignal aus dem Signal einer Sprung-Lambdasonde bestimmt wird, hat ein Regler gemäß Figur 3 noch einen weiteren Nachteil. In Figur 5 ist eine typische Kennlinie von Sprung-Lambdasonden dargestellt. Man erkennt den Sprungbereich, dass heißt den Bereich der großen Signaländerung, im Bereich von Lambda = 1. Dynamisch reagieren heutige Sonden in diesem Sprungbereich träger als im rein fetten oder rein mageren Bereich. Ein aus einem Sprungsondensignal berechnetes Lambdasignal weist daher bei einem Gemischwechsel zwischen fettem und magerem Abgas beim Lambda = 1 -Bereich eine zeitliche Verzögerung auf. Diese ist in Figur 4 zum Zeitpunkt t4 zu erkennen. Auch dieses Verhalten führt bei diesem Reglertyp zu Überschwingern im Reglerwert und resultierend im Lambdawert, wie zum Zeitpunkt t5 dargestellt, mit den oben beschriebenen Nachteilen. Alternativ könnten die Regelparameter an die reduzierte Dynamik im Lambda = 1 -Punkt angepasst werden, dann wäre der Regler jedoch im Bereich außerhalb des Lambda = 1 -Bereiches deutlich langsamer als er eigentlich sein könnte.
Aus DE 10 2006 049 656 A1 ist bereits ein Ansatz bekannt, wie bei Sonden mit ungenauer Korrelation zwischen Signal und tatsächlicher Gemischzusammensetzung im Bereich außerhalb des stöchiometrischen Punktes (also zum Beispiel Sprungsonden), bei welchen nach Stand der Technik das in Figur 2 dargestellte Verfahren angewendet wird, Vorteile des in Figur 3 dargestellten Verfahrens erschlossen werden können. Es wird dort beschrieben, wie eine Umschaltung der Reglerrichtung erst dann erfolgt, wenn nicht nur ein Signal-Schwellwert über- beziehungsweise unterschritten wird, sondern zusätzlich auch ein Schwellwert für eine aus dem Sondensignal abgeleitete Größe. Damit kann mit gewisser Genauigkeit für einen definierten Sauerstoffeintrag beziehungsweise -austrag in den Katalysator gesorgt und somit die Konvertierungseffizienz des Katalysators erhöht werden. Bestehen bleibt jedoch der Nachteil der langsamen Ausregelung von Gemischabweichungen.
Zusammenfassung der Erfindung
Ein oder mehrere der angesprochenen Probleme des Standes der Technik lassen sich mit Hilfe des erfindungsgemäßen Verfahrens zum Betreiben einer Verbrennungskraftmaschine beheben oder zumindest mindern. Gemäß dem Verfahren wird ein von der Verbrennungskraftmaschine erzeugtes Abgas über einen im Abgaskanal angeordneten 3-Wege-Katalysator geführt. Eine Lambdasonde erfasst eine für ein Abgaslambda charakteristische Größe vor dem 3-Wege- Katalysator und leitet diese an ein Motorsteuergerät mit integriertem PI- oder PID-Regler weiter. Mit dem PI- oder PID-Regler des Motorsteuergeräts wird durch Vorgabe eines Sollwertes ein im Wesentlichen stöchiometrisches Abgaslambda eingestellt und das Abgaslambda mit vorgege- bener periodischer Sollwertvariation alternierend in Richtung eines Magerlambdawertes und eines Fettlambdawertes ausgelenkt (Lambdamodulation). Zu Beginn einer jeden Sollwertvariation wird ein vorgesteuerter P-Anteil mit anschließendem I-Anteil bis zu einem Zeitpunkt t2 vorgegeben, wobei der Zeitpunkt t2 mittels hinterlegter, ein Streckenzeitverhalten charakterisierender Parameter so festgelegt wird, dass zu diesem Zeitpunkt t2 das Sondensignal oder eine davon abgeleitete Größe die Sollwertvorgabe erreicht haben müsste. Vom Zeitpunkt t2 an wird für eine vorgebbare Zeitspanne bis zum Ende der jeweiligen Sollwertvariation auf eine Regelung umgeschaltet, welche auf einer Differenz zwischen einem Istwert und dem Sollwert der Lambdasonde oder einer davon abgeleiteten Größe beruht.
Der Erfindung liegt die Erkenntnis zu Grunde, dass ein Wechsel von der vorgesteuerten Reglereinstellung auf eine (vorzugsweise stetige) Regelung die Vorteile der beiden verschiedenen Reglertypen mit sich bringt, ohne dass die geschilderten Nachteile der beiden Reglertypen in Kauf genommen werden müssen.
