WO2013078572A1 - 高压交流发光二极管结构 - Google Patents

高压交流发光二极管结构 Download PDF

Info

Publication number
WO2013078572A1
WO2013078572A1 PCT/CN2011/001975 CN2011001975W WO2013078572A1 WO 2013078572 A1 WO2013078572 A1 WO 2013078572A1 CN 2011001975 W CN2011001975 W CN 2011001975W WO 2013078572 A1 WO2013078572 A1 WO 2013078572A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light emitting
led
disposed
layer
Prior art date
Application number
PCT/CN2011/001975
Other languages
English (en)
French (fr)
Inventor
潘敬仁
郑为太
陈明鸿
Original Assignee
海立尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海立尔股份有限公司 filed Critical 海立尔股份有限公司
Priority to PCT/CN2011/001975 priority Critical patent/WO2013078572A1/zh
Publication of WO2013078572A1 publication Critical patent/WO2013078572A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape

Definitions

  • the present invention relates to a high voltage alternating current light emitting diode structure, and more particularly to a high voltage alternating current light emitting diode structure for illumination. Background technique
  • Taiwanese Patent No. M393127 discloses an AC electric light-emitting diode device connected to an AC power source, which mainly comprises four rectifying elements and is connected to two pointing elements in an asymmetrical bridge circuit structure.
  • the alternating current light emitting diode device comprises at least two LED serial blocks, which are respectively connected to the branch lines of the asymmetric bridge circuit structure, so that the alternating current light emitting diode device has a positive voltage half cycle and a negative voltage of the alternating current power source. During the voltage half cycle, all or most of the LEDs are illuminated, thereby improving the efficiency of the AC light source device for AC power.
  • the Chinese Patent No. M354294 discloses an AC lighting device including an AC-AC transformer for converting a first AC voltage provided by an AC power source into a second AC voltage; an AC LED The module includes a first group of LED chips and a second group of LED chips, wherein the first group of LED chips are turned on for a first time in a positive period of the second alternating voltage, and The two sets of LED chips are turned on for a second time in a negative period of the second AC voltage; and a protection unit coupled between the AC power source and the AC LED module for overvoltage or over-voltage Current protection.
  • the object of the present invention is to overcome the defects of the existing AC light emitting diode device and provide a novel high voltage AC light emitting diode structure.
  • the technical problem to be solved is to integrate the AC LED chip of the wafer level process to a lower level.
  • the cost of the circuit substrate can be made into a small-sized high-voltage AC light-emitting diode structure, which is very suitable for practical use.
  • a high voltage AC light emitting diode structure comprising: a circuit substrate; a plurality of alternating current LED chips are fixedly and electrically connected to the circuit substrate, and the alternating current LED chips are formed into a series circuit by the circuit substrate, and each of the alternating current LED chips comprises: an insulating substrate; at least one light emitting diode a first light emitting diode and a second light emitting diode, wherein the first light emitting diode and the second light emitting diode are insulated from each other on the insulating substrate; at least one first metal layer forms a first a shape of the first end and a second end, the first end is disposed on a first transparent conductive layer of the first LED, and the second end is disposed on the first end a second N-type layer of the second light-emitting diode; and at least a second metal layer forming the first shape distribution, and having a
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the ceramic substrate is provided with a plurality of heat conducting columns or a plurality of conductive columns.
  • any two of the AC LED chips are further connected in parallel, so that the series circuit further has a parallel circuit.
  • the high-voltage AC LED structure wherein the first LED has: the first N-type layer disposed on a first region of the insulating substrate; and a first active layer disposed on the portion An N-type layer; a first P-type layer disposed on the first active layer; and the first transparent conductive layer disposed on the first P-type layer, wherein the second LED has: The second N-type layer is disposed on a second region of the insulating substrate; a second active layer disposed on a portion of the second N-type layer; and a second P-type layer disposed on the second And a second transparent conductive layer disposed on the second P-type layer.
  • the first active layer and the second active layer are formed in a concave shape opposite to each other, and a portion of the first N-type layer and the second N-type layer are respectively exposed.
  • the high-voltage AC LED structure further has an insulating layer disposed on a side of the first N-type layer and the second N-type layer.
  • the insulating layer is disposed on sidewalls of the first LED and the second LED.
  • the high-voltage AC LED structure further has a first pad and a second pad.
  • the first pad is formed on the first end, and the second pad is formed on the third end.
  • the high-voltage AC LED structure further has a first pad and a second pad. The first pad is formed on the second end, and the second pad is formed on the fourth end. Ministry.
  • the first metal layer and the second metal layer are disposed around the first light emitting diode and the second light emitting diode.
  • one end of the second end portion and the fourth end portion are respectively disposed on a central axis of the first light emitting diode and the second light emitting diode.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the high voltage alternating current light emitting diode structure of the present invention has at least the following advantages and beneficial effects:
  • the present invention can combine a wafer level process AC LED chip with a lower cost circuit substrate to produce a small volume high voltage AC light emitting diode structure.
  • the present invention makes it easier and faster to fabricate a high voltage AC light emitting diode structure.
  • the present invention can combine a more diverse high voltage AC light emitting diode structure.
  • the present invention relates to a high voltage AC light emitting diode structure including: a circuit substrate; and a plurality of alternating current LED chips.
