WO2013076431A1 - Système mécanique tournant a actionnement sans contact description - Google Patents

Système mécanique tournant a actionnement sans contact description Download PDF

Info

Publication number
WO2013076431A1
WO2013076431A1 PCT/FR2012/052710 FR2012052710W WO2013076431A1 WO 2013076431 A1 WO2013076431 A1 WO 2013076431A1 FR 2012052710 W FR2012052710 W FR 2012052710W WO 2013076431 A1 WO2013076431 A1 WO 2013076431A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
relative
mechanical system
rotation
main axis
Prior art date
Application number
PCT/FR2012/052710
Other languages
English (en)
Inventor
Cédric DUVAL
Eric De Wergifosse
Vincent HIDELOT
Original Assignee
Hispano Suiza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hispano Suiza filed Critical Hispano Suiza
Priority to RU2014125431A priority Critical patent/RU2642683C2/ru
Priority to CN201280057778.5A priority patent/CN103958346B/zh
Priority to CA2854991A priority patent/CA2854991A1/fr
Priority to BR112014012388-8A priority patent/BR112014012388B1/pt
Priority to US14/357,623 priority patent/US20140322017A1/en
Priority to JP2014542919A priority patent/JP2015500933A/ja
Priority to EP12806560.4A priority patent/EP2782827A1/fr
Publication of WO2013076431A1 publication Critical patent/WO2013076431A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/30Blade pitch-changing mechanisms
    • B64C11/44Blade pitch-changing mechanisms electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D7/00Rotors with blades adjustable in operation; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/34Blade mountings
    • F04D29/36Blade mountings adjustable
    • F04D29/362Blade mountings adjustable during rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D2027/005Aircraft with an unducted turbofan comprising contra-rotating rotors, e.g. contra-rotating open rotors [CROR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • F05D2270/023Purpose of the control system to control rotational speed (n) of different spools or shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/62Electrical actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a rotating electromechanical system comprising a member mounted on a movable shaft, which is able to be moved relative to the movable shaft.
  • the electromechanical system comprises a frictionless drive device having a component movable relative to the movable shaft, the service life of which is improved by reducing friction between moving parts.
  • the blades are carried by a shaft rotatably mounted around its main axis.
  • Each blade is further mounted movable relative to the shaft about a radial axis relative to the main axis of the shaft, to change the pitch of the blade.
  • the driving of the rotating blades is achieved by means of a drive system which is connected to the blades and a part of which is mounted on the structural element of the turbomachine.
  • the drive means of the blades consist of hydraulic systems with rotating joints or electrical or electronic systems with rotating contacts.
  • the object of the invention is to propose a mechanical system for which the means for driving the blades in displacement relative to the shaft are made in such a way as to limit the friction between the moving elements.
  • the invention proposes a mechanical system comprising:
  • a shaft which is rotatably mounted about its main axis with respect to a structural element
  • a movable member which is mounted on the shaft in such a way that it is integral with the shaft in rotation around the main axis and in such a way that it is able to be displaced with respect to the shaft of selectively;
  • means for driving the movable member in displacement relative to the shaft which comprise a first fixed part which is mounted on the structural element and a second movable part which is mounted on the shaft and which is connected to to the mobile organ,
  • the drive means comprises an electromechanical actuator with an air gap between the first portion and the second portion.
  • the gap between the two parts of the actuator eliminates any contact between the elements connected to the structural element and the elements that are movable relative to the structural element, which therefore reduces friction.
  • the drive means consist of an electromechanical actuator with radial-field air gap.
  • the drive means consist of an electromechanical actuator with air gap at axial field.
  • the second portion of the drive means is rotatably mounted coaxially with the shaft and is connected to the shaft by rotation guide means about the main axis of the shaft.
  • the mechanical system comprises means for transforming the rotational movement of the second part with respect to the shaft in a displacement of the movable member relative to the shaft which comprises a movement input member connected to the second part, said movement input member being rotatable selectively relative to the shaft during the moving the movable member.
  • the mechanical system comprises means for controlling the drive means for controlling the rotational speed of the second part of the drive means relative to the first part, as a function of the speed of rotation of the shaft.
  • control means are made to cause rotation of the movement input member around the shaft to cause movement of the movable member relative to the shaft.
  • the movable member is mounted to rotate relative to the shaft about a secondary axis (B) radially oriented relative to the main axis, said secondary axis (B) being integral with the shaft rotating around the main axis.
  • the invention also provides an aircraft turbomachine characterized in that it comprises a mechanical system according to any one of the preceding claims, wherein the movable member consists of a blade with variable orientation.
  • the turbomachine comprises a plurality of blades distributed around the main axis of the shaft.
  • FIG. 1 is a schematic representation of a mechanical system according to the invention
  • FIG. 2 is a view similar to that of FIG. 1, showing a second embodiment of the motion transformation means
  • FIG. 3 is a schematic representation in detail of a mechanical system according to the invention for which the drive means consist of a synchronous or asynchronous machine with magnets;
  • FIG. 4 is a view similar to that of FIG. 3, in which the drive means consist of a synchronous machine with a wound inductor;
  • FIG. 5 is a view similar to that of FIG. 3, in which the drive means consist of a synchronous machine with axial air gap.
  • a mechanical system 10 such as a turbomachine rotor comprising a shaft 12 rotatable about its main axis A, with respect to a structural element 14 of the turbomachine.
  • This structural element may itself be fixed in the turbomachine, or it may be movable in the turbomachine.
  • the structural element 14 will be considered as being fixed with respect to the shaft 12.
  • the shaft carries a plurality of blades 16 which are evenly distributed around the shaft 12 with respect to the main axis A and which are integral with the shaft 12 in rotation with respect to the structural element 14, around the main axis A.
  • the mechanical system 10 comprises means for adjusting the pitch of the blades 16 to adapt it to the operating conditions of the turbomachine.
  • each blade 16 is mounted movably relative to the shaft 12 about a secondary axis B of principal orientation radial with respect to the main axis A.