Vorzugsweise wird eine Größe des P-Anteils in Abhängigkeit von einer Soll-Amplitude der Sollwertvariation festgelegt. Ein I-Anteil kann dann so festgelegt werden, dass zum Zeitpunkt t2 das Sondensignal oder eine daraus abgeleitete Größe den Sollwert erreichen würde.
Eine bevorzugte Variante des Verfahrens sieht vor, dass zur Ermittlung einer Reaktionszeit der Lambdasonde eine Mindestreaktion der Lambdasonde im Vergleich zum Zustand vor der Reg- lerumschaltung definiert wird und als Reaktionszeit die Zeit erfasst wird, die seit der Regierumschaltung bis zur Mindestreaktion der Lambdasonde vergangen ist. Die Reaktionszeit wir vorzugsweise jedoch nur ermittelt, wenn der vom PI- oder PID-Regler vorgegebene Sollwert eine vorgegebene Mindestgröße übersteigt. Die Reaktionszeit kann von der Lambdasonde getrennt nach fett-mager-Sprung und mager-fett-Sprung erfasst werden.
Ein weiterer Aspekt der vorliegenden Erfindung betrifft ein Steuergerät zur Steuerung eines Betriebs einer Verbrennungskraftmaschine, das zur Ausführung des erfindungsgemäßen Verfahrens eingerichtet ist. Zu diesem Zweck kann das Steuergerät einen computerlesbaren Steuerungsalgorithmus zur Durchführung des Verfahrens enthalten. In vorteilhafter Ausgestaltung ist das Steuergerät integraler Bestandteil des Motorsteuergeräts.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen oder aus der nachfolgenden Beschreibung. Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:
Figur 1 schematischer Aufbau einer Verbrennungskraftmaschine mit einer Abgasanlage und 3-Wege-Katalysator;
Figur 2 zeitlicher Verlauf des Abgaslambdas stromauf des 3-Wege-Katalysators sowie des Reglereingriffs nach einer ersten Variante des herkömmlichen Verfahrens;
Figur 3 zeitlicher Verlauf des Abgaslambdas stromauf des 3-Wege-Katalysators sowie des Reglereingriffs nach einer zweiten Variante des herkömmlichen
Verfahrens;
Figur 4 Verhalten des Reglers für das herkömmliche Verfahren gemäß Fig. 3 bei unpassenden Streckenparametern;
Figur 5 Kennlinie einer Sprung-Lambdasonde für das herkömmliche Verfahren gemäß
Fig. 3;
Figur 6 zeitlicher Verlauf des Abgaslambdas stromauf des 3-Wege-Katalysators sowie des Reglereingriffs nach dem erfindungsgemäßen Verfahren; und
Figur 7 Ermittlung der Sprungantwortzeit nach dem erfindungsgemäßen Verfahren.
Figur 1 zeigt schematisch den Aufbau einer Verbrennungskraftmaschine 10 mit einer nachgeschalteten Abgasanlage. Die Verbrennungskraftmaschine 10 kann ein fremdgezündeter Motor (Ottomotor) sein. Hinsichtlich ihrer Kraftstoffzuführung kann sie über eine direkteinspritzende Kraftstoffzufuhr verfügen, also mit innerer Gemischbildung arbeiten, oder über eine Kraftstoffvoreinspritzung verfügen und damit mit äußerer Gemischbildung arbeiten. Darüber hinaus kann die Verbrennungskraftmaschine 10 homogen betrieben werden, wobei in dem gesamten Brennraum eines Zylinders ein homogenes Luft-Kraftstoff-Gemisch zum Zündzeitpunkt vorliegt, oder in einem inhomogenen Modus (Schichtladebetrieb), bei dem zum Zündzeitpunkt ein vergleichsweise fettes Luft-Kraftstoff-Gemisch, insbesondere im Bereich einer Zündkerze, vorliegt, das im übrigen Brennraum von einem sehr mageren Gemisch umgeben wird. Wichtig im Rahmen der vorliegenden Erfindung ist, dass die Verbrennungskraftmaschine 10 mit einem im Wesentlichen stöchiometrischen Luft-Kraftstoff-Gemisch betrieben werden kann, das heißt mit einem Gemisch mit einem Lambdawert nahe oder gleich 1.
Die Abgasanlage umfasst einen Abgaskrümmer, welcher das Abgas der einzelnen Zylinder der Verbrennungskraftmaschine 10 in einen Abgaskanal 16 zusammenführt. In dem Abgaskanal 16 können verschiedene Abgasreinigungskomponenten vorhanden sein. Wesentlich im Rahmen der vorliegenden Erfindung ist ein im Abgaskanal 16 angeordneter 3-Wege-Katalysator 20.
