WO2013075453A1 - 混凝土机械的润滑系统及混凝土机械 - Google Patents

混凝土机械的润滑系统及混凝土机械 Download PDF

Info

Publication number
WO2013075453A1
WO2013075453A1 PCT/CN2012/074167 CN2012074167W WO2013075453A1 WO 2013075453 A1 WO2013075453 A1 WO 2013075453A1 CN 2012074167 W CN2012074167 W CN 2012074167W WO 2013075453 A1 WO2013075453 A1 WO 2013075453A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
lubrication system
lubricating oil
pressure
pressure medium
Prior art date
Application number
PCT/CN2012/074167
Other languages
English (en)
French (fr)
Inventor
董旭辉
刘辉
刘明松
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013075453A1 publication Critical patent/WO2013075453A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/24Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired positions, e.g. for preventing overheating, for safety
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • F16C33/741Sealings of sliding-contact bearings by means of a fluid

Definitions

  • the invention relates to the technical field of engineering machinery, in particular to a lubrication system of a concrete machine.
  • the invention also relates to a concrete machine comprising a lubrication system.
  • Concrete machinery includes concrete pump trucks, tow pumps, and on-board pumps.
  • Concrete machinery has a concrete container in which concrete is placed for pumping concrete.
  • the concrete container is usually equipped with bearings, such as a stirring system bearing and an S valve bearing, which are respectively matched with the stirring shaft and the S valve. Since the shafts and bearings are generally in contact with the concrete in the concrete container, the concrete easily enters the bearing and causes the shaft 7 to wear.
  • FIG. 1 is a schematic structural view of a S valve disposed in a concrete container in the prior art.
  • the S valve 12 in Fig. 1 includes a delivery pipe 121 and a rotating shaft 122.
  • the upper pipe section of the conveying pipe 121 is mounted on the front wall plate 111 of the concrete container through the upper pipe section bearing 131, and the rotating shaft 122 is mounted on the concrete container through the rotating shaft bearing 132.
  • the rear wall panel 112 is driven by the rocking mechanism to rotate the shaft 122 to reciprocate and swing, and to drive the upper pipe section to swing.
  • the lower pipe section of the conveying pipe 121 located on the side of the rotating shaft 122 is alternately connected between the two conveying cylinders.
  • the concrete in the transfer cylinder is pumped out through the S valve.
  • the upper pipe section bearing 131 and the rotating shaft bearing 132 are immersed in the concrete in the concrete container, and the concrete can enter the bearing; in the S valve swinging and concrete agitation, the concrete is more likely to enter the bearing, thereby Causes wear between the shaft 7
  • lubricant is usually injected between the bearing and the shaft.
  • the ends of the shaft have a sealing ⁇ which prevents the lubricant from entering the concrete and also prevents the concrete from entering the bearing.
  • the sealing jaw Function, but due to the harsh working environment of concrete (the nature of concrete, the bearing and the shaft are in relative rotation), the function of the sealing jaw is limited, the wear is serious, it is easy to fail, or it only plays a role in preventing the concrete from entering the bearing. Based on the characteristics of concrete, the concrete entering the bearing is obviously prone to wear of the bearing, affecting the normal operation of the bearing, the working efficiency of the lowering, and increasing the production cost.
  • a method of continuously injecting a lubricant into the bearing is adopted, and the lubricant can continuously form a positive pressure between the bearing and the shaft, thereby preventing the concrete outside the bearing from entering the bearing. Due to the need to continuously inject the lubricant, the waste of the lubricant is increased, and the production cost is increased. In addition, the continuously injected lubricant enters the concrete in the concrete container, and the amount of the lubricant entering the concrete decreases the strength of the concrete.
  • the present invention provides a lubrication system for a concrete machine having a bearing and a rotating shaft that are in contact with the concrete, and a sealing member is disposed between the two ends of the bearing and the rotating shaft, The sealing member and the shaft form a sealing cavity, the sealing cavity is connected to the high-pressure medium pipeline and the lubricating oil pipeline, and the pressure of the high-pressure medium pipeline is greater than the concrete pressure outside the sealing cavity, the lubricating oil pipe
  • the pressure of the road is greater than the pressure of the high pressure medium line; and the high pressure medium of the high pressure medium line and the lubricating oil of the lubricating oil line are mixed into the sealed chamber.
  • the high pressure medium line is a gas line.
  • the gas line and the lubricating oil line are connected to the sealed chamber through the gas-oil mixing module.
  • a gas oil distribution module is disposed between the gas oil outlet of the gas oil mixing module and the sealed chamber.
  • the high pressure medium line communicates with a compressed gas line of the concrete mechanical chassis.
  • the lubricating oil source of the lubricating oil pipeline is a hydraulic source of the concrete machinery.
  • the sealed chamber is also connected to a voltage stabilizing pipeline.
  • the voltage stabilizing pipeline is provided with a pressure regulating valve connected to the high pressure medium returning device.
  • the lubricating oil pipeline and the high-pressure medium pipeline are sequentially provided with a flow regulating valve, a pressure gauge, a filter, a sequence valve, and a check valve.
  • the sealing chamber between the rotating shaft and the bearing communicates with the high-pressure medium pipeline and the lubricating oil medium pipeline, and the pressure of the medium in the high-pressure medium pipeline is greater than the concrete pressure outside the sealing chamber, and the concrete cannot enter the sealing chamber from the outside. Inside. Therefore, it is not necessary to continuously inject the lubricating oil into the sealing cavity to obtain a continuous positive pressure.
