JP3423981B2 - Heat exchangers and refrigeration air conditioners - Google Patents
Heat exchangers and refrigeration air conditionersInfo
- Publication number
- JP3423981B2 JP3423981B2 JP31218099A JP31218099A JP3423981B2 JP 3423981 B2 JP3423981 B2 JP 3423981B2 JP 31218099 A JP31218099 A JP 31218099A JP 31218099 A JP31218099 A JP 31218099A JP 3423981 B2 JP3423981 B2 JP 3423981B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- plate
- fluid
- heat exchanger
- transfer tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
- F28F1/20—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being attachable to the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明はチラーユニット用冷
凍サイクルに適した、2次側流体として水又はブライ
ン、1次側流体として相変化を利用した冷媒等を用いた
熱交換器、及び該熱交換器を用いた冷凍空調装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger suitable for a refrigeration cycle for a chiller unit, which uses water or brine as a secondary fluid, a refrigerant using phase change as a primary fluid, and the like. The present invention relates to a refrigerating and air-conditioning system using an exchanger.
【0002】[0002]
【従来の技術】一般に、プレート式熱交換器では、積層
した複数のプレート相互間に流路を形成し、これらの流
路に温度の異なる流体を交互に流す事により熱交換を行
う構成となっており、多管式等の従来の熱交換器に比べ
て大幅にコンパクト化できるメリットがある。2. Description of the Related Art Generally, in a plate heat exchanger, flow paths are formed between a plurality of stacked plates and fluids having different temperatures are alternately flowed through these flow paths to perform heat exchange. The advantage is that it can be made much more compact than conventional heat exchangers such as multi-tube type.
【0003】例えば特開平10-281575号公報では、2つ
の系統を持つ冷凍サイクルの主熱交換器として採用する
ことで、装置のコンパクト化、伝熱性能向上を図ってい
る。For example, in Japanese Unexamined Patent Publication No. 10-281575, by adopting it as a main heat exchanger of a refrigeration cycle having two systems, the device is made compact and the heat transfer performance is improved.
【0004】[0004]
【発明が解決しようとする課題】プレート式熱交換器
は、プレス加工したプレートを積層して複数の流体が流
れる流路(プレート間流路)を構成している。このため
プレートを挟んで加熱側の流体と被加熱側の流体が流れ
るため、プレート間のシールを確実に行う必要がある。
このため、プレートのシール性を向上させるためのろう
付け技術や、熱あるいは流体の圧力差による変形等を防
ぐための面構造に工夫が数多くなされ、コストアップに
つながっている。In the plate heat exchanger, press-formed plates are laminated to form a flow path (flow path between plates) through which a plurality of fluids flow. For this reason, since the fluid on the heating side and the fluid on the heated side flow across the plates, it is necessary to reliably seal the plates.
For this reason, many techniques have been devised in brazing technology for improving the sealing property of the plate and surface structure for preventing deformation or the like due to heat or fluid pressure difference, resulting in cost increase.
【0005】また同じ形状のプレートを積層しているた
め、1次側流体と2次側流体の流路断面積が殆ど同じと
なり、2次側流体として水を用いた場合には1次側流体
に比べて大きい流量を流すために流動抵抗が増加し、2
次側流体を循環させる循環ポンプの所要動力が大きくな
るという問題がある。Further, since the plates having the same shape are laminated, the flow passage cross-sectional areas of the primary fluid and the secondary fluid are almost the same, and when water is used as the secondary fluid, the primary fluid is The flow resistance increases due to the large flow rate compared to
There is a problem that the required power of the circulation pump that circulates the secondary fluid increases.
【0006】本発明の目的は、製造が容易で、一次側流
体の流路と2次側流体の流路の間で漏れがなく、設計の
自由度が高い熱交換器を提供することである。また、上
記の熱交換器を用いて冷凍空調装置の効率を向上させる
ことである。An object of the present invention is to provide a heat exchanger which is easy to manufacture, has no leakage between the primary side fluid passage and the secondary side fluid passage, and has a high degree of freedom in design. . Another object is to improve the efficiency of the refrigeration air conditioning system by using the above heat exchanger.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、伝熱管と板材(以下、プレートという)を結合した
伝熱管付プレートを複数枚積層して熱交換器を形成し、
伝熱管の外表面にスパイラル状のフィンを加工するとと
もに、熱交換する流体の一方は伝熱管内部を流れ、他方
の流体は伝熱管の外側でかつプレートとプレートの間
(プレート間流路)を流れるように構成した。例えば、
1次側流体である冷媒は伝熱管内部を流れ、2次側流体
の水はプレート間流路の伝熱管外表面のフィン間あるい
はフィンとプレートとの間を伝熱管外周に接して流れる
ようにする。In order to solve the above-mentioned problems, a heat exchanger is formed by laminating a plurality of plates with heat transfer tubes in which a heat transfer tube and plate materials (hereinafter referred to as plates) are combined,
When a spiral fin is processed on the outer surface of the heat transfer tube,
In addition, one of the fluids for heat exchange flows inside the heat transfer tube, and the other fluid flows outside the heat transfer tube and between the plates (flow path between the plates). For example,
The refrigerant that is the primary fluid flows inside the heat transfer tube, and the water that is the secondary fluid flows between the fins on the outer surface of the heat transfer tube in the flow path between the plates.
Allows the flow to flow between the fins and the plate in contact with the outer circumference of the heat transfer tube.
【0008】この構造によれば、伝熱管の径と伝熱管付
プレートの間隔(流路幅)を自由に選定できるから、2
つの流体の流路断面積を必要に応じて異なる比率に設定
することができる。また、2次側流体は伝熱管外表面の
フィンにより伝熱面積が拡大され、乱流が促進されるた
め、平滑管を用いた場合よりも高い伝熱性能を得ること
が出来る。また、プレート間流路を流れる流体は、どの
プレート間流路でも同じであるからプレート間流路相互
間で流体の行き来があっても支障がなく、プレートの周
縁のシールを厳密に行う必要がない。このため、部品の
製造、組み立てが容易である。According to this structure, the diameter of the heat transfer tube and the interval (flow passage width) between the plates with the heat transfer tube can be freely selected.
The flow passage cross-sectional areas of the two fluids can be set to different ratios as needed. In addition, the secondary fluid is on the outer surface of the heat transfer tube.
The fins increased the heat transfer area and promoted turbulence
To obtain higher heat transfer performance than when using a smooth tube.
Can be done. Further, since the fluid flowing through the inter-plate flow path is the same for all inter-plate flow paths, there is no problem even if fluid flows between the inter-plate flow paths, and it is necessary to strictly seal the periphery of the plate. Absent. Therefore, it is easy to manufacture and assemble the parts.
【0009】一般的なプレート式熱交換器と比較する
と、1次側流体の流路断面積に対して2次側流体の流路
断面積を大きく設定することができるから、2次側流体
(例えば水、ブライン)の流動抵抗を低く抑えることが
出来る。Compared with a general plate heat exchanger, since the flow passage cross-sectional area of the secondary side fluid can be set larger than the flow passage cross-sectional area of the primary side fluid, the secondary side fluid ( For example, the flow resistance of water and brine) can be kept low.
【0010】また、プレートに、複数の開口や複数の突
起、若しくはその双方を設けてプレート間流路を流れる
流体の乱流を促進すれば熱交換効率の向上に効果的であ
り、伝熱管の屈曲部の内側で流体の停滞が生じるのを防
ぐ効果がある。Further, if the plate is provided with a plurality of openings, a plurality of projections, or both of them to promote the turbulent flow of the fluid flowing through the plate-to-plate flow path, it is effective for improving the heat exchange efficiency, and This has the effect of preventing the fluid from stagnating inside the bent portion.
【0011】なお、プレート間流路毎に伝熱管が配置さ
れるから、それら伝熱管に均等に流体を分配するために
は、伝熱管2本ごとにT字形分配管を設けて分配するの
が望ましい。Since the heat transfer tubes are arranged in each of the flow paths between the plates, in order to evenly distribute the fluid to the heat transfer tubes, a T-shaped distribution pipe is provided for every two heat transfer tubes for distribution. desirable.
【0012】さらに、熱交換器に流入したプレート間流
路を流れる側の流体を、各プレート間流路ごとにできる
だけ均等に分配するために、伝熱管付プレートが、プレ
ート間流路を流れる流体の熱交換器への流入位置から離
れるにつれて、該流体のプレート間流路流れ方向に順次
位置をずらせて積層し、各プレート間流路に流体を分配
するヘッダ部を、前記位置をずらせた伝熱管付プレート
の端部位置に合わせて、伝熱管付プレートのプレート面
に対して傾斜して配置するのが望ましい。すなわち、流
入側ヘッダ部を流れる流体の主軸線が各プレート間流路
に対して鋭角をなすように配置する。傾斜角は、15〜
60度、好ましくは30度である。Further, in order to distribute as much as possible the fluid on the side flowing through the plate-to-plate flow paths that has flowed into the heat exchanger, the plate with heat transfer tubes is arranged so that Of the fluid, the header portions for stacking the fluid are sequentially shifted in the flow direction between the plates and are stacked in the flow direction between the plates, and the header portion that distributes the fluid to each of the flow paths between the plates is transferred at the shifted position. It is desirable that the plate with the heat transfer tube is arranged so as to be inclined with respect to the plate surface of the plate with the heat transfer tube in accordance with the end position of the plate with heat tube. That is, the main axis of the fluid flowing through the inflow side header portion is arranged so as to form an acute angle with respect to the flow paths between the plates. The inclination angle is 15
It is 60 degrees, preferably 30 degrees.