Der 3-Wege-Katalysator 20 besitzt eine Beschichtung aus katalytisch wirksamen Komponenten, wie Platin, Rhodium und/oder Palladium, die auf einem porösen Katalysatorträger auf, beispielsweise aus Al203, aufgebracht sind. Der Beschichtung umfasst ferner eine Sauerstoffspeicherkomponente, beispielsweise Ceroxid (Ce02) und/oder Zirkoniumoxid (Zr02), welche die Sauerstoffspeicherkapazität (OSC für oxygen storage capacity) des 3-Wege-Katalysators 20 bestimmt. Bei einer stöchiometrischen oder leicht fetten Abgasatmosphäre vermag der 3-Wege- Katalysator 20 Stickoxide NOx zu Stickstoff N2 und Sauerstoff 02 zu reduzieren. Bei stöchio- metrischem oder leicht magerem Betrieb werden unverbrannte Kohlenwasserstoffe HC und Kohlenmonoxid CO zu Kohlendioxid C02 und Wasser H20 oxidiert. Bei im Wesentlichen stöchiometrischer Abgasatmosphäre, das heißt bei einem λ von 1 oder nahe 1 , laufen diese Umsätze praktisch vollständig ab. Derartige katalytische Beschichtungen sind im Stand der Technik aus der Abgasnachbehandlung von Ottomotoren bekannt und üblich. Aufbau und Funktionsweise von 3-Wege-Katalysatoren sind im Stand der Technik somit hinreichend bekannt und bedürfen hier keiner näheren Erläuterung.
Der Abgaskanal 16 kann verschiedene Sensoren, insbesondere Gas- und Temperatursensoren enthalten. Dargestellt ist vorliegend eine Lambdasonde 26, die an einer motornahen Position im Abgaskanal 16 angeordnet ist. Die Lambdasonde 26 kann als Sprungantwortlambdasonde oder als Breitbandlambdasonde ausgestaltet sein und ermöglicht in bekannter Weise die Lambda- regelung des Verbrennungsmotors 10, wofür sie den Sauerstoffgehalt des Abgases misst.
Die von den verschiedenen Sensoren erfassten Signale, insbesondere das mit der Lambdasonde 26 gemessene Abgaslambda gehen in ein Motorsteuergerät 28 ein. Desgleichen werden verschiedene Parameter der Verbrennungskraftmaschine 10, insbesondere die Motordrehzahl sowie die Motorlast von dem Motorsteuergerät 28 eingelesen. In Abhängigkeit der verschiedenen Signale regelt ein in das Motorsteuergerät 28 implementierter Regler somit den Betrieb der Verbrennungskraftmaschine 10, wobei sie insbesondere die Kraftstoffzufuhr sowie die Luftzufuhr so regelt, dass eine gewünschte Kraftstoffmasse und eine gewünschte Luftmasse zugeführt werden, um ein gewünschtes Luft-Kraftstoff-Gemisch (das Abgas-Solllambda) darzustellen. Das Luft-Kraftstoff-Gemisch wird in Abhängigkeit von dem Betriebspunkt der Verbrennungskraftmaschine 10, insbesondere der Motordrehzahl sowie der Motorlast aus Kennfeldern ermittelt.
Zur Verbesserung der Reinigungswirkung des 3-Wege-Katalysators 20 ist vorgesehen, dass die Verbrennungskraftmaschine 10 kontinuierlich mit einem im Wesentlichen stöchiometrischen mittleren Lambdawert betrieben wird, wobei das der Verbrennungskraftmaschine 10 zugeführte Luft-Kraftstoff-Verhältnis mit einer vorbestimmten Schwingungsfrequenz und einer vorbestimmten Schwingungsamplitude um diesen mittleren Lambdawert periodisch alternierend in Richtung eines Magerlambdawertes und eines Fettlambdawertes ausgelenkt wird (so genannte Lambdamodulation). Dabei werden die Schwingungsfrequenz und die Schwingungsamplitude so gewählt, dass der 3-Wege-Katalysator 20 quasi-kontinuierlich regeneriert wird.
Dabei wird vorliegend unter einem kontinuierlichen stöchiometrischen Betrieb der Verbrennungskraftmaschine 10 verstanden, dass diese nicht zwischen einem Standardbetriebsmodus und einem Regenerationsbetriebsmodus wie im Stand der Technik üblich hin- und hergeschaltet wird, sondern praktisch über ihren gesamten Betriebsbereich in dem dargestellten stöchiometrischen Betrieb mit der Lambdaschwingung betrieben wird. Vorzugsweise wird die Verbrennungskraftmaschine über zumindest 98 % aller in dem Betriebskennfeld des Steuergeräts 28 gespeicherten Betriebspunkte in dem dargestellten stöchiometrischen Betrieb gefahren und dieser wird nicht durch Regenerationsintervalle unterbrochen.
