WO2021149139A1 - Plate-type heat exchanger and heat transfer device - Google Patents

Plate-type heat exchanger and heat transfer device Download PDF

Info

Publication number
WO2021149139A1
WO2021149139A1 PCT/JP2020/001889 JP2020001889W WO2021149139A1 WO 2021149139 A1 WO2021149139 A1 WO 2021149139A1 JP 2020001889 W JP2020001889 W JP 2020001889W WO 2021149139 A1 WO2021149139 A1 WO 2021149139A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat transfer
pitch
flow path
heat exchanger
Prior art date
Application number
PCT/JP2020/001889
Other languages
French (fr)
Japanese (ja)
Inventor
寿守務 吉村
亮輔 安部
佳峰 永島
匠 白石
発明 孫
進一 内野
憲成 澤田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021572154A priority Critical patent/JP7292435B2/en
Priority to PCT/JP2020/001889 priority patent/WO2021149139A1/en
Publication of WO2021149139A1 publication Critical patent/WO2021149139A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F11/00Arrangements for sealing leaky tubes and conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present invention relates to a plate-type heat exchanger and a heat transfer device in which a plurality of a pair of first heat transfer plates for circulating a first fluid inside and a pair of second heat transfer plates for passing a second fluid inside are stacked. It is a thing.
  • a plate-type heat exchanger having openings at four corners and having a plurality of heat transfer plates whose surfaces are formed to be uneven or corrugated is laminated, and the outer wall of the heat transfer plate and the periphery of the openings are brazed and joined. It is known (see, for example, Patent Document 1).
  • a first flow path through which the first fluid flows and a second flow path through which the second fluid flows are alternately formed.
  • each of the openings at the four corners is connected to form a first header for allowing the first fluid to flow in and out of the first flow path, and the second flow path has a first header.
  • a second header is formed to allow the second fluid to flow in and out.
  • Each heat transfer plate is composed of a double wall in which two metal plates are superposed.
  • the plate-type heat exchanger of Patent Document 1 has a double-wall structure even if the heat transfer plate is damaged due to factors such as freezing and a crack should occur. Therefore, it is possible to prevent the refrigerant from leaking to the indoor side through both the first flow path and the second flow path. Further, the plate heat exchanger of Patent Document 1 detects the leaked fluid flowing out to the outside with a detection sensor and stops the device provided with the plate heat exchanger to prevent damage to the device. Can be done.
  • the damaged state of the plate heat exchanger is determined by error factors such as manufacturing conditions or environmental conditions. Therefore, it is difficult for all the plate-type heat exchangers produced to fulfill the function of preventing the leakage of the internal fluid in the long term, and in the plate-type heat exchanger, the first heat transfer plate and the second heat transfer plate are used. There is a possibility that the area in contact with the plate will be damaged. When the area where the first heat transfer plate and the second heat transfer plate are in contact with each other is damaged, both the first heat transfer plate and the second heat transfer plate are damaged, so that the first fluid and the second fluid are mixed. There is a risk of doing so.
  • an air conditioning system in which the second fluid is a flammable refrigerant or a harmful refrigerant (hereinafter, these will be described as flammable refrigerants), and the first fluid is circulated indoors and the second fluid is not circulated indoors.
  • a flammable refrigerant that should not normally circulate in the room may flow into the room.
  • the plate heat exchanger prevent the first fluid and the second fluid from being mixed even if the first heat transfer plate or the second heat transfer plate is damaged by any chance.
  • the plate heat exchanger when the area where the first heat transfer plate and the second heat transfer plate are not in contact is damaged, only one of the first heat transfer plate and the second heat transfer plate is damaged. Therefore, the possibility that the first fluid and the second fluid are mixed is reduced. Therefore, in the plate heat exchanger, even if the first heat transfer plate or the second heat transfer plate is damaged, the first heat transfer plate and the second heat transfer plate are not affected by error factors such as manufacturing conditions or environmental conditions. It is desirable that the area that is not in contact with is damaged.
  • the present invention is for solving the above-mentioned problems, and even if the first heat transfer plate or the second heat transfer plate is damaged, the first heat transfer plate is not affected by error factors such as manufacturing conditions or environmental conditions. It is an object of the present invention to provide a plate type heat exchanger and a heat transfer device in which a region where the heat transfer plate and the second heat transfer plate are not in contact with each other is damaged.
  • a plurality of heat transfer plates are laminated, and the first flow path through which the first fluid flows and the second flow path through which the second fluid flows are each of the plurality of heat transfer plates.
  • a main body is provided which is alternately formed with a heat plate as a boundary, and the main body is a heat transfer plate of a first heat transfer plate and a second heat transfer plate which are arranged so as to face each other among a plurality of heat transfer plates.
  • a first flow path is formed between them, and the first flow path has a plate-shaped inner fin in which a plurality of concave-convex bent portions are formed, and the first heat transfer plates face each other 2 It has one plate and a plurality of brazing portions provided between the two plates to connect the two plates, and the two plates and the plurality of braces are contained in the first heat transfer plate.
  • a plurality of gaps which are spaces formed by the attachment portion, and a communication passage connecting the gaps of the plurality of gaps are formed, and the inner fin is perpendicular to the flow direction of the first fluid.
  • a plurality of uneven pitches formed in a concave-convex shape in the cross section of the inner fin are provided in the flow direction, and at least one uneven pitch is a first pitch that abuts on the first heat transfer plate and the second heat transfer plate.
  • a second pitch that is in contact with the second heat transfer plate and is larger than the first pitch in the intersecting direction perpendicular to the stacking direction and the flow direction of the plurality of heat transfer plates, and has the inside of the main body. Is projected in the stacking direction, the plurality of voids are formed in the region of the second pitch, and the discharge flow path formed by the plurality of voids and the communication passage communicates with the outside of the main body. It is something that is.
  • the heat transfer device according to the present invention includes the plate type heat exchanger according to the present invention.
  • the inner fins in the first flow path have a first pitch that abuts on the first heat transfer plate and the second heat transfer plate, and a second pitch that abuts on the second heat transfer plate. It has a concavo-convex pitch with.
  • the second pitch is formed larger than the first pitch in the intersecting direction perpendicular to the stacking direction and the distribution direction of the plurality of heat transfer plates.
  • the position of the plate of the first heat transfer plate facing the second pitch is higher than the position facing the first pitch. It becomes easy to get hurt. Therefore, even if a factor that damages the plate heat exchanger occurs, the first heat transfer plate and the second heat transfer plate are not in contact with each other regardless of error factors such as manufacturing conditions or environmental conditions. It can be scratched.
  • FIG. 1 It is a schematic block diagram which shows the heat transfer apparatus which concerns on Embodiment 1.
  • FIG. It is an exploded perspective view which shows the plate type heat exchanger which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows a part of the plate type heat exchanger which concerns on Embodiment 1 in the cross section.
  • It is a partial perspective view which shows the structure between two 1st inner fins which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the 1st inner fin which concerns on Embodiment 1.
  • FIG. It is a top view of the 1st inner fin which concerns on Embodiment 1, and is the perspective view when it projected in the overlapping direction of the 1st heat transfer plate and the 2nd heat transfer plate.
  • FIG. 5 is a plan view of the first inner fin according to the first embodiment, and is a view showing only the first inner fin among the perspective views when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. be. It is a top view of the 1st inner fin which concerns on Embodiment 1, and shows only the layer of a heat transfer member and a gap part in the perspective view when projected in the overlapping direction of a 1st heat transfer plate and a 2nd heat transfer plate. It is a figure.
  • FIG. 5 is a plan view of the first inner fin according to the second embodiment, and shows only the heat transfer member and the layer of the gap portion in the perspective view when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. It is a figure.
  • FIG. 5 is a plan view of the first inner fin according to the third embodiment, and shows only the heat transfer member and the layer of the gap portion in the perspective view when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. It is a figure.
  • FIG. 3 is a plan view of the first inner fin according to the first modification in the third embodiment, and the heat transfer member and the gap portion in the perspective view when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. It is the figure which showed only the layer of. It is explanatory drawing which shows the plate type heat exchanger which concerns on Embodiment 4 in the cross section.
  • FIG. 1 is a schematic configuration diagram showing a heat transfer device 100 according to the first embodiment.
  • the heat transfer device 100 includes a refrigerant circuit 10 that cools or heats a heat medium as a first fluid, and a heat medium circuit 20 that distributes the heat medium inside a house.
  • the refrigerant circuit 10 is mounted on the outdoor unit 11.
  • the heat medium circuit 20 circulates the heat medium from the outdoor unit 11 into the house 21.
  • the outdoor unit 11 includes a compressor 12, a flow path switching device 13, a plate heat exchanger 30, a decompression device 14, and an outdoor heat exchanger 15.
  • the compressor 12, the flow path switching device 13, the plate heat exchanger 30, the decompression device 14, and the outdoor heat exchanger 15 are sequentially connected in order by the refrigerant pipe 16 to form the refrigerant circuit 10.
  • the outdoor unit 11 is a heat pump device.
  • the compressor 101 is a fluid machine that compresses the sucked refrigerant into a high temperature and high pressure state and discharges it.
  • various types of compressors such as a scroll compressor and a rotary compressor are used.
  • the flow path switching device 13 is, for example, a four-way valve, and is a device that switches the flow direction of the refrigerant flowing through the refrigerant circuit 10 between the cooling operation and the heating operation.
  • the plate heat exchanger 30 functions as an evaporator or a condenser. In the cooling operation, the plate heat exchanger 30 exchanges heat between the heat medium and the refrigerant that has become cold through the decompression device 14. As a result, the heat medium is cooled in the plate heat exchanger 30. Further, in the heating operation, the plate heat exchanger 30 exchanges heat between the heat medium and the refrigerant in the high temperature and high pressure state compressed by the compressor 12. As a result, the heat medium is heated in the plate heat exchanger 30.
  • the pressure reducing device 14 is, for example, an expansion valve, which is a device for reducing the pressure of the refrigerant.
  • the decompression device 14 functions as a throttle mechanism between the plate heat exchanger 30 and the outdoor heat exchanger 15.
  • an electronic expansion valve whose opening degree is adjusted by the control of the control device can be used.
  • the outdoor heat exchanger 15 is an air heat exchanger that exchanges heat between the refrigerant circulating inside and the refrigerant and the air that is the outside air.
  • the outdoor heat exchanger 15 functions as a condenser when the plate heat exchanger 30 functions as an evaporator. Further, the outdoor heat exchanger 15 functions as an evaporator when the plate heat exchanger 30 functions as a condenser.
  • the refrigerant which is the second fluid, flows through the refrigerant circuit 10 of the outdoor unit 11.
  • a flammable refrigerant such as R32 or R290, which is a low GWP refrigerant, is used.
  • the heat medium circuit 20 includes a plate heat exchanger 30, a circulation pump 22, and a radiator 23.
  • the heat medium circuit 20 is configured by connecting a plate heat exchanger 30, a circulation pump 22, and a radiator 23 in an annular shape by a heat medium pipe 24.
  • the heat medium that is the first fluid is water or brine.
  • the heat medium circuit 20 may include a storage tank (not shown) for storing the heat medium.
  • the circulation pump 22 imparts a transport force for circulating in a certain direction to the heat medium circulating in the heat medium piping 24.
  • the circulation pump 22 is mounted on the indoor unit 25 in the house 21.
  • the circulation pump 22 may be mounted on the outdoor unit 11.
  • the radiator 23 cools the interior of the house 21 by the cold heat of the heat medium.
  • the radiator 23 heats the interior of the house 21 by the heat of the heat medium.
  • the heat medium circuit 20 may be provided with an air conditioner other than the radiator 23. Further, the heat medium circuit 20 may be used as a water heater for supplying hot water by using water as the heat medium.
  • the heat transfer device 100 can be used in many industrial or household appliances equipped with a plate heat exchanger 30.
  • the heat transfer device 100 can be used for air conditioning, power generation, heat sterilization treatment equipment for food, and the like.
  • FIG. 2 is an exploded perspective view showing the plate heat exchanger 30 according to the first embodiment.
  • the upward direction U, the downward direction D, the right direction R, the left direction L, the front direction F, and the back direction B are shown.
  • the plate type heat exchanger 30 a plurality of heat transfer plates are laminated, and the first flow path through which the first fluid flows and the second flow path through which the second fluid flows form each heat transfer plate of the plurality of heat transfer plates. It is provided with a main body 30A formed alternately at the boundary.
  • the main body 30A of the plate heat exchanger 30 includes a pair of side plates 31, a plurality of first heat transfer plates 32, a plurality of first inner fins 33, and a plurality of second heat transfer.
  • a plate 34 and a plurality of second inner fins 35 are provided.
  • a metal such as stainless steel, copper, aluminum or titanium or a synthetic resin can be used.
  • the first heat transfer plate 32 or the second heat transfer plate 34 may be formed of a clad material.
  • Each of the pair of side plates 31 has a flat plate shape, and a plurality of first heat transfer plates 32, a plurality of first inner fins 33, a plurality of second heat transfer plates 34, and a plurality of second inner fins 35 are defined. It is placed on both sides in the order of, and serves as a reinforcement.
  • a heat medium inlet 31a, a heat medium outlet 31b, a refrigerant inlet 31c, and a refrigerant outlet 31d are formed at four corners.
  • the heat medium inlet 31a is shown in the lower corner on one of the left and right sides on the drawing
  • the heat medium outlet 31b is shown in the upper corner
  • the refrigerant inlet 31c is shown in the upper corner on the left and right other side
  • the lower corner is shown.
  • Refrigerant outlet 31d is shown.
  • the flow direction of the heat medium is indicated by the symbol X of the solid line arrow
  • the flow direction of the refrigerant is indicated by the symbol Y of the broken line arrow.
  • the four passage holes of the heat medium inlet 31a, the heat medium outlet 31b, the refrigerant inlet 31c and the refrigerant outlet 31d are communicated with each other.
  • a through hole is formed as a passage hole.
  • the first heat transfer plate 32 is provided with a heat medium outward path hole 31a1, a heat medium return path hole 31b1, a refrigerant outward path hole 31c1, and a refrigerant return path hole 31d1 as passage holes.
  • the second heat transfer plate 34 is provided with a heat medium outward path hole 31a2, a heat medium return path hole 31b2, a refrigerant outward path hole 31c2, and a refrigerant return path hole 31d2 as passage holes.
  • FIG. 3 is an explanatory view showing a part of the plate heat exchanger 30 according to the first embodiment in a cross section.
  • the plurality of first heat transfer plates 32 have a plate 32a and a plate 32b, respectively, which form a flat heat transfer surface.
  • the plurality of second heat transfer plates 34 have a plate 34a and a plate 34b, respectively, which form a flat heat transfer surface.
  • the plate 32a, the plate 32b, the plate 34a and the plate 34b are metal plates.
  • the plate 32a, the plate 32b, the plate 34a, and the plate 34b are not limited to the metal plate.
  • the first heat transfer plate 32 and the second heat transfer plate 34 are alternately laminated.
  • the first heat transfer plate 32 is formed as a double wall by superimposing two metal plates of the plate 32a and the plate 32b.
  • the double wall is a double wall structure.
  • the second heat transfer plate 34 is formed as a double wall by superimposing two metal plates of the plate 34a and the plate 34b.
  • the first heat transfer plate 32 has two plates of plates 32a and 32b facing each other, and a plurality of brazing portions 61 provided between the two plates and connecting the two plates. ..
  • a plurality of gaps 60 which is a space formed by two plates of the plates 32a and 32b, and a plurality of brazed portions 61, and a gap portion of the plurality of gaps 60.
  • a communication passage 200a (see FIG. 6) connecting the 60s to each other is formed.
  • the two metal plates of the plate 32a and the plate 32b are brazed by a brazing portion 61 as a heat transfer member.
  • the brazing portion 61 is partially arranged in the space between the two metal plates of the plate 32a and the plate 32b so as to form a gap portion 60 between the adjacent brazing portions 61.
  • the two metal plates of the plate 32a and the plate 32b improve the heat transfer efficiency while forming a double wall structure in which the gap portion 60 is sandwiched by the brazing portion 61 which is a heat transfer member.
  • the two metal plates of the plate 34a and the plate 34b are brazed by the brazing portion 61 as a heat transfer member.
  • the brazing portion 61 is partially arranged in the space between the two metal plates of the plate 34a and the plate 34b so as to form a gap portion 60 between the adjacent brazing portions 61.
  • the two metal plates of the plate 34a and the plate 34b improve the heat transfer efficiency while forming a double wall structure in which the gap portion 60 is sandwiched by the brazing portion 61 which is a heat transfer member.
  • the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 are plate-shaped members having a substantially uniform wall thickness, which are unevenly processed by a press or the like.
  • the first heat transfer plate 32 and the second heat transfer plate 34 are formed so that a flange portion for connecting the plates to each other rises by uneven processing around the main portion which is a flat heat transfer surface.
  • the thickness of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 may be appropriately different. When the thickness of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 becomes thick, it is effective in preventing the progress of corrosion and improving the strength of the plate heat exchanger 30.
  • the thickness of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 becomes thin, the thermal resistance can be reduced, the deterioration of the heat exchange performance can be suppressed, and the material cost can be reduced.
  • the plate thicknesses of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 may be selected according to desired conditions.
  • the plate heat exchanger 30 has a heat medium flow path 38 and a refrigerant flow path 39 formed between the first heat transfer plate 32 and the second heat transfer plate 34.
  • the heat medium flow path 38 is a first flow path through which the heat medium is circulated
  • the refrigerant flow path 39 is a second flow path through which the refrigerant is circulated.
  • the main body 30A of the plate heat exchanger 30 is a first flow path between the first heat transfer plate 32 and the second heat transfer plate 34, which are arranged so as to face each other among the plurality of heat transfer plates.
  • the heat medium flow path 38 is formed.
  • the first heat transfer plate 32 is the first heat transfer plate in the stacking direction FB of the plurality of heat transfer plates
  • the second heat transfer plate 34 is the second heat transfer plate.
  • the main body 30A of the plate heat exchanger 30 has a second flow path between the first heat transfer plate 32 and the other second heat transfer plate 34, which are arranged so as to face each other among the plurality of heat transfer plates.
  • the refrigerant flow path 39 is formed.
  • the first heat transfer plate 32 is the first heat transfer plate in the stacking direction FB of the plurality of heat transfer plates
  • the other second heat transfer plate 34 is the third heat transfer plate.
  • heat medium flow paths 38 and refrigerant flow paths 39 are alternately formed in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34.
  • the plate heat exchanger 30 causes heat exchange between the heat medium flowing through the heat medium flow path 38 and the refrigerant flowing through the refrigerant flow path 39.
  • the heat medium flow path 38 circulates the heat medium upward in the height direction extending in the upward direction U and the downward direction D.
  • the heat medium flow path 38 goes from the heat medium inlet 31a located below the right direction R of the plate heat exchanger 30 to the heat medium outlet 31b located above the right direction R of the plate heat exchanger 30.
  • the heat medium is circulated upward in the height direction.
  • the heat medium flow path 38 is, for example, from the lower side of the plate heat exchanger 30 in which the heat medium inlet 31a is located in the right direction R to the left side L of the plate heat exchanger 30 in which the refrigerant inlet 31c is located.
  • the heat medium may be circulated by inclining from the height direction so as to face upward.
  • the refrigerant flow path 39 circulates the refrigerant downward in the height direction extending in the upward direction U and the downward direction D.
  • the refrigerant flow path 39 is directed from the refrigerant inlet 31c located above the left direction L of the plate heat exchanger 30 toward the refrigerant outlet 31d located below the left direction L of the plate heat exchanger 30.
  • the refrigerant is circulated downward in the height direction.
  • the refrigerant flow path 39 is, for example, from the upper side of the plate heat exchanger 30 in which the heat medium outlet 31b is located in the right direction R to the lower side of the plate heat exchanger 30 in which the refrigerant outlet 31d is located in the left direction L.
  • the refrigerant may be circulated at an angle from the height direction so as to be directed toward.
  • the heat medium flow path 38 which is the first flow path formed in the main body 30A of the plate heat exchanger 30, has a plate-shaped first inner fin 33 in which a plurality of unevenly bent portions are formed. is doing. That is, the first inner fin 33 is arranged in the heat medium flow path 38.
  • the first inner fins 33 are arranged in each of the heat medium flow paths 38, and the uneven pitch 40 is repeatedly formed on the first inner fins 33.
  • a plurality of second inner fins 35 are arranged in the refrigerant flow path 39.
  • the plurality of second inner fins 35 are respectively arranged in the refrigerant flow path 39, and the uneven pitch 50 is repeatedly formed on the plurality of second inner fins 35.
  • FIG. 4 is a partial perspective view showing a configuration between the two first inner fins 33 according to the first embodiment.
  • FIG. 5 is a perspective view showing the first inner fin 33 according to the first embodiment. The first inner fin 33 and the second inner fin 35 will be described with reference to FIGS. 3 to 5.
  • the plurality of first inner fins 33 are offset fins arranged between the corresponding first heat transfer plate 32 and the second heat transfer plate 34 to promote heat transfer.
  • Each of the plurality of first inner fins 33 has a substantially plate-like shape in which the width direction and the height direction are larger than those in the thickness direction.
  • Each of the plurality of first inner fins 33 includes a structure in which a concave-convex pitch 40 in which thin-walled elements are formed at substantially right angles across the right direction R and the left direction L, which are the width directions, is repeated.
  • the top 40c1 or the bottom 40c2 facing each of the first heat transfer plate 32 and the second heat transfer plate 34 is formed on a flat surface.
  • the plurality of first inner fins 33 come into surface contact with both the corresponding first heat transfer plate 32 and the second heat transfer plate 34 on the flat surface of the top 40c1 or the bottom 40c2, respectively.
  • the plurality of second inner fins 35 are offset fins arranged between the corresponding first heat transfer plate 32 and the second heat transfer plate 34 to promote heat transfer.
  • Each of the plurality of second inner fins 35 has a substantially plate-like shape in which the width direction and the height direction are larger than those in the thickness direction.
  • the plurality of second inner fins 35 are arranged on the opposite side of the plurality of first inner fins 33 via the first heat transfer plate 32. Further, the plurality of second inner fins 35 are arranged on the opposite side of the plurality of first inner fins 33 via the second heat transfer plate 34. That is, in the plate heat exchanger 30, the first inner fins 33 and the second inner fins 35 are alternately arranged in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34.
  • Each of the plurality of second inner fins 35 includes a structure in which a concave-convex pitch 50 in which thin-walled elements are formed at substantially right angles over the right direction R and the left direction L, which are the width directions, is repeated.
  • the top 50c1 or the bottom 50c2 facing each of the first heat transfer plate 32 and the second heat transfer plate 34 is formed on a flat surface.
  • the plurality of second inner fins 35 come into surface contact with both the corresponding first heat transfer plate 32 and the second heat transfer plate 34 on the flat surface of the top 50c1 or the bottom 50c2, respectively.
  • the uneven pitch 50 formed on the second inner fin 35 has a portion orthogonal to the crossing direction LR with respect to the flow direction DU of the refrigerant flowing through the refrigerant flow path 39, and has a portion extending in parallel with the flow direction DU, and is perpendicular to the portion.
  • the bent portion is formed so as to be continuous.
  • the uneven pitch 50 formed on the second inner fin 35 has an orthogonal portion 51 extending so as to connect both the plate 32b of the first heat transfer plate 32 and the plate 34a of the second heat transfer plate 34.
  • the orthogonal portion 51 is provided between the plate 32b of the first heat transfer plate 32 and the plate 34a of the second heat transfer plate 34.
  • the orthogonal portion 51 is a portion of the uneven pitch 50 that is orthogonal to the crossing direction LR of the refrigerant flowing through the refrigerant flow path 39 with respect to the flow direction DU.
  • the orthogonal portion 51 is a wall extending in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34.
  • the orthogonal portion 51 is formed so as to extend in a direction orthogonal to the plate surfaces of the plate 32b and the plate 34a.
  • the orthogonal portion 51 extends continuously between the top 50c1 and the bottom 50c2 and between the top 50c1 and the bottom 50c2, and forms a concave-convex shape with a concave-convex pitch 50 together with the top 50c1 and the bottom 50c2.
  • the second inner fin 35 has a concavo-convex shape in which the bottom portion 50c2, the orthogonal portion 51, and the top portion 50c1 repeat in an intersecting direction LR with respect to the flow direction DU of the refrigerant flowing through the refrigerant flow path 39.
  • the heat transfer area is different between the first inner fin 33 and the second inner fin 35.
  • the first inner fin 33 and the second inner fin 35 have different dimensions of the uneven pitch 40 or the uneven pitch 50, as shown in FIGS. 3 and 4, although details will be described later.
  • FIG. 2 the first inner fin 33 and the second inner fin 35 are shown in the same manner, giving priority to clarity on the drawing.
  • the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34 sandwiching the first inner fin 33 are brazed to the first inner fin 33, respectively.
  • the plate 34a of the second heat transfer plate 34 and the plate 32b of the first heat transfer plate 32 that sandwich the second inner fin 35 are brazed to the second inner fin 35, respectively.
  • the plate heat exchanger 30 has a laminated structure between one side plate 31 and the other side plate 31.
  • laminated elements are repeatedly arranged in the order of the first inner fin 33, the first heat transfer plate 32, the second inner fin 35, and the second heat transfer plate 34.
  • the first inner fin 33 has an uneven pitch 40. Specifically, the first inner fin 33 has a plurality of uneven pitches 40 in the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. The first inner fin 33 has a plurality of uneven pitches 40 formed in a rectangular wave shape in the cross section of the first inner fin 33 perpendicular to the flow direction DU of the first fluid in the flow direction DU.
  • the uneven pitch 40 is provided in the intersecting direction LR with respect to the height direction extending in the upward direction U and the downward direction D, which is the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged.
  • the uneven pitch 40 is a width direction extending between the right direction R and the left direction L, which are directions orthogonal to the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. It is provided in.
  • the uneven pitch 40 forms a flow path hole extending in the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged.
  • the uneven pitch 40 has a shape in which unevenness is repeated in the crossing direction LR with respect to the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged.
  • the uneven pitch 40 aligns the plate surface with the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged, and does not block the flow of the heat medium flowing through the heat medium flow path 38. ..
  • a part of the uneven pitch 40 is from the first pitch 40a and the first pitch 40a in the direction intersecting the direction in which the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged flows. Also has a second pitch 40b with a wide pitch width. Further, among the plurality of uneven pitches 40 provided in the heat medium distribution direction DU, some of the uneven pitches 40 are the distribution directions of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. It has only the first pitch 40a in the direction intersecting the DU. At least one or more uneven pitch 40 of the first inner fin 33 has a first pitch 40a and a second pitch 40b.
  • the first pitch 40a of the portion constituting the top portion 40c1 comes into contact with the plate 34b of the second heat transfer plate 34. Further, the first pitch 40a of the portion constituting the bottom portion 40c2 comes into contact with the plate 32a of the first heat transfer plate 32.
  • the second pitch 40b of the portion constituting the top portion 40c1 comes into contact with the plate 34b of the second heat transfer plate 34.
  • the width of the crossing direction LR is larger than the width of the crossing direction LR of the first pitch 40a in the crossing direction LR perpendicular to the stacking direction FB and the distribution direction DU of the plurality of heat transfer plates.
  • the uneven pitch 40 formed on the first inner fin 33 has a portion orthogonal to the crossing direction LR of the heat medium flowing through the heat medium flow path 38 with respect to the distribution direction DU and a portion extending parallel to the flow direction DU. , The portions that bend at right angles are formed to be continuous.
  • the uneven pitch 40 formed on the first inner fin 33 has an orthogonal portion 41 extending so as to connect both the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34.
  • the orthogonal portion 41 is provided between the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34.
  • the orthogonal portion 41 is a portion of the uneven pitch 40 that is orthogonal to the crossing direction LR of the heat medium flowing through the heat medium flow path 38 with respect to the distribution direction DU.
  • the orthogonal portion 41 is a wall extending in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34.
  • the orthogonal portion 41 is formed so as to extend in a direction orthogonal to the plate surfaces of the plates 32a and 34b.
  • the orthogonal portion 41 extends continuously between the top 40c1 and the bottom 40c2 and between the top 40c1 and the bottom 40c2, and forms a concave-convex shape with a concave-convex pitch 40 together with the top 40c1 and the bottom 40c2.
  • the first inner fin 33 forms a concavo-convex shape in which the bottom portion 40c2, the orthogonal portion 41, and the top portion 40c1 repeat in an intersecting direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow path 38.
  • the orthogonal portion 41 heats with respect to the orthogonal portion 41 of the uneven pitch 40 in relation to the adjacent uneven pitch 40 in the distribution direction DU of the heat medium flowing through the heat medium flow path 38. It is provided so as to be offset from the crossing direction LR with respect to the distribution direction DU of the medium. Therefore, the orthogonal portion 41 is located between the two orthogonal portions 41 having the uneven pitch 40 adjacent to the heat medium distribution direction DU when the first inner fin 33 is viewed in the heat medium distribution direction DU. It is provided. In particular, when the first inner fin 33 is viewed in the heat medium distribution direction DU, the orthogonal portion 41 is formed at the uneven pitch 40 with respect to the adjacent uneven pitch 40 in the heat medium distribution direction DU. It is preferable that it is provided so as to be located at the center between the adjacent orthogonal portions 41.
  • the second pitch 40b has at least one first pitch 40a in the crossing direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow paths 38 in the plurality of first inner fins 33. 1 or more are provided.
  • the second pitch 40b is the heat medium flow path 38 in the plurality of first inner fins 33.
  • Two first pitches 40a are provided at one pitch in the crossing direction LR with respect to the circulation direction DU of the heat medium flowing through the heat medium.
  • the number of first pitches 40a formed between the two second pitches 40b is not limited to nine.
  • the number of the first pitch 40a formed between the two second pitches 40b may be 8 or less, or 10 or more.
  • the uppermost portion of the uneven pitch 40 represents the uneven pitch 40 located on the uppermost U side in the distribution direction DU of the heat medium in the first inner fins 33 shown in FIGS. 4 and 5. ..
  • 1 pitch means one of a plurality of uneven pitches 40 formed in the distribution direction DU of the heat medium.
  • the second pitch 40b is the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in the plurality of first inner fins 33.
  • one is provided at one pitch in the crossing direction LR.
  • the second pitch 40b formed at the uneven pitch 40 is formed at another uneven pitch 40 located immediately before and after the uneven pitch 40 in the distribution direction DU of the heat medium. It is provided so as to be offset from the second pitch 40b in the crossing direction LR.
  • the second pitch 40b is arranged in a staggered pattern, but the second pitch 40b is limited to the configuration in which the second pitch 40b is arranged in a staggered pattern. It may be arranged in a grid pattern, for example.
  • the first inner fin 33 has a first uneven pitch 40 having a first pitch 40a and a second pitch 40b, and a second unevenness having a first pitch 40a and a second pitch 40b in the distribution direction DU. It has a pitch of 40 and.
  • the first inner fin 33 has a third uneven pitch 40 having only the first pitch 40a between the first concave-convex pitch 40 and the second concave-convex pitch 40.
  • the uneven pitch 40 formed only by the first pitch 40a is formed in a row between the uneven pitch 40s having the second pitch 40b in the distribution direction DU.
  • the number of uneven pitches 40 formed only by the first pitch 40a between the uneven pitches 40 having the second pitch 40b is not limited to one row, and may be two or more rows. Further, the number of uneven pitches 40 formed only by the first pitch 40a between the uneven pitches 40 having the second pitch 40b may be the same number or different numbers depending on different positions in the distribution direction DU. ..
  • the rows formed only by the first pitch 40a in the distribution direction DU may be formed as one row between the rows having the second pitch 40b in the distribution direction DU, or may be formed in a plurality of rows. ..
  • the uneven pitch 40 having the second pitch 40b is the first inner fin 33 arranged adjacent to the first heat transfer plate 32 and the second heat transfer plate 34 in the stacking direction FB. Facing the uneven pitch 40 having only the first pitch 40a of the above.
  • This configuration is applied to any part of the plate heat exchanger 30 in the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged.
  • the plurality of second pitches 40b provided on the first inner fin 33 open the same side in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. is doing.
  • the value obtained by dividing the pitch width P1 of the first pitch 40a shown in FIG. 3 by the pitch width P2 of the second pitch 40b is smaller than 1. More preferably, the value obtained by dividing the pitch width P1 of the first pitch 40a by the pitch width P2 of the second pitch 40b is smaller than 1 and larger than 0.5.
  • a brazing portion 61 which is a heat transfer member, is provided between the two metal plates of the plate 32a and the plate 32b.
  • the two metal plates, the plate 32a and the plate 32b are brazed by a brazing portion 61 as a heat transfer member.
  • a brazing portion 61 which is a heat transfer member, is provided between the two metal plates of the plate 34a and the plate 34b.
  • the two metal plates, the plate 34a and the plate 34b, are brazed by a brazing portion 61 as a heat transfer member.
  • the brazing portion 61 is partially arranged in the space between the two metal plates of the plate 32a and the plate 32b so as to form a gap portion 60 between the adjacent brazing portions 61. Therefore, as shown in FIG. 3, a gap 60 is formed between the two metal plates of the plate 32a and the plate 32b. Similarly, the brazing portion 61 is partially arranged in the space between the two metal plates of the plate 34a and the plate 34b so as to form a gap 60 between the adjacent brazing portions 61. There is. Therefore, a gap 60 is formed between the two metal plates of the plate 34a and the plate 34b.
  • any brazing material may be used as long as it is a material having higher heat transfer property than air, such as copper brazing, silver brazing, or metal brazing such as phosphorus deoxidized copper.
  • a heat transfer member such as metal may be provided by adhesion or the like.
  • the heat transfer member may be a liquid or solid material having high adhesion such as grease.
  • the heat transfer member may be integrated by directly joining two metal plates of the plate 32a and the plate 32b by spot welding or pressure joining without interposing a separate part.
  • the heat transfer member may be integrated by directly joining two metal plates of the plate 34a and the plate 34b by spot welding or pressure joining without interposing a separate part. However, when the two metal plates are directly joined, it is necessary to provide the gap 60.
  • the brazing portion 61 When the brazing portion 61 is projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 is provided in the region of the first pitch 40a. In other words, when the brazing portion 61 is projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 does not exist in the region of the second pitch 40b.
  • FIG. 7 is a plan view of the first inner fin 33 according to the first embodiment, and is the first perspective view when projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. It is a figure which showed only the inner fin 33.
  • FIG. 8 is a plan view of the first inner fin 33 according to the first embodiment, and is a perspective view of the first heat transfer plate 32 and the second heat transfer plate 34 projected onto the stacking direction FB. It is a figure which showed only the layer of a member and a gap 60. Note that FIG. 8 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIGS. 7 and 8 show a part of the distribution direction DU of the first inner fin 33.
  • the uneven pitch 40 of the first heat transfer plate 32, the second heat transfer plate 34, the first inner fin 33, the uneven pitch 50 of the second inner fin 35, and the positions of the layers of the heat transfer member and the gap 60 are specified. There is a relationship.
  • the first inner fin 33 is in front of the plate 32a constituting the first heat transfer plate 32, and the layer of the heat transfer member and the gap 60 constitutes the first heat transfer plate 32a. It shows that it is in the back of.
  • FIG. 6 shows that when the plate heat exchanger 30 is viewed through the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the first inner fin 33, the heat transfer member, and the gap portion 60 are formed. It shows the positional relationship with the layer.
  • the first inner fin 33 abuts on one surface of the plate 32a constituting the first heat transfer plate 32, and the other surface of the plate 32a constituting the first heat transfer plate 32.
  • FIG. 6 the joining between the first inner fin 33 and the plate 32a is not shown.
  • the first inner is interposed through the plate 32a.
  • a gap 60 is formed on the side opposite to the side where the fins 33 are arranged.
  • the size of the gap portion 60 when the size of the gap portion 60 is larger than the uneven pitch 40 of the first inner fin 33, a part of the plate 32a on the opposite side of the position where the gap portion 60 is formed.
  • the first inner fin 33 may be joined to.
  • the size of the gap portion 60 and the size of the uneven pitch 40 of the first inner fin 33 are the sizes in the direction in which the plate surfaces of the first heat transfer plate 32 and the second heat transfer plate 34 extend. ..
  • the plate heat exchanger 30 is seen through in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, it is within the formation range of the gap 60.
  • the second pitch 40b is formed.
  • the flat surface 40b1 of the second pitch 40b is in contact with the plate 34b of the second heat transfer plate 34.
  • the flat surface 40b1 of the second pitch 40b is not in contact with the plate 32a of the first heat transfer plate 32.
  • the opening 40b2 of the second pitch 40b is located on the plate 32a side.
  • the flat surface 40b1 of the second pitch 40b faces the plate 32a via the heat medium flow path 38.
  • a continuous passage 200a connecting the gap portions 60 to each other is formed.
  • the communication passage 200a is configured to communicate with the outside air located outside the plate heat exchanger 30.
  • the communication passage 200a is connected to the front and rear gaps 60 closest to the flow direction DU of the first fluid so as to be connected by the shortest path.
  • FIG. 6 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the lower corner of the gap 60 in the right direction R of No. 2 is connected by a communication passage 200a.
