WO2010015106A1 - 交流发光二极管结构 - Google Patents

交流发光二极管结构 Download PDF

Info

Publication number
WO2010015106A1
WO2010015106A1 PCT/CN2008/001432 CN2008001432W WO2010015106A1 WO 2010015106 A1 WO2010015106 A1 WO 2010015106A1 CN 2008001432 W CN2008001432 W CN 2008001432W WO 2010015106 A1 WO2010015106 A1 WO 2010015106A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
emitting diode
layer
light emitting
disposed
Prior art date
Application number
PCT/CN2008/001432
Other languages
English (en)
French (fr)
Inventor
陈明鸿
温士逸
陈景宜
Original Assignee
海立尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海立尔股份有限公司 filed Critical 海立尔股份有限公司
Priority to US13/003,714 priority Critical patent/US20110121329A1/en
Priority to PCT/CN2008/001432 priority patent/WO2010015106A1/zh
Publication of WO2010015106A1 publication Critical patent/WO2010015106A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an alternating current light emitting diode structure, and more particularly to an alternating current light emitting diode structure for high current density/high voltage operation. Background technique
  • the light-emitting device having a plurality of light-emitting components
  • the light-emitting device is formed by forming a plurality of gallium nitride on the insulating substrate as a light-emitting diode assembly, and the plurality of light-emitting diode assemblies are on the insulating substrate.
  • a binary configuration is formed whereby the LED components are connected in series to form an array of light emitting diodes, and the two sets of LED arrays are connected to the electrodes in mutually opposite polarities.
  • an alternating current power source can be used as the power source.
  • the main object of the present invention is to overcome the defects of the existing light-emitting device and provide a new AC light-emitting diode structure.
  • the technical problem to be solved is to reduce the number of internal connecting wires to avoid blocking AC light.
  • Another object of the present invention is to provide an alternating current light emitting diode structure, wherein the first light emitting diode and the second light emitting diode in the light emitting diode group are formed by the first metal layer and the second metal layer
  • the tubes are electrically connected and connected in anti-parallel with each other, so that the LED group can be connected in parallel or in series with another LED group according to the use requirement, thereby improving the application flexibility of the AC LED structure.
  • An AC LED structure includes: an insulating substrate; at least one LED group having a first LED and a second LED, and the first LED and the second LED The diodes are insulated from each other on the insulating substrate; a first metal layer is formed to form a first shape distribution, and has a first end portion and a second end portion, the first end portion is disposed on the a first transparent conductive layer of the first light emitting diode, wherein the second end portion is disposed on a second N-type layer of the second light emitting diode; and a second metal layer forming the first shape Distributing, and having a third end portion and a fourth end portion, the third end portion is disposed on a second transparent conductive layer of the second light emitting diode, and the fourth end portion is disposed on the first end A first N-type layer of the light-emitting diode.
  • the insulating substrate is a sapphire substrate.
  • the first LED has: the first N-type layer, which is a first region disposed on the insulating substrate; and a first active layer disposed on the portion a first P-type layer disposed on the first active layer; and the first transparent conductive layer disposed on the first P-type layer, the second illuminating layer
  • the diode has: the second N-type layer, which is a second region disposed on the insulating substrate; a second active layer disposed on a portion of the second N-type layer; a second P-type layer, It is disposed on the second active layer; and the second transparent conductive layer is disposed on the second P-type layer.
  • the first active layer and the second active layer form a concave shape opposite to each other, and partially expose the first N-type layer and the second N-type layer, respectively.
  • the foregoing AC LED structure further has an insulating layer disposed on a side of the first N-type layer and the second N-type layer.
  • the insulating layer is disposed on sidewalls of the first LED and the second LED.
  • the foregoing AC LED structure further has a first soldering pad and a second bonding pad, the first bonding pad is formed on the first end portion, and the second bonding pad is formed on the third end portion on.
  • the AC LED structure further has a first pad and a second pad, the first pad is formed on the second end, and the second pad is formed on the fourth end on.
  • the first metal layer and the second metal layer are disposed around the first light emitting diode and the second light emitting diode.
  • the second end portion and one end of the fourth end portion are respectively disposed on a central axis of the first light emitting diode and the second light emitting diode.
  • the second end portion and the end portion of the fourth end portion are semicircular