  • the injected lubricating oil can meet the requirement of lubricating the bearing and the rotating shaft, and the high-pressure medium selects the medium of the lubricating oil, so the technical solution can reduce the lubrication.
  • the injection of oil reduces the cost of lubricating oil; in addition, if the injected high-pressure medium is a medium that does not affect the strength of the concrete or has less influence, the high-pressure medium oozing out from the sealing member has little or no influence on the concrete strength, compared with the present In the technical way, the lubricating oil flows into the concrete, and the solution can reduce the influence on the concrete strength under the premise of effectively preventing the concrete from entering the bearing interior (the amount of lubricating oil penetrating into the concrete is significantly reduced due to the reduced amount of lubricating oil injected) . After the high-pressure medium is mixed with the lubricating oil and enters the sealed cavity, the lubricating oil can be distributed more evenly in the sealed cavity, and the lubricating effect is better.
  • the present invention also provides a concrete machine having a concrete container and a lubrication system, the lubrication system being the lubrication system according to any of the above. Since the above lubricating system has the above technical effects, the concrete machine having the lubricating system also has the same technical effect.
  • FIG. 1 is a schematic view showing the structure of a S valve disposed in a concrete container in the prior art
  • FIG. 2 is a schematic structural view of a first embodiment of a concrete mechanical lubrication system provided by the present invention
  • Figure 3 is a partial enlarged view of the portion A of Figure 2;
  • Figure 4 is a schematic structural view of a second embodiment of a concrete lubrication system provided by the present invention.
  • Fig. 5 is a partially enlarged schematic view showing the portion B of Fig. 4.
  • the core of the present invention is to provide a concrete mechanical lubrication system that can save oil without affecting the strength of the concrete while preventing the concrete from entering the bearing.
  • Another core of the present invention is to provide a concrete machine having the above lubrication system.
  • the concrete machine may be a concrete pump truck, a tow pump, a vehicle pump or the like.
  • FIG. 2 is a schematic structural view of a first embodiment of a concrete mechanical lubrication system according to the present invention
  • FIG. 3 is a partially enlarged schematic view of the A portion of FIG.
  • the lubrication system of the concrete machine in this embodiment has bearings 22 and a shaft 21 which are matched and both are in contact with concrete.
  • the bearing 22 and the rotating shaft 21 may be a rotating shaft bearing and a rotating shaft of the concrete pump truck S valve, and the rotating shaft and the rotating shaft bearing are in contact with the concrete in the concrete container (hopper); of course, it may also be a stirring shaft bearing of the concrete pump truck and The agitator shafts are all in contact with the concrete in the concrete container (hopper).
  • the bearing 22 has a sealing member 23 at both ends, and the sealing member 23 is disposed between the bearing 22 and the rotating shaft 21, and the sealing member 23 and the inner surface of the bearing 22 and the outer surface of the rotating shaft 21 form a sealed cavity 24, and the sealing member 23 may be a sealing port. Or other commonly used seals.
  • the sealed chamber 24 in this embodiment communicates with the high pressure medium line 50 and the lubricating oil line 60, and the high pressure medium of the high pressure medium line 50 and the lubricating oil of the lubricating oil line 60 are mixed into the sealed chamber 24. In order to realize the mixing of the high-pressure medium and the lubricating oil into the sealed chamber 24, as shown in FIG.
  • the inner wall of the bearing 22 is processed with a mixed inlet 221 of a high-pressure medium and a lubricating oil that communicates with the sealed chamber 24, and the bearing 22 is provided with a high-pressure medium and
  • the mixing passage 224 of the lubricating oil one end of the mixing passage 224 is a mixing inlet 221, and the other end is a communication port communicating with the outside; the external high-pressure medium source 30 and the lubricating oil source 40 pass through the high-pressure medium line 50 and the lubricating oil line 60, respectively. It communicates with the communication port and enters the sealed chamber 24 after mixing.
  • the pressure of the lubricating oil line 60 is greater than the pressure of the high-pressure medium line 50, and the pressure difference can ensure that the lubricating oil can smoothly reach the outer surface of the rotating shaft 21, and the bearing 22 and the rotating shaft 21 are always provided with effective lubrication.
  • the pressure of the lubricating oil in the lubricating oil line 60 it is also possible to set the pressure of the lubricating oil in the lubricating oil line 60 to be equal to the pressure of the medium in the high-pressure medium line 50.
  • the pressure of the medium in the high pressure medium line 50 In order to prevent external concrete from entering the sealed chamber 24, it is necessary to set the pressure of the medium in the high pressure medium line 50 to be greater than the pressure of the concrete outside the sealed chamber 24.
  • the sealing member 23 adopts the one-way sealing jaw shown in FIG. 3, that is, the mixture of the lubricating oil and the high-pressure medium in the sealing chamber 24 is allowed to enter the concrete, and the external concrete is restricted from entering the sealing chamber 24, so that When the pressure of the mixture in the sealed chamber 24 is unstable, the concrete can be prevented from entering by the action of the one-way sealing jaw, and the pressure of the mixture in the sealing chamber 24 is allowed to pass. When large, the mixture can enter the concrete under the pressure difference.