  • FIG. 6 shows a third position located at the lower corner of the first gap 60 in the left direction L and diagonally lower left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the upper corner of the gap portion 60 in the right direction R is connected by a communication passage 200a.
  • the communication passage 200a is formed so as to connect the gaps 60 formed alternately on the left and right in the flow direction DU of the first fluid.
  • the passage width of the continuous passage 200a is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the communication passage 200a is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60.
  • the second gap 60 with respect to the first gap 60 is a third gap 60 with respect to the first gap 60 located immediately behind the first gap 60 in the flow direction DU of the first fluid. It becomes.
  • the third gap 60 with respect to the first gap 60 is a second with respect to the first gap 60 located immediately before the first gap 60 in the flow direction DU of the first fluid. It becomes the gap 60.
  • the gap portion 60 and the communication passage 200a are connected to form the discharge passage 200a1.
  • the discharge flow path 200a1 includes a first row gap portion 60 arranged in the flow direction DU, a second row gap portion 60 formed next to the first row gap portion 60 in the crossing direction LR, and a second row gap portion 60. It is formed by a communication passage 200a connecting the gap portion 60 in the first row and the gap portion 60 in the second row.
  • the discharge flow path 200a1 is formed so that the closest front and rear gaps 60 among the plurality of gaps 60 are connected by the communication passage 200a and extend in the flow direction DU in the flow direction DU of the first fluid.
  • the end of the discharge flow path 200a1 communicates with the outside of the main body 30A.
  • the discharge flow path 200a1 formed by connecting the gap portion 60 and the communication passage 200a has the same passage direction as the flow direction DU of the first fluid flowing through the heat medium flow path 38 which is the first flow path. It is formed to be.
  • the plate heat exchanger 30 when the inside of the main body 30A is projected in the stacking direction FB, a plurality of gaps 60 are formed in the region of the second pitch 40b. Further, in the plate heat exchanger 30, the discharge flow path 200a1 formed by the plurality of gaps 60 and the communication passage 200a communicates with the outside of the main body 30A.
  • brazing portion 61 The operation of the brazing portion 61 provided between the two metal plates of the plate 32a and the plate 32b of the first heat transfer plate 32 will be described. Similarly, the operation of the brazing portion 61 of the second heat transfer plate 34 provided between the two metal plates of the plate 34a and the plate 34b will be described.
  • the brazed portion 61 between the two metal plates of the plate 32a and the plate 32b and the brazed portion 61 between the two metal plates of the plate 34a and the plate 34b have high thermal conductivity. Therefore, the plate heat exchanger 30 can reduce the contact thermal resistance between the two metal plates of the plate 32a and the plate 32b, and the contact thermal resistance between the two metal plates of the plate 34a and the plate 34b. Can be reduced. Therefore, the plate-type heat exchanger 30 can suppress a decrease in heat exchange performance as compared with the case where the brazing portion 61 is not provided.
  • the plate heat exchanger 30 has an unbrazed gap 60 between the two metal plates of the plate 32a and the plate 32b, and is between the two metal plates of the plate 34a and the plate 34b. It has a gap 60 that is not brazed.
  • the plate-type heat exchanger 30 is configured such that the gaps 60 are connected to each other by a communication passage 200a, and the discharge passage 200a1 formed by the gap 60 and the communication passage 200a communicates with the outside air. ..
  • the control device can stop the heat transfer device 100 provided with the plate heat exchanger 30. ..
  • the plate 32a is located at the position of the second pitch 40b.
  • the gap 60 formed between the plate 34b and the plate 34b is always formed.
  • the communication passage 200a is connected so as to be connected to the front and rear gaps 60 closest to the flow direction DU of the first fluid by the shortest path, and the passage width is smaller than the short dimension of the gap 60. ing. Therefore, the plate heat exchanger 30 can suppress performance deterioration due to a decrease in the area ratio of the brazing portion 61.
  • the pitch width of the second pitch 40b is longer than the pitch width of the first pitch 40a. Therefore, for example, when the heat medium is water and a higher pressure than usual is generated in the heat medium flow path 38 due to freezing or an increase in internal pressure, the plate 32a is generated at a position facing the second pitch 40b. The stress is higher than the surrounding area. As a result, even if the first heat transfer plate 32 is damaged in the plate heat exchanger 30, the damaged portion of the first heat transfer plate 32 can be set to be the position of the second pitch 40b.
  • the plate heat exchanger 30 even if an excessive pressure rise occurs in the heat medium flow path 38, even if the first heat transfer plate 32 is damaged by the provision of the plurality of second pitches 40b, the first one. A damaged part of the heat transfer plate 32 can be planned. Then, the plate heat exchanger 30 can discharge the leaked heat medium to the outside. Further, in the plate type heat exchanger 30, due to the configuration, the joint portion between the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34 is damaged, so that the leaked refrigerant leaks through the heat medium circuit 20 into the house. It is possible to prevent the inflow into the 21.
  • the uneven pitch 50 of the second inner fin 35 is formed by repeating unevenness with a constant pitch width.
  • the uneven pitch 50 of the second inner fin 35 is not provided with a second pitch 40b like the uneven pitch 40 of the first inner fin 33.
  • the pitch width P3 of the uneven pitch 50 formed on the second inner fin 35 is the pitch width P1 of the uneven pitch 40 formed on the first inner fin 33.
  • the pitch width is smaller than P2, and the unevenness is fine.
  • first inner fin 33 and the flat heat transfer surface of the plate 32a constituting the first heat transfer plate 32 and the flat heat transfer surface of the plate 34b forming the second heat transfer plate 34 are face-to-face with each other. It is joined with. Further, the second inner fin 35 and the flat heat transfer surface of the plate 32b forming the first heat transfer plate 32 and the flat heat transfer surface of the plate 34a forming the second heat transfer plate 34 are surface-to-face with each other. It is joined.
  • the first inner fin 33 and the second inner fin 35 used in the plate heat exchanger 30 are as follows. It should be configured. In the plate heat exchanger 30, the uneven pitch 40 has a larger contact area with the first heat transfer plate 32 and the second heat transfer plate 34 than the uneven pitch 50 in the heat medium flow path 38 through which the heat medium flows. It is preferable to use the first inner fin 33 in which the above is formed.
  • the plate heat exchanger 30 has a concave-convex pitch 50 in which the contact area between the first heat transfer plate 32 and the second heat transfer plate 34 is smaller than that of the concave-convex pitch 40 in the refrigerant flow path 39 through which the refrigerant flows. It is preferable to use the second inner fin 35 in which the above is formed. As a result, the plate heat exchanger 30 can obtain the necessary and sufficient strength for each part, and can secure the strength without waste as a whole.
  • the plate heat exchanger 30 can have the same thermal resistance ratio between the refrigerant and water. In this way, in the plate heat exchanger 30, the thermal resistance ratio between the heat medium as the first fluid and the refrigerant as the second fluid can be adjusted according to the physical properties of the flowing fluid, and the heat exchange efficiency can be improved. can.
  • the plate heat exchanger 30 and the heat transfer device 100 can maintain the same thermal resistance ratio between the heat medium for heat exchange and the refrigerant. Further, the plate heat exchanger 30 and the heat transfer device 100 can maintain good heat exchange efficiency between the heat medium for heat exchange and the refrigerant.
  • the plate heat exchanger 30 has a simple structure and can be manufactured at low cost, but can prevent the refrigerant from entering the house 21 via the heat medium circuit 20 for a long period of time of the heat transfer device 100. Can improve the reliability of.
  • the plate heat exchanger 30 and the heat transfer device 100 can use natural refrigerants such as CO 2 , flammable hydrocarbons, low GWP refrigerants, etc., which could not be used until now because they do not have a refrigerant infiltration prevention function. .. Further, since the plate type heat exchanger 30 and the heat transfer device 100 increase the selection range of the fluid to be used, a refrigerant having a large latent heat can be selected and the heat exchange performance can be improved.
  • natural refrigerants such as CO 2 , flammable hydrocarbons, low GWP refrigerants, etc.
  • the plate type heat exchanger 30 a plurality of first heat transfer plates 32 and a plurality of second heat transfer plates 34, each having a flat heat transfer surface, are alternately laminated.
  • the heat medium flow path 38 as the first flow path through which the heat medium is circulated and the refrigerant flow path 39 as the second flow path through which the refrigerant is circulated are alternately formed.
  • the plate heat exchanger 30 includes a first inner fin 33 arranged in each of the plurality of heat medium flow paths 38 and a second inner fin 35 arranged in each of the plurality of refrigerant flow paths 39. .. Further, a plurality of uneven pitches 40 are repeatedly formed on the first inner fin 33, and a plurality of uneven pitches 50 are repeatedly formed on the second inner fin 35.
  • the first heat transfer plate 32 is formed as a double wall by superimposing two metal plates of the plate 32a and the plate 32b.
  • the second heat transfer plate 34 is formed as a double wall by superimposing two metal plates of the plate 34a and the plate 34b.
  • the plate heat exchanger 30 has a gap 60 between two metal plates of the plate 32a and the plate 32b, and a brazed portion 61 as a heat transfer member partially arranged. Further, the plate heat exchanger 30 has a gap portion 60 between two metal plates of the plate 34a and the plate 34b, and a brazing portion 61 as a heat transfer member partially arranged. There is.
  • the gaps 60 are connected to each other by a communication passage 200a, and the discharge passage 200a1 formed by the gap 60 and the communication passage 200a is configured to communicate with the outside air.
  • the uneven pitch 40 extending in the crossing direction LR with respect to the flow direction DU of the heat medium as the first fluid flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged is the first pitch 40a and the first pitch. It has a second pitch 40b having a pitch width wider than 40a.
  • the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34 have a narrow pitch width and are strong at the position where the brazed portion 61 exists in the stacking direction FB. It is connected to 1 pitch 40a.
  • the first inner fin 33 does not come into contact with the plate 32a of the first heat transfer plate 32 in the stacking direction FB. Then, in the plate heat exchanger 30, the gap portion 60 formed between the plate 32a and the plate 32b of the first heat transfer plate 32 is located at a position where the second pitch 40b is arranged via the plate 32a. It is configured to face the heat medium flow path 38.
  • the plate heat exchanger 30 when the inside of the main body 30A is projected in the stacking direction FB, the plurality of gaps 60 are formed in the region of the second pitch 40b. Therefore, the plate 32a of the first heat transfer plate 32 constituting the heat medium flow path 38 has a higher strength at a position facing the second pitch 40b than at a position facing the first pitch 40a. It's getting low.
  • the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged. Therefore, even if a factor of damage occurs in the plate heat exchanger 30, the region where the first heat transfer plate 32 and the second heat transfer plate 34 are not in contact with each other regardless of error factors such as manufacturing conditions or environmental conditions. Can be scratched.
  • the discharge passage 200a1 formed by the plurality of gaps 60 and the communication passage 200a communicates with the outside of the main body 30A. That is, the gaps 60 are connected to each other by a communication passage 200a and are configured to communicate with the outside air. Therefore, in the plate heat exchanger 30, the heat medium is released to the atmosphere, and the heat transfer device 100 provided with the plate heat exchanger 30 detects the leaked fluid flowing out to the outside with a detection sensor, and the detection sensor. The heat transfer device 100 can be stopped based on the detection of.
  • the plate heat exchanger 30 and the heat transfer device 100 have good heat exchange efficiency, have a simple structure, can be manufactured at low cost, can prevent mixing of the heat medium and the refrigerant, or detect refrigerant leakage.
  • an air conditioning system in which the second fluid is a flammable refrigerant the heat transfer device 100 circulates the first fluid indoors, and the second fluid does not circulate indoors. In this case, it is possible to prevent the flammable refrigerant, which should not normally circulate in the room, from flowing into the house 21 via the heat medium circuit 20, and the safety can be improved.
  • the communication passage 200a is connected so as to be connected to the front and rear gaps 60 closest to the flow direction DU of the first fluid by the shortest path, and the passage width is the short side of the gap 60. It consists of dimensions smaller than the dimensions. Therefore, the plate heat exchanger 30 can suppress performance deterioration due to a decrease in the area ratio of the brazing portion 61.
  • the flow path cross-sectional area of the continuous passage 200a is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. Therefore, the plate heat exchanger 30 can suppress performance deterioration due to a decrease in the area ratio of the brazing portion 61.
  • the discharge flow path 200a1 is formed so that the closest front and rear gaps 60 among the plurality of gaps 60 in the flow direction DU of the first fluid are connected by the communication passage 200a and extend in the flow direction DU. , The end of the discharge flow path 200a1 communicates with the outside of the main body 30A. Therefore, in the plate heat exchanger 30, the heat medium is released to the atmosphere, and the heat transfer device 100 provided with the plate heat exchanger 30 detects the leaked fluid flowing out to the outside with a detection sensor, and the detection sensor. The heat transfer device 100 can be stopped based on the detection of.
  • the plate 32a of the first heat transfer plate 32 constituting the heat medium flow path 38 has a higher strength at a position facing the first pitch 40a than at a position facing the second pitch 40b. It's getting higher.
  • the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged. Therefore, even if a factor of damage occurs in the plate heat exchanger 30, the region where the first heat transfer plate 32 and the second heat transfer plate 34 are not in contact with each other regardless of error factors such as manufacturing conditions or environmental conditions. Can be scratched.
  • the brazing portion 61 when the brazing portion 61 is projected on the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 is located in the region of the second pitch 40b. Does not exist. According to this configuration, the second pitch 40b has a wider pitch than the first pitch 40a, and the position of the second pitch 40b faces the gap 60 via the plate 32a of the first heat transfer plate 32. Can be configured at the desired position.
  • the gap portion 60 is a portion between the first heat transfer plate 32 and the second heat transfer plate 34 without the brazing portion 61. Therefore, even if a factor that damages the plate heat exchanger 30 should occur, the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged.
  • the first pitch 40b is at least one or more in the crossing direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged.
  • One or more are provided in one pitch with the pitch 40a in between.
  • the plate heat exchanger 30 has a second inner fin 33 so that the plate 32a at a position facing the second pitch 40b is provided at a position facing the region where the pressure rise occurs.
  • a pitch 40b is formed.
  • the plate 32a at a position facing the second pitch 40b has a lower strength than the plate 32a at a position facing the first pitch 40a, and when the pressure in the heat medium flow path 38 rises excessively, the first plate 32a It is more easily damaged than the plate 32a at a position facing 1 pitch 40a.
  • the second pitch 40b formed at the uneven pitch 40 is formed at another uneven pitch 40 located immediately before and after the uneven pitch 40 in the distribution direction DU of the heat medium flowing through the heat medium flow path 38. It is provided so as to be offset from the second pitch 40b in the crossing direction LR.
  • a plurality of second pitches 40b are formed adjacent to each other in the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged.
  • the plurality of second pitches 40b are not continuously formed.
  • the plate 32a at a position facing the second pitch 40b does not become excessively fragile.
  • the uneven pitch 40 having the second pitch 40b and the uneven pitch 40 having another second pitch 40b formed at a position different from the uneven pitch 40 are provided.
  • a plurality of second pitches 40b are formed adjacent to each other in the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. Also, the plurality of second pitches 40b are not continuously formed. As a result, in the plate heat exchanger 30, the plate 32a at a position facing the second pitch 40b does not become excessively fragile.
  • the value obtained by dividing the pitch width P1 of the first pitch 40a by the pitch width P2 of the second pitch 40b is smaller than 1. According to this configuration, the plate heat exchanger 30 can easily manage the fragility of the first heat transfer plate 32 at a position facing the second pitch 40b. According to the first embodiment, the value obtained by dividing the pitch width P1 of the first pitch 40a by the pitch width P2 of the second pitch 40b is larger than 0.5. According to this configuration, in the plate heat exchanger 30, the plate 32a at the position facing the second pitch 40b has a certain strength without becoming excessively fragile, and the plate at the position facing the second pitch 40b. It is easy to manage the fragility of 32a.
  • the uneven pitch 40 of the first inner fin 33 extends parallel to the portion orthogonal to the intersecting direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow path 38. It has a portion and is formed so that a portion that bends at a right angle is continuous. According to this configuration, the first inner fin 33 is easy to process and easy to manufacture.
  • the heat medium as the first fluid is water or brine.
  • the first heat transfer plate 32 is damaged when the heat medium causes deposition expansion or an excessive pressure rise in the heat medium flow path 38 due to freezing or the like. Since the plate 32a at the position facing the second pitch 40b has lower strength than the plate 32a at the position facing the first pitch 40a, it is more easily damaged than the plate 32a at the position facing the first pitch 40a. There is. Then, when the plate 32a of the first heat transfer plate 32 is damaged at a position facing the second pitch 40b, the plate heat exchanger 30 can discharge the heat medium to the gap portion 60.
  • the second fluid flowing through the refrigerant flow path 39 is a refrigerant.
  • the plate heat exchanger 30 can discharge the heat medium to the gap 60 when the plate 32a of the first heat transfer plate 32 is damaged at a position facing the second pitch 40b. Therefore, even if the refrigerant is a refrigerant such as a flammable refrigerant and the plate 32a of the first heat transfer plate 32 is destroyed at a position facing the second pitch 40b, the heat medium and the refrigerant are not mixed. Therefore, it is possible to prevent a refrigerant such as a flammable refrigerant from flowing into the house 21 via the heat medium circuit 20 through which the heat medium flows, and it is possible to improve safety.
  • the uneven pitch 50 of the second inner fin 35 arranged in the refrigerant flow path 39 is formed by repeating unevenness with a constant pitch width.
  • the uneven pitch 50 of the second inner fin 35 is not provided with a second pitch 40b like the uneven pitch 40 of the first inner fin 33.
  • the pitch width P3 of the uneven pitch 50 formed on the second inner fin 35 is the pitch width P1 of the uneven pitch 40 formed on the first inner fin 33.
  • the pitch width is smaller than P2, and the unevenness is fine.
  • the refrigerant flow path 39 through which the refrigerant such as the flammable refrigerant flows has higher strength than the heat medium flow path 38 in which the first inner fin 33 having the second pitch 40b is arranged, and is higher than the heat medium flow path 38. It is hard to get hurt in comparison. Therefore, the plate heat exchanger 30 can prevent the refrigerant from flowing into the gap 60 from the refrigerant flow path 39.
  • the pitch width P3 of the uneven pitch 50 formed on the second inner fin 35 is the pitch width P1 and the pitch width of the uneven pitch 40 formed on the first inner fin 33. It is smaller than P2 and has fine irregularities.
  • the uneven pitch 40 and the uneven pitch 50 can be optimally configured according to the physical characteristics such as the viscosity of each of the heat medium and the refrigerant.
  • the heat transfer device 100 includes the above-mentioned plate heat exchanger 30. Therefore, the heat transfer device 100 can exert the above-mentioned effect of the plate heat exchanger 30. For example, in the heat transfer device 100, even if a factor that damages the plate heat exchanger 30 should occur, the first heat transfer plate 32 and the second heat transfer plate 34 are connected regardless of error factors such as manufacturing conditions or environmental conditions. The area that is not in contact can be scratched.
  • FIG. 9 is a plan view of the first inner fin 33 according to the second embodiment, and is a perspective view of the first heat transfer plate 32 and the second heat transfer plate 34 projected onto the stacking direction FB. It is a figure which showed only the layer of a member and a gap 60. Note that FIG. 9 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 9 shows a part of the distribution direction DU of the first inner fin 33.
  • the components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the characteristic portions thereof will be described.
  • the communication passage 200b connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid.
  • the communication passage 200b is formed so as to diagonally connect the gap portions 60 in the combination of the gap portions 60 arranged alternately on the left and right in the distribution direction DU.
  • the passage width of the continuous passage 200b is smaller than the short dimension of the gap 60. Further, the flow path cross-sectional area of the communication passage 200b is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. In the plate heat exchanger 30, the gap portion 60 and the communication passage 200b are connected to form a discharge passage 200b1.
  • the discharge flow path 200b1 intersects the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, with respect to the flow direction DU. It is formed so as to have an oblique TI located between the LR and the LR.
  • the closest front and rear gaps 60 among the plurality of gaps 60 are connected by the communication passage 200b, and the discharge flow path 200b1 is oblique between the flow direction DU and the intersection direction LR. It is formed so as to extend in the direction TI. Further, in the discharge flow path 200b1, the end portion of the discharge flow path 200b1 communicates with the outside of the main body 30A.
  • the flow of the first fluid and the second fluid in the flow direction DU is longer than the flow path width of the crossing direction LR.
  • the flow path length of the flow direction DU of the first fluid is always longer than the flow path width of the crossing direction LR, the discharge flow formed along the direction between them and communicates with the outside air.
  • the path 200b1 is shorter than the discharge flow path 200a1 formed along the distribution direction DU. Therefore, in the discharge flow path 200b1, the distance from the damaged portion of the plate 32a to the outside air is short, and the flow path resistance of the leaking fluid can be reduced. Therefore, the plate heat exchanger 30 according to the second embodiment can secure a sufficient outflow flow rate of the leaked fluid to be detected externally.
  • FIG. 9 shows the upper corner of the first gap 60 in the left direction L and the second diagonally upward left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the lower corner of the gap 60 in the right direction R is connected by a communication passage 200b.
  • FIG. 9 shows a third position located at the lower corner of the first gap 60 in the right direction R and diagonally lower right in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the upper corner of the gap portion 60 in the left direction L is connected by a communication passage 200b.
  • FIG. 10 is a plan view of the first inner fin 33 according to the first modification of the second embodiment, and is a perspective view when projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. Of these, only the layers of the heat transfer member and the gap 60 are shown. Note that FIG. 10 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 10 shows a part of the distribution direction DU of the first inner fin 33.
  • the communication passage 200c connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid.
  • the communication passage 200c is formed so as to connect the gaps 60 in the crossing direction LR in the combination of the gaps 60 arranged alternately on the left and right in the distribution direction DU. That is, the continuous passage 200c is formed so as to connect any two rows of the gaps 60 arranged in a staggered pattern in the crossing direction LR.
  • the passage width of the continuous passage 200c is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the continuous passage 200c is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60.
  • the gap portion 60 and the communication passage 200c are connected to form a discharge passage 200c1.
  • the discharge flow path 200c1 formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
  • the discharge flow path 200c1 has a crossing direction LR whose passage direction intersects with the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged. It is formed to be.
  • the plate heat exchanger 30 can further suppress the fluid resistance of the leaked fluid, prevent the mixing of the first fluid and the second fluid, and allow a sufficient amount of leaked fluid to flow out to the outside. be able to. Then, the heat transfer device 100 can stop the heat transfer device 100 by detecting the leaked fluid leaked from the plate heat exchanger 30, and can prevent damage to the air conditioner.
  • FIG. 10 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the lower corner of the gap 60 in the right direction R of No. 2 is connected by a communication passage 200c.
  • FIG. 10 shows a third position located diagonally upward to the right in the flow direction of the first fluid and the upper corner of the right direction R of the first gap 60 when the flow direction of the first fluid is the upward direction U.
  • the lower corner of the gap 60 in the left direction L of No. 3 is connected by a communication passage 200c.
  • the communication passage 200c is formed so as to connect the gaps 60 formed alternately in the upper and lower directions in the crossing direction LR intersecting the flow direction DU of the first fluid.
  • FIG. 11 is a plan view of the first inner fin 33 according to the second modification of the second embodiment, and is a perspective view when projected in the overlapping direction of the first heat transfer plate 32 and the second heat transfer plate 34. , Only the layers of the heat transfer member and the gap 60 are shown. Note that FIG. 11 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 11 shows a part of the distribution direction DU of the first inner fin 33.
  • the communication passage 200a connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid.
  • the communication passage 200a is formed so as to connect the gaps 60 formed in two rows adjacent to the crossing direction LR to the flow direction DU in the combination of the gaps 60 arranged alternately on the left and right in the flow direction DU. ing.
  • the communication passage 200a is formed in a straight line so as to extend in the distribution direction DU.
  • the gap portion 60 and the linearly formed communication passage 200a are connected to form the discharge passage 200a2.
  • the discharge flow path 200a2 formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
  • the discharge flow path 200a2 has a passage direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, and the discharge flow path 200a2 has a discharge flow path 200a2. It is formed in a straight line.
  • the discharge flow path 200a2 has a flow path direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, and is also a discharge flow path. 200a2 is formed in a straight line. Therefore, in the plate heat exchanger 30, the passage resistance of the leaked fluid is further reduced, and a sufficient amount of leaked fluid flows out of the plate heat exchanger 30 to be detected outside the plate heat exchanger 30. Can be made to.
  • FIG. 12 is a plan view of the first inner fin 33 according to the third embodiment, and is a perspective view of the first heat transfer plate 32 and the second heat transfer plate 34 projected onto the stacking direction FB. It is a figure which showed only the layer of a member and a gap 60. Note that FIG. 12 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 12 shows a part of the distribution direction DU of the first inner fin 33.
  • the components having the same functions and functions as those of the first embodiment or the second embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the characteristic portions thereof will be described.
  • the communication passage 200d connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid.
  • the communication passage 200d is formed so as to diagonally connect the gaps 60 arranged alternately on the left and right in the distribution direction DU.
  • the passage width of the continuous passage 200d is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the continuous passage 200d is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60.
  • the gap portion 60 and the communication passage 200d are connected to form a discharge passage 200d1.
  • the discharge flow path 200d1 formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
  • the discharge flow path 200d1 intersects the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, with respect to the flow direction DU. It is formed in any direction with the direction LR. Therefore, the plate heat exchanger 30 leaks in both the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and the crossing direction LR with respect to the flow direction DU. It is formed in a structure that can discharge fluid.
  • the flow paths in the flow directions DU of the first fluid and the second fluid are longer than the flow path width of the crossing direction LR.
  • the discharge flow path 200d1 has a flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and an intersection direction LR intersecting the flow direction DU. , It is formed in either direction. That is, the discharge flow path 200d1 is formed in the vertical and horizontal directions of the distribution direction DU and the crossing direction LR, and is formed in a grid pattern. Therefore, when the leaked fluid flows out from the inside of the plate heat exchanger 30 to the outside, the leaked fluid can flow out while being divided in a grid pattern from the gap 60 at the outflow start position. Therefore, the plate heat exchanger 30 can reduce the passage resistance of the leaked fluid, and can secure a sufficient outflow flow rate of the leaked fluid to be detected outside the plate heat exchanger 30.
  • FIG. 12 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the lower corner of the gap 60 in the right direction R of No. 2 is connected by a continuous passage 200d.
  • the lower corner of the first gap 60 in the left direction L and the third gap 60 located diagonally lower to the left in the flow direction of the first fluid Shows a configuration in which the upper corner of the right direction R of the above is connected by a continuous passage 200d.
  • FIG. 12 shows a second position located diagonally upward to the right in the flow direction of the first fluid and the upper corner of the right direction R of the first gap 60 when the flow direction of the first fluid is the upward direction U.
  • the lower corner of the gap 60 in the left direction L of No. 4 is connected by a communication passage 200d.
  • the upper corner of the left direction L is connected by a continuous passage 200d.
  • FIG. 13 is a plan view of the first inner fin 33 according to the first modification in the third embodiment, and is a perspective view when projected in the overlapping direction of the first heat transfer plate 32 and the second heat transfer plate 34. , Only the layers of the heat transfer member and the gap 60 are shown. Note that FIG. 13 does not show the heat transfer member such as the brazed portion 61. Further, FIG. 13 shows a part of the distribution direction DU of the first inner fin 33.
  • the plate heat exchanger 30 has a continuous passage 200a and a continuous passage 200c.
  • the communication passage 200a connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid.
  • the communication passage 200a is formed so as to connect the gaps 60 arranged alternately on the left and right in the distribution direction DU.
  • the communication passage 200c connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid.
  • the communication passage 200c is formed so as to connect the gaps 60 in the crossing direction LR in the combination of the gaps 60 arranged alternately on the left and right in the distribution direction DU.
  • the passage width of the continuous passage 200a is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the communication passage 200a is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. Further, the passage width of the continuous passage 200c is configured to be smaller than the short dimension of the gap portion 60. Further, the flow path cross-sectional area of the continuous passage 200c is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60.
  • the gap 60 is connected to the communication passage 200a and the communication passage 200c to form a discharge passage 200e. In the plate heat exchanger 30, the discharge flow path 200e formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
  • the discharge flow path 200e intersects the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, with respect to the flow direction DU. It is formed in any direction with the direction LR. Therefore, the plate heat exchanger 30 leaks in both the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and the crossing direction LR with respect to the flow direction DU. It is formed in a structure that can discharge fluid.
  • the discharge flow path 200e includes the number of passages formed in the distribution direction DU by connecting the gap portion 60 and the communication passage 200a, and the passage formed in the intersection direction LR by connecting the gap portion 60 and the communication passage 200c. Is different from the number of.
  • the number of passages formed in the distribution direction DU by connecting the gap portion 60 and the communication passage 200a is the number of passages formed in the intersection direction LR by connecting the gap portion 60 and the communication passage 200c. More than.
  • the number of passages formed in the distribution direction DU by connecting the gap portion 60 and the communication passage 200a is formed in the intersection direction LR by connecting the gap portion 60 and the communication passage 200c. It is not limited to a configuration that is larger than the number of passages.
  • the discharge flow path 200e has a flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and an intersection direction LR intersecting the flow direction DU.
  • a flow path is formed in either direction. That is, the discharge flow path 200e is formed in the vertical and horizontal directions of the distribution direction DU and the crossing direction LR, and is formed in a grid pattern.
  • the length of the flow path formed in the flow direction DU which is the flow direction of the first fluid and the second fluid is the length of the flow path formed in the intersection direction LR intersecting the flow direction DU. Longer than the length. Therefore, the flow path formed in the flow direction DU has a longer flow path length and a larger fluid resistance than the flow path formed in the crossing direction LR.
  • the number of passages formed by connecting the gap portion 60 and the communication passage 200a in the distribution direction DU connects the gap portion 60 and the communication passage 200c.
  • the plate heat exchanger 30 is formed so that the number of flow paths in the flow direction DU is larger than the number of flow paths in the crossing direction LR, so that the plate heat exchanger 30 is detected outside the plate heat exchanger 30. It can be configured with the minimum number of passages required to ensure a sufficient outflow of leaked fluid. Therefore, the plate heat exchanger 30 can suppress a decrease in the area ratio of the brazed portion 61 due to the formation of the discharge flow path 200e, and by extension, a plate type heat exchanger based on the decrease in the area ratio of the brazed portion 61. It is possible to suppress the performance deterioration of 30.
  • the plate heat exchanger 30 can further suppress the fluid resistance of the leaked fluid, prevent the mixing of the first fluid and the second fluid, and allow a sufficient amount of leaked fluid to flow out to the outside. be able to. Then, the heat transfer device 100 can stop the heat transfer device 100 by detecting the leaked fluid leaked from the plate heat exchanger 30, and can prevent damage to the air conditioner.
  • FIG. 13 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the lower corner of the gap 60 in the right direction R of No. 2 is connected by a communication passage 200a.
  • FIG. 6 shows a third position located at the lower corner of the first gap 60 in the left direction L and diagonally lower left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U.
  • the upper corner of the gap portion 60 in the right direction R is connected by a communication passage 200a.
  • the communication passage 200a is formed so as to connect the gaps 60 formed alternately on the left and right in the flow direction DU of the first fluid.
  • some of the gaps 60 among the plurality of gaps 60 are connected to each other by the communication passage 200c as described below.
  • the flow direction of the first fluid is upward U
  • the lower corner of the right direction R is connected by a connecting passage 200c.
  • the lower corner of the left direction L of 60 is connected by a continuous passage 200c.
  • the communication passage 200c is formed so as to connect the gaps 60 formed alternately in the upper and lower directions in the crossing direction LR intersecting the flow direction DU of the first fluid.
  • FIG. 14 is an explanatory view showing a cross-sectional view of the plate heat exchanger 30 according to the fourth embodiment.
  • the components having the same functions and functions as those of the first embodiment, the second embodiment or the third embodiment are designated by the same reference numerals and the description thereof is omitted, and only the characteristic portions thereof are omitted. Will be explained.
  • only the first heat transfer plate 32 is a double wall in which two metal plates of the plate 32a and the plate 32b are overlapped. It is configured in.
  • the length of the first inner fin 33 is substantially the same as the length of the second inner fin 35. That is, in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the length of the orthogonal portion 41 of the first inner fin 33 is substantially the same as the length of the orthogonal portion 51 of the second inner fin 35. The length.
  • the brazing portion 61 when the brazing portion 61 is projected in the overlapping direction of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 exists in the region of the second pitch 40b. do not.
  • the second pitch 40b has a wider pitch than the first pitch 40a, and the position of the second pitch 40b faces the gap 60 via the plate 32a of the first heat transfer plate 32. Can be configured at the desired position. Therefore, even if a factor that damages the plate heat exchanger 30 should occur, the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged.
  • the plate heat exchanger 30 has a double wall structure only in the first heat transfer plate 32. Therefore, the plate heat exchanger 30 has a function that the plate 32a at the position facing the second pitch 40b is easily damaged in comparison with the plate 32a at the position facing the first pitch 40a, and heat is generated. The resistance can be further suppressed and the heat exchange performance can be improved.
  • the plate thickness of the plate 32a is set to the plate 32b and the second heat transfer plate 34. It is desirable to make it smaller than the plate thickness of.
  • the length of the second inner fin 35 is the same as the length of the first inner fin 33 in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34.
  • the plate type heat exchanger 30 the larger the length of the second inner fin 35, the larger the surface area of the second inner fin 35, and the heat exchange performance can be improved. Therefore, in the plate heat exchanger 30, the length of the second inner fin 35 is made larger than the length of the first inner fin 33 in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. You may. Even in this case, the plate heat exchanger 30 has a great influence on the function that the plate 32a at the position facing the second pitch 40b is easily damaged in comparison with the plate 32a at the position facing the first pitch 40a. I will not give it.
  • the heat transfer device 100 described above includes the plate heat exchanger 30 according to any one of the first to fourth embodiments. Therefore, in the heat transfer device 100, the same effect as that of any one of the first to fourth embodiments can be obtained.
  • each of the above embodiments 1 to 4 can be implemented in combination with each other. Further, the configuration shown in the above embodiment is an example, and can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This plate-type heat exchanger comprises a main body in which a plurality of heat transfer plates are stacked, and a first flow path through which a first fluid flows and a second flow path through which a second fluid flows are alternatively formed with the heat transfer plates serving as borders. The main body forms the first flow path between a first heat transfer plate and a second heat transfer plate, and has an inner fin in the first flow path. The first heat transfer plate has two plates and a plurality of brazed sections for connecting the two plates. A plurality of hollow sections and a communication path, for connecting hollow sections of the plurality of hollow sections to each other, are formed inside the first heat transfer plate. The inner fin has, in the flowing direction, a plurality of recess-and-protrusion pitches formed in an recessed and protruding manner. At least one or more of the recess-and-protrusion pitches have a first pitch that abuts the first heat transfer plate and the second heat transfer plate, and a second pitch that abuts the second heat transfer plate and is larger than the first pitch. When the inside of the main body is projected in the stacking direction, the plurality of hollow sections are formed in the region of the second pitch, and a discharge flow path, formed by the plurality of hollow sections and the communication path, is configured to communicate with the outside of the body.

