WO2013076751A1 - Plate-type heat exchanger and refrigeration cycle device using same - Google Patents

Plate-type heat exchanger and refrigeration cycle device using same Download PDF

Info

Publication number
WO2013076751A1
WO2013076751A1 PCT/JP2011/006460 JP2011006460W WO2013076751A1 WO 2013076751 A1 WO2013076751 A1 WO 2013076751A1 JP 2011006460 W JP2011006460 W JP 2011006460W WO 2013076751 A1 WO2013076751 A1 WO 2013076751A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat transfer
heat exchanger
refrigerant
heat
Prior art date
Application number
PCT/JP2011/006460
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 大輔
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2011/006460 priority Critical patent/WO2013076751A1/en
Priority to US14/358,319 priority patent/US20140290921A1/en
Priority to GB1406880.3A priority patent/GB2510738A/en
Publication of WO2013076751A1 publication Critical patent/WO2013076751A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media

Definitions

  • the present invention relates to a plate heat exchanger and a refrigeration cycle apparatus using the plate heat exchanger.
  • the plate heat exchanger heat transfer plates having a plurality of rows of corrugated irregularities are laminated, and a line connecting the apexes of the corrugated peaks (or the bottom points of the valleys) of the heat transfer plates is adjacent.
  • intersect with respect to a heat exchanger plate is proposed.
  • such a plate type heat exchanger has a wave height h corresponding to the interval between the apex of the corrugated peak of the heat transfer plate and the apex of the valley of the valley of the heat transfer plate adjacent to the heat transfer plate, for example, 1 It is set to about 6 mm to 2.2 mm.
  • the refrigerant when the refrigerant flow rate increases, the refrigerant easily gets over the waveform formed on the heat transfer plate, and may flow in the long axis direction of the heat transfer plate. That is, it is difficult for the refrigerant to spread in the short axis direction (width direction) of the heat transfer plate, and the flow velocity in the short axis direction may become non-uniform. Thereby, the flow of the refrigerant on the width side of the heat transfer plate is retained, and there is a possibility that the effective heat transfer area is reduced and dust clogging occurs.
  • the wave angle ⁇ which is the angle formed by the line connecting the peaks of the corrugated peaks and the longitudinal direction of the heat transfer plate, is set to a small value (for example, 45 degrees) so that the refrigerant can easily spread in the short axis direction of the heat transfer plate.
  • a plate-type heat exchanger designed to do this has been proposed (see, for example, Patent Document 2).
  • the wave pitch ⁇ which is the distance between the peaks and peaks (or valleys and valleys) of the heat transfer plate, is set small (for example, 4 mm or less) to increase the refrigerant flow rate.
  • JP 2001-56192 A for example, paragraph [0017] and FIG. 2 of the specification
  • JP 2011-516815 A for example, paragraphs [0025] to [0028] of the specification
  • Patent Document 1 The technique described in Patent Document 1 is to reduce the wave height h, thereby reducing the refrigerant flow path cross section and increasing the refrigerant flow velocity.
  • the refrigerant flow rate increases, the refrigerant is easily stirred at the intersection of adjacent heat transfer plates, and the pressure loss increases.
  • the subject that the power consumption of the compressor which supplies a refrigerant
  • the refrigerant hardly spreads in the short axis direction (width direction) of the heat transfer plate, and the refrigerant flow in the short axis direction may become non-uniform. Thereby, the flow of the refrigerant on the width side of the heat transfer plate is retained, and there is a possibility that the effective heat transfer area is reduced and dust clogging occurs.
  • the present invention has been made to solve at least one of the above-described problems, and provides heat transfer efficiency, reduction of pressure loss, blockage of a refrigerant flow path, cost increase suppression, and weight reduction.
  • An object of the present invention is to provide a plate-type heat exchanger designed to be designed.
  • the plate heat exchanger according to the present invention includes an inflow port through which a fluid flows in, an outflow port through which the fluid flowing in from the inflow port flows out, and a substantially V-shaped unevenness arranged in a plurality from the inflow port toward the outflow port.
  • a plate in which a plurality of heat transfer plates on which waves are formed are alternately turned upside down and stacked, and a flow path connecting the inlet and the outlet is formed in the space formed by the uneven waves of adjacent heat transfer plates
  • Type heat exchanger wherein the thickness t of the heat transfer plate is 0.2 mm or less, the uneven pitch ⁇ is 4 to 7 mm, the distance h between the apexes of the unevenness is 1.0 to 1.2 mm,
  • the area expansion rate ⁇ is 1.05 to 1. 15.
  • the plate thickness t is 0.2 mm or less
  • the uneven pitch ⁇ is 4 mm to 7 mm
  • the distance h between the apexes of the uneven corresponding to the stacking direction is 1. 0mm to 1.2mm
  • the area expansion ratio ⁇ is in the range of 1.05 to 1.15, so heat transfer efficiency, pressure loss reduction, refrigerant flow path blockage, cost increase suppression and weight reduction Can be achieved.
  • FIG. 2 is a schematic view of a heat transfer plate of the plate heat exchanger illustrated in FIG. 1. It is explanatory drawing of the various dimensions of the heat-transfer plate of the plate type heat exchanger shown in FIG. It is explanatory drawing of the relationship between wave pitch (LAMBDA) of the plate type heat exchanger shown in FIG. 1, and area expansion rate (PHI). It is a graph which shows the weight reduction amount of a plate type heat exchanger when changing the wave height h and wave angle (theta) as a parameter when the heat exchange amount of a plate type heat exchanger is 15 kW.
  • LAMBDA wave pitch
  • PHI area expansion rate
  • FIG. 1 is an explanatory diagram of a plate heat exchanger 100 according to the first embodiment.
  • Fig.1 (a) is a side view in the state in which the plate type heat exchanger 100 was assembled.
  • FIG. 1B is a front view of the side plate 1.
  • FIG. 1C is a front view of the heat transfer plate 2.
  • FIG. 1D is a front view of the heat transfer plate 3.
  • FIG. 1E is a front view of the side plate 4.
  • FIG. 1 (f) is a diagram illustrating a state in which the heat transfer plate 2 and the heat transfer plate 3 are overlapped.
  • FIG. 1 (f) is a diagram illustrating a state in which the heat transfer plate 2 and the heat transfer plate 3 are overlapped.
  • FIG. 2 is a schematic view of the heat transfer plate 20 of the plate heat exchanger 100 illustrated in FIG.
  • the solid line arrow represents the flow of the first refrigerant and the dotted line arrow represents the flow of the second refrigerant.
  • the relationship of the size of each component may be different from the actual one.
  • FIG.1 and FIG.2 the structure of the plate-type heat exchanger 100 is demonstrated.
  • the plate heat exchanger 100 heats, for example, a heat source side refrigerant (first refrigerant) conveyed from an outdoor unit on the heat source side and a heat medium (second refrigerant) conveyed from an indoor unit on the usage side. It is to be exchanged. That is, the plate heat exchanger 100 is a heat exchanger of a heat medium such as refrigerant versus refrigerant or refrigerant versus water or brine.
  • the plate heat exchanger 100 is formed with a first refrigerant channel X through which the first refrigerant flows and a second refrigerant channel Y through which the second refrigerant flows so that the first refrigerant and the second refrigerant are not mixed.
  • the plate heat exchanger 100 includes a heat transfer plate 20 and side plates 1 and 4 that reinforce the plate heat exchanger 100.
  • the heat transfer plate 20 forms the first refrigerant flow paths X and Y for the first refrigerant and the second refrigerant.
  • the heat transfer plate 20 is composed of two types of plates, that is, heat transfer plates 2 and 3 having a rectangular planar shape.
  • the heat transfer plate 2 is obtained by inverting the heat transfer plate 3 upside down.
  • the heat transfer plate 20 has a substantially V-shaped wave on the surface thereof, and the heat transfer plate 2 formed in a plurality of rows in the “vertical direction” and the lower direction of the heat transfer plate 2 are reversed.
  • the arranged heat transfer plates 3 are alternately arranged oppositely (stacked).
  • the heat transfer plate 3 having the reverse direction of the heat transfer plate 2 is arranged behind the heat transfer plate 2, and the heat transfer plate 2 is arranged behind the heat transfer plate 3.
  • the “vertical direction” indicates not only the direction perpendicular to the surface on which the plate heat exchanger 100 is installed, but also the general vertical direction.
  • the shape of the heat transfer plate 20 in plan view is described as being rectangular, the shape is not limited thereto, and may be, for example, a square.
  • the top and bottom of the heat transfer plate 20 correspond to the top and bottom of the paper surface of FIG. That is, the top of the heat transfer plate 20 corresponds to the side where the first opening 11 and the fourth opening 14 described later are present, and the bottom of the heat transfer plate 20 is the second opening 13 and the third opening 12. Corresponds to the side.
  • the heat transfer plate 2 is provided in parallel to the heat transfer plate 3 and the side plates 1 and 4, and is a plate-like member disposed to face the adjacent heat transfer plate 3.
  • the heat transfer plate 2 is formed with a plurality of rows of waves of unevenness 9 having a substantially inverted V shape when viewed in plan.
  • corrugation 9 is formed symmetrically about the centerline parallel to the longitudinal direction (up-down direction of the paper surface of FIG.1 and FIG.2) of the heat-transfer plate 2.
  • the unevenness 9 is formed so that a line connecting the apexes of the unevenness 9 forms a predetermined angle with respect to the center line.
  • the heat transfer plate 3 also has an angle other than the angle formed by the line connecting the tops (or bottom points) of the irregularities 10 of the heat transfer plate 3 and the longitudinal direction of the heat transfer plate 3 (the vertical direction of the paper surface in FIGS. 1 and 2). Is the same as the configuration of the heat transfer plate 2. That is, the heat transfer plate 3 is a plate-like member that is provided in parallel to the heat transfer plate 2 and the side plates 1 and 4 and is disposed to face the adjacent heat transfer plate 2. As shown in FIG. 1D, the heat transfer plate 3 is formed with a plurality of rows of waves of substantially V-shaped irregularities 10 when viewed in plan.
  • a line connecting the apexes (bottom points) of the unevenness 10 is formed symmetrically with respect to a center line parallel to the longitudinal direction of the heat transfer plate 3.
  • the unevenness 10 is formed so that a line connecting the apexes of the unevenness 10 forms a predetermined angle with respect to the center line.
  • the unevenness 9 formed on the heat transfer plate 2 and the unevenness 10 formed on the heat transfer plate 3 increase the area where the heat (or cold) of the first refrigerant and the second refrigerant is released, and increase the heat exchange efficiency. It is formed for such reasons.
  • a line connecting the vertices of the unevenness 9 of the heat transfer plate 2 and It is provided so that the line which connected the vertex of the unevenness
  • the cross-section of the unevennesses 9 and 10 formed on the heat transfer plates 2 and 3 may be, for example, a saw shape or a wave shape (curved surface).
  • the heat transfer plate 2 and the heat transfer plate 3 include a first opening 11 through which the first refrigerant flowing into the plate heat exchanger 100 flows, and the plate.
  • a second opening 13 through which the first refrigerant flowing out of the heat exchanger 100 flows is formed.
  • the heat transfer plate 2 and the heat transfer plate 3 also have a third opening 12 through which the second refrigerant flowing into the plate heat exchanger 100 flows, and a second refrigerant flowing out from the plate heat exchanger 100.
  • Four openings 14 are formed.
  • the first opening 11 formed in the heat transfer plate 2 corresponds to the inlet of the first refrigerant flowing into the first refrigerant flow path X formed between the heat transfer plates 2 and 3, and
  • the second opening 13 formed in the heat plate 2 corresponds to the outlet of the first refrigerant flowing into the first refrigerant channel X.
  • the second refrigerant passes through the third opening 12 and the fourth opening 14 formed in the heat transfer plate 2 without flowing into the first refrigerant flow path X.
  • the third opening 12 formed in the heat transfer plate 3 corresponds to the inlet of the second refrigerant flowing into the second refrigerant flow path Y formed between the heat transfer plates 3 and 2, and
  • the fourth opening 14 formed in the heat plate 3 corresponds to the outlet of the second refrigerant that has flowed into the second refrigerant flow path Y.
  • the first refrigerant passes through the first opening 11 and the second opening 13 formed in the heat transfer plate 2 without flowing into the second refrigerant flow path Y.
  • the first openings 11 of the heat transfer plates 2 and 3 communicate with each other. The same applies to the second opening 13, the third opening 12, and the fourth opening 14.
  • the heat transfer plate 2 and the heat transfer plate 3 form a first refrigerant flow path X through which the first refrigerant flows by the rear surface of the heat transfer plate 2 and the front surface of the heat transfer plate 3,
  • a second refrigerant flow path Y through which the second refrigerant flows is formed by the rear surface of the heat transfer plate 3 and the front surface of the heat transfer plate 2.
  • “front” corresponds to “right of paper” in FIG. 2
  • “rear” corresponds to “left of paper”.
  • the side plates 1 and 4 reinforce the plate heat exchanger 100.
  • the side plate 1 is provided in parallel to the heat transfer plate 20 and the side plate 4, and is disposed opposite to the foremost heat transfer plate 2 as shown in FIG. .
  • the side plate 4 is provided in parallel to the heat transfer plate 20 and the side plate 1, and is disposed opposite to the rearmost heat transfer plate 3 as shown in FIG. It is.
  • the side plate 1 includes a first refrigerant inflow pipe 5 for allowing the first refrigerant to flow into the plate heat exchanger 100 and a first refrigerant outflow pipe 7 for allowing the first refrigerant to flow out of the plate heat exchanger 100. Is provided.
  • the side plate 1 has a second refrigerant inflow pipe 6 for allowing the second refrigerant to flow into the plate heat exchanger 100, and a second refrigerant outflow for causing the second refrigerant to flow out of the plate heat exchanger 100.
  • a tube 8 is provided.
  • FIG. 3 is an explanatory diagram of various dimensions of the heat transfer plate 20 of the plate heat exchanger 100 shown in FIG.
  • FIG. 3A is a plan view of the heat transfer plate 20 using the heat transfer plate 2 as an example.
  • FIG.3 (b) is sectional drawing in the surface orthogonal to the line
  • FIG. 4 is an explanatory diagram of the relationship between the area expansion ratio ⁇ and the wave pitch ⁇ of the plate heat exchanger 100 shown in FIG. In FIG. 4, the plate thickness t is 0.2 mm, and the wave height h is 1.4 mm.
  • the wave angle ⁇ , wave pitch ⁇ , wave height h, wavelength s, area enlargement ratio ⁇ , and plate thickness are specified in the wave shape specification of the irregularities 9, 10 formed on the heat transfer plate 20.
  • the variable t is adopted.
  • the wave angle ⁇ corresponds to the wave spreading angle with respect to the wave arrangement direction of the substantially V-shaped irregularities 9 and 10. That is, as shown in FIG. 3, the wave angle ⁇ is an angle formed by a line connecting the vertices (or bottom points) of the unevenness of the heat transfer plate 20 with respect to the longitudinal direction of the heat transfer plate 20. As shown in FIG. 3B, the wave pitch ⁇ corresponds to the length between adjacent vertices. As shown in FIG. 3B, the wave height h corresponds to the length between the bottom and top of the unevenness.
  • the wavelength s corresponds to the length of the heat transfer plate 20 between adjacent vertices, as shown in FIG.
  • This wavelength s is expressed by the following (Formula 1).
  • equation is a curvature radius corresponding to the distance of the perpendicular direction from the curvature center O shown to FIG. ⁇ represents a range in which the distance from the center of curvature O to the waves of the unevennesses 9 and 10 is the same radius of curvature R1.
  • the plate thickness t corresponds to the thickness of the heat transfer plate 20.