  • the medium flowing in the high-pressure medium line 50 may be gas or water, and the gas or water is injected into the sealing chamber 24, and the pressure of the medium in the high-pressure medium line 50 is set to be greater than the concrete pressure outside the sealing chamber 24.
  • the concrete cannot enter the sealed chamber 24 from the outside due to the pressure difference. Therefore, due to the presence of the high-pressure medium, it is not necessary to continuously inject the lubricating oil into the sealing chamber 24 to obtain a continuous positive pressure, and the injected lubricating oil can satisfy the requirement of lubricating the bearing 22 and the rotating shaft 21, and the high-pressure medium is less expensive than the lubricating.
  • the technical solution can reduce the injection of lubricating oil and reduce the cost of lubricating oil; in addition, the injected high-pressure medium is a medium (such as water or air) that does not affect the strength of the concrete or has less influence.
  • the high-pressure medium oozing out from the sealing member 23 has little or no influence on the concrete strength; for example, when the high-pressure medium is water, since the concrete itself has a certain moisture, after infiltrating into the concrete, The concrete strength has almost no effect, and the influence of air on the concrete strength is also less than that of the lubricating oil.
  • the scheme can effectively reduce the concrete from entering the bearing 22, Small impact on concrete strength (due to reduced lubricant injection) The amount of lubricating oil that penetrates into the concrete is significantly reduced). That is, in practice, the preferred solution is to inject into the sealed chamber 24 a medium that is inexpensive and has little effect on the strength of the concrete.
  • the gas when the gas flows in the high-pressure medium line 50, the gas may be a compressed gas of the concrete mechanical undercarriage system, that is, the high-pressure medium source 30 is a compressed gas of the chassis, and the high-pressure medium line 50 and the compressed gas line of the chassis are connected.
  • the gas extraction method can fully utilize the compressed gas of the concrete machine to obtain the high pressure of the sealing chamber 24, and realize the single tube, and can improve the energy utilization rate of the concrete machine.
  • other conventional methods can also be used to obtain the high pressure gas.
  • a separate gas canister is provided.
  • the gas and the lubricating oil can be mixed to achieve the lubricating effect of the gas-liquid two-phase fluid, that is, the lubricating oil can continuously flow along the inner wall of the pipe to form an oil film under the action of the compressed air flow, and finally Fine oil droplets reach the lubrication point.
  • a gas oil mixing module may be provided.
  • the high pressure medium line 50 and the lubricating oil line 60 are both connected to the gas oil mixing module, and the mixed gas oil flowing out through the gas oil mixing module flows to the sealing chamber.
  • the mixed gas oil flowing out of the gas-oil mixing module can also enter the sealing chamber through the gas oil distributor, and the gas oil distributor can distribute the mixed gas oil more evenly to achieve better lubrication effect.
  • the water pump can be separately provided, that is, the high-pressure medium source 30 is a water pump, and the high-pressure medium line 50 is connected with the outlet of the water pump pump water, so that the sealing chamber 24 can be continuously pressurized, and the control of the water pump is relatively accurate. It is convenient to adjust the pressure of the water according to the change of the concrete pressure outside the bearing 22.
  • the high pressure medium source 30 shown in Fig. 2 to the high pressure medium line 50 of the mixing passage 224 is provided with components such as a ball valve, a pressure gauge, a filter, a sequence valve, and a check valve.
  • the ball valve can control the specific flow rate of the high pressure medium, and can also use other commonly used flow regulating valve components;
  • the filter can filter the high pressure medium to prevent impurities from clogging the high pressure medium line 50 and the sealing chamber 24;
  • the pressure gauge can monitor the medium pressure;
  • the one-way valve can better control the flow direction of the medium and prevent the high-pressure medium from flowing backward, and protect the high-pressure medium source 30 from damage.
  • the lubricating oil source 40 of the lubricating oil source 40 to the mixing passage 224 is also provided with components such as a ball valve, a pressure gauge, a filter, a sequence valve, and a check valve, and the functions thereof are the same as those described above, and will not be described again.
  • FIG. 4 is a schematic structural view of a second concrete embodiment of the concrete lubrication system provided by the present invention
  • FIG. 5 is a partially enlarged schematic view of the B portion of FIG.
  • the lubrication system is provided with a stabilizing line 70. As shown in Figure 4, the bearing
  • the relief valve in 70 can employ a relief valve 701.
  • the stabilizing line 70 when the injection of the high-pressure medium causes the pressure in the sealed chamber 24 to be too high, part of the high-pressure medium can flow through the stabilizing valve to the high-pressure medium recirculating device (recovering excess high-pressure medium, not shown in the figure) Out), the pressure of the sealed chamber 24 is kept stable.
  • the mixing channel 224 and the communication port of the voltage stabilizing channel 226 and the outside can be disposed on one side of the bearing 22.
  • the communication port is provided. One side can be away from the concrete, so that the concrete can not enter the mixing channel 224 and the voltage stabilizing channel 226 from the communication port to ensure the normal operation of the lubrication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Sealing Of Bearings (AREA)

Abstract

一种混凝土机械的润滑系统及混凝土机械,润滑系统具有配套且均与混凝土接触的轴承(22)和转轴(21),轴承(22)两端的密封部件(23)、轴承(22)和转轴(21)形成密封腔(24),密封腔(24)连通高压介质管路(50)和润滑油管路(60),高压介质和润滑油混合后进入密封腔(24),高压介质管路(50)中介质的压力大于密封腔(24)外部的混凝土压力,润滑油管路(60)中润滑油的压力不小于高压介质管路(50)中介质的压力。该润滑系统能防止混凝土进入密封腔(24),降低混凝土对轴承(22)和转轴(21)的磨损,减少润滑油用量以及润滑油对混凝土的强度影响。还包括配备有上述润滑系统的混凝土机械。

Description

混凝土;^的润滑系统及混凝土机械 本申请要求于 2011 年 11 月 24 日提交中国专利局、 申请号为 201110378319.4、 发明名称为"混凝土机械的润滑系统及混凝土机械"的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及工程机械技术领域,特别涉及一种混凝土机械的润滑系统。 本发明还涉及一种包括润滑系统的混凝土机械。
背景技术
混凝土机械包括混凝土泵车、 拖泵、 车载泵等。 混凝土机械具有置放 混凝土的混凝土容器, 以供混凝土的泵送。 混凝土容器上通常安装有轴承, 如搅拌系统轴承、 S 阀轴承, 分别用以与搅拌轴、 S 阀相配合。 由于该类 轴和轴承一般会与混凝土容器内的混凝土接触 ,则混凝土容易进入轴承内 , 而造成轴 7 的磨损。
请参考图 1 ,图 1为现有技术中混凝土容器内设置 S阀的结构示意图。 图 1中 S阀 12包括输送管 121以及转动轴 122,输送管 121的上部管 段通过上部管段轴承 131安装在混凝土容器的前墙板 111上, 转动轴 122 通过转动轴轴承 132安装在混凝土容器的后墙板 112上; 在摇摆机构的驱 动下转动轴 122作往复摆动动作, 并带动上部管段摆动, 在该过程中位于 转动轴 122—侧的输送管 121的下部管段在两个输送缸交替连通, 通过 S 阀将输送缸中的混凝土泵送出去。 从图 1 中可以看出, 上部管段轴承 131 和转动轴轴承 132浸没在混凝土容器内的混凝土中, 混凝土能够进入轴承 内; 在 S阀摆动和混凝土搅拌过程中, 则混凝土更易于进入轴承, 从而造 成轴 7|与轴之间的磨损。
为了降低轴承和轴之间的磨损, 通常会向轴承和轴之间注入润滑剂, 轴^的两端具有密封圏, 密封圏可以防止润滑剂进入混凝土中, 同时也具 有防止混凝土进入轴承内的作用, 但由于混凝土工作环境较为恶劣 (混凝 土的性质、 轴承和轴处于相对转动状态), 密封圏的功能有限, 磨损严重, 容易失效, 或仅起到防止混凝土大量进入轴承内部的作用。 基于混凝土特 性, 进入轴承的混凝土显然易于造成轴承的磨损, 影响轴承的正常工作、 降氏工作效率、 加大生产成本。 而为了降低混凝土对轴承的磨损, 现有技术中采用向轴承内部持续地 注入润滑剂的方法, 润滑剂在轴承和轴之间可以持续形成正压, 从而阻止 轴承外部的混凝土进入轴承内。 由于需要持续注入润滑剂, 造成了润滑剂 的浪费, 增加了生产成本; 此外, 持续注入的润滑剂会进入混凝土容器内 的混凝土中, 进入混凝土内的润滑剂较多时会降低了混凝土的强度。
有鉴于此, 如何提供一种混凝土机械轴承的润滑系统, 使其在防止混 凝土进入轴承内的前提下, 能够节省润滑油, 且不影响混凝土的强度, 是 本领域技术人员需要解决的技术问题。
发明内容
为解决上述技术问题, 本发明的目的是提供一种混凝土机械润滑系 统, 该润滑系统能够在防止混凝土进入轴承内的前提下, 节省润滑油且不 影响混凝土的强度。 本发明的另一目的是提供一种具有上述润滑系统的混 凝土机械。
为达到本发明的第一目的, 本发明提供一种混凝土机械的润滑系统, 具有与混凝土接触且配套的轴承和转轴, 所述轴承两端与所述转轴之间均 设有密封部件, 所述密封部件和所述轴^^ 所述转轴形成密封腔, 所述密 封腔连通高压介质管路和润滑油管路, 所述高压介质管路压力大于所述密 封腔外部的混凝土压力, 所述润滑油管路的压力大于所述高压介质管路的 压力; 且高压介质管路的高压介质和润滑油管路的润滑油混合后进入所述 密封腔。
优选地, 所述高压介质管路为气体管路。
优选地, 所述气体管路和所述润滑油管路经气油混合模块后连通至所 述密封腔。
优选地, 所述气油混合模块的气油出口与所述密封腔之间设有气油分 配模块。
优选地, 所述高压介质管路与所述混凝土机械底盘的压缩气体管路连 通。
优选地, 所述润滑油管路的润滑油源为混凝土机械的液压源。
优选地, 所述密封腔还连通有稳压管路。
优选地, 所述稳压管路上设有连通高压介质回流装置的稳压阀。 优选地, 所述润滑油管路、 所述高压介质管路上均依序设有流量调节 阀、 压力表、 过滤器、 顺序阀、 单向阀。
该发明润滑系统中转轴和轴承之间的密封腔连通高压介质管路和润滑 油介质管路,且高压介质管路中介质的压力大于密封腔外部的混凝土压力, 则混凝土无法自外部进入密封腔内。 故无需持续注入润滑油至密封腔内以 获取持续的正压, 注入的润滑油满足润滑轴承和转轴的需求即可, 高压介 质选用成本^ 于润滑油的介质, 因此,该技术方案能够减少润滑油的注入, 降低润滑油成本; 此外, 注入的高压介质为不影响混凝土强度或影响较小 的介质, 则自密封部件渗出的高压介质对混凝土强度影响较小或无影响, 相较于现有技术中的润滑油流入混凝土中, 该方案可以在有效阻止混凝土 进入轴承内部的前提下, 减小对混凝土强度的影响 (由于润滑油注入量降 低,渗入混凝土内的润滑油量得以明显降低)。且高压介质与润滑油混合后 进入密封腔内, 可以使润滑油在密封腔内分配更为均匀, 润滑效果更好。
为达到本发明的另一目的, 本发明还提供一种混凝土机械, 具有混凝 土容器以及润滑系统, 所述润滑系统为具有上述任一项所述的润滑系统。 由于上述润滑系统具有上述技术效果, 具有该润滑系统的混凝土机械也具 有相同的技术效果。
附图说明
图 1为现有技术中混凝土容器内设置 S阀的结构示意图;
图 2为本发明所提供混凝土机械润滑系统第一种具体实施方式的结构 示意图;
图 3为图 2中 A部位局部放大示意图;
图 4为本发明所提供混凝土润滑系统第二种具体实施方式的结构示意 图;
图 5为图 4中 B部位的局部放大示意图。
具体实施方式
本发明的核心是提供一种混凝土机械润滑系统, 该润滑系统能够在防 止混凝土进入轴承内的前提下, 节省润滑油且不影响混凝土的强度。 本发 明的另一核心是提供一种具有上述润滑系统的混凝土机械。
为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合附 图和具体实施例对本发明作进一步的详细说明。为便于理解和描述的筒洁, 下述内容结合润滑系统和混凝土机械整体进行描述, 技术方案和有益效果 不再重复论述, 混凝土机械可以是混凝土泵车、 拖泵、 车载泵等机械。
请参考图 2和图 3 , 图 2为本发明所提供混凝土机械润滑系统第一种 具体实施方式的结构示意图; 图 3为图 2中 A部位局部放大示意图。
该具体实施方式中的混凝土机械的润滑系统, 具有配套且均与混凝土 接触的轴承 22和转轴 21。 轴承 22和转轴 21可以是混凝土泵车 S阀的转 动轴轴承和转动轴, 转动轴和转动轴轴承均与混凝土容器(料斗) 内的混 凝土接触; 当然也可以是混凝土泵车的搅拌轴轴承与搅拌轴, 其均与混凝 土容器(料斗) 内的混凝土接触。
轴承 22两端具有密封部件 23 , 密封部件 23设于轴承 22和转轴 21之 间, 则密封部件 23和轴承 22的内表面、 转轴 21的外表面形成密封腔 24, 密封部件 23可以是密封圏或其他常用密封件。此外,该具体实施方式中的 密封腔 24连通高压介质管路 50和润滑油管路 60, 高压介质管路 50的高 压介质和润滑油管路 60的润滑油混合后进入密封腔 24内。 为了实现高压 介质和润滑油混合后进入密封腔 24中, 如图 3所示, 轴承 22的内壁加工 有连通密封腔 24的高压介质和润滑油的混合进口 221 , 轴承 22上设有高 压介质和润滑油的混合通道 224, 混合通道 224的一端为混合进口 221 , 另 一端为与外界连通的连通口; 外部的高压介质源 30和润滑油源 40分别通 过高压介质管路 50和润滑油管路 60与连通口实现连通, 并在混合后进入 密封腔 24中。 其中, 润滑油管路 60的压力大于高压介质管路 50的压力, 该压差可以保证润滑油能够顺利到达转轴 21的外表面, 始终为轴承 22和 转轴 21提供有效的润滑。 当然, 还可以设置润滑油管路 60中润滑油的压 力等于高压介质管路 50 中介质的压力。 为了避免外部混凝土进入密封腔 24内, 需要设置高压介质管路 50中介质的压力大于密封腔 24外部的混凝 土压力。
需要说明的是, 密封部件 23采用图 3中所示的单向密封圏, 即允许密 封腔 24中的润滑油和高压介质的混合物进入到混凝土中,而限制外部混凝 土进入密封腔 24中, 这样, 在密封腔 24中混合物的压力不稳定时可通过 单向密封圏的作用阻止混凝土进入,并且允许在密封腔 24中混合物压力过 大时在压差作用下混合物可进入混凝土中。
进一步的, 高压介质管路 50内流通的介质可以为气体或水,将气体或 水注入密封腔 24内, 并设置高压介质管路 50中介质的压力大于密封腔 24 外部的混凝土压力, 则在该压差的作用下混凝土无法自外部进入密封腔 24 内。 因此, 由于高压介质的存在, 无需持续注入润滑油至密封腔 24内以获 取持续的正压, 注入的润滑油满足润滑轴承 22和转轴 21的需求即可, 另, 高压介质选用成本低于润滑油的介质 (比如水或空气), 则该技术方案能够 减少润滑油的注入, 降^ 润滑油成本; 此外, 注入的高压介质为不影响混 凝土强度或影响较小的介质 (比如水或空气), 则密封部件 23失效或密封 功能降低时,自密封部件 23渗出的高压介质对混凝土强度影响较小或无影 响; 比如, 高压介质为水时, 由于混凝土本身具有一定水分, 渗入混凝土 后对混凝土强度几乎无影响, 空气对混凝土强度的影响也小于润滑油的影 响, 相较于现有技术中的润滑油流入混凝土的情况, 该方案可以在有效阻 止混凝土进入轴承 22内部的前提下,减小对混凝土强度的影响(由于润滑 油注入量降低, 渗入混凝土内的润滑油量得以明显降低)。 即实际上, 最佳 方案为向密封腔 24内注入成本低廉且对混凝土强度影响较小的介质。
具体地, 高压介质管路 50中流动气体时, 气体可以是混凝土机械底盘 系统的压缩气体, 即高压介质源 30 为底盘的压缩气体, 将高压介质管路 50和底盘的压缩气体管路连通即可, 该取气方式可以充分利用混凝土机械 自身的压缩气体使密封腔 24获得高压,且实现方式筒单, 而且能够提高混 凝土机械的能量利用率, 当然, 也可以采用其他常规方式获得高压气体, 比如单独设置压缩气体罐。
而且, 高压介质为气体时, 气体和润滑油混合后可以达到气液两相流 体的润滑效果, 即润滑油在压缩空气气流的带动下, 可以沿管道内壁呈螺 旋状连续流动形成油膜, 最终以精细的油滴方式到达润滑点。 为了优化气 体和润滑油的混合效果,可以设置气油混合模块, 高压介质管路 50和润滑 油管路 60均连通气油混合模块,经气油混合模块流出的混合气油再流向密 封腔。 为了进一步优化润滑效果, 由气油混合模块流出的混合气油还可以 经气油分配器后再进入密封腔, 气油分配器可以将混合气油分配地更为均 匀, 以取得更好的润滑效果。 向密封腔 24注入水时,可以单独设置水泵, 即高压介质源 30为水泵, 将高压介质管路 50与水泵泵水的出口连通, 同样可以使密封腔 24获得持 续高压, 水泵的控制较为精准,便于根据轴承 22外部混凝土压力的改变而 调节水的压力。
图 2中所示的高压介质源 30至混合通道 224的高压介质管路 50中依 序设有球阀、 压力表、 过滤器、 顺序阀以及单向阀等元件。 球阀可以控制 高压介质的具体流量, 也可以采用其他常用的流量调节阀元件; 过滤器可 以过滤高压介质, 防止杂质堵塞高压介质管路 50 以及密封腔 24; 压力表 可以监控介质压力; 顺序阀和单向阀可以较好地控制介质流向并防止高压 介质倒流,保护高压介质源 30不受损害。另,润滑油源 40至混合通道 224 的润滑油管路 60也依序设有球阀、压力表、 过滤器、顺序阀以及单向阀等 元件, 其功能与上述一致, 不再赘述。
请参考图 4以及图 5 , 图 4为本发明所提供混凝土润滑系统第二种具 体实施方式的结构示意图; 图 5为图 4中 B部位的局部放大示意图。
该具体实施方式中, 润滑系统设置了稳压管路 70。 如图 4所示, 轴承
22上设有连通密封腔 24的稳压通道 226,稳压通道 226的一端为连通密封 腔 24的稳压口 223 , 另一端连通设于轴承 22外部的稳压管路 70, 稳压管 路 70中的稳压阀可以采用溢流阀 701。转轴 21转动时,转轴 21和轴承 22 之间密封腔 24的压力若能够处于稳定状态,则二者的相对转动可以更为平 稳, 润滑效果好, 磨损较小。 因此, 设置稳压管路 70后, 当高压介质的注 入导致密封腔 24内的压力过高时,部分高压介质可以通过稳压阀流至高压 介质回流装置(回收多余高压介质, 图中未示出), 使密封腔 24的压力保 持稳定。
对于第一实施例和第二实施例,涉及的混合通道 224以及稳压通道 226 与外界的连通口均可以设于轴承 22的一侧, 当轴承 22仅一侧接触混凝土 时, 设置连通口的一侧可以远离混凝土, 从而保证混凝土无法自连通口进 入混合通道 224以及稳压通道 226, 保证润滑系统的正常工作。
以上对本发明所提供的一种混凝土机械的润滑系统及混凝土机械进行 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。 应 当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前 提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本发 明权利要求的保护范围内。

Claims

权 利 要 求
1、一种混凝土机械的润滑系统,具有配套且均与混凝土接触的轴承和 转轴, 所述轴承两端与所述转轴之间均设有密封部件, 所述密封部件和所 述轴承、 所述转轴形成密封腔, 其特征在于, 所述密封腔连通高压介质管 路和润滑油管路, 所述高压介质管路中介质的压力大于所述密封腔外部的 混凝土压力, 所述润滑油管路中润滑油的压力大于所述高压介质管路中介 质的压力; 且高压介质管路的高压介质和润滑油管路的润滑油混合后进入 所述密封腔。
2、根据权利要求 1所述的混凝土机械的润滑系统, 其特征在于, 所述 高压介质管路为气体管路。
3、根据权利要求 2所述的混凝土机械的润滑系统, 其特征在于, 所述 气体管路和所述润滑油管路经气油混合模块后连通至所述密封腔。
4、根据权利要求 3所述的混凝土机械的润滑系统, 其特征在于, 所述 气油混合模块的气油出口与所述密封腔之间设有气油分配模块。
5、根据权利要求 2所述的混凝土机械的润滑系统, 其特征在于, 所述 高压介质管路与所述混凝土机械底盘的压缩气体管路连通。
6、根据权利要求 1所述的混凝土机械的润滑系统, 其特征在于, 所述 润滑油管路的润滑油源为混凝土机械的液压源。
7、根据权利要求 1至 6中任一项所述的混凝土机械的润滑系统,其特 征在于, 所述密封腔还连通有稳压管路。
8、根据权利要求 7所述的混凝土机械的润滑系统, 其特征在于, 所述 稳压管路上设有连通高压介质回流装置的稳压阀。
9、根据权利要求 8所述的混凝土机械的润滑系统, 其特征在于, 所述 润滑油管路、 所述高压介质管路上依序设有流量调节阀、压力表、 过滤器、 顺序阀、 单向阀。
10、 一种混凝土机械, 具有混凝土容器以及润滑系统, 其特征在于, 所述润滑系统为具有权利要求 1至 9中任一项所述的润滑系统。
PCT/CN2012/074167 2011-11-24 2012-04-17 混凝土机械的润滑系统及混凝土机械 WO2013075453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110378319.4 2011-11-24
CN 201110378319 CN102383605B (zh) 2011-11-24 2011-11-24 混凝土机械的润滑系统及混凝土机械

Publications (1)

Publication Number Publication Date
WO2013075453A1 true WO2013075453A1 (zh) 2013-05-30

Family

ID=45823405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074167 WO2013075453A1 (zh) 2011-11-24 2012-04-17 混凝土机械的润滑系统及混凝土机械

Country Status (2)

Country Link
CN (1) CN102383605B (zh)
WO (1) WO2013075453A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431324A (zh) * 2021-06-30 2021-09-24 苏立伟 一种新型组合式建筑模板固定结构及其固定方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383605B (zh) * 2011-11-24 2013-10-23 三一汽车制造有限公司 混凝土机械的润滑系统及混凝土机械
CN107830176B (zh) * 2017-12-11 2024-05-28 玉柴联合动力股份有限公司 一种轴承正压防尘结构
CN108585392B (zh) * 2018-04-28 2021-03-23 重庆交通大学 一种高压泄放式生化污泥调理方法
CN108545901B (zh) * 2018-04-28 2021-11-09 重庆交通大学 一种生化污泥调理设备
CN110553132B (zh) * 2019-09-12 2021-03-09 四川大学 智能微量润滑系统及具有该系统的环块摩擦磨损试验机
CN112061687B (zh) * 2020-09-07 2022-03-04 福建省铁拓机械股份有限公司 一种斗式提升机底部密封设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9202120A (nl) * 1992-12-08 1994-07-01 Harry Peter Willem Baan Spuitkop in het bijzonder voor het spuiten van beton of dergelijk materiaal.
RU2040660C1 (ru) * 1993-03-16 1995-07-25 Центральный научно-исследовательский и проектно-конструкторский институт проходческих машин и комплексов для угольной, горной промышленности и подземного строительства Бункер бетононасоса
DE4006091C2 (de) * 1989-03-02 2001-09-13 Mbt Holding Ag Zuerich Spritzmischdüsenaggregat, insbesondere für das Beton-Trockenspritzen
CN201606237U (zh) * 2009-12-29 2010-10-13 长沙中联重工科技发展股份有限公司 混凝土泵用润滑系统、混凝土泵车和车载泵
CN201606641U (zh) * 2010-03-05 2010-10-13 徐工集团工程机械股份有限公司建设机械分公司 一种混凝土泵车及其液压驱动的集中润滑装置
CN102383605A (zh) * 2011-11-24 2012-03-21 三一重工股份有限公司 混凝土机械的润滑系统及混凝土机械

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116247C1 (zh) * 1991-05-17 1992-10-15 Hudelmaier, Ingrid, 7900 Ulm, De
US5180294A (en) * 1992-03-04 1993-01-19 Confloat Consulting Ltd. Concrete pump having pressurized seal for swing tube
CN1048797C (zh) * 1993-06-30 2000-01-26 三菱重工业株式会社 轴承润滑脂注入量控制装置
CN2823693Y (zh) * 2005-07-29 2006-10-04 上海澳瑞特润滑设备有限公司 一种喷射润滑装置
CN201363525Y (zh) * 2009-01-05 2009-12-16 三一重工股份有限公司 一种集中润滑装置及其搅拌机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006091C2 (de) * 1989-03-02 2001-09-13 Mbt Holding Ag Zuerich Spritzmischdüsenaggregat, insbesondere für das Beton-Trockenspritzen
NL9202120A (nl) * 1992-12-08 1994-07-01 Harry Peter Willem Baan Spuitkop in het bijzonder voor het spuiten van beton of dergelijk materiaal.
RU2040660C1 (ru) * 1993-03-16 1995-07-25 Центральный научно-исследовательский и проектно-конструкторский институт проходческих машин и комплексов для угольной, горной промышленности и подземного строительства Бункер бетононасоса
CN201606237U (zh) * 2009-12-29 2010-10-13 长沙中联重工科技发展股份有限公司 混凝土泵用润滑系统、混凝土泵车和车载泵
CN201606641U (zh) * 2010-03-05 2010-10-13 徐工集团工程机械股份有限公司建设机械分公司 一种混凝土泵车及其液压驱动的集中润滑装置
CN102383605A (zh) * 2011-11-24 2012-03-21 三一重工股份有限公司 混凝土机械的润滑系统及混凝土机械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113431324A (zh) * 2021-06-30 2021-09-24 苏立伟 一种新型组合式建筑模板固定结构及其固定方法
CN113431324B (zh) * 2021-06-30 2024-02-23 苏立伟 一种组合式建筑模板固定结构及其固定方法

Also Published As

Publication number Publication date
CN102383605A (zh) 2012-03-21
CN102383605B (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2013075453A1 (zh) 混凝土机械的润滑系统及混凝土机械
WO2020088012A1 (zh) 双腔液体往复驱动多相流混输方法及其装置
CN101885307B (zh) 一种供液车
CN102889190B (zh) 一种可自动配制乳化液的矿用乳化液泵
CN204805096U (zh) 一种大气压发动机专用真空泵
CN112128073A (zh) 一种高压力粘稠颗粒浆输送泵
CN207230133U (zh) 一种可降低噪音的转子式机油泵
CN203627200U (zh) 活塞泵
CN201041151Y (zh) 螺旋转子泵
CN209705688U (zh) 一种由发动机曲轴直接驱动的转子式机油泵
CN203548173U (zh) 一种液压变量柱塞泵补油和冲洗装置
CN108412719A (zh) 一种阀式配流轴向凸盘球塞乳化液泵
CN204493169U (zh) 水泵的进水管组件
CN102383606B (zh) 混凝土机械的润滑系统及混凝土机械
CN209453887U (zh) 一种改进的砂浆灌注装置
CN112943205A (zh) 一种集混砂、压裂功能于一体的多功能设备
CN207034601U (zh) 一种黄油压注机
CN207829837U (zh) 一种钻塞泵注作业设备
CN202381281U (zh) 高压脉动挤密灌浆泵泵头结构
CN117780636B (zh) 一种应用于单螺杆油气混输泵的比例定量液体反馈器
CN202483996U (zh) 液压换向系统冷却保护装置
CN215256768U (zh) 一种双液灌注齿轮泵
CN109812684A (zh) 一种由发动机曲轴直接驱动的转子式机油泵
CN202851285U (zh) 可自动配制乳化液的矿用乳化液泵
CN202327612U (zh) 混凝土机械的润滑系统及混凝土机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12851125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12851125

Country of ref document: EP

Kind code of ref document: A1