  • Each secondary axis B is a main axis of the associated blade 16, it is thus rotatable about the main axis A in solidarity with the shaft 12.
  • the means for adjusting the pitch of the blades 16 comprise drive means 18 for each blade 16 in rotation around the associated secondary axis B.
  • the drive means comprise mainly a first fixed part 20 which is fixed to the structural element 14 and a second movable part 22 which is connected to each blade 16.
  • the second part is mounted movable relative to the structural element 14 in rotation around the main axis A.
  • the first part 20 and the second part 22 are coaxial with the shaft 12 and consist of two elements of revolution which are superimposed radially on the shaft 12.
  • the drive means 18 consist of an electromechanical actuator with air gap. That is to say, a game is present between the fixed part 20 and the mobile part 22.
  • the drive of the mobile part 22 in rotation relative to the fixed part 20 is made by electromagnetic forces requiring no contact between the two parts 20, 22.
  • the drive means 18 consist of a permanent magnet synchronous machine.
  • the mobile part 22 carries one or more permanent magnets (not shown) and the fixed part 20 comprises means for producing an electromagnetic field that causes the rotation of the movable part carrying the permanent magnet or magnets.
  • the drive means 18 consist of a synchronous machine with a wound inductor.
  • the mobile part 22 carries one or more coils which are supplied with electric current so as to form one or more electromagnets.
  • the movable portion 22 is supplied via a current induction system 24 which is also of the type without contacts.
  • the drive means 18 consist of an asynchronous machine.
  • the shaft 12 and the movable portion 22 both rotate about the main axis A.
  • the mechanical system 10 is made such that the second part 22 is able to rotate at a speed different from the speed of rotation of the shaft 12 to allow the blades 16 to move.
  • the second portion 22 of the drive means 18 is furthermore connected to the blades 16 via means of transforming the movement 28.
  • the movement transformation means 28 are mounted on the shaft 12 so that they are integral with the shaft 12 in rotation about the main shaft A.
  • the movement transformation means 28 comprise an input member of movement 36 which is connected to the second portion 22 of the drive means 18.
  • the movement transformation member 36 is able to rotate about the shaft 12 selectively depending on the speed of rotation of the second portion 22 driving means 18 around the main axis A.
  • the movement transformation means 28 are made so that when the movement input member 36 rotates relative to the shaft 12, each blade 16 rotates about the associated secondary axis B.
  • the movement transformation means 28 are of the type comprising a conical gear coupling 32.
  • the movement transformation means 28 are of the type comprising a crankshaft system 34.
  • the movement input member 36 is connected to the second portion 22 of the drive means 18 via a gear system 30 to change the speed of rotation of the input member of the drive. 36 movement around the axis main A with respect to the speed of rotation of the second portion 22 about the main axis A.
  • the reduction ratio of this gear system 30 is determined so as to reduce or increase the rotational speed of the second part 22, according to the type of actuator constituting the drive means 18 and the speed ranges of rotation of the shaft 12.
  • the second portion 22 of the drive means 18 is connected directly to the movement input member 36.
  • the drive means 18 also comprise regulating means (not shown) which are designed to regulate the speed of rotation of the second portion 22 with respect to the structural element 14 as a function of the rotational speed of the 12 with respect to the structural element 14 and depending on the reduction ratio of the gear system 30.
  • the regulating means are made so as to selectively cause a rotation of the movement input member relative to the shaft 12, when the orientation of the blades 16 is to be changed.
  • the movement input member 36 must remain stationary relative to the shaft 12, c that is, it rotates at the same speed as the shaft 12 relative to the structural element 14.
  • the speed of rotation of the second portion 22 with respect to the structural element 14 is defined so that the rotational speed of the movement input member 36 relative to the structural element 14 is equal to the speed of rotation of the shaft 12 with respect to the structural element 14.
  • the regulation means modify the speed of rotation of the second part 22 with respect to the structural element 14 for a certain time so that the input member movement 36 rotates relative to the shaft 12 by a predefined angle corresponding to the change of angular position of each blade 16.
  • the change in the rotational speed of the second part 22 with respect to the structural element 14 may consist of an increase, a decrease or an inversion of the speed of rotation of the second part 22.
  • the regulation means modify the speed of rotation of the second portion 22 with respect to the structural element 14 so that the movement input member 36 rotates at the same speed as the shaft 12 relative to the structural element 14 and therefore for the movement input member 36 is stationary relative to the shaft 12.
  • the supply frequency at the fixed part 20 must compensate the speed of rotation of the shaft 12 relative to to the main axis A.
  • F12 is defined as being the differential rotation frequency of the shaft 12 with respect to the first portion 20 (for example for a rotational speed of the shaft 12 with respect to the main axis A of 1200 rpm). this corresponds to a frequency F12 of 20 Hz).
  • P is also defined as the number of pole pairs of the synchronous magnet machine.
  • the supply frequency of the asynchronous machine is defined by the formula p * (F12 + F22 + Fr) where Fr is the frequency of the rotor currents in the second part 22.
  • Fr is more or less important depending on the torque exerted and the point of operation.
  • the drive means 18 are of the radial-field gap type, that is to say that the fixed part 20 and the mobile part 22 are coaxial and are offset radially. one with respect to the other.
  • the invention is not limited to this embodiment and that the drive means 18 may be of another type, such as for example shown in FIG. 5, in which the drive means are air gap type axial field.
  • the fixed portion 20 and the movable portion 22 are offset axially relative to each other.
  • the drive means 18 are of the type combining a radial field gap and an axial field gap.
  • the invention has been described in association with blades 16 of the turbomachine which are rotatable relative to the secondary axis B. It will be understood that the invention is not limited to this embodiment and that the invention may be associated with any element which is mounted mobile along the secondary axis B in translation along the secondary axis B or in a movement combining translation and rotation with respect to the secondary axis B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Transmission Devices (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