  • the area enlargement ratio ⁇ is obtained by dividing the wavelength s at a predetermined wave height h by the wave pitch ⁇ . Further, the area enlargement ratio ⁇ can also be represented by the wave height h and the wave pitch ⁇ because the wavelength s is represented by the above (Formula 1).
  • the area expansion rate ⁇ is small, the elongation of the plate material is small, and when the area expansion rate ⁇ is large, the elongation of the plate material is large.
  • FIG. 4 shows the value of the area enlargement ratio ⁇ when the plate thickness t is 0.2 mm and the wave height h is 1.4 mm.
  • FIG. 5 is a graph showing the weight reduction amount of the plate heat exchanger 100 when the wave height h and the wave angle ⁇ are changed as parameters when the heat exchange amount of the plate heat exchanger 100 is 15 kW. is there.
  • the plate thickness t is 0.2 mm.
  • the wave height h is preferably 1.0 to 1.2 mm.
  • the area enlargement ratio ⁇ is small and the elongation of the plate material is small. Therefore, by adjusting the wave angle ⁇ , the weight reduction ratio can be set to 20% or more or a value close thereto. This is because it can.
  • the wave angle ⁇ may be set within a range of 40 degrees to 50 degrees. This is because, in the range of the wave angle ⁇ , it is possible to prevent the refrigerant flow in the minor axis direction of the heat transfer plate 20 from becoming uneven while securing the weight reduction rate. Further, in the range of the wave angle ⁇ , the flow of the refrigerant on the width side of the heat transfer plate 20 stays, and the reduction of the effective heat transfer area and the occurrence of clogging of dust are suppressed, and the pressure loss is reduced. Because it can. Furthermore, if the wave height h is 1.0 to 1.2 mm, it is possible to suppress the occurrence of cracks in the heat transfer plate 20 and uneven thickness t because the elongation of the plate material is small. it can.
  • the wave height h is larger than 1.2 mm, compared with the case where the wave height h is 1.0 to 1.2 mm, the area enlargement ratio ⁇ is increased and the elongation of the plate material is increased. There is a possibility that a crack in the heat transfer plate 20 or an uneven thickness t may occur.
  • the wave height h is less than 1.0 mm, as compared with the case where the wave height h is 1.0 to 1.2 mm, the area expansion rate ⁇ is reduced and the elongation of the plate material is reduced.
  • the refrigerant flow path is small, so the pressure loss is large. That is, when the wave height h is less than 1.0 mm, in order to set the heat exchange amount to 15 kW, it is necessary to increase the number of stacked heat transfer plates 20 in order to reduce the pressure loss. The weight of the heat exchanger 100 cannot be reduced.
  • FIG. 6 is a graph showing the weight reduction amount of the plate heat exchanger 100 when the area expansion ratio ⁇ and the wave angle ⁇ are changed as parameters.
  • the plate thickness t is 0.2 mm.
  • the continuous line of FIG. 6 is a result in the plate type heat exchange whose heat exchange amount is 15 kW, and a dotted line is a result in the plate type heat exchanger whose heat exchange amount is 9 kW.
  • the area expansion rate ⁇ is preferably 1.05 to 1.15 in any heat exchange amount. This is because, in the case of the area enlargement ratio ⁇ , the weight reduction ratio can be set to 20% or more or a value close thereto by adjusting the wave angle ⁇ .
  • the wave angle ⁇ may be set within a range of 40 degrees to 50 degrees. This is because, in the range of the wave angle ⁇ , it is possible to prevent the refrigerant flow in the minor axis direction of the heat transfer plate 20 from becoming uneven while securing the weight reduction rate. Further, in the range of the wave angle ⁇ , the flow of the refrigerant on the width side of the heat transfer plate 20 stays, and the reduction of the effective heat transfer area and the occurrence of clogging of dust are suppressed, and the pressure loss is reduced. Because it can.
  • the plate heat exchanger is independent of the heat exchange amount of the plate heat exchanger 100.
  • the following wave height h, area enlargement ratio ⁇ , and wave angle ⁇ may be set. That is, the wave height h is set to 1.0 to 1.2 mm, the wave angle ⁇ is set to a range of 40 degrees to 50 degrees, and the area enlargement ratio ⁇ is set to 1.05 to 1.15. . Thereby, the optimal weight reduction effect in the case of reducing the thickness t to 0.2 mm or less can be obtained.
  • the case where the plate thickness t is 0.2 mm has been described as an example.
  • the wave pitch ⁇ and the wave height h are set as described above.
  • the range (value) the weight reduction rate is increased, the refrigerant flow in the minor axis direction of the heat transfer plate 20 is prevented from becoming non-uniform, and the heat transfer plate 20 is cracked or the thickness t is decreased. Bias suppression can be realized.
  • the wave angle ⁇ is set to 40 to 50 degrees
  • the wave height h is set to 1.0 to 1.2 mm, so that the heat exchange of the plate heat exchanger 100 is performed. It has been explained that an optimum weight reduction effect can be obtained by reducing the plate thickness t regardless of the amount.
  • the wave pitch ⁇ is preferably 4 mm or more, and will be described below with reference to FIG.
  • FIG. 7 is a diagram for explaining the distance between junction points of adjacent heat transfer plates 2 and 3 for each wave angle ⁇ .
  • the wave angle ⁇ is 65 degrees
  • the wave angle ⁇ is 45 degrees.
  • the junction point corresponds to the position of the point where the line connecting the vertices of the unevenness of the heat transfer plate 2 and the line connecting the vertices of the unevenness of the heat transfer plate 3 intersect.
  • the dotted line illustrated in FIG. 7A and FIG. 7B represents a line connecting the vertices of the unevenness formed in the adjacent heat transfer plates 2 and 3.
  • L1 is the distance between point a and point b when the wave angle ⁇ is 65 degrees
  • L2 is the distance between point a and point b when the wave angle ⁇ is 45 degrees.
  • the wave angle ⁇ when the wave angle ⁇ is reduced from 65 degrees to 45 degrees, the refrigerant flows in the short axis direction of the heat transfer plates 2 and 3 in a non-uniform manner. It is possible to prevent the refrigerant flow on the width side of the heat transfer plates 2 and 3 from staying, and to reduce the effective heat transfer area and clogging of dust.
  • the wave angle ⁇ when the wave angle ⁇ is reduced from 65 degrees to 45 degrees, the distance L1> the distance L2. That is, the distance between the junction points closest to each other in the minor axis direction is reduced.
  • the wave pitch ⁇ is preferably set to 4 to 7 mm.
  • the radius of the minimum fillet is about 1.5 mm, and about 50% or more is secured as the refrigerant flow path, so that blocking of the refrigerant flow path is suppressed.
  • the wave pitch ⁇ is excessively widened, the number of junctions between the adjacent heat transfer plate 2 and the heat transfer plate 3 decreases, resulting in a decrease in heat transfer efficiency.
  • the wave pitch ⁇ is set to 4 to 7 mm, it is possible to suppress a decrease in heat transfer efficiency.
  • the thickness t of the heat transfer plate 20 is set to 0.2 mm or less
  • the wave height h is set to 1.0 to 1.2
  • the wave angle ⁇ Is set to 40 to 50 degrees
  • the wave pitch ⁇ is set to 4 to 7 mm, thereby reducing heat transfer efficiency, reducing pressure loss, equalizing the refrigerant flow in the short axis direction, and blocking the refrigerant flow path.
  • cost increase can be suppressed and weight can be reduced.
  • the heat transfer plate 20 has a wave height h set to 1.0 to 1.2 mm, a wave angle ⁇ set to 40 degrees to 50 degrees, and an area enlargement ratio ⁇ of 1.05 to 1. 15 (see FIGS. 5 and 6).
  • the area enlargement ratio ⁇ is decreased, and the elongation of the plate material is small.
  • the refrigerant flows in the short axis direction of the heat transfer plate 20 in a non-uniform manner.
  • the occurrence of cracks in the heat plate 20, uneven thickness t, and the like, and the refrigerant flow path being made thinner, increase the flow rate of the refrigerant and improve the heat transfer efficiency. can do.
  • the wave angle ⁇ is set to 40 degrees to 50 degrees, and the wave pitch ⁇ is set to 4 to 7 mm (see FIG. 7).
  • the wave pitch ⁇ is set to 4 to 7 mm (see FIG. 7).
  • the heat transfer plate 20 of the plate heat exchanger 100 has a wave height h set to 1.0 mm to 1.2 mm and a wave pitch ⁇ set to 4 to 7 mm. 05 to 1.15 can be satisfied. Thereby, since the diameter of the refrigerant flow path is reduced, the flow rate of the refrigerant is increased, and the heat transfer efficiency can be improved. Further, it is possible to reduce the elongation of the plate material when forming the heat transfer plate 20 from the plate material, and it is possible to suppress the occurrence of cracks in the heat transfer plate 20, unevenness of the plate thickness t, and the like. That is, the strength of the plate heat exchanger 100 is not easily impaired (high strength). Thereby, the plate material can be thinned, and the material cost and weight can be reduced. And since the setting load at the time of press work can be set small by the part which can be thinned, processing cost can be reduced.
  • the thickness t, wave height h, wave angle ⁇ , and wave pitch ⁇ of the heat transfer plate 20 deviate from the ranges described in the first embodiment, there are the following adverse effects.
  • the plate thickness t is out of the range, the weight of the plate heat exchanger 100 is increased in the first place. Further, when the wave height h and the wave angle ⁇ are out of the range, the increase in the weight of the plate heat exchanger 100, the occurrence of cracks in the heat transfer plate 20 and the deviation of the plate thickness t, or the increase in pressure loss. If the number of stacked heat transfer plates 20 is increased, the weight of the plate heat exchanger 100 is increased. Further, when the wave pitch ⁇ is out of the range, the heat transfer efficiency is lowered due to the blockage of the refrigerant flow path or the reduction of the junction points between the adjacent heat transfer plates 2 and 3.
  • the plate heat exchanger 100 realizes suppression of pressure loss and high strength. Therefore, the plate heat exchanger 100 can suppress pressure loss even when supplied with, for example, a CO 2 refrigerant, a hydrocarbon refrigerant, a low-density flammable low GWP refrigerant, etc. The deformation of the heat transfer plate 20 and the like can be suppressed.
  • the plate-type heat exchanger 100 can reduce the elongation rate of the plate material as described above, the elongation rate is 30% or more of stainless steel (elongation rate 40%), copper (elongation rate 40%), Even if the heat transfer plate 20 is constituted by not only industrial aluminum (elongation rate 30%) but also metals such as titanium (elongation rate 14%) and corrosion-resistant aluminum (elongation rate 16%) as small as 20% or less.
  • the heat transfer plate 20 may be made of synthetic resin or the like.
  • the heat transfer plate 2 is the heat transfer plate 3 upside down and has the same configuration
  • the heat transfer plate 2 is not limited thereto. That is, the heat transfer plate 2 and the heat transfer plate 3 have a thickness t of 0.2 mm or less, a wave height h in the range of 1.0 to 1.2 mm, a wave angle ⁇ in the range of 40 degrees to 50 degrees, and a wave pitch. It is sufficient that ⁇ is set in the range of 4 to 7 mm and the area enlargement ratio ⁇ is set in the range of 1.05 to 1.15.
  • FIG. 8 is an explanatory diagram of a refrigeration cycle apparatus (air conditioner) according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus according to the second embodiment is, for example, an air conditioner, a power generator, a food heat sterilization apparatus or the like equipped with a plate heat exchanger.
  • the refrigeration cycle apparatus is the air conditioner 200 as an example.
  • the air-conditioning apparatus 200 uses the heat of the indoor unit 102 as the cooling heat of the heat source side refrigerant that flows through the one outdoor unit 101, the one indoor unit 102, and the outdoor unit 101 that are heat source units. It has a heat medium converter 103 for transmitting to the medium.
  • the outdoor unit 101 and the heat medium relay unit 103 are connected by a refrigerant pipe 120 that conducts the heat source side refrigerant (first refrigerant) to constitute a refrigerant circulation circuit A.
  • the heat medium converter 103 and the indoor unit 102 are connected by a heat medium pipe 121 that conducts the heat medium (second refrigerant), and constitutes a heat medium circuit B.
  • the outdoor unit 101 is mounted with at least a heat source side heat exchanger 110, a compressor 118, and an expansion device 111.
  • the indoor unit 102 is equipped with at least a use side heat exchanger 112.
  • At least the plate heat exchanger 100 and the pump 119 according to the first embodiment are mounted on the heat medium relay unit 103.
  • the plate heat exchanger 100 is mounted on the heat medium converter 103 will be described, at least one of the outdoor unit 101, the indoor unit 102, and the heat exchanger of the heat medium converter 103 is used. It is sufficient that the plate heat exchanger 100 is employed.
  • the air conditioning apparatus 200 that performs the cooling operation is described as an example of the refrigeration cycle apparatus.
  • the refrigerant circulation circuit A may be provided with a four-way valve or the like to enable the heating operation. Needless to say.
  • the heat source side heat exchanger 110 functions as a condenser and performs heat exchange between the heat source side refrigerant flowing through the refrigerant pipe 120 and the outdoor air.
  • One of the heat source side heat exchangers 110 is connected to the plate heat exchanger 100 and the other is connected to the discharge side of the compressor 118.
  • the compressor 118 compresses the heat source side refrigerant and conveys it to the refrigerant circuit A.
  • the compressor 118 has a discharge side connected to the heat source side heat exchanger 110 and a suction side connected to the plate heat exchanger 100.
  • the expansion device 111 expands the heat source side refrigerant flowing through the refrigerant pipe 120 by reducing the pressure.
  • One of the expansion devices 111 is connected to the heat source side heat exchanger 110, and the other is connected to the plate heat exchanger 100.
  • the throttling device 111 may be composed of, for example, a capillary tube or a solenoid valve.
  • the usage-side heat exchanger 112 performs heat exchange between the heat medium flowing through the heat medium pipe 121 and the air in the air-conditioning target space.
  • One of the use side heat exchangers 112 is connected to the plate heat exchanger 100 and the other is connected to the suction side of the pump 119.
  • the plate heat exchanger 100 exchanges heat between the heat source side refrigerant and the heat medium.
  • the plate heat exchanger 100 is connected to the suction side of the compressor 118 and the expansion device 111 via the refrigerant pipe 120. Further, the plate heat exchanger 100 is connected to the use side heat exchanger 112 and the pump 119 via the heat medium pipe 121. That is, the plate heat exchanger 100 is cascade-connected to the refrigerant circuit A and the heat medium circuit B.
  • the pump 119 conveys the heat medium to the heat medium circulation circuit B.
  • the pump 119 has a suction side connected to the use side heat exchanger 112 and a discharge side connected to the plate heat exchanger 100.
  • the flow of the heat source side refrigerant in the refrigerant circuit A will be described.
  • the low-temperature / low-pressure heat source side refrigerant is compressed by the compressor 118 and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 118 flows into the heat source side heat exchanger 110. And it becomes a high-pressure liquid refrigerant while radiating heat to the outdoor air by the heat source side heat exchanger 110.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 110 is expanded by the expansion device 111 and becomes a low-temperature, low-pressure two-phase refrigerant.
  • This low-temperature, low-pressure two-phase refrigerant flows into the plate heat exchanger 100 that functions as an evaporator.
  • the low-temperature / low-pressure two-phase refrigerant absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature / low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant that has flowed out of the plate heat exchanger 100 is sucked into the compressor 118 again.
  • the heat medium pressurized and discharged by the pump 119 flows into the plate heat exchanger 100, and the cold heat of the heat source side refrigerant of the plate heat exchanger 100 is transmitted to the heat medium.
  • this heat medium flows out of the plate heat exchanger 100, it flows into the use side heat exchanger 112.
  • the heat medium absorbs heat from the indoor air by the use side heat exchanger 112, thereby cooling the air-conditioning target space.
  • the heat medium flowing out from the use side heat exchanger 112 is sucked into the pump 119 again.

