WO2013078078A1 - Ensemble entraînement et engrenage linéaire - Google Patents

Ensemble entraînement et engrenage linéaire Download PDF

Info

Publication number
WO2013078078A1
WO2013078078A1 PCT/US2012/065420 US2012065420W WO2013078078A1 WO 2013078078 A1 WO2013078078 A1 WO 2013078078A1 US 2012065420 W US2012065420 W US 2012065420W WO 2013078078 A1 WO2013078078 A1 WO 2013078078A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
clutch assembly
linear drive
lock ring
lock gear
Prior art date
Application number
PCT/US2012/065420
Other languages
English (en)
Inventor
Peter Prior
Robbie MULLIGAN
Original Assignee
West Pharmaceutical Services, Inc.
Tech Group Europe Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Pharmaceutical Services, Inc., Tech Group Europe Limited filed Critical West Pharmaceutical Services, Inc.
Publication of WO2013078078A1 publication Critical patent/WO2013078078A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/2006Having specific accessories
    • A61M2005/202Having specific accessories cocking means, e.g. to bias the main drive spring of an injector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2033Spring-loaded one-shot injectors with or without automatic needle insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/30Syringes for injection by jet action, without needle, e.g. for use with replaceable ampoules or carpules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31583Constructional features or modes of drive mechanisms for piston rods based on rotational translation, i.e. movement of piston rod is caused by relative rotation between the user activated actuator and the piston rod