L'invention propose un système mécanique (10) comportant : - un arbre (12) qui est monté mobile en rotation autour de son axe principal par rapport à un élément de structure (14); - un organe mobile (16) qui est monté sur l'arbre (12) de manière telle qu'il est solidaire de l'arbre (12) en rotation autour de l'axe principal (A) et de manière telle qu'il est apte à être déplacé par rapport à l'arbre (12) de manière sélective; - des moyens d'entraînement (18) de l'organe mobile (16) en déplacement par rapport à l'arbre (12) qui comportent une première partie fixe (20) qui est montée sur l'élément de structure (14) et une deuxième partie mobile (22) qui est montée sur l'arbre (12) et qui est reliée à l'organe mobile (16), caractérisé en ce que les moyens d'entraînement (18) consistent en un actionneur électromécanique à entrefer entre la première partie (20) et la deuxième partie (22).

Description

SYSTEME MECANIQUE TOURNANT A ACTIONNEMENT SANS CONTACT
DESCRIPTION
DOMAINE TECHNIQUE
L'invention concerne un système électromécanique tournant comportant un organe monté sur un arbre mobile, qui est apte à être déplacé par rapport à l'arbre mobile.
Le système électromécanique comporte un dispositif d'entraînement sans frottement dont un composant est mobile par rapport à l'arbre mobile, dont la durée de vie du dispositif d'entraînement est améliorée par la réduction les frottements entre pièces en mouvement.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Dans un système mécanique tournant comme par exemple une turbomachine comportant un mécanisme de calage variable du pas de pales, les pales sont portées par un arbre monté mobile en rotation autour de son axe principal.
Chaque pale est en outre montée mobile par rapport à l'arbre autour d'un axe radial par rapport à l'axe principal de l'arbre, pour modifier le pas de la pale.
L'entraînement des pales en rotation est réalisé par l'intermédiaire d'un système d'entraînement qui est relié aux pales et dont une partie est montée sur l'élément de structure de la turbomachine.
Selon des exemples de réalisation connus, les moyens d'entraînement des pales consistent en des systèmes hydrauliques à joint tournant ou des systèmes électriques ou électroniques à contacts tournants.
De tels modes de réalisation comportent de nombreux éléments mobiles qui sont en contact les uns avec les autres. Cela a pour conséquences une usure des composants et une production de chaleur importante. Ainsi, le système mécanique comporte aussi des moyens de refroidissement et de lubrification pour limiter réchauffement et l'usure de ces composants. Aussi, il est parfois nécessaire d'effectuer des opérations régulières de maintenance du système mécanique. L'invention a pour but de proposer un système mécanique pour lequel les moyens d'entraînement des pales en déplacement par rapport à l'arbre sont réalisés de manière à limiter les frottements entre les éléments mobiles.
EXPOSÉ DE L'INVENTION
L'invention propose un système mécanique comportant :
- un arbre qui est monté mobile en rotation autour de son axe principal par rapport à un élément de structure ;
- un organe mobile qui est monté sur l'arbre de manière telle qu'il est solidaire de l'arbre en rotation autour de l'axe principal et de manière telle qu'il est apte à être déplacé par rapport à l'arbre de manière sélective ;
- des moyens d'entraînement de l'organe mobile en déplacement par rapport à l'arbre qui comportent une première partie fixe qui est montée sur l'élément de structure et une deuxième partie mobile qui est montée sur l'arbre et qui est reliée à l'organe mobile,
caractérisé en ce que les moyens d'entraînement consistent en un actionneur électromécanique à entrefer entre la première partie et la deuxième partie.
L'entrefer entre les deux parties de l'actionneur permet d'éliminer tout contact entre les éléments reliés à l'élément de structure et les éléments qui sont mobiles par rapport à l'élément de structure, ce qui réduit par conséquent les frottements.
De préférence, les moyens d'entraînement consistent en un actionneur électromécanique à entrefer à champ radial.
De préférence, les moyens d'entraînement consistent en un actionneur électromécanique à entrefer à champ axial.
De préférence, la deuxième partie des moyens d'entraînement est montée mobile en rotation de manière coaxiale à l'arbre et est reliée à l'arbre par des moyens de guidage en rotation autour de l'axe principal de l'arbre.
De préférence, le système mécanique comporte des moyens de transformation du mouvement de rotation de la deuxième partie par rapport à l'arbre en un déplacement de l'organe mobile par rapport à l'arbre qui comportent un organe d'entrée de mouvement relié à la deuxième partie, ledit organe d'entrée de mouvement étant mobile en rotation de manière sélective par rapport à l'arbre lors du déplacement de l'organe mobile.
De préférence, le système mécanique comporte des moyens de commande des moyens d'entraînement pour commander la vitesse de rotation de la deuxième partie des moyens d'entraînement par rapport à la première partie, en fonction de la vitesse de rotation de l'arbre.
De préférence, les moyens de commande sont réalisés de manière à provoquer une rotation de l'organe d'entrée de mouvement autour de l'arbre pour entraîner un déplacement de l'organe mobile par rapport à l'arbre.
De préférence, l'organe mobile est monté mobile en rotation par rapport à l'arbre autour d'un axe secondaire (B) d'orientation radiale par rapport à l'axe principal, ledit axe secondaire (B) étant solidaire de l'arbre en rotation autour de l'axe principal.
L'invention propose aussi une turbomachine d'aéronef caractérisée en ce qu'elle comporte un système mécanique selon l'une quelconque des revendications précédentes, dans lequel l'organe mobile consiste en une pale à orientation variable.
De préférence, la turbomachine comporte une pluralité de pales réparties autour de l'axe principal de l'arbre.
BRÈVE DESCRIPTION DES DESSINS
- la figure 1 est une représentation schématique d'un système mécanique selon l'invention ;