  • the first shape distribution is a type of dome, a half s shape or a group selected from the group consisting of a square, a circle and a group thereof.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the present invention provides an AC LED structure, including: an insulating substrate; The light emitting diode and the second light emitting diode are insulated from each other and disposed on the insulating substrate; a first metal layer is formed to form a first shape distribution, and has a first end portion and a second end portion, the first end portion Is disposed on a first transparent conductive layer of the first light emitting diode, and the second end is disposed on a second N-type layer of the second light emitting diode; and a second metal layer is formed into the first shape Distributing, and having a third end portion and a fourth end portion, the third end portion is disposed on a second transparent conductive layer of the second light emitting diode, and the fourth end portion is disposed on the first light emitting diode On the first N-type layer.
  • the AC LED structure of the present invention has at least the following advantages: 1. By reducing the number of internal connecting wires, to avoid obscuring the light-emitting area of the AC LED structure. ⁇
  • the first metal layer and the second metal layer are distributed in a first shape so that the light emitting diodes in the LED group are connected in anti-parallel with each other, and can be used in series/parallel with another LED group, thereby improving the structure of the AC LED. Application flexibility.
  • FIG. 1 is a perspective exploded view of an AC light emitting diode structure of the present invention.
  • Fig. 2 is a view showing an embodiment of an embodiment of an alternating current light emitting diode according to the present invention.
  • FIG. 3 is a diagram showing an equivalent circuit embodiment of an AC light emitting diode structure of the present invention.
  • Figure 4 is a cross-sectional view of the embodiment taken along line A-A of Figure 2;
  • FIG. 5 is a first embodiment of an AC LED structure according to the present invention.
  • FIG. 6 is a second embodiment of an AC LED structure according to the present invention.
  • FIG. 7 is a third embodiment of an AC LED structure according to the present invention.
  • FIG. 8 is a fourth embodiment of an AC LED structure according to the present invention.
  • 9A is a first equivalent circuit application implementation of an alternating current light emitting diode structure according to the present invention.
  • 9B is a diagram showing an application example of a second equivalent circuit of an alternating current light emitting diode junction according to the present invention.
  • LED group 31 First LED
  • first N-type layer 312 first active layer
  • first P-type layer 314 first transparent conductive layer
  • second active layer 323 second p-type layer
  • FIG. 1 is a perspective exploded view of an alternating current light emitting diode structure 10 of the present invention.
  • 2 is a perspective view of an alternating current light emitting diode structure 10 of the present invention.
  • 3 is a diagram showing an equivalent circuit embodiment of an alternating current light emitting diode structure 10 of the present invention.
  • Figure 4 is a cross-sectional view of the embodiment taken along line A-A of Figure 2;
  • Figure 5 is a perspective view of an AC light emitting diode structure 10 of the present invention.
  • Figure 6 shows an embodiment 2 of an alternating current light emitting diode structure 10 of the present invention.
  • FIG. 7 shows an embodiment 3 of an alternating current light emitting diode structure 10 of the present invention.
  • 9A is a diagram showing an application example of a first equivalent circuit of an alternating current light emitting diode structure 10 of the present invention.
  • 9B is a diagram showing an application example of a second equivalent circuit of an AC LED structure 10 of the present invention.
  • the embodiment is an AC LED structure 10, comprising: an insulating substrate 20; at least one LED group 30; a first metal layer 40; and a second metal layer 50. .
  • the insulating substrate 20 which may be a sapphire substrate, or other insulating substrate 20 suitable for use in a light emitting diode process.
  • the insulating substrate 20 can be divided into a plurality of regions for respectively illuminating Diode group 30.
  • the LED group 30 is disposed on the insulating substrate 20, and each LED group 30 has a first LED 31 and a second LED 32, and the first LED 31 and the second LED 32 are Insulation and separation, and each of the light emitting diode groups 30 is also insulated and separated from each other.
  • an insulating layer 33 may be further disposed between the first LED 31 and the second LED 32 to prevent leakage current.
  • the first LED 31 has a first N-type layer 311, a first active layer 312, a first P-type layer 313 »: a first transparent conductive layer 314, and the same second illumination.
  • the diode 32 also has a second N-type layer 321, a second active layer 322, a second P-type layer 323, and a second transparent conductive layer 324.
  • the first N-type layer 311 of the first LED 31 is a first region 21 disposed on the insulating substrate 20 ′, and the second N-type layer 321 of the second LED 32 is disposed on the insulating substrate 20 .
  • the second region 22, and the first region 21 and the second region 22 are adjacent to each other, thereby electrically connecting the first LED 31 and the second LED 32.
  • the first active layer 312 and the second active layer 322 may be formed in a concave shape opposite to each other, and disposed on the first N-type layer 311 and the second N-type layer 321 respectively, and the partial first N-type layer 311 and the second portion
  • the N-type layer 321 can be exposed outside the first active layer 312 and the second active layer 322, respectively.
  • the first P-type layer 313 and the second P-type layer 323 are respectively disposed on the first active layer 312 and the second active layer 322, and the first transparent conductive layer 314 and the second transparent conductive layer 324 are respectively disposed on the first
  • the P-type layer 313 is on the second P-type layer 323.
  • the insulating layer 33 can be disposed on the sides of the first N-type layer 311 and the second N-type layer 321 to completely insulate the first LED 31 from the second LED 32.
  • the first metal layer 40 is formed to have a first shape distribution and has a first end portion 41 and a second end portion 42.
  • the first end portion 41 of the first metal layer 40 is disposed on the first transparent conductive layer 314 of the first light emitting diode 31, and the first end portion 42 of the first metal layer 40 is disposed on the second light emitting diode 32.
  • the second metal layer 50 which also forms a first shape distribution, is disposed corresponding to the first metal layer 40.
  • the second metal layer 50 has a third end portion 51 and a fourth end portion 52.
  • the third end portion 51 of the second metal layer 50 is disposed on the second transparent conductive layer 324 of the second LED 32.
  • the fourth end portion 52 of the second metal layer 50 is disposed on the first N-type layer 311 of the first LED 31.
  • the first light emitting diode 31 and the second light emitting diode 32 are electrically connected through the arrangement of the first metal layer 40 and the second metal layer 50, and the first light emitting diode 31 and the second light emitting diode 32 are connected in anti-parallel, etc.
  • the circuit diagram is shown in Figure 3.
  • the insulating layer 33 may also be extended to the first.
  • the side walls of the light emitting diode 31 and the second light emitting diode 32 are such that the first light emitting diode 31 and the second light emitting diode 32 are insulated from each other by the first metal layer 40.
  • a short circuit may occur, so that the first LED 31 and the second LED 32 may be extended.
  • the insulating layer 33 of the sidewalls is such that the first LED 31 and the second LED 32 are insulated from the second metal layer 50.
  • the AC LED structure 10 may further have a first pad 60 and a second pad 70.
  • the first pad 60 may be formed on the first end portion 41 of the first metal layer 40, and the second pad 70 may be formed on the third end portion 51 of the second metal layer 50, or the first pad 60 may be formed on the second end portion 42 of the first metal layer 40, and the second pad 70 may be formed on the fourth end portion 52 of the second metal layer 50.
  • the first pad 60 and the second pad 70 are electrically connected to the external circuit 80, and the AC power source can be input to turn on the first LED 31 and the second LED 32.
  • the first end portion 41 of the first metal layer 40 is similar to a current emitter, and the fourth end portion 52 of the second metal layer 50 is similar.
  • a current sink can be used to receive the current emitted by the first end portion 41 of the first metal layer 40, thereby causing the first light emitting diode 31 to emit light.
  • the first metal The first shape distribution formed by the layer 40 and the second metal layer 50 may be a type of dome, and may be disposed at the periphery of the first LED 31 and the second LED 32, thereby increasing the first LED 31 and the second The light-emitting area of the light-emitting diode 32.
  • one end of the second end portion 42 of the first metal layer 40 and the fourth end portion 52 of the second metal layer 50 are respectively disposed on a central axis 90 of the first light emitting diode 31 and the second light emitting diode 32. Further, the distance D between each two adjacent first metal layer 40 and the second metal layer 50 is equal, so that the distance D of the current diffusion to the other metal layer is the same, so that the current can be diffused to the same rate at the same rate.
  • a metal layer is used to uniformly illuminate the first LED 31 and the second LED 32.
  • the ends of the second end portion 42 of the first metal layer 40 and the fourth end portion 52 of the second metal layer 50' may be half-circular, or as shown in FIG. 7, the first metal
  • the first shape distribution formed by the second metal layer 50 of the layer 40 may be a half S shape, or as shown in FIG. 8, the first shape distribution may be a shape selected from a group of squares, circles, and their compositions. distributed.
  • a plurality of groups of LED groups 30 can be disposed on the insulating substrate 20, and a plurality of groups of LED groups 30 can be connected in series or in parallel by the design of the external circuit 80.
  • the AC LED structure 10 can be tolerated according to the needs of use. High current density or high voltage operation.
  • the AC light emitting diode structure of the present invention is disposed on the first light emitting diode and the second light emitting diode in a first shape through the first metal layer and the second metal layer, so that the light emitting diode group can be used according to the use requirement.
  • the LED groups are connected in parallel or in series to withstand high current density or high voltage operation.

Description

交流发光二极管结构 技术领域
本发明涉及一种交流发光二极管结构, 特别是涉及一种应用于高电流 密度 /高电压操作的交流发光二极管结构。 背景技术
如中国台湾发明专利第 1280672号的一种具有多个发光组件的发光装 置所述, 发光装置是于绝缘基板上形成多个氮化镓是发光二极管组件, 并 且多个发光二极管组件在绝缘基板上形成二元配置, 藉此将发光二极管组 件串联连接成发光二极管数组, 且二组发光二极管数组是以互相相反的极 性连接至电极。 通过将发光二极管数组配置成曲折状, 以使得可以高驱动 电压及低驱动电流驱动, 并且因为发光二极管数组为互相相反的极性, 所 以可使用交流电源作为电源。
但因为在绝缘基板上形成有多个发光二极管组件, 并且发光二极管组 件的间以及发光二极管组件及电极的间皆使用内部连接导线相互电性连 接, 所以在发光装置中形成了为錄众多的内部连接导线。 然而, 实际上在 导通发光装置时, 内部连接导线易被具高电流密度的电流所熔断, 而且在 其中一组发光二极管数组正向操作时, 仍有另一组发光二极管承受逆向电 压, 并且容易产生漏电流。
此外, 以内部连接导线连接发光二极管组件时, 也会遮去发光二极管 组件大部分的出光区域, 因此既使欲通过在绝缘基板上形成多个发光二极 管组件以提高发光亮度, 大部分的出光区域仍会被内部连接导线所遮蔽, 而导致无法有效地提高发光亮度。
有鉴于上述现有的发光装置存在的缺陷, 本发明人基于从事此类产品 设计制造多年丰富的实务经脸及专业知识, 并配合学理的运用, 积极加以 研究创新, 以期创设一种新的交流发光二极管结构, 能够改进一般现有的 发光装置, 使其更具有实用性。 经过不断的研究、 设计,并经反复试作及改 进后, 终于创设出确具实用价值的本发明。 发明内容
本发明的主要目的在于, 克服现有的发光装置存在的缺陷, 而提供一 种新的交流发光二极管结构, 所要解决的技术问题是使其通过减少内部连 接导线的数量, 以避免遮住交流发光二极管结构的出光区域。
本发明另一目的在于, 提供一种交流发光二极管结构, 其是通过第一 金属层及第二金属层使发光二极管组中的第一发光二极管及第二发光二极 管电性连接且彼此反向并联, 以使得发光二极管组可依使用需求与另一发 光二极管组相互并联或串联, 进而提高交流发光二极管结构的应用灵活度。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种交流发光二极管结构, 其包括: 一绝缘基板; 至少一发 光二极管组, 其具有一第一发光二极管及一第二发光二极管, 且该第一发 光二极管及该第二发光二极管是彼此绝缘分离设置于该绝缘基板上; 一第 一金属层, 其是形成一第一形状分布, 且具有一第一端部及一第二端部, 该第一端部是设置于该第一发光二极管的一第一透明导电层上, 而该第二 端部则设置于该第二发光二极管的一第二 N型层上; 以及一第二金属层, 其是形成该第一形状分布, 且具有一第三端部及一第四端部, 该第三端部 是设置于该第二发光二极管的一第二透明导电层上, 而该第四端部则设置 于该第一发光 ^极管的一第一 N型层上。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的交流发光二极管结构, 其中所述的绝缘基板为一蓝宝石基板。 前述的交流发光二极管结构, 其中所述的第一发光二极管具有: 该第 一 N型层, 其是设置于该绝缘基板上的一第一区域; 一第一主动层, 其是 设置于部分该第一 N型层上; 一第一 P型层,其是设置于该第一主动层上; 以及该第一透明导电层, 其是设置于该第一 P型层上, 而该第二发光二极 管具有: 该第二 N型层, 其是设置于该绝缘基板上的一第二区域; 一第二 主动层, 其是设置于部分该第二 N型层上; 一第二 P型层, 其是设置于该 第二主动层上; 以及该第二透明导电层, 其是设置于该第二 P型层上。
. 前述的交流发光二极管结构, 其中所述的第一主动层及该第二主动层 形成一凹字形彼此相对,且分别使部分该第一 N型层及该第二 N型层外露。
前述的交流发光二极管结构, 其进一步具有一绝缘层, 其设置于该第 一 N型层及该第二 N型层的侧边。
前述的交流发光二极管结构, 其中所述的绝缘层是延伸设置于该第一 发光二极管及该第二发光二极管的侧壁。
前述的交流发光二极管结构, 其进一步具有一第一焊塾及一第二焊垫, 该第一焊垫形成于该第一端部上, 而该第二焊垫则形成于该第三端部上。
前述的交流发光二极管结构, 其进一步具有一第一焊垫及一第二焊垫, 该第一焊垫形成于该第二端部上, 而该第二焊垫则形成于该第四端部上。
前述的交流发光二极管结构, 其中所述的第一金属层及该第二金属层 是设置于该笫一发光二极管及该第二发光二极管的周边。
前述的交流发光二极管结构, 其中所述的第二端部及该第四端部的一 末端是分别设置于该第一发光二极管及该第二发光二极管的一中央轴上。
前述的交流发光二极管结构, 其中相邻的该第一金属层及该第二金属 层间的距离相等。
前述的交流发光二极管结构, 其中所述的第二端部及该第四端部的一 末端为一半圆形,
前述的交流发光二极管结构, 其中所述的第一形状分布为一类杓形、 一半 s形或选自方形、 圓形及其组 Λ的一群组。