【0013】[0013]
【発明の実施の形態】本発明の第1の実施の形態を図
1、図2を参照して説明する。図1は、本実施の形態の
熱交換器の構造の概念を示す斜視図であり、図2は図1
に示す伝熱管2の詳細を示す。図2の伝熱管はその外表
面にスパイラル状のフィンが加工されている。BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing the concept of the structure of the heat exchanger according to the present embodiment, and FIG.
Details of the heat transfer tube 2 shown in FIG. The heat transfer tube of FIG. 2 has spiral fins formed on its outer surface.
【0014】本実施の形態では図2に示した伝熱管2を
一平面内でジグザク状に(蛇行させて)折り曲げ、プレ
ート1と組み合わせることで1枚の伝熱管付プレートA
を構成している。伝熱管2はプレート1と溶接等の方法
で熱的に接合されている。伝熱管は直接折り曲げても、
別に製作されたベンド管、エルボピース等の接続部材を
用いてろう付けして、所定の蛇行形状に加工してもよ
い。また、図1に示した伝熱管の折り曲げたパターンは
一例であり形状を限定するものではない。In the present embodiment, the heat transfer tube 2 shown in FIG. 2 is bent in a zigzag shape in one plane (meandering) and combined with the plate 1 to form one plate A with heat transfer tubes.
Are configured. The heat transfer tube 2 is thermally joined to the plate 1 by a method such as welding. Even if the heat transfer tube is bent directly,
It may be brazed by using a separately manufactured connecting member such as a bend pipe and an elbow piece, and processed into a predetermined meandering shape. Further, the bent pattern of the heat transfer tube shown in FIG. 1 is an example, and the shape is not limited.
【0015】上記伝熱管付プレートを複数枚積層して熱
交換器が構成される。図1は伝熱管付プレートAを同じ
方向で積層したもの(プレート間に1本の伝熱管が配置
されたもの)であり、図4は同じ伝熱管付プレートAを
逆方向に(伝熱管が採りつけられた面を互いに対向させ
て)組み合わせた例である。A heat exchanger is constructed by laminating a plurality of the plates with heat transfer tubes. 1 shows a plate A with heat transfer tubes stacked in the same direction (one heat transfer tube is arranged between the plates), and FIG. 4 shows the same plate A with heat transfer tubes in the opposite direction (the heat transfer tubes are It is an example in which the surfaces that have been installed face each other).
【0016】図3に示すように、本実施の形態の熱交換
器では、1次側流体である冷媒(相変化を利用する流
体)は伝熱管内部を流れ、2次側流体である水或いはブ
ラインは、プレートとプレートの間のプレート間流路の
伝熱管外表面のフィン間、あるいはフィンとプレート間
を流れて熱交換する。2次側流体は伝熱管外表面のフィ
ンにより伝熱面積が拡大され、乱流が促進されるため、
平滑管を用いた場合よりも高い伝熱性能を得ることが出
来る。伝熱管自体は、同じ肉厚、材質ならプレート構造
よりも耐圧強度が高いため、管が破損しない限り冷媒が
漏洩することはない。As shown in FIG. 3, in the heat exchanger according to the present embodiment, the refrigerant as the primary side fluid (fluid utilizing phase change) flows inside the heat transfer tube or water as the secondary side fluid. The brine exchanges heat by flowing between the fins on the outer surface of the heat transfer tube in the plate-to-plate flow path between the plates or between the fins and the plate. Since the heat transfer area of the secondary fluid is expanded by the fins on the outer surface of the heat transfer tube, and turbulent flow is promoted,
It is possible to obtain higher heat transfer performance than when using a smooth tube. Since the heat transfer tubes themselves have higher pressure resistance than the plate structure if they have the same thickness and material, the refrigerant will not leak unless the tubes are damaged.
【0017】本熱交換器においては、プレート間流路を
流れる流体は、基本的に、プレート間流路の一方の端か
ら流入し、他方の端から流出する。In the present heat exchanger, the fluid flowing through the interplate flow passage basically flows in from one end of the interplate flow passage and flows out from the other end.
【0018】<伝熱管配置方法>伝熱管はすべて同じ仕
様でなくてもよい。すなわち、隣り合った伝熱管のフィ
ンのねじれ角が反対方向の管の組合せや、隣り合った伝
熱管のフィンのフィン数を粗くした管と密にした管の組
合せ、フィン付伝熱管と平滑管の組合せ、あるいは径の
違う伝熱管の組合せ等の設計上の変化を付けることも可
能である。この様な構造にすることで、プレート間流路
を流れる流体の流れは拡大縮小を繰り返すため、良好な
熱伝達を得ることが出来る。<Method of Arranging Heat Transfer Tubes> The heat transfer tubes do not have to have the same specifications. That is, adjacent fins of adjacent heat transfer tubes have different twist angles, adjacent fins of the adjacent heat transfer tubes have a larger number of fins and denser fins, or finned heat transfer tubes and smooth tubes. It is also possible to add design changes such as a combination of or heat transfer tubes having different diameters. With such a structure, the flow of the fluid flowing through the inter-plate flow path repeats expansion and contraction, so that good heat transfer can be obtained.
【0019】<伝熱管のパターンと配置>図1、図4に
示す実施の形態では、伝熱管2はプレート1の片面につ
き一本を接合して伝熱管付プレートAとしているが、例
えばプレート1の両面に複数本の伝熱管2を接合しても
よい。両面に伝熱管を接合したプレートを図4に示すよ
うに積層すると、プレート間流路の流路幅は少なくとも
伝熱管2本分となって広くなるが、流体は伝熱管と伝熱
管の間を蛇行して流れるため、伝熱性能は良好となる。<Pattern and Arrangement of Heat Transfer Tube> In the embodiment shown in FIGS. 1 and 4, one heat transfer tube 2 is joined to one surface of the plate 1 to form the plate A with the heat transfer tube. A plurality of heat transfer tubes 2 may be joined to both surfaces of. When the plates with the heat transfer tubes joined on both sides are stacked as shown in FIG. 4, the flow width of the inter-plate flow path is widened by at least two heat transfer tubes, but the fluid flows between the heat transfer tubes. Since it flows in a meandering manner, the heat transfer performance is good.
【0020】また、伝熱管の径とプレート間流路の流路
幅を任意に変化させてもよい。プレート間流路の流路幅
を任意に変化させることで、プレート間流路を流れる流
体の分配を良好にし、熱交換器の仕様を必要とされる性
能にすることができる。また、プレート間流路を流れる
流体が局所的に滞留することを防ぐため、2次側流体の
凍結を防止することができる。さらに、プレート間流路
を流れる流体の流路毎の熱負荷を適正に保つことができ
るため、伝熱管側流体の分配を適正にすることができ
る。Further, the diameter of the heat transfer tube and the width of the flow path between the plates may be changed arbitrarily. By arbitrarily changing the channel width of the inter-plate flow channel, the distribution of the fluid flowing through the inter-plate flow channel can be improved, and the heat exchanger specifications can be made to have the required performance. Further, since the fluid flowing through the interplate flow channel is prevented from locally staying, it is possible to prevent the secondary side fluid from freezing. Furthermore, since the heat load of each fluid flowing through the inter-plate fluid passages can be appropriately maintained, the heat transfer tube side fluid can be appropriately distributed.
【0021】<複数パスのパターン>図5に示すように
プレート1の片面に2本以上の伝熱管を接合して、伝熱
管側流体の複数パスを並列に配置したプレートを積層し
て熱交換器を構成してもよい。プレート面上の複数の伝
熱管側流体のパスはプレート毎にあるいは流路毎にヘッ
ダを設け、熱交換器として積層後はプレート毎のヘッダ
をまとめてメインのヘッダを構成する。例えば2本の伝
熱管2に流体を分配する場合、図示のように、T字形分
配管4を用いて分配する。ここで述べた構造例は、本発
明を限定するものではなく、実施の形態の一例として述
べたものである。1枚のプレートに1本の伝熱管が結合
されている場合でも、隣接する2本の伝熱管を組合せ、
T字形分配管4を用いて分配する。<Pattern of Multiple Passes> As shown in FIG. 5, two or more heat transfer tubes are joined to one surface of the plate 1, and plates in which a plurality of paths of fluid on the heat transfer tube side are arranged in parallel are stacked to perform heat exchange. May be configured. A plurality of heat transfer tube side fluid paths on the plate surface are provided with headers for each plate or each flow path, and after stacking as a heat exchanger, the headers for each plate are combined to form a main header. For example, when distributing the fluid to the two heat transfer tubes 2, the T-shaped distribution pipe 4 is used for distribution as shown in the figure. The structural example described here is not intended to limit the present invention, but is described as an example of the embodiment. Even if one heat transfer tube is connected to one plate, combine two adjacent heat transfer tubes,
Distribute using the T-shaped distribution pipe 4.