Abstract

A plate-type heat exchanger for which the plate thickness t of heat transfer plates (2, 3) is 0.2 mm or less, the pitch Λ of concavities and convexities (9, 10) is 4-7 mm, the distance h between the apexes of the concavities and convexities (9, 10) is 1.0-1.2 mm, and the area enlargement ratio Φ, defined as the value when the wavelength s corresponding to the length of the heat transfer plates (2, 3) between the apexes of the waves of the concavities and convexities (9, 10) of the heat transfer plates (2, 3) is divided by the pitch Λ of the concavities and convexities (9, 10), is 1.05-1.15.

Description

プレート式熱交換器及びそれを用いた冷凍サイクル装置Plate heat exchanger and refrigeration cycle apparatus using the same
 本発明は、プレート式熱交換器及びそれを用いた冷凍サイクル装置に関するものである。 The present invention relates to a plate heat exchanger and a refrigeration cycle apparatus using the plate heat exchanger.
 プレート式熱交換器には、波形の凹凸が複数列形成された伝熱プレートが積層されて、伝熱プレートの波形の山の頂点(又は谷の底の点)を結んだ線が、隣接する伝熱プレートに対して交差するように配置されたものが提案されている。そして、このようなプレート式熱交換器は、伝熱プレートの波形の山の頂点と、当該伝熱プレートに隣接する伝熱プレートの谷の頂点との間隔に対応する波高さhが、たとえば1.6mm~2.2mm程度に設定される。 In the plate heat exchanger, heat transfer plates having a plurality of rows of corrugated irregularities are laminated, and a line connecting the apexes of the corrugated peaks (or the bottom points of the valleys) of the heat transfer plates is adjacent. The thing arrange | positioned so that it may cross | intersect with respect to a heat exchanger plate is proposed. And such a plate type heat exchanger has a wave height h corresponding to the interval between the apex of the corrugated peak of the heat transfer plate and the apex of the valley of the valley of the heat transfer plate adjacent to the heat transfer plate, for example, 1 It is set to about 6 mm to 2.2 mm.
 このような波高さhの設定であると、冷媒流路断面が大きい分、冷媒の流速が小さくなってしまうため、冷媒同士の熱伝達効率が低減してしまう。そこで、熱伝達効率の低減を抑制するため、伝熱プレートの波高さhが0.5~1.5mm(水力直径が1~3mm)に設定されたプレート式熱交換器が提案されている(たとえば、特許文献1参照)。 When the wave height h is set in this way, the flow rate of the refrigerant is reduced as the refrigerant flow passage cross section is large, so that the heat transfer efficiency between the refrigerants is reduced. Therefore, in order to suppress the reduction in heat transfer efficiency, a plate heat exchanger in which the wave height h of the heat transfer plate is set to 0.5 to 1.5 mm (hydraulic diameter is 1 to 3 mm) has been proposed ( For example, see Patent Document 1).
 しかしながら、冷媒流速が増加すると、冷媒は伝熱プレートに形成された波形を乗り越えやすくなってしまい、伝熱プレートの長軸方向に流れる可能性がある。すなわち、冷媒が伝熱プレートの短軸方向(幅方向)へ広がりにくくなり、短軸方向の流速が不均一になってしまう可能性がある。これにより、伝熱プレートの幅側における冷媒の流れが滞留してしまい、有効伝熱面積の低下や、ゴミ詰まりが発生する可能性がある。 However, when the refrigerant flow rate increases, the refrigerant easily gets over the waveform formed on the heat transfer plate, and may flow in the long axis direction of the heat transfer plate. That is, it is difficult for the refrigerant to spread in the short axis direction (width direction) of the heat transfer plate, and the flow velocity in the short axis direction may become non-uniform. Thereby, the flow of the refrigerant on the width side of the heat transfer plate is retained, and there is a possibility that the effective heat transfer area is reduced and dust clogging occurs.
 そこで、波形の山の頂点を結んだ線と伝熱プレートの長手方向とのなす角度である波角度θを小さく設定(たとえば45度)して、冷媒が伝熱プレートの短軸方向へ広がりやすくするようにしたプレート式熱交換器が提案されている(たとえば、特許文献2参照)。
 なお、特許文献2に記載の技術は、伝熱プレートの山と山(又は谷と谷)との間隔である波ピッチΛを小さく設定(たとえば4mm以下)し、冷媒流速を増加させている。
Therefore, the wave angle θ, which is the angle formed by the line connecting the peaks of the corrugated peaks and the longitudinal direction of the heat transfer plate, is set to a small value (for example, 45 degrees) so that the refrigerant can easily spread in the short axis direction of the heat transfer plate. A plate-type heat exchanger designed to do this has been proposed (see, for example, Patent Document 2).
In the technique described in Patent Document 2, the wave pitch Λ, which is the distance between the peaks and peaks (or valleys and valleys) of the heat transfer plate, is set small (for example, 4 mm or less) to increase the refrigerant flow rate.
特開2001-56192号公報(たとえば、明細書の段落[0017]及び図2)JP 2001-56192 A (for example, paragraph [0017] and FIG. 2 of the specification) 特開2011-516815号公報(たとえば、明細書の段落[0025]~[0028])JP 2011-516815 A (for example, paragraphs [0025] to [0028] of the specification)
 特許文献1に記載の技術は、波高さhを低減することで冷媒流路断面を小さくして冷媒流速を増加させるものである。ここで、冷媒流速が増加すると、隣接する伝熱プレートの交差部分で冷媒が撹拌されやすくなり、圧力損失が増加してしまう。これにより、プレート式熱交換器に冷媒を供給する圧縮機の消費電力量が増大してしまうという課題があった。
 また、冷媒が伝熱プレートの短軸方向(幅方向)へ広がりにくくなり、短軸方向の冷媒流れが不均一になってしまう可能性があった。これにより、伝熱プレートの幅側における冷媒の流れが滞留してしまい、有効伝熱面積の低下や、ゴミ詰まりが発生する可能性があった。
The technique described in Patent Document 1 is to reduce the wave height h, thereby reducing the refrigerant flow path cross section and increasing the refrigerant flow velocity. Here, when the refrigerant flow rate increases, the refrigerant is easily stirred at the intersection of adjacent heat transfer plates, and the pressure loss increases. Thereby, the subject that the power consumption of the compressor which supplies a refrigerant | coolant to a plate type heat exchanger will increase occurred.
In addition, the refrigerant hardly spreads in the short axis direction (width direction) of the heat transfer plate, and the refrigerant flow in the short axis direction may become non-uniform. Thereby, the flow of the refrigerant on the width side of the heat transfer plate is retained, and there is a possibility that the effective heat transfer area is reduced and dust clogging occurs.
 特許文献2に記載の技術は、波角度θを45度に設定するので、特許文献1に記載の技術のように「短軸方向の冷媒流れが不均一」となることを、抑制することができる。しかし、波ピッチΛの設定が4mm以下に設定されているため、このように波角度θを設定すると、接合点同士の短軸方向の距離が小さくなる。これにより、伝熱プレートをろう付けする際に接合点がろう材で埋まってしまい、冷媒流路の閉塞(圧力損失の増大)を発生させる可能性があった。 Since the technique described in Patent Document 2 sets the wave angle θ to 45 degrees, it is possible to suppress the “non-uniform refrigerant flow in the minor axis direction” as in the technique described in Patent Document 1. it can. However, since the setting of the wave pitch Λ is set to 4 mm or less, when the wave angle θ is set in this way, the distance in the minor axis direction between the junction points is reduced. As a result, when the heat transfer plate is brazed, the joining point is filled with the brazing material, and there is a possibility that the refrigerant flow path is blocked (increase in pressure loss).
 また、特許文献2に記載の技術は、波ピッチΛを低減させるため、面積拡大率Φが大きくなる。この面積拡大率Φが増加することは、板材から伝熱プレートを形成する際の板材の伸びが大きくなることに対応している。面積拡大率Φが大きくなると、伝熱プレートの割れや板厚tの偏りなどが発生してしまう可能性がある。
 すなわち、特許文献2に記載の技術は、プレート式熱交換器の強度が損なわれてしまう可能性があるため、板材の薄肉化ができず、材料コスト及び重量が増加してしまっていた。また、薄肉化できないため、プレス加工時の設定荷重が大きくなる分の加工コストが増加してしまっていた。
Moreover, since the technique described in Patent Document 2 reduces the wave pitch Λ, the area enlargement ratio Φ increases. An increase in the area expansion rate Φ corresponds to an increase in the elongation of the plate material when the heat transfer plate is formed from the plate material. When the area enlargement ratio Φ increases, there is a possibility that the heat transfer plate is cracked or the thickness t is uneven.
That is, in the technique described in Patent Document 2, since the strength of the plate heat exchanger may be impaired, the plate material cannot be thinned, and the material cost and weight have increased. Further, since the thickness cannot be reduced, the processing cost has increased due to the increased set load during press processing.
 本発明は、以上のような課題の少なくとも1つを解決するためになされたもので、熱伝達効率と、圧力損失の低減と、冷媒流路の閉塞と、コストアップ抑制及び軽量化と、を図るようにしたプレート式熱交換器を提供することを目的としている。 The present invention has been made to solve at least one of the above-described problems, and provides heat transfer efficiency, reduction of pressure loss, blockage of a refrigerant flow path, cost increase suppression, and weight reduction. An object of the present invention is to provide a plate-type heat exchanger designed to be designed.
 本発明に係るプレート式熱交換器は、流体を流入させる流入口、流入口から流入した流体を流出する流出口、及び、流入口から流出口に向かって複数配列された略V字形状の凹凸の波が形成された伝熱プレートを交互に上下反転して複数積層し、隣接する伝熱プレートの凹凸の波によって形成された空間に流入口と流出口とを結ぶ流路が形成されたプレート式熱交換器であって、伝熱プレートの板厚tが0.2mm以下、凹凸のピッチΛが4~7mm、凹凸の頂点間の距離hが1.0~1.2mm、伝熱プレートの凹凸の波の頂点間における伝熱プレートの長さに対応する波長さsを、凹凸のピッチΛで割った値を面積拡大率Φと定義するとき、面積拡大率Φが1.05~1.15である。 The plate heat exchanger according to the present invention includes an inflow port through which a fluid flows in, an outflow port through which the fluid flowing in from the inflow port flows out, and a substantially V-shaped unevenness arranged in a plurality from the inflow port toward the outflow port. A plate in which a plurality of heat transfer plates on which waves are formed are alternately turned upside down and stacked, and a flow path connecting the inlet and the outlet is formed in the space formed by the uneven waves of adjacent heat transfer plates Type heat exchanger, wherein the thickness t of the heat transfer plate is 0.2 mm or less, the uneven pitch Λ is 4 to 7 mm, the distance h between the apexes of the unevenness is 1.0 to 1.2 mm, When the value obtained by dividing the wavelength s corresponding to the length of the heat transfer plate between the vertices of the uneven wave by the uneven pitch Λ is defined as the area expansion rate Φ, the area expansion rate Φ is 1.05 to 1. 15.
 本発明に係るプレート式熱交換器によれば、板厚tが0.2mm以下であり、凹凸のピッチΛが4mm~7mmであり、積層方向に対応する凹凸の頂点間の距離hが1.0mm~1.2mmであり、面積拡大率Φが1.05~1.15の範囲であるため熱伝達効率と、圧力損失の低減と、冷媒流路の閉塞と、コストアップ抑制及び軽量化と、を図ることができる。 According to the plate heat exchanger of the present invention, the plate thickness t is 0.2 mm or less, the uneven pitch Λ is 4 mm to 7 mm, and the distance h between the apexes of the uneven corresponding to the stacking direction is 1. 0mm to 1.2mm, and the area expansion ratio Φ is in the range of 1.05 to 1.15, so heat transfer efficiency, pressure loss reduction, refrigerant flow path blockage, cost increase suppression and weight reduction Can be achieved.
本発明の実施の形態1に係るプレート式熱交換器の説明図である。It is explanatory drawing of the plate type heat exchanger which concerns on Embodiment 1 of this invention. 図1に図示されるプレート式熱交換器の伝熱プレートの概略図である。FIG. 2 is a schematic view of a heat transfer plate of the plate heat exchanger illustrated in FIG. 1. 図1に示すプレート式熱交換器の伝熱プレートの各種寸法の説明図である。It is explanatory drawing of the various dimensions of the heat-transfer plate of the plate type heat exchanger shown in FIG. 図1に示すプレート式熱交換器の波ピッチΛと面積拡大率Φとの関係の説明図である。It is explanatory drawing of the relationship between wave pitch (LAMBDA) of the plate type heat exchanger shown in FIG. 1, and area expansion rate (PHI). プレート式熱交換器の熱交換量を15kWとしたときに、波高さh及び波角度θをパラメータとして変化させた際のプレート式熱交換器の重量低減量を示すグラフである。It is a graph which shows the weight reduction amount of a plate type heat exchanger when changing the wave height h and wave angle (theta) as a parameter when the heat exchange amount of a plate type heat exchanger is 15 kW. 面積拡大率Φ及び波角度θをパラメータとして変化させた際のプレート式熱交換器の重量低減量を示すグラフである。It is a graph which shows the weight reduction amount of a plate-type heat exchanger when changing area expansion rate (PHI) and wave angle (theta) as a parameter. 隣接する伝熱プレートの接合点間距離を、波角度θごとに説明する図である。It is a figure explaining the distance between the junction points of an adjacent heat-transfer plate for every wave angle (theta). 本発明の実施の形態2に係る冷凍サイクル装置の説明図である。It is explanatory drawing of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、実施の形態1に係るプレート式熱交換器100の説明図である。ここで、図1(a)は、プレート式熱交換器100が組み立てられた状態における側面図である。図1(b)はサイドプレート1の正面図である。図1(c)は伝熱プレート2の正面図でありる。図1(d)は伝熱プレート3の正面図である。図1(e)はサイドプレート4の正面図である。図1(f)は、伝熱プレート2及び伝熱プレート3の重ね合わせた状態について説明する図である。図2は、図1に図示されるプレート式熱交換器100の伝熱プレート20の概略図である。なお、図2では、実線矢印が第1冷媒の流れを表し、点線矢印が第2冷媒の流れを表しているものとする。
 なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。図1及び図2を参照して、プレート式熱交換器100の構成について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram of a plate heat exchanger 100 according to the first embodiment. Here, Fig.1 (a) is a side view in the state in which the plate type heat exchanger 100 was assembled. FIG. 1B is a front view of the side plate 1. FIG. 1C is a front view of the heat transfer plate 2. FIG. 1D is a front view of the heat transfer plate 3. FIG. 1E is a front view of the side plate 4. FIG. 1 (f) is a diagram illustrating a state in which the heat transfer plate 2 and the heat transfer plate 3 are overlapped. FIG. 2 is a schematic view of the heat transfer plate 20 of the plate heat exchanger 100 illustrated in FIG. In FIG. 2, it is assumed that the solid line arrow represents the flow of the first refrigerant and the dotted line arrow represents the flow of the second refrigerant.
In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. With reference to FIG.1 and FIG.2, the structure of the plate-type heat exchanger 100 is demonstrated.
[プレート式熱交換器100の構成]
 まず、プレート式熱交換器100の構成について説明する。
 プレート式熱交換器100は、たとえば、熱源側である室外機から搬送される熱源側冷媒(第1冷媒)と、利用側である室内機から搬送される熱媒体(第2冷媒)とを熱交換させるものである。すなわち、プレート式熱交換器100は、冷媒対冷媒、或いは冷媒対水又はブライン等の熱媒体の熱交換器である。なお、このプレート式熱交換器100には、第1冷媒と第2冷媒が混合しないように、第1冷媒が流れる第1冷媒流路X及び第2冷媒が流れる第2冷媒流路Yが形成されている。
 プレート式熱交換器100は、図1に示すように、伝熱プレート20、及びプレート式熱交換器100を補強するサイドプレート1、4を有している。
[Configuration of Plate Heat Exchanger 100]
First, the configuration of the plate heat exchanger 100 will be described.
The plate heat exchanger 100 heats, for example, a heat source side refrigerant (first refrigerant) conveyed from an outdoor unit on the heat source side and a heat medium (second refrigerant) conveyed from an indoor unit on the usage side. It is to be exchanged. That is, the plate heat exchanger 100 is a heat exchanger of a heat medium such as refrigerant versus refrigerant or refrigerant versus water or brine. The plate heat exchanger 100 is formed with a first refrigerant channel X through which the first refrigerant flows and a second refrigerant channel Y through which the second refrigerant flows so that the first refrigerant and the second refrigerant are not mixed. Has been.
As shown in FIG. 1, the plate heat exchanger 100 includes a heat transfer plate 20 and side plates 1 and 4 that reinforce the plate heat exchanger 100.