Definitions

  • the present invention relates to a linear drive and clutch assembly.
  • the present invention relates to a linear drive assembly having a torsion spring drive element and a gear clutch assembly that engages the torsion spring drive element.
  • the linear drive and clutch assembly selectively provides a linear drive motion or drive force based upon the torsional spring drive element.
  • the present invention can be used, for example, in conventional automatic injection syringe devices, commonly referred to as autoinjectors.
  • a relatively large compression spring is used as the drive element for initiating movement of a plunger rod and/or a container within the autoinjector for activating an injection and dispensing a medicament from within the container.
  • Such autoinjectors are also typically single or multiple use disposable autoinjectors that are provided to an end user in a ready-to-use or armed state. That is, conventional autoinjectors are supplied with the drive element e.g., a compression spring, already in a compressed i.e., energized state.
  • the present invention provides a linear drive and clutch assembly that includes a rotational drive element, a lock gear assembly, a plunger rod, and a flexible lock ring.
  • the rotational drive element provides a force to rotate the lock gear assembly.
  • the plunger rod is slidingly engaged with the lock gear assembly.
  • the flexible lock ring circumscribes the lock gear assembly and is engaged with a housing.
  • the flexible lock ring is also moveable between an initial position disengaged with the lock gear assembly and a second expanded position engaged with the lock gear assembly. In the second expanded position, the lock gear assembly is locked from rotational movement.
  • FIG. 1 is a partially broken away perspective view of an autoinjector having a linear drive and clutch assembly in accordance with a preferred embodiment of the present invention
  • Fig. la is a greatly enlarged partially broken away perspective view of a proximal region of the autoinjector of Fig. I ;
  • Fig. 2 is an exploded perspective view of various components of the linear drive and clutch assembly of Fig. 1 ;
  • FIG. 3 is an enlarged perspective view of some of the components of the linear drive and clutch assembly of Fig. 2;
  • Fig. 4 is a greatly enlarged top perspective view of a lock gear of the linear drive and clutch assembly of Fig. 1 ;
  • Fig. 5 is a bottom perspective view of the lock gear of Fig. 4;
  • FIG. 6 is a perspective view of a bearing of the linear drive and clutch assembly of Fig. 1 ;
  • Fig. 7 is a cross-sectional perspective view of the bearing of Fig. 6;
  • Fig. 8 is a perspective view of a bushing of the linear drive and clutch assembly of Fig. 1 ;
  • Fig. 9 is a bottom perspective view of a button housing of the linear drive and clutch assembly of Fig. 1. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention provides a linear drive and clutch assembly 10 as embodied in an autoinjector 100, as shown in Figs. 1-9.
  • the linear drive and clutch assembly 10 includes a rotational drive element 12, a lock gear assembly 14, a lock ring 16, a plunger rod 18, a housing 20, and a button housing 22.
  • Fig. 1 illustrates the lock gear and clutch assembly 10 in an assembled configuration
  • Fig. 2 illustrates the lock gear and clutch assembly 10 in an exploded view.
  • the present linear drive and clutch assembly 10 is described herein as embodied in an autoinjector for exemplary purposes and not by way of limitation.
  • the linear drive and clutch assembly 10 can be applied to any device requiring a linear drive force.
  • the rotational drive element 12 is a torsion spring constructed as a rolled ribbon of spring steel or some other suitable material.
  • the rotational drive element 12 is formed to have an inner end attachable to the lock gear assembly 14 and an outer end attachable to the button housing 22.
  • the rotational drive element 12 is also preferably sized to allow for up to about 10 to 20 complete rotations upon tensioning. More preferably, the rotational drive element 12 is sized to allow for up to about 5 complete rotations, with increments of about 90 degrees of revolution, in order to effectuate a complete linear drive motion.
  • the rotational drive element 12 can, for example, be attached to the lock gear assembly 14 at one end (e.g., inner end) and the button housing 12 at an opposite end (e.g., outer end) by folded end segments 12a and 12b, respectively, as shown in Fig. 3.
  • the inner end segment of the rotational drive element 12 is attached to a lock gear 24 of the lock gear assembly 14 by insertion of the folded end segment 12a into an opening 36 (see Fig. 4) of the lock gear 24.
  • the outer end segment of the rotational drive element 12 is attached to the button housing 22 by insertion of the folded end segment 12b into an opening 83 (see Fig. 9) of the button housing 22.
  • the lock gear assembly 14 includes the lock gear 24, a lock gear sleeve 26, a lead screw nut (not shown), and a lock nut 30.
  • the lock gear 24 includes a substantially hollow body 32 and a radially outwardly extending planar member 34 extending from a distal end of the body 32, as best shown in Fig. 4.
  • the body 32 includes radially outwardly extending generally annular ledges 33a, 33b about its proximal and distal ends forming an annular recess 35 therebetween configured to receive the rotational drive element 12 therein.
  • the opening 36 is configured to receive the inner end segment 12a of the rotational drive element 12.
  • the annular recess 35 is sized to facilitate retention and positioning of the rotational drive element 12.
  • the planar member 34 has a substantially flat proximally facing surface 34a and an indented annular shoulder 37 extending distally from the substantially flat proximally facing surface 34a.
  • the indented shoulder 37 has an overall diameter that is slightly smaller than the overall diameter of the substantially flat proximally facing surface 34a, and an axial through hole 39 (Fig. 5) that is coaxial with the hollow body 32.