Ferner wird unter dem Begriff quasi-kontinuierliche Regeneration des 3-Wege-Katalysators 20 verstanden, dass sein Beladungszustand im Wesentlichen konstant und insbesondere auf einem äußerst geringen Niveau bleibt. Dies bedeutet, dass im Zeitmittel während eines Zeitintervalls im Größenbereich weniger Lambdaschwingungen keine zunehmende Beladung des 3-Wege-Katalysators 20 stattfindet. Vorzugsweise wird eine Grenze von höchstens 50 % der maximalen Beladung des 3-Wege-Katalysators 20 nicht überschritten.
Die Schwingungsfrequenz und die Schwingungsamplitude werden ferner so gewählt, dass an der 3-Wege-katalytischen Beschichtung 22 eine Mindestkonvertierungsrate von unverbrannten Kohlenwasserstoffen (HC) und/oder Kohlenmonoxid (CO) und/oder Stickoxiden (NOx) vorliegt, wobei sich Mindestkonvertierungsrate an gesetzlichen Grenzwerten orientieren kann. Zumeist wird die Schwingungsfrequenz in Abhängigkeit von einem aktuellen Betriebspunkt der Verbrennungskraftmaschine 10, insbesondere in Abhängigkeit von der Motorlast und/oder Motordrehzahl, bestimmt. Die Schwingungsamplitude kann ergänzend auch in Abhängigkeit von der OSC bestimmt werden.
In Abhängigkeit der verschiedenen Signale, die am Motorsteuergerät 28 auflaufen, regelt ein in das Motorsteuergerät 28 implementierter Regler demnach den Betrieb der Verbrennungskraftmaschine 10, um ein gewünschtes das Abgas-Solllambda darzustellen.
Regler beeinflussen selbsttätig eine oder mehrere physikalische Größen auf ein vorgegebenes Niveau unter Reduzierung von Störeinflüssen. Dazu vergleichen Regler innerhalb eines Regelkreises laufend das Signal des Sollwertes mit dem gemessenen und zurückgeführten Istwert der Regelgröße und ermitteln aus dem Unterschied der beiden Größen - der Regelabweichung (Regeldifferenz) - eine Stellgröße, welche die Regelstrecke so beeinflusst, dass die Regelabweichung zu einem Minimum wird. Weil die einzelnen Regelkreisglieder ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig das Zeitverhalten der Strecke so kompensieren, dass die Regelgröße den Sollwert in gewünschter Weise erreicht. Falsch eingestellte Regler machen den Regelkreis zu langsam, führen zu einer großen Regelabweichung oder zu ungedämpften Schwingungen der Regelgröße und damit unter Umständen zur Zerstörung der Regelstrecke. Allgemein werden die Regler nach stetigem und unstetigem Verhalten unterschieden. Zu den bekanntesten stetigen Reglern gehören die „Standardregler" mit P-, PI-, PD- und PID-Verhalten.
Für die Zwecke der vorliegenden Erfindung wird vorzugsweise ein linearer Regler mit proportionalem, integralem und differentialem Verhalten (PID-Regler) verwendet. Der PID-Regler besteht demnach aus den Anteilen des P-Gliedes, des I-Gliedes und des D-Gliedes. Das P-Glied liefert einen Beitrag zur Stellgröße, der zur Regelabweichung proportional ist. Das I-Glied wirkt durch zeitliche Integration der Regelabweichung auf die Stellgröße mit einer Gewichtung durch die Nachstellzeit. Das D-Glied ist ein Differenzierer, der nur in Verbindung zu Reglern mit P- und/oder I-Verhalten als Regler eingesetzt wird. Er reagiert nicht auf die Höhe der Regelabweichung, sondern nur auf deren Änderungsgeschwindigkeit.