(伝熱プレート20)
 伝熱プレート20は、図2に示すように、第1冷媒及び第2冷媒の第1冷媒流路X、Yを形成するものである。この伝熱プレート20は、平面形状が長方形である伝熱プレート2、3の2種類のプレートから構成されている。なお、伝熱プレート2は、伝熱プレート3の上下を反転させたものである。
 伝熱プレート20は、その表面に凹凸の波が略V字形状にされて、「鉛直方向」に複数列形成された伝熱プレート2と、この伝熱プレート2の同下方向を反対にして配置された伝熱プレート3とが交互に対向配置(積層)されて構成されている。したがって、伝熱プレート2の後ろ側には、伝熱プレート2の同下方向が逆である伝熱プレート3が配置され、この伝熱プレート3の後ろ側には伝熱プレート2が配置される。
 ここで、「鉛直方向」は、プレート式熱交換器100の設置される面に対して垂直方向の他、上下方向一般も指すものとする。
 また、伝熱プレート20の平面視した形状は、長方形をしているものとして説明するが、それに限定されるものではなく、たとえば正方形などでもよい。また、伝熱プレート20の上下は、図1の紙面の上下に対応している。すなわち、伝熱プレート20の上は、後述の第1開口部11及び第4開口部14がある側に対応し、伝熱プレート20の下は第2開口部13及び第3開口部12がある側に対応している。
(Heat transfer plate 20)
As shown in FIG. 2, the heat transfer plate 20 forms the first refrigerant flow paths X and Y for the first refrigerant and the second refrigerant. The heat transfer plate 20 is composed of two types of plates, that is, heat transfer plates 2 and 3 having a rectangular planar shape. The heat transfer plate 2 is obtained by inverting the heat transfer plate 3 upside down.
The heat transfer plate 20 has a substantially V-shaped wave on the surface thereof, and the heat transfer plate 2 formed in a plurality of rows in the “vertical direction” and the lower direction of the heat transfer plate 2 are reversed. The arranged heat transfer plates 3 are alternately arranged oppositely (stacked). Therefore, the heat transfer plate 3 having the reverse direction of the heat transfer plate 2 is arranged behind the heat transfer plate 2, and the heat transfer plate 2 is arranged behind the heat transfer plate 3. .
Here, the “vertical direction” indicates not only the direction perpendicular to the surface on which the plate heat exchanger 100 is installed, but also the general vertical direction.
Moreover, although the shape of the heat transfer plate 20 in plan view is described as being rectangular, the shape is not limited thereto, and may be, for example, a square. Further, the top and bottom of the heat transfer plate 20 correspond to the top and bottom of the paper surface of FIG. That is, the top of the heat transfer plate 20 corresponds to the side where the first opening 11 and the fourth opening 14 described later are present, and the bottom of the heat transfer plate 20 is the second opening 13 and the third opening 12. Corresponds to the side.
 伝熱プレート2は、伝熱プレート3及びサイドプレート1、4に対して平行に設けられるものであって、隣接する伝熱プレート3に対して対向配置される板状部材である。
 この伝熱プレート2には、図1(c)に示すように、平面視したときに、略逆V字形状の凹凸9の波が複数列形成されている。そして、凹凸9の頂点(又は底点)を結んだ線が、伝熱プレート2の長手方向(図1及び図2の紙面の上下方向)に平行な中心線に対称に形成されている。また、凹凸9の頂点を結んだ線がこの中心線に対して所定の角度をなすように凹凸9は形成されている。
The heat transfer plate 2 is provided in parallel to the heat transfer plate 3 and the side plates 1 and 4, and is a plate-like member disposed to face the adjacent heat transfer plate 3.
As shown in FIG. 1C, the heat transfer plate 2 is formed with a plurality of rows of waves of unevenness 9 having a substantially inverted V shape when viewed in plan. And the line | wire which tied the vertex (or bottom point) of the unevenness | corrugation 9 is formed symmetrically about the centerline parallel to the longitudinal direction (up-down direction of the paper surface of FIG.1 and FIG.2) of the heat-transfer plate 2. As shown in FIG. Further, the unevenness 9 is formed so that a line connecting the apexes of the unevenness 9 forms a predetermined angle with respect to the center line.
 伝熱プレート3も、伝熱プレート3の凹凸10の頂点(又は底点)を結んだ線が、伝熱プレート3の長手方向(図1及び図2の紙面の上下方向)となす角度以外については、伝熱プレート2の構成と同様である。すなわち、伝熱プレート3は、伝熱プレート2及びサイドプレート1、4に対して平行に設けられるものであって、隣接する伝熱プレート2に対して対向配置される板状部材である。
 この伝熱プレート3には、図1(d)に示すように、平面視したときに、略V字形状の凹凸10の波が複数列形成されている。そして、凹凸10の頂点(底点)を結んだ線が、伝熱プレート3の長手方向に平行な中心線に対称に形成されている。また、凹凸10の頂点を結んだ線が、この中心線に対して所定の角度をなすように凹凸10は形成されている。
The heat transfer plate 3 also has an angle other than the angle formed by the line connecting the tops (or bottom points) of the irregularities 10 of the heat transfer plate 3 and the longitudinal direction of the heat transfer plate 3 (the vertical direction of the paper surface in FIGS. 1 and 2). Is the same as the configuration of the heat transfer plate 2. That is, the heat transfer plate 3 is a plate-like member that is provided in parallel to the heat transfer plate 2 and the side plates 1 and 4 and is disposed to face the adjacent heat transfer plate 2.
As shown in FIG. 1D, the heat transfer plate 3 is formed with a plurality of rows of waves of substantially V-shaped irregularities 10 when viewed in plan. A line connecting the apexes (bottom points) of the unevenness 10 is formed symmetrically with respect to a center line parallel to the longitudinal direction of the heat transfer plate 3. The unevenness 10 is formed so that a line connecting the apexes of the unevenness 10 forms a predetermined angle with respect to the center line.
 伝熱プレート2に形成された凹凸9及び伝熱プレート3に形成された凹凸10は、第1冷媒及び第2冷媒の温熱(又は冷熱)が放出される面積を増加させ、熱交換効率を高める等の理由により形成されている。ここで、伝熱プレート2及び伝熱プレート3は、図1(f)に示されるように対向配置された状態で見たとき、伝熱プレート2の凹凸9の頂点を結んだ線と、伝熱プレート3の凹凸10の頂点を結んだ線とが交差するように設けられている。なお、伝熱プレート2、3に形成された凹凸9、10の断面は、たとえば、のこぎり状でもよいし波状(曲面)でもよい。この凹凸9、10については、図3で詳しく説明する。 The unevenness 9 formed on the heat transfer plate 2 and the unevenness 10 formed on the heat transfer plate 3 increase the area where the heat (or cold) of the first refrigerant and the second refrigerant is released, and increase the heat exchange efficiency. It is formed for such reasons. Here, when the heat transfer plate 2 and the heat transfer plate 3 are viewed in a state of being opposed to each other as shown in FIG. 1 (f), a line connecting the vertices of the unevenness 9 of the heat transfer plate 2 and It is provided so that the line which connected the vertex of the unevenness | corrugation 10 of the heat plate 3 may cross | intersect. In addition, the cross-section of the unevennesses 9 and 10 formed on the heat transfer plates 2 and 3 may be, for example, a saw shape or a wave shape (curved surface). The irregularities 9 and 10 will be described in detail with reference to FIG.
 伝熱プレート2及び伝熱プレート3には、図1(c)及び図1(d)に示すように、プレート式熱交換器100に流入する第1冷媒が流れる第1開口部11、及びプレート式熱交換器100から流出する第1冷媒が流れる第2開口部13が形成されている。また、伝熱プレート2及び伝熱プレート3には、プレート式熱交換器100に流入する第2冷媒が流れる第3開口部12、及びプレート式熱交換器100から流出する第2冷媒が流れる第4開口部14が形成されている。
 すなわち、伝熱プレート2に形成された第1開口部11は、伝熱プレート2、3との間に形成される第1冷媒流路Xに流入する第1冷媒の流入口に対応し、伝熱プレート2に形成された第2開口部13は、その第1冷媒流路Xに流入した第1冷媒の流出口に対応する。なお、伝熱プレート2に形成された第3開口部12及び第4開口部14からは第2冷媒が第1冷媒流路Xに流入せずに通過する。
 また、伝熱プレート3に形成された第3開口部12は、伝熱プレート3、2との間に形成される第2冷媒流路Yに流入する第2冷媒の流入口に対応し、伝熱プレート3に形成された第4開口部14は、その第2冷媒流路Yに流入した第2冷媒の流出口に対応する。なお、伝熱プレート2に形成された第1開口部11及び第2開口部13からは第1冷媒が第2冷媒流路Yに流入せずに通過する。
 なお、伝熱プレート2、3の第1開口部11同士は、互いに連通している。第2開口部13、第3開口部12、及び第4開口部14についても同様である。
As shown in FIGS. 1C and 1D, the heat transfer plate 2 and the heat transfer plate 3 include a first opening 11 through which the first refrigerant flowing into the plate heat exchanger 100 flows, and the plate. A second opening 13 through which the first refrigerant flowing out of the heat exchanger 100 flows is formed. The heat transfer plate 2 and the heat transfer plate 3 also have a third opening 12 through which the second refrigerant flowing into the plate heat exchanger 100 flows, and a second refrigerant flowing out from the plate heat exchanger 100. Four openings 14 are formed.
That is, the first opening 11 formed in the heat transfer plate 2 corresponds to the inlet of the first refrigerant flowing into the first refrigerant flow path X formed between the heat transfer plates 2 and 3, and The second opening 13 formed in the heat plate 2 corresponds to the outlet of the first refrigerant flowing into the first refrigerant channel X. The second refrigerant passes through the third opening 12 and the fourth opening 14 formed in the heat transfer plate 2 without flowing into the first refrigerant flow path X.
The third opening 12 formed in the heat transfer plate 3 corresponds to the inlet of the second refrigerant flowing into the second refrigerant flow path Y formed between the heat transfer plates 3 and 2, and The fourth opening 14 formed in the heat plate 3 corresponds to the outlet of the second refrigerant that has flowed into the second refrigerant flow path Y. Note that the first refrigerant passes through the first opening 11 and the second opening 13 formed in the heat transfer plate 2 without flowing into the second refrigerant flow path Y.
Note that the first openings 11 of the heat transfer plates 2 and 3 communicate with each other. The same applies to the second opening 13, the third opening 12, and the fourth opening 14.
 また、伝熱プレート2及び伝熱プレート3は、図2に示すように、伝熱プレート2の後面と伝熱プレート3の前面とによって第1冷媒が流れる第1冷媒流路Xを形成し、伝熱プレート3の後面と伝熱プレート2の前面とによって第2冷媒が流れる第2冷媒流路Yを形成する。なお、この例では、「前」とは、図2の「紙面右」に対応し、「後」とは「紙面左」に対応している。 Further, as shown in FIG. 2, the heat transfer plate 2 and the heat transfer plate 3 form a first refrigerant flow path X through which the first refrigerant flows by the rear surface of the heat transfer plate 2 and the front surface of the heat transfer plate 3, A second refrigerant flow path Y through which the second refrigerant flows is formed by the rear surface of the heat transfer plate 3 and the front surface of the heat transfer plate 2. In this example, “front” corresponds to “right of paper” in FIG. 2, and “rear” corresponds to “left of paper”.
(サイドプレート1、4)
 サイドプレート1、4は、プレート式熱交換器100を補強するものである。
 サイドプレート1は、伝熱プレート20及びサイドプレート4に対し平行に設けられるものであって、図1(a)に示すように一番前の伝熱プレート2に対向配置されているものである。また、サイドプレート4は、伝熱プレート20及びサイドプレート1に対し平行に設けられるものであって、図1(a)に示すように一番後ろの伝熱プレート3に対向配置されているものである。
 サイドプレート1には、第1冷媒をプレート式熱交換器100に流入させるための第1冷媒流入管5、及び第1冷媒をプレート式熱交換器100から流出させるための第1冷媒流出管7が設けられている。また、サイドプレート1には、第2冷媒をプレート式熱交換器100に流入させるための第2冷媒流入管6、及び第2冷媒をプレート式熱交換器100から流出させるための第2冷媒流出管8が設けられている。
(Side plates 1, 4)
The side plates 1 and 4 reinforce the plate heat exchanger 100.
The side plate 1 is provided in parallel to the heat transfer plate 20 and the side plate 4, and is disposed opposite to the foremost heat transfer plate 2 as shown in FIG. . Further, the side plate 4 is provided in parallel to the heat transfer plate 20 and the side plate 1, and is disposed opposite to the rearmost heat transfer plate 3 as shown in FIG. It is.
The side plate 1 includes a first refrigerant inflow pipe 5 for allowing the first refrigerant to flow into the plate heat exchanger 100 and a first refrigerant outflow pipe 7 for allowing the first refrigerant to flow out of the plate heat exchanger 100. Is provided. The side plate 1 has a second refrigerant inflow pipe 6 for allowing the second refrigerant to flow into the plate heat exchanger 100, and a second refrigerant outflow for causing the second refrigerant to flow out of the plate heat exchanger 100. A tube 8 is provided.
[伝熱プレート20の寸法] 
 図3は、図1に示すプレート式熱交換器100の伝熱プレート20の各種寸法の説明図である。なお、図3(a)は、伝熱プレート20のうち、伝熱プレート2を一例として平面視した図である。また、図3(b)は、図3(a)の伝熱プレート2の凹凸9の頂点(底点)を結んだ線に対して直交する面における断面図である。図4は、図1に示すプレート式熱交換器100の面積拡大率Φと波ピッチΛとの関係の説明図である。図4では、板厚tを0.2mmとし、波高さhを1.4mmとしている。
[Dimensions of Heat Transfer Plate 20]
FIG. 3 is an explanatory diagram of various dimensions of the heat transfer plate 20 of the plate heat exchanger 100 shown in FIG. FIG. 3A is a plan view of the heat transfer plate 20 using the heat transfer plate 2 as an example. Moreover, FIG.3 (b) is sectional drawing in the surface orthogonal to the line | wire which connected the vertex (bottom point) of the unevenness | corrugation 9 of the heat-transfer plate 2 of Fig.3 (a). FIG. 4 is an explanatory diagram of the relationship between the area expansion ratio Φ and the wave pitch Λ of the plate heat exchanger 100 shown in FIG. In FIG. 4, the plate thickness t is 0.2 mm, and the wave height h is 1.4 mm.
 本実施の形態1では、伝熱プレート20に形成される凹凸9、10の波の形状の特定において、波角度θ、波ピッチΛ、波高さh、波長さs、面積拡大率Φ及び板厚tという変数を採用している。 In the first embodiment, the wave angle θ, wave pitch Λ, wave height h, wavelength s, area enlargement ratio Φ, and plate thickness are specified in the wave shape specification of the irregularities 9, 10 formed on the heat transfer plate 20. The variable t is adopted.
 波角度θは、略V字形状の凹凸9、10の波の配列方向に対する波の広がり角度に対応するものである。すなわち、図3に示す宇ように、波角度θは、伝熱プレート20の長手方向に対する、伝熱プレート20の凹凸の頂点(又は底点)を結んだ線がなす角度である。
 波ピッチΛは、図3(b)に示すように、隣接する頂点間の長さに対応するものである。
 波高さhは、図3(b)に示すように、凹凸の底点と頂点との長さに対応するものである。
The wave angle θ corresponds to the wave spreading angle with respect to the wave arrangement direction of the substantially V-shaped irregularities 9 and 10. That is, as shown in FIG. 3, the wave angle θ is an angle formed by a line connecting the vertices (or bottom points) of the unevenness of the heat transfer plate 20 with respect to the longitudinal direction of the heat transfer plate 20.
As shown in FIG. 3B, the wave pitch Λ corresponds to the length between adjacent vertices.
As shown in FIG. 3B, the wave height h corresponds to the length between the bottom and top of the unevenness.
 波長さsは、図3(b)に示すように、隣接する頂点間における伝熱プレート20の長さに対応するものである。この波長さsは、以下に示す(式1)によって表されるものである。なお、以下の式のR1は、図3(b)に示す曲率中心Oから凹凸9、10の波までの鉛直方向の距離に対応する曲率半径である。また、Θは、曲率中心Oから凹凸9、10の波までの距離が同じ曲率半径R1となる範囲を表している。 The wavelength s corresponds to the length of the heat transfer plate 20 between adjacent vertices, as shown in FIG. This wavelength s is expressed by the following (Formula 1). In addition, R1 of the following formula | equation is a curvature radius corresponding to the distance of the perpendicular direction from the curvature center O shown to FIG. Θ represents a range in which the distance from the center of curvature O to the waves of the unevennesses 9 and 10 is the same radius of curvature R1.
式1 Formula 1
Figure JPOXMLDOC01-appb-I000001
 板厚tは、伝熱プレート20の厚みに対応するものである。
 面積拡大率Φは、図3(b)に図示されるように、所定の波高さhにおける波長さsを波ピッチΛで割って得られるものである。また、面積拡大率Φは、波長さsが上記の(式1)で表されるため、波高さh及び波ピッチΛによって表すこともできる。この面積拡大率Φが小さいと板材の伸びが小さくなり、面積拡大率Φが大きいと、板材の伸びが大きくなる。図4には、板厚tを0.2mmとし、波高さhを1.4mmとしたときの面積拡大率Φの値ついて示す。
Figure JPOXMLDOC01-appb-I000001
The plate thickness t corresponds to the thickness of the heat transfer plate 20.