【0022】<伝熱管側流体分配の一例>伝熱管側流体
のメインのヘッダから各伝熱管への流体の分配方法の一
例として、T字型やY字型の分配管を組み合わせて用い
る方法がある。これは一つの流路を2つの流路に分配す
る場合や、2つの流路を一つに集合させる場合に用いら
れる。この様な分配手段は構造や製造が簡単なため、空
調用熱交換器の冷媒パスに多用されているが、2相状態
の冷媒を分流する場合に、重力の影響や設置した角度に
より、分配部で冷媒が偏流する等の問題があり、均一な
分配を行なうために様々な改良が加えられている(例え
ば特開平8-75316号公報参照)。<Example of Heat Transfer Tube Side Fluid Distribution> As an example of a method of distributing the fluid from the main header of the heat transfer tube side fluid to each heat transfer tube, a method of using a combination of T-shaped or Y-shaped distribution pipes is available. is there. This is used when one flow channel is distributed to two flow channels or when two flow channels are combined into one. Since such a distributing means is simple in structure and manufacturing, it is often used in the refrigerant path of the air conditioning heat exchanger. However, when the refrigerant in the two-phase state is diverted, it may be distributed due to the influence of gravity or the installed angle. There is a problem such as uneven distribution of the refrigerant in some parts, and various improvements have been added to achieve uniform distribution (see, for example, JP-A-8-75316).
【0023】本実施の形態では、図6に示すような、T
字の1つの集合管18と2つの分岐管19a、19bか
らなるT字形分配管を用いて各流路の伝熱管に流体を分
配する。このT字型分配管は伝熱管2本に対して1個接
続され、T字形の縦棒をなす上流側の集合管18と、該
集合管に対してT字形の横棒をなすように結合される分
岐管19a,19bとからなり、該分岐管19a,19
bはT字形の横棒を形成する部分と、前記T字形の横棒
の末端から90度曲がって前記集合管18に平行に逆戻
りする部分と、前記平行に逆戻りしたのちさらに90度
曲がって、前記集合管と前記T字形の横棒を形成する部
分で規定される平面に対して直交する方向に延びる接続
部分を有して形成され、前記接続部分が各伝熱管に接続
される。集合管18はそれぞれ集められてヘッダを構成
する。分岐管19a、分岐管19bは集合管18から分
岐部で2方向に分かれた後直角に曲り、ほとんどUター
ンするかたちで集合管と逆方向に流れ、さらに直角に曲
がる流路を構成して伝熱管に接続される。上述のように
集合管18を流れてきた流体の流れ方向を2回直角に曲
げて、一度集合管18の方向に逆に戻すことで、流体の
分配は良好に行なわれる。In the present embodiment, as shown in FIG.
The fluid is distributed to the heat transfer pipes of each flow path by using a T-shaped distribution pipe composed of a single collecting pipe 18 and two branch pipes 19a and 19b. This T-shaped distribution pipe is connected to two heat transfer tubes, and is connected to the upstream collecting pipe 18 forming a T-shaped vertical bar and a T-shaped horizontal bar to the collecting pipe. And the branch pipes 19a and 19b,
b is a part forming a T-shaped horizontal bar, a part bent 90 degrees from the end of the T-shaped horizontal bar and returning parallel to the collecting pipe 18, and a further 90 ° bending after returning to parallel. It is formed with a connecting portion extending in a direction orthogonal to the plane defined by the portion forming the collecting pipe and the T-shaped horizontal bar, and the connecting portion is connected to each heat transfer pipe. The collecting pipes 18 are respectively collected to form a header. The branch pipes 19a and 19b are branched from the collecting pipe 18 in two directions at the branching portion and then bent at a right angle, and almost U-turned to flow in the opposite direction to the collecting pipe and form a flow path that bends at a right angle. Connected to the heat tube. As described above, the flow direction of the fluid flowing through the collecting pipe 18 is bent twice at a right angle and once returned to the direction of the collecting pipe 18, the fluid is well distributed.
【0024】<プレートの積層方法と熱交換器組み立て
方法>熱交換器を構成するには、伝熱管を接合した伝熱
管付プレートAを、各々側面をシール手段を設けて接合
し積層していくことで、熱交換器を形成してもよいし、
また、筐体17に伝熱管付プレートAを複数枚積層して
収め、プレート間流路への流体の流入、流出口(ヘッダ
部)を共通に設けた構造の熱交換器としてもよい。この
様なプレート周囲をシールしない構造にすることで、プ
レート間流路を流れる流体は隣接するプレート間流路間
を移動して流れることが可能になるので、部分的に滞留
することがなくなる。<Plate Laminating Method and Heat Exchanger Assembling Method> In order to construct a heat exchanger, the plate A with heat transfer tubes, to which heat transfer tubes are joined, is joined and laminated on each side by providing sealing means. By doing so, a heat exchanger may be formed,
Further, a heat exchanger having a structure in which a plurality of plates A with heat transfer tubes are stacked and housed in the housing 17 and the inflow and outflow ports (header portions) of the fluid to the inter-plate flow paths are commonly provided may be used. With such a structure in which the periphery of the plates is not sealed, the fluid flowing through the inter-plate flow passages can move and flow between the adjacent inter-plate flow passages, so that it does not partially stay.
【0025】熱交換流体のうち、圧力の高い側の流体を
伝熱管側を流れる流体とし、圧力の低い側の流体をプレ
ート間流路を流れる流体とすれば、プレート間流路の許
容圧力(設計圧力)を低くして構造を軽くすること、あ
るいは強度の低い材料を使用することが可能である。こ
のため、従来のプレート式熱交換器では用いられなかっ
たような銅やアルミ等の材質を用いることが可能とな
る。また、従来のプレート式熱交換器と違って、プレー
ト間流路のシールが要求されないため、製作に際して高
度な技術を必要としない。Among the heat exchange fluids, if the fluid on the high pressure side is the fluid flowing on the heat transfer tube side and the fluid on the low pressure side is the fluid flowing in the interplate flow passage, the allowable pressure in the interplate flow passage ( It is possible to lower the design pressure) to make the structure lighter, or to use a material having low strength. Therefore, it is possible to use a material such as copper or aluminum that has not been used in the conventional plate heat exchanger. In addition, unlike the conventional plate heat exchanger, since sealing of the flow path between the plates is not required, no advanced technique is required for manufacturing.
【0026】<プレートの構造>本発明の第2の実施の
形態を、図7〜図8を参照して説明する。本実施の形態
は、伝熱管付プレートAを構成するプレート1として、
板面に複数の開口部を設けたプレートを用いたものであ
る。板面に開口部があれば、プレート間流路を流れる流
体は、隣接するプレート間流路への流入、流出が可能と
なる。<Plate Structure> A second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, as the plate 1 that constitutes the plate A with a heat transfer tube,
A plate having a plurality of openings on the plate surface is used. If the plate surface has an opening, the fluid flowing through the inter-plate flow passage can flow into and out of the adjacent inter-plate flow passage.
【0027】プレートはまた、表面に突起物や溝加工さ
れたもの、プレート自体に折目を付けたもの、あるいは
メッシュ状であってもよい。図7の(a)はメッシュ状
(金網)プレート、図7の(b)はパンチングプレー
ト、図7の(c)はハニカム状プレートをそれぞれ用い
る例である。図8は、プレートに三角形状の切り込みを
いれて切り込み部分を板面に直角に折り曲げて開口を形
成した例である。開口部の配置はいわゆる千鳥配列とし
てある。切り込みの形状は三角形状以外に、半円形、矩
形等でもよい。The plate may also have a projection or groove formed on the surface thereof, a crease formed on the plate itself, or a mesh shape. 7A shows an example using a mesh (wire net) plate, FIG. 7B shows a punching plate, and FIG. 7C shows an example using a honeycomb plate. FIG. 8 shows an example in which a triangular cut is made in a plate and the cut is bent at a right angle to the plate surface to form an opening. The openings are arranged in a so-called staggered arrangement. The shape of the cut may be a semi-circle, a rectangle, etc. other than the triangular shape.
【0028】図9は、プレートに複数の短冊状の切り込
みを平行に入れ、切り込み部を板面の一方の側に突出さ
せてルーバーを形成した例、図10は切り込み部を板面
の両側に交互に突出させてルーバーを形成した例であ
る。この場合の伝熱管の結合例を図11、図12に示
す。図11は、ルーバーを伝熱管の傾斜方向と同じ向き
につけてルーバーの間に伝熱管を配置した例を示し、図
12は、ルーバーを伝熱管の傾斜方向と交叉する方向に
つけて伝熱管をルーバーと交叉するように配置した例を
示す。ルーバーの配置としては、図13に示すように、
短いルーバーを互い違いに多数設け、板断面がハニカム
状になるようにしてもよい。ここで述べる構造例は、本
発明の構成を限定するものではなく、実施の形態の一例
として述べたものである。FIG. 9 shows an example in which a plurality of strip-shaped cuts are made in a plate in parallel and the louver is formed by projecting the cuts on one side of the plate surface. FIG. 10 shows the cuts on both sides of the plate surface. This is an example in which louvers are formed by alternately projecting. An example of coupling the heat transfer tubes in this case is shown in FIGS. FIG. 11 shows an example in which the louvers are attached in the same direction as the inclination direction of the heat transfer tubes and the heat transfer tubes are arranged between the louvers, and FIG. 12 is shown in which the louvers are attached in a direction intersecting with the inclination direction of the heat transfer tubes. An example of arranging so as to intersect with is shown. As the arrangement of the louvers, as shown in FIG.