Description

プレート式熱交換器及び伝熱装置Plate heat exchanger and heat transfer device
 本発明は、内部に第1流体を流通させる一対の第1伝熱プレートと内部に第2流体を流通させる一対の第2伝熱プレートとを複数重ねたプレート式熱交換器及び伝熱装置に関するものである。 The present invention relates to a plate-type heat exchanger and a heat transfer device in which a plurality of a pair of first heat transfer plates for circulating a first fluid inside and a pair of second heat transfer plates for passing a second fluid inside are stacked. It is a thing.
 従来、四隅に開口部を有し、表面が凹凸又は波形に成形された伝熱プレートを複数積層し、伝熱プレートの外壁部及び開口部周辺がロウ付けされ接合されたプレート式熱交換器が知られている(例えば、特許文献1参照)。特許文献1のプレート式熱交換器は、第一流体が流れる第一流路と第二流体が流れる第二流路とが交互に形成されている。また、特許文献1のプレート式熱交換器は、四隅の開口部のそれぞれが連なって、第一流路に対して第一流体を流出入させる第一ヘッダーが形成されており、第二流路に対して第二流体を流出入させる第二ヘッダーが形成されている。そして、各伝熱プレートは、2枚の金属プレートが重ね合わされた2重壁(ダブルウォール)で構成されているものである。 Conventionally, a plate-type heat exchanger having openings at four corners and having a plurality of heat transfer plates whose surfaces are formed to be uneven or corrugated is laminated, and the outer wall of the heat transfer plate and the periphery of the openings are brazed and joined. It is known (see, for example, Patent Document 1). In the plate heat exchanger of Patent Document 1, a first flow path through which the first fluid flows and a second flow path through which the second fluid flows are alternately formed. Further, in the plate heat exchanger of Patent Document 1, each of the openings at the four corners is connected to form a first header for allowing the first fluid to flow in and out of the first flow path, and the second flow path has a first header. On the other hand, a second header is formed to allow the second fluid to flow in and out. Each heat transfer plate is composed of a double wall in which two metal plates are superposed.
 特許文献1のプレート式熱交換器は、凍結などの要因によって伝熱プレートが傷つき、万が一亀裂が発生した場合でも、伝熱プレートがダブルウォール構造となっている。そのため、第一流路及び第二流路の両流路が貫通して冷媒が室内側へ漏洩するのを防止することができる。また、特許文献1のプレート式熱交換器は、外部に流出した漏洩流体を検知センサーで検知し、プレート式熱交換器を備えた装置を停止させることにより、その装置の破損などを防止することができる。 The plate-type heat exchanger of Patent Document 1 has a double-wall structure even if the heat transfer plate is damaged due to factors such as freezing and a crack should occur. Therefore, it is possible to prevent the refrigerant from leaking to the indoor side through both the first flow path and the second flow path. Further, the plate heat exchanger of Patent Document 1 detects the leaked fluid flowing out to the outside with a detection sensor and stops the device provided with the plate heat exchanger to prevent damage to the device. Can be done.
特開2014-66411号公報Japanese Unexamined Patent Publication No. 2014-66411
 しかしながら、プレート式熱交換器の損傷状態は、製造条件あるいは環境条件といった誤差因子によって決まる。そのため、生産される全てのプレート式熱交換器が長期的に内部の流体の漏洩を防止する機能を果たすことは困難であり、プレート式熱交換器において、第1伝熱プレートと第2伝熱プレートとを接触させた領域が傷つく可能性は存在する。第1伝熱プレートと第2伝熱プレートとを接触させた領域が傷つくと、第1伝熱プレートと第2伝熱プレートとの双方が傷つくことによって、第1流体と第2流体とが混合するおそれがある。例えば、第2流体が可燃性冷媒、あるいは、有害な冷媒(以下、これらを可燃性冷媒として説明する)であって、第1流体を室内に流通させ、第2流体を室内に流通させない空調システムにおいて、第1流体と第2流体とが混合すると、本来は室内に循環しないはずの可燃性冷媒が室内に流入するおそれがある。 However, the damaged state of the plate heat exchanger is determined by error factors such as manufacturing conditions or environmental conditions. Therefore, it is difficult for all the plate-type heat exchangers produced to fulfill the function of preventing the leakage of the internal fluid in the long term, and in the plate-type heat exchanger, the first heat transfer plate and the second heat transfer plate are used. There is a possibility that the area in contact with the plate will be damaged. When the area where the first heat transfer plate and the second heat transfer plate are in contact with each other is damaged, both the first heat transfer plate and the second heat transfer plate are damaged, so that the first fluid and the second fluid are mixed. There is a risk of doing so. For example, an air conditioning system in which the second fluid is a flammable refrigerant or a harmful refrigerant (hereinafter, these will be described as flammable refrigerants), and the first fluid is circulated indoors and the second fluid is not circulated indoors. When the first fluid and the second fluid are mixed, a flammable refrigerant that should not normally circulate in the room may flow into the room.
 そこで、プレート式熱交換器は、第1伝熱プレートあるいは第2伝熱プレートが万が一傷ついたとしても、第1流体と第2流体との混合を防ぐことが望まれる。プレート式熱交換器は、第1伝熱プレートと第2伝熱プレートとを接触させていない領域が傷ついた場合では、第1伝熱プレート又は第2伝熱プレートのいずれか一方のみが傷つくことによって、第1流体と第2流体とが混合するおそれは低下する。そのため、プレート式熱交換器は、第1伝熱プレートあるいは第2伝熱プレートが万が一傷ついたとしても、製造条件あるいは環境条件といった誤差因子によらず、第1伝熱プレートと第2伝熱プレートとを接触させていない領域が傷つくことが望ましい。 Therefore, it is desired that the plate heat exchanger prevent the first fluid and the second fluid from being mixed even if the first heat transfer plate or the second heat transfer plate is damaged by any chance. In the plate heat exchanger, when the area where the first heat transfer plate and the second heat transfer plate are not in contact is damaged, only one of the first heat transfer plate and the second heat transfer plate is damaged. Therefore, the possibility that the first fluid and the second fluid are mixed is reduced. Therefore, in the plate heat exchanger, even if the first heat transfer plate or the second heat transfer plate is damaged, the first heat transfer plate and the second heat transfer plate are not affected by error factors such as manufacturing conditions or environmental conditions. It is desirable that the area that is not in contact with is damaged.
 本発明は、上述のような課題を解決するためのものであり、第1伝熱プレートあるいは第2伝熱プレートが万が一傷ついたとしても、製造条件あるいは環境条件といった誤差因子によらず、第1伝熱プレートと第2伝熱プレートとを接触させていない領域が傷つくプレート式熱交換器及び伝熱装置を提供することを目的とする。 The present invention is for solving the above-mentioned problems, and even if the first heat transfer plate or the second heat transfer plate is damaged, the first heat transfer plate is not affected by error factors such as manufacturing conditions or environmental conditions. It is an object of the present invention to provide a plate type heat exchanger and a heat transfer device in which a region where the heat transfer plate and the second heat transfer plate are not in contact with each other is damaged.
 本発明に係るプレート式熱交換器は、複数の伝熱プレートが積層され、第1流体が流れる第1流路と第2流体が流れる第2流路とが、複数の伝熱プレートの各伝熱プレートを境にして交互に形成されている本体を備え、本体は、複数の伝熱プレートのうち、互いに対向して配置されている第1の伝熱プレートと第2の伝熱プレートとの間に第1流路を形成しており、第1流路に複数の凹凸状に屈曲した部分が形成された板状のインナーフィンを有し、第1の伝熱プレートは、互いに対向する2枚のプレートと、2枚のプレートの間に設けられ2枚のプレートを接続する複数のロウ付け部と、を有し、第1の伝熱プレート内には、2枚のプレートと複数のロウ付け部とによって形成された空間である複数の空隙部と、複数の空隙部の空隙部同士を接続する連通路と、が形成されており、インナーフィンは、第1流体の流通方向に垂直なインナーフィンの断面において凹凸状に形成された凹凸ピッチを、流通方向に複数有し、少なくとも1つ以上の凹凸ピッチは、第1の伝熱プレート及び第2の伝熱プレートと当接する第1ピッチと、第2の伝熱プレートと当接し、複数の伝熱プレートの積層方向と前記流通方向とに垂直な交差方向において、第1ピッチよりも大きい第2ピッチと、を有し、本体の内部を、積層方向に投影した場合に、複数の空隙部は、第2ピッチの領域に形成されており、複数の空隙部と連通路とによって形成される排出流路が本体の外部と連通しているものである。 In the plate-type heat exchanger according to the present invention, a plurality of heat transfer plates are laminated, and the first flow path through which the first fluid flows and the second flow path through which the second fluid flows are each of the plurality of heat transfer plates. A main body is provided which is alternately formed with a heat plate as a boundary, and the main body is a heat transfer plate of a first heat transfer plate and a second heat transfer plate which are arranged so as to face each other among a plurality of heat transfer plates. A first flow path is formed between them, and the first flow path has a plate-shaped inner fin in which a plurality of concave-convex bent portions are formed, and the first heat transfer plates face each other 2 It has one plate and a plurality of brazing portions provided between the two plates to connect the two plates, and the two plates and the plurality of braces are contained in the first heat transfer plate. A plurality of gaps, which are spaces formed by the attachment portion, and a communication passage connecting the gaps of the plurality of gaps are formed, and the inner fin is perpendicular to the flow direction of the first fluid. A plurality of uneven pitches formed in a concave-convex shape in the cross section of the inner fin are provided in the flow direction, and at least one uneven pitch is a first pitch that abuts on the first heat transfer plate and the second heat transfer plate. And a second pitch that is in contact with the second heat transfer plate and is larger than the first pitch in the intersecting direction perpendicular to the stacking direction and the flow direction of the plurality of heat transfer plates, and has the inside of the main body. Is projected in the stacking direction, the plurality of voids are formed in the region of the second pitch, and the discharge flow path formed by the plurality of voids and the communication passage communicates with the outside of the main body. It is something that is.
 本発明に係る伝熱装置は、本発明に係るプレート式熱交換器を備えたものである。 The heat transfer device according to the present invention includes the plate type heat exchanger according to the present invention.
 本発明によれば、第1流路内のインナーフィンは、第1の伝熱プレート及び第2の伝熱プレートと当接する第1ピッチと、第2の伝熱プレートと当接する第2ピッチと、を有する凹凸ピッチを備えている。この第2ピッチは、複数の伝熱プレートの積層方向と流通方向とに垂直な交差方向において第1ピッチよりも大きく形成されている。そして、本体の内部を、積層方向に投影した場合に、複数の空隙部は、第2ピッチの領域に形成されているものである。このため、第1流路を構成する第1の伝熱プレートのプレートは、第2ピッチと対向している位置が、第1ピッチと対向している位置と比較して強度が低く形成されている。そのため、第1の伝熱プレートに万が一傷つく要因が生じたとしても、第1の伝熱プレートのプレートは、第1ピッチと対向している位置よりも、第2ピッチと対向している位置が傷つきやすくなる。したがって、プレート式熱交換器は万が一傷つく要因が生じたとしても、製造条件あるいは環境条件といった誤差因子によらず、第1の伝熱プレートと第2の伝熱プレートとを接触させていない領域に傷が生じるようにできる。 According to the present invention, the inner fins in the first flow path have a first pitch that abuts on the first heat transfer plate and the second heat transfer plate, and a second pitch that abuts on the second heat transfer plate. It has a concavo-convex pitch with. The second pitch is formed larger than the first pitch in the intersecting direction perpendicular to the stacking direction and the distribution direction of the plurality of heat transfer plates. When the inside of the main body is projected in the stacking direction, the plurality of voids are formed in the region of the second pitch. Therefore, the plate of the first heat transfer plate constituting the first flow path is formed so that the position facing the second pitch is lower in strength than the position facing the first pitch. There is. Therefore, even if a factor that causes damage to the first heat transfer plate should occur, the position of the plate of the first heat transfer plate facing the second pitch is higher than the position facing the first pitch. It becomes easy to get hurt. Therefore, even if a factor that damages the plate heat exchanger occurs, the first heat transfer plate and the second heat transfer plate are not in contact with each other regardless of error factors such as manufacturing conditions or environmental conditions. It can be scratched.
実施の形態1に係る伝熱装置を示す概略構成図である。It is a schematic block diagram which shows the heat transfer apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係るプレート式熱交換器を示す分解斜視図である。It is an exploded perspective view which shows the plate type heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係るプレート式熱交換器の一部を横断面にて示す説明図である。It is explanatory drawing which shows a part of the plate type heat exchanger which concerns on Embodiment 1 in the cross section. 実施の形態1に係る2つの第1インナーフィンの間の構成を示す部分斜視図である。It is a partial perspective view which shows the structure between two 1st inner fins which concerns on Embodiment 1. FIG. 実施の形態1に係る第1インナーフィンを示す斜視図である。It is a perspective view which shows the 1st inner fin which concerns on Embodiment 1. FIG. 実施の形態1に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図である。It is a top view of the 1st inner fin which concerns on Embodiment 1, and is the perspective view when it projected in the overlapping direction of the 1st heat transfer plate and the 2nd heat transfer plate. 実施の形態1に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図のうち、第1インナーフィンのみを示した図である。FIG. 5 is a plan view of the first inner fin according to the first embodiment, and is a view showing only the first inner fin among the perspective views when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. be. 実施の形態1に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部の層のみ示した図である。It is a top view of the 1st inner fin which concerns on Embodiment 1, and shows only the layer of a heat transfer member and a gap part in the perspective view when projected in the overlapping direction of a 1st heat transfer plate and a 2nd heat transfer plate. It is a figure. 実施の形態2に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部の層のみ示した図である。FIG. 5 is a plan view of the first inner fin according to the second embodiment, and shows only the heat transfer member and the layer of the gap portion in the perspective view when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. It is a figure. 実施の形態2の変形例1に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部の層のみ示した図である。It is a plan view of the 1st inner fin which concerns on the modification 1 of Embodiment 2, and in the perspective view when it projected in the overlapping direction of a 1st heat transfer plate and a 2nd heat transfer plate, a heat transfer member and a gap part It is the figure which showed only the layer of. 実施の形態2の変形例2に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部の層のみ示した図である。It is a plan view of the 1st inner fin which concerns on the modification 2 of Embodiment 2, and in the perspective view when it projected in the overlapping direction of a 1st heat transfer plate and a 2nd heat transfer plate, a heat transfer member and a gap part It is the figure which showed only the layer of. 実施の形態3に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部の層のみ示した図である。FIG. 5 is a plan view of the first inner fin according to the third embodiment, and shows only the heat transfer member and the layer of the gap portion in the perspective view when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. It is a figure. 実施の形態3に変形例1に係る第1インナーフィンの平面図であり、第1伝熱プレート及び第2伝熱プレートの重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部の層のみ示した図である。FIG. 3 is a plan view of the first inner fin according to the first modification in the third embodiment, and the heat transfer member and the gap portion in the perspective view when projected in the overlapping direction of the first heat transfer plate and the second heat transfer plate. It is the figure which showed only the layer of. 実施の形態4に係るプレート式熱交換器を横断面にて示す説明図である。It is explanatory drawing which shows the plate type heat exchanger which concerns on Embodiment 4 in the cross section.
 以下、実施の形態に係るプレート式熱交換器30及び伝熱装置100について図面を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状などが実際のものとは異なる場合があり、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」及び「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。また、断面図の図面においては、視認性に鑑みて適宜ハッチングが省略されている。 Hereinafter, the plate heat exchanger 30 and the heat transfer device 100 according to the embodiment will be described with reference to the drawings. In the following drawings including FIG. 1, the relative dimensional relationship and shape of each component may differ from the actual ones, and the form of the component shown in the entire specification is merely an example. The description is not limited to these. Further, in the following drawings, those having the same reference numerals are the same or equivalent thereof, and this shall be common to the entire text of the specification. In addition, terms that indicate directions (for example, "top", "bottom", "right", "left", "front", and "rear") are used as appropriate for ease of understanding. For convenience of explanation, it is described as such, and does not limit the arrangement and orientation of the device or component. Further, in the cross-sectional view, hatching is appropriately omitted in view of visibility.
実施の形態1.
<伝熱装置100の構成>
 図1は、実施の形態1に係る伝熱装置100を示す概略構成図である。図1に示すように、伝熱装置100は、第1流体である熱媒体を冷却又は加熱する冷媒回路10と、熱媒体を家屋内に流通させる熱媒体回路20と、を備える。冷媒回路10は、屋外の室外機11に搭載されている。熱媒体回路20は、室外機11から家屋21内に熱媒体を循環させている。
Embodiment 1.
<Structure of heat transfer device 100>
FIG. 1 is a schematic configuration diagram showing a heat transfer device 100 according to the first embodiment. As shown in FIG. 1, the heat transfer device 100 includes a refrigerant circuit 10 that cools or heats a heat medium as a first fluid, and a heat medium circuit 20 that distributes the heat medium inside a house. The refrigerant circuit 10 is mounted on the outdoor unit 11. The heat medium circuit 20 circulates the heat medium from the outdoor unit 11 into the house 21.
<室外機11の構成>
 室外機11は、圧縮機12、流路切替装置13、プレート式熱交換器30、減圧装置14、及び、室外熱交換器15を有する。室外機11は、圧縮機12、流路切替装置13、プレート式熱交換器30、減圧装置14、及び、室外熱交換器15が順に冷媒配管16で環状に接続されて冷媒回路10を構成する。室外機11は、ヒートポンプ装置である。冷媒回路10内には、第2流体である冷媒が流通する。
<Structure of outdoor unit 11>
The outdoor unit 11 includes a compressor 12, a flow path switching device 13, a plate heat exchanger 30, a decompression device 14, and an outdoor heat exchanger 15. In the outdoor unit 11, the compressor 12, the flow path switching device 13, the plate heat exchanger 30, the decompression device 14, and the outdoor heat exchanger 15 are sequentially connected in order by the refrigerant pipe 16 to form the refrigerant circuit 10. .. The outdoor unit 11 is a heat pump device. A refrigerant, which is a second fluid, flows in the refrigerant circuit 10.
 圧縮機101は、吸入した冷媒を高温高圧の状態に圧縮して吐出する流体機械である。圧縮機12としては、たとえば、スクロール圧縮機又はロータリ圧縮機など種々のタイプの圧縮機が用いられる。 The compressor 101 is a fluid machine that compresses the sucked refrigerant into a high temperature and high pressure state and discharges it. As the compressor 12, various types of compressors such as a scroll compressor and a rotary compressor are used.
 流路切替装置13は、例えば四方弁であり、冷却運転時と加熱運転時とによって、冷媒回路10を流れる冷媒の流通方向を切り替える装置である。 The flow path switching device 13 is, for example, a four-way valve, and is a device that switches the flow direction of the refrigerant flowing through the refrigerant circuit 10 between the cooling operation and the heating operation.
 プレート式熱交換器30は、蒸発器又は凝縮器として機能する。プレート式熱交換器30は、冷却運転では、熱媒体と減圧装置14を経て冷たくなった冷媒とを熱交換させる。これにより、プレート式熱交換器30では、熱媒体が冷却される。また、プレート式熱交換器30は、加熱運転では、熱媒体と圧縮機12で圧縮された高温高圧状態の冷媒とを熱交換させる。これにより、プレート式熱交換器30では、熱媒体が加熱される。 The plate heat exchanger 30 functions as an evaporator or a condenser. In the cooling operation, the plate heat exchanger 30 exchanges heat between the heat medium and the refrigerant that has become cold through the decompression device 14. As a result, the heat medium is cooled in the plate heat exchanger 30. Further, in the heating operation, the plate heat exchanger 30 exchanges heat between the heat medium and the refrigerant in the high temperature and high pressure state compressed by the compressor 12. As a result, the heat medium is heated in the plate heat exchanger 30.
 減圧装置14は、例えば膨張弁であり、冷媒を減圧させる装置である。減圧装置14は、プレート式熱交換器30と室外熱交換器15との間で絞り機構として機能する。減圧装置14としては、制御装置の制御により開度が調節される電子膨張弁を用いることができる。 The pressure reducing device 14 is, for example, an expansion valve, which is a device for reducing the pressure of the refrigerant. The decompression device 14 functions as a throttle mechanism between the plate heat exchanger 30 and the outdoor heat exchanger 15. As the pressure reducing device 14, an electronic expansion valve whose opening degree is adjusted by the control of the control device can be used.
 室外熱交換器15は、内部を流通する冷媒と、冷媒と外気である空気とを熱交換させる空気熱交換器である。室外熱交換器15は、プレート式熱交換器30を蒸発器として機能させたときに凝縮器として機能する。また、室外熱交換器15は、プレート式熱交換器30を凝縮器として機能させたときに蒸発器として機能する。 The outdoor heat exchanger 15 is an air heat exchanger that exchanges heat between the refrigerant circulating inside and the refrigerant and the air that is the outside air. The outdoor heat exchanger 15 functions as a condenser when the plate heat exchanger 30 functions as an evaporator. Further, the outdoor heat exchanger 15 functions as an evaporator when the plate heat exchanger 30 functions as a condenser.
 室外機11の冷媒回路10には、第2流体である冷媒が流れる。第2流体である冷媒は、たとえば、低GWP冷媒であるR32又はR290といった可燃性冷媒などが用いられる。 The refrigerant, which is the second fluid, flows through the refrigerant circuit 10 of the outdoor unit 11. As the refrigerant as the second fluid, for example, a flammable refrigerant such as R32 or R290, which is a low GWP refrigerant, is used.
<熱媒体回路20の構成>
 熱媒体回路20は、プレート式熱交換器30、循環ポンプ22、及び、ラジエータ23を有する。熱媒体回路20は、プレート式熱交換器30、循環ポンプ22、及び、ラジエータ23が熱媒体配管24で環状に接続されて構成されている。
<Structure of heat medium circuit 20>
The heat medium circuit 20 includes a plate heat exchanger 30, a circulation pump 22, and a radiator 23. The heat medium circuit 20 is configured by connecting a plate heat exchanger 30, a circulation pump 22, and a radiator 23 in an annular shape by a heat medium pipe 24.
 熱媒体回路20には、第1流体である熱媒体が流れる。第1流体である熱媒体は、水又はブラインである。熱媒体回路20は、熱媒体を貯留する図示しない貯留タンクを備えても良い。 A heat medium, which is the first fluid, flows through the heat medium circuit 20. The heat medium that is the first fluid is water or brine. The heat medium circuit 20 may include a storage tank (not shown) for storing the heat medium.
 循環ポンプ22は、熱媒体配管24内を流通する熱媒体に一定方向に流通させる搬送力を付与する。循環ポンプ22は、家屋21内の室内機25に搭載されている。なお、循環ポンプ22は、室外機11に搭載されても良い。 The circulation pump 22 imparts a transport force for circulating in a certain direction to the heat medium circulating in the heat medium piping 24. The circulation pump 22 is mounted on the indoor unit 25 in the house 21. The circulation pump 22 may be mounted on the outdoor unit 11.
 ラジエータ23は、熱媒体の冷熱によって家屋21の室内を冷やす。または、ラジエータ23は、熱媒体の熱によって家屋21の室内を温める。なお、熱媒体回路20には、ラジエータ23以外の空調機などが設けられても良い。また、熱媒体回路20は熱媒体に水を用いることによって、温水を供給する給湯器に利用できても良い。 The radiator 23 cools the interior of the house 21 by the cold heat of the heat medium. Alternatively, the radiator 23 heats the interior of the house 21 by the heat of the heat medium. The heat medium circuit 20 may be provided with an air conditioner other than the radiator 23. Further, the heat medium circuit 20 may be used as a water heater for supplying hot water by using water as the heat medium.
<その他>
 伝熱装置100は、プレート式熱交換器30を搭載した多くの産業又は家庭用機器に利用可能である。たとえば、伝熱装置100は、空調、発電又は食品の加熱殺菌処理機器などに活用できる。
<Others>
The heat transfer device 100 can be used in many industrial or household appliances equipped with a plate heat exchanger 30. For example, the heat transfer device 100 can be used for air conditioning, power generation, heat sterilization treatment equipment for food, and the like.
<プレート式熱交換器30の構成>
 図2は、実施の形態1に係るプレート式熱交換器30を示す分解斜視図である。図2では、上方向Uと下方向Dと右方向Rと左方向Lと正面方向Fと背面方向Bとが示されている。プレート式熱交換器30は、複数の伝熱プレートが積層され、第1流体が流れる第1流路と第2流体が流れる第2流路とが、複数の伝熱プレートの各伝熱プレートを境にして交互に形成されている本体30Aを備えている。
<Structure of plate heat exchanger 30>
FIG. 2 is an exploded perspective view showing the plate heat exchanger 30 according to the first embodiment. In FIG. 2, the upward direction U, the downward direction D, the right direction R, the left direction L, the front direction F, and the back direction B are shown. In the plate type heat exchanger 30, a plurality of heat transfer plates are laminated, and the first flow path through which the first fluid flows and the second flow path through which the second fluid flows form each heat transfer plate of the plurality of heat transfer plates. It is provided with a main body 30A formed alternately at the boundary.
 図2に示すように、プレート式熱交換器30の本体30Aは、一対のサイドプレート31と、複数の第1伝熱プレート32と、複数の第1インナーフィン33と、複数の第2伝熱プレート34と、複数の第2インナーフィン35と、を備える。プレート式熱交換器30の各種構成部品の材料は、ステンレス、銅、アルミ若しくはチタンなどの金属又は合成樹脂が使用できる。また、第1伝熱プレート32又は第2伝熱プレート34は、クラッド材で形成されても良い。 As shown in FIG. 2, the main body 30A of the plate heat exchanger 30 includes a pair of side plates 31, a plurality of first heat transfer plates 32, a plurality of first inner fins 33, and a plurality of second heat transfer. A plate 34 and a plurality of second inner fins 35 are provided. As the material of various components of the plate heat exchanger 30, a metal such as stainless steel, copper, aluminum or titanium or a synthetic resin can be used. Further, the first heat transfer plate 32 or the second heat transfer plate 34 may be formed of a clad material.
 一対のサイドプレート31は、それぞれ平坦な板状であり、複数の第1伝熱プレート32、複数の第1インナーフィン33、複数の第2伝熱プレート34及び複数の第2インナーフィン35を所定の順序に重ねた両側に配置され、補強の役割を果たす。一対のサイドプレート31の一方には、四隅に、熱媒体入口31a、熱媒体出口31b、冷媒入口31c及び冷媒出口31dの4つの通路孔が形成されている。なお、図2では、図面上の左右一方側の下隅に熱媒体入口31aが示され、上隅に熱媒体出口31bが示され、左右他方側の上隅に冷媒入口31cが示され、下隅に冷媒出口31dが示されている。また、図2では、熱媒体の流通方向が実線矢印の符号Xで示され、冷媒の流通方向が破線矢印の符号Yで示されている。 Each of the pair of side plates 31 has a flat plate shape, and a plurality of first heat transfer plates 32, a plurality of first inner fins 33, a plurality of second heat transfer plates 34, and a plurality of second inner fins 35 are defined. It is placed on both sides in the order of, and serves as a reinforcement. On one of the pair of side plates 31, four passage holes of a heat medium inlet 31a, a heat medium outlet 31b, a refrigerant inlet 31c, and a refrigerant outlet 31d are formed at four corners. In FIG. 2, the heat medium inlet 31a is shown in the lower corner on one of the left and right sides on the drawing, the heat medium outlet 31b is shown in the upper corner, the refrigerant inlet 31c is shown in the upper corner on the left and right other side, and the lower corner is shown. Refrigerant outlet 31d is shown. Further, in FIG. 2, the flow direction of the heat medium is indicated by the symbol X of the solid line arrow, and the flow direction of the refrigerant is indicated by the symbol Y of the broken line arrow.
 複数の第1伝熱プレート32及び複数の第2伝熱プレート34のそれぞれの四隅には、熱媒体入口31a、熱媒体出口31b、冷媒入口31c及び冷媒出口31dの4つの通路孔と連通するように、通路孔としての貫通孔が形成されている。具体的には、図2に示すように、第1伝熱プレート32には、通路孔として、熱媒体往路孔31a1、熱媒体復路孔31b1、冷媒往路孔31c1及び冷媒復路孔31d1が設けられている。同様に、第2伝熱プレート34には、通路孔として、熱媒体往路孔31a2、熱媒体復路孔31b2、冷媒往路孔31c2及び冷媒復路孔31d2が設けられている。 At each of the four corners of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34, the four passage holes of the heat medium inlet 31a, the heat medium outlet 31b, the refrigerant inlet 31c and the refrigerant outlet 31d are communicated with each other. A through hole is formed as a passage hole. Specifically, as shown in FIG. 2, the first heat transfer plate 32 is provided with a heat medium outward path hole 31a1, a heat medium return path hole 31b1, a refrigerant outward path hole 31c1, and a refrigerant return path hole 31d1 as passage holes. There is. Similarly, the second heat transfer plate 34 is provided with a heat medium outward path hole 31a2, a heat medium return path hole 31b2, a refrigerant outward path hole 31c2, and a refrigerant return path hole 31d2 as passage holes.
 図3は、実施の形態1に係るプレート式熱交換器30の一部を横断面にて示す説明図である。複数の第1伝熱プレート32は、それぞれ平坦な伝熱面を形成するプレート32a及びプレート32bを有する。同様に、複数の第2伝熱プレート34は、それぞれ平坦な伝熱面を形成するプレート34a及びプレート34bを有する。プレート32a、プレート32b、プレート34a及びプレート34bは、金属プレートである。なお、プレート32a、プレート32b、プレート34a及びプレート34bは、金属プレートに限定されるものではない。プレート式熱交換器30は、第1伝熱プレート32と第2伝熱プレート34とが交互に積層されている。 FIG. 3 is an explanatory view showing a part of the plate heat exchanger 30 according to the first embodiment in a cross section. The plurality of first heat transfer plates 32 have a plate 32a and a plate 32b, respectively, which form a flat heat transfer surface. Similarly, the plurality of second heat transfer plates 34 have a plate 34a and a plate 34b, respectively, which form a flat heat transfer surface. The plate 32a, the plate 32b, the plate 34a and the plate 34b are metal plates. The plate 32a, the plate 32b, the plate 34a, and the plate 34b are not limited to the metal plate. In the plate heat exchanger 30, the first heat transfer plate 32 and the second heat transfer plate 34 are alternately laminated.
 第1伝熱プレート32は、プレート32aとプレート32bとの2枚の金属プレートを重ね合わせてダブルウォールに構成されている。なお、ダブルウォールとは、2重壁の構造である。同様に、第2伝熱プレート34は、プレート34aとプレート34bとの2枚の金属プレートを重ね合わせてダブルウォールに構成されている。 The first heat transfer plate 32 is formed as a double wall by superimposing two metal plates of the plate 32a and the plate 32b. The double wall is a double wall structure. Similarly, the second heat transfer plate 34 is formed as a double wall by superimposing two metal plates of the plate 34a and the plate 34b.
 第1伝熱プレート32は、互いに対向するプレート32a及びプレート32bの2枚のプレートと、この2枚のプレートの間に設けられ2枚のプレートを接続する複数のロウ付け部61と、を有する。第1伝熱プレート32内には、プレート32a及びプレート32bの2枚のプレートと複数のロウ付け部61とによって形成された空間である複数の空隙部60と、複数の空隙部60の空隙部60同士を接続する連通路200a(図6参照)と、が形成されている。 The first heat transfer plate 32 has two plates of plates 32a and 32b facing each other, and a plurality of brazing portions 61 provided between the two plates and connecting the two plates. .. In the first heat transfer plate 32, a plurality of gaps 60, which is a space formed by two plates of the plates 32a and 32b, and a plurality of brazed portions 61, and a gap portion of the plurality of gaps 60. A communication passage 200a (see FIG. 6) connecting the 60s to each other is formed.
 更に詳細に説明すると、図3に示すように、プレート32aとプレート32bとの2枚の金属プレートは、伝熱部材としてのロウ付け部61によってロウ付けされている。ロウ付け部61は、プレート32aとプレート32bとの2枚の金属プレートの間の空間において、隣り合うロウ付け部61の間に空隙部60を形成するように部分的に配置されている。これにより、プレート32aとプレート32bとの2枚の金属プレートは、伝熱部材であるロウ付け部61によって空隙部60を挟むダブルウォール構造を構成しながら伝熱効率を向上させている。 More specifically, as shown in FIG. 3, the two metal plates of the plate 32a and the plate 32b are brazed by a brazing portion 61 as a heat transfer member. The brazing portion 61 is partially arranged in the space between the two metal plates of the plate 32a and the plate 32b so as to form a gap portion 60 between the adjacent brazing portions 61. As a result, the two metal plates of the plate 32a and the plate 32b improve the heat transfer efficiency while forming a double wall structure in which the gap portion 60 is sandwiched by the brazing portion 61 which is a heat transfer member.
 同様に、プレート34aとプレート34bとの2枚の金属プレートは、伝熱部材としてのロウ付け部61によってロウ付けされている。ロウ付け部61は、プレート34aとプレート34bとの2枚の金属プレートの間の空間において、隣り合うロウ付け部61の間に空隙部60を形成するように部分的に配置されている。プレート34aとプレート34bとの2枚の金属プレートは、伝熱部材であるロウ付け部61によって空隙部60を挟むダブルウォール構造を構成しながら伝熱効率を向上させている。 Similarly, the two metal plates of the plate 34a and the plate 34b are brazed by the brazing portion 61 as a heat transfer member. The brazing portion 61 is partially arranged in the space between the two metal plates of the plate 34a and the plate 34b so as to form a gap portion 60 between the adjacent brazing portions 61. The two metal plates of the plate 34a and the plate 34b improve the heat transfer efficiency while forming a double wall structure in which the gap portion 60 is sandwiched by the brazing portion 61 which is a heat transfer member.
 複数の第1伝熱プレート32及び複数の第2伝熱プレート34は、肉厚がほぼ均一な板状の部材をプレスなどによって凹凸加工されたものである。第1伝熱プレート32及び第2伝熱プレート34は、フラットな伝熱面である主要部の周囲に、凹凸加工によってプレート間を相互に接続するためのフランジ部が立ち上がるように形成される。なお、複数の第1伝熱プレート32及び複数の第2伝熱プレート34は、適宜板厚を異寸法にしても良い。複数の第1伝熱プレート32及び複数の第2伝熱プレート34の板厚が厚くなると、プレート式熱交換器30の腐食の進行防止及び強度向上に有効である。一方、複数の第1伝熱プレート32及び複数の第2伝熱プレート34の板厚が薄くなると、熱抵抗が低減でき、熱交換性能の低下を抑制でき、材料費を低減できる。このように、複数の第1伝熱プレート32及び複数の第2伝熱プレート34の板厚は、所望の条件に合わせて選定すると良い。 The plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 are plate-shaped members having a substantially uniform wall thickness, which are unevenly processed by a press or the like. The first heat transfer plate 32 and the second heat transfer plate 34 are formed so that a flange portion for connecting the plates to each other rises by uneven processing around the main portion which is a flat heat transfer surface. The thickness of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 may be appropriately different. When the thickness of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 becomes thick, it is effective in preventing the progress of corrosion and improving the strength of the plate heat exchanger 30. On the other hand, when the thickness of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 becomes thin, the thermal resistance can be reduced, the deterioration of the heat exchange performance can be suppressed, and the material cost can be reduced. As described above, the plate thicknesses of the plurality of first heat transfer plates 32 and the plurality of second heat transfer plates 34 may be selected according to desired conditions.
 プレート式熱交換器30は、第1伝熱プレート32と第2伝熱プレート34との間に形成された、熱媒体流路38と冷媒流路39とを有する。熱媒体流路38は、熱媒体を流通させる第1流路であり、冷媒流路39は、冷媒を流通させる第2流路である。 The plate heat exchanger 30 has a heat medium flow path 38 and a refrigerant flow path 39 formed between the first heat transfer plate 32 and the second heat transfer plate 34. The heat medium flow path 38 is a first flow path through which the heat medium is circulated, and the refrigerant flow path 39 is a second flow path through which the refrigerant is circulated.
 プレート式熱交換器30の本体30Aは、複数の伝熱プレートのうち、互いに対向して配置されている第1伝熱プレート32と第2伝熱プレート34との間に第1流路である熱媒体流路38を形成している。ここで、第1伝熱プレート32は、複数の伝熱プレートの積層方向FBにおける第1の伝熱プレートであり、第2伝熱プレート34は第2の伝熱プレートである。 The main body 30A of the plate heat exchanger 30 is a first flow path between the first heat transfer plate 32 and the second heat transfer plate 34, which are arranged so as to face each other among the plurality of heat transfer plates. The heat medium flow path 38 is formed. Here, the first heat transfer plate 32 is the first heat transfer plate in the stacking direction FB of the plurality of heat transfer plates, and the second heat transfer plate 34 is the second heat transfer plate.
 プレート式熱交換器30の本体30Aは、複数の伝熱プレートのうち、互いに対向して配置されている第1伝熱プレート32と他の第2伝熱プレート34との間に第2流路である冷媒流路39を形成している。ここで、第1伝熱プレート32は、複数の伝熱プレートの積層方向FBにおける第1の伝熱プレートであり、他の第2伝熱プレート34は第3の伝熱プレートである。 The main body 30A of the plate heat exchanger 30 has a second flow path between the first heat transfer plate 32 and the other second heat transfer plate 34, which are arranged so as to face each other among the plurality of heat transfer plates. The refrigerant flow path 39 is formed. Here, the first heat transfer plate 32 is the first heat transfer plate in the stacking direction FB of the plurality of heat transfer plates, and the other second heat transfer plate 34 is the third heat transfer plate.
 プレート式熱交換器30の本体30Aは、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいて、熱媒体流路38と冷媒流路39とが交互に形成されている。プレート式熱交換器30は、熱媒体流路38を流通する熱媒体と冷媒流路39を流通する冷媒との間で熱交換を行わせる。 In the main body 30A of the plate heat exchanger 30, heat medium flow paths 38 and refrigerant flow paths 39 are alternately formed in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. The plate heat exchanger 30 causes heat exchange between the heat medium flowing through the heat medium flow path 38 and the refrigerant flowing through the refrigerant flow path 39.
 熱媒体流路38は、図2に示すように、上方向Uと下方向Dとにわたる高さ方向の上向きに熱媒体を流通させる。熱媒体流路38は、プレート式熱交換器30の右方向Rの下側に位置する熱媒体入口31aから、プレート式熱交換器30の右方向Rの上側に位置する熱媒体出口31bに向かうように、高さ方向の上向きに熱媒体を流通させる。なお、熱媒体流路38は、たとえば、熱媒体入口31aが位置するプレート式熱交換器30の右方向Rの下側から、冷媒入口31cが位置するプレート式熱交換器30の左方向Lの上側に向かうように、高さ方向から傾斜して熱媒体を流通させても良い。 As shown in FIG. 2, the heat medium flow path 38 circulates the heat medium upward in the height direction extending in the upward direction U and the downward direction D. The heat medium flow path 38 goes from the heat medium inlet 31a located below the right direction R of the plate heat exchanger 30 to the heat medium outlet 31b located above the right direction R of the plate heat exchanger 30. As such, the heat medium is circulated upward in the height direction. The heat medium flow path 38 is, for example, from the lower side of the plate heat exchanger 30 in which the heat medium inlet 31a is located in the right direction R to the left side L of the plate heat exchanger 30 in which the refrigerant inlet 31c is located. The heat medium may be circulated by inclining from the height direction so as to face upward.