  • a plurality of splines 38 extending in the axial direction are circumferentially and equally spaced apart about the indented shoulder 37. The distal ends of each spline 38 are tapered terminating generally in a crest 38a. As will be described further below, the splines 38 engage the lock ring 16 when the lock ring 16 is moved to an engaged or second position to lock the lock ring 16 in position relative to the button housing 22.
  • the lock gear sleeve 26 includes a substantially tubular body 40 sized to allow and receive the plunger rod 18 to pass therethrough.
  • a proximal end of the lock gear sleeve 26 are male threads 27 for threadably engaging threads of the lock nut 30, after passing through the lock gear 24.
  • a generally annular rib 42 extending radially outwardly from the body 40. The rib 42 provides a stop for the assembly of the lock gear sleeve 26 with the lock gear 24.
  • the lead screw nut (not shown) is connected to a distal end of the lock gear sleeve 26, for example, by an adhesive or ultrasonic welding.
  • Female threads are configured about the interior surface of the lead screw nut for correspondingly engaging male threads on the plunger rod 18 to drive the plunger rod 18 in an axial direction, as further described below.
  • the lock gear and clutch assembly 10 is adapted to be used with conventional plunger drive components well known in the art, such as the lead screw nut (not shown).
  • lock gear assembly 14 has been described with respect to the lock gear 24, lock gear sleeve 26, lead screw nut and lock nut 30, as separate components to be assembled together.
  • the foregoing lock gear 24, lock gear sleeve 26 and lead screw nut are preferably formed as a single piece, integrally formed component.
  • the lock nut 30 is not necessary for comprising the lock gear assembly 14.
  • the plunger rod 18 is generally elongated and has a proximal end and a distal end.
  • the plunger rod 18 includes male threads 44 that engage corresponding female threads of the lead screw nut.
  • one or more axially extending splines are configured to extend along a majority of the external axial length of the plunger rod 18.
  • a bearing 50 is provided to seat on top of the ridge 42 of the lock gear sleeve 26.
  • the bearing 50 includes an inner cylindrical member 52 and an outer cylindrical member 54, along with a plurality of ball bearings 56 in between the outer and inner cylindrical members 52, 54 that reside within a race formed by facing cavities in the inner and outer cylindrical members 52, 54.
  • the bearing 50 facilitates rotational movement of the lock gear sleeve 26 relative to a stationary bushing 58.
  • the bearing 50 can be an optional component of the linear drive and clutch assembly 10. In such a configuration, the space occupied by the bearing 50 can be replaced by material from the lock gear sleeve 26 and/or the bushing 58, as further discussed below.
  • the bushing 58 is substantially of an annular configuration that includes a hollow body 59 having an inwardly extending annular flange 60 about its proximal end for engaging a proximal surface of the bearing 50.
  • the outer surface of the hollow body 59 is configured to have a frustroconical shape, such that the outer surface tapers radially outwardly in the proximal direction.
  • the bushing 58 also includes one or more latching members 62 extending distally from the hollow body 59 for latching onto the housing 20 in an assembled state (see Fig. 1).
  • the bushing 58 includes four latching members 62 circumferentially and equally spaced apart. Additionally, the bushing 58 includes one or more releasable detents 59a, such as e.g., bumps (Fig. 8), to releasably retain the lock ring 16 in the expanded or second position, as described in more detail below.
  • releasable detents 59a such as e.g., bumps (Fig. 8)
  • the housing 20 is generally configured as a substantially cylindrical housing for receiving a portion of the linear drive and clutch assembly 10 therein.
  • the housing 20 includes a substantially tubular and proximally extending portion 64 having a plurality of axially extending slots 66 (Fig. 2) circumferentially and equally spaced apart.
  • the extending portion 64 is spaced radially inwardly from the exterior lateral surface of the housing 20 such that a radially outwardly extending annular surface 20a facing in the proximal direction is provided.
  • the radially outwardly extending surface 20a is configured to allow for the lock ring 16 to seat thereon.
  • the housing 20 includes a radially inwardly extending flange member 67 configured for engaging the latching members 62 of the bushing 58.
  • the flange member 67 can be configured as circular flange member or a partial arc shaped flange member.
  • the plunger rod 18 is inserted into the lock gear sleeve 26 and threaded through the lead screw nut.
  • the lock ring 16 is assembled onto the housing 20 circumscribing the flange 64, such that the lock ring splines 72 slide within the slots 66.
  • the bearing 50 is assembled onto the proximal end of the lock gear sleeve 26 followed by the bushing 58 and the lock gear 24.
  • the rotational drive element 12 is attached to the opening 36 of the lock gear 24, as described above and the entire assembly is secured in place by the lock nut 30.
  • the lock nut 30 engages the proximal threads of the lock gear sleeve 26 to securely hold the bearing 50, bushing 58, and lock gear 24 in place.
  • the button housing 22 is assembled to cover the proximal end of the lock gear assembly 14 and attached to the lock ring 16 (as further described below) and rotational drive element 12, as shown in Fig. 1.
  • the lock ring 16 is a flexible ring-shaped locking element that includes a plurality of alternating curved segments 70 and substantially planar segments 71 forming the links of the lock ring 16.