As shown in FIG. 3B, the area enlargement ratio Φ is obtained by dividing the wavelength s at a predetermined wave height h by the wave pitch Λ. Further, the area enlargement ratio Φ can also be represented by the wave height h and the wave pitch Λ because the wavelength s is represented by the above (Formula 1). When the area expansion rate Φ is small, the elongation of the plate material is small, and when the area expansion rate Φ is large, the elongation of the plate material is large. FIG. 4 shows the value of the area enlargement ratio Φ when the plate thickness t is 0.2 mm and the wave height h is 1.4 mm.
[熱交換量が15kWの場合の波高さh及び波角度θの設定]
 図5は、プレート式熱交換器100の熱交換量を15kWとしたときに、波高さh及び波角度θをパラメータとして変化させた際のプレート式熱交換器100の重量低減量を示すグラフである。図5では、板厚tを0.2mmとしている。
 図5に示すように、波高さhを1.0~1.2mmとすると好ましい。この波高さhの範囲の場合には、面積拡大率Φが小さくなり板材の伸びが小さくて済むため、波角度θを調整することで重量低減率を20%以上或いはそれに近い値にすることができるためである。
 なお、波高さhを1.0~1.2mmとしたときには、波角度θを40度~50度の範囲内に設定するとよい。この波角度θの範囲では、重量低減率を確保しながら、伝熱プレート20の短軸方向の冷媒流れが不均一になってしまうことを抑制することができるためである。また、この波角度θの範囲では、伝熱プレート20の幅側における冷媒の流れが滞留してしまい、有効伝熱面積の低下や、ゴミ詰まりが発生することを抑制し、圧力損失を低減することができるためである。
 さらに、波高さhが1.0~1.2mmであると、板材の伸びが小さくて済む分、伝熱プレート20の割れや板厚tの偏りなどが発生してしまうことを抑制することもできる。
[Setting of wave height h and wave angle θ when heat exchange amount is 15 kW]
FIG. 5 is a graph showing the weight reduction amount of the plate heat exchanger 100 when the wave height h and the wave angle θ are changed as parameters when the heat exchange amount of the plate heat exchanger 100 is 15 kW. is there. In FIG. 5, the plate thickness t is 0.2 mm.
As shown in FIG. 5, the wave height h is preferably 1.0 to 1.2 mm. In the case of this wave height h range, the area enlargement ratio Φ is small and the elongation of the plate material is small. Therefore, by adjusting the wave angle θ, the weight reduction ratio can be set to 20% or more or a value close thereto. This is because it can.
When the wave height h is 1.0 to 1.2 mm, the wave angle θ may be set within a range of 40 degrees to 50 degrees. This is because, in the range of the wave angle θ, it is possible to prevent the refrigerant flow in the minor axis direction of the heat transfer plate 20 from becoming uneven while securing the weight reduction rate. Further, in the range of the wave angle θ, the flow of the refrigerant on the width side of the heat transfer plate 20 stays, and the reduction of the effective heat transfer area and the occurrence of clogging of dust are suppressed, and the pressure loss is reduced. Because it can.
Furthermore, if the wave height h is 1.0 to 1.2 mm, it is possible to suppress the occurrence of cracks in the heat transfer plate 20 and uneven thickness t because the elongation of the plate material is small. it can.
 ここで、波高さhが1.2mmより大きい場合には、波高さhが1.0~1.2mmである場合と比較すると、面積拡大率Φが大きくなって板材の伸びが大きくなるため、伝熱プレート20の割れや板厚tの偏りなどが発生してしまう可能性がある。 Here, when the wave height h is larger than 1.2 mm, compared with the case where the wave height h is 1.0 to 1.2 mm, the area enlargement ratio Φ is increased and the elongation of the plate material is increased. There is a possibility that a crack in the heat transfer plate 20 or an uneven thickness t may occur.
 波高さhが1.0mm未満の場合には、波高さhが1.0~1.2mmである場合と比較すると、面積拡大率Φが小さくなって板材の伸びが小さくなる。しかし、この波高さhの範囲では、冷媒流路が小さいため、圧力損失が大きくなっている。すなわち、波高さhが1.0mm未満の場合に熱交換量を15kWとするには、当該圧力損失分を低減するために伝熱プレート20の積層枚数を増加させる必要があることから、プレート式熱交換器100の重量を低減することはできない。 When the wave height h is less than 1.0 mm, as compared with the case where the wave height h is 1.0 to 1.2 mm, the area expansion rate Φ is reduced and the elongation of the plate material is reduced. However, in this wave height h range, the refrigerant flow path is small, so the pressure loss is large. That is, when the wave height h is less than 1.0 mm, in order to set the heat exchange amount to 15 kW, it is necessary to increase the number of stacked heat transfer plates 20 in order to reduce the pressure loss. The weight of the heat exchanger 100 cannot be reduced.
[熱交換量が15kW及び9kWの場合の面積拡大率Φ及び波角度θの設定]
 図6は、面積拡大率Φ及び波角度θをパラメータとして変化させた際のプレート式熱交換器100の重量低減量を示すグラフである。なお、図6では、板厚tを0.2mmとしている。なお、図6の実線が熱交換量が15kWのプレート式熱交換における結果であり、点線が熱交換量が9kWにおけるプレート式熱交換器における結果である。
[Setting of area expansion rate Φ and wave angle θ when heat exchange amount is 15 kW and 9 kW]
FIG. 6 is a graph showing the weight reduction amount of the plate heat exchanger 100 when the area expansion ratio Φ and the wave angle θ are changed as parameters. In FIG. 6, the plate thickness t is 0.2 mm. In addition, the continuous line of FIG. 6 is a result in the plate type heat exchange whose heat exchange amount is 15 kW, and a dotted line is a result in the plate type heat exchanger whose heat exchange amount is 9 kW.
 図6に示すように、いずれの熱交換量においても、面積拡大率Φを1.05~1.15とするとよい。この面積拡大率Φの場合には、波角度θを調整することで重量低減率を20%以上或いはそれに近い値にすることができるためである。 As shown in FIG. 6, the area expansion rate Φ is preferably 1.05 to 1.15 in any heat exchange amount. This is because, in the case of the area enlargement ratio Φ, the weight reduction ratio can be set to 20% or more or a value close thereto by adjusting the wave angle θ.
 なお、面積拡大率Φを1.05~1.15としたときには、波角度θを40度~50度の範囲内に設定するとよい。この波角度θの範囲では、重量低減率を確保しながら、伝熱プレート20の短軸方向の冷媒流れが不均一になってしまうことを抑制することができるためである。また、この波角度θの範囲では、伝熱プレート20の幅側における冷媒の流れが滞留してしまい、有効伝熱面積の低下や、ゴミ詰まりが発生することを抑制し、圧力損失を低減することができるためである。 When the area enlargement ratio Φ is set to 1.05 to 1.15, the wave angle θ may be set within a range of 40 degrees to 50 degrees. This is because, in the range of the wave angle θ, it is possible to prevent the refrigerant flow in the minor axis direction of the heat transfer plate 20 from becoming uneven while securing the weight reduction rate. Further, in the range of the wave angle θ, the flow of the refrigerant on the width side of the heat transfer plate 20 stays, and the reduction of the effective heat transfer area and the occurrence of clogging of dust are suppressed, and the pressure loss is reduced. Because it can.
 上記の図5及び図6の説明より、伝熱プレート20の板厚tを0.2mm以下に薄肉化した場合に、プレート式熱交換器100の熱交換量に因らずプレート式熱交換器100の重量を低減するには、以下の波高さh、面積拡大率Φ及び波角度θに設定するとよい。すなわち、波高さhを1.0~1.2mmに設定し、波角度θを40度~50度の範囲内に設定し、面積拡大率Φを1.05~1.15とに設定するとよい。これにより、板厚tを0.2mm以下に薄肉化にする場合における、最適な重量低減効果を得ることができる。 From the description of FIGS. 5 and 6 above, when the thickness t of the heat transfer plate 20 is reduced to 0.2 mm or less, the plate heat exchanger is independent of the heat exchange amount of the plate heat exchanger 100. In order to reduce the weight of 100, the following wave height h, area enlargement ratio Φ, and wave angle θ may be set. That is, the wave height h is set to 1.0 to 1.2 mm, the wave angle θ is set to a range of 40 degrees to 50 degrees, and the area enlargement ratio Φ is set to 1.05 to 1.15. . Thereby, the optimal weight reduction effect in the case of reducing the thickness t to 0.2 mm or less can be obtained.
 なお、図5及び図6では、板厚tを0.2mmにした場合を例に説明したが、板厚tが0.2mm未満である場合においても、波ピッチΛ及び波高さhを上記の範囲(値)に設定することで、重量低減率を大きくすること、伝熱プレート20の短軸方向の冷媒流れが不均一になることの抑制、及び伝熱プレート20の割れや板厚tの偏り抑制を実現することができる。 In FIGS. 5 and 6, the case where the plate thickness t is 0.2 mm has been described as an example. However, even when the plate thickness t is less than 0.2 mm, the wave pitch Λ and the wave height h are set as described above. By setting the range (value), the weight reduction rate is increased, the refrigerant flow in the minor axis direction of the heat transfer plate 20 is prevented from becoming non-uniform, and the heat transfer plate 20 is cracked or the thickness t is decreased. Bias suppression can be realized.
[波ピッチΛの設定]
 上記の図5及び図6の説明では、波角度θは40度~50度に設定し、波高さhを1.0~1.2mmに設定することで、プレート式熱交換器100の熱交換量に因らず、板厚tの薄肉化により、最適な重量低減効果を得ることができることを説明した。これに加え、波ピッチΛについては、4mm以上とすることが好ましいので、それについて、図7を参照して以下に説明する。
[Setting of wave pitch Λ]
In the description of FIGS. 5 and 6, the wave angle θ is set to 40 to 50 degrees, and the wave height h is set to 1.0 to 1.2 mm, so that the heat exchange of the plate heat exchanger 100 is performed. It has been explained that an optimum weight reduction effect can be obtained by reducing the plate thickness t regardless of the amount. In addition to this, the wave pitch Λ is preferably 4 mm or more, and will be described below with reference to FIG.
 図7は、隣接する伝熱プレート2、3の接合点間距離を、波角度θごとに説明する図である。なお、図7(a)は波角度θが65度であり、図7(b)は波角度θが45度である。また、接合点とは、伝熱プレート2の凹凸の頂点を結んだ線と、伝熱プレート3の凹凸の頂点を結んだ線とが交わる点の位置に対応している。また、図7(a)及び図7(b)に図示される点線は、隣接する伝熱プレート2、3に形成された凹凸の頂点を結んだ線を表している。また、図7に記載された点a及び点bは、伝熱プレート2、3の接合点であり、接合点のうち短軸方向において最近接するものである。さらに、L1は波角度θが65度の場合における点aと点bとの間の距離であり、L2は波角度θが45度の場合における点aと点bとの間の距離である。 FIG. 7 is a diagram for explaining the distance between junction points of adjacent heat transfer plates 2 and 3 for each wave angle θ. In FIG. 7A, the wave angle θ is 65 degrees, and in FIG. 7B, the wave angle θ is 45 degrees. Further, the junction point corresponds to the position of the point where the line connecting the vertices of the unevenness of the heat transfer plate 2 and the line connecting the vertices of the unevenness of the heat transfer plate 3 intersect. Moreover, the dotted line illustrated in FIG. 7A and FIG. 7B represents a line connecting the vertices of the unevenness formed in the adjacent heat transfer plates 2 and 3. Moreover, the point a and the point b described in FIG. 7 are junction points of the heat transfer plates 2 and 3 and are closest to each other in the minor axis direction among the junction points. Furthermore, L1 is the distance between point a and point b when the wave angle θ is 65 degrees, and L2 is the distance between point a and point b when the wave angle θ is 45 degrees.
 図7(a)及び図7(b)に示すように、波角度θを65度から45度に小さくすると、冷媒が伝熱プレート2、3の短軸方向の冷媒流れが不均一になってしまうことが抑制され、伝熱プレート2、3の幅側における冷媒の流れが滞留してしまい、有効伝熱面積の低下や、ゴミ詰まりが発生することを抑制することができる。
 その一方で、波角度θを65度から45度に小さくすると、距離L1>距離L2となる。すなわち、短軸方向において最近接する接合点間距離が小さくなる。
As shown in FIG. 7A and FIG. 7B, when the wave angle θ is reduced from 65 degrees to 45 degrees, the refrigerant flows in the short axis direction of the heat transfer plates 2 and 3 in a non-uniform manner. It is possible to prevent the refrigerant flow on the width side of the heat transfer plates 2 and 3 from staying, and to reduce the effective heat transfer area and clogging of dust.
On the other hand, when the wave angle θ is reduced from 65 degrees to 45 degrees, the distance L1> the distance L2. That is, the distance between the junction points closest to each other in the minor axis direction is reduced.
 したがって、波角度θを45度に設定する場合には、波ピッチΛを狭めすぎると、距離L2がさらに小さくなってしまうため、接合点がろう材で埋まってしまい、冷媒流路の閉塞(圧力損失の増大)を発生させてしまう可能性がある。そこで、波ピッチΛは、4~7mmと設定するとよい。これにより、最小フィレットの半径は、1.5mm程度となり、約50%以上が冷媒流路として確保されるため、冷媒流路の閉塞が抑制される。
 なお、波ピッチΛを広げすぎてしまうと、隣接する伝熱プレート2と伝熱プレート3との接合点の数が減少してしまうため熱伝達効率が低下してしまう。しかし、波ピッチΛを4~7mmに設定することで、熱伝達効率の低下を抑制することができる。
Therefore, when the wave angle θ is set to 45 degrees, if the wave pitch Λ is too narrow, the distance L2 is further reduced, so that the junction is filled with the brazing material, and the refrigerant flow path is blocked (pressure). (Increased loss) may occur. Therefore, the wave pitch Λ is preferably set to 4 to 7 mm. As a result, the radius of the minimum fillet is about 1.5 mm, and about 50% or more is secured as the refrigerant flow path, so that blocking of the refrigerant flow path is suppressed.
If the wave pitch Λ is excessively widened, the number of junctions between the adjacent heat transfer plate 2 and the heat transfer plate 3 decreases, resulting in a decrease in heat transfer efficiency. However, by setting the wave pitch Λ to 4 to 7 mm, it is possible to suppress a decrease in heat transfer efficiency.
[実施の形態1に係るプレート式熱交換器100の効果]
 本実施の形態1に係るプレート式熱交換器100は、伝熱プレート20の板厚tを0.2mm以下に設定し、波高さhを1.0~1.2に設定し、波角度θを40度~50度に設定し、波ピッチΛを4~7mmに設定することで、熱伝達効率と、圧力損失の低減と、短軸方向の冷媒流れの均一化と、冷媒流路の閉塞と、コストアップ抑制及び軽量化と、を図ることができる。
[Effect of plate heat exchanger 100 according to Embodiment 1]
In the plate heat exchanger 100 according to the first embodiment, the thickness t of the heat transfer plate 20 is set to 0.2 mm or less, the wave height h is set to 1.0 to 1.2, and the wave angle θ Is set to 40 to 50 degrees, and the wave pitch Λ is set to 4 to 7 mm, thereby reducing heat transfer efficiency, reducing pressure loss, equalizing the refrigerant flow in the short axis direction, and blocking the refrigerant flow path. In addition, cost increase can be suppressed and weight can be reduced.
 具体的には、伝熱プレート20は、波高さhが1.0~1.2mmに設定され、波角度θが40度~50度に設定され、面積拡大率Φが1.05~1.15に設定される(図5及び図6参照)。この波高さhの範囲の場合には、面積拡大率Φが小さくなり板材の伸びが小さくて済むこと、冷媒が伝熱プレート20の短軸方向の冷媒流れが不均一になってしまうこと、伝熱プレート20の割れや板厚tの偏りなどが発生してしまうこと、及び冷媒流路の細径化が図られているため、冷媒の流速が増加し、熱伝達効率を向上させることを実現することができる。 Specifically, the heat transfer plate 20 has a wave height h set to 1.0 to 1.2 mm, a wave angle θ set to 40 degrees to 50 degrees, and an area enlargement ratio Φ of 1.05 to 1. 15 (see FIGS. 5 and 6). In the range of the wave height h, the area enlargement ratio Φ is decreased, and the elongation of the plate material is small. The refrigerant flows in the short axis direction of the heat transfer plate 20 in a non-uniform manner. The occurrence of cracks in the heat plate 20, uneven thickness t, and the like, and the refrigerant flow path being made thinner, increase the flow rate of the refrigerant and improve the heat transfer efficiency. can do.
 また、プレート式熱交換器100の伝熱プレート20は、波角度θが40度~50度に設定され、波ピッチΛが4~7mmに設定される(図7参照)。
 これにより、波ピッチΛを狭めすぎることによって接合点がろう材で埋まってしまい、冷媒流路の閉塞が抑制される。また、波ピッチΛを広げすぎてしまうことによって、伝熱プレート2と伝熱プレート3との接合点の数が減少し、熱伝達効率が低下してしまうことが抑制される。
In the heat transfer plate 20 of the plate heat exchanger 100, the wave angle θ is set to 40 degrees to 50 degrees, and the wave pitch Λ is set to 4 to 7 mm (see FIG. 7).
As a result, when the wave pitch Λ is excessively narrowed, the joint point is filled with the brazing material, and blockage of the refrigerant flow path is suppressed. Further, by excessively widening the wave pitch Λ, the number of junctions between the heat transfer plate 2 and the heat transfer plate 3 is reduced, and the heat transfer efficiency is suppressed from being lowered.