  • the AC LED chip comprises: an insulating substrate; a light emitting diode group; a first metal layer; and a second metal layer.
  • a wafer level process AC LED chip can be incorporated into a lower cost circuit substrate to produce a small volume high voltage AC LED structure.
  • the invention has significant advances in technology and has an obvious positive effect, and is a novel, progressive and practical new design.
  • 1A is a schematic diagram of a high voltage AC light emitting diode structure in accordance with a preferred embodiment of the present invention.
  • 1B is a series equivalent circuit diagram of a preferred embodiment of the present invention.
  • 2A is an equivalent circuit diagram of a series connection and a parallel connection according to a preferred embodiment of the present invention.
  • 2B is an equivalent circuit diagram of another series connection and parallel connection in accordance with a preferred embodiment of the present invention.
  • 3 is an exploded perspective view of an AC LED chip in accordance with a preferred embodiment of the present invention.
  • 4A is a perspective view showing a combined structure of an alternating current LED chip in accordance with a preferred embodiment of the present invention.
  • 4B is a top plan view of an alternating current LED chip in accordance with a preferred embodiment of the present invention.
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4A.
  • FIG. 6 is an equivalent circuit diagram of an AC LED chip in accordance with a preferred embodiment of the present invention.
  • Figure 7 is a perspective view of a preferred embodiment of the present invention in which the end of the metal layer is semi-circular Schematic.
  • Figure 8 is a schematic illustration of an embodiment in which the metal layer is half-S-shaped in accordance with a preferred embodiment of the present invention.
  • Figure 10B is an equivalent circuit diagram of a second application example of an AC LED chip in accordance with a preferred embodiment of the present invention.
  • first light emitting diode 311 first N type layer
  • first active layer 313 first P-type layer
  • second p-type layer 324 second transparent conductive layer
  • 1A is a schematic diagram of a high voltage AC light emitting diode structure in accordance with a preferred embodiment of the present invention.
  • 1B is a series equivalent circuit diagram of a preferred embodiment of the present invention.
  • 2A is a preferred embodiment of the present invention
  • 2B is an equivalent circuit diagram of another series connection and parallel connection according to a preferred embodiment of the present invention.
  • 3 is an exploded perspective view of an alternating current LED chip in accordance with a preferred embodiment of the present invention.
  • 4A is a perspective view showing a combined structure of an alternating current LED chip in accordance with a preferred embodiment of the present invention.
  • 4B is a top plan view of an alternating current LED chip in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along line A-A of Figure 4A.
  • Figure 6 is an equivalent circuit diagram of an alternating current LED chip in accordance with a preferred embodiment of the present invention.
  • Figure 7 is a schematic illustration of an embodiment in which the end of the metal layer is semi-circular in accordance with a preferred embodiment of the present invention.
  • Figure 8 is a schematic illustration of an embodiment in which the metal layer is half-S-shaped in accordance with a preferred embodiment of the present invention.
  • Figure 9 is a schematic illustration of an embodiment in which a metal layer is distributed in other shapes in accordance with a preferred embodiment of the present invention.
  • FIG. 10A is an equivalent circuit diagram of a first application example of an alternating current LED chip according to a preferred embodiment of the present invention.
  • FIG. 10B is an equivalent circuit diagram of a second application example of an alternating current LED chip according to a preferred embodiment of the present invention.
  • the preferred embodiment is a high voltage AC LED structure 100 comprising: a circuit substrate 200; and a plurality of AC LED chips 300.
  • the circuit substrate 200 can be an aluminum substrate or a ceramic counter.
  • the circuit substrate 200 has a much larger volume than the LED chip 300. Therefore, the LED chip can be provided by the circuit 200.
  • the required circuit connections of 300, and the design of a variety of series-parallel circuits, make it possible to more easily and quickly combine a more diverse high-voltage AC LED structure 100.
  • the circuit substrate 200 also provides heat dissipation. Furthermore, when the circuit substrate 200 is a ceramic substrate, a plurality of heat conducting columns or a plurality of conductive pillars may be further disposed in the ceramic substrate to effectively transfer heat generated by the operation of the alternating current LED chip 300, and also to enable the alternating current LED.
  • the electrodes of the chip 300 can smoothly extend to the other side of the ceramic substrate.
  • a plurality of alternating current LED chips 300 are fixed and electrically connected to the circuit substrate 200 and connected by the circuit board 200, so that the alternating current LED chip 300 forms a series circuit 400.
  • the high voltage AC LED structure 100 can be formed, which is the most basic form of the series circuit of the preferred embodiment.
  • any two alternating current LED chips 300 may be further connected in parallel with each other, so that the series circuit 400 further has a parallel circuit, or may also be a series circuit. 400 further parallels at least one series circuit 400, thereby combining a plurality of high voltage AC light emitting diode structures 100.
  • each AC LED chip 300 is fabricated in a wafer level process.
  • Each AC LED chip 300 includes: an insulating substrate 20; at least one LED group 30; at least one first metal layer 40; and at least one second metal layer 50.
  • the equivalent circuit of the AC LED chip is shown in Figure 6.
  • the insulating substrate 20 may be a sapphire substrate or other insulating substrate 20 suitable for the LED process.
  • the insulating substrate 20 can be divided into a plurality of regions for respectively setting the light-emitting two Tube set 30.
  • the LED group 30 is disposed on the insulating substrate 20, and each of the LED groups 30 has a first LED 31 and a second LED 32.