Erfindungsgemäß erfolgt die Lambdamodulation wie in Figur 6 dargestellt (Lambda-Istwert aus dem Sondensignal: fette dunkle Kurve; Stellgröße des Reglers: fette helle Kurve; Lambda-Soll- wertbereiche: helle Rechtecke). Zum Zeitpunkt t1 erfolgt die Umschaltung der Reglerrichtung. Zunächst erfolgt ein vorgesteuerter P-Sprung (P-Anteil zur Erreichung des Sollwerts). Die Größe des P-Sprunges kann hierbei von verschiedenen Parametern abhängen. Unter anderen kann der P-Sprung von einer festgelegten Soll-Amplitude abhängig sein. In einer bevorzugten Ausgestaltung kann hierbei festgelegt werden, welcher Anteil der festgelegten Soll-Amplitude über den P-Sprung dargestellt werden soll. Zusätzlich kann der aktuelle Abstand des Sondensignals oder einer daraus abgeleiteten Größe (bevorzugt Lambda) vom derzeitigen oder zukünftigen Zielwert beziehungsweise Zielbereich bewertet und der P-Sprung zusätzlich von diesem Abstand abhängig gemacht werden. In einer besonders bevorzugten Ausgestaltung wird daher die Größe des P-Sprunges bestimmt, welcher notwendig ist, um vom aktuellen Lambda-Istwert zum künftigen Sollwert zu kommen, wobei der gewünschte Sollwert den festgelegten Anteil beinhaltet, welcher von der festgelegten Soll-Amplitude dem P-Sprung zugeordnet wurde.
Zwischen den Zeitpunkten t1 und t2 wird der Regler mit einem festgelegten I-Anteil weiter verstellt. Aus hinterlegten Daten ist die Strecken laufzeit und die Sondenreaktionszeit bekannt. Es wird daher der I-Anteil so festgelegt, dass zum Zeitpunkt t2 (ohne weitere Störeinflüsse) das Sondensignal oder eine daraus abgeleitete Größe (bevorzugt Lambda) den Zielwert beziehungsweise den Zielbereich voraussichtlich erreichen wird, wobei dieser die Einstellung der vollen gewünschten Soll-Amplitude bedeutet. Damit wird der I-Anteil sowohl von den Strecken- Kenngrößen, als auch von dem festgelegten Anteil der Amplitude auf den P-Sprung abhängig, da die Differenz zwischen der Gesamt-Amplitude und dem festgelegten Anteil der Amplitude für den P-Sprung nun über den I-Anteil bis zum Zeitpunkt t2 eingeregelt werden muss.
Ab dem Zeitpunkt t2 wird nun von der vorgesteuerten Reglereinstellung auf eine (stetige) Regelung umgeschaltet, welche auf der Differenz zwischen dem Istwert und dem Sollwert des Sondensignals oder einer daraus abgeleiteten Größe (bevorzugt Lambda) beruht.
Damit kombiniert das Verfahren die Vorteile einer Vorsteuerung und einer (stetigen) Regelung. Die Daten, welche zur Charakterisierung des Streckenverhaltens hinterlegt werden, können zum Beispiel ein Verhalten wie in Figur 4 zum Zeitpunkt t4 dargestellt berücksichtigen.
Überschwinger werden daher vermieden, und sowohl Lambda, als auch der Reglerwert bleiben stabil. Gleichzeitig bleibt eine schnelle Regelgeschwindigkeit und ein definierter Sauerstoffeintrag beziehungsweise -austrag in den Katalysator erhalten, da nach Ablauf der Streckenreaktionszeiten auf einen schnellen Regler geschaltet wird, dessen Parameter unabhängig von eventuellen Trägheiten im Lambda = 1 -Punkt der Sonde festgelegt werden können. Des Weiteren kann mit dem erfindungsgemäßen Verfahren auch sehr einfach und mit guter Genauigkeit die Dynamik der Sonde ermittelt werden. Da die Regierumschaltung gesteuert über einen P-Sprung und einen I-Anteil erfolgt und während der Zeit dieser vorgesteuerten Regelung das Sondensignal nicht zur Regelung ausgewertet wird, kann die in Figur 7 dargestellte
Sprungantwortzeit zur Bewertung der Sondendynamik herangezogen werden (Lambda-Istwert aus dem Sondensignal: fette dunkle Kurve; Stellgröße des Reglers: fette helle Kurve; motorischer Lambda-Sollwert: schmale Rechteckkurve; Ats: Sprungantwortzeit).
In einer bevorzugten Ausgestaltung wird abhängig von der Größe des P-Sprunges oder der bis zum Zeitpunkt der Sprungantwortzeitermittlung erfolgten Gemischverstellung eine Mindestreaktion der Sonde im Vergleich zum Zustand vor der Regierumschaltung definiert. Dies kann zum Beispiel eine Signaländerung sein, welche 20 bis 50%, bevorzugt 30%, der vorgesteuerten Gemischverstellung entspricht. Als Sprungantwortzeit ergibt sich nun die Zeit, welche seit dem Reglersprung bis zur Erreichung der Mindestreaktion der Sonde vergangen ist.