 冷媒流路39は、図2に示すように、上方向Uと下方向Dとにわたる高さ方向の下向きに冷媒を流通させる。冷媒流路39は、プレート式熱交換器30の左方向Lの上側に位置する冷媒入口31cから、プレート式熱交換器30の左方向Lの下側に位置する冷媒出口31dに向かうように、高さ方向の下向きに冷媒を流通させる。なお、冷媒流路39は、たとえば、熱媒体出口31bが位置するプレート式熱交換器30の右方向Rの上側から、冷媒出口31dが位置するプレート式熱交換器30の左方向Lの下側に向かうように、高さ方向から傾斜して冷媒を流通させても良い。 As shown in FIG. 2, the refrigerant flow path 39 circulates the refrigerant downward in the height direction extending in the upward direction U and the downward direction D. The refrigerant flow path 39 is directed from the refrigerant inlet 31c located above the left direction L of the plate heat exchanger 30 toward the refrigerant outlet 31d located below the left direction L of the plate heat exchanger 30. The refrigerant is circulated downward in the height direction. The refrigerant flow path 39 is, for example, from the upper side of the plate heat exchanger 30 in which the heat medium outlet 31b is located in the right direction R to the lower side of the plate heat exchanger 30 in which the refrigerant outlet 31d is located in the left direction L. The refrigerant may be circulated at an angle from the height direction so as to be directed toward.
 プレート式熱交換器30の本体30A内に形成された第1流路である熱媒体流路38には、複数の凹凸状に屈曲した部分が形成された板状の第1インナーフィン33を有している。すなわち、熱媒体流路38には、第1インナーフィン33が配置されている。 The heat medium flow path 38, which is the first flow path formed in the main body 30A of the plate heat exchanger 30, has a plate-shaped first inner fin 33 in which a plurality of unevenly bent portions are formed. is doing. That is, the first inner fin 33 is arranged in the heat medium flow path 38.
 第1インナーフィン33は、熱媒体流路38のそれぞれに配置され、第1インナーフィン33には、凹凸ピッチ40が繰り返して形成されている。冷媒流路39には、複数の第2インナーフィン35が配置されている。複数の第2インナーフィン35は、冷媒流路39にそれぞれ配置され、複数の第2インナーフィン35には、凹凸ピッチ50が繰り返して形成されている。 The first inner fins 33 are arranged in each of the heat medium flow paths 38, and the uneven pitch 40 is repeatedly formed on the first inner fins 33. A plurality of second inner fins 35 are arranged in the refrigerant flow path 39. The plurality of second inner fins 35 are respectively arranged in the refrigerant flow path 39, and the uneven pitch 50 is repeatedly formed on the plurality of second inner fins 35.
 図4は、実施の形態1に係る2つの第1インナーフィン33の間の構成を示す部分斜視図である。図5は、実施の形態1に係る第1インナーフィン33を示す斜視図である。図3~図5を用いて、第1インナーフィン33及び第2インナーフィン35について説明する。 FIG. 4 is a partial perspective view showing a configuration between the two first inner fins 33 according to the first embodiment. FIG. 5 is a perspective view showing the first inner fin 33 according to the first embodiment. The first inner fin 33 and the second inner fin 35 will be described with reference to FIGS. 3 to 5.
 複数の第1インナーフィン33は、それぞれ対応する第1伝熱プレート32と第2伝熱プレート34との間に配置された伝熱を促進するためのオフセットフィンである。複数の第1インナーフィン33のそれぞれは、幅方向及び高さ方向が厚み方向に比べて大きい概ねプレート状の形態である。 The plurality of first inner fins 33 are offset fins arranged between the corresponding first heat transfer plate 32 and the second heat transfer plate 34 to promote heat transfer. Each of the plurality of first inner fins 33 has a substantially plate-like shape in which the width direction and the height direction are larger than those in the thickness direction.
 複数の第1インナーフィン33のそれぞれは、薄肉要素が幅方向である右方向Rと左方向Lとに渡ってほぼ直角で構成される凹凸ピッチ40が繰り返された構造を含む。凹凸ピッチ40のうち第1伝熱プレート32及び第2伝熱プレート34のそれぞれに対向する頂部40c1あるいは底部40c2は、平坦面に形成されている。これにより、複数の第1インナーフィン33は、それぞれ対応する第1伝熱プレート32及び第2伝熱プレート34の双方に対し、頂部40c1あるいは底部40c2の平坦面にて面接触する。 Each of the plurality of first inner fins 33 includes a structure in which a concave-convex pitch 40 in which thin-walled elements are formed at substantially right angles across the right direction R and the left direction L, which are the width directions, is repeated. Of the uneven pitch 40, the top 40c1 or the bottom 40c2 facing each of the first heat transfer plate 32 and the second heat transfer plate 34 is formed on a flat surface. As a result, the plurality of first inner fins 33 come into surface contact with both the corresponding first heat transfer plate 32 and the second heat transfer plate 34 on the flat surface of the top 40c1 or the bottom 40c2, respectively.
 複数の第2インナーフィン35は、それぞれ対応する第1伝熱プレート32と第2伝熱プレート34との間に配置された伝熱を促進するためのオフセットフィンである。複数の第2インナーフィン35のそれぞれは、幅方向及び高さ方向が厚み方向に比べて大きい概ねプレート状の形態である。複数の第2インナーフィン35は、第1伝熱プレート32を介して複数の第1インナーフィン33と反対側に配置されている。また、複数の第2インナーフィン35は、第2伝熱プレート34を介して複数の第1インナーフィン33と反対側に配置されている。すなわち、プレート式熱交換器30は、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいて、第1インナーフィン33と第2インナーフィン35が交互に配置されている。 The plurality of second inner fins 35 are offset fins arranged between the corresponding first heat transfer plate 32 and the second heat transfer plate 34 to promote heat transfer. Each of the plurality of second inner fins 35 has a substantially plate-like shape in which the width direction and the height direction are larger than those in the thickness direction. The plurality of second inner fins 35 are arranged on the opposite side of the plurality of first inner fins 33 via the first heat transfer plate 32. Further, the plurality of second inner fins 35 are arranged on the opposite side of the plurality of first inner fins 33 via the second heat transfer plate 34. That is, in the plate heat exchanger 30, the first inner fins 33 and the second inner fins 35 are alternately arranged in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34.
 複数の第2インナーフィン35のそれぞれは、薄肉要素が幅方向である右方向Rと左方向Lとに渡ってほぼ直角で構成される凹凸ピッチ50が繰り返された構造を含む。凹凸ピッチ50のうち第1伝熱プレート32及び第2伝熱プレート34のそれぞれに対向する頂部50c1あるいは底部50c2は、平坦面に形成されている。これにより、複数の第2インナーフィン35は、それぞれ対応する第1伝熱プレート32及び第2伝熱プレート34の双方に対し、頂部50c1あるいは底部50c2の平坦面にて面接触する。 Each of the plurality of second inner fins 35 includes a structure in which a concave-convex pitch 50 in which thin-walled elements are formed at substantially right angles over the right direction R and the left direction L, which are the width directions, is repeated. Of the uneven pitch 50, the top 50c1 or the bottom 50c2 facing each of the first heat transfer plate 32 and the second heat transfer plate 34 is formed on a flat surface. As a result, the plurality of second inner fins 35 come into surface contact with both the corresponding first heat transfer plate 32 and the second heat transfer plate 34 on the flat surface of the top 50c1 or the bottom 50c2, respectively.
 第2インナーフィン35に形成された凹凸ピッチ50は、冷媒流路39を流通する冷媒の流通方向DUに対する交差方向LRに対して、直交する部分と平行に伸びている部分とを有し、直角に屈曲する部分が連続するように形成されている。 The uneven pitch 50 formed on the second inner fin 35 has a portion orthogonal to the crossing direction LR with respect to the flow direction DU of the refrigerant flowing through the refrigerant flow path 39, and has a portion extending in parallel with the flow direction DU, and is perpendicular to the portion. The bent portion is formed so as to be continuous.
 第2インナーフィン35に形成された凹凸ピッチ50は、第1伝熱プレート32のプレート32bと第2伝熱プレート34のプレート34aとの双方を繋げるように伸びる直交部51を有する。直交部51は、第1伝熱プレート32のプレート32bと第2伝熱プレート34のプレート34aとの間に設けられている。直交部51は、凹凸ピッチ50において、冷媒流路39を流通する冷媒の流通方向DUに対する交差方向LRに対して直交する部分である。 The uneven pitch 50 formed on the second inner fin 35 has an orthogonal portion 51 extending so as to connect both the plate 32b of the first heat transfer plate 32 and the plate 34a of the second heat transfer plate 34. The orthogonal portion 51 is provided between the plate 32b of the first heat transfer plate 32 and the plate 34a of the second heat transfer plate 34. The orthogonal portion 51 is a portion of the uneven pitch 50 that is orthogonal to the crossing direction LR of the refrigerant flowing through the refrigerant flow path 39 with respect to the flow direction DU.
 直交部51は、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに延びる壁である。直交部51は、プレート32b及びプレート34aの板面に対して直交する方向に延びるように形成されている。直交部51は、頂部50c1及び底部50c2と連続して頂部50c1と底部50c2との間に延びており、頂部50c1及び底部50c2と共に凹凸ピッチ50の凹凸形状を形成する。第2インナーフィン35は、冷媒流路39を流通する冷媒の流通方向DUに対する交差方向LRにおいて、底部50c2、直交部51、頂部50c1が繰り返す凹凸形状を形成している。 The orthogonal portion 51 is a wall extending in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. The orthogonal portion 51 is formed so as to extend in a direction orthogonal to the plate surfaces of the plate 32b and the plate 34a. The orthogonal portion 51 extends continuously between the top 50c1 and the bottom 50c2 and between the top 50c1 and the bottom 50c2, and forms a concave-convex shape with a concave-convex pitch 50 together with the top 50c1 and the bottom 50c2. The second inner fin 35 has a concavo-convex shape in which the bottom portion 50c2, the orthogonal portion 51, and the top portion 50c1 repeat in an intersecting direction LR with respect to the flow direction DU of the refrigerant flowing through the refrigerant flow path 39.
 第1インナーフィン33と第2インナーフィン35とは、伝熱面積が異なる。具体的には、第1インナーフィン33と第2インナーフィン35とは、詳細は後述するが図3及び図4に示すように、凹凸ピッチ40又は凹凸ピッチ50の寸法が相互に異なる。なお、図2では、図面上の明瞭性を優先し、第1インナーフィン33と第2インナーフィン35とが同様に示されている。 The heat transfer area is different between the first inner fin 33 and the second inner fin 35. Specifically, the first inner fin 33 and the second inner fin 35 have different dimensions of the uneven pitch 40 or the uneven pitch 50, as shown in FIGS. 3 and 4, although details will be described later. In FIG. 2, the first inner fin 33 and the second inner fin 35 are shown in the same manner, giving priority to clarity on the drawing.
 第1インナーフィン33を挟む第1伝熱プレート32のプレート32a及び第2伝熱プレート34のプレート34bは、それぞれ第1インナーフィン33とロウ付けされている。第2インナーフィン35を挟む第2伝熱プレート34のプレート34a及び第1伝熱プレート32のプレート32bは、それぞれ第2インナーフィン35とロウ付けされている。 The plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34 sandwiching the first inner fin 33 are brazed to the first inner fin 33, respectively. The plate 34a of the second heat transfer plate 34 and the plate 32b of the first heat transfer plate 32 that sandwich the second inner fin 35 are brazed to the second inner fin 35, respectively.
 プレート式熱交換器30は、一方のサイドプレート31と他方のサイドプレート31との間に積層構造を有している。積層構造は、第1インナーフィン33、第1伝熱プレート32、第2インナーフィン35及び第2伝熱プレート34という順番で必要に応じた積層要素が繰り返して配置されている。 The plate heat exchanger 30 has a laminated structure between one side plate 31 and the other side plate 31. In the laminated structure, as necessary, laminated elements are repeatedly arranged in the order of the first inner fin 33, the first heat transfer plate 32, the second inner fin 35, and the second heat transfer plate 34.
<プレート式熱交換器30の詳細>
 図3~図5に示すように、第1インナーフィン33は、凹凸ピッチ40を有する。具体的には、第1インナーフィン33は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUに凹凸ピッチ40を複数有している。第1インナーフィン33は、第1流体の流通方向DUに垂直な第1インナーフィン33の断面において矩形波状に形成された凹凸ピッチ40を、流通方向DUに複数有している。
<Details of plate heat exchanger 30>
As shown in FIGS. 3 to 5, the first inner fin 33 has an uneven pitch 40. Specifically, the first inner fin 33 has a plurality of uneven pitches 40 in the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. The first inner fin 33 has a plurality of uneven pitches 40 formed in a rectangular wave shape in the cross section of the first inner fin 33 perpendicular to the flow direction DU of the first fluid in the flow direction DU.
 凹凸ピッチ40は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUである上方向Uと下方向Dとにわたる高さ方向に対して交差方向LRに設けられている。ここでは、凹凸ピッチ40は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUに対して直交する方向である右方向Rと左方向Lとにわたる幅方向に設けられている。 The uneven pitch 40 is provided in the intersecting direction LR with respect to the height direction extending in the upward direction U and the downward direction D, which is the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. Has been done. Here, the uneven pitch 40 is a width direction extending between the right direction R and the left direction L, which are directions orthogonal to the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. It is provided in.
 凹凸ピッチ40は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUに延びる流路孔を形成する。凹凸ピッチ40は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUに対して交差方向LRに凹凸が繰り返された形状である。凹凸ピッチ40は、板面を第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUに沿わせ、熱媒体流路38を流通する熱媒体の流通を遮らない。 The uneven pitch 40 forms a flow path hole extending in the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. The uneven pitch 40 has a shape in which unevenness is repeated in the crossing direction LR with respect to the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. The uneven pitch 40 aligns the plate surface with the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged, and does not block the flow of the heat medium flowing through the heat medium flow path 38. ..
 第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体が流通する方向に対して交差する方向において、凹凸ピッチ40の一部は、第1ピッチ40aと、第1ピッチ40aよりもピッチ幅の広い第2ピッチ40bと、を有する。また、熱媒体の流通方向DUに設けられた複数の凹凸ピッチ40のうち、一部の凹凸ピッチ40は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUに対して交差する方向において第1ピッチ40aのみを有する。第1インナーフィン33の少なくとも1つ以上の凹凸ピッチ40は、第1ピッチ40aと、第2ピッチ40bとを有する。 A part of the uneven pitch 40 is from the first pitch 40a and the first pitch 40a in the direction intersecting the direction in which the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged flows. Also has a second pitch 40b with a wide pitch width. Further, among the plurality of uneven pitches 40 provided in the heat medium distribution direction DU, some of the uneven pitches 40 are the distribution directions of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. It has only the first pitch 40a in the direction intersecting the DU. At least one or more uneven pitch 40 of the first inner fin 33 has a first pitch 40a and a second pitch 40b.
 頂部40c1を構成する部分の第1ピッチ40aは、第2伝熱プレート34のプレート34bと当接する。また、底部40c2を構成する部分の第1ピッチ40aは、第1伝熱プレート32のプレート32aと当接する。頂部40c1を構成する部分の第2ピッチ40bは、第2伝熱プレート34のプレート34bと当接する。第2ピッチ40bは、複数の伝熱プレートの積層方向FBと流通方向DUとに垂直な交差方向LRにおいて、交差方向LRの幅が、第1ピッチ40aの交差方向LRの幅よりも大きい。 The first pitch 40a of the portion constituting the top portion 40c1 comes into contact with the plate 34b of the second heat transfer plate 34. Further, the first pitch 40a of the portion constituting the bottom portion 40c2 comes into contact with the plate 32a of the first heat transfer plate 32. The second pitch 40b of the portion constituting the top portion 40c1 comes into contact with the plate 34b of the second heat transfer plate 34. In the second pitch 40b, the width of the crossing direction LR is larger than the width of the crossing direction LR of the first pitch 40a in the crossing direction LR perpendicular to the stacking direction FB and the distribution direction DU of the plurality of heat transfer plates.
 第1インナーフィン33に形成された凹凸ピッチ40は、熱媒体流路38を流通する熱媒体の流通方向DUに対する交差方向LRに対して、直交する部分と平行に伸びている部分とを有し、直角に屈曲する部分が連続するように形成されている。 The uneven pitch 40 formed on the first inner fin 33 has a portion orthogonal to the crossing direction LR of the heat medium flowing through the heat medium flow path 38 with respect to the distribution direction DU and a portion extending parallel to the flow direction DU. , The portions that bend at right angles are formed to be continuous.
 第1インナーフィン33に形成された凹凸ピッチ40は、第1伝熱プレート32のプレート32aと第2伝熱プレート34のプレート34bとの双方を繋げるように伸びる直交部41を有する。直交部41は、第1伝熱プレート32のプレート32aと第2伝熱プレート34のプレート34bとの間に設けられている。直交部41は、凹凸ピッチ40において、熱媒体流路38を流通する熱媒体の流通方向DUに対する交差方向LRに対して直交する部分である。 The uneven pitch 40 formed on the first inner fin 33 has an orthogonal portion 41 extending so as to connect both the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34. The orthogonal portion 41 is provided between the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34. The orthogonal portion 41 is a portion of the uneven pitch 40 that is orthogonal to the crossing direction LR of the heat medium flowing through the heat medium flow path 38 with respect to the distribution direction DU.
 直交部41は、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに延びる壁である。直交部41は、プレート32a及びプレート34bの板面に対して直交する方向に延びるように形成されている。直交部41は、頂部40c1及び底部40c2と連続して頂部40c1と底部40c2との間に延びており、頂部40c1及び底部40c2と共に凹凸ピッチ40の凹凸形状を形成する。第1インナーフィン33は、熱媒体流路38を流通する熱媒体の流通方向DUに対する交差方向LRにおいて、底部40c2、直交部41、頂部40c1が繰り返す凹凸形状を形成している。 The orthogonal portion 41 is a wall extending in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. The orthogonal portion 41 is formed so as to extend in a direction orthogonal to the plate surfaces of the plates 32a and 34b. The orthogonal portion 41 extends continuously between the top 40c1 and the bottom 40c2 and between the top 40c1 and the bottom 40c2, and forms a concave-convex shape with a concave-convex pitch 40 together with the top 40c1 and the bottom 40c2. The first inner fin 33 forms a concavo-convex shape in which the bottom portion 40c2, the orthogonal portion 41, and the top portion 40c1 repeat in an intersecting direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow path 38.
 直交部41は、図3に示すように、熱媒体流路38を流通する熱媒体の流通方向DUにおける隣接する凹凸ピッチ40との関係において、当該凹凸ピッチ40の直交部41に対して、熱媒体の流通方向DUに対する交差方向LRにずれて設けられている。したがって、直交部41は、第1インナーフィン33を熱媒体の流通方向DUに見た場合に、熱媒体の流通方向DUに隣接する凹凸ピッチ40の2つの直交部41の間に位置するように設けられている。特に、第1インナーフィン33を熱媒体の流通方向DUに見た場合に、直交部41は、熱媒体の流通方向DUにおいて隣接する凹凸ピッチ40に対して、当該凹凸ピッチ40に形成されている隣り合う直交部41の間の中央に位置するように設けられていると良い。 As shown in FIG. 3, the orthogonal portion 41 heats with respect to the orthogonal portion 41 of the uneven pitch 40 in relation to the adjacent uneven pitch 40 in the distribution direction DU of the heat medium flowing through the heat medium flow path 38. It is provided so as to be offset from the crossing direction LR with respect to the distribution direction DU of the medium. Therefore, the orthogonal portion 41 is located between the two orthogonal portions 41 having the uneven pitch 40 adjacent to the heat medium distribution direction DU when the first inner fin 33 is viewed in the heat medium distribution direction DU. It is provided. In particular, when the first inner fin 33 is viewed in the heat medium distribution direction DU, the orthogonal portion 41 is formed at the uneven pitch 40 with respect to the adjacent uneven pitch 40 in the heat medium distribution direction DU. It is preferable that it is provided so as to be located at the center between the adjacent orthogonal portions 41.
 第2ピッチ40bは、複数の第1インナーフィン33での熱媒体流路38を流通する熱媒体の流通方向DUに対して交差方向LRにおいて少なくとも1以上の第1ピッチ40aを挟んで1ピッチに1以上設けられている。 The second pitch 40b has at least one first pitch 40a in the crossing direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow paths 38 in the plurality of first inner fins 33. 1 or more are provided.
 例えば、図4及び図5に示すように、第2ピッチ40bが形成されている凹凸ピッチ40の内最上部では、第2ピッチ40bは、複数の第1インナーフィン33での熱媒体流路38を流通する熱媒体の流通方向DUに対して交差方向LRにおいて9つの第1ピッチ40aを挟んで1ピッチに2つ設けられている。なお、2つの第2ピッチ40bの間に形成される第1ピッチ40aの数は、9つに限定されるものではない。2つの第2ピッチ40bの間に形成される第1ピッチ40aの数は、8つ以下でもよく、10以上でもよい。なお、凹凸ピッチ40の内最上部とは、図4及び図5に示す第1インナーフィン33において、熱媒体の流通方向DUにおける最も上方向U側に位置している凹凸ピッチ40を表している。また、1ピッチとは、熱媒体の流通方向DUにおいて複数形成された凹凸ピッチ40の中の1つを示している。 For example, as shown in FIGS. 4 and 5, at the uppermost portion of the uneven pitch 40 in which the second pitch 40b is formed, the second pitch 40b is the heat medium flow path 38 in the plurality of first inner fins 33. Two first pitches 40a are provided at one pitch in the crossing direction LR with respect to the circulation direction DU of the heat medium flowing through the heat medium. The number of first pitches 40a formed between the two second pitches 40b is not limited to nine. The number of the first pitch 40a formed between the two second pitches 40b may be 8 or less, or 10 or more. The uppermost portion of the uneven pitch 40 represents the uneven pitch 40 located on the uppermost U side in the distribution direction DU of the heat medium in the first inner fins 33 shown in FIGS. 4 and 5. .. Further, 1 pitch means one of a plurality of uneven pitches 40 formed in the distribution direction DU of the heat medium.
 また、図4及び図5に示すように、最上部以外の凹凸ピッチ40では、第2ピッチ40bは、複数の第1インナーフィン33での熱媒体流路38を流通する熱媒体の流通方向DUに対して交差方向LRにおいて1ピッチに1つ設けられている。 Further, as shown in FIGS. 4 and 5, in the uneven pitch 40 other than the uppermost portion, the second pitch 40b is the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in the plurality of first inner fins 33. On the other hand, one is provided at one pitch in the crossing direction LR.
 図4及び図5に示すように、凹凸ピッチ40に形成された第2ピッチ40bは、熱媒体の流通方向DUにおいて当該凹凸ピッチ40の直前及び直後に位置する他の凹凸ピッチ40に形成された第2ピッチ40bに対して、交差方向LRにずれて設けられている。図4及び図5に示すように、第1インナーフィン33において、第2ピッチ40bは、千鳥状に配置されているが、第2ピッチ40bは、千鳥状に配置されている構成に限定されるものではなく、例えば碁盤目状に配置されてもよい。 As shown in FIGS. 4 and 5, the second pitch 40b formed at the uneven pitch 40 is formed at another uneven pitch 40 located immediately before and after the uneven pitch 40 in the distribution direction DU of the heat medium. It is provided so as to be offset from the second pitch 40b in the crossing direction LR. As shown in FIGS. 4 and 5, in the first inner fin 33, the second pitch 40b is arranged in a staggered pattern, but the second pitch 40b is limited to the configuration in which the second pitch 40b is arranged in a staggered pattern. It may be arranged in a grid pattern, for example.
 図4に示すように、熱媒体の流通方向DUにおいて、第2ピッチ40bを有する凹凸ピッチ40と、当該第2ピッチ40bと形成位置が異なる第2ピッチ40bを有する凹凸ピッチ40と、の間には、第1ピッチ40aのみを有する凹凸ピッチ40が設けられている。すなわち、第1インナーフィン33は、流通方向DUにおいて、第1ピッチ40aと第2ピッチ40bとを有する第1の凹凸ピッチ40と、第1ピッチ40aと第2ピッチ40bとを有する第2の凹凸ピッチ40と、を有する。そして、第1インナーフィン33は、第1の凹凸ピッチ40と第2の凹凸ピッチ40との間に、第1ピッチ40aのみを有する第3の凹凸ピッチ40を有する。 As shown in FIG. 4, in the flow direction DU of the heat medium, between the uneven pitch 40 having the second pitch 40b and the uneven pitch 40 having the second pitch 40b whose formation position is different from that of the second pitch 40b. Is provided with a concave-convex pitch 40 having only the first pitch 40a. That is, the first inner fin 33 has a first uneven pitch 40 having a first pitch 40a and a second pitch 40b, and a second unevenness having a first pitch 40a and a second pitch 40b in the distribution direction DU. It has a pitch of 40 and. The first inner fin 33 has a third uneven pitch 40 having only the first pitch 40a between the first concave-convex pitch 40 and the second concave-convex pitch 40.
 なお、図4及び図5に示すように、第1ピッチ40aのみで形成されている凹凸ピッチ40は、流通方向DUにおいて、第2ピッチ40bを有する凹凸ピッチ40同士の間に1列形成されている。しかし、第2ピッチ40bを有する凹凸ピッチ40同士の間において、第1ピッチ40aのみで形成されている凹凸ピッチ40の数は1列に限定されるものではなく2列以上でもよい。また、第2ピッチ40bを有する凹凸ピッチ40同士の間において、第1ピッチ40aのみで形成されている凹凸ピッチ40の数は、流通方向DUにおける異なる位置によって同じ数でもよいし、異なる数でもよい。 As shown in FIGS. 4 and 5, the uneven pitch 40 formed only by the first pitch 40a is formed in a row between the uneven pitch 40s having the second pitch 40b in the distribution direction DU. There is. However, the number of uneven pitches 40 formed only by the first pitch 40a between the uneven pitches 40 having the second pitch 40b is not limited to one row, and may be two or more rows. Further, the number of uneven pitches 40 formed only by the first pitch 40a between the uneven pitches 40 having the second pitch 40b may be the same number or different numbers depending on different positions in the distribution direction DU. ..
 また、流通方向DUにおいて第1ピッチ40aのみで形成されている列は、流通方向DUにおいて第2ピッチ40bを有する列同士の間に1列形成されていてもよく、複数形成されていてもよい。 Further, the rows formed only by the first pitch 40a in the distribution direction DU may be formed as one row between the rows having the second pitch 40b in the distribution direction DU, or may be formed in a plurality of rows. ..
 図3及び図4に示すように、第2ピッチ40bを有する凹凸ピッチ40は、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBにおいて、隣に配置された第1インナーフィン33の第1ピッチ40aのみを有する凹凸ピッチ40と向かい合っている。当該構成は、プレート式熱交換器30において、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUにおいて、いずれの部分においても適用されている。 As shown in FIGS. 3 and 4, the uneven pitch 40 having the second pitch 40b is the first inner fin 33 arranged adjacent to the first heat transfer plate 32 and the second heat transfer plate 34 in the stacking direction FB. Facing the uneven pitch 40 having only the first pitch 40a of the above. This configuration is applied to any part of the plate heat exchanger 30 in the flow direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged.
 図4及び図5に示すように、第1インナーフィン33に設けられた複数の第2ピッチ40bは、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBにて同じ側を開口している。 As shown in FIGS. 4 and 5, the plurality of second pitches 40b provided on the first inner fin 33 open the same side in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. is doing.
 図3に示す第1ピッチ40aのピッチ幅P1を第2ピッチ40bのピッチ幅P2で割った値は、1よりも小さい。より好ましくは、第1ピッチ40aのピッチ幅P1を第2ピッチ40bのピッチ幅P2で割った値は、1よりも小さく、かつ、0.5よりも大きい。 The value obtained by dividing the pitch width P1 of the first pitch 40a shown in FIG. 3 by the pitch width P2 of the second pitch 40b is smaller than 1. More preferably, the value obtained by dividing the pitch width P1 of the first pitch 40a by the pitch width P2 of the second pitch 40b is smaller than 1 and larger than 0.5.
<ロウ付け部61の詳細>
 図3に示すように、プレート32a及びプレート32bの2枚の金属プレートの間には、伝熱部材であるロウ付け部61が設けられている。プレート32aとプレート32bとの2枚の金属プレートは、伝熱部材としてのロウ付け部61によってロウ付けされている。同様に、プレート34a及びプレート34bの2枚の金属プレートの間には、伝熱部材であるロウ付け部61が設けられている。プレート34aとプレート34bとの2枚の金属プレートは、伝熱部材としてのロウ付け部61によってロウ付けされている。
<Details of brazing part 61>
As shown in FIG. 3, a brazing portion 61, which is a heat transfer member, is provided between the two metal plates of the plate 32a and the plate 32b. The two metal plates, the plate 32a and the plate 32b, are brazed by a brazing portion 61 as a heat transfer member. Similarly, a brazing portion 61, which is a heat transfer member, is provided between the two metal plates of the plate 34a and the plate 34b. The two metal plates, the plate 34a and the plate 34b, are brazed by a brazing portion 61 as a heat transfer member.
 ロウ付け部61は、プレート32aとプレート32bとの2枚の金属プレートの間の空間において、隣り合うロウ付け部61の間に空隙部60を形成するように部分的に配置されている。そのため、図3に示すように、プレート32a及びプレート32bの2枚の金属プレートの間には、空隙部60が形成されている。同様に、ロウ付け部61は、プレート34aとプレート34bとの2枚の金属プレートの間の空間において、隣り合うロウ付け部61の間に空隙部60を形成するように部分的に配置されている。そのため、プレート34a及びプレート34bの2枚の金属プレートの間には、空隙部60が形成されている。 The brazing portion 61 is partially arranged in the space between the two metal plates of the plate 32a and the plate 32b so as to form a gap portion 60 between the adjacent brazing portions 61. Therefore, as shown in FIG. 3, a gap 60 is formed between the two metal plates of the plate 32a and the plate 32b. Similarly, the brazing portion 61 is partially arranged in the space between the two metal plates of the plate 34a and the plate 34b so as to form a gap 60 between the adjacent brazing portions 61. There is. Therefore, a gap 60 is formed between the two metal plates of the plate 34a and the plate 34b.
 なお、ロウ付け部61のロウ材には、銅ロウ、銀ロウ又は、リン脱酸銅などの金属ロウといった、空気より伝熱性の高い材料であればどのロウ材が用いられても良い。また、伝熱部材は、ロウ付け部61以外にも、金属などの伝熱部材を接着などで設けても良い。さらに、伝熱部材は、グリースのような密着性の高い液体又は個体材料でも良い。 As the brazing material of the brazing portion 61, any brazing material may be used as long as it is a material having higher heat transfer property than air, such as copper brazing, silver brazing, or metal brazing such as phosphorus deoxidized copper. Further, as the heat transfer member, in addition to the brazed portion 61, a heat transfer member such as metal may be provided by adhesion or the like. Further, the heat transfer member may be a liquid or solid material having high adhesion such as grease.
 伝熱部材は、別部品を介在せず、スポット溶接又は圧力接合などによりプレート32aとプレート32bとの2枚の金属プレートを直接接合して一体化しても良い。同様に、伝熱部材は、別部品を介在せず、スポット溶接又は圧力接合などによりプレート34aとプレート34bとの2枚の金属プレートを直接接合して一体化しても良い。ただし、2枚の金属プレートを直接接合する場合には、必ず空隙部60を設ける必要がある。 The heat transfer member may be integrated by directly joining two metal plates of the plate 32a and the plate 32b by spot welding or pressure joining without interposing a separate part. Similarly, the heat transfer member may be integrated by directly joining two metal plates of the plate 34a and the plate 34b by spot welding or pressure joining without interposing a separate part. However, when the two metal plates are directly joined, it is necessary to provide the gap 60.
 第1伝熱プレート32と第2伝熱プレート34との積層方向FBにロウ付け部61を投影した場合に、ロウ付け部61は、第1ピッチ40aの領域に設けられている。言い換えれば、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにロウ付け部61を投影した場合に、ロウ付け部61は、第2ピッチ40bの領域に存在しない。 When the brazing portion 61 is projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 is provided in the region of the first pitch 40a. In other words, when the brazing portion 61 is projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 does not exist in the region of the second pitch 40b.
 図7は、実施の形態1に係る第1インナーフィン33の平面図であり、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに投影したときの透視図のうち、第1インナーフィン33のみを示した図である。図8は、実施の形態1に係る第1インナーフィン33の平面図であり、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに投影したときの透視図のうち、伝熱部材及び空隙部60の層のみ示した図である。なお、図8は、ロウ付け部61などの伝熱部材の図示は省略している。また、図7及び図8は、第1インナーフィン33の流通方向DUの一部を表している。 FIG. 7 is a plan view of the first inner fin 33 according to the first embodiment, and is the first perspective view when projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. It is a figure which showed only the inner fin 33. FIG. 8 is a plan view of the first inner fin 33 according to the first embodiment, and is a perspective view of the first heat transfer plate 32 and the second heat transfer plate 34 projected onto the stacking direction FB. It is a figure which showed only the layer of a member and a gap 60. Note that FIG. 8 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIGS. 7 and 8 show a part of the distribution direction DU of the first inner fin 33.
 第1伝熱プレート32、第2伝熱プレート34、第1インナーフィン33の凹凸ピッチ40及び第2インナーフィン35の凹凸ピッチ50と、伝熱部材及び空隙部60の層の位置とには特定の関係がある。図4及び図6は、第1インナーフィン33が第1伝熱プレート32を構成するプレート32aの手前にあり、伝熱部材及び空隙部60の層が第1伝熱プレート32を構成するプレート32aの奥に有ることを示している。図6は、プレート式熱交換器30を第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに透視した場合において、第1インナーフィン33と、伝熱部材及び空隙部60が形成された層との位置関係を示している。このように、プレート式熱交換器30を第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに透視した場合に、第1伝熱プレート32の板面と第2伝熱プレート34の板面との位置関係を「積層方向FBに投影した場合」として説明する。 The uneven pitch 40 of the first heat transfer plate 32, the second heat transfer plate 34, the first inner fin 33, the uneven pitch 50 of the second inner fin 35, and the positions of the layers of the heat transfer member and the gap 60 are specified. There is a relationship. In FIGS. 4 and 6, the first inner fin 33 is in front of the plate 32a constituting the first heat transfer plate 32, and the layer of the heat transfer member and the gap 60 constitutes the first heat transfer plate 32a. It shows that it is in the back of. FIG. 6 shows that when the plate heat exchanger 30 is viewed through the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the first inner fin 33, the heat transfer member, and the gap portion 60 are formed. It shows the positional relationship with the layer. In this way, when the plate heat exchanger 30 is seen through the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the plate surface of the first heat transfer plate 32 and the second heat transfer plate 34 The positional relationship with the plate surface will be described as "when projected onto the stacking direction FB".
 図3及び図4に示すように、第1伝熱プレート32を構成するプレート32aの一方の面に第1インナーフィン33が当接し、第1伝熱プレート32を構成するプレート32aの他方の面側に伝熱部材及び空隙部60の層が存在している。図6では、第1インナーフィン33とプレート32aとの接合が示されていない。しかし、基本的には、図3に示されるように、第1インナーフィン33と、第1伝熱プレート32を構成するプレート32aとが接合されてない部分において、プレート32aを介して第1インナーフィン33の配置側とは反対側に空隙部60が形成されている。 As shown in FIGS. 3 and 4, the first inner fin 33 abuts on one surface of the plate 32a constituting the first heat transfer plate 32, and the other surface of the plate 32a constituting the first heat transfer plate 32. There is a layer of the heat transfer member and the gap 60 on the side. In FIG. 6, the joining between the first inner fin 33 and the plate 32a is not shown. However, basically, as shown in FIG. 3, in the portion where the first inner fin 33 and the plate 32a constituting the first heat transfer plate 32 are not joined, the first inner is interposed through the plate 32a. A gap 60 is formed on the side opposite to the side where the fins 33 are arranged.
 ただし、図3に示すように、空隙部60の大きさが第1インナーフィン33の凹凸ピッチ40よりも大きい場合には、空隙部60が形成されている位置の反対側のプレート32aの一部に第1インナーフィン33が接合されていても良い。なお、この場合の空隙部60の大きさと、第1インナーフィン33の凹凸ピッチ40の大きさとは、第1伝熱プレート32及び第2伝熱プレート34の板面が延びる方向の大きさである。 However, as shown in FIG. 3, when the size of the gap portion 60 is larger than the uneven pitch 40 of the first inner fin 33, a part of the plate 32a on the opposite side of the position where the gap portion 60 is formed. The first inner fin 33 may be joined to. In this case, the size of the gap portion 60 and the size of the uneven pitch 40 of the first inner fin 33 are the sizes in the direction in which the plate surfaces of the first heat transfer plate 32 and the second heat transfer plate 34 extend. ..
 第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいて、第2ピッチ40bの前後の領域はロウ付け部61がないことが望ましい。そして、少なくとも第2ピッチ40bの全体が、プレート32aを介して空隙部60と対向する位置に形成されている。換言すれば、図6に示すように、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいてプレート式熱交換器30を透視した場合に、空隙部60の形成範囲内に第2ピッチ40bが形成されている。 In the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, it is desirable that there is no brazing portion 61 in the region before and after the second pitch 40b. Then, at least the entire second pitch 40b is formed at a position facing the gap 60 via the plate 32a. In other words, as shown in FIG. 6, when the plate heat exchanger 30 is seen through in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, it is within the formation range of the gap 60. The second pitch 40b is formed.
 なお、図3に示すように、積層方向FBにおいて、第2ピッチ40bの平坦面40b1は、第2伝熱プレート34のプレート34bと当接している。図3に示すように、積層方向FBにおいて、第2ピッチ40bの平坦面40b1は、第1伝熱プレート32のプレート32aと当接していない。プレート34bとプレート32aとの間の積層方向FBにおいて、第2ピッチ40bの開口部40b2は、プレート32a側に位置している。第2ピッチ40bの平坦面40b1は、熱媒体流路38を介して、プレート32aと対向している。 As shown in FIG. 3, in the stacking direction FB, the flat surface 40b1 of the second pitch 40b is in contact with the plate 34b of the second heat transfer plate 34. As shown in FIG. 3, in the stacking direction FB, the flat surface 40b1 of the second pitch 40b is not in contact with the plate 32a of the first heat transfer plate 32. In the stacking direction FB between the plate 34b and the plate 32a, the opening 40b2 of the second pitch 40b is located on the plate 32a side. The flat surface 40b1 of the second pitch 40b faces the plate 32a via the heat medium flow path 38.
 図6~図8に示すように、空隙部60が形成されている層には、空隙部60同士を接続する連通路200aが形成されている。この連通路200aは、プレート式熱交換器30の外部に位置する外気と連通するように構成されている。 As shown in FIGS. 6 to 8, in the layer in which the gap portion 60 is formed, a continuous passage 200a connecting the gap portions 60 to each other is formed. The communication passage 200a is configured to communicate with the outside air located outside the plate heat exchanger 30.
 図8に示すように、連通路200aは、第1流体の流通方向DUに最も近い前後の空隙部60とは最短経路で接続するように接続されている。なお、図6は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの上隅と、第1流体の流通方向において左斜め上に位置する第2の空隙部60の右方向Rの下隅とが、連通路200aによって接続されている構成を示している。また、図6は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの下隅と、第1流体の流通方向において左斜め下に位置する第3の空隙部60の右方向Rの上隅とが、連通路200aによって接続されている構成を示している。連通路200aは、第1流体の流通方向DUにおいて、左右に交互に形成された空隙部60を接続するように形成されている。 As shown in FIG. 8, the communication passage 200a is connected to the front and rear gaps 60 closest to the flow direction DU of the first fluid so as to be connected by the shortest path. Note that FIG. 6 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The lower corner of the gap 60 in the right direction R of No. 2 is connected by a communication passage 200a. Further, FIG. 6 shows a third position located at the lower corner of the first gap 60 in the left direction L and diagonally lower left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The upper corner of the gap portion 60 in the right direction R is connected by a communication passage 200a. The communication passage 200a is formed so as to connect the gaps 60 formed alternately on the left and right in the flow direction DU of the first fluid.
 連通路200aの通路幅は、空隙部60の短手寸法よりも小さい寸法で構成されている。また、連通路200aの流路断面積は、複数の空隙部60のうちの1つの空隙部60の流路断面積よりも小さい。 The passage width of the continuous passage 200a is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the communication passage 200a is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60.
 第1の空隙部60に対する第2の空隙部60は、第1流体の流通方向DUにおいて、第1の空隙部60の1つ後ろに位置する第1の空隙部60に対する第3の空隙部60となる。同様に、第1の空隙部60に対する第3の空隙部60は、第1流体の流通方向DUにおいて、第1の空隙部60の1つ前に位置する第1の空隙部60に対する第2の空隙部60となる。プレート式熱交換器30は、空隙部60と連通路200aとが接続されて排出流路200a1を形成している。 The second gap 60 with respect to the first gap 60 is a third gap 60 with respect to the first gap 60 located immediately behind the first gap 60 in the flow direction DU of the first fluid. It becomes. Similarly, the third gap 60 with respect to the first gap 60 is a second with respect to the first gap 60 located immediately before the first gap 60 in the flow direction DU of the first fluid. It becomes the gap 60. In the plate heat exchanger 30, the gap portion 60 and the communication passage 200a are connected to form the discharge passage 200a1.