A plurality of short louvers may be provided alternately so that the plate cross section has a honeycomb shape. The structural example described here does not limit the configuration of the present invention, but is described as an example of the embodiment.
【0029】上述のような構造のプレートを伝熱管に結
合して伝熱管付プレートAを形成することにより、隣接
するプレート間流路相互間で流体の流入出が可能な構造
となり、伝熱管の折れ曲がり部内側における流体の滞留
を防ぐことができるとともに、乱流が促進されて伝熱性
能を向上させる効果がある。これらの開口は、プレート
と伝熱管の結合に際しても取付用金具の固定に使用でき
る。By connecting the plate having the above-mentioned structure to the heat transfer tube to form the plate A with the heat transfer tube, a structure in which a fluid can flow in and out between the flow paths between adjacent plates, It is possible to prevent the fluid from staying inside the bent portion and to promote the turbulent flow to improve the heat transfer performance. These openings can be used to fix the mounting bracket when the plate and the heat transfer tube are joined together.
【0030】また、プレートに開口を形成しなくても、
プレート自体を波打たせたり、プレートをひだ状に折り
曲げる(コルゲートプレート)ことで、プレート間流路
を流れる流体の流れの攪拌を促進することができる。Even if the plate is not provided with an opening,
By agitating the plate itself or bending the plate in a pleated shape (corrugated plate), it is possible to promote agitation of the flow of the fluid flowing through the interplate flow channel.
【0031】これらの構造はいずれも、プレート間流路
を流れる流体の乱流化を促進して伝熱性能を向上させ、
また、流体の滞留を防ぐ効果がある。特に、プレート間
流路に流れる流体が2次冷媒としての水の場合、滞留に
よる部分的な凍結を防止する効果がある。In all of these structures, the turbulent flow of the fluid flowing between the plates is promoted to improve the heat transfer performance,
Further, it has an effect of preventing the fluid from staying. In particular, when the fluid flowing in the inter-plate flow path is water as the secondary refrigerant, there is an effect of preventing partial freezing due to retention.
【0032】本熱交換器のプレート間流路を流れる流体
は、プレートに形成された開口部を通って隣接のプレー
ト間流路に流れる部分もあるが、基本的には、先に述べ
たように、プレート間流路の一方の端から流入し、他方
の端から流出する。The fluid flowing through the inter-plate flow passages of the present heat exchanger has a portion that flows through the openings formed in the plates to the adjacent inter-plate flow passages, but basically, as described above. Flow in from one end of the flow path between the plates and flow out from the other end.
【0033】<プレートと伝熱管の結合>プレートと伝
熱管の結合には、伝熱管をプレートに溶接してもよい
し、取付金具を用いて固定してもよい。溶接により固定
する場合は、伝熱管のフィンの高さだけ伝熱管をプレー
ト面から浮かせるために、図14に示すように、スペー
サを介して溶接する。また、図15に示すように、フィ
ンを設けた伝熱管をフィンのない曲げ管で接続する構成
とし、フィンを設けた伝熱管が配置される位置のプレー
トを短冊状に切り開け、フィンのない曲げ管をプレート
面に直接溶接固着するようにしてもよい。溶接により伝
熱管2をプレート1に固定した場合、伝熱管とプレート
が熱的にも接続され、プレートが単なる流路の仕切では
なくて伝熱管のフィンの一部として作用し、熱交換面積
が増大する効果がある。<Coupling of Plate and Heat Transfer Tube> To connect the plate and heat transfer tube, the heat transfer tube may be welded to the plate or may be fixed by using a mounting bracket. When fixing by welding, in order to float the heat transfer tube from the plate surface by the height of the fins of the heat transfer tube, as shown in FIG. 14, welding is performed via a spacer. Further, as shown in FIG. 15, the heat transfer tubes with fins are connected by bending tubes without fins, and the plate at the position where the heat transfer tubes with fins are arranged is cut into strips to bend without fins. The tube may be directly welded to the plate surface. When the heat transfer tube 2 is fixed to the plate 1 by welding, the heat transfer tube and the plate are also thermally connected, and the plate acts as a part of the fins of the heat transfer tube instead of merely partitioning the flow path, and the heat exchange area is reduced. There is an increasing effect.
【0034】図16は、フィンのない伝熱管接続部(あ
るいは曲げ管)をスプリングクリップで留めるようにし
た例を示し、図17は、伝熱管のフィンをスプリングク
リップで留めるようにして例を示す。スプリングクリッ
プの底部は、フィンの方向(ねじれ角)に応じてスプリ
ングクリップの向きを変えられるように、回転可能にし
ておくのが望ましい。いずれの場合も、スプリングクリ
ップをプレート1に止めるピンは、固定式でも可動式で
もよい。スプリングクリップで止める方法は、伝熱管の
取付が容易であるとともに、プレートと伝熱管の熱膨張
の差を、スプリングクリップ部のすべりで吸収できると
いう利点がある。FIG. 16 shows an example in which a heat transfer tube connection portion (or bent tube) without fins is fastened by a spring clip, and FIG. 17 shows an example in which the fins of the heat transfer tube are fastened by a spring clip. . The bottom of the spring clip is preferably rotatable so that the direction of the spring clip can be changed depending on the direction (twist angle) of the fin. In any case, the pin for fixing the spring clip to the plate 1 may be fixed or movable. The method of stopping with the spring clip has an advantage that the heat transfer tube can be easily attached and a difference in thermal expansion between the plate and the heat transfer tube can be absorbed by the slip of the spring clip portion.
【0035】図18は、成形した伝熱管をカバープレー
トでフィンの上から押さえて止めて結合するようにした
例である。図18では伝熱管を長手方向に沿ってカバー
プレートで押さえる例であるが、伝熱管を周方向に押さ
えるようにしてもよい。この方式によれば、伝熱管の全
長に亙ってフィンが設けられている場合でも取付できる
し、伝熱管の熱膨張を逃がしやすい任意の場所を固定で
きるというメリットがある。FIG. 18 shows an example in which a molded heat transfer tube is pressed down from above the fins by a cover plate so as to be joined together. In FIG. 18, the heat transfer tube is pressed by the cover plate along the longitudinal direction, but the heat transfer tube may be pressed in the circumferential direction. According to this method, even if the fins are provided over the entire length of the heat transfer tube, the fins can be attached, and there is an advantage that any place where the thermal expansion of the heat transfer tube is easily released can be fixed.
【0036】図19に示すように、スペーサとUボルト
を用いてナットで締めつけてもよい。この方式では、ス
ペーサにより伝熱管とプレートの間隔を保持するので、
プレートがフィンにより傷められたり、逆にフィンが傷
つくような恐れはない。As shown in FIG. 19, spacers and U bolts may be used and tightened with nuts. In this method, since the space between the heat transfer tube and the plate is maintained by the spacer,
There is no risk that the plate will be damaged by the fins, or conversely the fins.
【0037】図20は、プレートに伝熱管を嵌め込む窪
みを設けた伝熱管支持板を複数個取り付け、じぐざぐ状
に成形した伝熱管を前記窪みに嵌め込んで止めた例であ
る。この方法でも、伝熱管の熱膨張による伸びを伝熱管
支持板との当接部のすべりで逃がして伝熱管に加わる熱
応力を低減できる。FIG. 20 shows an example in which a plurality of heat transfer tube support plates each having a recess for fitting the heat transfer tube into the plate are attached, and a zigzag shaped heat transfer tube is fitted into the recess and stopped. Also in this method, it is possible to reduce the thermal stress applied to the heat transfer tube by allowing the expansion due to the thermal expansion of the heat transfer tube to escape due to the slip of the contact portion with the heat transfer tube support plate.
【0038】また、図21に示すプレートのハッチング
部に、伝熱管固定用の加工を行い、これを利用して伝熱
管を固定してもよい。伝熱管固定用の加工物としては、
図22に示すような、針状の突起物を密集配置したも
の、開口部、あるいはプレートに固着したスプリングコ
イルなどがある。密集配置した針状の突起物にフィンを
さし込んで伝熱管を固定する、図23に示すように開口
部にクリップを嵌め込んで止める、スプリングコイルに
伝熱管のフィンを嵌め込んで止める、などの方法でプレ
ートに伝熱管を結合する。この方式によれば、伝熱管の
取付が容易であり、伝熱管付プレートの組み立てが簡易
化される。Further, the hatching portion of the plate shown in FIG. 21 may be processed to fix the heat transfer tube, and the heat transfer tube may be fixed by utilizing this process. As a work piece for fixing the heat transfer tube,
As shown in FIG. 22, there are a dense arrangement of needle-like protrusions, an opening, or a spring coil fixed to a plate. Insert the fins into the densely arranged needle-shaped protrusions to fix the heat transfer tube, insert the clip into the opening to stop it as shown in FIG. 23, and insert the fins of the heat transfer tube into the spring coil to stop it. The heat transfer tube is connected to the plate by a method such as. According to this method, the heat transfer tube can be easily attached, and the assembly of the plate with the heat transfer tube is simplified.