In einer bevorzugten Ausgestaltung wird als Zeitpunkt der Regierumschaltung für die Ermittlung der Mindestreaktion der Sonde nicht exakt der tatsächliche Zeitpunkt der Regierumschaltung herangezogen, sondern unter Berücksichtigung der bekannten Streckenparameter wird der Vergleichswert der Sonde erst zu einem festlegbaren späteren Zeitpunkt bestimmt, welcher nach der Regierumschaltung liegt, aber bevor das geänderte Gemisch die Sonde erreicht. Damit können dynamische Gemischstreuungen, welche sich ggf. unmittelbar vor der Regierumschaltung im Motor ereignet haben, berücksichtigt werden und führen nicht zu einer Verfälschung der Sprungantwortzeiten. In einer weiteren bevorzugten Ausgestaltung wird eine gültige Sprungantwortzeit nur dann ermittelt, wenn die vorgesteuerte Reglerverstellung mindestens eine vorgebbare Mindestgröße hatte.
In einer weiteren bevorzugten Ausgestaltung wird nach Ablauf einer vorgebbaren Mindestzeit seit der Regierumschaltung, ohne dass die Sonde die festgelegte Mindestreaktion zeigte, die aktuelle Zeit oder eine Ersatzgröße ebenfalls als gültige Sprungantwortzeit ausgewertet. Damit wird der Fall berücksichtigt, dass das Sondensignal durch einen Fehler einen durchgängig konstanten Wert aufweist, dass heißt, die Mindestreaktion nie erreicht werden würde und somit keine Sprungantwortzeit ermittelt werden würde.
Von der ermittelten Sprungantwortzeit kann die hinterlegte Streckentotzeit abgezogen und so die reine Sondenreaktionszeit ermittelt werden. Die Sondenreaktionszeit kann zur Erzeugung eines Wartungssignals genutzt werden, wenn diese oder eine davon abgeleitete Größe definierte Schwellwerte überschreitet. Dabei kann die Sondenreaktionszeit zur Bewertung getrennt nach fett-mager-Sprung und mager-fett-Sprung betrachtet werden.
Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass bei dynamisch schlechter werdenden Sonden die in Figur 4 zu den Zeitpunkten t1 und t2 beschriebenen Überschwinger leicht vermieden werden können, so dass das erfindungsgemäße Verfahren eine höhere Stabilität und Robustheit gegenüber dynamisch schlechter werdenden Sonden aufweist als bisher bekannte Verfahren.
Für dynamisch nur geringfügig schlechter werdende Sonden, kann zur Festlegung des Zeitpunktes t2 in Figur 6, sprich der Umschaltung auf den schnellen Regler, eine gewisse Sicherheit auf die Streckenlaufzeitparameter aufgeschlagen werden. Dies kann zum Beispiel durch multiplikative und/oder additive Werte erfolgen. Die Umschaltung auf den schnellen Regler erfolgt dann etwas später als es bei einem schnellen Sensor eigentlich möglich wäre, jedoch erst dann, wenn auch ein langsamer reagierender Sensor beim Signal-Zielwert angekommen wäre.
In einer weiteren Ausgestaltung kann die wie oben beschrieben ermittelte Sondenreaktionszeit zur Anpassung des Regelverfahrens genutzt werden. Dazu wird mindestens eine, vorzugsweise die größere der beiden Sondenreaktionszeiten (dass heißt Reaktionszeiten getrennt nach fettmager- bzw. mager-fett-Sprung) genutzt. Aus dieser Sondenreaktionszeit werden vorzugsweise geeignete Zeitglieder für die Streckenparameter abgeleitet. Dabei erfolgt die Festlegung des Zeitpunktes t2 in Figur 6, sprich die Umschaltung auf den schnellen Regler, unter Berücksichtigung der ermittelten Sondenreaktionszeit so, dass das Sondensignal oder eine daraus abgeleitete Größe (bevorzugt Lambda) zu diesem Zeitpunkt den Sollwert erreicht hat.
In einer weiteren bevorzugten Ausgestaltung werden die Regelparameter der nachfolgend aktivierten, stetigen Regelung an die Sondenreaktionszeit angepasst. Insbesondere kann so für einer dynamisch schlechtere Sonde der Regler langsamer gemacht und so Überschwinger vermieden werden. Bezugszeichenliste
10 Verbrennungskraftmaschine
16 Abgaskanal
20 3-Wege-Katalysator
22 3-Wege-katalytischen Beschichtung
26 Lambdasonde
28 Motorsteuergerät
Ats Sprungantwortzeit