  • the curved segments 70 also each include a radially inwardly extending flange 74 that extends in the axial direction. Being formed out of a pliable or flexible, yet durable polymeric material (plastic), the curved segments 70 allow the lock ring 16 to move between a first retracted position (shown in Figs. 2 and 3) having a first overall diameter to a second expanded position (not shown) having a second overall diameter that is larger than the first overall diameter.
  • the lock ring 16 is a flexible locking ring that can expand from its initial retracted position to an expanded position due to the flexible nature of the curved segments 70.
  • the lock ring 16 includes six (6) curved segments that are circumferentially and equally spaced apart.
  • the planar segments 71 each include a radially inwardly extending spine 72.
  • the splines 72 extend in the axial direction and extend further inwardly about its distal end relative to its proximal end so as to have a slight taper.
  • the tapered splines 72 engage and slide along the frustro conical outer surface of the bushing 58 such that as the lock ring 16 moves in the proximal direction the splines 72 slidingly engage with the outer surface of the bushing 58 to cause the lock ring 16 to move to its expanded position.
  • the lock ring 16 also includes a plurality of substantially horizontal slots 76 extending through the lateral sides of the lock ring 16 for engaging an annular flange 80 of the button housing 22 (Fig. 9). This engagement between the slots 76 and annular flange 80 retains the lock ring 16 on the button housing 22.
  • the curved segments 70 of the lock ring 16 are engagable with a plurality of ratcheting bumps 81 formed about the inner circumference of the button housing 22 above and below the annular flange 80.
  • the lock ring 16 slides on/engages the housing 20 by aligning the splines 72 with the slots 66 of the housing 20.
  • the radially inwardly extending tapered splines 72 remain within the slots 66 at all times, thereby assuring that the lock ring 16 does not rotate.
  • the lock ring 16 does move in the axial direction to a position slightly spaced from the housing's radially outwardly extending surface 20a.
  • the flange 72 remains within the slot 66.
  • the lock ring 16 is formed from a high temperature, durable and pliable polymeric material or plastic. More preferably, the plastic is polyetheretherketone (PEEK), polyphenylene sulfide (PPS) and the like.
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • linear drive and clutch assembly 10 is provided to an end user in an initial position with the rotational drive element 12 in an unenergized state or a partially energized state (e.g., a preloaded state of about 3
  • the lock ring 16 In the fully assembled configuration, the lock ring 16 is in the retracted, unexpanded or relaxed position/state. To then energize or fully energize the linear drive and clutch assembly 10 a user pulls on the button housing 22 in the proximal direction, which causes the lock ring 16 to move in the proximal direction and slidingly engage with the bushing 58. As the lock ring 16 engages the bushing 58, owing to the expanding taper on the bushing 58, the lock ring 16 is moved to its expanded position thereby allowing the lock ring 16 to engage with the splines 38 of the lock gear 24.
  • the splines 72 and flanges 74 of the lock ring 16 are positioned between the splines 38 on the lock gear 24 to prevent the lock gear 24 from rotating.
  • the lock ring 16 and button housing 22 are held in the second or expanded position owing to the detents 59a on the bushing 58.
  • the user rotates the button housing 22 to energize the drive element 12 to the desired extent, while the lock gear sleeve 26 is being held stationary by the engagement of the lock ring 16 with the lock gear 24.
  • the linear drive and clutch assembly 10 is ready to be activated.
  • the fully energized rotational drive element 12 is held in position and prevented from unwinding due to the engagement of the lock ring 16 with the ratcheting bumps 81 on the button housing 22.
  • the lock ring 16 and button housing 22 are moved in the proximal direction a fixed amount, e.g., about 1.0 to 2.0 mm and preferably about 1.5 mm, to a second or expanded position.
  • the splines 72 and flanges 74 engage the splines 38 of the lock gear 24.
  • the splines 72 of the lock ring are engaged with both the splines 38 of the lock gear 24 and the slot 66 of the housing 20. As such, the lock gear 24 is prevented from rotating relative to the housing 20 or otherwise locked from rotating.
  • a user depresses the button housing 22 to move the button housing 22 and lock ring 16 distally until the lock ring 16 abuts the housing 20 (i.e., back to the initial position).
  • This causes disengagement of the lock ring 16 from the lock gear 24 and allows the lock gear 24 and lock gear sleeve 26 to rotate as a result of the drive force supplied by the rotational drive element 12.
  • the plunger rod 18 moves in the distal direction as a result of its threaded engagement with the lead screw nut.
  • the autoinjector 100 further includes a distal housing 102, and a vial housing 104 slidingly received within the distal housing 102.
  • a container or vial 106 for storing a medicament, as well known in the art.
  • the container 106 includes a distal end configured to attach to a needle hub assembly (not shown), in a manner well known in the art.
  • the autoinjector 100 also includes a piston assembly 107 having a piston 108.
  • the piston 108 is preferably an elastomeric piston, as commonly known in the art.
  • the piston assembly 107 operates similar to any conventional piston of a syringe or medicament containing container that operates to expel fluid from within the container.
  • the present autoinjector 100 is preferably configured as a reusable assembly such that the piston assembly 107 and linear drive and clutch assembly 10 can be reused with another vial in a subsequent injection. This can be accomplished by removing the piston assembly 107 from the vial 106 after use. Upon removal of the piston assembly 107, drive components are moved away from engagement with the plunger rod 18 to allow the plunger rod 18 to freely rotate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

L'invention concerne un auto-injecteur médical ayant un ensemble entraînement et engrenage linéaire comprenant un ressort de torsion mis sous tension manuellement (12) en tant qu'élément d'entraînement, un ensemble engrenage de verrouillage (14) relié au ressort et comprenant un manchon (26) et un engrenage (24), et un anneau de verrouillage souple (16) pour venir en prise avec l'ensemble engrenage de verrouillage et se désengager de celui-ci. L'auto-injecteur comprend en outre une tige de piston (18) en prise avec le manchon d'engrenage de verrouillage (26) pour avancer dans une direction linéaire sous la force d'entraînement du ressort. L'anneau de verrouillage souple (16) peut se déplacer axialement entre une position initiale dans laquelle l'engrenage de verrouillage (24) est libre de tourner (durant une expulsion de dose) et une position engagée pour verrouiller le déplacement de l'engrenage de verrouillage (ensemble) dans une direction de rotation par rapport au boîtier d'injecteur principal, de telle sorte qu'une rotation manuelle d'une section de boîtier située de manière proximale à laquelle l'autre extrémité de ressort est reliée peut servir à mettre sous tension le ressort.
PCT/US2012/065420 2011-11-22 2012-11-16 Ensemble entraînement et engrenage linéaire WO2013078078A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161562801P 2011-11-22 2011-11-22
US61/562,801 2011-11-22