 さらに、プレート式熱交換器100の伝熱プレート20は、波高さhが1.0mm~1.2mmに設定され、波ピッチΛが4~7mmに設定されるため、面積拡大率Φが1.05~1.15を満たしうる。これにより、冷媒流路の細径化が図られているため、冷媒の流速が増加し、熱伝達効率を向上させることができる。
 また、板材から伝熱プレート20を形成する際の板材の伸びを小さくすることができ、伝熱プレート20の割れや板厚tの偏りなどが発生を抑制することができる。すなわち、プレート式熱交換器100の強度が損なわれにくくなっている(高強度)。これにより、板材の薄肉化が可能であり、材料コスト及び重量を低減することができる。そして、薄肉化できる分、プレス加工時の設定荷重を小さく設定することができるため、加工コストを低減することができる。
Further, the heat transfer plate 20 of the plate heat exchanger 100 has a wave height h set to 1.0 mm to 1.2 mm and a wave pitch Λ set to 4 to 7 mm. 05 to 1.15 can be satisfied. Thereby, since the diameter of the refrigerant flow path is reduced, the flow rate of the refrigerant is increased, and the heat transfer efficiency can be improved.
Further, it is possible to reduce the elongation of the plate material when forming the heat transfer plate 20 from the plate material, and it is possible to suppress the occurrence of cracks in the heat transfer plate 20, unevenness of the plate thickness t, and the like. That is, the strength of the plate heat exchanger 100 is not easily impaired (high strength). Thereby, the plate material can be thinned, and the material cost and weight can be reduced. And since the setting load at the time of press work can be set small by the part which can be thinned, processing cost can be reduced.
 なお、伝熱プレート20の板厚t、波高さh、波角度θ、波ピッチΛが本実施の形態1で説明した範囲から外れると以下の悪影響がある。
 まず、板厚tが範囲から外れると、そもそも、プレート式熱交換器100の重量増大となってしまう。
 また、波高さh及び波角度θが範囲から外れると、プレート式熱交換器100の重量増大及び伝熱プレート20の割れや板厚tの偏りなどの発生、又は、圧力損失の増大に伴って伝熱プレート20の積層枚数を増加させることによるプレート式熱交換器100の重量増大となってしまう。
 さらに、波ピッチΛが範囲から外れると、冷媒流路の閉塞、又は、隣接する伝熱プレート2と伝熱プレート3との接合点の減少による熱伝達効率の低下となってしまう。
If the thickness t, wave height h, wave angle θ, and wave pitch Λ of the heat transfer plate 20 deviate from the ranges described in the first embodiment, there are the following adverse effects.
First, if the plate thickness t is out of the range, the weight of the plate heat exchanger 100 is increased in the first place.
Further, when the wave height h and the wave angle θ are out of the range, the increase in the weight of the plate heat exchanger 100, the occurrence of cracks in the heat transfer plate 20 and the deviation of the plate thickness t, or the increase in pressure loss. If the number of stacked heat transfer plates 20 is increased, the weight of the plate heat exchanger 100 is increased.
Further, when the wave pitch Λ is out of the range, the heat transfer efficiency is lowered due to the blockage of the refrigerant flow path or the reduction of the junction points between the adjacent heat transfer plates 2 and 3.
[その他]
 プレート式熱交換器100は、上述のように、圧力損失の抑制、及び高強度を実現している。したがって、プレート式熱交換器100は、たとえば、高圧で動作させられるCO2 冷媒、炭化水素冷媒、低密度であって可燃性である低GWP冷媒などが供給されても、圧力損失の抑制、及び伝熱プレート20などの変形の抑制が可能である。
 また、プレート式熱交換器100は、上述のように、板材の伸び率を低減することができるため、伸び率が30%以上のステンレス(伸び率40%)、銅(伸び率40%)、工業用アルミ(伸び率30%)だけでなく、伸び率が20%以下と小さいチタン(伸び率14%)、耐食アルミ(伸び率16%)などの金属によって伝熱プレート20を構成してもよいし、合成樹脂などによって伝熱プレート20を構成してもよい。
[Others]
As described above, the plate heat exchanger 100 realizes suppression of pressure loss and high strength. Therefore, the plate heat exchanger 100 can suppress pressure loss even when supplied with, for example, a CO 2 refrigerant, a hydrocarbon refrigerant, a low-density flammable low GWP refrigerant, etc. The deformation of the heat transfer plate 20 and the like can be suppressed.
Moreover, since the plate-type heat exchanger 100 can reduce the elongation rate of the plate material as described above, the elongation rate is 30% or more of stainless steel (elongation rate 40%), copper (elongation rate 40%), Even if the heat transfer plate 20 is constituted by not only industrial aluminum (elongation rate 30%) but also metals such as titanium (elongation rate 14%) and corrosion-resistant aluminum (elongation rate 16%) as small as 20% or less. Alternatively, the heat transfer plate 20 may be made of synthetic resin or the like.
 また、伝熱プレート2は、伝熱プレート3の上下を逆にしたものであり、構成が同一であるものとして説明したが、それに限定されるものではない。すなわち、伝熱プレート2及び伝熱プレート3は、板厚tが0.2mm以下、波高さhが1.0~1.2mmの範囲、波角度θが40度~50度の範囲、波ピッチΛが4~7mmの範囲、面積拡大率Φが1.05~1.15の範囲に設定されていればよい。 In addition, although the heat transfer plate 2 is the heat transfer plate 3 upside down and has the same configuration, the heat transfer plate 2 is not limited thereto. That is, the heat transfer plate 2 and the heat transfer plate 3 have a thickness t of 0.2 mm or less, a wave height h in the range of 1.0 to 1.2 mm, a wave angle θ in the range of 40 degrees to 50 degrees, and a wave pitch. It is sufficient that Λ is set in the range of 4 to 7 mm and the area enlargement ratio Φ is set in the range of 1.05 to 1.15.
実施の形態2.
 図8は、本発明の実施の形態2に係る冷凍サイクル装置(空気調和装置)の説明図である。本実施の形態2では、実施の形態1と同一部分には同一符号とし、実施の形態1との相違点を中心に説明するものとする。なお、実施の形態2に係る冷凍サイクル装置とは、プレート式熱交換器を搭載した、たとえば空調、発電、食品の加熱殺菌処理機器などといったものである。以下の説明では、冷凍サイクル装置が、空気調和装置200である場合を例に説明する。
Embodiment 2.
FIG. 8 is an explanatory diagram of a refrigeration cycle apparatus (air conditioner) according to Embodiment 2 of the present invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described. The refrigeration cycle apparatus according to the second embodiment is, for example, an air conditioner, a power generator, a food heat sterilization apparatus or the like equipped with a plate heat exchanger. In the following description, a case where the refrigeration cycle apparatus is the air conditioner 200 will be described as an example.
 本実施の形態2に係る空気調和装置200は、熱源機である1台の室外機101、1台の室内機102、及び室外機101を流れる熱源側冷媒の冷熱を、室内機102を流れる熱媒体に伝達するための熱媒体変換機103を有している。
 室外機101と熱媒体変換機103とは、熱源側冷媒(第1冷媒)を導通する冷媒配管120で接続され、冷媒循環回路Aを構成している。また、熱媒体変換機103と室内機102とは、熱媒体(第2冷媒)を導通する熱媒体配管121で接続され、熱媒体循環回路Bを構成している。
The air-conditioning apparatus 200 according to Embodiment 2 uses the heat of the indoor unit 102 as the cooling heat of the heat source side refrigerant that flows through the one outdoor unit 101, the one indoor unit 102, and the outdoor unit 101 that are heat source units. It has a heat medium converter 103 for transmitting to the medium.
The outdoor unit 101 and the heat medium relay unit 103 are connected by a refrigerant pipe 120 that conducts the heat source side refrigerant (first refrigerant) to constitute a refrigerant circulation circuit A. Further, the heat medium converter 103 and the indoor unit 102 are connected by a heat medium pipe 121 that conducts the heat medium (second refrigerant), and constitutes a heat medium circuit B.
 室外機101には、少なくとも熱源側熱交換器110、圧縮機118、及び絞り装置111が搭載されている。
 室内機102には、少なくとも利用側熱交換器112が搭載されている。
 熱媒体変換機103には、少なくとも実施の形態1に係るプレート式熱交換器100及びポンプ119が搭載されている。
 なお、熱媒体変換機103にプレート式熱交換器100が搭載されている例を説明するが、室外機101、室内機102、及び熱媒体変換機103の熱交換器のうちの、すくなくとも1つにプレート式熱交換器100が採用されていていればよい。
 また、本実施の形態2では、冷凍サイクル装置として、冷房運転を実施する空気調和装置200を一例として説明するが、冷媒循環回路Aに四方弁などを設けて、暖房運転も実施可能としてもよいことはいうまでもない。
The outdoor unit 101 is mounted with at least a heat source side heat exchanger 110, a compressor 118, and an expansion device 111.
The indoor unit 102 is equipped with at least a use side heat exchanger 112.
At least the plate heat exchanger 100 and the pump 119 according to the first embodiment are mounted on the heat medium relay unit 103.
Although an example in which the plate heat exchanger 100 is mounted on the heat medium converter 103 will be described, at least one of the outdoor unit 101, the indoor unit 102, and the heat exchanger of the heat medium converter 103 is used. It is sufficient that the plate heat exchanger 100 is employed.
In the second embodiment, the air conditioning apparatus 200 that performs the cooling operation is described as an example of the refrigeration cycle apparatus. However, the refrigerant circulation circuit A may be provided with a four-way valve or the like to enable the heating operation. Needless to say.
 熱源側熱交換器110は、凝縮器として機能し、冷媒配管120を流れる熱源側冷媒と、室外空気との間で熱交換を行うものである。熱源側熱交換器110は、一方がプレート式熱交換器100に接続され、他方が圧縮機118の吐出側に接続される。
 圧縮機118は、熱源側冷媒を圧縮し、冷媒循環回路Aに搬送させるものである。圧縮機118は、吐出側が熱源側熱交換器110に接続され、吸入側がプレート式熱交換器100に接続されている。
 絞り装置111は、冷媒配管120を流れる熱源側冷媒を減圧して膨張させるものである。絞り装置111は、一方が熱源側熱交換器110に接続され、他方がプレート式熱交換器100に接続されている。絞り装置111は、たとえば毛細管や電磁弁で構成するとよい。
The heat source side heat exchanger 110 functions as a condenser and performs heat exchange between the heat source side refrigerant flowing through the refrigerant pipe 120 and the outdoor air. One of the heat source side heat exchangers 110 is connected to the plate heat exchanger 100 and the other is connected to the discharge side of the compressor 118.
The compressor 118 compresses the heat source side refrigerant and conveys it to the refrigerant circuit A. The compressor 118 has a discharge side connected to the heat source side heat exchanger 110 and a suction side connected to the plate heat exchanger 100.
The expansion device 111 expands the heat source side refrigerant flowing through the refrigerant pipe 120 by reducing the pressure. One of the expansion devices 111 is connected to the heat source side heat exchanger 110, and the other is connected to the plate heat exchanger 100. The throttling device 111 may be composed of, for example, a capillary tube or a solenoid valve.
 利用側熱交換器112は、熱媒体配管121を流れる熱媒体と、空調対象空間の空気との間で熱交換を行うものである。利用側熱交換器112は、一方がプレート式熱交換器100に接続され、他方がポンプ119の吸入側に接続される。 The usage-side heat exchanger 112 performs heat exchange between the heat medium flowing through the heat medium pipe 121 and the air in the air-conditioning target space. One of the use side heat exchangers 112 is connected to the plate heat exchanger 100 and the other is connected to the suction side of the pump 119.
 プレート式熱交換器100は、熱源側冷媒及び熱媒体とを熱交換させるものである。プレート式熱交換器100は、冷媒配管120を介して圧縮機118の吸入側及び絞り装置111に接続されている。また、プレート式熱交換器100は、熱媒体配管121を介して利用側熱交換器112及びポンプ119に接続されている。すなわち、プレート式熱交換器100は、冷媒循環回路A及び熱媒体循環回路Bにカスケード接続されている。
 ポンプ119は、熱媒体を、熱媒体循環回路Bに搬送させるものである。ポンプ119は、吸入側が利用側熱交換器112に接続され、吐出側がプレート式熱交換器100に接続されている。
The plate heat exchanger 100 exchanges heat between the heat source side refrigerant and the heat medium. The plate heat exchanger 100 is connected to the suction side of the compressor 118 and the expansion device 111 via the refrigerant pipe 120. Further, the plate heat exchanger 100 is connected to the use side heat exchanger 112 and the pump 119 via the heat medium pipe 121. That is, the plate heat exchanger 100 is cascade-connected to the refrigerant circuit A and the heat medium circuit B.
The pump 119 conveys the heat medium to the heat medium circulation circuit B. The pump 119 has a suction side connected to the use side heat exchanger 112 and a discharge side connected to the plate heat exchanger 100.
[動作説明]
 冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の熱源側冷媒が圧縮機118によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機118から吐出された高温・高圧のガス冷媒は、熱源側熱交換器110に流入する。そして、熱源側熱交換器110で室外空気に放熱しながら高圧の液冷媒となる。熱源側熱交換器110から流出した高圧の液冷媒は、絞り装置111で膨張させられて、低温・低圧の二相冷媒となる。この低温・低圧の二相冷媒は、蒸発器として作用するプレート式熱交換器100に流入する。そして、低温・低圧の二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。プレート式熱交換器100から流出したガス冷媒は、圧縮機118へ再度吸入される。
[Description of operation]
The flow of the heat source side refrigerant in the refrigerant circuit A will be described.
The low-temperature / low-pressure heat source side refrigerant is compressed by the compressor 118 and discharged as a high-temperature / high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 118 flows into the heat source side heat exchanger 110. And it becomes a high-pressure liquid refrigerant while radiating heat to the outdoor air by the heat source side heat exchanger 110. The high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 110 is expanded by the expansion device 111 and becomes a low-temperature, low-pressure two-phase refrigerant. This low-temperature, low-pressure two-phase refrigerant flows into the plate heat exchanger 100 that functions as an evaporator. The low-temperature / low-pressure two-phase refrigerant absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-temperature / low-pressure gas refrigerant while cooling the heat medium. The gas refrigerant that has flowed out of the plate heat exchanger 100 is sucked into the compressor 118 again.
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 ポンプ119で加圧されて流出した熱媒体は、プレート式熱交換器100に流入し、プレート式熱交換器100の熱源側冷媒の冷熱が熱媒体に伝達される。この熱媒体は、プレート式熱交換器100から流出すると、利用側熱交換器112に流入する。そして、熱媒体が利用側熱交換器112で室内空気から吸熱することで、空調対象空間の冷房を行なう。利用側熱交換器112から流出した熱媒体は、ポンプ119に再度吸入される。
Next, the flow of the heat medium in the heat medium circuit B will be described.
The heat medium pressurized and discharged by the pump 119 flows into the plate heat exchanger 100, and the cold heat of the heat source side refrigerant of the plate heat exchanger 100 is transmitted to the heat medium. When this heat medium flows out of the plate heat exchanger 100, it flows into the use side heat exchanger 112. The heat medium absorbs heat from the indoor air by the use side heat exchanger 112, thereby cooling the air-conditioning target space. The heat medium flowing out from the use side heat exchanger 112 is sucked into the pump 119 again.
 1、4 サイドプレート、2、3、20 伝熱プレート、5 第1冷媒流入管、6 第2冷媒流入管、7 第1冷媒流出管、8 第2冷媒流出管、9 凹凸、10 凹凸、11 第1開口部、12 第3開口部、13 第2開口部、14 第4開口部、100 プレート式熱交換器、101 室外機、102 室内機、103 熱媒体変換機、110 熱源側熱交換器、111 絞り装置、112 利用側熱交換器、118 圧縮機、119 ポンプ、120 冷媒配管、121 熱媒体配管、200 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路、X 第1冷媒流路、Y 第2冷媒流路。 1, 4 side plate, 2, 3, 20 heat transfer plate, 5 first refrigerant inflow pipe, 6 second refrigerant inflow pipe, 7 first refrigerant outflow pipe, 8 second refrigerant outflow pipe, 9 irregularities, 10 irregularities, 11 1st opening part, 12 3rd opening part, 13 2nd opening part, 14 4th opening part, 100 plate type heat exchanger, 101 outdoor unit, 102 indoor unit, 103 heat medium converter, 110 heat source side heat exchanger , 111 throttle device, 112 utilization side heat exchanger, 118 compressor, 119 pump, 120 refrigerant piping, 121 heat medium piping, 200 air conditioner, A refrigerant circulation circuit, B heat medium circulation circuit, X first refrigerant flow path , Y Second refrigerant flow path.