  • the first light emitting diode 31 and the second light emitting diode 32 are insulated from each other and separately disposed on the insulating substrate 20, and each of the light emitting diode groups 30 is also insulated and separated from each other.
  • an insulating layer 33 may be further disposed between the first LED 31 and the second LED 32 to avoid leakage current.
  • the first LED 31 has a first N-type layer 311, a first active layer 312, a first P-type layer 313, and a first transparent conductive layer 314, and the same second LED 32 also has a second N-type layer. 321 .
  • the first N-type layer 311 of the first LED 31 is a first region 21 disposed on the insulating substrate 20, and the second N-type layer 321 of the second LED 32 is disposed on the second substrate 120.
  • the region 22, and the first region 21 and the second region 22 are adjacent to each other, thereby facilitating electrical connection between the first LED 31 and the second LED 32.
  • the first active layer 312 and the second active layer 322 may be formed in a concave shape opposite to each other, and disposed on the first N-type layer 311 and the second N-type layer 321 respectively, and the partial first N-type layer 311 and the second portion
  • the N-type layer 321 can be exposed outside the first active layer 312 and the second active layer 322, respectively.
  • the first P-type layer 313 and the second P-type layer 323 are respectively disposed on the first active layer 312 and the second active layer 322, and the first transparent conductive layer 314 and the second transparent conductive layer 324 are respectively disposed on the first P.
  • the insulating layer 33 can be disposed on the side of the first N-type layer 311 and the second N-type layer 321 to thereby completely insulate the first LED 31 from the second LED 32.
  • the first metal layer 40 is formed to have a first shape distribution and has a first end portion 41 and a second end portion 42.
  • the first end portion 41 of the first metal layer 40 is disposed on the first transparent conductive layer 314 of the first LED 31, and the second end portion 42 of the first metal layer 40 is disposed on the second LED 32.
  • the second metal layer 50 also forms a first shape distribution and is disposed corresponding to the first metal layer 40.
  • the second metal layer 50 has a third end portion 51 and a fourth end portion 52.
  • the third end portion 51 of the second metal layer 50 is disposed on the second transparent conductive layer 324 of the second LED 32.
  • the fourth end portion 52 of the second metal layer 50 is disposed on the first N-type layer 311 exposed by the first LED 31.
  • the first LED layer 31 and the second LED layer 32 are electrically connected to each other, and the first LED 31 and the second LED 32 are electrically connected in reverse.
  • the insulating layer 33 may also be extended to the first LED. 31 and sidewalls of the second LED 32 are such that the first LED 31 and the second LED 32 are insulated from the first metal layer 40. Similarly, when the first LED 31 and the second LED 32 are electrically connected to each other by the second metal layer 50, a short circuit may occur, so that the first LED 31 and the second LED 32 may be extended.
  • the insulating layer 33 of the sidewalls is such that the first LED 31 and the second LED 32 are insulated from the second metal layer 50.
  • the AC LED chip 300 may further have a first pad 60 and a second pad 70.
  • the first pad 60 may be formed on the first end portion 41 of the first metal layer 40, and the second pad 70 may be formed on the third end portion 51 of the second metal layer 50, or the first pad 60 may be formed on the second end portion 42 of the first metal layer 40, and the second pad 70 may be formed on the fourth end portion 52 of the second metal layer 50.
  • the first pad 60 and the second pad 70 are electrically connected to the external circuit 80, and the AC power source can be input to turn on the first LED 31 and the second LED 32.
  • the first end portion 41 of the first metal layer 40 is similar to a current emitter, and the fourth end portion 52 of the second metal layer 50 is similar.
  • a current sink can be used to receive the current emitted by the first end portion 41 of the first metal layer 40, thereby causing the first light emitting diode 31 to emit light.
  • the first metal layer 40 and the second metal layer 50 may be a type of dome, and may be disposed at the periphery of the first LED 31 and the second LED 32 to increase the light-emitting area of the first LED 31 and the second LED 32.
  • the second end portion 42 of the first metal layer 40 and the fourth end portion 52 of the second metal layer 50 are respectively disposed on a central axis 90 of the first LED 31 and the second LED 32.
  • the distance D between every two adjacent first metal layers 40 and the second metal layer 50 is equal, so that the distance D of the current diffusion to the other metal layer is the same, so that the current can be diffused to the other metal layer at the same rate. And uniformly lighting the first LED 31 and the second LED 32.
  • the ends of the second end portion 42 of the first metal layer 40 and the fourth end portion 52 of the second metal layer 50 in FIG. 7 may be half-circular;
  • FIG. The first shape distribution formed by a metal layer 40 and the second metal layer 50 may be a half S shape;
  • the first shape distribution in FIG. 9 may be a shape distribution selected from a group of squares, circles, and their compositions.
  • a plurality of sets of LED groups 30 can be disposed on the insulating substrate 20, and a plurality of sets of AC LED chips 300 can be connected in series or in parallel by the design of the external circuit 80.
  • the AC LED chip 300 can withstand high current density or high voltage operation according to the use requirements.
  • the number of internal connecting wires is reduced, only the necessary internal connecting wires are left, so that the internal connecting wires can be prevented from obscuring the AC LED chip 300.
  • the light exiting area further increases the brightness of the alternating current LED chip 300.
  • the external circuit 80 described above can be formed by directly forming a metal wire on the AC LED chip 300.
  • the circuit on the circuit substrate 200 can also be used to form the external circuit 80, thereby making it possible to more conveniently form the AC LED chip 300.
  • the serial and parallel circuit structure can be formed by directly forming a metal wire on the AC LED chip 300.