Publications (1)

Publication Number Publication Date
WO2013078078A1 true WO2013078078A1 (fr) 2013-05-30

Family

ID=47279086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/065420 WO2013078078A1 (fr) 2011-11-22 2012-11-16 Ensemble entraînement et engrenage linéaire

Country Status (1)

Country Link
WO (1) WO2013078078A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530971A (zh) * 2013-09-10 2016-04-27 欧文蒙福德有限公司 用于在注射装置中防止泄漏的柱塞缩回

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20317377U1 (de) * 2003-11-03 2005-03-17 B D Medico S A R L Injektionsgerät
WO2006076921A1 (fr) * 2005-01-21 2006-07-27 Novo Nordisk A/S Dispositif d'injection automatique muni d'un mecanisme de liberation superieur
WO2006130100A1 (fr) * 2005-06-01 2006-12-07 Shl Medical Ab Administrateur de doses posologiques
US20090247951A1 (en) * 2006-09-15 2009-10-01 Philippe Kohlbrenner Injection device comprising low-loss drive
WO2010110712A1 (fr) * 2009-03-24 2010-09-30 Istvan Bartha Dispositif d'administration d'un médicament liquide
US20100312196A1 (en) * 2007-11-12 2010-12-09 Juerg Hirschel Rotatable guide sleeve with spring secured to prevent excessive tensioning
WO2011025448A1 (fr) * 2009-08-24 2011-03-03 Shl Group Ab Mécanisme de réinitialisation de dose
WO2011114122A1 (fr) * 2010-03-19 2011-09-22 Owen Mumford Limited Dispositif d'injection amélioré
WO2011133089A1 (fr) * 2010-04-19 2011-10-27 Shl Group Ab Dispositif de distribution de médicaments pour auto-administration
WO2011136718A1 (fr) * 2010-04-26 2011-11-03 Shl Group Ab Dispositif d'administration de médicament

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20317377U1 (de) * 2003-11-03 2005-03-17 B D Medico S A R L Injektionsgerät
WO2006076921A1 (fr) * 2005-01-21 2006-07-27 Novo Nordisk A/S Dispositif d'injection automatique muni d'un mecanisme de liberation superieur
WO2006130100A1 (fr) * 2005-06-01 2006-12-07 Shl Medical Ab Administrateur de doses posologiques
US20090247951A1 (en) * 2006-09-15 2009-10-01 Philippe Kohlbrenner Injection device comprising low-loss drive
US20100312196A1 (en) * 2007-11-12 2010-12-09 Juerg Hirschel Rotatable guide sleeve with spring secured to prevent excessive tensioning
WO2010110712A1 (fr) * 2009-03-24 2010-09-30 Istvan Bartha Dispositif d'administration d'un médicament liquide
WO2011025448A1 (fr) * 2009-08-24 2011-03-03 Shl Group Ab Mécanisme de réinitialisation de dose
WO2011114122A1 (fr) * 2010-03-19 2011-09-22 Owen Mumford Limited Dispositif d'injection amélioré
WO2011133089A1 (fr) * 2010-04-19 2011-10-27 Shl Group Ab Dispositif de distribution de médicaments pour auto-administration
WO2011136718A1 (fr) * 2010-04-26 2011-11-03 Shl Group Ab Dispositif d'administration de médicament

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105530971A (zh) * 2013-09-10 2016-04-27 欧文蒙福德有限公司 用于在注射装置中防止泄漏的柱塞缩回

Similar Documents

Publication Publication Date Title
AU2012269771B2 (en) Injection device
US9022982B2 (en) Injection device
JP5919385B2 (ja) 薬剤送達装置
EP3104914B1 (fr) Ensemble capuchon enserrant la protection rigide d'une aiguille
US11986638B2 (en) Safety mechanism for a medicament delivery device and a medicament delivery device comprising the same
US20040230158A1 (en) Adaptor for converting a non-safety syringe into a safety syringe
US20140330214A1 (en) Medicament Delivery Device
RU2015111241A (ru) Устройство для доставки лекарственного средства
US11141538B2 (en) Medicament delivery device
WO2019011690A1 (fr) Ensemble d'administration pour un dispositif de distribution de médicament et dispositif de distribution de médicament comprenant celui-ci
JP5847171B2 (ja) 薬物送達デバイス用の駆動機構
JP6824262B2 (ja) 充填済み薬剤送達装置の製造方法
US11253655B2 (en) Safety mechanism for a medicament delivery device and a medicament delivery device comprising the same
WO2013078078A1 (fr) Ensemble entraînement et engrenage linéaire
ES2932725T3 (es) Un dispositivo de administración de medicamentos con una tapa extraíble y un elementos de bloqueo para evitar la activación accidental
WO2017202595A1 (fr) Mécanisme d'actionnement
US11724041B2 (en) Drive mechanism and medicament delivery device comprising the same
US20220387726A1 (en) Drive assembly for a medicament delivery device
US11400228B2 (en) Medicament delivery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12795230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED (23/10/2014)

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/10/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12795230

Country of ref document: EP

Kind code of ref document: A1