【0039】<プレートの表面処理>プレート間流路に
流す流体に水等、ゴミやスケールが発生する流体を用い
た場合、それらが流路中に堆積したり、気泡が滞留する
ことで伝熱管外表面のフィンを閉塞させることが考えら
れる。これを防ぐためには、伝熱管の外表面やプレート
の表面に溝や開口部等の加工以外に、化学的に表面処理
を施すことが有効である。<Surface Treatment of Plates> When a fluid such as water that causes dust or scale is used as the fluid flowing in the inter-plate flow path, the heat transfer tube may be accumulated in the flow path or bubbles may accumulate. It is conceivable to close the fins on the outer surface. In order to prevent this, it is effective to chemically treat the outer surface of the heat transfer tube and the surface of the plate in addition to processing the grooves and openings.
【0040】冷凍空調装置が長期間に亙って運転される
と、負荷に流れる2次側流体はその成分をコントロール
して使用されていても徐々に劣化していく。熱交換器自
体に例えば抗菌処理やスケール生成、付着を防ぐ処理が
施されていると、流体の劣化が進んでも、熱交換器の性
能が低下する恐れは少なくなる。また、伝熱管外表面の
フィン、及びプレートの流体に対する濡れ性が良好とな
り、気泡が滞留することを防ぐこともできる。When the refrigerating and air-conditioning system is operated for a long period of time, the secondary side fluid flowing to the load gradually deteriorates even if it is used by controlling its components. When the heat exchanger itself is subjected to, for example, antibacterial treatment, scale formation, or treatment to prevent adhesion, the performance of the heat exchanger is less likely to deteriorate even if the fluid deteriorates. Further, the fins on the outer surface of the heat transfer tube and the plate have good wettability with respect to the fluid, and it is possible to prevent bubbles from staying.
【0041】<隣接する流路間隔を変化させる>上記の
実施の形態では、積層されたプレートの形状はほとんど
同じであるが、これをプレートの高さおよび横幅を変え
たものを複数種類作り、交互に積層して熱交換器を組み
立ててもよい。このような構成とすることで、プレート
間流路が隣接する流路と連通する場所を作り、プレート
間流路の流体の滞留を防ぎ、プレート間流路の流体と伝
熱管側流体の間の良好な熱伝達を得ることができる。<Changing Adjacent Flow Path Intervals> In the above embodiment, the laminated plates have almost the same shape, but a plurality of plate plates having different heights and widths are prepared. The heat exchangers may be assembled by stacking them alternately. With such a configuration, a place where the interplate flow passage communicates with the adjacent flow passage is created, the retention of the fluid in the interplate flow passage is prevented, and the fluid between the interplate flow passage and the heat transfer tube side fluid is Good heat transfer can be obtained.
【0042】<円弧状プレート>上記の実施の形態で
は、積層されたプレートはその間に矩形の流路を形成し
ているが、図24に示すようにプレートを円弧状に変形
させたものを積層した構造であってもよい。この様な構
造で形成されたプレート間流路に、ヘッダから流体をプ
レートの凸面に対向する方向から流入させれば、流体は
プレートの端まで均等に広がり、プレート間流路ないで
の流体の分配が良好となり、熱交換器の性能を向上させ
ることができる。<Arc Plate> In the above embodiment, the stacked plates form a rectangular flow path therebetween, but the plates are deformed in an arc shape as shown in FIG. It may have a different structure. If the fluid is introduced from the header into the inter-plate flow passage formed with such a structure from the direction facing the convex surface of the plate, the fluid will spread evenly to the edge of the plate, and The distribution is good and the performance of the heat exchanger can be improved.
【0043】上記のように本発明の熱交換器は、冷凍空
調システムで必要とされる熱交換器の仕様に合わせて、
伝熱面のパターンや寸法を自由に設定する事が可能であ
る。As described above, the heat exchanger according to the present invention is designed to meet the specifications of the heat exchanger required in the refrigeration and air conditioning system.
It is possible to freely set the pattern and dimensions of the heat transfer surface.
【0044】<傾斜ヘッダー構造>図25に本発明の第
3の実施の形態である熱交換器の断面図を示す。本実施
の形態の熱交換器は、プレート間流路を流れる流体Sが
下方から上方に向かって流れるもので、この流体Sは、
図上、熱交換器の下方左側から流入するようになってい
る。図示の熱交換器は、積層された複数の伝熱管付プレ
ートAで形成されたプレート間流路部9と、プレート間
流路部9の上端部全体を覆うように配置されている上部
ヘッダ6と、プレート間流路部9の下端部全体を覆うよ
うに配置されている下部ヘッダ7と、上部ヘッダ6に接
続された流出入部5A及び下部ヘッダ7に接続された流
出入部5Bと、を含んで構成されている。上部ヘッダ
6、下部ヘッダ7、流出入部5A及び流出入部5Bは、
熱交換器の奥行き方向(紙面に垂直の方向に)に、熱交
換器の奥行き全長に延在している。なお、わかりやすく
するため、伝熱管及びそのヘッダは図示を省略してあ
る。<Inclined Header Structure> FIG. 25 shows a sectional view of a heat exchanger according to a third embodiment of the present invention. In the heat exchanger of this embodiment, the fluid S flowing through the inter-plate flow passage flows from the lower side to the upper side.
In the figure, the heat is introduced from the lower left side of the heat exchanger. The illustrated heat exchanger has an inter-plate flow passage portion 9 formed of a plurality of stacked plates A with heat transfer tubes, and an upper header 6 arranged so as to cover the entire upper end portion of the inter-plate flow passage portion 9. A lower header 7 arranged so as to cover the entire lower end portion of the inter-plate flow passage portion 9, an inflow / outflow portion 5A connected to the upper header 6 and an inflow / outflow portion 5B connected to the lower header 7. It is composed of. The upper header 6, the lower header 7, the inflow / outflow portion 5A and the inflow / outflow portion 5B are
In the depth direction of the heat exchanger (the direction perpendicular to the paper surface), the heat exchanger extends over the entire depth of the heat exchanger. The heat transfer tubes and their headers are not shown for the sake of clarity.
【0045】熱交換器のプレート間流路部9を構成する
伝熱管付プレートAは、前記流体Sが流入する側、すな
わち流出入部5Bから離れるにつれて、定められた距離
だけ上方に位置をずらせて階段状に積層されている。し
たがって、プレート間流路部9の上端部全体を覆うよう
に配置されている上部ヘッダ6は、前記流出入部5Bか
ら離れるにつれて高くなる方向に傾斜して配置され、流
出入部5Aは、上部ヘッダ6の最も高い位置、すなわ
ち、図上、上部ヘッダ6の右端に結合して配置されてい
る。同様に、下部ヘッダ7は図上、右上がりの傾斜で配
置され、前記流出入部5Bは下部ヘッダ7の最も低い位
置、図上、下部ヘッダ7の左端に結合して配置されてい
る。The plate A with a heat transfer tube forming the plate-to-plate passage portion 9 of the heat exchanger is displaced upward by a predetermined distance as it goes away from the fluid S inflow side, that is, the outflow / outflow port 5B. It is stacked in steps. Therefore, the upper header 6 arranged so as to cover the entire upper end portion of the inter-plate flow passage portion 9 is arranged so as to be inclined in a direction in which the upper header 6 becomes higher as it goes away from the inflow / outflow portion 5B, and the inflow / outflow portion 5A is disposed in the upper header 6 Of the upper header 6, that is, the right end of the upper header 6 in the figure. Similarly, the lower header 7 is arranged with an upward slope in the figure, and the inflow / outflow portion 5B is arranged so as to be coupled to the lowest position of the lower header 7, that is, the left end of the lower header 7 in the figure.
【0046】上記構造の熱交換器において、流出入部5
Bに流入した流体Sは、下部ヘッダ7内を、流れの主軸
線が各プレート間流路に対して鋭角をなす斜め上向きに
流れながら各プレート間流路に流体を分配する。各プレ
ート間流路を上向きに流れて通過した流体Sは上部ヘッ
ダ6に流入し、上部ヘッダ6内をななめ上向きに上昇し
ながら流体を集めて流れる。上部ヘッダ6の最も高い位
置に達した流体Sは流出入部5Aから取出される。In the heat exchanger having the above structure, the inflow / outflow portion 5
The fluid S flowing into B distributes in the inter-plate flow paths while flowing in the lower header 7 in an obliquely upward direction with the main axis of the flow forming an acute angle with the inter-plate flow paths. The fluid S that has flowed upwards and passed through the inter-plate flow passages flows into the upper header 6, and licks in the upper header 6 while licking upward and collecting the fluids. The fluid S that has reached the highest position of the upper header 6 is taken out from the inflow / outflow portion 5A.
【0047】流体Sがプレート間流路を下降して流れる
場合は、上述の場合と逆になる。The case where the fluid S flows down the flow path between the plates is the reverse of the above case.
【0048】上部ヘッダ6、下部ヘッダ7の傾斜角度θ
(流入側ヘッダ内の流れの主軸線方向が各プレート間流
路内の流体の流れ方向に対してなす角度)は、云うまで
もなく90度より小さい鋭角であるが、鋭角であっても
角度が大きすぎると前列と後列のプレート間流路で流体
の分配が不均一になるので15〜60度の範囲、望まし
くは30度程度とする。Inclination angle θ of the upper header 6 and the lower header 7
Needless to say, (the angle formed by the direction of the main axis of the flow in the inflow side header with respect to the flow direction of the fluid in the flow paths between the plates) is an acute angle smaller than 90 degrees, but even if it is an acute angle, the angle If it is too large, the distribution of the fluid in the flow passages between the plates in the front row and the back row becomes non-uniform.