- la figure 2 est une vue similaire à celle de la figure 1, montrant un deuxième mode de réalisation des moyens de transformation de mouvement ;
- la figure 3 est une représentation schématique en détails d'un système mécanique selon l'invention pour lequel les moyens d'entraînement consistent en une machine synchrone ou asynchrone à aimants ; - la figure 4 est une vue similaire à celle de la figure 3, dans laquelle les moyens d'entraînement consistent en une machine synchrone à inducteur bobiné ;
- la figure 5 est une vue similaire à celle de la figure 3, dans laquelle les moyens d'entraînement consistent en une machine synchrone à entrefer axial.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
On a représenté sur les figures un système mécanique 10 tel qu'un rotor de turbomachine comportant un arbre 12 mobile en rotation autour de son axe principal A, par rapport à un élément de structure 14 de la turbomachine. Cet élément de structure peut être lui-même fixe dans la turbomachine, ou bien il peut être mobile dans la turbomachine. Par souci de clarté, l'élément de structure 14 sera considéré comme étant fixe par rapport à l'arbre 12.
L'arbre porte une pluralité de pales 16 qui sont réparties de manière régulière autour de l'arbre 12 par rapport à l'axe principal A et qui sont solidaires de l'arbre 12 en rotation par rapport à l'élément de structure 14, autour de l'axe principal A.
Le système mécanique 10 comporte des moyens de réglage du pas des pales 16 pour l'adapter aux conditions de fonctionnement de la turbomachine.
Ainsi, chaque pale 16 est montée mobile par rapport à l'arbre 12 autour d'un axe secondaire B d'orientation principale radiale par rapport à l'axe principal A. Chaque axe secondaire B est un axe principal de la pale 16 associée, il est donc mobile en rotation autour de l'axe principal A de manière solidaire à l'arbre 12.
Les moyens de réglage du pas des pales 16 comportent des moyens d'entraînement 18 de chaque pale 16 en rotation autour de l'axe secondaire B associé.
Les moyens d'entraînement comportent principalement une première partie fixe 20 qui est fixée à l'élément de structure 14 et une deuxième partie mobile 22 qui est reliée à chaque pale 16.
La deuxième partie est monté mobile par rapport à l'élément de structure 14 en rotation autour de l'axe principal A. Ici, la première partie 20 et la deuxième partie 22 sont coaxiales à l'arbre 12 et consistent en deux éléments de révolution qui sont superposés radialement sur l'arbre 12.
Les moyens d'entraînement 18 consistent en un actionneur électromécanique à entrefer. C'est-à-dire qu'un jeu est présent entre la partie fixe 20 et la partie mobile 22.
Ainsi, il n'y a aucun contact mécanique entre la partie fixe 20 et la partie mobile.
L'entraînement de la partie mobile 22 en rotation par rapport à la partie fixe 20 est réalisé par des efforts électromagnétiques ne nécessitant aucun contact entre les deux parties 20, 22.
Selon un premier mode de réalisation représenté à la figure 3, les moyens d'entraînement 18 consistent en une machine synchrone à aimant permanent.
Selon ce mode de réalisation, la partie mobile 22 porte un ou plusieurs aimants permanents (non représentés) et la partie fixe 20 comporte des moyens pour produire un champ électromagnétique qui provoque la rotation de la partie mobile portant le ou les aimants permanents.
Selon un deuxième mode de réalisation représenté à la figure 4, les moyens d'entraînement 18 consistent en une machine synchrone à inducteur bobiné.
Selon ce mode de réalisation, la partie mobile 22 porte un ou plusieurs bobinages qui sont alimentés en courant électrique de manière à former un ou plusieurs électroaimants.
Selon l'invention, pour supprimer tout contact électrique entre la partie fixe 20 et la partie mobile 22, la partie mobile 22 est alimentée par l'intermédiaire d'un système à induction de courant 24 qui est lui aussi du type sans contacts.
Selon un autre mode de réalisation, les moyens d'entraînement 18 consistent en une machine asynchrone.
Lors du fonctionnement du système mécanique 10, l'arbre 12 et la partie mobile 22 tournent tous les deux autour de l'axe principal A. Le système mécanique 10 est réalisé de manière telle que la deuxième partie 22 est apte à tourner à une vitesse différente de la vitesse de rotation de l'arbre 12 pour permettre le déplacement des pales 16.
Aussi, puisqu'aucun contact n'existe entre la deuxième partie 22 et la première partie 20, et plus généralement entre la deuxième partie 22 et l'élément de structure 14, le guidage en rotation de la deuxième partie 22 autour de l'axe principal A est réalisé par des moyens de liaison 26 de la deuxième partie 22 avec l'arbre 12 qui sont des moyens de guidage de la deuxième partie 22 en rotation par rapport à l'arbre 12 autour de l'axe principal A.
Comme on peut le voir aux figures 1 et 2, la deuxième partie 22 des moyens d'entraînement 18 est en outre reliée aux pales 16 par l'intermédiaire de moyens de transformation du mouvement 28.
Les moyens de transformation de mouvement 28 sont montés sur l'arbre 12 de manière qu'ils sont solidaires de l'arbre 12 en rotation autour de l'arbre principal A. Les moyens de transformation de mouvement 28 comportent un organe d'entrée de mouvement 36 qui est relié à la deuxième partie 22 des moyens d'entraînement 18. L'organe de transformation de mouvement 36 est apte à tourner autour de l'arbre 12 de manière sélective en fonction de la vitesse de rotation de la deuxième partie 22 des moyens d'entraînement 18 autour de l'axe principal A.
Les moyens de transformation de mouvement 28 sont réalisés de manière que lorsque l'organe d'entrée de mouvement 36 tourne par rapport à l'arbre 12, chaque pale 16 tourne autour de l'axe secondaire B associé.
Selon le mode de réalisation représenté à la figure 1, les moyens de transformation de mouvement 28 sont du type comportant un accouplement à engrenages coniques 32.
Selon le mode de réalisation représenté à la figure 2, les moyens de transformation de mouvement 28 sont du type comportant un système à vilebrequin 34.