Claims (5)

  1.  流体を流入させる流入口、前記流入口から流入した流体を流出する流出口、及び、前記流入口から前記流出口に向かって複数配列された略V字形状の凹凸の波が形成された伝熱プレートを交互に上下反転して複数積層し、隣接する前記伝熱プレートの凹凸の波によって形成された空間に前記流入口と前記流出口とを結ぶ流路が形成されたプレート式熱交換器であって、
     前記伝熱プレートの板厚tが0.2mm以下、
     前記凹凸のピッチΛが4~7mm、
     前記凹凸の頂点間の距離hが1.0~1.2mm、
     前記伝熱プレートの凹凸の波の頂点間における前記伝熱プレートの長さに対応する波長さsを、前記凹凸のピッチΛで割った値を面積拡大率Φと定義するとき、前記面積拡大率Φが1.05~1.15である
     ことを特徴とするプレート式熱交換器。
    An inflow port through which fluid flows in, an outflow port through which fluid flows in from the inflow port, and heat transfer in which a plurality of substantially V-shaped uneven waves arranged from the inflow port toward the outflow port are formed A plate-type heat exchanger in which a plurality of plates are alternately turned upside down and stacked, and a flow path that connects the inlet and the outlet is formed in a space formed by uneven waves of the adjacent heat transfer plates. There,
    The thickness t of the heat transfer plate is 0.2 mm or less,
    The uneven pitch Λ is 4 to 7 mm,
    The distance h between the tops of the irregularities is 1.0 to 1.2 mm;
    When the value obtained by dividing the wavelength s corresponding to the length of the heat transfer plate between the vertices of the unevenness of the heat transfer plate by the pitch Λ of the unevenness is defined as the area enlargement rate Φ, the area enlargement rate A plate heat exchanger characterized in that Φ is 1.05 to 1.15.
  2.  前記略V字形状の凹凸の波の前記配列方向に対する前記波の広がり角度θが40度~50度である
     ことを特徴とする請求項1に記載のプレート式熱交換器。
    The plate heat exchanger according to claim 1, wherein the wave spreading angle θ with respect to the arrangement direction of the substantially V-shaped uneven waves is 40 degrees to 50 degrees.
  3.  全ての前記伝熱プレートは、
     前記波の広がり角度θ、前記板厚t、前記ピッチΛ、及び前記距離hをそれぞれ同じ値としている
     ことを特徴とする請求項1又は2に記載のプレート式熱交換器。
    All the heat transfer plates
    The plate type heat exchanger according to claim 1 or 2, wherein the wave spread angle θ, the plate thickness t, the pitch Λ, and the distance h are set to the same value.
  4.  前記伝熱プレートは、
     チタン、耐食アルミ、又は合成樹脂によって構成された
     ことを特徴とする請求項1~3のいずれか一項に記載のプレート式熱交換器。
    The heat transfer plate is
    The plate heat exchanger according to any one of claims 1 to 3, wherein the plate heat exchanger is made of titanium, corrosion-resistant aluminum, or synthetic resin.
  5.  2つの冷媒回路を、請求項1~4のいずれか一項に記載の前記プレート式熱交換器を介してカスケード接続している
     ことを特徴とする冷凍サイクル装置。
    A refrigeration cycle apparatus, wherein two refrigerant circuits are cascade-connected via the plate heat exchanger according to any one of claims 1 to 4.
PCT/JP2011/006460 2011-11-21 2011-11-21 Plate-type heat exchanger and refrigeration cycle device using same WO2013076751A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/006460 WO2013076751A1 (en) 2011-11-21 2011-11-21 Plate-type heat exchanger and refrigeration cycle device using same
US14/358,319 US20140290921A1 (en) 2011-11-21 2011-11-21 Plate-type heat exchanger and refrigeration cycle apparatus using the same
GB1406880.3A GB2510738A (en) 2011-11-21 2011-11-21 Plate-type heat exchanger and refrigeration cycle device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/006460 WO2013076751A1 (en) 2011-11-21 2011-11-21 Plate-type heat exchanger and refrigeration cycle device using same