 排出流路200a1は、流通方向DUに配置された第1列の空隙部60と、交差方向LRにおいて第1の列の空隙部60の隣に形成された第2列の空隙部60と、第1列の空隙部60と第2列の空隙部60とを接続する連通路200aと、によって形成されている。 The discharge flow path 200a1 includes a first row gap portion 60 arranged in the flow direction DU, a second row gap portion 60 formed next to the first row gap portion 60 in the crossing direction LR, and a second row gap portion 60. It is formed by a communication passage 200a connecting the gap portion 60 in the first row and the gap portion 60 in the second row.
 排出流路200a1は、第1流体の流通方向DUにおいて、複数の空隙部60のうち最も近い前後の空隙部60が連通路200aによって接続されて、流通方向DUに延びるように形成されており、排出流路200a1の端部が本体30Aの外部と連通している。空隙部60と連通路200aとが接続されて形成された排出流路200a1は、その通路方向が第1流路である熱媒体流路38を流通する第1流体の流通方向DUと同じ方向となるように形成されている。 The discharge flow path 200a1 is formed so that the closest front and rear gaps 60 among the plurality of gaps 60 are connected by the communication passage 200a and extend in the flow direction DU in the flow direction DU of the first fluid. The end of the discharge flow path 200a1 communicates with the outside of the main body 30A. The discharge flow path 200a1 formed by connecting the gap portion 60 and the communication passage 200a has the same passage direction as the flow direction DU of the first fluid flowing through the heat medium flow path 38 which is the first flow path. It is formed to be.
 プレート式熱交換器30は、本体30Aの内部を、積層方向FBに投影した場合に、複数の空隙部60が、第2ピッチ40bの領域に形成されている。また、プレート式熱交換器30は、複数の空隙部60と連通路200aとによって形成される排出流路200a1が本体30Aの外部と連通している。 In the plate heat exchanger 30, when the inside of the main body 30A is projected in the stacking direction FB, a plurality of gaps 60 are formed in the region of the second pitch 40b. Further, in the plate heat exchanger 30, the discharge flow path 200a1 formed by the plurality of gaps 60 and the communication passage 200a communicates with the outside of the main body 30A.
<ロウ付け部61の作用>
 第1伝熱プレート32の、プレート32a及びプレート32bの2枚の金属プレートの間に設けられたロウ付け部61の作用について説明する。同様に、第2伝熱プレート34の、プレート34a及びプレート34bの2枚の金属プレートの間に設けられたロウ付け部61の作用について説明する。
<Action of brazing part 61>
The operation of the brazing portion 61 provided between the two metal plates of the plate 32a and the plate 32b of the first heat transfer plate 32 will be described. Similarly, the operation of the brazing portion 61 of the second heat transfer plate 34 provided between the two metal plates of the plate 34a and the plate 34b will be described.
 プレート32a及びプレート32bの2枚の金属プレートの間のロウ付け部61、並びに、プレート34a及びプレート34bの2枚の金属プレートの間のロウ付け部61は、熱伝導率が高い。そのため、プレート式熱交換器30は、プレート32a及びプレート32bの2枚の金属プレートの間の接触熱抵抗を低減でき、また、プレート34a及びプレート34bの2枚の金属プレートの間の接触熱抵抗を低減できる。そのため、プレート式熱交換器30は、ロウ付け部61を設けない場合と比較して、熱交換性能の低下を抑制できる。 The brazed portion 61 between the two metal plates of the plate 32a and the plate 32b and the brazed portion 61 between the two metal plates of the plate 34a and the plate 34b have high thermal conductivity. Therefore, the plate heat exchanger 30 can reduce the contact thermal resistance between the two metal plates of the plate 32a and the plate 32b, and the contact thermal resistance between the two metal plates of the plate 34a and the plate 34b. Can be reduced. Therefore, the plate-type heat exchanger 30 can suppress a decrease in heat exchange performance as compared with the case where the brazing portion 61 is not provided.
 一方、プレート式熱交換器30は、プレート32a及びプレート32bの2枚の金属プレートの間にロウ付けされていない空隙部60を有し、プレート34a及びプレート34bの2枚の金属プレートの間にロウ付けされていない空隙部60を有している。プレート式熱交換器30は、その空隙部60同士が連通路200aで接続されており、空隙部60と連通路200aとにより形成される排出流路200a1が外気と連通するように構成されている。 On the other hand, the plate heat exchanger 30 has an unbrazed gap 60 between the two metal plates of the plate 32a and the plate 32b, and is between the two metal plates of the plate 34a and the plate 34b. It has a gap 60 that is not brazed. The plate-type heat exchanger 30 is configured such that the gaps 60 are connected to each other by a communication passage 200a, and the discharge passage 200a1 formed by the gap 60 and the communication passage 200a communicates with the outside air. ..
 そのため、第1伝熱プレート32のプレート32aが傷ついた場合には、排出流路200a1を介して熱媒体が外気に放出される。また、外部に流出した漏洩流体を検知センサー(図示は省略)で検知することによって、制御装置(図示は省略)は、プレート式熱交換器30を備えた伝熱装置100を停止させることができる。 Therefore, when the plate 32a of the first heat transfer plate 32 is damaged, the heat medium is released to the outside air through the discharge flow path 200a1. Further, by detecting the leaked fluid flowing out to the outside with a detection sensor (not shown), the control device (not shown) can stop the heat transfer device 100 provided with the plate heat exchanger 30. ..
 ここで、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにプレート式熱交換器30の各構成要素を投影した場合に、第2ピッチ40bの位置には、プレート32aとプレート34bとの間に形成された空隙部60が、必ず形成されている。 Here, when each component of the plate heat exchanger 30 is projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the plate 32a is located at the position of the second pitch 40b. The gap 60 formed between the plate 34b and the plate 34b is always formed.
 また、連通路200aは、第1流体の流通方向DUに最も近い前後の空隙部60と最短経路で接続するように接続され、通路幅が空隙部60の短手寸法よりも小さい寸法で構成されている。そのため、プレート式熱交換器30は、ロウ付け部61の面積割合の低下による性能低下を抑制することができる。 Further, the communication passage 200a is connected so as to be connected to the front and rear gaps 60 closest to the flow direction DU of the first fluid by the shortest path, and the passage width is smaller than the short dimension of the gap 60. ing. Therefore, the plate heat exchanger 30 can suppress performance deterioration due to a decrease in the area ratio of the brazing portion 61.
 第1インナーフィン33は、第2ピッチ40bのピッチ幅が第1ピッチ40aのピッチ幅よりも長い。そのため、例えば熱媒体が水である場合に、凍結又は内圧上昇などを原因として熱媒体流路38内に通常よりも高い圧力が生じると、第2ピッチ40bと対向する位置でのプレート32aの発生応力が周辺箇所よりも高くなる。これにより、プレート式熱交換器30において第1伝熱プレート32が万が一傷ついたとしても、第1伝熱プレート32の傷つく個所が第2ピッチ40bの位置となるように設定できる。 In the first inner fin 33, the pitch width of the second pitch 40b is longer than the pitch width of the first pitch 40a. Therefore, for example, when the heat medium is water and a higher pressure than usual is generated in the heat medium flow path 38 due to freezing or an increase in internal pressure, the plate 32a is generated at a position facing the second pitch 40b. The stress is higher than the surrounding area. As a result, even if the first heat transfer plate 32 is damaged in the plate heat exchanger 30, the damaged portion of the first heat transfer plate 32 can be set to be the position of the second pitch 40b.
 プレート式熱交換器30は、熱媒体流路38に過剰な圧力上昇が生じても、複数の第2ピッチ40bが設けられることによって、第1伝熱プレート32が万が一傷ついたとしても、第1伝熱プレート32の傷つく箇所が予定できる。そして、プレート式熱交換器30は、漏洩熱媒体を外部に排出させることができる。また、プレート式熱交換器30は、当該構成により、第1伝熱プレート32のプレート32aと第2伝熱プレート34のプレート34bとの接合箇所が傷つくことにより漏洩冷媒が熱媒体回路20を通じて家屋21内へ流入することを防止できる。 In the plate heat exchanger 30, even if an excessive pressure rise occurs in the heat medium flow path 38, even if the first heat transfer plate 32 is damaged by the provision of the plurality of second pitches 40b, the first one. A damaged part of the heat transfer plate 32 can be planned. Then, the plate heat exchanger 30 can discharge the leaked heat medium to the outside. Further, in the plate type heat exchanger 30, due to the configuration, the joint portion between the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34 is damaged, so that the leaked refrigerant leaks through the heat medium circuit 20 into the house. It is possible to prevent the inflow into the 21.
<第2インナーフィン35の凹凸ピッチ50の詳細>
 図3及び図4に示すように、第2インナーフィン35の凹凸ピッチ50は、一定のピッチ幅で凹凸が繰り返して形成されている。第2インナーフィン35の凹凸ピッチ50には、第1インナーフィン33の凹凸ピッチ40のような第2ピッチ40bが設けられていない。プレート式熱交換器30の幅方向である交差方向LRにおいて、第2インナーフィン35に形成された凹凸ピッチ50のピッチ幅P3は、第1インナーフィン33に形成された凹凸ピッチ40のピッチ幅P1及びピッチ幅P2よりも小さく、凹凸が細かい。
<Details of uneven pitch 50 of the second inner fin 35>
As shown in FIGS. 3 and 4, the uneven pitch 50 of the second inner fin 35 is formed by repeating unevenness with a constant pitch width. The uneven pitch 50 of the second inner fin 35 is not provided with a second pitch 40b like the uneven pitch 40 of the first inner fin 33. In the crossing direction LR, which is the width direction of the plate heat exchanger 30, the pitch width P3 of the uneven pitch 50 formed on the second inner fin 35 is the pitch width P1 of the uneven pitch 40 formed on the first inner fin 33. And the pitch width is smaller than P2, and the unevenness is fine.
 ここで、第1インナーフィン33と、第1伝熱プレート32を構成するプレート32aの平坦な伝熱面及び第2伝熱プレート34を構成するプレート34bの平坦な伝熱面とは、面同士で接合されている。また、第2インナーフィン35と、第1伝熱プレート32を構成するプレート32bの平坦な伝熱面及び第2伝熱プレート34を構成するプレート34aの平坦な伝熱面とは、面同士で接合されている。 Here, the first inner fin 33 and the flat heat transfer surface of the plate 32a constituting the first heat transfer plate 32 and the flat heat transfer surface of the plate 34b forming the second heat transfer plate 34 are face-to-face with each other. It is joined with. Further, the second inner fin 35 and the flat heat transfer surface of the plate 32b forming the first heat transfer plate 32 and the flat heat transfer surface of the plate 34a forming the second heat transfer plate 34 are surface-to-face with each other. It is joined.
 このため、熱媒体が圧力の高い流体であり、冷媒が圧力の低い流体である場合には、プレート式熱交換器30に用いられる第1インナーフィン33及び第2インナーフィン35は次のように構成されると良い。プレート式熱交換器30は、熱媒体の流通する熱媒体流路38には凹凸ピッチ50と比較して、第1伝熱プレート32及び第2伝熱プレート34との接触面積が大きい凹凸ピッチ40が形成された第1インナーフィン33が用いられると良い。そして、プレート式熱交換器30は、冷媒の流通する冷媒流路39には凹凸ピッチ40と比較して、第1伝熱プレート32及び第2伝熱プレート34との接触面積が小さい凹凸ピッチ50が形成された第2インナーフィン35が用いられると良い。これにより、プレート式熱交換器30は、各部分毎に必要で十分な強度が得られ、全体で無駄のない強度確保が実現できる。 Therefore, when the heat medium is a fluid having a high pressure and the refrigerant is a fluid having a low pressure, the first inner fin 33 and the second inner fin 35 used in the plate heat exchanger 30 are as follows. It should be configured. In the plate heat exchanger 30, the uneven pitch 40 has a larger contact area with the first heat transfer plate 32 and the second heat transfer plate 34 than the uneven pitch 50 in the heat medium flow path 38 through which the heat medium flows. It is preferable to use the first inner fin 33 in which the above is formed. The plate heat exchanger 30 has a concave-convex pitch 50 in which the contact area between the first heat transfer plate 32 and the second heat transfer plate 34 is smaller than that of the concave-convex pitch 40 in the refrigerant flow path 39 through which the refrigerant flows. It is preferable to use the second inner fin 35 in which the above is formed. As a result, the plate heat exchanger 30 can obtain the necessary and sufficient strength for each part, and can secure the strength without waste as a whole.
 このように、プレート式熱交換器30は、熱媒体側の流路に対して圧力損失の影響の大きい冷媒側の流路には、熱伝達の良い小さいピッチ寸法で凹凸が細かいフィンが用いられる。そして、プレート式熱交換器30は、冷媒側の流路に対して熱媒体側の流路には、熱伝達が良くはないが圧力損失が小さくなる大きいピッチ寸法のフィンが用いられる。その結果、プレート式熱交換器30は、冷媒と水との熱抵抗比率を同等にできる。このように、プレート式熱交換器30は、流通する流体の物性に応じて第1流体である熱媒体と第2流体である冷媒との熱抵抗比率が調整でき、熱交換効率を高めることができる。 As described above, in the plate heat exchanger 30, fins having a small pitch dimension with good heat transfer and fine irregularities are used in the flow path on the refrigerant side, which has a large influence of pressure loss on the flow path on the heat medium side. .. Then, in the plate heat exchanger 30, fins having a large pitch dimension in which heat transfer is not good but pressure loss is small are used in the flow path on the heat medium side with respect to the flow path on the refrigerant side. As a result, the plate heat exchanger 30 can have the same thermal resistance ratio between the refrigerant and water. In this way, in the plate heat exchanger 30, the thermal resistance ratio between the heat medium as the first fluid and the refrigerant as the second fluid can be adjusted according to the physical properties of the flowing fluid, and the heat exchange efficiency can be improved. can.
<作用>
 以上、説明したように、プレート式熱交換器30及び伝熱装置100は、熱交換する熱媒体と冷媒との間で熱抵抗比率を同等に保つことができる。また、プレート式熱交換器30及び伝熱装置100は、熱交換する熱媒体と冷媒との間で熱交換効率を良好に保つことができる。そして、プレート式熱交換器30は、構造が簡単で安価に製造可能でありながら、冷媒が熱媒体回路20を介して家屋21内へ浸入すること防止することができ、伝熱装置100の長期の信頼性を向上させることができる。よって、プレート式熱交換器30及び伝熱装置100は、これまで冷媒の浸入防止機能が無いために使用できなかったCOなどの自然冷媒、可燃性の炭化水素又は低GWP冷媒などを使用できる。また、プレート式熱交換器30及び伝熱装置100は、使用流体の選定範囲が増えるため、潜熱の大きい冷媒を選定でき、熱交換性能も向上させることができる。
<Action>
As described above, the plate heat exchanger 30 and the heat transfer device 100 can maintain the same thermal resistance ratio between the heat medium for heat exchange and the refrigerant. Further, the plate heat exchanger 30 and the heat transfer device 100 can maintain good heat exchange efficiency between the heat medium for heat exchange and the refrigerant. The plate heat exchanger 30 has a simple structure and can be manufactured at low cost, but can prevent the refrigerant from entering the house 21 via the heat medium circuit 20 for a long period of time of the heat transfer device 100. Can improve the reliability of. Therefore, the plate heat exchanger 30 and the heat transfer device 100 can use natural refrigerants such as CO 2 , flammable hydrocarbons, low GWP refrigerants, etc., which could not be used until now because they do not have a refrigerant infiltration prevention function. .. Further, since the plate type heat exchanger 30 and the heat transfer device 100 increase the selection range of the fluid to be used, a refrigerant having a large latent heat can be selected and the heat exchange performance can be improved.
<実施の形態1の効果>
 実施の形態1によれば、プレート式熱交換器30は、それぞれ平坦な伝熱面を有する、複数の第1伝熱プレート32と複数の第2伝熱プレート34とを、交互に積層している。そして、プレート式熱交換器30は、熱媒体を流通させる第1流路としての熱媒体流路38と、冷媒を流通させる第2流路としての冷媒流路39とが交互に形成されている。また、プレート式熱交換器30は、複数の熱媒体流路38にそれぞれ配置される第1インナーフィン33と、複数の冷媒流路39にそれぞれ配置される第2インナーフィン35とを備えている。また、第1インナーフィン33には、複数の凹凸ピッチ40が繰り返して形成されており、第2インナーフィン35には、複数の凹凸ピッチ50が繰り返して形成されている。
<Effect of Embodiment 1>
According to the first embodiment, in the plate type heat exchanger 30, a plurality of first heat transfer plates 32 and a plurality of second heat transfer plates 34, each having a flat heat transfer surface, are alternately laminated. There is. In the plate heat exchanger 30, the heat medium flow path 38 as the first flow path through which the heat medium is circulated and the refrigerant flow path 39 as the second flow path through which the refrigerant is circulated are alternately formed. .. Further, the plate heat exchanger 30 includes a first inner fin 33 arranged in each of the plurality of heat medium flow paths 38 and a second inner fin 35 arranged in each of the plurality of refrigerant flow paths 39. .. Further, a plurality of uneven pitches 40 are repeatedly formed on the first inner fin 33, and a plurality of uneven pitches 50 are repeatedly formed on the second inner fin 35.
 第1伝熱プレート32は、プレート32aとプレート32bとの2枚の金属プレートを重ね合わせてダブルウォールに構成されている。第2伝熱プレート34は、プレート34aとプレート34bとの2枚の金属プレートを重ね合わせてダブルウォールに構成されている。プレート式熱交換器30は、プレート32aとプレート32bとの2枚の金属プレートの間に空隙部60と、部分的に配置された伝熱部材としてのロウ付け部61とを有している。また、プレート式熱交換器30は、プレート34aとプレート34bとの2枚の金属プレートの間に空隙部60と、部分的に配置された伝熱部材としてのロウ付け部61とを有している。その空隙部60同士は、連通路200aで接続され、空隙部60と連通路200aとによって形成された排出流路200a1は、外気と連通するように構成されている。 The first heat transfer plate 32 is formed as a double wall by superimposing two metal plates of the plate 32a and the plate 32b. The second heat transfer plate 34 is formed as a double wall by superimposing two metal plates of the plate 34a and the plate 34b. The plate heat exchanger 30 has a gap 60 between two metal plates of the plate 32a and the plate 32b, and a brazed portion 61 as a heat transfer member partially arranged. Further, the plate heat exchanger 30 has a gap portion 60 between two metal plates of the plate 34a and the plate 34b, and a brazing portion 61 as a heat transfer member partially arranged. There is. The gaps 60 are connected to each other by a communication passage 200a, and the discharge passage 200a1 formed by the gap 60 and the communication passage 200a is configured to communicate with the outside air.
 第1インナーフィン33が配置された熱媒体流路38を流通する第1流体としての熱媒体の流通方向DUに対して交差方向LRに延びる凹凸ピッチ40は、第1ピッチ40aと、第1ピッチ40aよりもピッチ幅の広い第2ピッチ40bと、を有する。第1伝熱プレート32と第2伝熱プレート34との積層方向FBにロウ付け部61を投影した場合に、ロウ付け部61は、第1ピッチ40aの領域に設けられている。 The uneven pitch 40 extending in the crossing direction LR with respect to the flow direction DU of the heat medium as the first fluid flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged is the first pitch 40a and the first pitch. It has a second pitch 40b having a pitch width wider than 40a. When the brazing portion 61 is projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 is provided in the region of the first pitch 40a.
 この構成によれば、第1伝熱プレート32のプレート32aと第2伝熱プレート34のプレート34bとは、積層方向FBにてロウ付け部61が存在する位置では、ピッチ幅が狭く強固な第1ピッチ40aと接続されている。 According to this configuration, the plate 32a of the first heat transfer plate 32 and the plate 34b of the second heat transfer plate 34 have a narrow pitch width and are strong at the position where the brazed portion 61 exists in the stacking direction FB. It is connected to 1 pitch 40a.
 ピッチ幅が広い第2ピッチ40bの位置は、積層方向FBにて第1インナーフィン33が第1伝熱プレート32のプレート32aと接触しない。そして、プレート式熱交換器30は、第1伝熱プレート32のプレート32aとプレート32bとの間に形成された空隙部60が、プレート32aを介して、第2ピッチ40bが配置された位置の熱媒体流路38と対向するように構成されている。換言すれば、プレート式熱交換器30は、本体30Aの内部を、積層方向FBに投影した場合に、複数の空隙部60は、第2ピッチ40bの領域に形成されている。このため、熱媒体流路38を構成する第1伝熱プレート32のプレート32aは、第2ピッチ40bと対向している位置が、第1ピッチ40aと対向している位置と比較して強度が低くなっている。 At the position of the second pitch 40b where the pitch width is wide, the first inner fin 33 does not come into contact with the plate 32a of the first heat transfer plate 32 in the stacking direction FB. Then, in the plate heat exchanger 30, the gap portion 60 formed between the plate 32a and the plate 32b of the first heat transfer plate 32 is located at a position where the second pitch 40b is arranged via the plate 32a. It is configured to face the heat medium flow path 38. In other words, in the plate heat exchanger 30, when the inside of the main body 30A is projected in the stacking direction FB, the plurality of gaps 60 are formed in the region of the second pitch 40b. Therefore, the plate 32a of the first heat transfer plate 32 constituting the heat medium flow path 38 has a higher strength at a position facing the second pitch 40b than at a position facing the first pitch 40a. It's getting low.
 そのため、第1伝熱プレート32に万が一傷つく要因が生じたとしても、第1伝熱プレート32のプレート32aは、第1ピッチ40aと対向している位置よりも、第2ピッチ40bと対向している位置が傷つきやすくなる。したがって、プレート式熱交換器30は万が一傷つく要因が生じたとしても、製造条件あるいは環境条件といった誤差因子によらず、第1伝熱プレート32と第2伝熱プレート34とを接触させていない領域に傷が生ずるようにできる。 Therefore, even if a factor that causes damage to the first heat transfer plate 32 occurs, the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged. Therefore, even if a factor of damage occurs in the plate heat exchanger 30, the region where the first heat transfer plate 32 and the second heat transfer plate 34 are not in contact with each other regardless of error factors such as manufacturing conditions or environmental conditions. Can be scratched.
 また、プレート式熱交換器30は、複数の空隙部60と連通路200aとによって形成される排出流路200a1が本体30Aの外部と連通している。すなわち、空隙部60同士は連通路200aで接続され、外気と連通するように構成されている。そのため、プレート式熱交換器30は、熱媒体が大気に放出され、また、プレート式熱交換器30を備えた伝熱装置100は、外部に流出した漏洩流体を検知センサーで検知し、検知センサーの検知に基づき伝熱装置100を停止させることができる。 Further, in the plate heat exchanger 30, the discharge passage 200a1 formed by the plurality of gaps 60 and the communication passage 200a communicates with the outside of the main body 30A. That is, the gaps 60 are connected to each other by a communication passage 200a and are configured to communicate with the outside air. Therefore, in the plate heat exchanger 30, the heat medium is released to the atmosphere, and the heat transfer device 100 provided with the plate heat exchanger 30 detects the leaked fluid flowing out to the outside with a detection sensor, and the detection sensor. The heat transfer device 100 can be stopped based on the detection of.
 このように、プレート式熱交換器30及び伝熱装置100は、熱交換効率が良好であり、構造が簡単で安価に製造でき、熱媒体と冷媒との混合を防止でき、または冷媒漏洩の検出を容易とする。実施の形態1のプレート式熱交換器30によれば、第2流体が可燃性冷媒であって、伝熱装置100が第1流体を室内に流通させ、第2流体を室内に流通させない空調システムである場合、本来は室内に循環しないはずの可燃性冷媒が熱媒体回路20を介して家屋21内に流入することを防止でき、安全性を向上できる。 As described above, the plate heat exchanger 30 and the heat transfer device 100 have good heat exchange efficiency, have a simple structure, can be manufactured at low cost, can prevent mixing of the heat medium and the refrigerant, or detect refrigerant leakage. To facilitate. According to the plate heat exchanger 30 of the first embodiment, an air conditioning system in which the second fluid is a flammable refrigerant, the heat transfer device 100 circulates the first fluid indoors, and the second fluid does not circulate indoors. In this case, it is possible to prevent the flammable refrigerant, which should not normally circulate in the room, from flowing into the house 21 via the heat medium circuit 20, and the safety can be improved.
 実施の形態1によれば、連通路200aは、第1流体の流通方向DUに最も近い前後の空隙部60とは最短経路で接続するように接続され、通路幅は、空隙部60の短手寸法よりも小さい寸法で構成される。そのため、プレート式熱交換器30は、ロウ付け部61の面積割合の低下による性能低下を抑制することができる。 According to the first embodiment, the communication passage 200a is connected so as to be connected to the front and rear gaps 60 closest to the flow direction DU of the first fluid by the shortest path, and the passage width is the short side of the gap 60. It consists of dimensions smaller than the dimensions. Therefore, the plate heat exchanger 30 can suppress performance deterioration due to a decrease in the area ratio of the brazing portion 61.
 また、連通路200aの流路断面積は、複数の空隙部60のうちの1つの空隙部60の流路断面積よりも小さい。そのため、プレート式熱交換器30は、ロウ付け部61の面積割合の低下による性能低下を抑制することができる。 Further, the flow path cross-sectional area of the continuous passage 200a is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. Therefore, the plate heat exchanger 30 can suppress performance deterioration due to a decrease in the area ratio of the brazing portion 61.
 また、排出流路200a1は、第1流体の流通方向DUにおいて複数の空隙部60のうち最も近い前後の空隙部60が連通路200aによって接続されて、流通方向DUに延びるように形成されており、排出流路200a1の端部が本体30Aの外部と連通している。そのため、プレート式熱交換器30は、熱媒体が大気に放出され、また、プレート式熱交換器30を備えた伝熱装置100は、外部に流出した漏洩流体を検知センサーで検知し、検知センサーの検知に基づき伝熱装置100を停止させることができる。 Further, the discharge flow path 200a1 is formed so that the closest front and rear gaps 60 among the plurality of gaps 60 in the flow direction DU of the first fluid are connected by the communication passage 200a and extend in the flow direction DU. , The end of the discharge flow path 200a1 communicates with the outside of the main body 30A. Therefore, in the plate heat exchanger 30, the heat medium is released to the atmosphere, and the heat transfer device 100 provided with the plate heat exchanger 30 detects the leaked fluid flowing out to the outside with a detection sensor, and the detection sensor. The heat transfer device 100 can be stopped based on the detection of.
 実施の形態1によれば、本体30Aの内部を積層方向FBに投影した場合に、複数の空隙部60は、第1ピッチ40aの領域には形成されていない。このため、熱媒体流路38を構成する第1伝熱プレート32のプレート32aは、第1ピッチ40aと対向している位置が、第2ピッチ40bと対向している位置と比較して強度が高くなっている。 According to the first embodiment, when the inside of the main body 30A is projected in the stacking direction FB, the plurality of gaps 60 are not formed in the region of the first pitch 40a. Therefore, the plate 32a of the first heat transfer plate 32 constituting the heat medium flow path 38 has a higher strength at a position facing the first pitch 40a than at a position facing the second pitch 40b. It's getting higher.
 そのため、第1伝熱プレート32に万が一傷つく要因が生じたとしても、第1伝熱プレート32のプレート32aは、第1ピッチ40aと対向している位置よりも、第2ピッチ40bと対向している位置が傷つきやすくなる。したがって、プレート式熱交換器30は万が一傷つく要因が生じたとしても、製造条件あるいは環境条件といった誤差因子によらず、第1伝熱プレート32と第2伝熱プレート34とを接触させていない領域に傷が生じるようにできる。 Therefore, even if a factor that causes damage to the first heat transfer plate 32 occurs, the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged. Therefore, even if a factor of damage occurs in the plate heat exchanger 30, the region where the first heat transfer plate 32 and the second heat transfer plate 34 are not in contact with each other regardless of error factors such as manufacturing conditions or environmental conditions. Can be scratched.
 実施の形態1によれば、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにロウ付け部61を投影した場合に、ロウ付け部61は、第2ピッチ40bの領域には存在しない。この構成によれば、第2ピッチ40bは第1ピッチ40aに対してピッチ幅が広く、かつ、第2ピッチ40bの位置は、第1伝熱プレート32のプレート32aを介して空隙部60と対向する位置に構成できる。なお、空隙部60は、第1伝熱プレート32と第2伝熱プレート34との間にロウ付け部61を介さない部分である。そのため、プレート式熱交換器30に万が一傷つく要因が生じたとしても、第1伝熱プレート32のプレート32aは、第1ピッチ40aと対向している位置よりも、第2ピッチ40bと対向している位置が傷つきやすくなる。 According to the first embodiment, when the brazing portion 61 is projected on the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 is located in the region of the second pitch 40b. Does not exist. According to this configuration, the second pitch 40b has a wider pitch than the first pitch 40a, and the position of the second pitch 40b faces the gap 60 via the plate 32a of the first heat transfer plate 32. Can be configured at the desired position. The gap portion 60 is a portion between the first heat transfer plate 32 and the second heat transfer plate 34 without the brazing portion 61. Therefore, even if a factor that damages the plate heat exchanger 30 should occur, the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged.
 実施の形態1によれば、第2ピッチ40bは、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUに対して交差方向LRにおいて少なくとも1以上の第1ピッチ40aを挟んで1ピッチに1以上設けられている。この構成によれば、プレート式熱交換器30は、圧力上昇が生じる領域と対向する位置に、第2ピッチ40bと対向する位置のプレート32aが設けられるように、第1インナーフィン33に第2ピッチ40bが形成されている。なお、第2ピッチ40bと対向する位置のプレート32aは、第1ピッチ40aと対向する位置のプレート32aと比較して強度が低く、熱媒体流路38の圧力が過剰に上昇した場合に、第1ピッチ40aと対向する位置のプレート32aと比較して傷つきやすい。 According to the first embodiment, the first pitch 40b is at least one or more in the crossing direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. One or more are provided in one pitch with the pitch 40a in between. According to this configuration, the plate heat exchanger 30 has a second inner fin 33 so that the plate 32a at a position facing the second pitch 40b is provided at a position facing the region where the pressure rise occurs. A pitch 40b is formed. The plate 32a at a position facing the second pitch 40b has a lower strength than the plate 32a at a position facing the first pitch 40a, and when the pressure in the heat medium flow path 38 rises excessively, the first plate 32a It is more easily damaged than the plate 32a at a position facing 1 pitch 40a.
 また、凹凸ピッチ40に形成された第2ピッチ40bは、熱媒体流路38を流通する熱媒体の流通方向DUにおいて、当該凹凸ピッチ40の直前及び直後に位置する他の凹凸ピッチ40に形成された第2ピッチ40bに対して、交差方向LRにずれて設けられている。この構成によれば、プレート式熱交換器30は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUにおいて、複数の第2ピッチ40bが隣接して形成されず、また、複数の第2ピッチ40bが連続して形成されない。これにより、プレート式熱交換器30は、第2ピッチ40bと対向する位置のプレート32aが過度に脆弱にならずに済む。 Further, the second pitch 40b formed at the uneven pitch 40 is formed at another uneven pitch 40 located immediately before and after the uneven pitch 40 in the distribution direction DU of the heat medium flowing through the heat medium flow path 38. It is provided so as to be offset from the second pitch 40b in the crossing direction LR. According to this configuration, in the plate heat exchanger 30, a plurality of second pitches 40b are formed adjacent to each other in the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. Also, the plurality of second pitches 40b are not continuously formed. As a result, in the plate heat exchanger 30, the plate 32a at a position facing the second pitch 40b does not become excessively fragile.
 また、熱媒体の流通方向DUにおいて、第2ピッチ40bを有する凹凸ピッチ40と、当該凹凸ピッチ40と異なる位置に形成された他の第2ピッチ40bを有する凹凸ピッチ40と、の間には、第1ピッチ40aのみを有する他の凹凸ピッチ40が設けられている。この構成によれば、プレート式熱交換器30は、第1インナーフィン33が配置された熱媒体流路38を流通する熱媒体の流通方向DUにおいて、複数の第2ピッチ40bが隣接して形成されず、また、複数の第2ピッチ40bが連続して形成されない。これにより、プレート式熱交換器30は、第2ピッチ40bと対向する位置のプレート32aが過度に脆弱にならずに済む。 Further, in the distribution direction DU of the heat medium, between the uneven pitch 40 having the second pitch 40b and the uneven pitch 40 having another second pitch 40b formed at a position different from the uneven pitch 40. Another uneven pitch 40 having only the first pitch 40a is provided. According to this configuration, in the plate heat exchanger 30, a plurality of second pitches 40b are formed adjacent to each other in the distribution direction DU of the heat medium flowing through the heat medium flow path 38 in which the first inner fin 33 is arranged. Also, the plurality of second pitches 40b are not continuously formed. As a result, in the plate heat exchanger 30, the plate 32a at a position facing the second pitch 40b does not become excessively fragile.
 実施の形態1によれば、第1ピッチ40aのピッチ幅P1を第2ピッチ40bのピッチ幅P2で割った値は、1よりも小さい。この構成によれば、プレート式熱交換器30は、第2ピッチ40bと対向する位置での第1伝熱プレート32の傷つきやすさの管理が容易である。実施の形態1によれば、第1ピッチ40aのピッチ幅P1を第2ピッチ40bのピッチ幅P2で割った値は、0.5よりも大きい。この構成によれば、プレート式熱交換器30は、第2ピッチ40bと対向する位置のプレート32aが過度に脆弱にならずにある程度の強度を有し、第2ピッチ40bと対向する位置のプレート32aの傷つきやすさの管理が容易である。 According to the first embodiment, the value obtained by dividing the pitch width P1 of the first pitch 40a by the pitch width P2 of the second pitch 40b is smaller than 1. According to this configuration, the plate heat exchanger 30 can easily manage the fragility of the first heat transfer plate 32 at a position facing the second pitch 40b. According to the first embodiment, the value obtained by dividing the pitch width P1 of the first pitch 40a by the pitch width P2 of the second pitch 40b is larger than 0.5. According to this configuration, in the plate heat exchanger 30, the plate 32a at the position facing the second pitch 40b has a certain strength without becoming excessively fragile, and the plate at the position facing the second pitch 40b. It is easy to manage the fragility of 32a.
 実施の形態1によれば、第1インナーフィン33の凹凸ピッチ40は、熱媒体流路38を流通する熱媒体の流通方向DUに対する交差方向LRに対して、直交する部分と平行に伸びている部分とを有し、直角に屈曲する部分が連続するように形成されている。この構成によれば、第1インナーフィン33の加工が容易であり製造し易い。 According to the first embodiment, the uneven pitch 40 of the first inner fin 33 extends parallel to the portion orthogonal to the intersecting direction LR with respect to the distribution direction DU of the heat medium flowing through the heat medium flow path 38. It has a portion and is formed so that a portion that bends at a right angle is continuous. According to this configuration, the first inner fin 33 is easy to process and easy to manufacture.
 実施の形態1によれば、第1流体としての熱媒体は、水又はブラインである。ここで、熱媒体が凍結時などによって、堆積膨張あるいは熱媒体流路38の過剰な圧力上昇を引き起こした場合に、第1伝熱プレート32が傷つく場合を想定してみる。第2ピッチ40bと対向する位置のプレート32aは、第1ピッチ40aと対向する位置のプレート32aに対して強度が低いため、第1ピッチ40aと対向する位置のプレート32aよりも傷つきやすく構成されている。そして、第1伝熱プレート32のプレート32aが第2ピッチ40bと対向する位置で傷つくと、プレート式熱交換器30は、熱媒体を空隙部60に排出できる。 According to the first embodiment, the heat medium as the first fluid is water or brine. Here, it is assumed that the first heat transfer plate 32 is damaged when the heat medium causes deposition expansion or an excessive pressure rise in the heat medium flow path 38 due to freezing or the like. Since the plate 32a at the position facing the second pitch 40b has lower strength than the plate 32a at the position facing the first pitch 40a, it is more easily damaged than the plate 32a at the position facing the first pitch 40a. There is. Then, when the plate 32a of the first heat transfer plate 32 is damaged at a position facing the second pitch 40b, the plate heat exchanger 30 can discharge the heat medium to the gap portion 60.
 実施の形態1によれば、冷媒流路39を流通する第2流体は、冷媒である。プレート式熱交換器30は、第1伝熱プレート32のプレート32aが第2ピッチ40bと対向する位置で傷つくと、熱媒体を空隙部60に排出できる。このため、冷媒が可燃性冷媒などの冷媒であり、第1伝熱プレート32のプレート32aが第2ピッチ40bと対向する位置で破壊されても、熱媒体と冷媒とが混合されない。そのため、可燃性冷媒などの冷媒が、熱媒体の流れる熱媒体回路20を介しての家屋21内に流入することを防止でき、安全性を向上できる。 According to the first embodiment, the second fluid flowing through the refrigerant flow path 39 is a refrigerant. The plate heat exchanger 30 can discharge the heat medium to the gap 60 when the plate 32a of the first heat transfer plate 32 is damaged at a position facing the second pitch 40b. Therefore, even if the refrigerant is a refrigerant such as a flammable refrigerant and the plate 32a of the first heat transfer plate 32 is destroyed at a position facing the second pitch 40b, the heat medium and the refrigerant are not mixed. Therefore, it is possible to prevent a refrigerant such as a flammable refrigerant from flowing into the house 21 via the heat medium circuit 20 through which the heat medium flows, and it is possible to improve safety.
 冷媒流路39に配置される第2インナーフィン35の凹凸ピッチ50は、一定のピッチ幅で凹凸が繰り返して形成されている。第2インナーフィン35の凹凸ピッチ50には、第1インナーフィン33の凹凸ピッチ40のような第2ピッチ40bが設けられていない。プレート式熱交換器30の幅方向である交差方向LRにおいて、第2インナーフィン35に形成された凹凸ピッチ50のピッチ幅P3は、第1インナーフィン33に形成された凹凸ピッチ40のピッチ幅P1及びピッチ幅P2よりも小さく、凹凸が細かい。そのため、可燃性冷媒などの冷媒が流れる冷媒流路39は、第2ピッチ40bを有する第1インナーフィン33が配置された熱媒体流路38と比較して強度が高く、熱媒体流路38と比較して傷つきにくい。そのため、プレート式熱交換器30は、冷媒流路39から空隙部60に冷媒が流れ込むことを防止できる。 The uneven pitch 50 of the second inner fin 35 arranged in the refrigerant flow path 39 is formed by repeating unevenness with a constant pitch width. The uneven pitch 50 of the second inner fin 35 is not provided with a second pitch 40b like the uneven pitch 40 of the first inner fin 33. In the crossing direction LR, which is the width direction of the plate heat exchanger 30, the pitch width P3 of the uneven pitch 50 formed on the second inner fin 35 is the pitch width P1 of the uneven pitch 40 formed on the first inner fin 33. And the pitch width is smaller than P2, and the unevenness is fine. Therefore, the refrigerant flow path 39 through which the refrigerant such as the flammable refrigerant flows has higher strength than the heat medium flow path 38 in which the first inner fin 33 having the second pitch 40b is arranged, and is higher than the heat medium flow path 38. It is hard to get hurt in comparison. Therefore, the plate heat exchanger 30 can prevent the refrigerant from flowing into the gap 60 from the refrigerant flow path 39.
 実施の形態1によれば、交差方向LRにおいて、第2インナーフィン35に形成された凹凸ピッチ50のピッチ幅P3は、第1インナーフィン33に形成された凹凸ピッチ40のピッチ幅P1及びピッチ幅P2よりも小さく、凹凸が細かい。この構成によれば、プレート式熱交換器30は、熱媒体及び冷媒のぞれぞれの粘性などの物性に合わせて凹凸ピッチ40及び凹凸ピッチ50が最適に構成できる。 According to the first embodiment, in the crossing direction LR, the pitch width P3 of the uneven pitch 50 formed on the second inner fin 35 is the pitch width P1 and the pitch width of the uneven pitch 40 formed on the first inner fin 33. It is smaller than P2 and has fine irregularities. According to this configuration, in the plate heat exchanger 30, the uneven pitch 40 and the uneven pitch 50 can be optimally configured according to the physical characteristics such as the viscosity of each of the heat medium and the refrigerant.
 実施の形態1によれば、伝熱装置100は、上記のプレート式熱交換器30を備える。そのため、伝熱装置100は、プレート式熱交換器30の上述の効果を発揮させることができる。例えば、伝熱装置100は、プレート式熱交換器30に万が一傷つく要因が生じても、製造条件あるいは環境条件といった誤差因子によらず、第1伝熱プレート32と第2伝熱プレート34とを接触させていない領域に傷が生じるようにできる。 According to the first embodiment, the heat transfer device 100 includes the above-mentioned plate heat exchanger 30. Therefore, the heat transfer device 100 can exert the above-mentioned effect of the plate heat exchanger 30. For example, in the heat transfer device 100, even if a factor that damages the plate heat exchanger 30 should occur, the first heat transfer plate 32 and the second heat transfer plate 34 are connected regardless of error factors such as manufacturing conditions or environmental conditions. The area that is not in contact can be scratched.
実施の形態2.
 図9は、実施の形態2に係る第1インナーフィン33の平面図であり、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに投影したときの透視図のうち、伝熱部材及び空隙部60の層のみ示した図である。なお、図9は、ロウ付け部61などの伝熱部材の図示は省略している。また、図9は、第1インナーフィン33の流通方向DUの一部を表している。実施の形態2では、実施の形態1と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略し、その特徴部分のみを説明する。
Embodiment 2.
FIG. 9 is a plan view of the first inner fin 33 according to the second embodiment, and is a perspective view of the first heat transfer plate 32 and the second heat transfer plate 34 projected onto the stacking direction FB. It is a figure which showed only the layer of a member and a gap 60. Note that FIG. 9 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 9 shows a part of the distribution direction DU of the first inner fin 33. In the second embodiment, the components having the same functions and functions as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the characteristic portions thereof will be described.