Ici, l'organe d'entrée de mouvement 36 est relié à la deuxième partie 22 des moyens d'entraînement 18 par l'intermédiaire d'un système d'engrenages 30 pour modifier la vitesse de rotation de l'organe d'entrée de mouvement 36 autour de l'axe principal A par rapport à la vitesse de rotation de la deuxième partie 22 autour de l'axe principal A.
Le rapport de démultiplication de ce système d'engrenages 30 est déterminé de manière à réduire ou bien augmenter la vitesse de rotation de la deuxième partie 22, selon le type d'actionneur constituant les moyens d'entraînement 18 et selon les plages de vitesses de rotation de l'arbre 12.
Selon une variante, la deuxième partie 22 des moyens d'entraînement 18 est reliée directement à l'organe d'entrée de mouvement 36.
Les moyens d'entraînement 18 comportent aussi des moyens de régulation (non représentés) qui sont conçus de manière à réguler la vitesse de rotation de la deuxième partie 22 par rapport à l'élément de structure 14 en fonction de la vitesse de rotation de l'arbre 12 par rapport à l'élément de structure 14 et en fonction du rapport de réduction du système d'engrenages 30.
Les moyens de régulation sont réalisés de manière à provoquer sélectivement une rotation de l'organe d'entrée de mouvement par rapport à l'arbre 12, lorsque l'orientation des pales 16 doit être modifiée.
En effet, lors du fonctionnement du système mécanique 10, et lorsque les pales 16 ne doivent pas se déplacer par rapport à l'arbre 12, l'organe d'entrée de mouvement 36 doit rester immobile par rapport à l'arbre 12, c'est-à-dire qu'il tourne à la même vitesse que l'arbre 12 par rapport à l'élément de structure 14.
Ainsi, la vitesse de rotation de la deuxième partie 22 par rapport à l'élément de structure 14 est définie pour que la vitesse de rotation de l'organe d'entrée de mouvement 36 par rapport à l'élément de structure 14 soit égale à la vitesse de rotation de l'arbre 12 par rapport à l'élément de structure 14.
Par contre, lorsque l'orientation des pales 16 doit être modifiée, les moyens de régulation modifient la vitesse de rotation de la deuxième partie 22 par rapport à l'élément de structure 14 pendant un certain temps de manière que l'organe d'entrée de mouvement 36 tourne par rapport à l'arbre 12 d'un angle prédéfini correspondant à la modification de position angulaire de chaque pale 16. La modification de la vitesse de rotation de la deuxième partie 22 par rapport à l'élément de structure 14 peut consister en une augmentation, en une diminution ou en une inversion de la vitesse de rotation de la deuxième partie 22.
Lorsque la position angulaire désirée de chaque pale 16 est obtenue, les moyens de régulation modifient la vitesse de rotation de la deuxième partie 22 par rapport à l'élément de structure 14 pour que l'organe d'entrée de mouvement 36 tourne à la même vitesse que l'arbre 12 par rapport à l'élément de structure 14 et donc pour que l'organe d'entrée de mouvement 36 soit immobile par rapport à l'arbre 12.
A titre d'exemple non limitatif, pour lequel les moyens d'entraînement 18 consistent en un moteur synchrone à aimants permanents, la fréquence d'alimentation au niveau de la partie fixe 20 doit compenser la vitesse de rotation de l'arbre 12 par rapport à l'axe principal A.
On définit ainsi "F12" comme étant la fréquence de rotation différentielle de l'arbre 12 par rapport à la première partie 20 (par exemple pour une vitesse de rotation de l'arbre 12 par rapport à l'axe principal A de 1200 tr/min cela correspond à une fréquence F12 de 20 Hz).
On définit aussi "p" comme étant le nombre de paires de pôles de la machine synchrone à aimants.
Pour obtenir une fréquence de rotation relative "F22" de la deuxième partie 22 par rapport à l'arbre 12, il faudra une fréquence d'alimentation de la machine synchrone à aimant de p*(F12+F22).
Pour une machine synchrone à aimant possédant 3 paires de pôles et une vitesse maximale d'entraînement de 10200 tr/min on obtient une fréquence d'alimentation maximale de 3*(20Hz+170Hz)=570Hz.
Dans le cas de l'utilisation d'un moteur asynchrone, la fréquence d'alimentation de la machine asynchrone est définie par la formule p*(F12+F22+Fr) où Fr est la fréquence des courants rotoriques dans la deuxième partie 22.
Fr est plus ou moins importante suivant le couple exercé et le point de fonctionnement. Pour une machine asynchrone possédant 3 paires de pôle et une vitesse maximale d'entraînement de 1200 tr/min on obtient par exemple en régime établi une fréquence d'alimentation maximale de 3*(20Hz+170Hz+10Hz)=600Hz.
I l sera compris que la modification de la vitesse de rotation de la deuxième partie 22 peut être effectuée de manière continue, pour éviter tout à-coup.
Selon les modes de réalisation représentés aux figures 1 à 4, les moyens d'entraînement 18 sont du type à entrefer à champ radial, c'est-à-dire que la partie fixe 20 et la partie mobile 22 sont coaxiales et sont décalées radialement l'une par rapport à l'autre.
I I sera compris que l'invention n'est pas limitée à ce mode de réalisation et que les moyens d'entraînement 18 peuvent être d'autre type, tel que par exemple représenté à la figure 5 dans lequel les moyens d'entraînement sont du type à entrefer à champ axial.
Selon ce mode de réalisation, la partie fixe 20 et la partie mobile 22 sont décalées axialement l'une par rapport à l'autre.
Selon encore un autre mode de réalisation (non représenté), les moyens d'entraînement 18 sont du type combinant un entrefer à champ radial et un entrefer à champ axial.
Aussi, l'invention a été décrite en association avec des pales 16 de la turbomachine qui sont mobiles en rotation par rapport à l'axe secondaire B. Il sera compris que l'invention n'est pas limitée à ce mode de réalisation et que l'invention peut être associée à tout élément qui est monté mobile le long de l'axe secondaire B en translation le long de l'axe secondaire B ou selon un mouvement combinant une translation et une rotation par rapport à l'axe secondaire B.