Abstract

一种高压交流发光二极管结构,其包括:电路基板(200)以及多个交流LED芯片(300)。交流LED芯片(300)包括:绝缘基板(20);发光二极管组(30);第一金属层(40);以及第二金属层(50)。借由本发明的实施,可以将晶圆级工艺的交流LED芯片结合至较低成本的电路基板,以制作出体积小的高压交流发光二极管结构。

Description

高压交流发光二极管结构 技术领域
本发明涉及一种高压交流发光二极管结构, 特别是涉及一种应用于照 明用的高压交流发光二极管结构。 背景技术
如中国台湾新型专利第 M393127 号, 其揭露了一种连接交流电源的交 流电发光二极管装置, 其主要包含四个整流元件, 并且与两个指向元件连 接成非对称式电桥电路结构。 根据该创作的交流电发光二极管装置包含至 少两个发光二极管串列区块, 分别连接在非对称式电桥电路结构的分支线 路上, 致使该交流电发光二极管装置在交流电源的正电压半周期与负电压 半周期期间全数或大多数发光二极管发光被点亮, 进而提升该交流电发光 二极管装置对交流电源的使用效率。
如中国台湾新型专利第 M354294 号, 其揭露了一种交流发光装置, 包 括一交流-交流变压器, 用以将一交流电源所提供的一第一交流电压转换成 一第二交流电压; 一交流发光二极管模块, 包括一第一组发光二极管晶粒 以及一第二组发光二极管晶粒, 其中第一组发光二极管晶粒是在第二交流 电压的一正周期中被导通一第一时间, 而第二组发光二极管晶粒是在第二 交流电压的一负周期中被导通一第二时间; 以及一防护单元, 耦接于交流 电源与交流发光二极管模块之间, 用以进行过电压或过电流保护。
以上现有习知技术, 使用的发光二极管大多是以一般非晶圆级工艺制 造的一般二极管, 并且仅以单向或整流的电路观念加以设计, 或者利用交 流变压器进行电压的转换, 由于交流变压器的体积大, 因此这种作法会造 成整体装置的体积庞大, 而且电能会消耗在交流变压器上。 随着市场的需 要, 如何制造出一个不需要交流变压器, 又可以结合晶圆级工艺发光二极 管的高压交流发光二极管结构实为一重要课题。 发明内容
本发明的目的在于, 克服现有的交流发光二极管装置存在的缺陷,而提 供一种新型的高压交流发光二极管结构, 所要解决的技术问题是通过将晶 圆級工艺的交流 LED芯片结合至较低成本的电路基板,可以制作出体积小的 高压交流发光二极管结构, 非常适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种高压交流发光二极管结构, 其包括: 一电路基板; 以及 多个交流 LED芯片, 固设且电性连接于该电路基板上并借由该电路基板使 该些交流 LED芯片形成一串联电路, 每一该交流 LED芯片包括: 一绝缘基 板; 至少一发光二极管组, 其具有一第一发光二极管及一第二发光二极管, 且该第一发光二极管及该第二发光二极管是彼此绝缘分离设置于该绝缘基 板上; 至少一第一金属层, 形成一第一形状分布, 且具有一第一端部及一 第二端部, 该第一端部是设置于该第一发光二极管的一第一透明导电层上, 而该第二端部则设置于该第二发光二极管的一第二 N型层上; 以及至少一 第二金属层, 形成该第一形状分布, 且具有一第三端部及一第四端部, 该 第三端部是设置于该第二发光二极管的一第二透明导电层上, 而该第四端 部则设置于该第一发光二极管的一第一 N型层上。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的高压交流发光二极管结构 , 其中所述的电路基板为一铝基板或 一陶瓷基板。
前述的高压交流发光二极管结构, 其中所述的陶瓷基板内设有多条导 热柱或多条导电柱。
前述的高压交流发光二极管结构, 其中任二个该交流 LED芯片进一步 相互并联, 使该串联电路又进一步具有一并联电路。
前述的高压交流发光二极管结构, 其中所述的串联电路进一步又并联 至少一该串联电路。
前述的高压交流发光二极管结构, 其中所述的第一发光二极管具有:该 第一 N型层, 其设置于该绝缘基板上的一第一区域; 一第一主动层,其设置 于部分该第一 N型层上; 一第一 P型层, 其设置于该第一主动层上;以及该 第一透明导电层, 其设置于该第一 P型层上, 而该第二发光二极管具有:该 第二 N型层, 其设置于该绝缘基板上的一第二区域; 一第二主动层, 其设 置于部分该第二 N型层上; 一第二 P型层, 其设置于该第二主动层上;以及 该第二透明导电层, 其设置于该第二 P型层上。
前述的高压交流发光二极管结构, 其中所述的第一主动层及该第二主 动层是形成一凹字形彼此相对, 且分别使部分该第一 N型层及该第二 N型 层外露。
前述的高压交流发光二极管结构, 进一步具有一绝缘层, 其设置于该 第一 N型层及该第二 N型层的侧边。
前述的高压交流发光二极管结构, 其中所述的绝缘层是延伸设置于该 第一发光二极管及该第二发光二极管的侧壁。
前述的高压交流发光二极管结构, 进一步具有一第一焊垫及一第二焊 垫, 该第一焊垫是形成于该第一端部上, 而该第二焊垫则形成于该第三端 部上。 前述的高压交流发光二极管结构, 进一步具有一第一焊垫及一第二焊 垫, 该第一焊垫是形成于该第二端部上, 而该第二焊垫则形成于该第四端 部上。
前述的高压交流发光二极管结构, 其中所述的第一金属层及该第二金 属层是设置于该第一发光二极管及该第二发光二极管的周边。
前述的高压交流发光二极管结构, 其中所述的第二端部及该第四端部 的一末端分别设置于该第一发光二极管及该第二发光二极管的一中央轴 上。
本发明与现有技术相比具有明显的优点和有益效果。 借由上述技术方 案, 本发明高压交流发光二极管结构至少具有下列优点及有益效果:
一、 本发明可以将晶圆级工艺的交流 LED芯片结合较低成本的电路基 板, 以制作出体积小的高压交流发光二极管结构。
二、 本发明可以更容易且快速的制作高压交流发光二极管结构。
三、 本发明可以组合出更具多样性的高压交流发光二极管结构。
综上所述, 本发明是有关于一种高压交流发光二极管结构,其包括:电 路基板; 以及多个交流 LED芯片。 交流 LED芯片包括: 绝缘基板; 发光二 极管组; 第一金属层; 以及第二金属层。 借由本发明的实施, 可以将晶圆 级工艺的交流 LED芯片结合至较低成本的电路基板, 以制作出体积小的高 压交流发光二极管结构。 本发明在技术上有显著的进步, 并具有明显的积 极效果,诚为一新颖、 进步、 实用的新设计。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1 A是本发明较佳实施例的一种高压交流发光二极管结构的示意图。 图 1B是本发明较佳实施例的一种串联等效电路图。
图 2 A是本发明较佳实施例的一种串联后又并联的等效电路图。
图 2B是本发明较佳实施例的又一种串联后又并联的等效电路图。 图 3是本发明较佳实施例的一种交流 LED芯片的分解立体图。
图 4A是本发明较佳实施例的一种交流 LED芯片的组合结构立体图。 图 4B是本发明较佳实施例的一种交流 LED芯片的俯视图。
图 5是沿图 4A中 A- A剖线的剖视图。
图 6是本发明较佳实施例的一种交流 LED芯片之等效电路图。
图 7是本发明较佳实施例的一种金属层末端为一半圆形的实施形态的 示意图。
图 8是本发明较佳实施例的一种金属层为一半 S形的实施形态的示意 图。
二缘央一四
示意图。 层端焊轴端
图 LED芯片的第一应用例的等效 电路图。
图 10B是本发明较佳实施例的一种交流 LED芯片的第二应用例的等效 电路图。
100: 高压交流发光二极管结构 200: 电路基板
300、 300, : 交流 LED芯片 400: 串联电路
20: 绝缘基板 21 第一区域
22: 第二区域 30 发光二极管组
31: 第一发光二极管 311: 第一 N型层
312: 第一主动层 313: 第一 P型层
314: 第一透明导电层 32 第二发光二极管
: 321: 第二 N型层 322: 第二主动层
323: 第二 P型层 324: 第二透明导电层
3 40 第一金属层
4 42 第二端部
50
Figure imgf000005_0001
51 第三端部
60 第一焊垫
70 80 外部电路
90 D: 距离 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所釆取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的高压交流发光二极管 结构其具体实施方式、 结构、 特征及其功效, 详细说明如后。
有关本发明的前述及其他技术内容、 特点及功效, 在以下配合参考图 式的较佳实施例的详细说明中将可清楚呈现。 通过具体实施方式的说明,应 的了解, 然而所附图式仅是提供参考与说明之用:并非用来对本发明 加以限制。
图 1A是本发明较佳实施例的一种高压交流发光二极管结构的示意图。 图 1B是本发明较佳实施例的一种串联等效电路图。图 2A是本发明较佳实施例 的一种串联后又并联的等效电路图。 图 2B是本发明较佳实施例的又一种串 联后又并联的等效电路图。 图 3是本发明较佳实施例的一种交流 LED芯片 的分解立体图。 图 4A是本发明较佳实施例的一种交流 LED芯片的组合结构 立体图。 图 4B是本发明较佳实施例的一种交流 LED芯片的俯视图。 图 5是 为沿图 4A中 A- A剖线的剖视图。 图 6是本发明较佳实施例的一种交流 LED 芯片的等效电路图。 图 7是本发明较佳实施例的一种金属层末端为一半圓 形的实施形态的示意图。 图 8是本发明较佳实施例的一种金属层为一半 S 形的实施形态的示意图。 图 9是本发明较佳实施例的一种金属层为其他形 状分布的实施形态的示意图。 图 10A是本发明较佳实施例的一种交流 LED 芯片的第一应用例的等效电路图。 图 10B是本发明较佳实施例的一种交流 LED芯片的第二应用例的等效电路图。
如图 1A所示, 本较佳实施例为一种高压交流发光二极管结构 100, 其 包括: 一电路基板 200; 以及多个交流 LED芯片 300。
电路基板 200, 其可以为一铝基板或一陶瓷 反, 当交流 LED芯片 300 结合于电路基板 200时, 电路基板 200的体积要较 LED芯片 300大许多,因 此可以借由电路^ 200提供 LED芯片 300所需的电路连接, 进而设计出 多样性的串并联电路, 所以可以更容易且快速的组合出更具多样性的高压 交流发光二极管结构 100。
除了提供电路连接外, 电路基板 200同时也提供散热的功能。 再者,当 电路基板 200 为一陶瓷基板时, 陶瓷基板的 内可以进一步设有多条导 热柱或多条导电柱, 以使交流 LED芯片 300工作产生的热能有效的传递,同 时也使交流 LED芯片 300的电极能顺利的延伸到陶瓷基板的另一侧面。
又如图 1B所示,多个交流 LED芯片 300, 是固设且电性连接于电路基板 200上并借由电路基板 200提供的多样化电路连接,使交流 LED芯片 300, 形成一串联电路 400, 借此可成为高压交流发光二极管结构 100,此为本较 佳实施例的串联电路的最基本形态。
如图 2A及图 2B所示, 除了上述的最基本形态外, 还可以将任二个交 流 LED芯片 300, 进一步彼此相互并联,使串联电路 400又进一步具有一并 联电路, 或者也可使串联电路 400进一步另外并联至少一串联电路 400,借 此以组合出多样的高压交流发光二极管结构 100。
如图 3至图 5所示,每一交流 LED芯片 300均以晶圓级工艺加以制作,每 一交流 LED芯片 300包括: 一绝缘基板 20; 至少一发光二极管组 30; 至少 一第一金属层 40; 以及至少一第二金属层 50。 又交流 LED芯片的等效电路 请参阅图 6所示。
绝缘基板 20, 其系可以为一蓝宝石基板, 或其他适用于发光二极管工 艺之绝缘基板 20。 绝缘基板 20上可区分为多个区域,分别用以设置发光二 极管组 30。
发光二极管组 30, 其设置于绝缘基板 20上, 并且每一发光二极管组 30具有一第一发光二极管 31及一第二发光二极管 32。 第一发光二极管 31 及第二发光二极管 32是彼此绝缘且分离设置于绝缘基板 20上, 且每一发 光二极管组 30也彼此绝缘且分离。 为了使第一发光二极管 31与第二发光 二极管 32间能完全绝缘, 又可进一步设置一绝缘层 33于第一发光二极管 31及第二发光二极管 32之间, 进而避免发生漏电流的情况。
第一发光二极管 31具有第一 N型层 311、一第一主动层 312、一第一 P 型层 313以及第一透明导电层 314, 而同样的第二发光二极管 32也具有第 二 N型层 321、 一第二主动层 322、 一第二 P型层 323以及第二透明导电层 324。
第一发光二极管 31的第一 N型层 311是设置于绝缘基板 20上的一第 一区域 21, 而第二发光二极管 32的第二 N型层 321则设置于绝缘基板 20 上的一第二区域 22, 并且第一区域 21与第二区域 22是彼此相邻, 借此以 便于电性连接第一发光二极管 31及第二发光二极管 32。
第一主动层 312及第二主动层 322可形成一凹字形彼此相对, 且分别 设置于第一 N型层 311及第二 N型层 321上, 并使得部分第一 N型层 311 及第二 N型层 321分别可外露于第一主动层 312及第二主动层 322之外。
第一 P型层 313及第二 P型层 323是分别设置于第一主动层 312及第 二主动层 322上, 第一透明导电层 314及第二透明导电层 324则分别设置 于第一 P型层 313上及第二 P型层 323上。 而绝缘层 33可设置于第一 N型 层 311友第二 N型层 321的侧边, 借此使第一发光二极管 31与第二发光二 极管 32完全绝缘。
第一金属层 40,是形成一第一形状分布, 且具有一第一端部 41及一第 二端部 42。第一金属层 40的第一端部 41是设置于第一发光二极管 31的第 一透明导电层 314上, 而第一金属层 40的之第二端部 42则设置于第二发 光二极管 32外露的第二 N型层 321上。
第二金属层 50,也形成第一形状分布,并与第一金属层 40对应设置。第 二金属层 50具有一第三端部 51及一第四端部 52,第二金属层 50的第三端 部 51是设置于第二发光二极管 32的第二透明导电层 324上,而第二金属层 50的第四端部 52则设置于第一发光二极管 31外露的第一 N型层 311上。 借 由第一金属层 40及第二金属层 50的设置, 可电性连接第一发光二极管 31 及第二发光二极管 32, 并且使第一发光二极管 31及第二发光二极管 32反 向并联。
为了避免利用第一金属层 40电性连接第一发光二极管 31及第二发光 二极管 32时发生短路的情况, 绝缘层 33也可延伸设置于第一发光二极管 31及第二发光二极管 32的侧壁, 以使得第一发光二极管 31及第二发光二 极管 32与第一金属层 40彼此绝缘。 同样的, 当利用第二金属层 50电性连 接第一发光二极管 31及第二发光二极管 32时, 也可能发生短路的情况,因 此可利用延伸设置于第一发光二极管 31及第二发光二极管 32的侧壁的绝 缘层 33,使得第一发光二极管 31及第二发光二极管 32与第二金属层 50彼 此绝缘。
为了使交流 LED芯片 300可与外部电路 80电性连接,交流 LED芯片 300 可进一步具有一第一焊垫 60及一第二焊垫 70。 第一焊垫 60可形成于第一 金属层 40的第一端部 41上, 而第二焊垫 70则可形成于第二金属层 50的 第三端部 51上,又或者第一焊垫 60可形成于第一金属层 40的第二端部 42 上, 而第二焊垫 70则可形成于第二金属层 50的第四端部 52上。
因此,可分别由第一焊垫 60及第二悍垫 70与外部电路 80电性连接,并 且可输入交流电源用以导通第一发光二极管 31及第二发光二极管 32。然 而, 举例来说, 当导通第一发光二极管 31时, 第一金属层 40的第一端部 41是类似于一电流发射器, 而第二金属层 50的第四端部 52则类似于一电 流接收器, 可用以接收第一金属层 40的第一端部 41所发射出的电流, 借 此使得第一发光二极管 31发光。
为了分别使第一金属层 40及第二金属层 50可有效地接收电流, 并使 得电流均匀地在第一发光二极管 31及第二发光二极管 32 中扩散, 第一金 属层 40及第二金属层 50所形成的第一形状分布可以为一类杓形, 并且可 设置于第一发光二极管 31及第二发光二极管 32的周边, 借以增加第一发 光二极管 31及第二发光二极管 32的出光面积。
此外, 第一金属层 40的第二端部 42及第二金属层 50的第四端部 52 的一末端是分别设置于第一发光二极管 31及第二发光二极管 32的一中央 轴 90上, 每两相邻的第一金属层 40及第二金属层 50间的距离 D相等, 以 使得电流扩散到另一金属层的距离 D 皆相同, 进而使得电流可以相同的速 率扩散至另一金属层,并均匀点亮第一发光二极管 31及第二发光二极管 32。
如图 7、 图 8及图 9所示, 图 7中第一金属层 40的第二端部 42及第二 金属层 50的第四端部 52的末端可以为一半圓形; 图 8中第一金属层 40及 第二金属层 50所形成的第一形状分布可以为一半 S形; 图 9中第一形状分 布可以为选自于方形、 圆形及其组成的一群组的形状分布。
如图 10A及图 10B所示, 借由本较佳实施例的实施, 可在绝缘基板 20 上设置多组发光二极管组 30,并且可利用外部电路 80的设计而串联或并联 多组交流 LED芯片 300, 以使得交流 LED芯片 300可根据使用需求, 而可承 受高电流密度或高电压的操作。 此外, 由于减少了内部连接导线的数量,只 留下必要的内部连接导线,因此可避免内部连接导线遮住交流 LED芯片 300 的出光区域, 进而可提高交流 LED芯片 300的亮度。
上述的外部电路 80, 除了可以在交流 LED芯片 300上直接以金属打线 形成外, 也可使用电路基板 200上的电路形成外部电路 80, 借此能更方便 的使交流 LED芯片 300能形成多样化的串并联电路结构。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何简单修改、 等同变化与修饰,均仍属于本发明技术方案妁范围内。