Claims

Patentansprüche
1 . Verfahren zum Betreiben einer Verbrennungskraftmaschine (10), bei dem ein von der Verbrennungskraftmaschine (10) erzeugtes Abgas über einen im Abgaskanal (16) angeordneten 3-Wege-Katalysator (20) geführt wird und eine Lambdasonde (26) eine für ein Abgas- lambda charakteristische Größe vor dem 3-Wege-Katalysator (20) erfasst und an ein Motorsteuergerät (28) mit integriertem PI- oder PID-Regler weiterleitet, wobei mit dem Pl- oder PID-Regler des Motorsteuergeräts (28) durch Vorgabe eines Sollwertes ein im Wesentlichen stöchiometrisches Abgaslambda eingestellt wird und das Abgaslambda mit vorgegebener periodischer Sollwertvariation alternierend in Richtung eines Magerlambda- wertes und eines Fettlambdawertes ausgelenkt wird (Lambdamodulation), derart, dass zu Beginn einer jeden Sollwertvariation ein vorgesteuerter P-Anteil mit anschließendem I- Anteil bis zu einem Zeitpunkt t2 vorgegeben wird, wobei der Zeitpunkt t2 mittels hinter- legter, ein Streckenzeitverhalten charakterisierender Parameter so festgelegt wird, dass zu diesem Zeitpunkt t2 das Sondensignal oder eine davon abgeleitete Größe die Sollwertvorgabe erreicht haben müsste, dadurch gekennzeichnet, dass vom Zeitpunkt t2 an für eine vorgebbare Zeitspanne bis zum Ende der jeweiligen Sollwertvariation auf eine Regelung umgeschaltet wird, welche auf einer Differenz zwischen einem Istwert und dem
Sollwert der Lambdasonde (26) oder einer davon abgeleiteten Größe beruht.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zur Ermittlung einer
Reaktionszeit der Lambdasonde (26) eine Mindestreaktion der Lambdasonde (26) im Vergleich zum Zustand vor der Regierumschaltung definiert wird und als Reaktionszeit die Zeit erfasst wird, die seit der Regierumschaltung bis zur Mindestreaktion der Lambdasonde (26) vergangen ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Reaktionszeit nur ermittelt wird, wenn der vom PI- oder PID-Regler vorgegebene Sollwert eine vorgegebene Mindestgröße übersteigt.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Reaktionszeit der Lamdasonde (26) getrennt nach fett-mager-Sprung und mager-fett-Sprung erfasst wird. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Größe des P-Anteils in Abhängigkeit von einer Soll-Amplitude der Sollwertvariation festgelegt wird.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der I-Anteil so festgelegt wird, dass zum Zeitpunkt t2 das Sondensignal oder eine daraus abgeleitete Größe den Sollwert erreicht hat.
Motorsteuergerät (20) zur Steuerung eines Betriebs einer Verbrennungskraftmaschine (10), das zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 6 eingerichtet ist.
PCT/EP2012/073470 2011-11-30 2012-11-23 Verfahren zum betreiben einer verbrennungskraftmaschine sowie zur ausführung des verfahrens eingerichtetes steuergerät WO2013079405A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/361,088 US9212584B2 (en) 2011-11-30 2012-11-23 Method for operating an internal combustion engine, and control unit set up for carrying out the method
CN201280059333.0A CN103958868B (zh) 2011-11-30 2012-11-23 用于运行内燃机的方法以及设定成用于实施该方法的控制器
EP12795389.1A EP2786002B1 (de) 2011-11-30 2012-11-23 Verfahren zum betreiben einer verbrennungskraftmaschine sowie zur ausführung des verfahrens eingerichtetes steuergerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011087399.6A DE102011087399B4 (de) 2011-11-30 2011-11-30 Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät
DE102011087399.6 2011-11-30

Publications (2)

Publication Number Publication Date
WO2013079405A1 true WO2013079405A1 (de) 2013-06-06
WO2013079405A8 WO2013079405A8 (de) 2013-09-12

Family

ID=47290935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/073470 WO2013079405A1 (de) 2011-11-30 2012-11-23 Verfahren zum betreiben einer verbrennungskraftmaschine sowie zur ausführung des verfahrens eingerichtetes steuergerät

Country Status (5)

Country Link
US (1) US9212584B2 (de)
EP (1) EP2786002B1 (de)
CN (1) CN103958868B (de)
DE (1) DE102011087399B4 (de)
WO (1) WO2013079405A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018007647B4 (de) * 2018-09-27 2021-06-02 Mtu Friedrichshafen Gmbh Verfahren zur modellbasierten Steuerung und Regelung einer Brennkraftmaschine mit einem SCR-Katalysator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047188A1 (de) * 2006-10-05 2008-04-17 Siemens Ag Verfahren und Vorrichtung zum Überwachen einer Abgassonde
DE102006049656A1 (de) 2006-10-18 2008-04-24 Volkswagen Ag Lambda-Regelung mit einer Sprung-Lambda-Sonde
DE102007057632A1 (de) * 2007-04-20 2008-10-30 Mitsubishi Electric Corp. Luft/Kraftstoff-Verhältnis-Steuervorrichtung für einen Verbrennungsmotor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3802444A1 (de) * 1988-01-28 1989-08-10 Vdo Schindling Verfahren zur regelung des kraftstoff-luft-verhaeltnisses einer brennkraftmaschine
EP1403491B1 (de) * 2001-06-19 2006-03-08 Honda Giken Kogyo Kabushiki Kaisha Vorrichtung, verfahren und programmaufzeichnungsmedium zur steuerung des luft-kraftstoff-verhältnisses von brennkraftmaschinen
JP4213148B2 (ja) * 2005-08-09 2009-01-21 三菱電機株式会社 内燃機関の制御装置
JP4380625B2 (ja) * 2005-11-24 2009-12-09 トヨタ自動車株式会社 内燃機関の空燃比制御装置
US8132400B2 (en) * 2005-12-07 2012-03-13 Ford Global Technologies, Llc Controlled air-fuel ratio modulation during catalyst warm up based on universal exhaust gas oxygen sensor input
JP2007231844A (ja) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp 内燃機関の制御装置
DE102007038478A1 (de) 2007-08-14 2009-02-19 Volkswagen Ag Verfahren zur λ-Regelung in Betriebsbereichen mit Kraftstoff-Mangel oder Kraftstoff-Überschuss bei einer Nernst-Sonde
JP4743443B2 (ja) * 2008-02-27 2011-08-10 株式会社デンソー 内燃機関の排気浄化装置
JP4877246B2 (ja) * 2008-02-28 2012-02-15 トヨタ自動車株式会社 内燃機関の空燃比制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006047188A1 (de) * 2006-10-05 2008-04-17 Siemens Ag Verfahren und Vorrichtung zum Überwachen einer Abgassonde
DE102006049656A1 (de) 2006-10-18 2008-04-24 Volkswagen Ag Lambda-Regelung mit einer Sprung-Lambda-Sonde
DE102007057632A1 (de) * 2007-04-20 2008-10-30 Mitsubishi Electric Corp. Luft/Kraftstoff-Verhältnis-Steuervorrichtung für einen Verbrennungsmotor