 図9に示すように、連通路200bは、第1流体の流通方向DUにおいて、最も近い前後の空隙部60が最短経路で接続されるように、空隙部60同士を接続する。連通路200bは、流通方向DUにおいて左右に交互に配置された空隙部60の組み合わせにおいて、空隙部60を斜めに接続するように形成されている。 As shown in FIG. 9, the communication passage 200b connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid. The communication passage 200b is formed so as to diagonally connect the gap portions 60 in the combination of the gap portions 60 arranged alternately on the left and right in the distribution direction DU.
 連通路200bの通路幅は、空隙部60の短手寸法よりも小さい寸法で構成される。また、連通路200bの流路断面積は、複数の空隙部60のうちの1つの空隙部60の流路断面積よりも小さい。プレート式熱交換器30は、空隙部60と連通路200bとが接続されて排出流路200b1が形成されている。 The passage width of the continuous passage 200b is smaller than the short dimension of the gap 60. Further, the flow path cross-sectional area of the communication passage 200b is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. In the plate heat exchanger 30, the gap portion 60 and the communication passage 200b are connected to form a discharge passage 200b1.
 排出流路200b1は、その通路方向が、第1インナーフィン33が配置された第1流路である熱媒体流路38を流通する第1流体の流通方向DUと、流通方向DUに対して交差方向LRとの間に位置する斜め方向TIとなるように形成されている。 The discharge flow path 200b1 intersects the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, with respect to the flow direction DU. It is formed so as to have an oblique TI located between the LR and the LR.
 排出流路200b1は、第1流体の流通方向DUにおいて、複数の空隙部60のうち最も近い前後の空隙部60が連通路200bによって接続されて、流通方向DUと交差方向LRとの間の斜め方向TIに延びるように形成されている。また、排出流路200b1は、排出流路200b1の端部が本体30Aの外部と連通している。 In the discharge flow path 200b1, in the flow direction DU of the first fluid, the closest front and rear gaps 60 among the plurality of gaps 60 are connected by the communication passage 200b, and the discharge flow path 200b1 is oblique between the flow direction DU and the intersection direction LR. It is formed so as to extend in the direction TI. Further, in the discharge flow path 200b1, the end portion of the discharge flow path 200b1 communicates with the outside of the main body 30A.
 また、熱媒体を流通させる第1流路としての熱媒体流路38と、冷媒を流通させる第2流路としての冷媒流路39とにおいて、第1流体及び第2流体の流通方向DUの流路長さは、その交差方向LRの流路幅よりも長い。 Further, in the heat medium flow path 38 as the first flow path through which the heat medium is circulated and the refrigerant flow path 39 as the second flow path through which the refrigerant is circulated, the flow of the first fluid and the second fluid in the flow direction DU. The road length is longer than the flow path width of the crossing direction LR.
 実施の形態2によれば、常に第1流体の流通方向DUの流路長さは、その交差方向LRの流路幅より長いため、その間の方向に沿って形成されて外気と連通した排出流路200b1は、流通方向DUに沿って構成された排出流路200a1よりも短い。このため、排出流路200b1では、プレート32aの傷ついた箇所から外気までの距離が短く、漏洩流体の流路抵抗を小さくすることができる。そのため、実施の形態2に係るプレート式熱交換器30は、外部で検知するのに十分な漏洩流体の流出流量を確保することができる。 According to the second embodiment, since the flow path length of the flow direction DU of the first fluid is always longer than the flow path width of the crossing direction LR, the discharge flow formed along the direction between them and communicates with the outside air. The path 200b1 is shorter than the discharge flow path 200a1 formed along the distribution direction DU. Therefore, in the discharge flow path 200b1, the distance from the damaged portion of the plate 32a to the outside air is short, and the flow path resistance of the leaking fluid can be reduced. Therefore, the plate heat exchanger 30 according to the second embodiment can secure a sufficient outflow flow rate of the leaked fluid to be detected externally.
 図9は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの上隅と、第1流体の流通方向において左斜め上に位置する第2の空隙部60の右方向Rの下隅とが、連通路200bによって接続されている構成を示している。また、図9は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の右方向Rの下隅と、第1流体の流通方向において右斜め下に位置する第3の空隙部60の左方向Lの上隅とが、連通路200bによって接続されている構成を示している。 FIG. 9 shows the upper corner of the first gap 60 in the left direction L and the second diagonally upward left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The lower corner of the gap 60 in the right direction R is connected by a communication passage 200b. Further, FIG. 9 shows a third position located at the lower corner of the first gap 60 in the right direction R and diagonally lower right in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The upper corner of the gap portion 60 in the left direction L is connected by a communication passage 200b.
 図10は、実施の形態2の変形例1に係る第1インナーフィン33の平面図であり、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに投影したときの透視図のうち、伝熱部材及び空隙部60の層のみ示した図である。なお、図10は、ロウ付け部61などの伝熱部材の図示は省略している。また、図10は、第1インナーフィン33の流通方向DUの一部を表している。 FIG. 10 is a plan view of the first inner fin 33 according to the first modification of the second embodiment, and is a perspective view when projected onto the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. Of these, only the layers of the heat transfer member and the gap 60 are shown. Note that FIG. 10 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 10 shows a part of the distribution direction DU of the first inner fin 33.
 図10に示すように、連通路200cは、第1流体の流通方向DUにおいて、最も近い前後の空隙部60が最短経路で接続されるように、空隙部60同士を接続する。連通路200cは、流通方向DUにおいて左右に交互に配置された空隙部60の組み合わせにおいて、空隙部60を交差方向LRに接続するように形成されている。すなわち、連通路200cは、千鳥状に配置された空隙部60のうち、任意の2列を交差方向LRに連結するように形成されている。 As shown in FIG. 10, the communication passage 200c connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid. The communication passage 200c is formed so as to connect the gaps 60 in the crossing direction LR in the combination of the gaps 60 arranged alternately on the left and right in the distribution direction DU. That is, the continuous passage 200c is formed so as to connect any two rows of the gaps 60 arranged in a staggered pattern in the crossing direction LR.
 連通路200cの通路幅は、空隙部60の短手寸法よりも小さい寸法で構成される。また、連通路200cの流路断面積は、複数の空隙部60のうちの1つの空隙部60の流路断面積よりも小さい。プレート式熱交換器30は、空隙部60と連通路200cとが接続されて排出流路200c1が形成されている。プレート式熱交換器30は、複数の空隙部60と連通路200とによって形成される排出流路200c1が本体30Aの外部と連通している。 The passage width of the continuous passage 200c is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the continuous passage 200c is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. In the plate heat exchanger 30, the gap portion 60 and the communication passage 200c are connected to form a discharge passage 200c1. In the plate heat exchanger 30, the discharge flow path 200c1 formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
 排出流路200c1は、その通路方向が、第1インナーフィン33が配置された第1流路である熱媒体流路38を流通する第1流体の流通方向DUに対して交差する交差方向LRとなるように形成されている。 The discharge flow path 200c1 has a crossing direction LR whose passage direction intersects with the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged. It is formed to be.
 このため、プレート式熱交換器30は、漏洩流体の流体抵抗をさらに抑制でき、第1流体と第2流体との混合を防止し、検知するのに十分な量の漏洩流体を外部に流出させることができる。そして、伝熱装置100は、プレート式熱交換器30から漏洩した漏洩流体を検知することによって、伝熱装置100を停止させることができ、空調機の破損などを防止することができる。 Therefore, the plate heat exchanger 30 can further suppress the fluid resistance of the leaked fluid, prevent the mixing of the first fluid and the second fluid, and allow a sufficient amount of leaked fluid to flow out to the outside. be able to. Then, the heat transfer device 100 can stop the heat transfer device 100 by detecting the leaked fluid leaked from the plate heat exchanger 30, and can prevent damage to the air conditioner.
 なお、図10は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの上隅と、第1流体の流通方向において左斜め上に位置する第2の空隙部60の右方向Rの下隅とが、連通路200cによって接続されている構成を示している。また、図10は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の右方向Rの上隅と、第1流体の流通方向において右斜め上に位置する第3の空隙部60の左方向Lの下隅とが、連通路200cによって接続されている構成を示している。連通路200cは、第1流体の流通方向DUに交差する交差方向LRにおいて、上下に交互に形成された空隙部60を接続するように形成されている。 Note that FIG. 10 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The lower corner of the gap 60 in the right direction R of No. 2 is connected by a communication passage 200c. Further, FIG. 10 shows a third position located diagonally upward to the right in the flow direction of the first fluid and the upper corner of the right direction R of the first gap 60 when the flow direction of the first fluid is the upward direction U. The lower corner of the gap 60 in the left direction L of No. 3 is connected by a communication passage 200c. The communication passage 200c is formed so as to connect the gaps 60 formed alternately in the upper and lower directions in the crossing direction LR intersecting the flow direction DU of the first fluid.
 図11は、実施の形態2の変形例2に係る第1インナーフィン33の平面図であり、第1伝熱プレート32及び第2伝熱プレート34の重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部60の層のみ示した図である。なお、図11は、ロウ付け部61などの伝熱部材の図示は省略している。また、図11は、第1インナーフィン33の流通方向DUの一部を表している。 FIG. 11 is a plan view of the first inner fin 33 according to the second modification of the second embodiment, and is a perspective view when projected in the overlapping direction of the first heat transfer plate 32 and the second heat transfer plate 34. , Only the layers of the heat transfer member and the gap 60 are shown. Note that FIG. 11 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 11 shows a part of the distribution direction DU of the first inner fin 33.
 図11に示すように、連通路200aは、第1流体の流通方向DUにおいて、最も近い前後の空隙部60が最短経路で接続されるように、空隙部60同士を接続する。連通路200aは、流通方向DUにおいて左右に交互に配置された空隙部60の組み合わせにおいて、交差方向LRに隣接する2列に形成された空隙部60を、流通方向DUに接続するように形成されている。 As shown in FIG. 11, the communication passage 200a connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid. The communication passage 200a is formed so as to connect the gaps 60 formed in two rows adjacent to the crossing direction LR to the flow direction DU in the combination of the gaps 60 arranged alternately on the left and right in the flow direction DU. ing.
 連通路200aは、流通方向DUに延びるように直線状に形成されている。プレート式熱交換器30は、空隙部60と直線状に形成された連通路200aとが接続されて排出流路200a2が形成されている。プレート式熱交換器30は、複数の空隙部60と連通路200とによって形成される排出流路200a2が本体30Aの外部と連通している。 The communication passage 200a is formed in a straight line so as to extend in the distribution direction DU. In the plate heat exchanger 30, the gap portion 60 and the linearly formed communication passage 200a are connected to form the discharge passage 200a2. In the plate heat exchanger 30, the discharge flow path 200a2 formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
 排出流路200a2は、その通路方向が、第1インナーフィン33が配置された第1流路である熱媒体流路38を流通する第1流体の流通方向DUであるとともに、排出流路200a2が直線状で形成されている。 The discharge flow path 200a2 has a passage direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, and the discharge flow path 200a2 has a discharge flow path 200a2. It is formed in a straight line.
 また、排出流路200a2は、その通路方向が、第1インナーフィン33が配置された第1流路である熱媒体流路38を流通する第1流体の流通方向DUであるとともに、排出流路200a2が直線状で形成されている。そのため、プレート式熱交換器30は、漏洩流体の通路抵抗がさらに小さくなり、プレート式熱交換器30の外部で検知するのに十分な量の漏洩流体をプレート式熱交換器30の外部に流出させることができる。 Further, the discharge flow path 200a2 has a flow path direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, and is also a discharge flow path. 200a2 is formed in a straight line. Therefore, in the plate heat exchanger 30, the passage resistance of the leaked fluid is further reduced, and a sufficient amount of leaked fluid flows out of the plate heat exchanger 30 to be detected outside the plate heat exchanger 30. Can be made to.
実施の形態3.
 図12は、実施の形態3に係る第1インナーフィン33の平面図であり、第1伝熱プレート32及び第2伝熱プレート34の積層方向FBに投影したときの透視図のうち、伝熱部材及び空隙部60の層のみ示した図である。なお、図12は、ロウ付け部61などの伝熱部材の図示は省略している。また、図12は、第1インナーフィン33の流通方向DUの一部を表している。実施の形態3では、実施の形態1又は実施の形態2と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略し、その特徴部分のみを説明する。
Embodiment 3.
FIG. 12 is a plan view of the first inner fin 33 according to the third embodiment, and is a perspective view of the first heat transfer plate 32 and the second heat transfer plate 34 projected onto the stacking direction FB. It is a figure which showed only the layer of a member and a gap 60. Note that FIG. 12 omits the illustration of heat transfer members such as the brazed portion 61. Further, FIG. 12 shows a part of the distribution direction DU of the first inner fin 33. In the third embodiment, the components having the same functions and functions as those of the first embodiment or the second embodiment are designated by the same reference numerals, the description thereof will be omitted, and only the characteristic portions thereof will be described.
 図12に示すように、連通路200dは、第1流体の流通方向DUにおいて、最も近い前後の空隙部60が最短経路で接続されるように、空隙部60同士を接続する。連通路200dは、流通方向DUにおいて左右に交互に配置された空隙部60を斜めに接続するように形成されている。 As shown in FIG. 12, the communication passage 200d connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid. The communication passage 200d is formed so as to diagonally connect the gaps 60 arranged alternately on the left and right in the distribution direction DU.
 連通路200dの通路幅は、空隙部60の短手寸法よりも小さい寸法で構成される。また、連通路200dの流路断面積は、複数の空隙部60のうちの1つの空隙部60の流路断面積よりも小さい。プレート式熱交換器30は、空隙部60と連通路200dとが接続されて排出流路200d1が形成されている。プレート式熱交換器30は、複数の空隙部60と連通路200とによって形成される排出流路200d1が本体30Aの外部と連通している。 The passage width of the continuous passage 200d is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the continuous passage 200d is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. In the plate heat exchanger 30, the gap portion 60 and the communication passage 200d are connected to form a discharge passage 200d1. In the plate heat exchanger 30, the discharge flow path 200d1 formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
 排出流路200d1は、その通路方向が、第1インナーフィン33が配置された第1流路である熱媒体流路38を流通する第1流体の流通方向DUと、流通方向DUに対して交差方向LRとのいずれの方向にも形成されている。そのため、プレート式熱交換器30は、第1流路である熱媒体流路38を流通する第1流体の流通方向DUと、流通方向DUに対して交差方向LRとのいずれの方向にも漏洩流体を排出できる構造に形成されている。 The discharge flow path 200d1 intersects the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, with respect to the flow direction DU. It is formed in any direction with the direction LR. Therefore, the plate heat exchanger 30 leaks in both the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and the crossing direction LR with respect to the flow direction DU. It is formed in a structure that can discharge fluid.
 また、熱媒体を流通させる第1流路としての熱媒体流路38と、冷媒を流通させる第2流路としての冷媒流路39において、第1流体及び第2流体の流通方向DUの流路長さは、その交差方向LRの流路幅よりも長い。 Further, in the heat medium flow path 38 as the first flow path for circulating the heat medium and the refrigerant flow path 39 as the second flow path for circulating the refrigerant, the flow paths in the flow directions DU of the first fluid and the second fluid. The length is longer than the flow path width of the crossing direction LR.
 実施の形態3によれば、排出流路200d1が、第1流路である熱媒体流路38を流通する第1流体の流通方向DUと、流通方向DUに対して交差する交差方向LRとの、いずれの方向にも形成されている。すなわち、排出流路200d1は、流通方向DUと交差方向LRとの縦横に形成されており、格子状に形成されている。このため、漏洩流体がプレート式熱交換器30の内部から外部へ流出する際、漏洩流体は、流出開始位置の空隙部60から格子状に分流しながら流出できる。そのため、プレート式熱交換器30は、漏洩流体の通路抵抗を小さくすることができ、プレート式熱交換器30の外部で検知するのに十分な漏洩流体の流出流量を確保することができる。 According to the third embodiment, the discharge flow path 200d1 has a flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and an intersection direction LR intersecting the flow direction DU. , It is formed in either direction. That is, the discharge flow path 200d1 is formed in the vertical and horizontal directions of the distribution direction DU and the crossing direction LR, and is formed in a grid pattern. Therefore, when the leaked fluid flows out from the inside of the plate heat exchanger 30 to the outside, the leaked fluid can flow out while being divided in a grid pattern from the gap 60 at the outflow start position. Therefore, the plate heat exchanger 30 can reduce the passage resistance of the leaked fluid, and can secure a sufficient outflow flow rate of the leaked fluid to be detected outside the plate heat exchanger 30.
 なお、図12は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの上隅と、第1流体の流通方向において左斜め上に位置する第2の空隙部60の右方向Rの下隅とが、連通路200dによって接続されている構成を示している。また、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの下隅と、第1流体の流通方向において左斜め下に位置する第3の空隙部60の右方向Rの上隅とが、連通路200dによって接続されている構成を示している。 Note that FIG. 12 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The lower corner of the gap 60 in the right direction R of No. 2 is connected by a continuous passage 200d. Further, when the flow direction of the first fluid is upward U, the lower corner of the first gap 60 in the left direction L and the third gap 60 located diagonally lower to the left in the flow direction of the first fluid. Shows a configuration in which the upper corner of the right direction R of the above is connected by a continuous passage 200d.
 また、図12は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の右方向Rの上隅と、第1流体の流通方向において右斜め上に位置する第4の空隙部60の左方向Lの下隅とが、連通路200dによって接続されている構成を示している。また、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の右方向Rの下隅と、第1流体の流通方向において右斜め下に位置する第5の空隙部60の左方向Lの上隅とが、連通路200dによって接続されている構成を示している。 Further, FIG. 12 shows a second position located diagonally upward to the right in the flow direction of the first fluid and the upper corner of the right direction R of the first gap 60 when the flow direction of the first fluid is the upward direction U. The lower corner of the gap 60 in the left direction L of No. 4 is connected by a communication passage 200d. Further, when the flow direction of the first fluid is upward U, the lower corner of the first gap 60 in the right direction R and the fifth gap 60 located diagonally lower to the right in the flow direction of the first fluid. The upper corner of the left direction L is connected by a continuous passage 200d.
 図13は、実施の形態3に変形例1に係る第1インナーフィン33の平面図であり、第1伝熱プレート32及び第2伝熱プレート34の重なり方向に投影したときの透視図のうち、伝熱部材及び空隙部60の層のみ示した図である。なお、図13は、ロウ付け部61などの伝熱部材の図示は省略している。また、図13は、第1インナーフィン33の流通方向DUの一部を表している。 FIG. 13 is a plan view of the first inner fin 33 according to the first modification in the third embodiment, and is a perspective view when projected in the overlapping direction of the first heat transfer plate 32 and the second heat transfer plate 34. , Only the layers of the heat transfer member and the gap 60 are shown. Note that FIG. 13 does not show the heat transfer member such as the brazed portion 61. Further, FIG. 13 shows a part of the distribution direction DU of the first inner fin 33.
 プレート式熱交換器30は、連通路200a及び連通路200cを有する。連通路200aは、第1流体の流通方向DUにおいて、最も近い前後の空隙部60が最短経路で接続されるように、空隙部60同士を接続する。連通路200aは、流通方向DUにおいて左右に交互に配置された空隙部60を接続するように形成されている。 The plate heat exchanger 30 has a continuous passage 200a and a continuous passage 200c. The communication passage 200a connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid. The communication passage 200a is formed so as to connect the gaps 60 arranged alternately on the left and right in the distribution direction DU.
 連通路200cは、第1流体の流通方向DUにおいて、最も近い前後の空隙部60が最短経路で接続されるように、空隙部60同士を接続する。連通路200cは、流通方向DUにおいて左右に交互に配置された空隙部60の組み合わせにおいて、空隙部60を交差方向LRに接続するように形成されている。 The communication passage 200c connects the gaps 60 to each other so that the closest front and rear gaps 60 are connected by the shortest path in the flow direction DU of the first fluid. The communication passage 200c is formed so as to connect the gaps 60 in the crossing direction LR in the combination of the gaps 60 arranged alternately on the left and right in the distribution direction DU.
 連通路200aの通路幅は、空隙部60の短手寸法よりも小さい寸法で構成される。また、連通路200aの流路断面積は、複数の空隙部60のうちの1つの空隙部60の流路断面積よりも小さい。また、連通路200cの通路幅は、空隙部60の短手寸法よりも小さい寸法で構成される。また、連通路200cの流路断面積は、複数の空隙部60のうちの1つの空隙部60の流路断面積よりも小さい。プレート式熱交換器30は、空隙部60と連通路200a及び連通路200cとが接続されて排出流路200eが形成されている。プレート式熱交換器30は、複数の空隙部60と連通路200とによって形成される排出流路200eが本体30Aの外部と連通している。 The passage width of the continuous passage 200a is smaller than the short size of the gap 60. Further, the flow path cross-sectional area of the communication passage 200a is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. Further, the passage width of the continuous passage 200c is configured to be smaller than the short dimension of the gap portion 60. Further, the flow path cross-sectional area of the continuous passage 200c is smaller than the flow path cross-sectional area of one of the gaps 60 among the plurality of gaps 60. In the plate heat exchanger 30, the gap 60 is connected to the communication passage 200a and the communication passage 200c to form a discharge passage 200e. In the plate heat exchanger 30, the discharge flow path 200e formed by the plurality of gaps 60 and the communication passage 200 communicates with the outside of the main body 30A.
 排出流路200eは、その通路方向が、第1インナーフィン33が配置された第1流路である熱媒体流路38を流通する第1流体の流通方向DUと、流通方向DUに対して交差方向LRとのいずれの方向にも形成されている。そのため、プレート式熱交換器30は、第1流路である熱媒体流路38を流通する第1流体の流通方向DUと、流通方向DUに対して交差方向LRとのいずれの方向にも漏洩流体を排出できる構造に形成されている。 The discharge flow path 200e intersects the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path in which the first inner fin 33 is arranged, with respect to the flow direction DU. It is formed in any direction with the direction LR. Therefore, the plate heat exchanger 30 leaks in both the flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and the crossing direction LR with respect to the flow direction DU. It is formed in a structure that can discharge fluid.
 排出流路200eは、空隙部60と連通路200aとを接続して流通方向DUに形成される通路の数と、空隙部60と連通路200cとを接続して交差方向LRに形成される通路の数とが異なる。図13では、空隙部60と連通路200aとを接続して流通方向DUに形成される通路の数が、空隙部60と連通路200cとを接続して交差方向LRに形成される通路の数よりも多い。なお、排出流路200eは、空隙部60と連通路200aとを接続して流通方向DUに形成される通路の数が、空隙部60と連通路200cとを接続して交差方向LRに形成される通路の数よりも多い構成に限定されるものではない。 The discharge flow path 200e includes the number of passages formed in the distribution direction DU by connecting the gap portion 60 and the communication passage 200a, and the passage formed in the intersection direction LR by connecting the gap portion 60 and the communication passage 200c. Is different from the number of. In FIG. 13, the number of passages formed in the distribution direction DU by connecting the gap portion 60 and the communication passage 200a is the number of passages formed in the intersection direction LR by connecting the gap portion 60 and the communication passage 200c. More than. In the discharge flow path 200e, the number of passages formed in the distribution direction DU by connecting the gap portion 60 and the communication passage 200a is formed in the intersection direction LR by connecting the gap portion 60 and the communication passage 200c. It is not limited to a configuration that is larger than the number of passages.
 実施の形態3によれば、排出流路200eは、第1流路である熱媒体流路38を流通する第1流体の流通方向DUと、流通方向DUに対して交差する交差方向LRとの、いずれの方向にも流路を形成している。すなわち、排出流路200eは、流通方向DUと交差方向LRとの縦横に形成されており、格子状に形成されている。また、排出流路200eにおいて、第1流体及び第2流体の流通方向となる流通方向DUに形成される流路の長さは、流通方向DUに交差する交差方向LRに形成される流路の長さよりも長い。そのため、流通方向DUに形成される流路は、交差方向LRに形成される流路よりも流路の長さが長く流体抵抗の大きい。 According to the third embodiment, the discharge flow path 200e has a flow direction DU of the first fluid flowing through the heat medium flow path 38, which is the first flow path, and an intersection direction LR intersecting the flow direction DU. , A flow path is formed in either direction. That is, the discharge flow path 200e is formed in the vertical and horizontal directions of the distribution direction DU and the crossing direction LR, and is formed in a grid pattern. Further, in the discharge flow path 200e, the length of the flow path formed in the flow direction DU which is the flow direction of the first fluid and the second fluid is the length of the flow path formed in the intersection direction LR intersecting the flow direction DU. Longer than the length. Therefore, the flow path formed in the flow direction DU has a longer flow path length and a larger fluid resistance than the flow path formed in the crossing direction LR.
 上述したように、図13で示す排出流路200eは、空隙部60と連通路200aとを接続して流通方向DUに形成される通路の数が、空隙部60と連通路200cとを接続して交差方向LRに形成される通路の数よりも多い。すなわち、プレート式熱交換器30は、交差方向LRの流路よりも流体抵抗の大きい流通方向DUの流路の数が、交差方向LRの流路の数よりも多くなるように形成されている。 As described above, in the discharge flow path 200e shown in FIG. 13, the number of passages formed by connecting the gap portion 60 and the communication passage 200a in the distribution direction DU connects the gap portion 60 and the communication passage 200c. There are more passages formed in the crossing direction LR. That is, the plate heat exchanger 30 is formed so that the number of flow paths in the flow direction DU, which has a larger fluid resistance than the flow paths in the cross direction LR, is larger than the number of flow paths in the cross direction LR. ..
 プレート式熱交換器30は、流通方向DUの流路の数が、交差方向LRの流路の数よりも多くなるように形成されていることで、プレート式熱交換器30の外部で検知するのに十分な漏洩流体の流出流量を確保するために必要な最小限の通路の数で構成できる。そのため、プレート式熱交換器30は、排出流路200eの形成によるロウ付け部61の面積割合の低下を抑制することができ、ひいてはロウ付け部61の面積割合の低下に基づくプレート式熱交換器30の性能低下を抑制することができる。 The plate heat exchanger 30 is formed so that the number of flow paths in the flow direction DU is larger than the number of flow paths in the crossing direction LR, so that the plate heat exchanger 30 is detected outside the plate heat exchanger 30. It can be configured with the minimum number of passages required to ensure a sufficient outflow of leaked fluid. Therefore, the plate heat exchanger 30 can suppress a decrease in the area ratio of the brazed portion 61 due to the formation of the discharge flow path 200e, and by extension, a plate type heat exchanger based on the decrease in the area ratio of the brazed portion 61. It is possible to suppress the performance deterioration of 30.
 このため、プレート式熱交換器30は、漏洩流体の流体抵抗をさらに抑制でき、第1流体と第2流体との混合を防止し、検知するのに十分な量の漏洩流体を外部に流出させることができる。そして、伝熱装置100は、プレート式熱交換器30から漏洩した漏洩流体を検知することによって、伝熱装置100を停止させることができ、空調機の破損などを防止することができる。 Therefore, the plate heat exchanger 30 can further suppress the fluid resistance of the leaked fluid, prevent the mixing of the first fluid and the second fluid, and allow a sufficient amount of leaked fluid to flow out to the outside. be able to. Then, the heat transfer device 100 can stop the heat transfer device 100 by detecting the leaked fluid leaked from the plate heat exchanger 30, and can prevent damage to the air conditioner.
 なお、図13は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの上隅と、第1流体の流通方向において左斜め上に位置する第2の空隙部60の右方向Rの下隅とが、連通路200aによって接続されている構成を示している。また、図6は、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの下隅と、第1流体の流通方向において左斜め下に位置する第3の空隙部60の右方向Rの上隅とが、連通路200aによって接続されている構成を示している。連通路200aは、第1流体の流通方向DUにおいて、左右に交互に形成された空隙部60を接続するように形成されている。 Note that FIG. 13 shows the upper corner of the first gap 60 in the left direction L and diagonally upward to the left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The lower corner of the gap 60 in the right direction R of No. 2 is connected by a communication passage 200a. Further, FIG. 6 shows a third position located at the lower corner of the first gap 60 in the left direction L and diagonally lower left in the flow direction of the first fluid when the flow direction of the first fluid is the upward direction U. The upper corner of the gap portion 60 in the right direction R is connected by a communication passage 200a. The communication passage 200a is formed so as to connect the gaps 60 formed alternately on the left and right in the flow direction DU of the first fluid.
 図13は、複数の空隙部60のうち一部の空隙部60は、以下に説明するように空隙部60同士が連通路200cによって接続されている。第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の左方向Lの上隅と、第1流体の流通方向において左斜め上に位置する第2の空隙部60の右方向Rの下隅とが、連通路200cによって接続されている構成を示している。また、第1流体の流通方向を上方向Uとした場合に、第1の空隙部60の右方向Rの上隅と、第1流体の流通方向において右斜め上に位置する第3の空隙部60の左方向Lの下隅とが、連通路200cによって接続されている構成を示している。連通路200cは、第1流体の流通方向DUに交差する交差方向LRにおいて、上下に交互に形成された空隙部60を接続するように形成されている。 In FIG. 13, some of the gaps 60 among the plurality of gaps 60 are connected to each other by the communication passage 200c as described below. When the flow direction of the first fluid is upward U, the upper corner of the left direction L of the first gap 60 and the second gap 60 located diagonally upward to the left in the flow direction of the first fluid. The lower corner of the right direction R is connected by a connecting passage 200c. Further, when the flow direction of the first fluid is upward U, the upper corner of the right direction R of the first gap 60 and the third gap located diagonally upward to the right in the flow direction of the first fluid. The lower corner of the left direction L of 60 is connected by a continuous passage 200c. The communication passage 200c is formed so as to connect the gaps 60 formed alternately in the upper and lower directions in the crossing direction LR intersecting the flow direction DU of the first fluid.
実施の形態4.
 図14は、実施の形態4に係るプレート式熱交換器30を横断面にて示す説明図である。実施の形態4では、実施の形態1、実施の形態2又は実施の形態3と同一の機能及び作用を有する構成要素については、同一の符号を付してその説明を省略し、その特徴部分のみを説明する。
Embodiment 4.
FIG. 14 is an explanatory view showing a cross-sectional view of the plate heat exchanger 30 according to the fourth embodiment. In the fourth embodiment, the components having the same functions and functions as those of the first embodiment, the second embodiment or the third embodiment are designated by the same reference numerals and the description thereof is omitted, and only the characteristic portions thereof are omitted. Will be explained.
 図14に示すように、第1伝熱プレート32及び第2伝熱プレート34のうち、第1伝熱プレート32のみが、プレート32a及びとプレート32bの2枚の金属プレートを重ね合わせたダブルウォールに構成されている。 As shown in FIG. 14, of the first heat transfer plate 32 and the second heat transfer plate 34, only the first heat transfer plate 32 is a double wall in which two metal plates of the plate 32a and the plate 32b are overlapped. It is configured in.
 また、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいて、第1インナーフィン33の長さは、第2インナーフィン35の長さとほぼ同じ長さである。すなわち、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいて、第1インナーフィン33の直交部41の長さは、第2インナーフィン35の直交部51の長さとほぼ同じ長さである。 Further, in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the length of the first inner fin 33 is substantially the same as the length of the second inner fin 35. That is, in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34, the length of the orthogonal portion 41 of the first inner fin 33 is substantially the same as the length of the orthogonal portion 51 of the second inner fin 35. The length.
 実施の形態4によれば、第1伝熱プレート32及び第2伝熱プレート34の重なり方向にロウ付け部61を投影した場合に、ロウ付け部61は、第2ピッチ40bの領域には存在しない。この構成によれば、第2ピッチ40bは第1ピッチ40aに対してピッチ幅が広く、かつ、第2ピッチ40bの位置は、第1伝熱プレート32のプレート32aを介して空隙部60と対向する位置に構成できる。そのため、プレート式熱交換器30に万が一傷つく要因が生じたとしても、第1伝熱プレート32のプレート32aは、第1ピッチ40aと対向している位置よりも、第2ピッチ40bと対向している位置が傷つきやすくなる。 According to the fourth embodiment, when the brazing portion 61 is projected in the overlapping direction of the first heat transfer plate 32 and the second heat transfer plate 34, the brazing portion 61 exists in the region of the second pitch 40b. do not. According to this configuration, the second pitch 40b has a wider pitch than the first pitch 40a, and the position of the second pitch 40b faces the gap 60 via the plate 32a of the first heat transfer plate 32. Can be configured at the desired position. Therefore, even if a factor that damages the plate heat exchanger 30 should occur, the plate 32a of the first heat transfer plate 32 faces the second pitch 40b rather than the position facing the first pitch 40a. The position where you are is easily damaged.
 なお、実施の形態4では、プレート式熱交換器30は、第1伝熱プレート32のみがダブルウォール構造となっている。そのためプレート式熱交換器30は、第1ピッチ40aと対向している位置のプレート32aとの比較において第2ピッチ40bと対向している位置のプレート32aが傷つきやすいという機能を有しつつ、熱抵抗を更に抑制し熱交換性能を向上させることができる。 In the fourth embodiment, the plate heat exchanger 30 has a double wall structure only in the first heat transfer plate 32. Therefore, the plate heat exchanger 30 has a function that the plate 32a at the position facing the second pitch 40b is easily damaged in comparison with the plate 32a at the position facing the first pitch 40a, and heat is generated. The resistance can be further suppressed and the heat exchange performance can be improved.
 第2ピッチ40bと空隙部60との間のプレート32aの部分をプレート32b及び第2伝熱プレート34よりも傷つきやすくするために、プレート32aの板厚は、プレート32b及び第2伝熱プレート34の板厚よりも小さくすることが望ましい。 In order to make the portion of the plate 32a between the second pitch 40b and the gap 60 more vulnerable than the plate 32b and the second heat transfer plate 34, the plate thickness of the plate 32a is set to the plate 32b and the second heat transfer plate 34. It is desirable to make it smaller than the plate thickness of.
 また、実施の形態4では、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいて、第2インナーフィン35の長さは、第1インナーフィン33の長さと同等とした。しかし、プレート式熱交換器30は、第2インナーフィン35の長さが大きいほど、第2インナーフィン35の表面積が大きくなり、熱交換の性能を向上させることができる。したがって、プレート式熱交換器30は、第1伝熱プレート32と第2伝熱プレート34との積層方向FBにおいて、第2インナーフィン35の長さを、第1インナーフィン33の長さよりも大きくしても良い。この場合でもプレート式熱交換器30は、第1ピッチ40aと対向している位置のプレート32aとの比較において第2ピッチ40bと対向している位置のプレート32aが傷つきやすいという機能に大きく影響を与えることはない。 Further, in the fourth embodiment, the length of the second inner fin 35 is the same as the length of the first inner fin 33 in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. However, in the plate type heat exchanger 30, the larger the length of the second inner fin 35, the larger the surface area of the second inner fin 35, and the heat exchange performance can be improved. Therefore, in the plate heat exchanger 30, the length of the second inner fin 35 is made larger than the length of the first inner fin 33 in the stacking direction FB of the first heat transfer plate 32 and the second heat transfer plate 34. You may. Even in this case, the plate heat exchanger 30 has a great influence on the function that the plate 32a at the position facing the second pitch 40b is easily damaged in comparison with the plate 32a at the position facing the first pitch 40a. I will not give it.
 上記で説明した伝熱装置100は、実施の形態1~4のいずれかに係るプレート式熱交換器30を備えたものである。そのため、伝熱装置100において、実施の形態1~4のいずれかと同様の効果が得られる。 The heat transfer device 100 described above includes the plate heat exchanger 30 according to any one of the first to fourth embodiments. Therefore, in the heat transfer device 100, the same effect as that of any one of the first to fourth embodiments can be obtained.
 上記の各実施の形態1~4は、互いに組み合わせて実施することが可能である。また、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 Each of the above embodiments 1 to 4 can be implemented in combination with each other. Further, the configuration shown in the above embodiment is an example, and can be combined with another known technique, and a part of the configuration is omitted or changed without departing from the gist. It is also possible.
 10 冷媒回路、11 室外機、12 圧縮機、13 流路切替装置、14 減圧装置、15 室外熱交換器、16 冷媒配管、20 熱媒体回路、21 家屋、22 循環ポンプ、23 ラジエータ、24 熱媒体配管、25 室内機、30 プレート式熱交換器、30A 本体、31 サイドプレート、31a 熱媒体入口、31a1 熱媒体往路孔、31a2 熱媒体往路孔、31b 熱媒体出口、31b1 熱媒体復路孔、31b2 熱媒体復路孔、31c 冷媒入口、31c1 冷媒往路孔、31c2 冷媒往路孔、31d 冷媒出口、31d1 冷媒復路孔、31d2 冷媒復路孔、32 第1伝熱プレート、32a プレート、32b プレート、33 第1インナーフィン、34 第2伝熱プレート、34a プレート、34b プレート、35 第2インナーフィン、38 熱媒体流路、39 冷媒流路、40 凹凸ピッチ、40a 第1ピッチ、40b 第2ピッチ、40b1 平坦面、40b2 開口部、40c1 頂部、40c2 底部、41 直交部、50 凹凸ピッチ、50c1 頂部、50c2 底部、51 直交部、60 空隙部、61 ロウ付け部、100 伝熱装置、101 圧縮機、200 連通路、200a 連通路、200a1 排出流路、200a2 排出流路、200b 連通路、200b1 排出流路、200c 連通路、200c1 排出流路、200d 連通路、200d1 排出流路、200e 排出流路。 10 Refrigerant circuit, 11 Outdoor unit, 12 Compressor, 13 Flow path switching device, 14 Decompression device, 15 Outdoor heat exchanger, 16 Refrigerant piping, 20 Heat medium circuit, 21 House, 22 Circulation pump, 23 Radiator, 24 Heat medium Piping, 25 indoor unit, 30 plate type heat exchanger, 30A main body, 31 side plate, 31a heat medium inlet, 31a1 heat medium outward path hole, 31a2 heat medium outward path hole, 31b heat medium outlet, 31b1 heat medium return path hole, 31b2 heat Medium return hole, 31c refrigerant inlet, 31c1 refrigerant outbound hole, 31c2 refrigerant outbound hole, 31d refrigerant outlet, 31d1 refrigerant return hole, 31d2 refrigerant return hole, 32 first heat transfer plate, 32a plate, 32b plate, 33 first inner fin , 34 2nd heat transfer plate, 34a plate, 34b plate, 35 2nd inner fin, 38 heat medium flow path, 39 refrigerant flow path, 40 uneven pitch, 40a 1st pitch, 40b 2nd pitch, 40b1 flat surface, 40b2 Opening, 40c1 top, 40c2 bottom, 41 orthogonal part, 50 uneven pitch, 50c1 top, 50c2 bottom, 51 orthogonal part, 60 voids, 61 brazing part, 100 heat transfer device, 101 compressor, 200 communication passage, 200a Continuous passage, 200a1 discharge flow path, 200a2 discharge flow path, 200b continuous passage, 200b1 discharge flow path, 200c continuous passage, 200c1 discharge flow path, 200d continuous passage, 200d1 discharge flow path, 200e discharge flow path.

Claims (13)

  1.  複数の伝熱プレートが積層され、第1流体が流れる第1流路と第2流体が流れる第2流路とが、前記複数の伝熱プレートの各伝熱プレートを境にして交互に形成されている本体を備え、
     前記本体は、
     前記複数の伝熱プレートのうち、互いに対向して配置されている第1の伝熱プレートと第2の伝熱プレートとの間に前記第1流路を形成しており、
     前記第1流路に複数の凹凸状に屈曲した部分が形成された板状のインナーフィンを有し、
     前記第1の伝熱プレートは、
     互いに対向する2枚のプレートと、
     前記2枚のプレートの間に設けられ前記2枚のプレートを接続する複数のロウ付け部と、
    を有し、
     前記第1の伝熱プレート内には、
     前記2枚のプレートと前記複数のロウ付け部とによって形成された空間である複数の空隙部と、
     前記複数の空隙部の空隙部同士を接続する連通路と、
    が形成されており、
     前記インナーフィンは、
     前記第1流体の流通方向に垂直な前記インナーフィンの断面において凹凸状に形成された凹凸ピッチを、前記流通方向に複数有し、
     少なくとも1つ以上の前記凹凸ピッチは、
     前記第1の伝熱プレート及び前記第2の伝熱プレートと当接する第1ピッチと、
     前記第2の伝熱プレートと当接し、複数の伝熱プレートの積層方向と前記流通方向とに垂直な交差方向において、前記第1ピッチよりも大きい第2ピッチと、
    を有し、
     前記本体の内部を、前記積層方向に投影した場合に、前記複数の空隙部は、前記第2ピッチの領域に形成されており、前記複数の空隙部と前記連通路とによって形成される排出流路が前記本体の外部と連通しているプレート式熱交換器。
    A plurality of heat transfer plates are laminated, and a first flow path through which the first fluid flows and a second flow path through which the second fluid flows are alternately formed with each heat transfer plate of the plurality of heat transfer plates as a boundary. Equipped with a body that is
    The main body
    Among the plurality of heat transfer plates, the first flow path is formed between the first heat transfer plate and the second heat transfer plate arranged so as to face each other.
    The first flow path has a plate-shaped inner fin in which a plurality of concave-convex bent portions are formed.
    The first heat transfer plate is
    Two plates facing each other and
    A plurality of brazing portions provided between the two plates and connecting the two plates, and
    Have,
    In the first heat transfer plate,
    A plurality of voids, which are spaces formed by the two plates and the plurality of brazed portions,
    A continuous passage connecting the gaps of the plurality of gaps and
    Is formed,
    The inner fin
    A plurality of uneven pitches formed in an uneven shape in the cross section of the inner fin perpendicular to the flow direction of the first fluid are provided in the flow direction.
    At least one or more of the uneven pitches
    The first pitch that comes into contact with the first heat transfer plate and the second heat transfer plate, and
    A second pitch that is in contact with the second heat transfer plate and is larger than the first pitch in the intersecting direction perpendicular to the stacking direction and the distribution direction of the plurality of heat transfer plates.
    Have,
    When the inside of the main body is projected in the stacking direction, the plurality of voids are formed in the region of the second pitch, and the discharge flow formed by the plurality of voids and the communication passage. A plate heat exchanger in which the path communicates with the outside of the main body.
  2.  前記本体の内部を、前記積層方向に投影した場合に、前記複数の空隙部は、前記第1ピッチの領域には形成されていない請求項1に記載のプレート式熱交換器。 The plate heat exchanger according to claim 1, wherein the plurality of gaps are not formed in the region of the first pitch when the inside of the main body is projected in the stacking direction.
  3.  前記第2ピッチが、前記交差方向において少なくとも1以上の前記第1ピッチを挟んで1ピッチに1以上設けられている請求項1又は2に記載のプレート式熱交換器。 The plate heat exchanger according to claim 1 or 2, wherein the second pitch is provided at least one in one pitch with at least one or more of the first pitch in the crossing direction.
  4.  前記インナーフィンは、
     前記流通方向において、前記第1ピッチと前記第2ピッチとを有する第1の前記凹凸ピッチと、前記第1ピッチと前記第2ピッチとを有する第2の前記凹凸ピッチと、の間に前記第1ピッチのみを有する第3の前記凹凸ピッチを有する請求項1~3のいずれか1項に記載のプレート式熱交換器。
    The inner fin
    In the distribution direction, the first uneven pitch having the first pitch and the second pitch and the second uneven pitch having the first pitch and the second pitch are between the first uneven pitch. The plate heat exchanger according to any one of claims 1 to 3, which has a third uneven pitch having only one pitch.
  5.  前記排出流路は、
     前記第1流体の前記流通方向において、前記複数の空隙部のうち最も近い前後の空隙部が前記連通路によって接続されて、前記流通方向に延びるように形成されており、前記排出流路の端部が前記本体の外部と連通している請求項1~請求項4のいずれか1項に記載のプレート式熱交換器。
    The discharge channel is
    In the flow direction of the first fluid, the closest front and rear gaps among the plurality of gaps are connected by the communication passage and formed so as to extend in the flow direction, and the end of the discharge flow path. The plate heat exchanger according to any one of claims 1 to 4, wherein the unit communicates with the outside of the main body.
  6.  前記排出流路は、
     前記第1流体の前記流通方向において、前記複数の空隙部のうち最も近い前後の空隙部が前記連通路によって接続されて、前記流通方向と前記交差方向との間の斜め方向に延びるように形成されており、前記排出流路の端部が前記本体の外部と連通している請求項1~請求項4のいずれか1項に記載のプレート式熱交換器。
    The discharge channel is
    In the flow direction of the first fluid, the closest front and rear gaps among the plurality of gaps are connected by the communication passage and formed so as to extend in an oblique direction between the flow direction and the intersection direction. The plate heat exchanger according to any one of claims 1 to 4, wherein the end portion of the discharge flow path communicates with the outside of the main body.
  7.  前記排出流路は、
     前記第1流体の前記流通方向において、前記複数の空隙部のうち最も近い前後の空隙部が前記連通路によって接続されて、前記交差方向に延びるように形成されており、前記排出流路の端部が前記本体の外部と連通している請求項1~請求項4のいずれか1項に記載のプレート式熱交換器。
    The discharge channel is
    In the flow direction of the first fluid, the closest front and rear gaps among the plurality of gaps are connected by the communication passage and formed so as to extend in the crossing direction, and the end of the discharge flow path. The plate heat exchanger according to any one of claims 1 to 4, wherein the unit communicates with the outside of the main body.
  8.  前記排出流路は、
     前記第1流体の前記流通方向において、前記複数の空隙部のうち最も近い前後の空隙部が前記連通路によって接続されて、前記流通方向と前記交差方向とに延びるように形成されており、前記排出流路の端部が前記本体の外部と連通しており、請求項1~請求項4のいずれか1項に記載のプレート式熱交換器。
    The discharge channel is
    In the flow direction of the first fluid, the closest front and rear gaps among the plurality of gaps are connected by the communication passage and are formed so as to extend in the flow direction and the intersection direction. The plate heat exchanger according to any one of claims 1 to 4, wherein the end of the discharge flow path communicates with the outside of the main body.
  9.  前記排出流路は、
     前記第1流体の前記流通方向において、前記複数の空隙部のうち最も近い前後の空隙部が前記連通路によって接続されて、前記流通方向と前記交差方向とに延びるように形成されており、前記排出流路の端部が前記本体の外部と連通しており、
     前記流通方向に形成される通路の数が、前記交差方向に形成される通路の数よりも多い請求項1~4のいずれか1項に記載のプレート式熱交換器。
    The discharge channel is
    In the flow direction of the first fluid, the closest front and rear gaps among the plurality of gaps are connected by the communication passage and are formed so as to extend in the flow direction and the intersection direction. The end of the discharge flow path communicates with the outside of the main body,
    The plate heat exchanger according to any one of claims 1 to 4, wherein the number of passages formed in the flow direction is larger than the number of passages formed in the intersection direction.
  10.  前記連通路の流路断面積は、前記複数の空隙部のうちの1つの空隙部の流路断面積よりも小さい請求項1~9のいずれか1項に記載のプレート式熱交換器。 The plate heat exchanger according to any one of claims 1 to 9, wherein the flow path cross-sectional area of the communication passage is smaller than the flow path cross-sectional area of one of the plurality of voids.
  11.  前記第1流体は、水又はブラインである請求項1~請求項10のいずれか1項に記載のプレート式熱交換器。 The plate heat exchanger according to any one of claims 1 to 10, wherein the first fluid is water or brine.
  12.  前記第2流路を流通する前記第2流体は、冷媒である請求項1~請求項11のいずれか1項に記載のプレート式熱交換器。 The plate heat exchanger according to any one of claims 1 to 11, wherein the second fluid flowing through the second flow path is a refrigerant.
  13.  請求項1~12のいずれか1項に記載のプレート式熱交換器を備えた伝熱装置。 A heat transfer device provided with the plate heat exchanger according to any one of claims 1 to 12.
PCT/JP2020/001889 2020-01-21 2020-01-21 Plate-type heat exchanger and heat transfer device WO2021149139A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021572154A JP7292435B2 (en) 2020-01-21 2020-01-21 Plate heat exchanger and heat transfer device
PCT/JP2020/001889 WO2021149139A1 (en) 2020-01-21 2020-01-21 Plate-type heat exchanger and heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001889 WO2021149139A1 (en) 2020-01-21 2020-01-21 Plate-type heat exchanger and heat transfer device