Claims

REVENDICATIONS
1. Système mécanique (10) comportant :
- un arbre (12) qui est monté mobile en rotation autour de son axe principal par rapport à un élément de structure (14) ;
- un organe mobile (16) qui est monté sur l'arbre (12) de manière telle qu'il est solidaire de l'arbre (12) en rotation autour de l'axe principal (A) et de manière telle qu'il est apte à être déplacé par rapport à l'arbre (12) de manière sélective ;
- des moyens d'entraînement (18) de l'organe mobile (16) en déplacement par rapport à l'arbre (12) qui comportent une première partie fixe (20) qui est montée sur l'élément de structure (14) et une deuxième partie mobile (22) qui est montée sur l'arbre (12) et qui est reliée à l'organe mobile (16), qui consistent en un actionneur électromécanique à entrefer entre la première partie (20) et la deuxième partie (22),
caractérisé en ce qu'il comporte des moyens de commande des moyens d'entraînement (18) pour commander la vitesse de rotation de la deuxième partie (22) des moyens d'entraînement (18) par rapport à la première partie (20), en fonction de la vitesse de rotation de l'arbre (12).
2. Système mécanique (10) selon la revendication précédente, caractérisé en ce que les moyens d'entraînement (18) consistent en un actionneur électromécanique à entrefer à champ radial.
3. Système mécanique (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens d'entraînement (18) consistent en un actionneur électromécanique à entrefer à champ axial.
4. Système mécanique (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que la deuxième partie (22) des moyens d'entraînement (18) est montée mobile en rotation de manière coaxiale à l'arbre (12) et est reliée à l'arbre (12) par des moyens de guidage (26) en rotation autour de l'axe principal (A) de l'arbre (12).
5. Système mécanique (10) selon la revendication précédente, caractérisé en ce qu'il comporte des moyens (28) de transformation du mouvement de rotation de la deuxième partie (22) par rapport à l'arbre (12) en un déplacement de l'organe mobile (16) par rapport à l'arbre (12) qui comportent un organe d'entrée de mouvement (36) relié à la deuxième partie (22), ledit organe d'entrée de mouvement (36) étant mobile en rotation de manière sélective par rapport à l'arbre (12) lors du déplacement de l'organe mobile (16).
6. Système mécanique (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de commande sont réalisés de manière à provoquer une rotation de l'organe d'entrée de mouvement (36) autour de l'arbre (12) pour entraîner un déplacement de l'organe mobile (16) par rapport à l'arbre (12).
7. Système mécanique (10) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'organe mobile (16) est monté mobile en rotation par rapport à l'arbre (12) autour d'un axe secondaire (B) d'orientation radiale par rapport à l'axe principal (A), ledit axe secondaire (B) étant solidaire de l'arbre (12) en rotation autour de l'axe principal (A).
8. Turbomachine d'aéronef caractérisée en ce qu'elle comporte un système mécanique (10) selon l'une quelconque des revendications précédentes, dans lequel l'organe mobile (16) consiste en une pale à orientation variable.
9. Turbomachine selon la revendication précédente, caractérisée en ce qu'elle comporte une pluralité de pales (16) réparties autour de l'axe principal (A) de l'arbre (12).
PCT/FR2012/052710 2011-11-24 2012-11-23 Système mécanique tournant a actionnement sans contact description WO2013076431A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2014125431A RU2642683C2 (ru) 2011-11-24 2012-11-23 Вращательная механическая система с бесконтактным приводом
CN201280057778.5A CN103958346B (zh) 2011-11-24 2012-11-23 具有无接触致动的旋转机械系统及包括该系统的航空器涡轮引擎
CA2854991A CA2854991A1 (fr) 2011-11-24 2012-11-23 Systeme mecanique tournant a actionnement sans contact
BR112014012388-8A BR112014012388B1 (pt) 2011-11-24 2012-11-23 sistema mecânico giratório com acionamento sem contato e turbomáquina de aeronave
US14/357,623 US20140322017A1 (en) 2011-11-24 2012-11-23 Rotary mechanical system with contactless actuation
JP2014542919A JP2015500933A (ja) 2011-11-24 2012-11-23 非接触作動による回転機械システム
EP12806560.4A EP2782827A1 (fr) 2011-11-24 2012-11-23 Système mécanique tournant a actionnement sans contact description