Also Published As

Publication number Publication date
DE102011087399B4 (de) 2022-08-11
CN103958868A (zh) 2014-07-30
US9212584B2 (en) 2015-12-15
DE102011087399A1 (de) 2013-06-06
WO2013079405A8 (de) 2013-09-12
EP2786002A1 (de) 2014-10-08
EP2786002B1 (de) 2016-09-28
US20140345256A1 (en) 2014-11-27
CN103958868B (zh) 2017-06-30

Similar Documents

Publication Publication Date Title
DE69106247T2 (de) Verfahren zur An-Bord-Feststellung der Degradierung eines Kraftfahrzeugkatalysators.
DE19711295A1 (de) System zur Ermittlung einer Verschlechterung eines Katalysators zur Abgasreinigung
DE102013202989A1 (de) Dynamische katalysator steuerung und regelung
DE102009028237A1 (de) Verfahren und Vorrichtung zur Regeneration eines Partikelfilters mit einer im Abgaskanal nachgeordneten Abgassonde
DE10103772A1 (de) Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält
DE3721572A1 (de) Verfahren zur katalysator-steuerung und -regelung
DE19851843B4 (de) Verfahren zur Sulfatregeneration eines NOx-Speicherkatalysators für eine Mager-Brennkraftmaschine
DE10205817A1 (de) Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses
WO2005083250A1 (de) Verfahren zur ermittlung der aktuellen sauerstoffbeladung eines 3-wege-katalysators einer lambdageregelten brennkraftmaschine
DE19612212A1 (de) Luft/Brennstoffverhältnis-Regler und Diagnoseeinrichtung
DE102008059698A1 (de) Verfahren zum Betreiben eines Dieselmotors mit einer einen Stickoxid-Speicherkatalysator aufweisenden Abgasreinigungsanlage
DE102018218138B4 (de) Verfahren zur Abgasnachbehandlung und Abgasnachbehandlungssystem
DE102006061682A1 (de) Verfahren zur Vorsteuerung einer Lambdaregelung
DE19935968B4 (de) Steuereinheit für das Luft-/Kraftstoffverhältnis eines Motors
DE19844745C1 (de) Regenerationsverfahren für einen NOx-Speicherkatalysator einer Brennkraftmaschine
EP2786002B1 (de) Verfahren zum betreiben einer verbrennungskraftmaschine sowie zur ausführung des verfahrens eingerichtetes steuergerät
EP2786001B1 (de) Verfahren und vorrichtung zum steuern eines kraftstoffregelers
DE102020202136A1 (de) Lambdakompensation mit Abgasbrenner
EP2436899B1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät
DE10153901B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
EP1143131A2 (de) Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses und Steuerung einer NOx-Regeneration eines NOx-Speicherkatalysators
DE102022204865A1 (de) Verfahren zur Überwachung und Regelung einer Abgasnachbehandlungsanlage mit mehreren in Reihe geschalteten Katalysatoren
DE19923498A1 (de) Verfahren zur Steuerung einer Regeneration eines NOx-Speicherkatalysators
EP1244871B1 (de) Vorrichtung und verfahren zur steuerung einer abgasrückführrate einer abgasrückführeinrichtung für verbrennungskraftmaschinen während eines magerbetriebs
EP2188511B1 (de) Verfahren zur lambda-regelung in betreibsbereichen mit kraftstoff-mangel oder kraftstoff-überschuss bei einer nernst-sonde

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12795389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14361088

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012795389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012795389

Country of ref document: EP