Publications (1)

Publication Number Publication Date
WO2021149139A1 true WO2021149139A1 (en) 2021-07-29

Family

ID=76992086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001889 WO2021149139A1 (en) 2020-01-21 2020-01-21 Plate-type heat exchanger and heat transfer device

Country Status (2)

Country Link
JP (1) JP7292435B2 (en)
WO (1) WO2021149139A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176567A1 (en) * 2018-03-15 2019-09-19 三菱電機株式会社 Plate heat exchanger and heat pump device comprising same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940152B2 (en) * 2012-06-05 2016-06-29 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus equipped with the same
JPWO2014125566A1 (en) * 2013-02-12 2017-02-02 三菱電機株式会社 Plate heat exchanger and refrigeration cycle apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176567A1 (en) * 2018-03-15 2019-09-19 三菱電機株式会社 Plate heat exchanger and heat pump device comprising same

Also Published As

Publication number Publication date
JPWO2021149139A1 (en) 2021-07-29
JP7292435B2 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
JP6641544B1 (en) Plate heat exchanger and heat pump device provided with the same
WO2013183113A1 (en) Plate-type heat exchanger and refrigeration cycle device comprising same
JP5859022B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
CN111819415B (en) Plate heat exchanger, heat pump device provided with same, and heat pump type cooling/heating/water heating system provided with heat pump device
JP6594598B1 (en) Plate type heat exchanger, heat pump device provided with plate type heat exchanger, and heat pump type heating hot water supply system provided with heat pump device
WO2018216245A1 (en) Plate heat exchanger and heat pump hot water supply system
WO2020100276A1 (en) Plate-type heat exchanger, heat pump device, and heat-pump-type cooling/heating hot-water supply system
WO2013076751A1 (en) Plate-type heat exchanger and refrigeration cycle device using same
JP6177459B1 (en) Plate heat exchanger and refrigeration cycle equipment
JP5661205B2 (en) Laminated heat exchanger, heat pump system equipped with the same, and manufacturing method of laminated heat exchanger
WO2020188690A1 (en) Plate heat exchanger and heat pump device equipped with same
WO2021149139A1 (en) Plate-type heat exchanger and heat transfer device
WO2020245876A1 (en) Plate-type heat exchanger, and heat transfer device
JP7301224B2 (en) Plate heat exchangers, refrigeration cycle equipment and heat transfer equipment
JP5496369B2 (en) Laminated heat exchanger and heat pump system equipped with the same
JP5940152B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the same
JP5595064B2 (en) Plate heat exchanger and heat pump device
WO2021106719A1 (en) Heat exchanger
JPWO2013076751A1 (en) Plate heat exchanger and refrigeration cycle apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915964

Country of ref document: EP

Kind code of ref document: A1