Claims

权 利 要 求
1、 一种高压交流发光二极管结构, 其特征在于其包括:
一电路基板; 以及
多个交流 LED芯片, 固设且电性连接于该电路基板上并借由该电路基 板使该些交流 LED芯片形成一串联电路, 其中每一该交流 LED芯片包括: 一绝缘基板;
至少一发光二极管组, 其具有一第一发光二极管及一第二发光二 极管, 且该第一发光二极管及该第二发光二极管是彼此绝缘分离设置于该 绝缘基板上;
至少一第一金属层, 形成一第一形状分布, 且具有一第一端部及 一第二端部, 该第一端部是设置于该第一发光二极管的一第一透明导电层 上, 而该第二端部则设置于该第二发光二极管的一第二 N型层上; 以及 至少一第二金属层, 形成该第一形状分布, 且具有一第三端部及 一第四端部, 该第三端部是设置于该第二发光二极管的一第二透明导电层 上, 而该第四端部则设置于该第一发光二极管的一第一 N型层上。
2、 根据权利要求 1所述的高压交流发光二极管结构, 其特征在于其中 所述的电路基板为一铝基板或一陶瓷基板。
3、 根据权利要求 2所述的高压交流发光二极管结构, 其特征在于其中 所述的陶瓷基板内设有多条导热柱或多条导电柱。
4、 才艮据权利要求 1所述的高压交流发光二极管结构, 其特征在于其中 任二个该交流 LED芯片进一步相互并联, 使该串联电路又进一步具有一并 联电路。
5、 根据权利要求 1所述的高压交流发光二极管结构, 其特征在于其中 所述的串联电路进一步又并联至少一该串联电路。
6、 才艮据权利要求 1所述的高压交流发光二极管结构, 其特征在于其中 所述的第一发光二极管具有:该第一 N型层,其设置于该绝缘基板上的一第 一区域; 一第一主动层, 其设置于部分该第一 N型层上; 一第一 P型层,其 设置于该第一主动层上; 以及该第一透明导电层, 其设置于该第一 P型层 上, 而该第二发光二极管具有: 该第二 N型层, 其设置于该绝缘基板上的 一第二区域; 一第二主动层, 其设置于部分该第二 N型层上; 一第二 P型 层, 其设置于该第二主动层上; 以及该第二透明导电层, 其设置于该第二 P 型层上。
7、 根据权利要求 6所述的高压交流发光二极管结构, 其特征在于其中 所述的第一主动层及该第二主动层是形成一凹字形彼此相对, 且分别使部 分该第一 N型层及该第二 N型层外露。
8、 根据权利要求 6所述的高压交流发光二极管结构, 其特征在于其进 一步具有一绝缘层, 其设置于该第一 N型层及该第二 N型层的侧边。
9、 根据权利要求 8所述的高压交流发光二极管结构, 其特征在于其中 所述的绝缘层是延伸设置于该第一发光二极管及该第二发光二极管的侧 壁。
10、 居权利要求 1 所述的高压交流发光二极管结构, 其特征在于其 进一步具有一第一焊垫及一第二焊垫,该第一焊垫是形成于该第一端部上,而 该第二焊垫则形成于该第三端部上。
11、 根据权利要求 1 所述的高压交流发光二极管结构, 其特征在于其 进一步具有一第一焊垫及一第二焊垫,该第一焊垫是形成于该第二端部上,而 该第二焊垫则形成于该第四端部上。
12、 根据权利要求 1 所述的高压交流发光二极管结构, 其特征在于其 中所述的第一金属层及该第二金属层是设置于该第一发光二极管及该第二 发光二极管的周边。
13、 根据权利要求 1 所述的高压交流发光二极管结构, 其特征在于其 中所述的第二端部及该第四端部的一末端分别设置于该第一发光二极管及 该第二发光二极管的一中央轴上。
PCT/CN2011/001975 2011-11-28 2011-11-28 高压交流发光二极管结构 WO2013078572A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001975 WO2013078572A1 (zh) 2011-11-28 2011-11-28 高压交流发光二极管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/001975 WO2013078572A1 (zh) 2011-11-28 2011-11-28 高压交流发光二极管结构