【0049】このような構造とすることで、流出入部5
Bから流入した流体を各プレート間流路へ分配する時
に、各流路への分配量(流入量)が均一化され、プレー
ト間での偏流を少なくすることができる。また、上部ヘ
ッダ6が下流側が高くなる方向に傾斜し、かつ流出入部
5Aがヘッダの上部に取り付けられているため、前記流
体Sに気泡が混入した場合でも、気泡は流出入部付近に
集まり、プレート間に気泡溜り等の流体の淀みができる
ことがない。With such a structure, the inflow / outflow portion 5
When the fluid flowing in from B is distributed to the inter-plate flow paths, the distribution amount (inflow amount) to each flow path is made uniform, and uneven flow between the plates can be reduced. Further, since the upper header 6 is inclined in the direction in which the downstream side becomes higher and the inflow / outflow portion 5A is attached to the upper portion of the header, even when air bubbles are mixed in the fluid S, the air bubbles gather near the inflow / outflow portion, No stagnation of fluid such as air bubbles will occur between them.
【0050】<冷凍空調装置>本発明の熱交換器は、伝
熱性能が良くかつ低圧損なため、冷凍サイクルのコンパ
クト化に有効である。<Refrigerating / Air-Conditioning Device> The heat exchanger of the present invention has good heat transfer performance and low pressure loss, and is therefore effective in making the refrigeration cycle compact.
【0051】図26は、本発明の熱交換器を用いた冷凍
空調装置を示す系統図である。本実施の形態の1次側流
体回路は、1次側流体(冷媒ガス)を圧縮する圧縮機1
1と、圧縮機11の吐出側に接続された1次側流体の循
環方向切替え手段である四方弁12aと、四方弁12a
に冷媒流路の一方の端部を接続された熱源側熱交換器1
6と、熱源側熱交換器16の冷媒流路の他方の端部に接
続された膨張弁15と、伝熱管側流路の一方の端部を前
記膨張弁15に接続し伝熱管側流路の他方の端部を前記
四方弁12aに接続して配置された前記第1の実施の形
態の中間熱交換器10を含んで構成されている。FIG. 26 is a system diagram showing a refrigerating and air-conditioning apparatus using the heat exchanger of the present invention. The primary side fluid circuit of the present embodiment is a compressor 1 that compresses a primary side fluid (refrigerant gas).
1, a four-way valve 12a, which is a primary-side fluid circulation direction switching means connected to the discharge side of the compressor 11, and a four-way valve 12a.
Heat source side heat exchanger 1 in which one end of the refrigerant channel is connected to
6, an expansion valve 15 connected to the other end of the refrigerant flow path of the heat source side heat exchanger 16, and one end of the heat transfer tube side flow path connected to the expansion valve 15 Of the intermediate heat exchanger 10 of the first embodiment, which is arranged by connecting the other end of the intermediate heat exchanger 10 to the four-way valve 12a.
【0052】2次側流体の回路は、前記中間熱交換器1
0と、前記中間熱交換器10のプレート間流路の一方の
端部に接続して配置された2次側流体の循環方向切替え
手段である四方弁12bと、前記四方弁12bに2次側
流体流路の1端を接続し他端を前記中間熱交換器10の
プレート間流路の他端に接続して配置された負荷側熱交
換器14と、前記四方弁12bに吸込み側及び吐出側を
接続して配置された流体循環手段としてポンプ13と、
を含んで構成されている。四方弁12a,12bは、流
体の流れ方向切替え手段である。通常、熱源側熱交換器
は室外に設置され、負荷側熱交換器は室内等の空調用、
あるいは冷却等に用いられる。The circuit of the secondary side fluid is the intermediate heat exchanger 1
0, a four-way valve 12b which is a means for switching the circulation direction of the secondary side fluid, which is connected to one end of the interplate flow passage of the intermediate heat exchanger 10, and a secondary side of the four-way valve 12b. A load side heat exchanger 14 arranged by connecting one end of the fluid flow path and connecting the other end to the other end of the inter-plate flow path of the intermediate heat exchanger 10, and the suction side and the discharge side of the four-way valve 12b. A pump 13 as a fluid circulating means arranged by connecting the sides;
It is configured to include. The four-way valves 12a and 12b are fluid flow direction switching means. Normally, the heat source side heat exchanger is installed outdoors, the load side heat exchanger for indoor air conditioning,
Alternatively, it is used for cooling or the like.
【0053】上記構成の冷凍空調装置において、負荷側
熱交換器14を室内の冷房、あるいは冷却に用いる場
合、1次側流体(冷媒)と2次側流体の循環方向は図2
6中の実線の矢印の方向になる。圧縮機から吐出された
1次側流体である冷媒ガスは四方弁12aを通り、室外
の熱源側熱交換器16で冷却されて凝縮し、液冷媒とな
り、膨張弁15において断熱膨張した後、中間熱交換器
10に流入して2次側流体と熱交換を行ない、四方弁1
2aを経て再び圧縮機11に戻る。When the load side heat exchanger 14 is used for indoor cooling or cooling in the refrigerating and air-conditioning apparatus having the above structure, the circulation directions of the primary side fluid (refrigerant) and the secondary side fluid are as shown in FIG.
It is in the direction of the solid arrow in 6. Discharged from the compressor
The refrigerant gas, which is the primary fluid, passes through the four-way valve 12a, is cooled by the outdoor heat source side heat exchanger 16 and is condensed to become a liquid refrigerant, which is adiabatically expanded in the expansion valve 15 and then flows into the intermediate heat exchanger 10. And exchange heat with the secondary fluid, and the four-way valve 1
It returns to the compressor 11 again via 2a.
【0054】2次側流体はポンプ13で加圧され、四方
弁12bを通った後、負荷側熱交換器14で空気と熱交
換を行ない、中間熱交換器10に至る。中間熱交換器1
0では、1次側流体(例えば冷媒)は2次側流体(例え
ば水)から吸熱して相変化して冷媒ガスとなり、2次側
流体は冷却される。この時、中間熱交換器10における
2つの流体の循環方向は対向流であり、1次側流体は熱
交換器の下部から流入して蒸発後、熱交換器の上部から
流出するような構造であることが望ましい。また、負荷
側熱交換器14を室内の暖房に用いる場合は、1次側流
体と2次側流体の循環方向は冷房時とは逆方向になるよ
うに、四方弁12a,12bで切り替える。The secondary-side fluid is pressurized by the pump 13, passes through the four-way valve 12b, exchanges heat with air in the load-side heat exchanger 14, and reaches the intermediate heat exchanger 10. Intermediate heat exchanger 1
At 0, the primary fluid (eg, refrigerant) absorbs heat from the secondary fluid (eg, water) and undergoes a phase change to become a refrigerant gas, and the secondary fluid is cooled. At this time, the circulation directions of the two fluids in the intermediate heat exchanger 10 are opposite flows, and the primary fluid has a structure in which it flows in from the lower part of the heat exchanger, evaporates, and then flows out from the upper part of the heat exchanger. Is desirable. When the load-side heat exchanger 14 is used for heating the room, the four-way valves 12a and 12b are switched so that the circulation direction of the primary side fluid and the secondary side fluid is opposite to that during cooling.
【0055】本実施の形態では、2次側流体の循環方向
を切り替える手段として四方弁を用いているが、必要に
応じて、逆方向に運転可能なポンプを用いたり、循環方
向を変えるための回路を電磁弁等で構成してもよい。In the present embodiment, a four-way valve is used as a means for switching the circulation direction of the secondary side fluid, but a pump that can be operated in the opposite direction is used or the circulation direction is changed as necessary. The circuit may be composed of a solenoid valve or the like.
【0056】本実施の形態によれば、プレート間流路断
面積を中間熱交換器10を流れる2次側流体の量に対応
したプレート間流路断面積に設定できるので、流動抵抗
を低く押さえて、ポンプの消費電力を低減する効果があ
る。According to the present embodiment, the inter-plate flow passage cross-sectional area can be set to the inter-plate flow passage cross-sectional area corresponding to the amount of the secondary side fluid flowing through the intermediate heat exchanger 10, so that the flow resistance can be kept low. Therefore, there is an effect of reducing the power consumption of the pump.
【0057】<2つの流体の対向流化>本発明の熱交換
器で熱交換する2つの流体の循環方向を対向流にするこ
とは、例えば1次側流体に非共沸の混合冷媒等を用いた
場合等は、流体の温度差を大きく取ることができるた
め、熱交換性能が良好となり、冷凍空調サイクルの効率
向上にも効果がある。<Making two fluids counter-current> By making the circulation directions of two fluids heat-exchanged in the heat exchanger of the present invention counter-current, for example, a non-azeotropic mixed refrigerant or the like can be used as the primary fluid. When used, the temperature difference between the fluids can be made large, so that the heat exchange performance is good and the efficiency of the refrigeration and air conditioning cycle is improved.
【0058】また伝熱管内に螺旋溝等の伝熱促進手段を
設けることも、熱交換性能を良好にする効果がある。Providing a heat transfer promoting means such as a spiral groove in the heat transfer tube also has the effect of improving the heat exchange performance.