本发明与现有技术相比具有明显的优点和有益效果。 由以上可知,为了 达到上述目的, 本发明提供了一种交流发光二极管结构, 其包括: 一绝缘 基板; 至少一发光二极管组, 其具有一第一发光二极管及一第二发光二极 管 , 且第一发光二极管及第二发光二极管是彼此绝缘分离设置于绝缘基板 上; 一第一金属层, 其是形成一第一形状分布, 且具有一第一端部及一第 二端部, 第一端部是设置于第一发光二极管的一第一透明导电层上, 而第 二端部则设置于第二发光二极管的一第二 N型层上; 以及一第二金属层, 其是形成第一形状分布, 且具有一第三端部及一第四端部, 第三端部是设 置于第二发光二极管的一第二透明导电层上, 而第四端部则设置于第一发 光二极管的一第一 N型层上。
借由上述技术方案, 本发明交流发光二极管结构至少具有下列优点: 一、 通过减少内部连接导线的数量, 以避免遮住交流发光二极管结构 的出光区域。 ·
二、 通过第一金属层及第二金属层以第一形状分布使发光二极管组中 的发光二极管彼此反向并联, 并可用以与另一发光二极管组串联 /并联, 藉 此提高交流发光二极管结构的应用灵活度。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 、 附图的简要说明
图 1为本发明的一种交流发光二极管结构的立体分解实施例图。
图 2为本发明的一种交流发光二极管结构的 体实施例图。
图 3为本发明的一种交流发光二极管结构的等效电路实施例图。
图 4为沿第 2图中 A-A剖线的剖视实施例图。
图 5为本发明的一种交流发光二极管结构的实施态样一。
图 6为本发明的一种交流发光二极管结构的实施态样二。
图 7为本发明的一种交流发光二极管结构的实施态样三。
图 8为本发明的一种交流发光二极管结构的实施态样四。
图 9A为本发明的一种交流发光二极管结构的第一等效电路应用实施 例图。
图 9B 为本发明的一种交流发光二极管结 的第二等效电路应用实施 例图。
10: 交流发光二极管结构 20: 绝缘基板
21 : 第一区域 22: 第二区域
30: 发光二极管组 31 : 第一发光二极管
311 : 第一 N型层 312: 第一主动层
313: 第一 P型层 314: 第一透明导电层
32: 第二发光二极管 321 : 第二 N型层
322: 第二主动层 323: 第二 P型层
324: 第二透明导电层 33: 绝缘层
40: 第一金属层 41 : 第一端部
42: 第二端部 50: 第二金属层
51 : 第三端部 52: 第四端部
60: 第一焊垫 70: 第二焊垫
80: 外部电路 90: 中央轴
D: 距离 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效, 以下结合附图及较佳实施例, 对依据本发明提出的交流发光二极管结构其 具体实施方式、 步骤、 特征及其功效, 详细说明如后。
图 1为本发明的一种交流发光二极管结构 10的立体分解实施例图。 图 2为本发明的一种交流发光二极管结构 10的立体实施例图。 图 3为本发明 的一种交流发光二极管结构 10的等效电路实施例图。 图 4为沿图 2中 A-A 剖线的剖视实施例图。 图 5为本发明的一种交流发光二极管结构 10的实^ 态样一。 图 6为本发明的一种交流发光二极管结构 10的实施态样二。 图 7 为本发明的一种交流发光二极管结构 10的实施态样三。 图 8为本发明的一 种交流发光二极管结构 10的实施态样四。 图 9A为本发明的一种交流发光 二极管结构 10的第一等效电路应用实施例图。 图 9B为本发明的一种交流 发光二极管结构 10的第二等效电路应用实施例图。
如图 1及图 2所示, 本实施例为一种交流发光二极管结构 10, 其包括: 一绝缘基板 20; 至少一发光二极管组 30; —第一金属层 40; 以及一第二金 属层 50。
绝缘基板 20, 其是可以为一蓝宝石基板, 或其它适用于发光二极管制 程的的绝缘基板 20。 绝缘基板 20上可区分为多个区域, 分别用以设置发光 二极管组 30。
发光二极管组 30,其是设置于绝缘基板 20上, 并且每一发光二极管组 30具有一第一发光二极管 31及一第二发光二极管 32, 而第一发光二极管 31及第二发光二极管 32是彼此绝缘且分离, 且每一发光二极管组 30亦彼 此绝缘且分离。 为了使第一发光二极管 31与第二发光二极管 32间能完全 绝缘, 又可进一步设置一绝缘层 33于第一发光二极管 31及第二发光二极 管 32之间, 进而避免发生漏电流的情况。
如图 1所示, 第一发光二极管 31具有第一 N型层 311、 一第一主动层 312、 一第一 P型层 313 »:乂及第一透明导电层 314, 而同样的第二发光二极 管 32亦具有第二 N型层 321、 一第二主动层 322、 一第二 P型层 323以及 第二透明导电层 324。
第一发光二极管 31的第一 N型层 311是设置于绝缘基板 20 '上的一第 一区域 21 , 而第二发光二极管 32的第二 N型层 321则设置于绝缘基板 20 上的一第二区域 22, 并且第一区域 21及第二区域 22是彼此相邻, 藉此以 便于电性连接第一发光二极管 31及第二发光二极管 32。
第一主动层 312及第二主动层 322可形成一凹字形彼此相对, 且分别 设置于第一 N型层 311及第二 N型层 321上, 并使得部分第一 N型层 311 及第二 N型层 321分别可外露于第一主动层 312及第二主动层 322之外。