Publications (1)

Publication Number Publication Date
WO2013076751A1 true WO2013076751A1 (en) 2013-05-30

Family

ID=48469243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006460 WO2013076751A1 (en) 2011-11-21 2011-11-21 Plate-type heat exchanger and refrigeration cycle device using same

Country Status (3)

Country Link
US (1) US20140290921A1 (en)
GB (1) GB2510738A (en)
WO (1) WO2013076751A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767933B2 (en) 2016-02-24 2020-09-08 Alfa Laval Corporate Ab Heat exchanger plate for a plate heat exchanger, and a plate heat exchanger
CN111788449A (en) * 2018-01-29 2020-10-16 法雷奥热系统公司 Disturbance device for a plate of a heat exchanger

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697677B2 (en) * 2015-12-11 2020-06-30 Mitsubishi Electric Corporation Plate type heat exchanger and refrigeration cycle apparatus
US10578367B2 (en) * 2016-11-28 2020-03-03 Carrier Corporation Plate heat exchanger with alternating symmetrical and asymmetrical plates
DE102016015535A1 (en) * 2016-12-19 2018-06-21 Ziehl-Abegg Se Cooling device of an electric motor and electric motor with cooling device
KR102440596B1 (en) * 2017-11-28 2022-09-05 현대자동차 주식회사 Heat exchanger for vehicle
KR20210026216A (en) * 2019-08-29 2021-03-10 엘지전자 주식회사 Plate type heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078286A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Plate heat exchanger, and air conditioner mounted with the same
JP2011517764A (en) * 2008-04-04 2011-06-16 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
JP2011226676A (en) * 2010-04-16 2011-11-10 Mitsubishi Electric Corp Hot water heat source machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7903535L (en) * 1979-04-23 1980-10-24 Sigurd Hultgren VERMEVEXLARE
EP2257756B1 (en) * 2008-04-04 2014-10-08 Alfa Laval Corporate AB A plate heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011517764A (en) * 2008-04-04 2011-06-16 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
JP2010078286A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Plate heat exchanger, and air conditioner mounted with the same
JP2011226676A (en) * 2010-04-16 2011-11-10 Mitsubishi Electric Corp Hot water heat source machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767933B2 (en) 2016-02-24 2020-09-08 Alfa Laval Corporate Ab Heat exchanger plate for a plate heat exchanger, and a plate heat exchanger
CN111788449A (en) * 2018-01-29 2020-10-16 法雷奥热系统公司 Disturbance device for a plate of a heat exchanger

Also Published As

Publication number Publication date
GB201406880D0 (en) 2014-05-28
US20140290921A1 (en) 2014-10-02
GB2510738A (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5859022B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
WO2013076751A1 (en) Plate-type heat exchanger and refrigeration cycle device using same
EP2410278B1 (en) Plate-type heat exchanger and refrigerating air-conditioning device
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
KR20130127531A (en) Plate-type heat exchanger, and heat pump device
WO2013183113A1 (en) Plate-type heat exchanger and refrigeration cycle device comprising same
JP6735918B2 (en) Plate heat exchanger and heat pump hot water supply system
JP5805189B2 (en) Plate heat exchanger and heat pump device
CN112997045B (en) Plate heat exchanger, heat pump device, and heat pump type cooling/heating hot water supply system
WO2012063355A1 (en) Plate heat exchanger and heat pump device
WO2014184918A1 (en) Laminated header, heat exchanger, and air conditioner
WO2011062118A1 (en) Plate-type heat exchanger and heat pump device
JP2002022374A (en) Plate type heat exchanger and freezing air conditioning apparatus
JP3423981B2 (en) Heat exchangers and refrigeration air conditioners
JPWO2013076751A1 (en) Plate heat exchanger and refrigeration cycle apparatus using the same
JP5538344B2 (en) Plate heat exchanger and heat pump device
JP2009079779A (en) Plate-type heat exchanger and air conditioning device using the same
JP5595064B2 (en) Plate heat exchanger and heat pump device
WO2021149139A1 (en) Plate-type heat exchanger and heat transfer device
WO2021140611A1 (en) Plate-type heat exchanger, heat pump device equipped with plate-type heat exchanger, and heat pump-type heating system equipped with heat pump device
JP2024013036A (en) Heat exchanger, and refrigerant cycle device
JPWO2013183629A1 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the same
CN111512112A (en) Plate fin stacked type heat exchanger and refrigeration system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1406880

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20111121

Ref document number: 2013545640

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1406880.3

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 14358319

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876086

Country of ref document: EP

Kind code of ref document: A1