Publications (1)

Publication Number Publication Date
WO2013078572A1 true WO2013078572A1 (zh) 2013-06-06

Family

ID=48534573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001975 WO2013078572A1 (zh) 2011-11-28 2011-11-28 高压交流发光二极管结构

Country Status (1)

Country Link
WO (1) WO2013078572A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359402A (ja) * 2001-03-29 2002-12-13 Lumileds Lighting Us Llc 高抵抗性基層の上に形成されたモノリシック直列/並列ledアレイ
TW200527702A (en) * 2004-02-02 2005-08-16 South Epitaxy Corp Light-emitting diode structure with electro-static discharge protection
CN1750277A (zh) * 2004-09-15 2006-03-22 财团法人工业技术研究院 具有交流回路发光二极管晶粒结构
CN1809231A (zh) * 2005-01-19 2006-07-26 三星电机株式会社 发光二极管阵列电路
CN101142692A (zh) * 2005-03-11 2008-03-12 首尔半导体株式会社 具有串联耦合的发光单元阵列的发光二极管封装
CN101645452A (zh) * 2008-08-06 2010-02-10 海立尔股份有限公司 交流发光二极管结构
WO2010017655A1 (zh) * 2008-08-12 2010-02-18 海立尔股份有限公司 具有埋入式电容的发光二极管座体结构
CN101713521A (zh) * 2008-10-07 2010-05-26 海立尔股份有限公司 交流发光二极管结构
CN102067724A (zh) * 2008-06-17 2011-05-18 皇家飞利浦电子股份有限公司 适合于交流驱动的发光器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359402A (ja) * 2001-03-29 2002-12-13 Lumileds Lighting Us Llc 高抵抗性基層の上に形成されたモノリシック直列/並列ledアレイ
TW200527702A (en) * 2004-02-02 2005-08-16 South Epitaxy Corp Light-emitting diode structure with electro-static discharge protection
CN1750277A (zh) * 2004-09-15 2006-03-22 财团法人工业技术研究院 具有交流回路发光二极管晶粒结构
CN1809231A (zh) * 2005-01-19 2006-07-26 三星电机株式会社 发光二极管阵列电路
CN101142692A (zh) * 2005-03-11 2008-03-12 首尔半导体株式会社 具有串联耦合的发光单元阵列的发光二极管封装
CN102067724A (zh) * 2008-06-17 2011-05-18 皇家飞利浦电子股份有限公司 适合于交流驱动的发光器件
CN101645452A (zh) * 2008-08-06 2010-02-10 海立尔股份有限公司 交流发光二极管结构
WO2010017655A1 (zh) * 2008-08-12 2010-02-18 海立尔股份有限公司 具有埋入式电容的发光二极管座体结构
CN101713521A (zh) * 2008-10-07 2010-05-26 海立尔股份有限公司 交流发光二极管结构

Similar Documents

Publication Publication Date Title
US9078312B2 (en) Multichip package structure for directly electrically connecting to an AC power source
US7956365B2 (en) Alternating current light emitting device with plural conductors of electrodes for coupling to adjacent light emitting unit
WO2013159615A1 (zh) 垂直式发光器件及其制作方法
TW201438188A (zh) 堆疊式發光二極體陣列結構
WO2010015106A1 (zh) 交流发光二极管结构
WO2010088823A1 (zh) 发光元件
WO2011147063A1 (zh) 一种使用交流电的发光器件及其制造方法
CN104976547A (zh) 发光二极管组件及用此发光二极管组件的发光二极管灯泡
CN104425478A (zh) 多芯片封装结构
TWI445156B (zh) 發光元件
WO2016011809A1 (zh) 高压发光二极管芯片及其制作方法
WO2014048013A1 (zh) 集成图形阵列高压led器件的制备方法
WO2016202213A1 (zh) 一种led日光管
WO2015062293A1 (zh) 一种led光源散热结构及其散热方法
CN102155660A (zh) 4π出光LED球灯泡
TWI427760B (zh) 高壓交流發光二極體結構
CN101834175A (zh) Led照明cob封装结构以及球泡
WO2013078572A1 (zh) 高压交流发光二极管结构
TWM315936U (en) High-power LED lamp and LED device thereof
CN201994294U (zh) 板上芯片封装结构以及led灯珠
CN203322806U (zh) 一种线性发光的led光源模组
US8633639B2 (en) Multichip package structure and light bulb of using the same
CN201992435U (zh) 4π出光LED球灯泡
CN206234645U (zh) 一种led灯
CN102969307B (zh) 发光二极管结构及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876432

Country of ref document: EP

Kind code of ref document: A1