第一 P型层 313及第二 P型层 323是分别设置于第一主动层 312及第 二主动层 322上, 又第一透明导电层 314及第二透明导电层 324则分别设 置于第一 P型层 313上及第二 P型层 323上。又绝缘层 33可设置于第一 N 型层 311及第二 N型层 321的侧边,藉此使第一发光二极管 31与第二发光 二极管 32完全绝缘。
如图 1及图 2所示, 第一金属层 40, 其是形成一第一形状分布, 且具 有一第一端部 41及一第二端部 42。第一金属层 40的第一端部 41是设置于 第一发光二极管 31的第一透明导电层 314上, 而第一金属层 40的第;端 部 42则设置于第二发光二极管 32的第二 N型层 321上。
第二金属层 50,其亦形成第一形状分布,并与第一金属层 40对应设置。 第二金属层 50具有一第三端部 51及一第四端部 52,第二金属层 50的第三 端部 51是设置于第二发光二极管 32的第二透明导电层 324上, 而第二金 属层 50的第四端部 52则设置于第一发光二极管 31的第一 N型层 311上。 通过第一金属层 40及第二金属层 50的设置, 可电性连接第一发光二极管 31及第二发光二极管 32, 并且使第一发光二极管 31及第二发光二极管 32 反向并联, 其等效电路图是如图 3所示。
如图 4所示,为了避免利用第一金属层 40电性连接第一发光二极管 31 及第二发光二极管 32时发生短路的情况, 绝缘层 33亦可延伸设置于第一 发光二极管 31及第二发光二极管 32的侧壁, 以使得第一发光二极管 31及 第二发光二极管 32与第一金属层 40彼此绝缘。 同样的, 当利用第二金属 层 50电性连接第一发光二极管 31及第二发光二极管 32时, 亦可能发生短 路的情况,因此可利用延伸设置于第一发光二极管 31及第二发光二极管 32 的侧壁的绝缘层 33 , 使得第一发光二极管 31及第二发光二极管 32与第二 金属层 50彼此绝缘。
如图 5所示, 为了使爻流发光二极管结构 10可与外部电路 80电性连 接,交流发光二极管结构 10可进一步具有一第一焊垫 60及一第二垾垫 70。 第一焊垫 60可形成于第一金属层 40的第一端部 41上, 而第二烊垫 70则 可形成于第二金属层 50的第三端部 51上, 又或者第一焊垫 60可形成于第 一金属层 40的第二端部 42上, 而第二焊垫 70则可形成于第二金属层 50 的第四端部 52上。
因此, 可分别由第一焊垫 60及第二焊垫 70与外部电路 80电性连接, 并且可输入交流电源用以导通第一发光二极管 31及第二发光二极管 32。然 而, 举例来说, 当导通第一发光二极管 31时, 筚一金属层 40的第一端部 41是类似于一电流发射器, 而第二金属层 50的第四端部 52则类似于一电 流接收器, 可用以接收第一金属层 40的第一端部 41所发射出的电流, 藉 此使得第一发光二极管 31发光。
如图 5所示, 为了分别使第一金属层 40及第二金属层 50可有效地接 收电流, 并使得电流均勾地在第一发光二极管 31及第二发光二极管 32中 扩散, 第一金属层 40及第二金属层 50所形成的第一形状分布可以为一类 杓形, 并且可设置于第一发光二极管 31及第二发光二极管 32的周边, 藉 以增加第一发光二极管 31及第二发光二极管 32的出光面积。
此外, 第一金属层 40的第二端部 42及第二金属层 50的第四端部 52 的一末端是分别设置于第一发光二杈管 31及第二发光二极管 32的一中央 轴 90上, 又每两相邻的第一金属层 40及第二金属层 50间的距离 D相等, 以使得电流扩散到另一金属层的距离 D皆相同, 进而使得电流可以相同的 速率扩散至另一金属层, 并均匀点亮第一发光二极管 31及第二发光二极管 32。
如图 6所示, 第一金属层 40的第二端部 42及第二金属层 50'的第四端 部 52的末端是可以为一半圆形, 又或者如图 7所示, 第一金属层 40 二金属层 50所形成的第一形状分布可以为一半 S形, 又或是如图 8所示, 第一形状分布可以为选自于方形、 圓形及其组成的一群组的形状分布。
如图 9A及图 9B所示,通过本实施例的实施,可在绝缘基板 20上设置 多组发光二极管组 30,并且可利用外部电路 80的设计而串联或并联多组发 光二极管组 30, 以使得交流发光二极管结构 10可根据使用需求, 而可承受 高电流密度或高电压的操作。 此外, 由于减少了内部连接导线数量, 只留 下必要的内部连接导线, 因此可避免内部连接导线遮住交流发光二极管结 构 10的出光区域, 进而可提高交流发光二极管结构 10的亮度。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员? 在不脱离本发明技术方案范围内,当可利用 上述揭示的技术内客作出些许更动或修饰为等同变化的等效实施例,但凡是 未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所作的 任何简单修改、 等同变化与修饰,均仍属于本发明技术方案的范围内。 工业应用性
本发明的一种交流发光二极管结构, 通过第一金属层及第二金属层以 第一形状分布设置于第一发光二极管及第二发光二极管上 , 以使得发光二 极管组可根据使用需求, 与其它发光二极管组并联或串联, 藉以承受高电 流密度或高电压的操作。

Claims

权 利 要 求
1、 一种交流发光二极管结构, 其特征在于其包括:
一绝缘基板;
至少一发光二极管组, 其具有一第一发光二极管及一第二发光二极管, 且该第一发光二极管及该第二发光二极管彼此绝缘分离设置于该绝缘基板 上;
一第一金属层, 其形成一第一形状分布, 且具有一第一端部及一第二 端部, 该第一端部是设置于该第一发光二极管的一第一透明导电层上, 而 该第二端部则设置于该第二发光二极管的一第二 N型层上; 以及
一第二金属层, 其形成该第一形状分布, 且具有一第三端部及一第四 端部, 该第三端部是设置于该第二发光二极管的一第二透明导电层上, 而 该第四端部则设置于该第一发光二极管的一第一 N型层上。
2、 根据权利要求 1所述的交流发光二极管结构, 其特征在于所述的绝 缘基板为一蓝宝石基板。
3、根据权利要求 1所述的交流发光二极管结构, 其特征在于所述的第 一发光二极管具有:
该第一 N型层, 其是设置于该绝缘基板上的一第一区域;
一第一主动层, 其是设置于部分该第一 N型层
一第一 P型层, 其是设置于该第一主动层上; 以及
该第一透明导电层, 其是设置于该第一 P型层上, 而该第二发光二极 管具有:
该第二 N型层, 其是设置于该绝缘基板上的一第二区域; 一第二主动层, 其是设置于部分该第二 N型层上;
一第二 P型层, 其是设置于该第二主动层上; 以及
该第二透明导电层, 其是设置于该第二 P型层上。
4、 根据权利要求 3所述的交流发光二极管结构, 其特征在于所述的第 一主动层及该第二主动层形成一凹字形彼此相对, 且分别使部分该第一 N 型层及该第二 N型层外露。
5、 根椐权利要求 3所述的交流发光二极管结构, 其特征在于其进一步 具有一绝缘层, 其是设置于该第一 N型层及该第二 N型层的侧边。
6、 根据权利要求 5所述的交流发光二极管结构, 其特征在于所述的绝 缘层是延伸设置于该第一发光二极管及该第二发光二极管的侧壁。
7、 根据权利要求 1所述的交流发光二极管结 , 其特征在于其进一步 具有一第一焊垫及一第二焊垫, 该第一焊垫形成于该第一端部上, 而该第 二焊垫则形成于该第三端部上。
8、 根据权利要求 1所述的交流发光二极管结构, 其特征在于其进一步 具有一第一焊垫及一第二焊垫, 该第一焊垫形成于该第二端部上, 而该第 二焊垫则形成于该第四端部上。
9、 根据权利要求 1所述的交流发光二极管结构, 其特征在于所述的第 一金属层及该第二金属层是设置于该第一发光二极管及该第二发光二极管 的周边。
10、 根据权利要求 1所述的交流发光二极管结构, 其特征在于所述的 第二端部及该第四端部的一末端分别设置于该第一发光二极管及该第二发 光二极管的一中央轴上。
11、 根据权利要求 1 所述的交流发光二极管结构,' 其特征在于其中相 邻的该第一金属层及该第二金属层间的距离相等。
.
12、 根据权利要求 1 所述的交流发光二极管结构,.其特征在于所述的 第二端部及该第四端部的一末端为一半圆形。
13、 根据权利要求 1所述的交流发光二极管结构, 其特征在于所述的 第一形状分布为一类杓形、 一半 S形或选自方形、 圆形及其组成的一群组。
PCT/CN2008/001432 2008-08-06 2008-08-06 交流发光二极管结构 WO2010015106A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/003,714 US20110121329A1 (en) 2008-08-06 2008-08-06 AC LED Structure
PCT/CN2008/001432 WO2010015106A1 (zh) 2008-08-06 2008-08-06 交流发光二极管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/001432 WO2010015106A1 (zh) 2008-08-06 2008-08-06 交流发光二极管结构

Publications (1)

Publication Number Publication Date
WO2010015106A1 true WO2010015106A1 (zh) 2010-02-11

Family

ID=41663269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001432 WO2010015106A1 (zh) 2008-08-06 2008-08-06 交流发光二极管结构

Country Status (2)

Country Link
US (1) US20110121329A1 (zh)
WO (1) WO2010015106A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537733A (zh) * 2010-12-21 2012-07-04 三星Led株式会社 发光模块及其制造方法
JP2020145432A (ja) * 2010-07-02 2020-09-10 晶元光電股▲ふん▼有限公司Epistar Corporation 光電素子

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI397989B (zh) * 2009-12-07 2013-06-01 Epistar Corp 發光二極體陣列
USD644187S1 (en) * 2010-02-10 2011-08-30 Epistar Corporation Light emitting diode array
CN103137644A (zh) * 2011-11-28 2013-06-05 海立尔股份有限公司 高压交流发光二极管结构
USD721663S1 (en) 2013-08-02 2015-01-27 Epistar Corporation Light-emitting diode device
KR101646498B1 (ko) 2014-04-21 2016-08-11 부산대학교 산학협력단 고밀도 폴리에틸렌 배관의 결함을 검출하기 위한 초음파 검사 시스템 및 방법
USD752527S1 (en) * 2014-04-30 2016-03-29 Epistar Corporation Light-emitting diode device
USD733079S1 (en) * 2014-04-30 2015-06-30 Epistar Corporation Light-emitting diode device
KR20180071743A (ko) * 2016-12-20 2018-06-28 엘지디스플레이 주식회사 발광 다이오드 칩 및 이를 포함하는 발광 다이오드 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054723A (en) * 1995-11-22 2000-04-25 Oki Electric Industry Co., Ltd. Light emitting diode array with contact geometry
US6547249B2 (en) * 2001-03-29 2003-04-15 Lumileds Lighting U.S., Llc Monolithic series/parallel led arrays formed on highly resistive substrates
US7064353B2 (en) * 2004-05-26 2006-06-20 Philips Lumileds Lighting Company, Llc LED chip with integrated fast switching diode for ESD protection
US7151281B2 (en) * 2004-02-02 2006-12-19 South Epitaxy Corporation Light-emitting diode structure with electrostatic discharge protection
US20070023893A1 (en) * 2005-07-29 2007-02-01 Samsung Electronics Co., Ltd. LED package structure and manufacturing method, and LED array module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI284430B (en) * 2005-10-13 2007-07-21 Advanced Optoelectronic Tech High power light emitting diodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054723A (en) * 1995-11-22 2000-04-25 Oki Electric Industry Co., Ltd. Light emitting diode array with contact geometry
US6547249B2 (en) * 2001-03-29 2003-04-15 Lumileds Lighting U.S., Llc Monolithic series/parallel led arrays formed on highly resistive substrates
US7151281B2 (en) * 2004-02-02 2006-12-19 South Epitaxy Corporation Light-emitting diode structure with electrostatic discharge protection
US7064353B2 (en) * 2004-05-26 2006-06-20 Philips Lumileds Lighting Company, Llc LED chip with integrated fast switching diode for ESD protection
US20070023893A1 (en) * 2005-07-29 2007-02-01 Samsung Electronics Co., Ltd. LED package structure and manufacturing method, and LED array module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145432A (ja) * 2010-07-02 2020-09-10 晶元光電股▲ふん▼有限公司Epistar Corporation 光電素子
JP7001728B2 (ja) 2010-07-02 2022-01-20 晶元光電股▲ふん▼有限公司 光電素子
CN102537733A (zh) * 2010-12-21 2012-07-04 三星Led株式会社 发光模块及其制造方法
CN102537733B (zh) * 2010-12-21 2014-12-24 三星电子株式会社 发光模块及其制造方法

Also Published As

Publication number Publication date
US20110121329A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
WO2010015106A1 (zh) 交流发光二极管结构
US8952397B2 (en) AC light emitting diode and method for fabricating the same
KR102116359B1 (ko) 발광소자
US8338836B2 (en) Light emitting device for AC operation
US8212276B2 (en) Arrangement of electrodes for light emitting device
TWI557943B (zh) 發光元件的電極結構
US9048367B2 (en) Multichip package structure for generating a symmetrical and uniform light-blending source
JP2001351404A (ja) 発光ダイオードを用いた面発光装置
TW201011949A (en) Light-emitting device with improved electrode structures
US20120241724A1 (en) Light emitting chip
US20110062459A1 (en) Ac light emitting diode having full-wave light emitting cell and half-wave light emitting cell
JP2014131041A (ja) 発光素子
EP2587538A1 (en) A light emitting diode array
TWI472011B (zh) 發光二極體封裝結構
JP2012227249A (ja) Ledパッケージ
US8957431B2 (en) Semiconductor light emitting device having multi-cell array
TWI451555B (zh) 整流單元、發光二極體元件及其組合
US20150016110A1 (en) Lighting device
TWI581399B (zh) 發光二極體
TWI427760B (zh) 高壓交流發光二極體結構
US20210249560A1 (en) Light emitting diode structure
KR100632205B1 (ko) 광가이드부를 갖는 발광 다이오드 및 그 제조 방법
US8264076B2 (en) Power type LED
KR100965243B1 (ko) 교류용 발광 다이오드
TWI446572B (zh) 發光元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08800488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13003714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08800488

Country of ref document: EP

Kind code of ref document: A1