【0059】<1次側流体にHC等の自然系冷媒を用い
た時の信頼性>本発明の熱交換器を冷凍空調装置の1次
側冷媒と2次側流体を熱交換させる中間熱交換器に用い
れば、熱交換器内の冷媒がプレート間流路でなくて伝熱
管を流れる構成にできるから、冷媒流路容積が低減さ
れ、使用する冷媒量を少なくすることができる。また、
本実施の形態の冷凍空調装置では1次側流体(冷媒)が
負荷側熱交換器が設置された室内空間に入ることがない
ため、従来から用いられている冷媒以外のHC冷媒、ア
ンモニア等の可燃性や毒性の心配される自然系冷媒を用
いた際の危険防止に対して極めて大きな効果がある。<Reliability when Natural Refrigerant such as HC is Used as Primary Fluid> Intermediate heat exchange for heat exchange of the heat exchanger of the present invention between the primary refrigerant and the secondary fluid of the refrigerating air conditioner. When used in a heat exchanger, the refrigerant in the heat exchanger can be configured to flow through the heat transfer tubes instead of the inter-plate passages, so that the refrigerant passage volume can be reduced and the amount of refrigerant used can be reduced. Also,
In the refrigeration air conditioning system of the present embodiment, since the primary side fluid (refrigerant) does not enter the indoor space in which the load side heat exchanger is installed, HC refrigerants other than the conventionally used refrigerant, ammonia, etc. It is extremely effective in preventing danger when using a natural refrigerant that may be flammable or toxic.
【0060】このように、本発明の熱交換器を用いた冷
凍空調装置はコンパクトでかつエネルギー効率が良好で
ある。As described above, the refrigerating and air-conditioning apparatus using the heat exchanger of the present invention is compact and has good energy efficiency.
【0061】[0061]
【発明の効果】本発明によれば、製造が容易で、一次側
流体の流路と2次側流体の流路の間で漏れがなく、設計
の自由度が高い熱交換器が得られる。また、上記の熱交
換器を用いて冷凍空調装置の効率を向上することができ
る。According to the present invention, it is possible to obtain a heat exchanger which is easy to manufacture, has no leakage between the primary side fluid passage and the secondary side fluid passage, and has a high degree of freedom in design. In addition, the efficiency of the refrigeration air conditioning system can be improved by using the above heat exchanger.
【図1】本発明の第1の実施の形態に係る熱交換器の斜
視構造図である。FIG. 1 is a perspective structural view of a heat exchanger according to a first embodiment of the present invention.
【図2】図1に示す伝熱管の例を示す側面図である。FIG. 2 is a side view showing an example of the heat transfer tube shown in FIG.
【図3】本発明の熱交換器の伝熱管とプレートの関係の
例を示す斜視図である。FIG. 3 is a perspective view showing an example of a relationship between a heat transfer tube and a plate of the heat exchanger of the present invention.
【図4】本発明の本発明の第1の実施の形態に係る熱交
換器の他の例を示す斜視図である。FIG. 4 is a perspective view showing another example of the heat exchanger according to the first embodiment of the present invention.
【図5】本発明の熱交換器の伝熱管に流出入する流体を
分配する分配管の例を示す概念図である。FIG. 5 is a conceptual diagram showing an example of a distribution pipe for distributing a fluid flowing in and out of a heat transfer tube of the heat exchanger of the present invention.
【図6】図5に示す分配管の詳細を示す平面図及び断面
図である。6A and 6B are a plan view and a cross-sectional view showing details of the distribution pipe shown in FIG.
【図7】開口を備えたプレートの例を示す平面図であ
る。FIG. 7 is a plan view showing an example of a plate having an opening.
【図8】プレートに形成される開口及び突起の例を示す
平面図および断面図である。FIG. 8 is a plan view and a cross-sectional view showing an example of openings and protrusions formed in a plate.
【図9】プレートに形成される開口及び突起の他の例を
示す平面図及び断面図である。9A and 9B are a plan view and a cross-sectional view showing another example of openings and protrusions formed in a plate.
【図10】プレートに形成される開口及び突起のさらに
他の例を示す平面図および断面図である。FIG. 10 is a plan view and a cross-sectional view showing still another example of openings and protrusions formed in a plate.
【図11】開口および突起を備えたプレートへの伝熱管
の取付状態の例を示す平面図である。FIG. 11 is a plan view showing an example of a mounting state of heat transfer tubes on a plate having openings and protrusions.
【図12】開口及び突起を備えたプレートへの伝熱管の
取付状態の他の例を示す平面図である。FIG. 12 is a plan view showing another example of a mounted state of the heat transfer tubes on a plate having openings and protrusions.
【図13】開口及び突起を備えたプレートの例を示す平
面図である。。FIG. 13 is a plan view showing an example of a plate provided with openings and protrusions. .
【図14】伝熱管をプレートに取付ける方法の例を示す
断面図である。FIG. 14 is a cross-sectional view showing an example of a method for attaching a heat transfer tube to a plate.
【図15】伝熱管をプレートに取付ける方法の例を示す
断面図及び平面図である。15A and 15B are a cross-sectional view and a plan view showing an example of a method of attaching a heat transfer tube to a plate.
【図16】伝熱管をプレートに取付ける方法の例を示す
断面図である。FIG. 16 is a cross-sectional view showing an example of a method of attaching the heat transfer tube to the plate.
【図17】伝熱管をプレートに取付ける方法の例を示す
側面図である。FIG. 17 is a side view showing an example of a method of attaching the heat transfer tube to the plate.
【図18】伝熱管をプレートに取付ける方法の例を示す
断面図である。FIG. 18 is a cross-sectional view showing an example of a method of attaching the heat transfer tube to the plate.
【図19】伝熱管をプレートに取付ける方法の例を示す
断面図である。FIG. 19 is a cross-sectional view showing an example of a method of attaching the heat transfer tube to the plate.
【図20】伝熱管をプレートに取付ける方法の例を示す
平面図及び断面図である。20A and 20B are a plan view and a cross-sectional view showing an example of a method of attaching a heat transfer tube to a plate.
【図21】伝熱管を取付ける加工を行ったプレートの例
を示す平面図である。FIG. 21 is a plan view showing an example of a plate on which a heat transfer tube is mounted.
【図22】伝熱管を取付ける加工を行ったプレートの例
を示す断面図である。FIG. 22 is a cross-sectional view showing an example of a plate on which a heat transfer tube is mounted.
【図23】伝熱管をプレートに取付ける手順の例を示す
断面図である。FIG. 23 is a cross-sectional view showing an example of a procedure for attaching a heat transfer tube to a plate.
【図24】本発明の第1の実施の形態の熱交換器の他の
例を示す横断面図である。FIG. 24 is a cross-sectional view showing another example of the heat exchanger according to the first embodiment of the present invention.
【図25】本発明の第2の実施の形態の熱交換器を示す
断面図である。FIG. 25 is a cross-sectional view showing a heat exchanger according to a second embodiment of the present invention.
【図26】本発明の熱交換器を用いた冷凍空調装置を示
す流体回路図である。FIG. 26 is a fluid circuit diagram showing a refrigerating and air-conditioning apparatus using the heat exchanger of the present invention.
1 プレート 2 伝熱管 3 伝熱管付プレートA 4 T字形分配管 5 流入出部 6 上部ヘッダ 7 下部ヘッダ 9 プレート間流路部 10 中間熱交換器 11 圧縮機 12a、12b 四方弁 13 ポンプ 14 負荷側熱交換器 15 膨張弁 16 熱源側熱交換器 17 筐体 18 集合管 19a、19b 分岐管 Pf フィンピッチ Hf フィン高さ Df フィン外径 D フィン根元径 β ねじれ角 1 plate 2 heat transfer tubes 3 Plate A with heat transfer tube 4 T-shaped distribution pipe 5 Inflow / outflow part 6 Upper header 7 Lower header 9 Plate-to-plate flow path 10 Intermediate heat exchanger 11 compressor 12a, 12b four-way valve 13 pumps 14 Load side heat exchanger 15 expansion valve 16 Heat source side heat exchanger 17 housing 18 collecting pipe 19a, 19b Branch pipe Pf fin pitch Hf fin height Df fin outer diameter D fin root diameter β twist angle
フロントページの続き (56)参考文献 特開 昭58−13987(JP,A) 特開 平9−196582(JP,A) 特開 平7−294173(JP,A) 特開 昭64−28494(JP,A) 特開 平10−281575(JP,A) 特開 平8−75316(JP,A) 特開 昭64−90971(JP,A) 特開 平1−307595(JP,A) 特開 平11−159917(JP,A) 特開 平11−94477(JP,A) 特開 平10−267586(JP,A) 特開 平6−194003(JP,A) 実開 昭58−133740(JP,U) 実開 昭61−74777(JP,U) 実開 平4−97263(JP,U) 特公 昭48−33668(JP,B1) (58)調査した分野(Int.Cl.7,DB名) F28D 9/02 F25B 13/00 F28F 9/00 311 F28D 7/08 F28D 1/06 F28D 1/02 F28D 1/047 Front page continuation (56) References JP-A-58-13987 (JP, A) JP-A-9-196582 (JP, A) JP-A-7-294173 (JP, A) JP-A-64-28494 (JP , A) JP 10-281575 (JP, A) JP 8-75316 (JP, A) JP 64-90971 (JP, A) JP 1-307595 (JP, A) JP 11-159917 (JP, A) JP-A-11-94477 (JP, A) JP-A-10-267586 (JP, A) JP-A-6-194003 (JP, A) Actual development Sho-58-133740 (JP, A) U) Actual development 61-74777 (JP, U) Actual development 4-97263 (JP, U) Japanese Patent Publication 48-33668 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) ) F28D 9/02 F25B 13/00 F28F 9/00 311 F28D 7/08 F28D 1/06 F28D 1/02 F28D 1/047
Claims (6)
ラル状のフィンが加工された伝熱管を板材に固着して形
成された伝熱管付プレートを複数枚積層して形成され、
前記伝熱管が1次側流体の流路をなし、前記伝熱管付プ
レート相互の間に形成されるプレート間流路の伝熱管外
表面のフィン間、あるいはフィンと板材間が2次側流体
の流路となることを特徴とする熱交換器。1. Bending in a zigzag shape and spying on the outer surface
Formed by laminating a plurality of plates with heat transfer tubes formed by fixing heat transfer tubes processed with ral fins to plate materials,
The heat transfer tubes without the flow path of the primary fluid, the heat transfer tube outside of the plate between the flow path formed between the urging heat transfer tube plates mutually
A heat exchanger characterized in that a flow path of the secondary side fluid is provided between the fins on the surface or between the fin and the plate material .