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1160764 2011-11-24
FR1160764A FR2983235B1 (fr) 2011-11-24 2011-11-24 Systeme mecanique tournant a actionnement sans contact

Publications (1)

Publication Number Publication Date
WO2013076431A1 true WO2013076431A1 (fr) 2013-05-30

Family

ID=47436057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052710 WO2013076431A1 (fr) 2011-11-24 2012-11-23 Système mécanique tournant a actionnement sans contact description

Country Status (9)

Country Link
US (1) US20140322017A1 (fr)
EP (1) EP2782827A1 (fr)
JP (1) JP2015500933A (fr)
CN (1) CN103958346B (fr)
BR (1) BR112014012388B1 (fr)
CA (1) CA2854991A1 (fr)
FR (1) FR2983235B1 (fr)
RU (1) RU2642683C2 (fr)
WO (1) WO2013076431A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180170523A1 (en) * 2016-12-21 2018-06-21 Safran Aircraft Engines Electromechanical pitch actuation system for a turbomachine propeller
FR3060525A1 (fr) * 2016-12-21 2018-06-22 Safran Aircraft Engines Systeme d'actionnement electromecanique de pas pour une helice de turbomachine
FR3060523A1 (fr) * 2016-12-21 2018-06-22 Safran Aircraft Engines Systeme d'actionnement electromecanique de pas pour une helice de turbomachine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT523262B1 (de) * 2020-01-29 2021-07-15 Manuel Schleiffelder Mag Vorrichtung zur Verstellung der Neigung von Rotorblättern eines Rotors
EP4369576A1 (fr) * 2022-11-10 2024-05-15 YourSky Management Machine à induction avec mécanisme d'angle de pale variable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB545195A (en) * 1941-11-07 1942-05-14 Constant Speed Airscrews Ltd Improvements in aircraft
US5595474A (en) * 1993-11-10 1997-01-21 Hispano-Suiza Pitch variation control device for the blades of a turbomachine rotor and method of operating the device
GB2313415A (en) * 1993-12-23 1997-11-26 United Technologies Corp Pitch change mechanism with inductive brake and motor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2370135A (en) * 1941-09-25 1945-02-27 Engineering & Res Corp Variable pitch propeller
US4948337A (en) * 1989-05-01 1990-08-14 United Technologies Corporation Aircraft engine propulsor blade pitch sensing
EP0493005B1 (fr) * 1990-12-20 1995-02-15 Honda Giken Kogyo Kabushiki Kaisha Dispositif de variation de pas d'une hélice
US5282719A (en) * 1991-05-13 1994-02-01 Alliedsignal Inc. Quad mode fan pitch actuation system for a gas turbine engine
US5281094A (en) * 1991-05-13 1994-01-25 Alliedsignal Inc Electromechanical apparatus for varying blade of variable-pitch fan blades
US5451141A (en) * 1993-12-23 1995-09-19 United Technologies Corporation Propeller pitch change machanism with inductive brake and motor
US7118336B2 (en) * 2003-12-19 2006-10-10 Pratt & Whitney Canada Corp. Pressurized oil supply for propeller engine system
KR100677281B1 (ko) * 2005-06-16 2007-02-02 엘지전자 주식회사 토로이달 권선 방식을 적용한 하이브리드 유도전동기
US7750521B2 (en) * 2006-12-07 2010-07-06 General Electric Company Double-sided starter/generator for aircrafts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB545195A (en) * 1941-11-07 1942-05-14 Constant Speed Airscrews Ltd Improvements in aircraft
US5595474A (en) * 1993-11-10 1997-01-21 Hispano-Suiza Pitch variation control device for the blades of a turbomachine rotor and method of operating the device
GB2313415A (en) * 1993-12-23 1997-11-26 United Technologies Corp Pitch change mechanism with inductive brake and motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180170523A1 (en) * 2016-12-21 2018-06-21 Safran Aircraft Engines Electromechanical pitch actuation system for a turbomachine propeller
FR3060525A1 (fr) * 2016-12-21 2018-06-22 Safran Aircraft Engines Systeme d'actionnement electromecanique de pas pour une helice de turbomachine
FR3060523A1 (fr) * 2016-12-21 2018-06-22 Safran Aircraft Engines Systeme d'actionnement electromecanique de pas pour une helice de turbomachine
FR3060526A1 (fr) * 2016-12-21 2018-06-22 Safran Aircraft Engines Systeme d'actionnement electromecanique de pas pour une helice de turbomachine
US10647411B2 (en) 2016-12-21 2020-05-12 Safran Aircraft Engines Electromechanical pitch actuation system for a turbomachine propeller
US10766604B2 (en) 2016-12-21 2020-09-08 Safran Aircraft Engines System for electromechanical pitch actuation for a turbine engine propeller

Also Published As

Publication number Publication date
BR112014012388A2 (pt) 2017-05-30
FR2983235A1 (fr) 2013-05-31
CN103958346A (zh) 2014-07-30
RU2014125431A (ru) 2015-12-27
US20140322017A1 (en) 2014-10-30
EP2782827A1 (fr) 2014-10-01
JP2015500933A (ja) 2015-01-08
BR112014012388B1 (pt) 2021-05-25
RU2642683C2 (ru) 2018-01-25
CN103958346B (zh) 2016-08-17
FR2983235B1 (fr) 2018-04-13
CA2854991A1 (fr) 2013-05-30

Similar Documents

Publication Publication Date Title
EP2782827A1 (fr) Système mécanique tournant a actionnement sans contact description
CA2877899C (fr) Dispositif de ventilation et d'alimentation electrique d'un calculateur de moteur d'aeronef
CA2781306C (fr) Turbomachine comprenant un etage d'aubes de stator a calage variable et a commande independante
EP1777373A1 (fr) Procédé et système de pilotage de jeu au sommet d'aubes de rotor de turbine dans un moteur à turbine à gaz
EP1724472A2 (fr) Système de commande d'étages d'aubes de stator à angle de calage variable de turbomachine
US20100310369A1 (en) Pitch change actuation system for a counter-rotating propeller
EP3927621B1 (fr) Propulseur électrique pour aéronef et procédé d'utilisation d'un tel propulseur
EP1959113A1 (fr) Procédé de prélèvement d'énergie auxiliaire sur un turboréacteur d'avion et turboréacteur équipé pour mettre en oeuvre un tel procédé
EP2989349A1 (fr) Actionneur electrique a tige filetee
FR3050433A1 (fr) Systeme simplifie d'actionnement de pas pour une helice de turbomachine
CA2959879C (fr) Mecanisme d'entrainement d'organes de reglage de l'orientation des pales
WO2017182734A1 (fr) Système d'actionnement de pas pour une hélice de turbomachine
WO2022200088A1 (fr) Système et procédé de commande de la modification du pas des pales d'une turbomachine
FR3030649A1 (fr) Mecanisme d'entrainement d'organes de reglage de l'orientation des pales
EP2982022B1 (fr) Moteur électrique à faible couple de court-circuit, dispositif de motorisation à plusieurs moteurs et procédé de fabrication d'un tel moteur
FR3060523A1 (fr) Systeme d'actionnement electromecanique de pas pour une helice de turbomachine
WO2017182748A1 (fr) Systeme d'actionnement simplifie de pas pour une helice de turbomachine
FR3060526A1 (fr) Systeme d'actionnement electromecanique de pas pour une helice de turbomachine
EP3523555B1 (fr) Mecanisme d'entrainement d'organes de reglage de l'orientation des pales et turbomachine d'aeronef comprenant ce mecanisme
FR2937088A1 (fr) Distributeur de fluide dans une turbomachine
WO2022189153A1 (fr) Boîtier de relais d'accessoires de turbomachine d'aéronef comprenant un moteur très basse vitesse et procédé d'utilisation
FR3060525A1 (fr) Systeme d'actionnement electromecanique de pas pour une helice de turbomachine
FR2776736A1 (fr) Variateur de vitesse
FR2839130A1 (fr) Procede de commande d'actionneur de transmission robotisee
FR3060524A1 (fr) Systeme d'actionnement electromecanique de pas pour une helice de turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2854991

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14357623

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014542919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012806560

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014125431

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014012388

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014012388

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140522