複数の突起と複数の開口部が形成されていることを特徴
とする請求項1に記載の熱交換器。The 2. A front Symbol plate, a plurality of openings or,
The heat exchanger according to claim 1, wherein a plurality of protrusions and a plurality of openings are formed.
本ごとに、その2本の伝熱管に流体を分配するT字形分
配管が接続され、該T字形分配管は、T字形の縦棒をな
す上流側の集合管と、該集合管に対してT字形の横棒を
なすように結合される分岐管とからなり、該分岐管はT
字形の横棒を形成する部分と、前記T字形の横棒の末端
から90度曲がって前記集合管に平行に逆戻りする部分
と、前記平行に逆戻りしたのちさらに90度曲がって、
前記集合管と前記T字形の横棒を形成する部分で規定さ
れる平面に対して直交する方向に延びる接続部分を有し
て形成され、前記接続部分が各伝熱管に接続されるもの
であることを特徴とする請求項1または2に記載の熱交
換器。3. A heat transfer tube 2 is provided on the fluid inlet side of each heat transfer tube.
For each book, a T-shaped distribution pipe that distributes a fluid is connected to the two heat transfer pipes, and the T-shaped distribution pipe is connected to the upstream collecting pipe forming a T-shaped vertical bar and the collecting pipe. And a branch pipe connected to form a T-shaped horizontal bar, the branch pipe being T
A portion forming a V-shaped horizontal bar, a portion bent 90 degrees from the end of the T-shaped horizontal bar and returning parallel to the collecting pipe, and a further 90 ° bending after returning to the parallel,
It is formed to have a connecting portion extending in a direction orthogonal to a plane defined by the collecting pipe and a portion forming the T-shaped horizontal bar, and the connecting portion is connected to each heat transfer tube. The heat exchanger according to claim 1 or 2, characterized in that.
流路を流れる流体の熱交換器への流入位置から離れるに
つれて、該流体のプレート間流路流れ方向に順次位置を
ずらせて積層され、各プレート間流路に流体を分配する
ヘッダ部は、前記位置をずらせた板材の端部位置に合わ
せて、板材の板面に対して傾斜して配置され、該ヘッダ
部を流れる流体の主軸線が各プレート間流路に対して鋭
角をなしていることを特徴とする請求項1乃至3のいず
れか1項に記載の熱交換器。 4. The plates with heat transfer tubes are stacked such that the plates are sequentially displaced in the flow direction between the plates of the fluid as they move away from the inflow position of the fluid flowing through the plate-to-plate flow path into the heat exchanger. header for distributing the fluid to the plate between the flow path, in accordance with the end position of the plate material shifted the position, it is disposed inclined with respect to the plate surface of the plate, the main axis of the fluid flowing through the header section claims 1 to 3 noise, characterized in that an acute angle with respect to each inter-plate flow path
The heat exchanger according to item 1 .
類の寸法となるように積層されていることを特徴とする
請求項1乃至4のいずれか1項に記載の熱交換器。5. The heat exchanger according to claim 1, wherein the plates with the heat transfer tubes are stacked so that the intervals between the plates have a plurality of sizes.
んで1次側流体を循環させる1次側流体流路と、熱負荷
と2次側流体の間で熱交換を行わせる負荷側熱交換器を
含んで2次側流体を循環させる2次側流体流路と、前記
1次側流体と2次側流体の間で熱交換を行わせる中間熱
交換器とを有してなる冷凍空調装置において、上記中間
熱交換器に請求項1〜5のいずれかに記載の熱交換器を
用い、該熱交換器の前記伝熱管を1次側流体流路とし前
記プレート間流路を2次側流体流路とするとともに、1
次側流体として自然系冷媒を用いることを特徴とする冷
凍空調装置。6. 1 and primary fluid flow path for circulating the primary fluid contains a compressor for compressing the primary fluid of the gas, the thermal load and the load to perform heat exchange between the secondary fluid and the secondary side fluid flow path for circulating the secondary fluid comprise side heat exchanger, the
Refrigeration and air conditioning apparatus comprising an intermediate heat exchanger to perform heat exchange between the primary side fluid and secondary side fluid, heat according to claim 1 to the intermediate heat exchanger An exchanger is used, the heat transfer tube of the heat exchanger is used as a primary side fluid flow path, and the inter-plate flow path is used as a secondary side fluid flow path.
A refrigeration / air-conditioning system characterized by using a natural refrigerant as a secondary fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31218099A JP3423981B2 (en) | 1999-11-02 | 1999-11-02 | Heat exchangers and refrigeration air conditioners |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31218099A JP3423981B2 (en) | 1999-11-02 | 1999-11-02 | Heat exchangers and refrigeration air conditioners |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001133172A JP2001133172A (en) | 2001-05-18 |
JP3423981B2 true JP3423981B2 (en) | 2003-07-07 |
Family
ID=18026190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31218099A Expired - Fee Related JP3423981B2 (en) | 1999-11-02 | 1999-11-02 | Heat exchangers and refrigeration air conditioners |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3423981B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10352881A1 (en) | 2003-11-10 | 2005-06-09 | Behr Gmbh & Co. Kg | Heat exchanger, in particular charge air / coolant radiator |
DE10352880A1 (en) * | 2003-11-10 | 2005-06-09 | Behr Gmbh & Co. Kg | Heat exchanger, in particular charge air / coolant radiator |
GB2497789A (en) * | 2011-12-21 | 2013-06-26 | Sharp Kk | Heat and mass exchanger for liquid desiccant air conditioners |
JP2015194292A (en) * | 2014-03-31 | 2015-11-05 | 日立アプライアンス株式会社 | Heat exchanger and heat pump hot water supply device including the same |
JP2018179386A (en) * | 2017-04-11 | 2018-11-15 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
CN110603418B (en) | 2017-05-10 | 2021-06-08 | Abb电网瑞士股份公司 | Electrical device with improved heat removal |
JP7569757B2 (en) | 2021-06-24 | 2024-10-18 | ハイリマレリジャパン株式会社 | Heat exchanger |
-
1999
- 1999-11-02 JP JP31218099A patent/JP3423981B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001133172A (en) | 2001-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6641544B1 (en) | Plate heat exchanger and heat pump device provided with the same | |
AU2012208123B2 (en) | Heat exchanger and air conditioner | |
JP6005267B2 (en) | Laminated header, heat exchanger, and air conditioner | |
US6640579B2 (en) | Laminated heat exchanger and refrigeration cycle | |
JP4055449B2 (en) | Heat exchanger and air conditioner using the same | |
JP3340785B2 (en) | Evaporator or evaporator / condenser for use in refrigeration system or heat pump system, method for producing the same, and heat exchanger for use as at least part of evaporator | |
US20110030932A1 (en) | Multichannel heat exchanger fins | |
EP2972037B1 (en) | Heat exchanger for air-cooled chiller | |
WO2012018803A2 (en) | Multichannel tubes with deformable webs | |
JP6005268B2 (en) | Laminated header, heat exchanger, and air conditioner | |
JPWO2014184917A1 (en) | Laminated header, heat exchanger, and air conditioner | |
EP1864060A1 (en) | Heat exchanger arrangement | |
JP3423981B2 (en) | Heat exchangers and refrigeration air conditioners | |
JP3911604B2 (en) | Heat exchanger and refrigeration cycle | |
JP3658677B2 (en) | Plate heat exchanger and refrigeration system | |
CN219713482U (en) | Air conditioner | |
JP2001027484A (en) | Serpentine heat-exchanger | |
CN219713699U (en) | Air conditioner | |
JP3747780B2 (en) | Heat exchanger | |
JP3731066B2 (en) | Heat exchanger | |
JP6493575B1 (en) | Refrigeration system | |
US11988463B2 (en) | Microchannel heat exchanger for appliance condenser | |
JP2011058771A (en) | Heat exchanger, and refrigerator and air conditioner including the heat exchanger | |
JPH09178383A (en) | Build-up type heat exchanger | |
JPH11193997A (en) | Parallel-installation integral heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080502 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080502 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
SZ03 | Written request for cancellation of trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R313Z03 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090502 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090502 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090502 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100502 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110502 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110502 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120502 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130502 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |