WO2013075346A1 - 具有触摸按键的控制设备 - Google Patents

具有触摸按键的控制设备 Download PDF

Info

Publication number
WO2013075346A1
WO2013075346A1 PCT/CN2011/083280 CN2011083280W WO2013075346A1 WO 2013075346 A1 WO2013075346 A1 WO 2013075346A1 CN 2011083280 W CN2011083280 W CN 2011083280W WO 2013075346 A1 WO2013075346 A1 WO 2013075346A1
Authority
WO
WIPO (PCT)
Prior art keywords
button
unit
touch
mouse
weight
Prior art date
Application number
PCT/CN2011/083280
Other languages
English (en)
French (fr)
Inventor
龙涛
刘正东
龙江
唐元浩
严松
Original Assignee
江苏惠通集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏惠通集团有限责任公司 filed Critical 江苏惠通集团有限责任公司
Publication of WO2013075346A1 publication Critical patent/WO2013075346A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • G06F3/0202Constructional details or processes of manufacture of the input device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960705Safety of capacitive touch and proximity switches, e.g. increasing reliability, fail-safe
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/960725Charge-transfer

Definitions

  • the present invention relates to the field of sensing technologies, and in particular, to a control device with a touch button.
  • touch buttons are increasingly used as an alternative to traditional mechanical buttons. On the device, it not only improves reliability, but also contributes to a completely sealed and modern design. In fact, touch-sensitive buttons have been gradually used in the market to replace traditional mechanical buttons. Among them, the design of capacitive touch buttons is also a hot spot in touch-sensitive button technology.
  • the capacitive touch button systems that are commonly used today use plastic as the material of the touch panel, and generally do not contain metal components, so as to avoid triggering of misalignment.
  • the plastic panel has a PCB board (printed circuit board) sensing disc. By touching the plastic panel directly above the PCB board sensing disc, the button can be triggered to realize the touch operation.
  • the panel material is made of a metal material or a panel material containing metal components, the touch will trigger the button at any position of the panel, which cannot identify which button a certain trigger belongs to. , which will trigger a touch operation error and affect the user's use.
  • the space mouse is an input device that operates the screen cursor (mouse pointer) like a traditional mouse, but does not need to be placed on any plane. It can directly rely on the perception of air movement posture in the air. Now control the mouse pointer.
  • the inertial device In order to realize the perception of the air movement attitude, the inertial device is generally set in the space mouse, and the inertial device measurement technology is used to track the posture of the motion carrier.
  • the positioning of the space mouse is inaccurate or the touch button on the space mouse is not accurately recognized, it may cause a misoperation of the mouse pointer.
  • the problem to be solved by the technical solution of the present invention is to provide a control device with a touch button to improve the accuracy of touch recognition and effectively avoid false triggering of the button.
  • a control device with a touch button which includes:
  • the button structure includes a touch panel and a detecting board insulated from the touch panel, the touch panel is provided with a plurality of buttons, and the detecting board has a plurality of electrodes respectively corresponding to the buttons; Collecting a charge sample value of a button corresponding to each electrode, identifying a button having a charge sample value difference greater than or equal to a touch sensing threshold as a touched button, outputting an operation control signal corresponding to the touched button; and charging the button
  • the sample value is associated with the number of charge transfer times of the electrode corresponding to the button, and the number of charge transfer times of the electrode is the number of times the charge is transferred from the electrode when the voltage corresponding to the total amount of charge transferred on the electrode reaches the reference voltage, the charge sample The long-term average value of the value is obtained by cumulatively summing and calculating the average value of the plurality of charge sample values of the button obtained in the first preset time or in a weighted average manner;
  • An interface unit adapted to send the operation control signal to an electronic device to control the electronic device The operation corresponding to the preset function of the touched button is performed.
  • control device is a space mouse
  • control device further includes: an inertial device and a positioning device, wherein the positioning device is adapted to process output data of the inertial device, and output a position change that controls the mouse pointer. a position control signal; the interface unit is further adapted to transmit the position control signal to the electronic device to control the electronic device to perform movement of the mouse pointer.
  • the positioning device includes:
  • An acquiring unit configured to acquire a rotation angle of a sensitive axis of the gyroscope and a deflection angle and a linear acceleration of the sensitive axis of the acceleration sensor, wherein the sensitive axis of the acceleration sensor corresponds to a sensitive axis of the gyroscope;
  • the linear acceleration setting of the sensitive axis of the acceleration sensor corresponds to a first weight of the gyroscope and a second weight corresponding to the acceleration sensor;
  • a processing unit configured to perform weighting processing on the rotation angle and the deflection angle based on the first weight and the second weight to obtain an attitude angle of the space mouse
  • the information carried by the position control signal is associated with the attitude angle of the space mouse.
  • Recognizing touch buttons based on charge transfer and touch-sensing thresholds can improve the accuracy of touch recognition and effectively avoid false triggering of buttons.
  • the weight of the gyroscope and the weight of the acceleration sensor can be adaptively adjusted according to the linear acceleration change, and then the rotation angle and the deflection angle are combined by the weighting process, thereby effectively combining the data of the gyroscope and the data of the acceleration sensor, thereby realizing the space. Accurate positioning of the mouse and precise control of the mouse pointer.
  • FIG. 1 is a schematic structural diagram of a control device with a touch button according to a technical solution of the present invention
  • FIG. 2 to FIG. 5 are schematic diagrams showing an embodiment of a button structure of a control device according to a technical solution of the present invention
  • 6 and FIG. 7 are schematic diagrams of an embodiment of an identification device for a control device according to a technical solution of the present invention
  • FIG. 8 is a schematic diagram of touch recognition of the button structure shown in FIG.
  • FIG. 9 is a schematic structural diagram of a space mouse according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for identifying a space mouse according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a key structure of a space mouse according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a positioning device for a space mouse according to an embodiment of the present invention.
  • the control device includes: a button structure 1, an identification device 2, and an interface unit 3.
  • the button structure 1 includes a touch panel and a detecting board insulated from the touch panel.
  • the touch panel is provided with a plurality of buttons
  • the detecting board has a plurality of electrodes respectively corresponding to the buttons.
  • the identification device 2 is connected to the button structure 1 and is adapted to collect the charge sample value of the button corresponding to each electrode; the button whose charge sample value is smaller than the touch sensing threshold is recognized as the touched button; or the charge sample value is A button having a long-term average (LTA, Long Term Average) and a difference between the charge sample values greater than or equal to a touch-sensing threshold is recognized as a touched button; and an operation control signal corresponding to the touched button is output.
  • LTA Long Term Average
  • the interface unit 3 is connected to the identification device 2, and is adapted to send an operation control signal output by the identification device 2 to an electronic device to control the electronic device to perform an operation corresponding to a preset function of the touched button. .
  • the charge sample value of the button is associated with the number of charge transfer times of the electrode corresponding to the button, and the number of charge transfer times of the electrode is that the voltage corresponding to the total amount of charge transferred on the electrode reaches a reference voltage, and the charge is transferred from the electrode. Number of times, the long-term average of the charge sample values passed in the first The manner in which the plurality of charge sample values of the button obtained in the preset time are cumulatively summed and the average value thereof is calculated or obtained in a weighted average manner.
  • the control device may be a space mouse, a remote controller or a computer keyboard, or any combination thereof, and the electronic device may be a computer, a projector, a television, a DVD player or the like.
  • the control device including a space mouse, a remote controller and a computer keyboard as an example, the control device includes a housing having opposite first and second housing surfaces, and the buttons of the space mouse and the buttons of the remote controller may Located on the surface of the first housing, a button of the computer keyboard may be disposed on the surface of the second housing.
  • buttons of the space mouse can also be multiplexed with some buttons of the remote controller, that is, the multiplexed buttons are used for realizing the key function of the space mouse, and also for realizing the button function of the remote controller, which can be based on the button The status, such as being touched, pressed, touched, pressed, etc. is determined.
  • the interface unit 3 is a wireless interface, and may be, for example, an infrared interface, a Bluetooth interface, or a radio frequency interface, or may be any combination of these wireless interfaces.
  • the button structure 1 can be a capacitive touch button structure or an air touch button structure.
  • a finger touches the button a part of the charge escapes through the human body, and the charge is transferred through the corresponding electrode of the button, thereby detecting the charge. Transfer to achieve touch recognition of the button.
  • the capacitive touch button structure can be as shown in FIG. 2 , and includes: a touch panel 10 and a detecting board 11 opposite to the touch panel 10 , the touch panel 10 includes a board body 10 a and a plurality of metal buttons, FIG. 2
  • the example is a plurality of metal buttons ⁇ 1 ⁇ 5, and the metal buttons ⁇ 1 ⁇ 5 and the board 10a are separated by an insulating layer 10b, the touch panel 10 is grounded, and the detecting board 11 has a plurality of corresponding places.
  • the electrodes Ka to Ke of the metal buttons K1 to K5 are insulated from the touch panel 10, and the plurality of metal buttons K1 to K5 and the corresponding electrodes Ka to Ke are insulated and insulated by the insulating layer 12, The metal button, the electrode and the insulating layer between them form a plate capacitor.
  • each metal button is isolated from the board body 10a by the insulating layer 10b, and a plurality of keys each having a separate key position are formed.
  • the button is triggered only when the user presses the metal button (triggering the touch sensing event), and there is no response between the adjacent two metal buttons, and the sensing range is better.
  • the touch button structure has a zero-pressure or light-pressure touch button structure, and the user can detect the touch behavior more accurately without pressing the button, thereby improving the user's use experience.
  • the distance d1 between the one side of the metal button K1 ⁇ K5 relative to the detecting board 11 and the detecting board 11 may be smaller than the board body 10a relative to the Detector.
  • the distance d2 between one side of the test board 11 and the detection board 11 further makes it easier for the charge to escape through the metal button, that is, it is easier to escape to the metal button than to escape to the grounded touch panel.
  • the metal buttons K1 to K5 and the plate body 10a may be made of the same metal material, such as copper.
  • the material of the insulating layer 10b and the insulating layer 12 may be a transparent material such as glass, or may be other known insulating materials.
  • the electrode Ka ⁇ Ke is a copper foil, or may be other known various conductive materials.
  • each of the electrodes generates a source electric field after charging, the source electric field is an electrostatic field, and a charge accumulation region is formed on each electrode surface.
  • the electric field distribution is changed, and the transfer of the charge in the charge accumulation region is caused, so that the amount of charge in the charge accumulation region changes. It can be seen that once a dramatic change in the amount of charge occurs in the charge accumulation region of an electrode, it is generally considered that the corresponding metal button of the electrode is emitted. A touch operation was born.
  • the charge accumulation region can be used for charge replenishment to obtain a corresponding charge sample value when the button is touched, faced with a touch or proximity touch, and the case where the charge sample value is smaller than the touch sensing threshold is a touch event. The basis for the judgment that occurred.
  • the capacitive touch button structure is further configured as shown in FIG. 4 , including: a touch panel 13 and a detecting board 14 insulated from the touch panel 13 , between the touch panel 13 and the detecting board 14
  • the touch panel 13 may be an all-metal panel, and the touch panel 13 includes: a first surface 13a provided with a plurality of metal buttons 13c and a second surface 13b opposite to the first surface 13a, the second surface 13b having a plurality of grooves 13d,
  • the groove 13d of the second surface 13b corresponds to the metal button 13c of the first surface 13a, for example, five metal buttons 13c are illustrated, and correspondingly, there are five grooves 13d.
  • the metal button 13c on the touch panel 13 is a touch button, that is, the metal button region of the first surface 13a and other regions are substantially on the same plane, and only need to touch the metal button region (or apply light pressure on the metal button). That is, the button trigger can be detected to implement the corresponding button function.
  • the detecting plate 14 includes a plurality of electrodes 14c, and the plurality of electrodes 14c respectively correspond to the metal buttons 13c of the first surface 13a. For example, five metal buttons 13c are illustrated, and five electrodes 14c are also provided, corresponding to the metal buttons 13c. .
  • the metal button 13c may be a flexible metal such as aluminum or copper, which is susceptible to deformation; the electrode 14c is a conductive material such as a copper foil which is substantially the same in shape and size as the metal button region of the first surface 13a.
  • the metal button 13c and the electrode 14c constitute a plate capacitor, and the metal button 13c is slightly deformed after being pressed by a finger, and is caused by deformation of the metal button under pressure.
  • the change in capacity since the touch panel 13 is an all-metal button panel, the potential of the touch panel 13 can be fixed, for example, grounded, and the metal button on the touch panel 13
  • the capacitance C between the 13c and the corresponding electrode 14c on the detecting plate 14 can be expressed by the formula d, which In the case where ⁇ is a dielectric constant, it is related to the medium between the metal button 13c and the electrode 14c, S is the facing area between the metal button 13c and the electrode 14c, and d is the distance between the metal button 13c and the electrode 14c.
  • the air touch button structure may be as shown in FIG. 5, the touch panel 16 and the detecting board 17 insulated from the touch panel 16, and the touch panel 16 may be provided with a plurality of buttons 16a.
  • the glass panel, the detecting board 17 is provided with a plurality of electrodes 17a respectively corresponding to the buttons 16a, and the insulating medium between the touch panel 16 and the detecting board may also be glass, and the plurality of buttons 16a and The electrode 17a is isolated by air insulation.
  • the identification device 2 may further include: a counting unit 20 connected to the electrode of the button structure 1 and configured to record the number of charge transfer times of each electrode; a sampling unit 21 a, and the counting unit 20 is connected, and is adapted to collect the number of charge transfer times of each electrode as a charge sample value of each button corresponding to each electrode; the identification unit 22a is connected to the sampling unit 21a, and is adapted to connect the first predetermined number of consecutive The button that is collected in the predetermined period and whose value of the charge sample is smaller than the touch sensing threshold is recognized as the touched button; the output unit 23 is connected to the identifying unit 22a, and is adapted to output after the identifying unit 22a recognizes the touched button Corresponding to the operation control signal of the touched button.
  • a counting unit 20 connected to the electrode of the button structure 1 and configured to record the number of charge transfer times of each electrode
  • a sampling unit 21 a and the counting unit 20 is connected, and is adapted to collect the number of charge transfer times of each electrode as a charge sample value
  • the counting unit 20 may include: a plurality of unit capacitors, respectively, in the structure of the button Each of the electrodes is correspondingly connected; a plurality of detecting units are respectively connected to the plurality of unit capacitors, and are adapted to detect a voltage across the corresponding unit capacitor. When the voltage across the unit capacitor reaches a reference voltage, the output charge is transferred from the electrode. And a count value corresponding to the number of times of the unit capacitance, and the count value is sent to the sampling unit as the number of charge transfer times of the electrode.
  • the material of the board body and the metal button included in the touch panel is copper
  • the material of the insulating layer between the metal button and the board is glass
  • the position of the detecting board corresponding to the metal button is corresponding.
  • the electrode is a copper foil.
  • the unit capacitor 201 is connected to the electrode (copper foil) in the key structure
  • the detecting unit 202 is connected to the unit capacitor 201.
  • the unit capacitor 201 When a finger touches or approaches a certain metal button on the touch panel, a part of the electric charge escaping from the human body generates charge transfer via the copper foil, and since the unit capacitor 201 is electrically connected to the copper foil, the electric charge is generated.
  • the transfer from the copper foil to the unit capacitor 201 is equivalent to charging the unit capacitor 201.
  • the charge In the process of charging the unit capacitor 201, the charge is usually transferred from the copper foil to the corresponding unit capacitor 201 at a certain pulse frequency (the amount of charge transferred may be different each time), and therefore, the unit capacitor 201 is full.
  • the process of charging or charging to a certain capacitance (reference capacitance) requires multiple charge transfer.
  • a unit capacitor with a small capacitance can be used, usually a pF capacitor, such as 0.5 pF, so that the unit capacitor is more easily filled with the charge transferred from the copper foil.
  • the charge transfer can be obtained by detecting the voltage across the unit capacitor 201.
  • the detecting unit 202 detects the voltage across the unit capacitor 201 in real time, and the voltage across the unit capacitor 201 and the reference voltage (the voltage when the unit capacitor is charged to the reference capacity can be set to be full when the unit capacitor is full. Comparing the voltage at both ends, or the voltage at both ends when the unit capacitor is full, the voltage across the unit capacitor 201 When the reference voltage is reached, the count value of the number of times the output charge is transferred from the electrode (copper foil) to the unit capacitor 201, and this count value is also referred to as the number of charge transfer times of the electrode.
  • the total amount of charge transferred via the copper foil may be greater than the amount of charge required to charge the unit capacitor 201 to the reference voltage, and a plurality of connections may be provided corresponding to the unit capacitor.
  • Discharge circuit (not shown). Upon detecting that the voltage across the unit capacitor 201 reaches the reference voltage, the discharge circuit initiates discharge of the unit capacitor 201. Since the capacitance of the unit capacitor 201 is small, it is also relatively easy to be quickly discharged by the discharge circuit, and the time required for discharge is reduced. Thereby, the accuracy of the entire touch recognition process can be ensured. After discharging the unit capacitor 201, the unit capacitor 201 is again charged by the charge transferred via the copper foil, and then will undergo a re-discharge, which continues until the finger touches or approaches the action of a metal button on the touch panel.
  • the voltage on the line connecting the copper foil and the unit capacitor 201 changes (for example, from a low level to a high level), each time the charge is transferred from the copper foil to the unit capacitor 201.
  • the detecting unit 202 detects the voltage of the connection node of the copper foil and the unit capacitor 201, and if the voltage of the connection node jumps from a low level When the level is high, the count value is incremented by one until the voltage across the unit capacitor 201 is detected to reach the reference voltage, and the count value is sent to the sampling unit, and then the count value is cleared to perform the counting of the next charging process.
  • the sampling unit 21a collects the number of charge transfer times of each electrode from the counting unit 20 every predetermined period as the charge sample value of the button corresponding to each electrode.
  • the predetermined period is also referred to as a sampling period in which the charge sample value is collected.
  • the time interval of acquisition can be set from 1 ms (milliseconds) to 100 ms, for example, 10 ms, and the sampling unit 21 a charges the number of charge transfer of each electrode sent by the counting unit 20 every 10 ms.
  • the charge sample value as the corresponding button is sent to the identification unit 22a.
  • the touch button structure When the touch button structure is touched, faced with a touch or proximity touch, the speed at which the unit capacitor completes one charge and discharge process is very fast, usually, during the sampling period, the unit capacitor will complete multiple charge and discharge processes, that is, multiple times. It is detected that the voltage of the unit capacitor reaches the reference voltage, and for one electrode, a plurality of charge transfer times are generally recorded in the sampling period. Therefore, in a specific implementation, the number of times of recording the plurality of charge transfers may be taken. As the charge sample value, the nearest one of the charge transfer times may be used as the charge sample value, and the maximum and minimum values of the plurality of the charge transfer times recorded may be taken as an arithmetic mean value. After that as the charge sample value.
  • the identification unit 22a acquires the charge sample values of the respective keys from the sampling unit 21a, and recognizes the keys of the first predetermined number of predetermined cycles that are smaller than the touch sensing threshold as the touched keys.
  • the first preset number may be 1 to 10, and the first preset number is 1 as an example.
  • the identifying unit 22a compares the collected charge sample value with a preset touch sensing threshold.
  • the touch sensing threshold is a threshold value for defining whether the metal button in the touch button structure is touched. When the value of the charge sample corresponding to an electrode is less than the touch sensing threshold, it may be determined that the button corresponding to the electrode is touch.
  • the first preset number is set to 8, that is, the eight keys whose value of the charge samples collected in the eight consecutive predetermined periods are smaller than the touch sensing threshold are recognized as the touched keys.
  • the identification device 2 may also be configured as shown in FIG. 7, and includes: a counting unit 20 connected to the electrodes of the button structure 1 and adapted to record the number of charge transfer times of each electrode; the sampling unit 21b, Connected to the counting unit 20, suitable for collecting the number of charge transfer times of each electrode as the charge sample value of the button corresponding to each electrode; the identification unit 22b is connected to the sampling unit 21b, and is suitable for long-term value of the charge sample The button whose difference between the average value and the currently obtained charge sample value is greater than or equal to the touch sensing threshold is recognized as a touched button; the output unit 23 is connected to the identification unit 22b, and is adapted to recognize the touched button at the identifying unit 22a And outputting an operation control signal corresponding to the touched button; the updating unit 24, and the sampling unit 21b and the identifying unit 22b are adapted to accumulate and sum the plurality of charge sample values obtained in the first preset time And calculating an average value thereof or weighting the plurality of charge sample values obtained in the first preset
  • the counting unit 20 and the output unit 23 are the same as those shown in Fig. 6.
  • the sampling unit 21b, the identifying unit 22b and the updating unit 24 will be further described below.
  • the sampling unit 21b collects the number of charge transfer times of each electrode from the counting unit 20 as the corresponding electrode The charge sample value of the button.
  • the sampling unit 21b transmits the charge sample values as the corresponding keys to the identification unit 22b and the updating unit 24.
  • the sampling unit 21b may also collect the number of charge transfer times of each electrode from the counting unit 20 every predetermined period as the charge sample value of the button corresponding to each electrode.
  • the updating unit 24 calculates and updates the LTA of the corresponding charge sample value based on the charge sample value of the button sent by the sampling unit 21b. Specifically, the plurality of charge sample values obtained in the first preset time may be summed and summed. And the way to calculate the average value is obtained in a weighted average manner. The updating unit 24 outputs the LTA of the charge sample value to the identifying unit 22b every first preset time.
  • the reason why the change of the charge in the charge accumulation region is caused is not only that the finger touches the touch button structure, but also in different environments, and the aspects are complicated, and the capacitive touch device does not always detect In connection with the user touching the touch button structure, the detected result should be the result of the entire environment change, including various different sensations and factors, which need to be compensated to enable more accurate detection of the triggering of the touch-sensitive event.
  • the LTA value can be understood as a long-term average of the previously stable charge sample values, that is, the LTA value is calculated with the previous charge sample value as a reference, and the LTA indicates that the charge is sampled when the touch-sensitive event is not triggered.
  • the long-term average of the sample values since the sampling of the charge sample values is a continuous process, the LTA is also constantly updated. When no condition is triggered, the charge sample value is ideally equal to the LTA value, but if the environment is unstable, the noise interference is large, and the charge sample value will have slight fluctuations near the LTA value.
  • the first preset time is set to Is, assuming that 500 charge sample values are collected in Is, the 500 data are added and summed, and the arithmetic mean is calculated, and the calculated arithmetic is performed.
  • the average is the LTA of the charge sample value within Is. If the charge sample value is collected every predetermined period The method assumes that the predetermined period of sampling is set to 10 ms, that is, a charge sample value can be collected every 10 ms, and when the first preset time is set to Is, a total of 100 charges can be collected in Is. The sample value is summed and summed, and the arithmetic mean is calculated.
  • the calculated arithmetic mean is the LTA of the charge sample value in Is.
  • a weighted average manner may also be employed, such as setting a larger weight for the sampled sample values of the sample within a predetermined period that is closer to the current time, and a few predetermined distances from the current time.
  • the value of the sample of the sample sampled in the cycle is set to a smaller weight, that is, the LTA obtained last is the average value of the charge sample value for a period of time after the weight is set, instead of calculating the arithmetic mean value of the charge sample value for a period of time. This will be more in line with the current environment.
  • a button obtained by one ⁇ person sampling unit 21b having a difference in charge sample value greater than or equal to a touch sensing threshold is recognized as a touched button.
  • comparing the difference between the LTA of the charge sample value and the charge sample value of the button is compared with a preset touch sensing threshold, where the touch sensing threshold is used to define whether the button in the button structure is The threshold value of the touch, when the difference is greater than or equal to the touch sensing threshold, it may be determined that the corresponding button is touched.
  • the difference between the LTA and the currently obtained charge sample value should be zero, but in reality, due to the environment Unstable, large noise interference, the charge sample value will have slight fluctuations near the LTA value, but generally will not exceed the set touch sensing threshold, only when the finger touches the button in the button structure, As the amount of transferred charge increases sharply, the current charge sample value obtained becomes smaller, that is, when the charge sample value deviates from the LTA value to a certain extent, it is determined to be a trigger of the touch sensing event, thereby greatly improving the key recognition. Accuracy.
  • the updating unit 24 is further adapted to stop updating the LTA of the charge sample value after the identifying unit 22b recognizes the touched button, until the identifying unit 22b recognizes the long term of the charge sample value.
  • the difference between the average value and the currently obtained charge sample value is less than the touch sensing threshold.
  • the LTA is an LTA indicating the sampled charge sample value when the touch sensing event is not triggered.
  • the update unit 24 is also continuously updated for the LTA; After the touched button is recognized, that is, after the touch sensing event is triggered, the update of the LTA of the charge sample value is stopped until the difference between the LTA and the currently obtained charge sample value is less than the touch sensing threshold, in the touch sensing After the event ends, continue to update the LTA value.
  • the touch sensing threshold may be preset according to actual conditions, and may be generally set to a fixed value, for example, the touch sensing threshold is set to 30.
  • the touch sensitive threshold may also be associated with an LTA of the charge sample value.
  • LTA refers to the average value of multiple charge sample values sampled over a period of time. If the touch sensing threshold is set to a fixed value, it is difficult to adapt to changes in the surrounding environment. Therefore, the touch sensing threshold can be based on The LTA is used to set, for example, setting the touch sensing threshold to (1/16) LTA.
  • the LTA mentioned above is an overall estimate of the value of the charge sample in the previous time environment. Therefore, the LTA is a dynamic change value.
  • the control device When the control device is in the working state, it will detect and automatically adjust the LTA value according to the environmental change.
  • the touch sensing threshold is further adjusted, so the touch sensing threshold is also dynamic, so that the purpose of adaptively adjusting the touch sensing threshold is achieved.
  • the identification means shown in Fig. 6 may also include the update unit.
  • control device with a touch button as a space mouse
  • space mouse is used to control the movement and operation of the mouse pointer
  • the space mouse includes: a button structure 1, an identification device 2a, an interface unit 3, The inertial device 4, the positioning device 5, the locking unit 6, the starting unit 7, the proximity sensing unit 8, and the brightness adjusting unit 9.
  • the button structure 1 may be a structure as shown in FIG. 2, FIG. 3 or FIG. 4 or other capacitive touch button structure, and the button structure 1 may also be a structure as shown in FIG. 5 or other air touch button structure.
  • the detection board under the touch panel of the button structure 1 may further be provided with a light source.
  • the light source may be disposed under some buttons or all buttons, and the insulating layer material of the button structure 1 It is a transparent dielectric material.
  • the structure of the identification device 2a may be as shown in FIG. 10, including: a counting unit 20, a sampling unit 21, an identification unit 22, an output unit 23, an updating unit 24, and a delay unit 25.
  • the counting unit 20, the output unit 23 and the updating unit 24 have been described above, and the sampling unit 21 and the identification unit 22 may correspond to the sampling unit 21a and the identification unit 22a shown in FIG. 6, or may correspond to the sampling unit shown in FIG. 21b and identification unit 22b.
  • the touch sensing threshold of the embodiment is associated with the LTA of the charge sample value, that is, the touch sensing threshold is adaptively adjusted according to the long-term average value of the charge sample value, and the touch sensing threshold may be set to (1/16) LTA.
  • An operation control signal output from the output unit 23 of the identification device 2a is transmitted to the electronic device through the interface unit 3 to control the electronic device to perform an operation of the corresponding mouse pointer.
  • the identifying device 2a is adapted to recognize that the button whose preset function is the confirming function of the position of the mouse pointer is the touched button, and delay the second preset time to output the position corresponding to the mouse pointer. Confirm the operation control signal of the function.
  • the delay unit 25 is connected to the identification unit 22 and the output unit 23, and the recognition unit 22 is adapted to recognize that the preset function is a function for confirming the position of the mouse pointer.
  • the button is a touched button, and the control output unit 23 delays a period of time (second preset time) to output an operation control signal corresponding to the touched button.
  • the operation control signal corresponds to a confirmation function of the position of the mouse pointer.
  • Space mouse usually has the basic function of the mouse, that is, controlling the movement of the mouse pointer to select the execution target, and outputting the confirmed control signal after the execution target is selected to determine the execution of the selected target.
  • the control of the mouse pointer by the space mouse is to set the inertial device (such as gyro sensor, gravity acceleration sensor, etc.) in the space mouse, and use the inertial device measurement technology to track the aerial motion posture of the space mouse, and obtain the space mouse.
  • the spatial coordinate or its variation, and the obtained spatial coordinate or its variation is converted into the coordinates of the mouse pointer or its variation, and the coordinates of the mouse pointer or its variation is output to control the movement of the mouse pointer.
  • the space coordinates of the space mouse or the amount of change thereof are obtained by the positioning device 5 processing the output data of the inertial device 4 (see the description of the inertial device 4 and the positioning device 5 below).
  • the space mouse controls the mouse pointer to move to the target position, to select the execution target located at the position of the mouse pointer to confirm the execution of the corresponding application, only need to touch the confirmation of the selected position of the mouse pointer with the space mouse control.
  • the function of the button can be, however, when the user touches the button with the confirmation function, on the one hand, the user's hand has a certain amount of jitter, on the other hand, when the button is touched, a sinking force is formed, which may cause the mouse pointer to deviate.
  • the selected target position causes the validation function to fail. Therefore, in order to avoid the jitter of the mouse pointer when the confirmation function is implemented, when it is recognized that the preset function of the touched button is the confirmation function of the selected position of the mouse pointer controlled by the space mouse, the second preset time is delayed to generate the Operation control signals.
  • the button with the preset function being the confirmation function is touched, the mouse pointer is shaken, and the operation control signal with the confirmation function is temporarily not generated and output, and after the user adjusts, the mouse pointer is moved to the accurate position. Then, the operation control signal is generated again and output, and the confirmation function can be accurately realized.
  • the second preset time is set according to the actual situation, generally considering the time required for the user to make adjustments, since the amplitude of the shaking of the mouse pointer is not large, The overall time required is also very short.
  • the control signal is generated by delaying for a period of time (second preset time), so that the user can adjust the position of the mouse pointer to avoid the failure of the confirmation function due to the shaking of the mouse pointer. .
  • second preset time a period of time
  • the control device may further include a first shielding unit (not shown) adapted to shield the positioning device 5 from the second preset time of the delay.
  • the output data of the inertial device 4 is processed. Since the movement of the mouse pointer depends on the data output by the inertial device 4 included in the space mouse lock, if the touched button is recognized as the button having the confirmation function, the time before the operation control signal is output, that is, During the second preset time of the delay, the positioning device 5 in the shielded space mouse outputs the data to the inertial device 4, and the mouse pointer will not move when the button is touched, thereby effectively preventing the The jitter of the mouse pointer. At this time, since there is no adjustment by the user, the setting of the second preset time does not have the consideration of the time required for the user to adjust, and only needs to consider identifying the touched button and then issuing a shield to the inertial device.
  • the time at which the data is processed for processing is sufficient, and the time is extremely short and easy to determine. Therefore, during the second preset time of the delay, the inertial device output data included in the space mouse is processed by shielding, thereby further effectively preventing the shaking of the mouse pointer controlled by the space mouse, thereby improving the user operation experience.
  • the preset function of a certain button of the space mouse may be set to a function of controlling the movement of the mouse pointer when touched and to the mouse pointer when pressed.
  • the confirmation function of the location Specifically, the function of controlling the movement of the mouse pointer and the confirmation function of the selected position of the mouse pointer are implemented by a button, and when the button is touched, the space mouse controls the mouse pointer The function of moving is activated. When the button is pressed, the function of confirming the selected position of the mouse pointer can be realized. When the finger leaves the button, the function of controlling the movement of the mouse pointer by the space mouse is automatically turned off.
  • the identifying device 2a is adapted to recognize that the button whose preset function is the confirming function of the position of the mouse pointer is the touched button, and delay the third preset time to output the position corresponding to the mouse pointer. Confirm the operation control signal of the function.
  • the membrane button can be added under the button of the button structure 1, based on the button structure shown in Fig. 2, the button structure of the membrane button is increased as shown in Fig. 11, except that the figure 2 is included.
  • the touch panel 10 and the detecting board 11 opposite to the touch panel 10, the touch panel 10 includes a board body 10a and a plurality of metal buttons K1 to K5, and an insulating layer for isolating the metal buttons ⁇ 1 ⁇ 5 and the board body 10a.
  • the detecting board 11 has a plurality of electrodes Ka ⁇ Ke respectively corresponding to the metal buttons K1-K5, and the area between the plurality of metal buttons and the corresponding electrodes constitutes a plate capacitor; further comprising being located under the metal button K5
  • the film button Kn is located on the surface of the detecting plate 11, corresponding to the metal button ⁇ 5, the electrode Ke is a square or rectangular copper foil having an opening at the center, and the film button Kn is specifically a metal dome ( Metaldome or polydome) protrudes from the central opening of the electrode Ke.
  • the bottom of the metal button K5 shown in FIG. 11 has a protrusion, and the film button Kn can be pressed when the metal button K5 is pressed.
  • the bottom of the metal button may also have no protrusion, and the metal button is pressed. The film button is then pressed by the deformation it produces.
  • the principle and function of the membrane button are well known to those skilled in the art and will not be described herein.
  • the preset function after the metal button K5 is touched is a movement function of the mouse pointer that triggers the space mouse control
  • the preset function after the metal button K5 is pressed is a function of confirming the position of the mouse pointer.
  • the film button Kn can also be pressed, the knowledge
  • the device 2a is adapted to recognize an operation control signal for confirming that the film button Kn is pressed and delaying a confirmation function corresponding to the position of the mouse pointer for a third predetermined time.
  • the delay unit 25 can be connected to the identification unit 22 and the output unit 23, and the identification unit 22 is adapted to recognize that the membrane button Kn is pressed, and the control output unit 23 is delayed.
  • the operation control signal corresponding to the touched button is output for a period of time (the third preset time), and the operation control signal corresponds to the confirmation function of the position of the mouse pointer.
  • FIG. 11 exemplarily sets the thin film button below a metal button of the touch button structure (taking the metal button K5 as an example), and the preset function that can be implemented after touching the metal button is a trigger.
  • the function of moving the mouse pointer controlled by the space mouse, the preset function that can be realized by pressing the metal button is the function of confirming the selected position of the mouse pointer.
  • the membrane button may also be disposed under each metal button, and the different buttons may be triggered by touching the metal button and pressing the membrane button corresponding to the metal button (by pressing the metal button).
  • control device may further include a second shielding unit (not shown) adapted to shield the output device of the positioning device 5 from the inertial device 4 during the third preset time of delay deal with.
  • the setting of the third preset time may refer to the related description of setting the second preset time.
  • the positioning device 5 is adapted to process the output data of the inertial device 4, and output a position control signal for controlling the position change of the mouse pointer; the position control signal output by the positioning device 5 passes the
  • the interface unit 3 is sent to the electronic device to control the movement of the mouse pointer, such as the movement of the mouse pointer on the display screen.
  • the inertial device 4 may be a gyroscope or an acceleration sensor.
  • the inertial device 4 includes a gyroscope and an acceleration sensor, and the positioning device 5 combines data of the gyroscope and data of the acceleration sensor. Processing, realizing space Accurate positioning of the mouse and precise control of the mouse pointer.
  • the gyroscope and the acceleration sensor can be installed in the space mouse near the front end to better space the mouse movement.
  • the fusion usually includes real-time fusion and long-term fusion, and the real-time fusion is performed once per algorithm cycle (that is, once each time the data is sampled), long-term
  • the fusion detection cycle (for example, 256 algorithm cycles) is performed once.
  • the fusion can be a complementary weight fusion, or a combination of complementary weight fusion and Kalman filtering.
  • the so-called complementary weight fusion means that different weights are set for the gyroscope and the acceleration sensor, and the sum of the weights of the two is 1 , and then the data of the gyroscope and the data of the acceleration sensor are weighted. Since there is no external force acceleration, the acceleration sensor can accurately output the angle without cumulative error, that is, the acceleration sensor has high precision in static or low-speed motion; and when the space mouse performs variable-speed motion in three-dimensional space, Especially in high-speed motion, since the acceleration sensor cannot distinguish between gravity acceleration and external force acceleration, its accuracy is reduced at high speed.
  • different weights can be set for the gyroscope and the acceleration sensor based on different motion states of the space mouse, such as static, low speed or high speed.
  • the accuracy of the acceleration sensor is high at static or low speed, and the weight of the acceleration sensor is set to be greater than The weight of the gyroscope; At high speeds, the accuracy of the gyroscope is high, and the weight of the gyroscope is set to be greater than the weight of the acceleration sensor.
  • the space mouse is positioned by combining two kinds of inertial devices, the gyroscope and the acceleration sensor, so the weights of the two are complementary, that is, the sum of the weights is 1, but if the space mouse is combined with other inertial devices (for example, if the geomagnetic sensor is positioned, the sum of the weights of the gyroscope and the acceleration sensor may be less than one.
  • the space mouse moves in three-dimensional space
  • the three-dimensional space coordinate system includes two perpendicular vertical X-axis, y-axis and z-axis, wherein the X-axis and the y-axis are parallel to the ground plane, and the z-axis is perpendicular to the ground plane
  • the gyroscope Can
  • the acceleration sensor may be a single-axis gravity acceleration sensor, a two-axis gravity acceleration sensor, or a three-axis gravity acceleration sensor.
  • the sensitive axis of the gyroscope coincides with the corresponding coordinate axis
  • the sensitive axis of the acceleration sensor coincides with the corresponding coordinate axis.
  • the sensitive axis of one of the single-axis gyroscopes coincides with the X axis, and is recorded as an X-axis gyroscope.
  • the sensitive axis of another single-axis gyroscope coincides with the Z-axis and is recorded as a Z-axis gyroscope;
  • the three sensitive axes of the acceleration sensor coincide with the X-axis, the y-axis and the z-axis, respectively, which are respectively recorded as X-sensitivity of the acceleration sensor.
  • the space mouse includes two mutually perpendicular single-axis gyroscopes and a three-axis gravity acceleration sensor, and the space mouse moves in the space coordinate system as an example for detailed description.
  • the rotation angle of the sensitive axis of the gyroscope refers to the angle between the sensitive axis of the gyroscope and its corresponding coordinate axis, which is represented by ⁇ .
  • the rotation angle of the sensitive axis of the X-axis gyroscope refers to the angle between the sensitive axis of the X-axis gyroscope and the X-axis, denoted as ⁇ ⁇ ;
  • the rotation angle of the sensitive axis of the ⁇ -axis gyroscope refers to the ⁇ -axis gyroscope
  • the angle between the sensitive axis and the ⁇ axis is recorded as .
  • the deflection angle of the sensitive axis of the acceleration sensor refers to the angle between the sensitive axis of the acceleration sensor and its corresponding coordinate axis, which is represented by ⁇ .
  • the deflection angle of the X-sensitive axis of the acceleration sensor refers to the angle between the X-sensitive axis and the X-axis, denoted as ⁇ ⁇ ;
  • the deflection angle of the ⁇ -sensitive axis of the acceleration sensor refers to the angle between the ⁇ -sensitive axis and the ⁇ -axis, Recorded as ⁇ ⁇ .
  • the acceleration sensor measures the tilt angle of the sensitive axis and the tilt angle of the sensitive axis of the acceleration sensor. It refers to the angle between the sensitive axis of the acceleration sensor and the direction of gravity acceleration. In fact, it is the angle between the sensitive axis of the acceleration sensor and the z-axis. It is represented by ⁇ , and the deflection angle of the sensitive axis of the acceleration sensor is converted by the tilt angle of the sensitive axis. get.
  • the inclination angle of the X sensitive axis of the acceleration sensor refers to the angle between the X sensitive axis and the ⁇ axis, which is denoted as ⁇ ⁇ ;
  • the inclination angle of the ⁇ sensitive axis of the acceleration sensor refers to the angle between the sensitive axis and the ⁇ axis, Recorded as ⁇ ⁇ .
  • the attitude angle of the space mouse refers to the angle between the space mouse and each coordinate axis, which is represented by ⁇ .
  • the attitude angle of the space mouse and the X axis refers to the angle between the space mouse and the X axis, which is denoted by ⁇ ⁇ ;
  • the attitude angle of the space mouse and the ⁇ axis refers to the angle between the space mouse and the ⁇ axis, and is denoted by ⁇ ⁇ .
  • the positioning device 5 combines the complementary weight filter fusion and the Kalman filter fusion to fuse the rotation angle of the sensitive axis of the gyroscope with the deflection angle of the sensitive axis of the acceleration sensor to obtain the attitude angle of the space mouse.
  • the structure of the positioning device 5 is as shown in FIG. 12, and includes: an acquisition unit 51, a setting unit 52, and a processing unit 53.
  • the acquisition unit 51 is adapted to acquire a rotation angle of a sensitive axis of the gyroscope and a deflection angle and a linear acceleration of the sensitive axis of the acceleration sensor, the sensitive axis of the acceleration sensor corresponding to the sensitivity axis of the gyroscope.
  • the obtaining unit 51 further includes: a first obtaining unit 51 1 and a second acquiring unit 512.
  • the first acquisition unit 51 1 is adapted to acquire the rotation angle of the sensitive axis of the gyroscope.
  • the gyroscope outputs the angular velocity of the sensitive axis.
  • the angular velocity can be integrated with the time to obtain the angular variation.
  • the initial angle can be added to obtain the rotation angle, which can be expressed as: " + w ⁇ , where ⁇ is the sensitivity of the gyroscope.
  • the rotation angle of the axis, 0 ⁇ is the initial angle of the sensitive axis of the gyroscope (the rotation angle determined by the previous sampling moment), and ⁇ is the angular velocity of the sensitive axis of the gyroscope (the angular velocity obtained at the current sampling time).
  • the rotation angle of the sensitive axis of the Z-axis gyroscope is 0 ⁇ ⁇ + ⁇ , where is the rotation angle of the sensitive axis of the 2-axis gyroscope, the initial angle of the sensitive axis of the axis gyroscope, and the sensitive axis of the ⁇ axis gyroscope Angular velocity.
  • the second acquisition unit 512 acquires the deflection angle and the linear acceleration of the sensitive axis of the acceleration sensor.
  • the acceleration sensor outputs the inclination angle of each sensitive axis. After the inclination angle of each sensitive axis is converted, the deflection angle of each sensitive axis can be obtained.
  • the acceleration sensor also outputs the linear acceleration of each sensitive axis, which can reflect different motion states of the space mouse, and thus can be used as a basis for setting weights.
  • the setting unit 52 is connected to the acquiring unit 51, and is adapted to set a first weight corresponding to the gyroscope and a corresponding to the acceleration sensor based on a linear acceleration of a sensitive axis of the acceleration sensor acquired by the acquiring unit 51. Second weight. Before weighting the data of the gyroscope (the rotation angle of the sensitive axis) and the data of the acceleration sensor (the deflection angle of the sensitive axis), it is also necessary to filter the data of the gyroscope and the data of the acceleration sensor (please refer to the processing described above).
  • the setting unit 52 first establishes an association between the filter time constant and the linear acceleration of the sensitive axis of the acceleration sensor, and then obtains a weight value based on the association of the filter time constant with the presence of the first weight and the second weight.
  • the setting unit 52 further includes: a filter parameter setting unit 521, a time constant determining unit 522, and a weight determining unit 523.
  • the filtering parameter setting unit 521 is adapted to set the first filtering parameter ⁇ and the second filtering parameter m, wherein the second filtering parameter m is 3 to 5 times the first filtering parameter n.
  • the first filter parameter n and the second filter parameter m are parameters required to establish a correlation between the filter time constant and the linear acceleration of the sensitive axis of the acceleration sensor Number.
  • the first filter parameter n is an empirical value.
  • the first filter parameter n has a value range of [3, 6], and is usually an integer, for example, 3, 4, 5, or 6, and the second filter parameter m is set to 3 times the first filter parameter.
  • the linear acceleration is a vector with size and direction.
  • the size is usually expressed as a multiple of the gravitational acceleration G, such as 1G, 1.2G, 2G, 2.5G, etc. Therefore, Ki has a multiple relationship with the gravitational acceleration G.
  • the filter time constant ⁇ is relative to the duration of the signal. For low-pass filtering, a signal with a duration greater than or equal to the filter time constant ⁇ is allowed to pass, and a signal having a duration less than the filter time constant ⁇ is filtered out ( Allow low-frequency signals to pass, filter out high-frequency signals); For high-pass filtering, allow signals with a duration less than or equal to the filter time constant ⁇ to pass, while signals with a duration greater than the filter time constant ⁇ are filtered out (allow high-frequency signals) Pass, filter out the low frequency signal).
  • the weight determining unit 523 is connected to the time constant determining unit 522 and is adapted to determine the first weight
  • the filter time constant ⁇ can be understood as two weights
  • the weight ratio is multiplied by the sampling time dt, i.e., _ 1-b.
  • the filter time constant ⁇ is determined, the first weight a corresponding to the gyroscope and the second weight b corresponding to the acceleration sensor can also be determined.
  • the association between the first weight &, the second weight b and the difference acceleration of the acceleration sensor and the gravity acceleration Ki is established by the setting unit 52, so that the first weight a and the second weight b can be added
  • the difference between the combined acceleration of the speed sensor and the difference in gravity acceleration Ki is adaptively adjusted.
  • the processing unit 53 is connected to the obtaining unit 51 and the setting unit 52, and is adapted to the rotation angle acquired by the acquiring unit 51 based on the first weight and the second weight set by the setting unit 52.
  • the deflection angle is weighted to obtain an attitude angle of the space mouse; the information carried by the position control signal is associated with the attitude angle of the space mouse.
  • the processing unit 53 further includes: a high pass filter 531, a first multiplier 532, a low pass filter 533, a second multiplier 534, and a Kalman filter 535.
  • the high-pass filter 531 is connected to the first acquisition unit 511 and the time constant determination unit 522, and is adapted to high-pass filter the rotation angle acquired by the first acquisition unit 511 based on the filter time constant determined by the time constant determination unit 522.
  • the first multiplier 532 is adapted to multiply the output result of the high pass filter 531 by the first weight determined by the weight determining unit 523 to obtain a first product result.
  • the low pass filter 533 is connected to the second acquisition unit 512 and the time constant determination unit 522, and is adapted to low-pass filter the deflection angle acquired by the second acquisition unit 511 based on the filter time constant determined by the time constant determination unit 522. .
  • the second multiplier 534 is adapted to multiply the output result of the low pass filter 533 by the weight determination unit 523 The second weight is determined to obtain a second product result.
  • the Kalman filter 535 is coupled to the first multiplier 532 and the second multiplier 534, and is adapted to perform Kalman on the first product result obtained by the first multiplier 532 and the second product result obtained by the second multiplier 534. Filtering to obtain the attitude angle.
  • the low frequency signal will reduce the detection accuracy of the gyroscope, it is necessary to filter out the low frequency signal in the data of the gyroscope, that is, high-pass filtering the rotation angle of the sensitive axis of the gyroscope, and the filtered data is approximately ⁇ ; It will reduce the detection accuracy of the acceleration sensor. Therefore, it is necessary to filter out the high-frequency signal in the data of the acceleration sensor, that is, low-pass filtering the deflection angle of the sensitive axis of the acceleration sensor, and the filtered data is approximately ⁇ ;
  • the data of the gyroscope and the data of the acceleration sensor are weighted and Kalman filtered. Kalman filtering has been widely used in target tracking systems. The dynamic information of the target is used to remove the influence of noise and obtain an accurate estimation of the target position. Since it is a well-known and widely used technology in the art, it will not be explained here.
  • the rotation angle of the sensitive axis of the X-axis gyroscope is high-pass filtered and then multiplied by the first weight a;
  • the deflection angle ⁇ ⁇ of the X-sensitive axis of the acceleration sensor is low-pass filtered and then multiplied by the second Weight b;
  • the result of the two multiplications is input into the Kalman filter.
  • the output of the Kalman filter is the attitude angle ⁇ ⁇ of the space mouse and the X-axis.
  • the result of multiplication is input to the Kalman filter.
  • the output of the Kalman filter is the attitude angle ⁇ ⁇ of the space mouse and the z-axis.
  • the space mouse of the embodiment includes only two gyroscopes, determining the attitude angle of the space mouse only needs to determine the attitude angle of the space mouse and the X axis and the attitude angle of the X axis, and in other embodiments, A y-axis gyroscope may be included, and accordingly, the attitude angle of the space mouse and the y-axis may be determined according to the rotation angle of the sensitive axis of the y-axis gyroscope and the deflection angle of the y-sensitive axis of the acceleration sensor.
  • the above Kalman filter may also be replaced by an adder, that is, without Kalman filtering, but directly after weighting, that is, adding the first product result and the second product result to obtain a
  • the attitude angle is approximated by the high-pass filtering of the data of the gyroscope (X, and the data of the acceleration sensor is low-pass filtered and approximated to ⁇ , so the attitude angle of the space mouse and the X-axis and the attitude angle of the x-axis ⁇ ⁇ can be expressed as: e ⁇ a x + b x , ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ .
  • the Kalman filter in this embodiment can further improve the accuracy and stability of positioning.
  • the setting unit may also directly convert the linear acceleration measured by the acceleration sensor into a linear velocity without setting a filtering parameter, and set a relatively fixed first weight and a second weight within a certain range based on the linear velocity.
  • the sum of the first weight and the second weight is 1.
  • the processing unit directly weights the data of the gyroscope and the data of the acceleration sensor, and does not perform filtering before weighting.
  • the setting unit may be: a linear velocity calculation unit, configured to integrate a vector of linear accelerations of each sensitive axis of the acceleration sensor and a time integral to obtain a linear velocity, and each sensitive axis of the acceleration sensor Line acceleration is obtained from the second acquisition unit, and the acceleration sensor is obtained
  • the vector sum of the linear accelerations of the X-sensitive axis, the y-sensitive axis, and the ⁇ -sensitive axis, the obtained vector and the time-integrated can obtain the linear velocity;
  • the determining unit is adapted to determine whether the linear velocity obtained by the linear velocity calculating unit is
  • the weight setting unit is adapted to set the first weight to be smaller than the second weight when the determination result of the determining unit is yes, and the linear speed is less than a preset value in the static or low speed motion state, the acceleration
  • the accuracy of the sensor is higher than the accuracy of the gyroscope, so the second weight corresponding to the acceleration sensor is set to be greater than the first weight corresponding to the gyroscope; and when the judgment result of the determining unit is negative, the first weight is set to be
  • the preset value is an empirical value that is preset according to an actual situation.
  • the preset value may have a value range of [0.4, 0.6] and the unit is in meters/second.
  • the preset value is 0.5m/s
  • the first weight may have a value range of [0, 2/5], for example, setting the first weight to 1/3, then the second The weight is 2/3; or, if the first weight is set to 2/5, the second weight is 3/5; if the line speed is small or 0, the first weight can be set to 0, and the second weight is set to 1. .
  • the value of the first weight may be [3/5, 1], and when the online speed is increased, the reliability of the data of the acceleration sensor is decreased. Applying the data of the acceleration sensor to correct the data of the gyroscope has little meaning.
  • the first weight can be set to 1, and the second weight is 0.
  • the setting unit may further include: a linear velocity calculation unit, configured to integrate a vector of linear accelerations of each sensitive axis of the acceleration sensor with a time to obtain a linear velocity, and each sensitive axis of the acceleration sensor The line acceleration is obtained from the second obtaining unit; the first determining unit is adapted to determine whether the line speed obtained by the line speed calculating unit is smaller than the first preset value; the second determining unit is adapted to determine the line speed Whether the line speed obtained by the calculating unit is greater than a second preset value, the second preset value is greater than the first preset value, and the second determining unit may determine, when the determining result of the first determining unit is negative Whether the line speed is greater than the second preset value; the weight setting unit is adapted to set the first weight to be smaller than the second weight when the determination result of the first determining unit is YES; the judgment result in the second determining unit is Yes, the first weight is set to 1 and the second weight is 0; otherwise, the first weight is set to be
  • the first weight is set to be smaller than the second weight, for example, the first weight is set to 1/3, and the second weight is 2/3; when the line speed is greater than the second preset value (for example, 0.6 m/s), setting a first weight to 1 and a second weight to 0; otherwise, setting a first weight to a second weight, for example Set the first weight to 2/3 and the second weight to 1/3. That is to say, as the line speed increases, the weight of the acceleration sensor is gradually reduced, and the weight of the gyroscope is increased.
  • the processing unit may include: a third multiplier adapted to multiply a rotation angle of a sensitive axis of the gyroscope acquired by the first acquisition unit by a first weight set by the weight setting unit to obtain a third a fourth multiplier adapted to multiply a deflection angle of a sensitive axis of the acceleration sensor acquired by the second acquisition unit by a second weight set by the weight setting unit to obtain a fourth product result; a Kalman filter And performing Kalman filtering on the third product result output by the third multiplier and the fourth product result output by the fourth multiplier to obtain an attitude angle of the space mouse.
  • the Kalman filter can also be replaced by an adder.
  • Determining the attitude angle of the space mouse also realizes the positioning of the space mouse, that is, the position angle of the space mouse can be used to represent the position of the space mouse.
  • the information carried by the position control signal output by the positioning device 5 may include an attitude angle of the space mouse, and is sent to the electronic device through the interface unit 3, and after receiving the position control signal, the electronic device is based on the space mouse.
  • the attitude angle determines the component change of the space mouse, and maps the component change of the space mouse to the displacement amount of the mouse pointer to control the movement of the mouse pointer.
  • the position of the space mouse can also be represented by a component or component change of each coordinate axis of the space coordinate system by the space mouse.
  • the positioning device may further include: a component determining unit, configured to determine a component dcos0 of the space mouse in the space coordinate system, d is an initial component of the space mouse in the space coordinate system, and ⁇ is an attitude angle,
  • the information carried by the position control signal includes components of the spatial mouse in a spatial coordinate system.
  • the information carried by the position control signal output by the positioning device 5 may include a component of the space mouse in a spatial coordinate system, which is sent to the electronic device through the interface unit 3, and the electronic device receives the bit After the control signal is set, the component change of the space mouse is determined based on the component of the space mouse in the spatial coordinate system, and the component change of the space mouse is mapped to the displacement conversion amount of the mouse pointer to control the movement of the mouse pointer.
  • the component dcose of the space mouse in the space coordinate system includes: a component of the space mouse in the X coordinate of the space coordinate system (1 ⁇ 080 and a component of the Z coordinate of the space coordinate system d z COS0 z , ( ⁇
  • the initial component of the X-axis of the space mouse in the space coordinate system, d z is the initial component of the Z-axis of the space mouse in the space coordinate system, represented by coordinates, and the space mouse moves from the initial position ( d x , d z ) to the current position ( d x cos9 x , d z cos9 z ).
  • the initial component of the spatial coordinate system may include a component change of the space mouse, sent to the electronic device through the interface unit 3, and after receiving the position control signal, the electronic device will The component change is mapped to the displacement of the mouse pointer to control the movement of the mouse pointer.
  • the component change determining unit determines a change of the two-dimensional space determined by the space mouse in the two-dimensional space determined by the X-axis and the x-axis from the first position to the second position, wherein the first position can be represented by coordinates (A, ⁇ ).
  • is the component of the first position on the X axis
  • B is the component of the first position on the z axis
  • the second position can be the coordinates (Acos0 x , Bcos9 z )
  • 0080 is the component of the second position on the X axis
  • : ⁇ 080 2 is the component of the second position on the x-axis.
  • the information carried by the position control signal output by the positioning device includes a displacement change amount of the mouse pointer, and is sent to the electronic device through the interface unit 3, and after receiving the position control signal, the electronic device is based on the mouse pointer The amount of displacement change controls the movement of the mouse pointer.
  • the displacement change amount As of the mouse pointer includes : The amount of change in displacement of the mouse pointer on the X axis ⁇ and the amount of change in displacement on the Y axis ⁇ .
  • the sensitivity coefficient of the gyroscope and the sensitivity coefficient of the mouse pointer are set and adjusted according to actual needs and operating environment, such as accuracy requirements, screen size and resolution, etc., which are well known to those skilled in the art, and are not Then expand the instructions.
  • the electronic device controls the movement of the mouse pointer based on the displacement change amount ⁇ of the mouse pointer on the X axis and the displacement change amount ⁇ on the Y axis, and moves the mouse pointer from the third position to the fourth position, if the mouse is at
  • the coordinates of the third position are (XI, Y1), and the coordinates of the mouse at the fourth position are ( ⁇ 1+ ⁇ , Yl+ ⁇ ).
  • the prior art space mouse mostly uses space mouse for integration and selection of low power components. Improvements to reduce power consumption, but neglecting power consumption during operation, such as when the user is holding a space mouse, even if the next operation is not performed for a long time (touch the space mouse button or move the space mouse), or the space mouse for a long time In the idle state, all devices in the space mouse are in a working state, which consumes power, resulting in high power consumption of the space mouse.
  • the space mouse of this embodiment further includes a locking unit 6 connected to the identification device 2a, the inertial device 4 and the positioning device 5, and is adapted to be not output when the identification device 2a exceeds the fourth preset time.
  • the locked state includes the inertial device 4 and the positioning device 5 being in a closed state
  • the fourth preset time can be set according to actual needs, for example, set to a time value of 0 ⁇ 30s.
  • the locking unit 6 triggers the space mouse.
  • a lock event the spatial mouse lock event including controlling the inertial device 4 and the positioning device 5 from an active state to a closed state, thereby reducing power consumption of the space mouse.
  • the button structure of the space mouse includes a button corresponding to a mouse operation and other buttons (such as a button of a remote controller), and the space mouse lock event further includes an operation of shielding a button corresponding to the mouse operation, thereby Can effectively avoid user misuse.
  • the space mouse may further include a starting unit 7 connected to the identification device 2a, the inertial device 4 and the positioning device 5, and is adapted to be when the space mouse is in a locked state, if the preset function is a left mouse button
  • the function of the button and the preset function is that the button of the right mouse button function is recognized by the recognition device 2a as the touched button, and the inertial device 4 and the positioning device 5 are turned on; or, if three or more buttons are consecutively
  • the identification device 2a recognizes that it is a touched button, and turns on the inertial device 4 and the positioning device 5.
  • the activation unit 7 includes a first activation unit, and is configured to: when the space mouse is in a locked state, if the preset function is a left mouse button function and the preset function is a right mouse button function, the button is simultaneously
  • the identification device 2a recognizes that it is a touched button, and turns on the inertial device 4 and the positioning device 5.
  • the preset functions of the two buttons are the left mouse button function and the right mouse button function respectively, and when the space mouse is not locked, respectively touching the two buttons can realize the corresponding mouse left Key function or right mouse button function.
  • the space mouse is in the locked state, simultaneously touching the two buttons can implement the left and right key unlocking function of the space mouse, and wake up the space mouse.
  • the identifying device 2a sends a signal to the first starting unit, and after receiving the signal, the first starting unit triggers a space mouse unlocking event, where the space mouse unlocking event includes Controlling the inertial device 4 and the positioning device 5 from the closed state to the working state further includes unmasking the operation of the button corresponding to the mouse operation.
  • the same time is not limited in the strict sense, but may be close to the same time.
  • the activation unit 7 includes a second activation unit, and when the space mouse is in the locked state, if three or more consecutive buttons are recognized as being touched by the identification device 2a, the activation unit is turned on.
  • the space mouse can be unlocked by the slider: 2a recognizes that three consecutive buttons are touched in a short time (for example, 2s), and sends a signal to the second starting unit, and after receiving the signal, the second starting unit triggers a space mouse unlocking event,
  • the space mouse unlocking event includes controlling the inertial device 4 and the positioning device 5 to enter the working state from the closed state, and further includes unmasking the operation of the button corresponding to the mouse operation.
  • the space mouse unlock event can also be triggered by other means without setting the boot unit 7.
  • the button structure 1 may further include a mouse function button disposed on the touch panel, and is adapted to trigger the space mouse unlocking event when the space mouse is in a locked state, including turning on the inertial device 4 And positioning device 5.
  • the mouse function button is one of a metal button, an air button, and a mechanical button.
  • the inertial device 4 and the positioning device 5 are turned on when the identification device 2a recognizes the touched button.
  • the mouse function button is further adapted to trigger the space mouse locking event when the space mouse is in an active state, including closing the inertial device 4 and the positioning device 5.
  • the space mouse may also include the starting unit 7 and the mouse function button; the starting unit 7 may include both the first starting unit and the second starting unit; thereby making the space mouse
  • the wake-up method is diversified, which facilitates user operations and enhances the user experience.
  • the space mouse may further include a proximity sensing unit 8, and the proximity sensing unit 8 is connected to the button structure 1 and the identification device 2a, and is adapted to be in a continuous second predetermined number of predetermined periods.
  • a proximity sensing event is triggered when the charge sample values are both less than a proximity sensing threshold and greater than the touch sensing threshold, the proximity sensing event comprising turning on a light source that is below the button.
  • the proximity sensing event comprising turning on a light source that is below the button.
  • a dramatic change in charge amount in the charge accumulation region can be defined as triggering a proximity sensing event, except that the proximity sensing event has a relatively small change in charge amount relative to a touch sensing event, but can still be based on multiple consecutive During the predetermined period, the sampled charge sample value is compared with the proximity sensing threshold to identify a trigger for the proximity sensing event.
  • the proximity sensing threshold is a threshold value that defines whether a metal button in the touch button structure is approached, when a certain button corresponds to When the collected charge sample value is less than the proximity sensing threshold and greater than the touch sensing threshold, it may be initially determined that the button is approached.
  • the cause of the change in the charge in the charge accumulation region is not only the user's finger approaching the touch button structure, there may be other environmental interference effects, which may easily cause false triggering of the proximity sensing event (for example, The user may also trigger a proximity sensing event by passing the space mouse with the touch button structure.
  • the influence of the surrounding environment on the triggering of the proximity sensing event is more serious than the triggering determination of the touch sensing event, in order to obtain more
  • the accurate judgment result is similar to the judgment of the touch-sensing event triggering, and it is also necessary to integrate more judgments to finally obtain whether the trigger of the proximity sensing event corresponds to the case where the user's finger approaches the button on the touch button structure, that is, in a continuous manner.
  • the proximity sensing event is triggered, and the proximity sensing event includes opening the underlying button Light source, the material of the insulation layer is transparent Insulation Materials.
  • the second preset number is a number that determines whether a button is recognized as a continuous predetermined period determined by the proximity button, and is generally set according to actual conditions. In this embodiment, the setting of the second preset number is the same as the first preset number, and is also set to 8, that is, within 8 consecutive predetermined periods, the charge sample values are smaller than the proximity sensing.
  • a button having a threshold and greater than the touch sensing threshold is recognized as being approached by a button. The false triggering of the proximity sensing event can be effectively avoided by determining the value of the charge sample collected over a plurality of predetermined periods.
  • a light source is added under the button of the space mouse, and when a plurality of charge sample values of a certain button are continuously detected to be smaller than the proximity sensing threshold and greater than the touch sensing threshold in a continuous second predetermined number of predetermined periods, the actual What happens is that when the user's finger is close to the space mouse, the light source can be controlled to be turned on, so that the user can see the keys in a dark environment, and enhance the user's operation. The experience further enhances the user experience.
  • the detection of the charge transfer condition may be stopped, that is, the sensing channel corresponding to the touch panel is prohibited, so that the potential of the touch panel is re-fixed to the ground potential, and the button function is ensured. Normal use. In the actual case, for the tube control, as long as any one of the button structures is recognized as being approached, the light source under all the keys in the button structure of the space mouse can be turned on.
  • the space mouse when the space mouse is in the locked state, the space mouse may also be woken up by the proximity sensing unit 8, that is, the proximity sensing event may further include turning on the inertial device 4, such as a gravity acceleration sensor.
  • the proximity sensing unit 8 may further include turning on the inertial device 4, such as a gravity acceleration sensor.
  • the space mouse may further include a brightness adjusting unit 9, and the brightness adjusting unit 9 is connected to the button structure 1 and the identification device 2a, and is adapted to be brightened after the identification device 2a recognizes the touched button The light source below the touched button in the button structure 1.
  • the light source under the touched button may also be brightened, so that when the user touches a certain button , the light at the key position can be brighter to prompt the button, so that the user's operating experience is further enhanced.
  • the charge sample value of the button When the user touches the button and the user's finger gradually moves away from the button structure, the charge sample value of the button also begins to rise slowly.
  • the charge sample value satisfies: the charge sample value > (touch sensing threshold + LTA) ⁇ 75%, it can be determined that the touch sensing event is terminated, and the brightness before the light source under the touched button is restored.
  • LTA indicates that the long-term average value of the charge sample value is not triggered when any condition is triggered, and the parameter 75% at the time of determination can also be adjusted to other values, for example, 87.5%, mainly depending on the environment. It depends on the noise effect of the touch button structure.
  • the charge sample value of the button continues to rise.
  • the charge sample value > (proximity sensing threshold + LTA) ⁇ 75% it can be determined that the proximity sensing event also terminates. And turn off the light source under all the keys, re-monitor the state of the charge sample value, and accordingly turn on or brighten the light source according to the above trigger condition.
  • the proximity sensing threshold is similar to the touch sensing threshold, and may be set to a fixed value, or may be associated with an LTA of the charge sample value, for example, setting a proximity sensing threshold (1/8) LTA.
  • Recognizing touch buttons based on charge transfer and touch-sensing thresholds can improve the accuracy of touch recognition and effectively avoid false triggering of buttons.
  • the operation control signal is outputted for a period of time, and the shake of the mouse pointer can be prevented when the confirmation function is implemented.
  • the output data of the inertial device of the space mouse is shielded to further prevent the jitter of the mouse pointer controlled by the space mouse.
  • the long-term average value based on the charge sample value adaptively adjusts the touch sensing threshold and the proximity sensing threshold to further improve the accuracy of touch recognition and proximity recognition, and effectively avoid false triggering of touch sensing events and proximity sensing events.
  • control device When the control device is not operated for a long time, the control device is locked based on the output of the identification device and the positioning device, solving the problem that unnecessary waste of power consumption is caused by not operating the control device for a long time.
  • the weight of the gyroscope and the weight of the acceleration sensor can be adaptively adjusted according to the linear acceleration change, and then the rotation angle and the deflection angle are combined by the weighting process, thereby effectively combining the data of the gyroscope and the addition.
  • the speed sensor data enables accurate positioning of the space mouse and precise control of the mouse pointer.
  • High-pass filtering is performed before weighting the data of the gyroscope, and low-pass filtering is performed before weighting the data of the acceleration sensor to filter out the signal affecting the accuracy, thereby improving the accuracy and stability of the spatial mouse positioning, and the mouse pointer control.
  • the accuracy is performed before weighting the data of the gyroscope, and low-pass filtering is performed before weighting the data of the acceleration sensor to filter out the signal affecting the accuracy, thereby improving the accuracy and stability of the spatial mouse positioning, and the mouse pointer control.
  • Kalman filtering is performed after weighting the data of the gyroscope and the data of the acceleration sensor, so that the combined data is more accurate and stable, further improving the accuracy and stability of the spatial mouse positioning, and the accuracy of the mouse pointer control.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种具有触摸按键的控制设备,包括:按键结构,包括触摸面板以及与所述触摸面板绝缘隔离的侦测板,所述触摸面板设有多个按键,所述侦测板上具有多个分别对应所述按键的电极;识别装置,适于采集各电极对应的按键的电荷样本值,将所述电荷样本值小于触摸感应阈值的按键或者电荷样本值的长期平均值与所述电荷样本值之差大于或等于触摸感应阈值的按键识别为被触摸按键,输出对应所述被触摸按键的操作控制信号;接口单元,适于将所述操作控制信号发送至电子设备,以控制所述电子设备执行对应所述被触摸按键的预设功能的操作。本发明技术方案能提高触摸识别的准确度,并有效避免按键的误触发。

Description

具有触摸按键的控制设备
本申请要求于 2011 年 11 月 23 日提交中国专利局、 申请号为 201110376339.8、 发明名称为 "具有触摸按键的控制设备 "的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及传感技术领域, 特别涉及一种具有触摸按键的控制设备。
背景技术
传统机械式按键的使用寿命有限和操控体验差,而且其突兀外观显然不美 观和不易清洁, 因此, 触摸式按键作为传统机械式按键的一种替代方案, 越来 越多地应用在各种控制设备上, 不但可以提高可靠性, 而且有助于实现完全密 封和富于现代感的设计。 实际上, 目前市场上已逐渐采用触摸感应按键来替代 传统的机械式按键, 其中, 电容式触摸按键的设计也是触摸感应按键技术中的 一项热点。
现在普遍使用的电容式触摸按键系统都是使用塑料作为触摸面板的材料, 一般都不含金属成分, 以免引起错位的触发。 所述塑料面板下具有 PCB板(印 制电路板)感应盘, 通过触摸在 PCB板感应盘正上方的塑料面板, 就可触发按 键, 以实现触控操作。 然而, 对于现有的电容式触摸按键结构, 如果面板材料 采用金属材料或面板材料含金属成分, 则触摸在面板的任何位置都将触发按 键,这就无法识别某一次的触发是属于哪一个按键,从而将引发触摸操作错误, 影响用户的使用。
空间鼠标是一种输入设备, 像传统鼠标一样操作屏幕光标(鼠标指针) , 但却不需要放在任何平面上,在空中晃动就能直接依靠空中运动姿态的感知实 现对鼠标指针的控制。要实现空中运动姿态的感知, 一般在空间鼠标内设置惯 性器件, 利用惯性器件测量技术实现对运动载体姿态的跟踪。 然而, 当对空间 鼠标的定位不准确或对空间鼠标上的触摸按键识别不准确时,就会引起鼠标指 针的误操作。
因此,如何准确识别具有触摸按键的控制设备的被触摸按键, 就成为了技 术上亟待解决的问题。
发明内容
本发明技术方案要解决的问题是提供一种具有触摸按键的控制设备,以提 高触摸识别的准确度, 并有效避免按键的误触发。
为解决上述问题, 本发明技术方案提供一种具有触摸按键的控制设备, 包 括:
按键结构, 包括触摸面板以及与所述触摸面板绝缘隔离的侦测板, 所述触 摸面板设有多个按键, 所述侦测板上具有多个分别对应所述按键的电极; 识别装置,适于采集各电极对应的按键的电荷样本值,将所述电荷样本值 差大于或等于触摸感应阈值的按键识别为被触摸按键,输出对应所述被触摸按 键的操作控制信号;所述按键的电荷样本值关联于对应所述按键的电极的电荷 转移次数,所述电极的电荷转移次数为该电极上转移的电荷总量对应的电压达 到参考电压时电荷从该电极转移的次数,所述电荷样本值的长期平均值通过对 在第一预设时间内得到的所述按键的多个电荷样本值进行累加求和并计算其 平均值的方式或是以加权平均的方式获得;
接口单元,适于将所述操作控制信号发送至电子设备, 以控制所述电子设 备执行对应所述被触摸按键的预设功能的操作。
可选的, 所述控制设备为空间鼠标, 所述控制设备还包括: 惯性器件和定 位装置, 所述定位装置适于对所述惯性器件的输出数据进行处理,输出控制鼠 标指针的位置变化的位置控制信号;所述接口单元还适于将所述位置控制信号 发送至电子设备, 以控制所述电子设备执行鼠标指针的移动。
可选的, 所述定位装置包括:
获取单元,适于获取陀螺仪的敏感轴的旋转角以及加速度传感器的敏感轴 的偏转角和线加速度, 所述加速度传感器的敏感轴对应所述陀螺仪的敏感轴; 设置单元,适于基于所述加速度传感器的敏感轴的线加速度设置对应所述 陀螺仪的第一权重和对应所述加速度传感器的第二权重;
处理单元,适于基于所述第一权重和第二权重,对所述旋转角和所述偏转 角进行加权处理, 得到所述空间鼠标的姿态角;
所述位置控制信号携带的信息关联于所述空间鼠标的姿态角。
与现有技术相比, 本发明技术方案至少具有以下优点:
基于电荷转移和触摸感应阈值识别触摸按键, 能够提高触摸识别的准确 度, 有效避免按键的误触发。
陀螺仪的权重和加速度传感器的权重可以随线加速度变化而自适应调整, 再通过加权处理将旋转角和偏转角结合,由此有效地融合了陀螺仪的数据和加 速度传感器的数据, 实现了空间鼠标的准确定位和鼠标指针的精确控制。
附图说明
图 1是本发明技术方案的具有触摸按键的控制设备的结构示意图; 图 2至图 5是本发明技术方案的控制设备的按键结构的实施例示意图; 图 6和图 7是本发明技术方案的控制设备的识别装置的实施例示意图; 图 8是图 2所示按键结构的触摸识别示意图;
图 9是本发明实施例的空间鼠标的结构示意图;
图 10是本发明实施例的空间鼠标的识别装置的结构示意图;
图 11是本发明实施例的空间鼠标的按键结构的示意图;
图 12是本发明实施例的空间鼠标的定位装置的结构示意图。
具体实施方式
请参考图 1所示的本发明技术方案的具有触摸按键的控制设备的结构示意 图, 所述控制设备包括: 按键结构 1、 识别装置 2和接口单元 3。
所述按键结构 1包括触摸面板以及与所述触摸面板绝缘隔离的侦测板, 所 述触摸面板设有多个按键, 所述侦测板上具有多个分别对应所述按键的电极。
所述识别装置 2与所述按键结构 1相连,适于采集各电极对应的按键的电荷 样本值;将所述电荷样本值小于触摸感应阈值的按键识别为被触摸按键;或者, 将电荷样本值的长期平均值( LTA, Long Term Average )与所述电荷样本值之 差大于或等于触摸感应阈值的按键识别为被触摸按键; 以及,输出对应所述被 触摸按键的操作控制信号。
所述接口单元 3与所述识别装置 2相连, 适于将所述识别装置 2输出的操作 控制信号发送至电子设备,以控制所述电子设备执行对应所述被触摸按键的预 设功能的操作。
其中, 所述按键的电荷样本值关联于对应所述按键的电极的电荷转移次 数,所述电极的电荷转移次数为该电极上转移的电荷总量对应的电压达到参考 电压时电荷从该电极转移的次数,所述电荷样本值的长期平均值通过对在第一 预设时间内得到的所述按键的多个电荷样本值进行累加求和并计算其平均值 的方式或是以加权平均的方式获得。
所述控制设备可以为空间鼠标、遥控器或计算机键盘等,也可以为它们的 任意组合, 所述电子设备可以为计算机、 投影仪、 电视机、 DVD播放器等。 以控制设备包括空间鼠标、 遥控器和计算机键盘为例, 控制设备包括壳体, 所 述壳体具有相对的第一壳体表面和第二壳体表面,空间鼠标的按键和遥控器的 按键可以设置在所述第一壳体表面,计算机键盘的按键可以设置在所述第二壳 体表面。其中,空间鼠标的部分按键还可以和遥控器的部分按键复用,也就是, 复用的按键既用于实现空间鼠标的按键功能, 也用于实现遥控器的按键功能, 其可以根据按键的状态, 例如被触摸、 被按下、 触摸时间、 按下时间等确定。
所述接口单元 3为无线接口, 例如可以为红外接口、 蓝牙接口或射频接口 等, 或者也可以为这些无线接口的任意组合。
所述按键结构 1可以为电容式触摸按键结构或空气式触摸按键结构, 当手 指触摸在按键上时, 电荷就会有一部分通过人体逃逸, 并经由按键对应的电极 进行电荷转移, 从而通过检测电荷转移来实现对所述按键的触摸识别。
所述电容式触摸按键结构可以如图 2所示, 包括: 触摸面板 10以及与所述 触摸面板 10相对的侦测板 11 , 所述触摸面板 10包括板体 10a和多个金属按键, 图 2中示例为 5个金属按键 Κ1~Κ5 , 所述金属按键 Κ1~Κ5与板体 10a之间通过绝 缘层 10b隔离, 所述触摸面板 10接地, 所述侦测板 11上具有多个分别对应所述 金属按键 K1~K5的电极 Ka ~ Ke, 所述侦测板 11与所述触摸面板 10间绝缘隔离, 所述多个金属按键 K1~K5及对应电极 Ka ~ Ke通过绝缘层 12绝缘隔离, 金属按 键、 电极及之间的绝缘层构成平板电容。 图 2所示的触摸按键结构中,通过绝缘层 10b将各金属按键与板体 10a隔离, 形成了各自键位独立的多个按键。 而通过将触摸面板 10接地, 只有当用户手指 按到金属按键时候才会触发按键(触发触摸感应事件), 相邻两金属按键之间 不会有任何响应,感应范围的约束效果也较好。所述触摸按键结构为零压力或 轻压力的触摸按键结构,用户无需用力按压所述按键就可被较为准确地检测到 触摸行为, 从而提升了用户的使用感受。
可选的, 如图 3所示, 所述金属按键 K1~K5相对于所述侦测板 11的一面与 所述侦测板 11间的距离 dl可以小于所述板体 10a相对于所述侦测板 11的一面与 所述侦测板 11间的距离 d2, 这样进一步使得电荷比较容易通过金属按键逃逸, 即逃逸到金属按键比逃逸到接地的触摸面板更容易。
所述金属按键 K1~K5和所述板体 10a可以采用同一种金属材料, 例如铜。 所述绝缘层 10b和绝缘层 12的材料可以为透明材料, 例如玻璃, 或者也可以为 其他已知的各种绝缘材料。 所述电极 Ka~Ke为铜箔, 或者也可以为其他已知的 各种导电材料。
通过上述触摸按键结构的说明可以看到,当要对所述触摸按键结构进行操 作时,手指对电荷累积区域中电荷量的影响并非是直接触摸带电荷的电极来实 现的, 而是接触了金属按键。
导致上述情况出现的原理在于, 当各电极在充电后各自产生了源电场, 所 述源电场为静电场,且在各电极表面形成电荷累积区域。 当手指接触到金属按 键时, 会使得所述电场分布产生变化, 引发电荷累积区域中电荷的转移, 从而 电荷累积区域中电荷量发生了变化。 由此可以看出, 一旦某个电极的电荷累积 区域中发生了剧烈的电荷量变化,一般就可以认为所述电极对应的金属按键发 生了触摸操作。 从而, 基于此情况, 就可利用电荷累积区域进行电荷补充的方 式来获得按键在被触摸、 面临触摸或临近触摸时对应的电荷样本值, 并确定电 荷样本值小于触摸感应阈值的情况为触摸事件发生的判定依据。
可选的, 所述电容式触摸按键结构还可以如图 4所示, 包括: 触摸面板 13 和与所述触摸面板 13绝缘隔离的侦测板 14,位于触摸面板 13和侦测板 14之间的 绝缘层 15。 触摸面板 13可以为全金属面板, 触摸面板 13包括: 设有多个金属按 键 13c的第一表面 13a和相对于第一表面 13a的第二表面 13b, 第二表面 13b具有 多个凹槽 13d,第二表面 13b的凹槽 13d与第一表面 13a的金属按键 13c——对应, 例如图示有 5个金属按键 13c, 对应地, 凹槽 13d也有 5个。 触摸面板 13上的金属 按键 13c为触摸式按键,即第一表面 13a的金属按键区域和其他区域基本在同一 平面上, 只需轻触金属按键区域(或者说在金属按键上施加轻压力), 即可以 检测到按键触发, 实现相应的按键功能。 侦测板 14包括多个电极 14c, 多个电 极 14c分别对应第一表面 13a的金属按键 13c, 例如, 图示的金属按键 13c有 5个, 电极 14c也有 5个,与金属按键 13c——对应。金属按键 13c—般可以为柔性金属, 例如铝或铜, 易发生形变; 电极 14c为导电材料, 例如铜箔, 其形状和大小与 第一表面 13a的金属按键区域基本相同。
图 4所示的触摸按键结构中, 金属按键 13c和电极 14c构成平板电容, 金属 按键 13c在被手指触摸后, 受到压力后会产生微小的形变, 基于在压力作用下 金属按键的形变而引起电容量的变化。 具体地, 由于触摸面板 13为全金属的按 键面板, 可以将触摸面板 13的电位固定, 例如接地, 触摸面板 13上的金属按键
C = s-S
13c和侦测板 14上对应的电极 14c之间的电容量 C可以用公式 d表示, 其 中, ε为介电常数,与金属按键 13c和电极 14c之间的介质有关, S为金属按键 13c 和电极 14c之间的正对面积, d为金属按键 13c和电极 14c之间的距离。 假设当金 属按键 13c没有被触摸时, 金属按键 13c和电极 14c之间的距离为图示的 d3 , 当 金属按键 13c被触摸时, 触摸面板 13在被触摸的按键位置处发生微小形变, 金 属按键 13c和电极 14c之间的距离减小为 d4, 因此, 金属按键 13c和电极 14c之间 的电容量 C增大, 由于该电容量 C的增大所引起的电荷转移量相对于触摸到金 属按键而未发生形变时,因电荷从人体逃逸而使该金属按键对应的电极的电荷 累积区域中发生电荷量变化更大,由此采集的对应的按键的电荷样本值变得更 小, 从而使被触摸按键的识别更为准确。
可选的, 所述空气式触摸按键结构可以如图 5所示, 触摸面板 16和与所述 触摸面板 16绝缘隔离的侦测板 17, 所述触摸面板 16可以为设有多个按键 16a的 玻璃面板, 所述侦测板 17设有多个分别对应所述按键 16a的电极 17a, 所述触摸 面板 16和侦测板之间的绝缘介质也可以是玻璃, 所述多个按键 16a和所述电极 17a通过空气绝缘隔离。
请参考图 6, 可选的, 所述识别装置 2可以包括: 计数单元 20, 与所述按键 结构 1的电极相连, 适于记录各电极的电荷转移次数; 采样单元 21a, 与所述计 数单元 20相连,适于每隔预定周期采集各电极的电荷转移次数作为各电极对应 的按键的电荷样本值; 识别单元 22a, 与所述采样单元 21a相连, 适于将连续的 第一预设数量个预定周期采集的所述电荷样本值均小于触摸感应阈值的按键 识别为被触摸按键; 输出单元 23 , 与所述识别单元 22a相连, 适于在所述识别 单元 22a识别出被触摸按键后, 输出对应所述被触摸按键的操作控制信号。
进一步, 所述计数单元 20可以包括: 多个单位电容, 分别与按键结构中的 各电极对应连接; 多个检测单元, 分别与所述多个单位电容对应连接, 适于检 测对应的单位电容两端的电压, 在所述单位电容两端的电压达到参考电压时, 输出电荷从电极转移到对应单位电容的次数的计数值,并将所述计数值作为电 极的电荷转移次数发送至所述采样单元。
以图 2所示的按键结构为例, 触摸面板包括的板体和金属按键的材料均为 铜,金属按键和板体间的绝缘层的材料为玻璃,侦测板上与金属按键位置对应 的电极为铜箔。结合参考图 8,单位电容 201与按键结构中的电极(铜箔)连接, 检测单元 202与单位电容 201连接。
当手指触摸或临近触摸面板上的某一金属按键时,从人体逃逸的电荷会有 一部分经由所述铜箔产生电荷转移, 而由于单位电容 201与所述铜箔已存在电 连接, 电荷就会从所述铜箔向所述单位电容 201转移, 此过程即相当于对单位 电容 201进行充电。在对单位电容 201进行充电的过程中, 电荷通常是在一定脉 沖频率下从所述铜箔向各自对应的单位电容 201转移的 (每次转移的电荷量可 能不同), 因此, 单位电容 201充满电或充电达到一定的电容量(参考电容量) 需要多次电荷转移的过程。 实际实施时, 采用电容量较小的单位电容, 通常可 以采用 pF级的电容, 例如 0.5pF, 这样, 单位电容就较容易被从铜箔转移的电 荷充满。
由于电容两端的电压很容易测得, 因此可以通过对单位电容 201两端的电 压进行检测来获得电荷转移的情况。如图 8所示,检测单元 202实时检测单位电 容 201两端的电压,将单位电容 201两端的电压与参考电压(单位电容充电达到 参考电容量时的电压, 可以设定为所述单位电容充满时两端的电压, 或者小于 所述单位电容充满时两端的电压)进行比较, 在所述单位电容 201两端的电压 达到参考电压时, 输出电荷从电极(铜箔)转移到单位电容 201的次数的计数 值, 此计数值也称为电极的电荷转移次数。
由于手指触摸或临近触摸面板上某一金属按键过程中,经由所述铜箔转移 的电荷总量可能大于单位电容 201充电达到参考电压所需的电荷量, 还可设置 多个与单位电容对应连接的放电电路(未图示) 。 在检测到单位电容 201两端 的电压达到参考电压时, 所述放电电路就启动对单位电容 201的放电。 由于单 位电容 201的电容量较小, 因此也较容易被所述放电电路快速放电, 进而放电 所需时间^艮少。从而,可以保证整个触摸识别过程的精确性。在对单位电容 201 放电后, 单位电容 201又将被经由铜箔转移的电荷充电, 随后又将经历再次放 电, 此过程一直循环直至手指触摸或临近触摸面板上某一金属按键的动作结 束。
实际实施时, 由于每次电荷从所述铜箔转移到单位电容 201时, 所述铜箔 与单位电容 201的连线上的电压会发生变化(例如从低电平跳变至高电平) , 在单位电容 201的一次充电过程(电压从 0到参考电压) 中, 检测单元 202检测 所述铜箔与单位电容 201的连接结点的电压, 若所述连接结点的电压从低电平 跳变至高电平则将计数值加 1直至检测到单位电容 201两端的电压达到参考电 压,将所述计数值发送至所述采样单元后再将计数值清零, 进行下一次充电过 程的计数。
由于环境处于不断变化过程中,所述触摸按键结构上的电荷量同样在不断 变化, 因此, 每次从电极向单位电容转移的电荷量也并不相同, 在单位电容的 一次充电过程中, 若平均每次向单位电容转移的电荷量较大, 则显然完成一次 充电过程, 电极的电荷转移次数较少; 反之则较多。 请继续参考图 6,采样单元 21a每隔预定周期从计数单元 20采集各电极的电 荷转移次数作为各电极对应的按键的电荷样本值。所述预定周期也称为采集电 荷样本值的采样周期, 所述采样周期越短, 则触摸识别的精度越高, 但需要处 理的数据量较大, 负担重, 而采样周期过长, 则又难以实现准确的触摸识别, 一般地, 采集的时间间隔可以设定为 1ms (毫秒)到 100ms之间, 例如为 10ms, 采样单元 21 a每隔 10ms将计数单元 20发送的各电极的电荷转移次数作为对应的 按键的电荷样本值发送至识别单元 22a。
在所述触摸按键结构被触摸、 面临触摸或临近触摸时,单位电容完成一次 充放电过程的速度是非常快的,通常在采样周期内,单位电容会完成多次充放 电过程,即会多次检测到单位电容的电压达到所述参考电压,对一个电极来说, 在采样周期内一般记录有多个电荷转移次数, 因此, 在具体实施时, 可以将记 录的多个所述电荷转移次数取算术平均值后作为所述电荷样本值,也可以将最 近的一个电荷转移次数作为所述电荷样本值,还可以将记录的多个所述电荷转 移次数中的最大值和最小值取算术平均值后作为所述电荷样本值。
识别单元 22a从采样单元 21a获取各按键的电荷样本值,将连续的第一预设 数量个预定周期采集的所述电荷样本值均小于触摸感应阈值的按键识别为被 触摸按键。 所述第一预设数量可以为 1~10, 以第一预设数量为 1为例, 识别单 元 22a将每次采集到的所述电荷样本值与预先设定的触摸感应阈值进行比较, 所述触摸感应阈值是界定触摸按键结构中的金属按键是否被触摸的临界值,当 某电极对应采集到的所述电荷样本值小于所述触摸感应阈值时,则可判定为该 电极对应的按键被触摸。
然而,由于引发所述电荷累积区域中电荷发生变化的原因并不仅仅是手指 触碰到所述触摸按键结构, 可能还会有其他环境干扰的影响, 此时容易引起按 键的误触发(触摸感应事件的误触发), 从而错误地将某按键识别为被触摸按 键, 为了获得更准确的判定结果, 需要综合更多次的判定来最终获得触摸感应 事件的触发是否对应了手指触摸到触摸按键结构上的按键的情况。 因此, 需要 在连续的第一预设数量个预定周期内,某电极对应采集到的所述电荷样本值均 小于触摸感应阈值时, 才将该电极对应的按键识别为被触摸按键。 举例来说, 第一预设数量设定为 8 , 即将连续 8个预定周期采集到的 8个电荷样本值均小于 触摸感应阈值的按键识别为被触摸按键。通过对连续多个预定周期采集到的所 述电荷样本值的判定, 能提高触摸识别的准确度, 并有效避免按键的误触发。
可选的, 所述识别装置 2也可以为如图 7所示的结构, 包括: 计数单元 20, 与所述按键结构 1的电极相连,适于记录各电极的电荷转移次数;采样单元 21b, 与所述计数单元 20相连,适于采集各电极的电荷转移次数作为各电极对应的按 键的电荷样本值; 识别单元 22b, 与所述采样单元 21b相连, 适于将所述电荷样 本值的长期平均值与当前获得的电荷样本值之差大于或等于触摸感应阈值的 按键识别为被触摸按键; 输出单元 23 , 与所述识别单元 22b相连, 适于在所述 识别单元 22a识别出被触摸按键后,输出对应所述被触摸按键的操作控制信号; 更新单元 24, 与所述采样单元 21b和识别单元 22b,适于对在第一预设时间内得 到的多个电荷样本值进行累加求和并计算其平均值或对在第一预设时间内得 到的多个电荷样本值进行加权平均, 以更新所述电荷样本值的长期平均值。
其中, 计数单元 20和输出单元 23与图 6所示相同, 下面对采样单元 21b、 识 别单元 22b和更新单元 24做进一步说明。
采样单元 21b从计数单元 20采集各电极的电荷转移次数作为各电极对应的 按键的电荷样本值。 当计数单元 20输出电极的电荷转移次数时, 采样单元 21b 将作为对应的按键的电荷样本值发送至识别单元 22b和更新单元 24。 采样单元 21b也可以是每隔预定周期从计数单元 20采集各电极的电荷转移次数作为各电 极对应的按键的电荷样本值。
更新单元 24基于采样单元 21b发送的按键的电荷样本值, 计算并更新对 应的电荷样本值的 LTA,具体地,可以通过对在第一预设时间内得到的多个电 荷样本值进行累加求和并计算其平均值的方式或是以加权平均的方式获得的。 更新单元 24每隔第一预设时间将所述电荷样本值的 LTA输出至识别单元 22b。
由于引发所述电荷累积区域中电荷发生变化的原因并不仅仅是手指触碰 到所述触摸按键结构, 处在不同的环境, 各方面都很复杂, 而电容式触摸设备 检测到的并非总是与用户碰触所述触摸按键结构有关,检测到的应该是整个环 境变化的结果, 包含各种不同的感觉与因素, 这些都需要经过补偿以便能够更 加准确地检测到触摸感应事件的触发。
LTA值可以理解为对前面稳定的电荷样本值的一种长期平均, 即 LTA值 以前面的电荷样本值作为参考来计算的, 而且, LTA表示没有触发触摸感应事 件时, 采样到的所述电荷样本值的长期平均值, 由于对电荷样本值的采样是连 续的过程, 因此该 LTA也是不断更新的。 在没有触发任何条件时, 电荷样本 值理想状态下是和 LTA值相等的, 但如果环境不稳定, 噪声干扰大, 电荷样 本值会在 LTA值附近有微小的波动。
举例来说, 所述第一预设时间设定为 Is, 假设 Is内共采集到 500个电荷 样本值, 将这 500个数据相加求和, 并计算其算术平均值, 所计算出的算术平 均值即为 Is内电荷样本值的 LTA。 若采用每隔预定周期采集所述电荷样本值 的方式,假设进行采样的预定周期设定为 10ms, 即每隔 10ms可以采集到一个 电荷样本值, 当所述第一预设时间设定为 Is时, 则 Is内总共可以采集到 100 个电荷样本值, 将这 100个数据相加求和, 并计算其算术平均值, 所计算出的 算术平均值即为 Is内电荷样本值的 LTA。 在其他实施例中, 也可以采用加权 平均的方式,例如对距离当前时间较近的几个预定周期内采样到的电荷样本值 设置较大的权重,而对距离当前时间较远的几个预定周期内采样到的电荷样本 值设置较小的权重, 即最后得到的 LTA是设置权重后的一段时间内电荷样本 值的平均值, 而不是筒单地计算一段时间内电荷样本值的算术平均值, 这样可 以更符合当前的环境。 一次 μ人采样单元 21b获得的所述电荷样本值之差大于或等于触摸感应阈值的 按键识别为被触摸按键。
具体地, 将所述电荷样本值的 LTA减去所述按键的电荷样本值得到的差 值, 与预先设定的触摸感应阈值进行比较, 所述触摸感应阈值是界定按键结构 中的按键是否被触摸的临界值, 当所述差值大于或等于所述触摸感应阈值时, 则可判定为对应的按键被触摸。 如前所述, 在没有触发任何条件时, 采集到的 电荷样本值理想状态下是和 LTA值相等的, 那么 LTA与当前获得的电荷样本 值之差应该为零, 但实际情况中, 由于环境不稳定, 噪声干扰大, 电荷样本值 会在 LTA值附近有微小的波动, 但一般也不会超过设定的所述触摸感应阈值, 只有当手指触碰到所述按键结构中的按键时, 随着转移的电荷量急剧增大, 则 所采集到的当前的电荷样本值变小, 即电荷样本值偏离 LTA值达到一定程度 时, 判定为触摸感应事件的触发, 从而大大提高了按键识别的准确度。 可选的,所述更新单元 24还适于在所述识别单元 22b识别出被触摸按键后, 停止更新所述电荷样本值的 LTA, 直至所述识别单元 22b识别出所述电荷样本 值的长期平均值与当前获得的电荷样本值之差小于所述触摸感应阈值。如前所 述, LTA是表示没有触发触摸感应事件时, 采样到的所述电荷样本值的 LTA, 由于对电荷样本值的采样是连续的过程,因此更新单元 24对 LTA也是不断更新 的; 当识别出被触摸按键后, 即触发了触摸感应事件后, 则停止对所述电荷样 本值的 LTA的更新,直至该 LTA与当前获得的电荷样本值之差小于所述触摸感 应阈值, 在触摸感应事件结束后, 再继续对 LTA值进行更新。
可选的, 所述触摸感应阈值可以根据实际情况进行预先设定的,一般可以 设定为固定值, 例如将所述触摸感应阈值设定为 30。所述触摸感应阈值也可以 是与所述电荷样本值的 LTA关联。 如前所述, LTA是指一段时间内所采样到的 多个电荷样本值的平均值,如果将触摸感应阈值设定为固定值, 则难以适应周 围环境的变化, 因此, 触摸感应阈值可以根据 LTA来进行设定, 例如设定触摸 感应阈值为(1/16)LTA。 而前面提到 LTA是对前段时间环境中的电荷样本值的 一个整体估算,因此 LTA是一个动态变化值,在所述控制设备处于工作状态时, 便会进行检测, 根据环境变化自动调整 LTA值, 进而调整所述触摸感应阈值, 所以触摸感应阈值也是动态的, 这样就达到自适应调整触摸感应阈值的目的。 此外, 如果所述触摸感应阈值是基于所述电荷样本值的 LTA自适应调整的, 则 图 6所示的识别装置也可以包括所述更新单元。
以下实施例是以所述具有触摸按键的控制设备为空间鼠标为例进行说明, 所述空间鼠标用于控制鼠标指针的移动和操作。
请参考图 9, 所述空间鼠标包括: 按键结构 1、 识别装置 2a、 接口单元 3、 惯性器件 4、 定位装置 5、 锁定单元 6、 启动单元 7、 接近感应单元 8和光亮调节 单元 9。
所述按键结构 1可以为如图 2、图 3或图 4所示的结构或其他电容式触摸按键 结构, 所述按键结构 1也可以为如图 5所示的结构或其他空气式触摸按键结构。 本实施例中, 所述按键结构 1的触摸面板下方的侦测板上还可以设置有光源, 具体地, 所述光源可以设置在部分按键或所有按键下方, 所述按键结构 1的绝 缘层材料为透明介质材料。
所述识别装置 2a的结构可以如图 10所示, 包括:计数单元 20、采样单元 21、 识别单元 22、 输出单元 23、 更新单元 24和延时单元 25。
计数单元 20、输出单元 23和更新单元 24已在上面说明, 采样单元 21和识别 单元 22可以对应为图 6所示的采样单元 21a和识别单元 22a, 也可以对应为图 7 所示的采样单元 21b和识别单元 22b。本实施例的触摸感应阈值关联于所述电荷 样本值的 LTA, 也就是说, 所述触摸感应阈值随所述电荷样本值的长期平均值 更新而自适应调整, 所述触摸感应阈值可以设置为(1/16)LTA。 所述识别装置 2a的输出单元 23输出的操作控制信号通过所述接口单元 3发送至电子设备, 以 控制所述电子设备执行相应的鼠标指针的操作。
可选的,所述识别装置 2a适于在识别出预设功能为对所述鼠标指针的位置 的确认功能的按键为被触摸按键,延迟第二预设时间输出对应所述鼠标指针的 位置的确认功能的操作控制信号。 具体实施时, 可以通过延时单元 25实现, 延 时单元 25与识别单元 22和输出单元 23相连,适于在所述识别单元 22识别出预设 功能为对所述鼠标指针的位置的确认功能的按键为被触摸按键,控制输出单元 23延迟一段时间 (第二预设时间)输出对应所述被触摸按键的操作控制信号, 所述操作控制信号对应所述鼠标指针的位置的确认功能。
空间鼠标通常具有鼠标的基本功能,即控制鼠标指针的移动以选中执行目 标, 并在选中执行目标后输出确认的控制信号以确定执行所选中的目标。 空间 鼠标对鼠标指针的控制是通过在所述空间鼠标内设置惯性器件(例如陀螺仪传 感器、 重力加速度传感器等), 利用惯性器件测量技术实现对空间鼠标的空中 运动姿态的跟踪, 获得空间鼠标的空间坐标或其变化量, 并将获得的空间坐标 或其变化量相应转换为鼠标指针的坐标或其变化量,输出所述鼠标指针的坐标 或其变化量, 以控制鼠标指针的移动。 其中, 空间鼠标的空间坐标或其变化量 是所述定位装置 5对所述惯性器件 4的输出数据进行处理后获得的(参见下面 对惯性器件 4和定位装置 5的说明)。 当用户使用空间鼠标控制鼠标指针移动 到目标位置后,欲对位于鼠标指针的位置的执行目标进行选中以确认执行相应 的应用,只需要触摸具有对所述空间鼠标控制的鼠标指针选中位置的确认功能 的按键即可, 然而, 用户在触摸所述具有确认功能的按键时, 一方面用户的手 本身有一定抖动, 另一方面, 触摸按键的时候会形成下沉力, 从而可能使鼠标 指针偏离所选中的目标位置, 导致确认功能的失效。 因此, 为了避免实现确认 功能时鼠标指针的抖动,当识别出被触摸按键的预设功能为对所述空间鼠标控 制的鼠标指针选中位置的确认功能时,则延迟第二预设时间产生所述操作控制 信号。这样即使在触摸预设功能为所述确认功能的按键时, 鼠标指针产生了抖 动, 具有确认功能的操作控制信号暂时不会产生和输出, 待用户进行调整后, 将鼠标指针移动到准确的位置上,再产生所述操作控制信号并输出,便能准确 实现所述确认功能。所述第二预设时间根据实际情况进行设定, 一般可以考虑 用户作出调整通常所需要的时间, 由于鼠标指针的抖动幅度不会 ί艮大, 因此调 整所需时间一般也是非常短的。
如前所述, 当触摸具有确认功能的按键时, 通过延迟一段时间(第二预设 时间)产生所述控制信号, 可以让用户调整鼠标指针的位置, 避免因鼠标指针 抖动导致确认功能的失效。 然而, 用户调整所需时间在实际情况中较难确定, 从而所述第二预设时间也较难设定, 设置过短则不能及时调整鼠标指针的位 置,设置过长则会因产生的延迟导致严重影响用户操作体验。 为了解决这一问 题, 可选的, 所述控制设备还可以包括第一屏蔽单元(未图示), 适于在延迟 的所述第二预设时间内,屏蔽所述定位装置 5对所述惯性器件 4的输出数据进行 处理。 由于鼠标指针的移动取决于空间鼠标锁包括的惯性器件 4输出的数据, 若在识别出被触摸按键为具有所述确认功能的按键后,所述操作控制信号输出 前的这段时间内, 即在延迟的所述第二预设时间内,屏蔽空间鼠标中的定位装 置 5对所述惯性器件 4输出数据的处理,则鼠标指针将在触摸该按键时便不再移 动, 从而能够有效地防止鼠标指针的抖动。 此时, 由于不存在由用户进行调整 的情况, 因此所述第二预设时间的设定也不存在对用户调整所需时间的考虑, 只需考虑识别出被触摸按键进而发出屏蔽对惯性器件输出数据进行处理的信 号的时间即可, 而该时间是极其短暂而且易确定的。 因此, 在延迟的第二预设 时间内,通过屏蔽对空间鼠标所包括的惯性器件输出数据进行处理, 进一步有 效地防止所述空间鼠标控制的鼠标指针的抖动, 提高用户操作体验。
在另一实施例中, 考虑到对按键的复用, 可以将所述空间鼠标的某一按键 的预设功能设置为触摸时控制所述鼠标指针移动的功能和按下时对所述鼠标 指针的位置的确认功能。具体地,将控制鼠标指针移动的功能和对鼠标指针选 中位置的确认功能由一个按键实现, 当触摸该按键时, 空间鼠标控制鼠标指针 移动的功能处于激活状态, 当按下该按键时, 能够实现对鼠标指针选中位置的 确认功能, 当手指离开该按键时, 则自动关闭空间鼠标控制鼠标指针移动的功 能。 可选的, 所述识别装置 2a适于在识别出预设功能为对所述鼠标指针的位 置的确认功能的按键为被触摸按键,延迟第三预设时间输出对应所述鼠标指针 的位置的确认功能的操作控制信号。
为了更好地区分按键触摸和按下,可以在按键结构 1的按键下方增加薄膜 按键, 以图 2所示按键结构为基础, 增加薄膜按键的按键结构如图 11所示, 除了包括图 2所示触摸面板 10以及与所述触摸面板 10相对的侦测板 11、 所 述触摸面板 10包括板体 10a和多个金属按键 K1~K5、隔离各金属按键 Κ1~Κ5 与板体 10a的绝缘层 10b, 所述侦测板 11上具有多个分别对应所述金属按键 K1-K5的电极 Ka~Ke,所述多个金属按键及对应电极间的区域构成平板电容; 还包括位于金属按键 K5下方的薄膜按键 Kn, 所述薄膜按键 Κη位于侦测板 11的表面, 与所述金属按键 Κ5相对应, 电极 Ke为中心具有开口的方形或矩 形铜箔, 所述薄膜按键 Kn具体为金属弹片 (metaldome或者 polydome ), 从 所述电极 Ke的中心开口处突出。 图 11所示的金属按键 K5底部具有凸起, 能 够在金属按键 K5被按下时使薄膜按键 Kn被按下, 在其他实施例中, 金属按 键底部也可以不具有凸起,按下金属按键后依靠其产生的形变便能使所述薄膜 按键被按下。 至于薄膜按键的原理和作用为本领域技术人员所公知,在此不再 赘述。
金属按键 K5被触摸后的预设功能为触发所述空间鼠标控制的鼠标指针的 移动功能, 金属按键 K5被按下后的预设功能为对所述鼠标指针的位置的确认 功能。 当金属按键 K5被按下时, 便能使所述薄膜按键 Kn也被按下, 所述识 别装置 2a适于在识别出所述薄膜按键 Kn被按下, 延迟第三预设时间输出对 应所述鼠标指针的位置的确认功能的操作控制信号。具体实施时, 可以通过延 时单元 25实现,延时单元 25与识别单元 22和输出单元 23相连,适于在所述 识别单元 22识别出所述薄膜按键 Kn被按下, 控制输出单元 23延迟一段时间 (第三预设时间)输出对应所述被触摸按键的操作控制信号, 所述操作控制信 号对应所述鼠标指针的位置的确认功能。
需要说明的是, 图 11示例性地在所述触摸按键结构的一个金属按键(以 金属按键 K5为例)的下方设置所述薄膜按键, 触摸该金属按键后可以实现的 预设功能为触发所述空间鼠标控制的鼠标指针移动的功能,按下该金属按键可 以实现的预设功能为确认鼠标指针选中位置的功能。在其他实施例中,也可以 在每一个金属按键下方设置所述薄膜按键,通过触摸金属按键和按下与所述金 属按键对应的薄膜按键(通过按下金属按键实现)分别触发不同的预设功能。
类似地, 所述控制设备还可以包括第二屏蔽单元(未图示), 适于在延迟 的所述第三预设时间内,屏蔽所述定位装置 5对所述惯性器件 4的输出数据的 处理。所述第三预设时间的设定可以参考上述对所述第二预设时间进行设定的 相关描述。
请继续参考图 9, 所述定位装置 5适于对所述惯性器件 4的输出数据进行处 理, 输出控制鼠标指针的位置变化的位置控制信号; 所述定位装置 5输出的位 置控制信号通过所述接口单元 3发送至电子设备,以控制所述鼠标指针的移动, 例如鼠标指针在显示屏上的移动。 所述惯性器件 4可以为陀螺仪, 也可以为加 速度传感器, 本实施例中, 所述惯性器件 4包括陀螺仪和加速度传感器, 所述 定位装置 5融合了陀螺仪的数据和加速度传感器的数据进行处理, 实现了空间 鼠标的准确定位和鼠标指针的精确控制。
由于空间鼠标一般是前端运动最大,因此陀螺仪和加速度传感器可以安装 在空间鼠标中靠近前端的位置, 以更好地空间鼠标的运动。要对空间鼠标实现 准确定位, 需要融合陀螺仪的数据和加速度传感器的数据, 融合通常包括实时 融合和长期融合, 实时融合每一算法周期执行一次(即每次采样数据后都执行 一次) , 长期融合固定检测周期(例如 256个算法周期)执行一次。
融合可以是互补权重融合, 也可以结合互补权重融合和卡尔曼滤波融合。 所谓互补权重融合是指对陀螺仪和加速度传感器设置不同的权重,两者的权重 之和为 1 , 然后将陀螺仪的数据和加速度传感器的数据进行加权处理。 由于在 无外力加速度的情况下, 加速度传感器能准确地输出角度并且不会有累积误 差, 也就是说, 加速度传感器在静态或低速运动时精度很高; 而当空间鼠标在 三维空间做变速运动,特别是高速运动时, 由于加速度传感器不能区分重力加 速度和外力加速度, 其在高速运动时精度就降低了。 因此可以基于空间鼠标的 不同运动状态, 如静态、 低速或高速, 对陀螺仪和加速度传感器设置不同的权 重, 具体地, 在静态或低速时, 加速度传感器的精度较高, 设置加速度传感器 的权重大于陀螺仪的权重; 在高速时, 陀螺仪的精度较高, 设置陀螺仪的权重 大于加速度传感器的权重。 需要说明的是, 本实施例是结合陀螺仪和加速度传 感器两种惯性器件对空间鼠标进行定位, 因此两者的权重互补, 即权重之和为 1 , 但是, 如果空间鼠标还结合其他惯性器件 (例如地磁传感器)进行定位, 则陀螺仪和加速度传感器的权重之和可以小于 1。
通常, 空间鼠标在三维空间内运动, 设三维空间坐标系包括两两垂直的 X 轴、 y轴和 z轴, 其中, X轴和 y轴平行于地平面, z轴垂直于地平面, 陀螺仪可 以是单轴陀螺仪、 两轴陀螺仪或三轴陀螺仪,加速度传感器可以是单轴重力加 速度传感器、 两轴重力加速度传感器或三轴重力加速度传感器。 空间鼠标平行 于地平面时, 陀螺仪的敏感轴与对应的坐标轴重合,加速度传感器的敏感轴与 对应的坐标轴重合。
以空间鼠标包括两个相互垂直的单轴陀螺仪和一个三轴重力加速度传感 器为例, 空间鼠标平行于地平面时, 其中一个单轴陀螺仪的敏感轴与 X轴重合, 记为 X轴陀螺仪; 另一个单轴陀螺仪的敏感轴与 Z轴重合, 记为 Z轴陀螺仪; 加 速度传感器的三个敏感轴分别与 X轴、 y轴和 z轴重合, 分别记为加速度传感器 的 X敏感轴、 y敏感轴和 z敏感轴; 其中, 加速度传感器的 X敏感轴对应 X轴陀螺 仪的敏感轴, 加速度传感器的 z敏感轴对应 z轴陀螺仪的敏感轴。
下面即以空间鼠标包括两个相互垂直的单轴陀螺仪和一个三轴重力加速 度传感器, 空间鼠标在所述空间坐标系内运动为例进行详细说明。 首先对旋转 角、 偏转角、 倾斜角和姿态角进行定义:
陀螺仪的敏感轴的旋转角是指陀螺仪的敏感轴与其对应的坐标轴的夹角, 用 α表示。 具体地, X轴陀螺仪的敏感轴的旋转角是指 X轴陀螺仪的敏感轴与 X 轴的夹角, 记为 αχ; ζ轴陀螺仪的敏感轴的旋转角是指 ζ轴陀螺仪的敏感轴与 ζ 轴的夹角, 记为 。
加速度传感器的敏感轴的偏转角是指加速度传感器的敏感轴与其对应的 坐标轴的夹角, 用 β表示。 具体地, 加速度传感器的 X敏感轴的偏转角是指 X敏 感轴与 X轴的夹角, 记为 βχ; 加速度传感器的 ζ敏感轴的偏转角是指 ζ敏感轴与 ζ 轴的夹角, 记为 βζ
加速度传感器测量的是敏感轴的倾斜角,加速度传感器的敏感轴的倾斜角 是指加速度传感器的敏感轴与重力加速度方向的夹角 ,实际上也就是加速度传 感器的敏感轴与 z轴的夹角, 用 γ表示, 加速度传感器的敏感轴的偏转角通过敏 感轴的倾斜角转换得到。具体地,加速度传感器的 X敏感轴的倾斜角是指 X敏感 轴与 ζ轴的夹角, 记为 γχ; 加速度传感器的 ζ敏感轴的倾斜角是指 ζ敏感轴与 ζ轴 的夹角, 记为 γζ
空间鼠标的姿态角是指空间鼠标与各坐标轴的夹角, 用 Θ表示。 具体地, 空间鼠标与 X轴的姿态角是指空间鼠标与 X轴的夹角, 记为 θχ; 空间鼠标与 ζ轴 的姿态角是指空间鼠标与 ζ轴的夹角, 记为 θζ
上述的夹角均为锐角。
本实施例中, 所述定位装置 5结合互补权重滤波融合和卡尔曼滤波融合对 陀螺仪的敏感轴的旋转角和加速度传感器的敏感轴的偏转角进行融合,获得空 间鼠标的姿态角。 定位装置 5的结构如图 12所示, 包括: 获取单元 51、 设置单 元 52和处理单元 53。
所述获取单元 51适于获取陀螺仪的敏感轴的旋转角以及加速度传感器的 敏感轴的偏转角和线加速度,所述加速度传感器的敏感轴对应所述陀螺仪的敏 感轴。 获取单元 51进一步包括: 第一获取单元 51 1和第二获取单元 512。
第一获取单元 51 1适于获取陀螺仪的敏感轴的旋转角。 陀螺仪输出的是敏 感轴的角速度, 角速度对时间积分可以得到角度变化量,再与初始角度相加可 以得到旋转角, 可以用公式表示为: " + w^ , 其中, α为陀螺仪的敏感轴的 旋转角, 0^为陀螺仪的敏感轴的初始角度(前一采样时刻确定的旋转角) , ω 为陀螺仪的敏感轴的角速度(当前采样时刻获取的角速度) 。 具体地, X轴陀 螺仪的敏感轴的旋转角0 ^ = + iy ,其中, 为 轴陀螺仪的敏感轴的旋转角, 1为 轴陀螺仪的敏感轴的初始角度, 0^为 轴陀螺仪的敏感轴的角速度。 Z轴 陀螺仪的敏感轴的旋转角0 ^ ι + ^ , 其中, 为2轴陀螺仪的敏感轴的旋转 角, 轴陀螺仪的敏感轴的初始角度, ω^ζ轴陀螺仪的敏感轴的角速度。
第二获取单元 512获取加速度传感器的敏感轴的偏转角和线加速度。 加速 度传感器输出的是各敏感轴的倾斜角,对各敏感轴的倾斜角进行转换后可以得 到各敏感轴的偏转角。 具体地, 加速度传感器的 X敏感轴的偏转 βχ=90。-γχ , ζ 敏感轴的偏转角 βζζ , γχ为加速度传感器的 X敏感轴的倾斜角, γζ为加速度传感 器的 ζ敏感轴的倾斜角。 加速度传感器还输出各敏感轴的线加速度, 可以反映 空间鼠标的不同运动状态, 因此可作为设置权重的依据, 具体请参考下面对所 述设置单元 52的说明。
所述设置单元 52与所述获取单元 51相连,适于基于所述获取单元 51获取的 所述加速度传感器的敏感轴的线加速度设置对应所述陀螺仪的第一权重和对 应所述加速度传感器的第二权重。 在对陀螺仪的数据(敏感轴的旋转角 )和加 速度传感器的数据(敏感轴的偏转角 )进行加权前, 还需要对陀螺仪的数据和 加速度传感器的数据进行滤波(请参考对所述处理单元 53的说明), 因此, 所 述设置单元 52首先建立滤波时间常数与加速度传感器的敏感轴的线加速度的 关联,再基于滤波时间常数与第一权重和第二权重存在的关联得到权重值。设 置单元 52进一步包括: 滤波参数设置单元 521、 时间常数确定单元 522和权重确 定单元 523。
滤波参数设置单元 521适于设置第一滤波参数 η和第二滤波参数 m, 所述第 二滤波参数 m为所述第一滤波参数 n的 3~5倍。第一滤波参数 n和第二滤波参数 m 为建立滤波时间常数与加速度传感器的敏感轴的线加速度的关联所需要的参 数。 所述第一滤波参数 n为经验值, 本实施例中, 第一滤波参数 n的取值范围为 [3, 6], 通常取整数, 例如, 3、 4、 5或 6, 第二滤波参数 m设为第一滤波参数 的 3倍。 时间常数确定单元 522与所述第二获取单元 512相连,适于确定滤波时间常 数 τ, 其中, 若 K n/m则 r = - + 若 Ki>n/m则 τ=0, Ki为所述加速度传感 器的合加速度与重力加速度 G的差值, 所述加速度传感器的合加速度是指各敏 感轴 (X敏感轴、 y敏感轴和 z敏感轴) 的线加速度的矢量和。 加速度传感器除 了输出敏感轴的倾斜角, 还输出敏感轴的线加速度, 线加速度为矢量, 有大小 和方向, 大小通常是以重力加速度 G的倍数表示, 如 1G、 1.2G、 2G、 2.5G等, 因此 Ki与重力加速度 G呈倍数关系。 滤波时间常数 τ是相对于信号的持续时间 而言的, 对于低通滤波, 允许持续时间大于或等于滤波时间常数 τ的信号通过, 而持续时间小于滤波时间常数 τ的信号则会被滤除(允许低频信号通过, 滤除 高频信号) ; 对于高通滤波, 允许持续时间小于或等于滤波时间常数 τ的信号 通过, 而持续时间大于滤波时间常数 τ的信号则会被滤除(允许高频信号通过, 滤除低频信号 ) 。 权重确定单元 523与所述时间常数确定单元 522相连,适于确定所述第一权 丄
a和第二权重 b, 其中, +dt , ci = l-b。 滤波时间常数 τ可以理解为两个权
_b*dt
重的比值再乘以采样时间 dt, 即 _ 1- b , 当滤波时间常数 τ确定后, 对应于陀 螺仪的第一权重 a和对应于加速度传感器的第二权重 b也可以确定。 通过设置单元 52建立了第一权重&、第二权重 b与加速度传感器的合加速度 与重力加速度的差值 Ki之间的关联,从而使得第一权重 a、 第二权重 b可以随加 速度传感器的合加速度与重力加速度的差值 Ki的变化而自适应调整。 具体来说, 当 Ki<n/m时, τ>0, τ随 Ki减小而增大, b随 τ增大而增大, a随 τ 增大而减小; Ki=n/m时, τ=0, a=l , b=0, 环境外力对空间鼠标的作用影响了 加速度传感器的线加速度变化,当加速度传感器的合加速度与重力加速度的差 值 Ki达到上限值 n/m时, 说明环境外力的作用太大, 加速度传感器的数据的可 靠性大大降低, 对应陀螺仪的第一权重 a为 1 , 对应加速度传感器的第二权重 b 为 0, 也就是说, 不需要结合加速度传感器的数据去修正陀螺仪的数据, 而直 接将陀螺仪的数据进行后续的定位计算。 进一步地, 当 Ki>n/m时, 如果根据 T = -m ^ Ki + n i 算得到 τ<0 ,此时再结合加速度传感器的数据去修正陀螺仪的数 据也就没有意义, 所以当 Ki>n/m时, 直接设置 τ=0, 相应地, a=l , b=0。
所述处理单元 53与所述获取单元 51和设置单元 52相连,适于基于所述设置 单元 52设置的第一权重和第二权重,对所述获取单元 51获取的所述旋转角和所 述偏转角进行加权处理,得到所述空间鼠标的姿态角; 所述位置控制信号携带 的信息关联于所述空间鼠标的姿态角。 处理单元 53进一步包括: 高通滤波器 531 , 第一乘法器 532、 低通滤波器 533、 第二乘法器 534和卡尔曼滤波器 535。
高通滤波器 531与第一获取单元 511和时间常数确定单元 522相连, 适于基 于时间常数确定单元 522确定的所述滤波时间常数对第一获取单元 511获取的 所述旋转角进行高通滤波。第一乘法器 532适于将高通滤波器 531的输出结果乘 以权重确定单元 523确定的所述第一权重,得到第一乘积结果。低通滤波器 533 与第二获取单元 512和时间常数确定单元 522相连,适于基于时间常数确定单元 522确定的所述滤波时间常数对第二获取单元 511获取的所述偏转角进行低通 滤波。 第二乘法器 534适于将低通滤波器 533的输出结果乘以权重确定单元 523 确定的所述第二权重,得到第二乘积结果。卡尔曼滤波器 535与第一乘法器 532 和第二乘法器 534相连,适于对第一乘法器 532得到的所述第一乘积结果和第二 乘法器 534得到的第二乘积结果进行卡尔曼滤波, 得到所述姿态角。
由于低频信号会降低陀螺仪的检测精度,因此需要滤除陀螺仪的数据中的 低频信号, 即对陀螺仪的敏感轴的旋转角进行高通滤波, 滤波后的数据近似为 α; 而高频信号会降低加速度传感器的检测精度, 因此需要滤除加速度传感器 的数据中的高频信号, 即对加速度传感器的敏感轴的偏转角进行低通滤波, 滤 波后的数据近似为 β; 然后再对滤波后的陀螺仪的数据和加速度传感器的数据 进行加权和卡尔曼滤波。卡尔曼滤波已广泛应用于目标跟踪系统中, 利用目标 的动态信息, 去除噪声影响, 得到目标位置的准确估计, 由于其为本领域所熟 知且广泛采用的技术, 在此不再展开说明。
在具体实施时, 对 X轴陀螺仪的敏感轴的旋转角 进行高通滤波后再乘以 第一权重 a; 对加速度传感器的 X敏感轴的偏转角 βχ进行低通滤波后再乘以第二 权重 b; 将两个相乘的结果输入卡尔曼滤波器, 卡尔曼滤波器的输出结果即为 空间鼠标与 X轴的姿态角 θχ。 对 ζ轴陀螺仪的敏感轴的旋转角 进行高通滤波后 再乘以第一权重 a; 对加速度传感器的 z敏感轴的偏转角 βζ进行低通滤波后再乘 以第二权重 b; 将两个相乘的结果输入卡尔曼滤波器, 卡尔曼滤波器的输出结 果即为空间鼠标与 z轴的姿态角 θζ。 由于本实施例的空间鼠标仅包括两个陀螺 仪, 因此, 确定空间鼠标的姿态角只需确定空间鼠标与 X轴的姿态角和与 ζ轴的 姿态角即可, 在其他实施例中, 还可以包括 y轴陀螺仪, 相应地就可以根据 y 轴陀螺仪的敏感轴的旋转角和加速度传感器的 y敏感轴的偏转角确定空间鼠标 与 y轴的姿态角。 需要说明的是, 上述卡尔曼滤波器也可以用加法器替代, 也就是说, 不进 行卡尔曼滤波而是加权后直接累加,即将所述第一乘积结果和第二乘积结果相 加, 得到所述姿态角, 由于对陀螺仪的数据进行高通滤波后近似为 (X, 对加速 度传感器的数据进行低通滤波后近似为 β , 因此空间鼠标与 X轴的姿态角 0和 与 ζ轴的姿态角 θζ可以分别表示为: e^ax +b x , θ ^ αΊ ^ β 。 本实施例 采用卡尔曼滤波可以进一步提高定位的准确性和稳定性。
在其他实施例中,设置单元也可以不设置滤波参数, 而直接将加速度传感 器测得的线加速度转换成线速度,基于所述线速度在一定范围内设置相对固定 的第一权重和第二权重, 第一权重和第二权重之和为 1。 相应地, 处理单元对 陀螺仪的数据和加速度传感器的数据直接加权, 在加权前不进行滤波。
可选的, 所述设置单元可以是包括: 线速度计算单元, 适于将所述加速度 传感器的各敏感轴的线加速度的矢量和对时间积分得到线速度,所述加速度传 感器的各敏感轴的线加速度从所述第二获取单元获取,求所述加速度传感器的
X敏感轴、 y敏感轴和 ζ敏感轴的线加速度的矢量和, 求得的矢量和对时间积分 可以得到线速度; 判断单元,适于判断所述线速度计算单元得到的所述线速度 是否小于预设值; 权重设置单元,适于在所述判断单元的判断结果为是时设置 所述第一权重小于所述第二权重,在静态或低速运动状态,线速度小于预设值, 加速度传感器的精度高于陀螺仪的精度,所以设置对应于加速度传感器的第二 权重大于对应于陀螺仪的第一权重;在所述判断单元的判断结果为否时设置所 述第一权重大于所述第二权重,在高速运动状态, 线速度大于或等于所述预设 值, 陀螺仪的精度高于加速度传感器的精度,所以设置对应于陀螺仪的第一权 重大于对应于加速度传感器的第二权重。 所述预设值为根据实际情况而预先设定的经验值,通常, 所述预设值的取 值范围可以为 [0.4 , 0.6] , 单位为米 /秒, 例如, 所述预设值为 0.5m/s, 若所述 线速度小于所述预设值, 则所述第一权重的取值范围可以为 [0, 2/5] , 例如设 置第一权重为 1/3 , 则第二权重为 2/3; 或者, 设置第一权重为 2/5 , 则第二权重 为 3/5; 如果线速度很小或为 0, 可以将第一权重设为 0, 第二权重设为 1。 若所 述线速度大于或等于所述预设值, 则所述第一权重的取值范围可以为 [3/5 , 1] , 一般在线速度增大时,加速度传感器的数据的可靠性降低,应用加速度传感器 的数据修正陀螺仪的数据意义不大, 可以设置第一权重为 1 , 则第二权重为 0。
可选的, 所述设置单元也可以是包括: 线速度计算单元, 适于将所述加速 度传感器的各敏感轴的线加速度的矢量和对时间积分得到线速度,所述加速度 传感器的各敏感轴的线加速度从所述第二获取单元获取; 第一判断单元,适于 判断所述线速度计算单元得到的线速度是否小于第一预设值; 第二判断单元, 适于判断所述线速度计算单元得到的线速度是否大于第二预设值,所述第二预 设值大于所述第一预设值,第二判断单元可以在所述第一判断单元的判断结果 为否时判断所述线速度是否大于第二预设值; 权重设置单元,适于在所述第一 判断单元的判断结果为是时设置第一权重小于第二权重;在所述第二判断单元 的判断结果为是时设置第一权重为 1 , 第二权重为 0; 否则设置第一权重大于第 二权重。
举例来说, 当所述线速度小于所述第一预设值(例如 0.3m/s ) 时, 设置第 一权重小于第二权重, 例如, 设置第一权重为 1/3 , 第二权重为 2/3; 当所述线 速度大于所述第二预设值(例如 0.6m/s )时, 设置第一权重为 1 , 第二权重为 0; 否则设置第一权重大于第二权重, 例如设置第一权重为 2/3 , 第二权重为 1/3。 也就是说, 随着线速度增加, 逐渐减小加速度传感器的权重, 增加陀螺仪的权 重。
对应地, 所述处理单元可以包括: 第三乘法器, 适于将所述第一获取单元 获取的陀螺仪的敏感轴的旋转角乘以所述权重设置单元设置的第一权重,得到 第三乘积结果; 第四乘法器,适于将所述第二获取单元获取的加速度传感器的 敏感轴的偏转角乘以所述权重设置单元设置的第二权重, 得到第四乘积结果; 卡尔曼滤波器,适于对所述第三乘法器输出的第三乘积结果和所述第四乘法器 输出的第四乘积结果进行卡尔曼滤波, 得到所述空间鼠标的姿态角。 其中, 卡 尔曼滤波器也可以用加法器替代。
确定空间鼠标的姿态角也就实现了空间鼠标的定位,即可以用空间鼠标的 姿态角来表示空间鼠标的位置。 定位装置 5输出的所述位置控制信号携带的信 息可以包括所述空间鼠标的姿态角, 通过接口单元 3发送至电子设备, 所述电 子设备接收到所述位置控制信号后,基于所述空间鼠标的姿态角确定空间鼠标 的分量变化,将所述空间鼠标的分量变化映射为鼠标指针的位移变换量, 以控 制鼠标指针的移动。
进一步,还可以用空间鼠标在空间坐标系的各坐标轴的分量或分量变化来 表示空间鼠标的位置。
可选的, 所述定位装置还可以包括: 分量确定单元, 适于确定所述空间鼠 标在空间坐标系的分量 dcos0, d为空间鼠标在空间坐标系的初始分量, Θ为姿 态角, 所述位置控制信号携带的信息包括所述空间鼠标在空间坐标系的分量。 定位装置 5输出的所述位置控制信号携带的信息可以包括所述空间鼠标在空间 坐标系的分量, 通过接口单元 3发送至电子设备, 所述电子设备接收到所述位 置控制信号后,基于所述空间鼠标的在空间坐标系的分量确定空间鼠标的分量 变化,将所述空间鼠标的分量变化映射为鼠标指针的位移变换量, 以控制鼠标 指针的移动。
在具体实施时, 所述空间鼠标在空间坐标系的分量 dcose包括: 空间鼠标 在空间坐标系的 X轴的分量(1^080和在空间坐标系的 Z轴的分量 dzCOS0z , (^为空 间鼠标在空间坐标系的 X轴的初始分量, dz为空间鼠标在空间坐标系的 Z轴的初 始分量,用坐标表示,空间鼠标从初始位置( dx, dz )运动到了当前位置( dxcos9x, dzcos9z ) 。
可选的, 所述定位装置还可以包括: 分量变化确定单元, 适于计算所述空 间鼠标的分量变化 Ad, 其中, M = d _ d∞s 0 , Θ为姿态角, d为空间鼠标在空间 坐标系的初始分量。 定位装置 5输出的所述位置控制信号携带的信息可以包括 所述空间鼠标的分量变化, 通过接口单元 3发送至电子设备, 所述电子设备接 收到所述位置控制信号后,将所述空间鼠标的分量变化映射为鼠标指针的位移 变换量, 以控制鼠标指针的移动。
在具体实施时, 所述空间鼠标的分量变化 Ad包括: 空间鼠标在 X轴的分量 变化 ΔΑ和在 z轴的分量变化 ΔΒ, 其中, AA = A _ AeGS , A为空间鼠标在 X轴的 初始分量; ^β = Β _ Β , Β为空间鼠标在 ζ轴的初始分量。 所述分量变化确 定单元确定了空间鼠标在 X轴和 ζ轴所确定的二维空间,从第一位置运动到第二 位置的变化, 其中, 第一位置可以用坐标(A, Β )表示, Α为第一位置在 X轴 的分量, B为第一位置在 z轴的分量; 第二位置可以用坐标(Acos0x, Bcos9z ) , 入0080为第二位置在 X轴的分量, :^0802为第二位置在 ζ轴的分量。
可选的, 所述定位装置还可以包括: 位移变化确定单元, 适于确定所述鼠 标指针的位移变化量 As, 其中, = d l ^MF、, SF为所述陀螺仪的灵敏度 系数, MF为鼠标指针的灵敏度系数。 定位装置输出的所述位置控制信号携带 的信息包括所述鼠标指针的位移变化量, 通过接口单元 3发送至电子设备, 所 述电子设备接收到所述位置控制信号后,基于所述鼠标指针的位移变化量控制 鼠标指针的移动。
将空间鼠标的空间运动映射到屏幕上鼠标指针的运动, 以相互垂直的 X轴 (对应 X轴)和 Y轴(对应 z轴)确定的屏幕为例, 所述鼠标指针的位移变化量 As包括: 鼠标指针在 X轴的位移变化量 ΔΧ和在 Y轴的位移变化量 ΔΥ。
在具体实施时, 所述位移变化确定单元确定所述鼠标指针在 X轴的位移变 化量 ΔΧ和所述鼠标指针在 Υ轴的位移变化量 ΔΥ, 其中, ΔΧ = ΔΛ/0^ *Μ , 8? 为 轴陀螺仪的灵敏度系数, MF为鼠标指针的灵敏度系数; AY = AB / (SFz ^MF) ^ SF z轴陀螺仪的灵敏度系数, 所述 Y轴垂直于所述 X轴。 其中,陀螺仪的灵敏度系数和鼠标指针的灵敏度系数是根据实际需求和运行环 境, 例如准确度要求、 屏幕大小和分辨率等而设定和调整, 此为本领域技术人 员所公知, 在此不再展开说明。
所述电子设备基于所述鼠标指针在 X轴的位移变化量 ΔΧ和在 Y轴的位移 变化量 ΔΥ控制所述鼠标指针的移动,将鼠标指针从第三位置移动到第四位置, 若鼠标在第三位置的坐标为(XI , Y1 ) ,则鼠标在第四位置的坐标为(Χ1+ΔΧ, Yl+ΔΥ ) 。
需要说明的是,如果在空间鼠标中安装三个相互垂直的陀螺仪,也可以实 现以空间鼠标在三维空间的运动控制鼠标指针在二维 /三维空间的移动。
现有技术的空间鼠标大多在集成化、选取低功耗的元器件方面对空间鼠标 进行改进以降低功耗, 却忽略了操作过程中的功耗问题, 例如当用户手持空间 鼠标,即使长时间没有执行下一操作 (触摸空间鼠标的按键或移动空间鼠标 ) , 或者空间鼠标长时间处于闲置状态,所述空间鼠标中的所有器件均处于工作状 态, 消耗电量, 导致空间鼠标的功耗较高。 请继续参考图 9 , 本实施例的空间 鼠标还包括锁定单元 6 , 与所述识别装置 2a、 惯性器件 4和定位装置 5相连, 适 于在所述识别装置 2a超过第四预设时间未输出操作控制信号且所述定位装置 5 超过第四预设时间未输出位置控制信号,控制所述空间鼠标进入锁定状态, 所 述锁定状态包括所述惯性器件 4和定位装置 5处于关闭状态,所述第四预设时间 可以根据实际需要设定, 例如设置为 0~30s中的一个时间值。
如果空间鼠标超过一段时间 (第四预设时间, 例如 20s ) 未被使用, 所述 识别装置 2a没有输出操作控制信号,所述定位装置 5也没有输出位置控制信号, 则锁定单元 6触发空间鼠标锁定事件, 所述空间鼠标锁定事件包括控制所述惯 性器件 4和定位装置 5从工作状态进入关闭状态, 由此降低所述空间鼠标的功 耗。可选的, 所述空间鼠标的按键结构包括与鼠标操作对应的按键和其他按键 (例如遥控器的按键), 则所述空间鼠标锁定事件还包括屏蔽与鼠标操作对应 的按键的操作, 由此可以有效地避免用户的误操作。
对应地, 所述空间鼠标还可以包括启动单元 7, 与所述识别装置 2a、 惯性 器件 4和定位装置 5相连,适于在所述空间鼠标处于锁定状态时, 若预设功能 为鼠标左键功能的按键和预设功能为鼠标右键功能的按键同时被所述识别装 置 2a识别为被触摸按键, 开启所述惯性器件 4和定位装置 5; 或者, 若连续 三个或三个以上的按键被所述识别装置 2a识别为被触摸按键, 开启所述惯性 器件 4和定位装置 5。 可选的, 所述启动单元 7包括第一启动单元,适于在所述空间鼠标处于锁 定状态时,若预设功能为鼠标左键功能的按键和预设功能为鼠标右键功能的按 键同时被所述识别装置 2a识别为被触摸按键, 开启所述惯性器件 4和定位装 置 5。 具体地, 在空间鼠标的按键中, 有两个按键的预设功能分别为鼠标左键 功能和鼠标右键功能,在所述空间鼠标未锁定时, 分别触摸这两个按键可以实 现相应的鼠标左键功能或鼠标右键功能。在所述空间鼠标处于锁定状态时, 同 时触摸这两个按键可以实现所述空间鼠标的左右键解锁功能,唤醒所述空间鼠 标。 具体地, 当这两个按键被触摸时, 识别装置 2a向所述第一启动单元发送 信号, 所述第一启动单元接收到该信号后, 触发空间鼠标解锁事件, 所述空间 鼠标解锁事件包括控制所述惯性器件 4和定位装置 5从关闭状态进入工作状 态, 还包括对所述与鼠标操作对应的按键的操作解除屏蔽。 需要说明, 此处所 述的同时并不限定严格意义上的同一时间, 而可以是接近同一时间。
可选的, 所述启动单元 7包括第二启动单元,适于在所述空间鼠标处于锁 定状态时, 若连续三个或三个以上的按键被所述识别装置 2a识别为被触摸按 键, 开启所述惯性器件 4和定位装置 5。 以连续 3个按键依次被触摸为例, 具 体到实际操作, 即手指依次滑过同一方向 (可以是横向或纵向) 上连续的 3 个按键, 则可以实现空间鼠标的滑条解锁功能: 识别装置 2a在较短时间 (例 如 2s ) 内识别出连续的 3个按键被触摸, 向所述第二启动单元发送信号, 所 述第二启动单元接收到该信号后,触发空间鼠标解锁事件, 所述空间鼠标解锁 事件包括控制所述惯性器件 4和定位装置 5从关闭状态进入工作状态,还包括 对所述与鼠标操作对应的按键的操作解除屏蔽。
也可以通过其他方式触发空间鼠标解锁事件, 而不需要设置启动单元 7。 可选的, 所述按键结构 1还可以包括设于所述触摸面板的鼠标功能按键,适于 在所述空间鼠标处于锁定状态时,触发所述空间鼠标解锁事件, 包括开启所述 惯性器件 4和定位装置 5。 所述鼠标功能按键为金属按键、 空气按键和机械按 键中的一种。 或者, 当所述识别装置 2a识别出被触摸按键后即开启所述惯性 器件 4和定位装置 5。 可选的, 所述鼠标功能按键还适于在所述空间鼠标处于 工作状态时,触发所述空间鼠标锁定事件, 包括关闭所述惯性器件 4和定位装 置 5。
需要说明的是, 在其他实施例中, 空间鼠标也可以既包括启动单元 7 , 也 包括鼠标功能按键; 启动单元 7可以既包括第一启动单元,也包括第二启动单 元; 从而使得空间鼠标的唤醒方式多样化, 方便了用户操作, 也增强了用户体 验。
本实施例中, 所述空间鼠标还可以包括接近感应单元 8 , 所述接近感应单 元 8与所述按键结构 1和识别装置 2a相连, 适于在连续的第二预设数量个预 定周期内, 当所述电荷样本值均小于接近感应阈值且大于所述触摸感应阈值 时,触发接近感应事件, 所述接近感应事件包括开启所述按键下方所具有的光 源。事实上,除了触摸所述触摸按键结构的金属按键会触发触摸感应事件之外, 接近(未碰触到 )所述触摸按键结构时, 电荷也会有一部分通过人体逃逸, 因 此同样会引起电极的电荷累积区域中发生剧烈的电荷量变化,可定义为触发接 近感应事件, 只不过所述接近感应事件相对于触摸感应事件来说, 电荷量的变 化相对较弱,但仍然能够根据多个连续的预定周期内,将采样到的所述电荷样 本值与接近感应阈值进行比较后,识别出接近感应事件的触发。所述接近感应 阈值是界定触摸按键结构中的金属按键是否被接近的临界值,当某按键对应采 集到的所述电荷样本值小于所述接近感应阈值且大于所述触摸感应阈值时,则 可初步判定为该按键被接近。
然而,由于引发所述电荷累积区域中电荷发生变化的原因并不仅仅是用户 手指接近所述触摸按键结构, 可能还会有其他环境干扰的影响, 此时容易引起 接近感应事件的误触发(例如用户从具有所述触摸按键结构的空间鼠标旁边经 过也可能触发接近感应事件), 事实上, 周围环境对接近感应事件触发判定的 影响比对触摸感应事件触发判定的影响更为严重, 为了获得更准确的判定结 果, 类似于对触摸感应事件触发的判定,也需要综合更多次的判定来最终获得 接近感应事件的触发是否对应了用户手指接近触摸按键结构上的按键的情况, 即在连续的第二预设数量个预定周期内,当所述电荷样本值均小于接近感应阈 值且大于所述触摸感应阈值时,触发接近感应事件, 所述接近感应事件包括开 启被接近的按键下方所具有的光源, 绝缘层的材料为透明绝缘材料。所述第二 预设数量为衡量某按键是否识别为被接近按键所确定的连续预定周期的个数, 一般根据实际情况进行设定。 本实施例中, 对于所述第二预设数量的设定, 与 所述第一预设数量相同, 也设定为 8 , 即将连续 8个预定周期内, 所述电荷样 本值均小于接近感应阈值且大于触摸感应阈值的按键识别为被接近按键。通过 对连续多个预定周期内采集到的所述电荷样本值的判定,能有效避免接近感应 事件的误触发。
所述空间鼠标的按键下方增设了光源,在连续的第二预设数量个预定周期 内,当连续检测到某一按键的多个电荷样本值均小于接近感应阈值且大于触摸 感应阈值时, 实际发生的情况是用户的手指靠近所述空间鼠标时, 此时可控制 开启光源,从而能够使用户在黑暗的环境中看清各个按键,增强了用户的操作 体验, 进一步提高了用户的使用感受。 而为了保证后续对用户手指触碰按键的 触摸识别的准确性, 可以停止对电荷转移情况的检测, 即禁止触摸面板对应的 感应通道, 以使得触摸面板的电位重新固定到接地电位,保证按键功能正常使 用。 在实际情况中, 为了筒化控制, 只要当按键结构中的任意一个按键被识别 为被接近按键, 即可开启空间鼠标的按键结构中的所有按键下方的光源。
可选的, 在所述空间鼠标处于锁定状态时, 也可以通过接近感应单元 8 唤醒所述空间鼠标, 即所述接近感应事件还可以包括开启惯性器件 4, 例如重 力加速度传感器。
进一步地, 所述空间鼠标还可以包括光亮调节单元 9, 所述光亮调节单元 9与所述按键结构 1和识别装置 2a相连, 适于在所述识别装置 2a识别出被触 摸按键后,调亮按键结构 1中所述被触摸按键下方的光源。 随着用户手指从接 近到触摸到按键,该按键对应的电极的电荷累积区域中发生电荷量变化相对于 手指接近按键时剧烈得多, 采样的所述电荷样本值会更小,通过将连续的第一 预设数量个预定周期内,所述电荷样本值均小于触摸感应阈值的按键识别出被 触摸按键后,还可以调亮所述被触摸按键下方的光源,从而当用户触摸某个按 键时, 可以将该键位处的光线更明亮, 以提示按键, 使得用户的操作体验进一 步获得增强。
当触摸按键的过程结束后, 用户手指逐渐远离所述按键结构时,按键的电 荷样本值也开始緩緩升高。 当电荷样本值满足: 电荷样本值 > (触摸感应阈值 +LTA) χ75%时, 则可判定触摸感应事件终止, 恢复所述被触摸按键下方的光 源调亮前的亮度。其中, LTA表示没有触发任何条件时所述电荷样本值的长期 平均值, 而判定时的参数 75%也可调整为其他数值, 例如 87.5%, 主要视环境 对所述触摸按键结构的噪声影响而定。
随着用户手指进一步远离所述按键结构,按键的电荷样本值继续升高, 当 电荷样本值满足: 电荷样本值 > (接近感应阈值 +LTA) χ75%时, 则可判定接 近感应事件也终止, 并关闭所有按键下方的光源, 重新处于监控所述电荷样本 值的状态, 并相应地根据上述触发条件开启或调亮光源。
可选的,所述接近感应阈值类似于所述触摸感应阈值,可以设定为固定值, 也可以关联于所述电荷样本值的 LTA, 例如设定接近感应阈值为(1/8)LTA。
综上所述, 上述技术方案具有以下优点:
基于电荷转移和触摸感应阈值识别触摸按键, 能够提高触摸识别的准确 度, 有效避免按键的误触发。
在识别出被触摸按键为实现空间鼠标的鼠标确认功能的按键时,延迟一段 时间输出操作控制信号, 能够在实现确认功能时防止鼠标指针的抖动。
在延迟输出操作控制信号的一段时间内,通过屏蔽对空间鼠标的惯性器件 的输出数据进行处理, 进一步防止所述空间鼠标控制的鼠标指针的抖动。
基于电荷样本值的长期平均值自适应调整触摸感应阈值和接近感应阈值, 进一步提高触摸识别和接近识别的准确性,有效避免触摸感应事件和接近感应 事件的误触发。
在所述控制设备长时间未操作时,基于识别装置和定位装置的输出锁定所 述控制设备,解决了长时间未操作所述控制设备导致电源功耗的不必要浪费的 问题。
陀螺仪的权重和加速度传感器的权重可以随线加速度变化而自适应调整, 再通过加权处理将旋转角和偏转角结合,由此有效地融合了陀螺仪的数据和加 速度传感器的数据, 实现了空间鼠标的准确定位和鼠标指针的精确控制。 通过建立加速度传感器的合加速度与重力加速度的差值与陀螺仪的权重 和加速度传感器的权重的关联,使得陀螺仪的权重和加速度传感器的权重可以 随加速度传感器的合加速度与重力加速度的差值的变化而自适应调整。
在对陀螺仪的数据加权前进行高通滤波,在对加速度传感器的数据加权前 进行低通滤波, 以滤除影响精度的信号,从而提高了空间鼠标定位的准确性和 稳定性, 以及鼠标指针控制的精确度。
在对陀螺仪的数据和加速度传感器的数据加权后进行卡尔曼滤波,使得融 合后的数据更为准确和稳定, 进一步提高了空间鼠标定位的准确性和稳定性, 以及鼠标指针控制的精确度。
虽然本发明己以较佳实施例披露如上,但本发明并非限定于此。任何本领 域技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与修改, 因此 本发明的保护范围应当以权利要求所限定的范围为准。

Claims

权 利 要 求
1. 一种具有触摸按键的控制设备, 其特征在于, 包括:
按键结构, 包括触摸面板以及与所述触摸面板绝缘隔离的侦测板, 所述触 摸面板设有多个按键, 所述侦测板上具有多个分别对应所述按键的电极; 识别装置,适于采集各电极对应的按键的电荷样本值,将所述电荷样本值 差大于或等于触摸感应阈值的按键识别为被触摸按键,输出对应所述被触摸按 键的操作控制信号;所述按键的电荷样本值关联于对应所述按键的电极的电荷 转移次数,所述电极的电荷转移次数为该电极上转移的电荷总量对应的电压达 到参考电压时电荷从该电极转移的次数,所述电荷样本值的长期平均值通过对 在第一预设时间内得到的所述按键的多个电荷样本值进行累加求和并计算其 平均值的方式或是以加权平均的方式获得;
接口单元,适于将所述操作控制信号发送至电子设备, 以控制所述电子设 备执行对应所述被触摸按键的预设功能的操作。
2. 根据权利要求 1所述的具有触摸按键的控制设备, 其特征在于,
所述识别装置包括:
计数单元, 适于记录各电极的电荷转移次数;
采样单元,适于每隔预定周期采集各电极的电荷转移次数作为各电极对应 的按键的电荷样本值;
识别单元,适于将连续的第一预设数量个预定周期采集的所述电荷样本值 均小于触摸感应阈值的按键识别为被触摸按键;
输出单元, 适于输出对应所述被触摸按键的操作控制信号; 或者, 所述识别装置包括:
计数单元, 适于记录各电极的电荷转移次数;
采样单元,适于采集各电极的电荷转移次数作为各电极对应的按键的电荷 样本值;
更新单元,适于对在第一预设时间内得到的多个电荷样本值进行累加求和 并计算其平均值或对在第一预设时间内得到的多个电荷样本值进行加权平均, 以更新所述电荷样本值的长期平均值;
识别单元,适于将所述电荷样本值的长期平均值与当前获得的电荷样本值 之差大于或等于触摸感应阈值的按键识别为被触摸按键;
输出单元, 适于输出对应所述被触摸按键的操作控制信号。
3. 根据权利要求 2所述的具有触摸按键的控制设备,其特征在于,所述计数 单元包括:
多个单位电容, 分别与按键结构中的各电极对应连接;
多个检测单元, 分别与所述多个单位电容对应连接,适于检测对应的单位 电容两端的电压,在所述单位电容两端的电压达到参考电压时,输出电荷从电 极转移到对应单位电容的次数的计数值,并将所述计数值作为电极的电荷转移 次数发送至所述采样单元。
4. 根据权利要求 2所述的具有触摸按键的控制设备,其特征在于,所述更新 单元还适于在所述识别单元识别出被触摸按键后,停止更新所述电荷样本值的 长期平均值,直至所述识别单元识别出所述电荷样本值的长期平均值与当前获 得的电荷样本值之差 d、于所述触摸感应阈值。
5. 根据权利要求 1所述的具有触摸按键的控制设备,其特征在于,所述触摸 感应阈值关联于所述电荷样本值的长期平均值。
6. 根据权利要求 1所述的具有触摸按键的控制设备, 其特征在于, 还包括: 接近感应单元,适于在连续的第二预设数量个预定周期内, 当所述电荷样本值 均小于接近感应阈值且大于所述触摸感应阈值时,触发接近感应事件, 所述接 近感应事件包括开启所述按键下方所具有的光源。
7. 根据权利要求 6所述的具有触摸按键的控制设备,其特征在于,所述接近 感应阈值关联于所述电荷样本值的长期平均值。
8. 根据权利要求 6所述的具有触摸按键的控制设备,其特征在于,还包括光 亮调节单元,适于在所述识别装置识别出被触摸按键后,调亮所述被触摸按键 下方的光源。
9. 根据权利要求 1所述的具有触摸按键的控制设备,其特征在于,所述控制 设备为控制鼠标指针的空间鼠标,所述识别装置适于在识别出预设功能为对所 述鼠标指针的位置的确认功能的按键为被触摸按键,延迟第二预设时间输出对 应所述鼠标指针的位置的确认功能的操作控制信号。
10. 根据权利要求 1所述的具有触摸按键的控制设备,其特征在于,所述控制 设备为控制鼠标指针的空间鼠标,所述按键的预设功能包括触摸时控制所述鼠 标指针移动的功能和按下时对所述鼠标指针的位置的确认功能;所述按键结构 的侦测板上还包括与预设功能为按下时对所述鼠标指针的位置的确认功能的 按键相对应的薄膜按键;所述识别装置适于在识别出所述薄膜按键被按下后输 出对应所述鼠标指针的位置的确认功能的操作控制信号。
11. 根据权利要求 10所述的具有触摸按键的控制设备, 其特征在于, 所述识 别装置适于在识别出所述薄膜按键被按下,延迟第三预设时间输出对应所述鼠 标指针的位置的确认功能的操作控制信号。
12. 根据权利要求 1所述的具有触摸按键的控制设备,其特征在于,所述控制 设备为空间鼠标, 所述控制设备还包括: 惯性器件和定位装置, 所述定位装置 适于对所述惯性器件的输出数据进行处理,输出控制鼠标指针的位置变化的位 置控制信号; 所述接口单元还适于将所述位置控制信号发送至电子设备, 以控 制所述电子设备执行鼠标指针的移动。
13. 根据权利要求 12所述的具有触摸按键的控制设备, 其特征在于, 所述识 别装置适于在识别出预设功能为对所述鼠标指针的位置的确认功能的按键为 被触摸按键,延迟第二预设时间输出对应所述鼠标指针的位置的确认功能的操 作控制信号; 所述控制设备还包括第一屏蔽单元,适于在延迟的所述第二预设 时间内, 屏蔽所述定位装置对所述惯性器件的输出数据进行处理。
14. 根据权利要求 12所述的具有触摸按键的控制设备, 其特征在于, 所述按 键的预设功能为触摸时控制所述鼠标指针移动的功能和按下时对所述鼠标指 针的位置的确认功能;所述按键结构的侦测板上还包括与预设功能为按下时对 所述鼠标指针的位置的确认功能的按键相对应的薄膜按键;所述识别装置适于 在识别出所述薄膜按键被按下,延迟第三预设时间输出对应所述鼠标指针的位 置的确认功能的操作控制信号; 所述控制设备还包括第二屏蔽单元,适于在延 迟的所述第三预设时间内,屏蔽所述定位装置对所述惯性器件的输出数据进行 处理。
15. 根据权利要求 12所述的具有触摸按键的控制设备, 其特征在于, 还包括 锁定单元,适于在所述识别装置超过第四预设时间未输出操作控制信号且所述 定位装置超过所述第四预设时间未输出位置控制信号,控制所述空间鼠标进入 锁定状态, 所述锁定状态包括所述惯性器件和定位装置处于关闭状态。
16. 根据权利要求 15所述的具有触摸按键的控制设备, 其特征在于, 所述按 键结构还包括设于所述触摸面板的鼠标功能按键,适于在所述空间鼠标处于锁 定状态时, 触发开启所述惯性器件和定位装置。
17. 根据权利要求 16所述的具有触摸按键的控制设备, 其特征在于, 所述鼠 标功能按键为金属按键、 空气按键和机械按键中的一种。
18.根据权利要求 15所述的具有触摸按键的控制设备, 其特征在于, 还包括启 动单元,适于在所述空间鼠标处于锁定状态时, 若预设功能为鼠标左键功能的 按键和预设功能为鼠标右键功能的按键同时被所述识别装置识别为被触摸按 键, 或者, 若连续三个或三个以上的按键被所述识别装置识别为被触摸按键, 开启所述惯性器件和定位装置。
19. 根据权利要求 12所述的具有触摸按键的控制设备, 其特征在于, 所述惯 性器件包括陀螺仪和重力加速度传感器, 所述定位装置包括:
获取单元,适于获取陀螺仪的敏感轴的旋转角以及加速度传感器的敏感轴 的偏转角和线加速度, 所述加速度传感器的敏感轴对应所述陀螺仪的敏感轴; 设置单元,适于基于所述加速度传感器的敏感轴的线加速度设置对应所述 陀螺仪的第一权重和对应所述加速度传感器的第二权重;
处理单元,适于基于所述第一权重和第二权重,对所述旋转角和所述偏转 角进行加权处理, 得到所述空间鼠标的姿态角;
所述位置控制信号携带的信息关联于所述空间鼠标的姿态角。
20.根据权利要求 19所述的具有触摸按键的控制设备, 其特征在于, 所述加速 度传感器为三轴重力加速度传感器, 所述设置单元包括: 滤波参数设置单元,适于设置第一滤波参数 n和第二滤波参数 m,所述第 二滤波参数 m为所述第一滤波参数 n的 3~5倍;
时间常数确定单元, 适于确定滤波时间常数 τ , 其中, 若 Ki n/m 则
T = -m * Ki + n , 若 Ki>n/m则 τ=0 , Ki为所述加速度传感器的各敏感轴的线加速 度的矢量和与重力加速度的差值;
权重确定单元, 适于确定所述第一权重 a和第二权重 b, 其中, b = ~^ , τ + dt a = i _ b。
21. 根据权利要求 20所述的具有触摸按键的控制设备, 其特征在于,
所述处理单元包括:
高通滤波器, 适于基于所述滤波时间常数对所述旋转角进行高通滤波; 第一乘法器, 适于将所述高通滤波器的输出结果乘以所述第一权重,得到 第一乘积结果;
低通滤波器, 适于基于所述滤波时间常数对所述偏转角进行低通滤波; 第二乘法器,适于将所述低通滤波器的输出结果乘以所述第二权重,得到 第二乘积结果;
卡尔曼滤波器, 适于对所述第一乘积结果和第二乘积结果进行卡尔曼滤 波, 得到所述姿态角; 或者,
所述处理单元包括:
高通滤波器, 适于基于所述滤波时间常数对所述旋转角进行高通滤波; 第一乘法器, 适于将所述高通滤波器的输出结果乘以所述第一权重,得到 第一乘积结果;
低通滤波器, 适于基于所述滤波时间常数对所述偏转角进行低通滤波; 第二乘法器,适于将所述低通滤波器的输出结果乘以所述第二权重,得到 第二乘积结果;
加法器,适于将所述第一乘积结果和第二乘积结果相加,得到所述姿态角。
22. 根据权利要求 19所述的具有触摸按键的控制设备, 其特征在于,
所述设置单元包括:
线速度计算单元,适于将所述加速度传感器的各敏感轴的线加速度的矢量 和对时间积分得到线速度;
判断单元, 适于判断所述线速度是否小于预设值;
权重设置单元,适于在所述判断单元的判断结果为是时设置所述第一权重 小于所述第二权重,在所述判断单元的判断结果为否时设置所述第一权重大于 所述第二权重; 或者,
所述设置单元包括:
线速度计算单元,适于将所述加速度传感器的各敏感轴的线加速度的矢量 和对时间积分得到线速度;
第一判断单元, 适于判断所述线速度是否小于第一预设值;
第二判断单元,适于判断所述线速度是否大于第二预设值, 所述第二预设 值大于所述第一预设值;
权重设置单元,适于在所述第一判断单元的判断结果为是时设置第一权重 小于第二权重; 在所述第二判断单元的判断结果为是时设置第一权重为 1 , 第 二权重为 0; 否则设置第一权重大于第二权重。
23. 根据权利要求 22所述的具有触摸按键的控制设备, 其特征在于,
所述处理单元包括: 第三乘法器, 适于将所述旋转角乘以所述第一权重, 得到第三乘积结果; 第四乘法器, 适于将所述偏转角乘以所述第二权重, 得到第四乘积结果; 卡尔曼滤波器,适于对所述第三乘积结果和所述第四乘积结果进行卡尔曼 滤波, 得到所述姿态角; 或者,
所述处理单元包括:
第三乘法器, 适于将所述旋转角乘以所述第一权重, 得到第三乘积结果; 第四乘法器, 适于将所述偏转角乘以所述第二权重, 得到第四乘积结果; 加法器,适于将所述第三乘积结果和第四乘积结果相加,得到所述姿态角。
24. 根据权利要求 19所述的具有触摸按键的控制设备, 其特征在于, 所述定 位装置还包括: 分量确定单元, 适于确定所述空间鼠标在空间坐标系的分量 dcosG, d为空间鼠标在空间坐标系的初始分量, Θ为姿态角; 所述位置控制信 号携带的信息包括所述空间鼠标在空间坐标系的分量。
25. 根据权利要求 19所述的具有触摸按键的控制设备, 其特征在于, 所述定 位装置还包括: 分量变化确定单元, 适于计算所述空间鼠标的分量变化 Ad, 其中, M = d _ d∞ , Θ为姿态角, d为空间鼠标在空间坐标系的初始分量; 所述位置控制信号携带的信息包括所述空间鼠标的分量变化。
26. 根据权利要求 25所述的具有触摸按键的控制设备, 其特征在于, 所述定 位装置还包括: 位移变化确定单元, 适于确定所述鼠标指针的位移变化量 As, 其中, s = M I SF *MF、, SF为所述陀螺仪的灵敏度系数, MF为鼠标指针的 灵敏度系数; 所述位置控制信号携带的信息包括所述鼠标指针的位移变化量。
27. 根据权利要求 19所述的具有触摸按键的控制设备, 其特征在于, 所述惯 性器件包括两个相互垂直的单轴陀螺仪和一个三轴重力加速度传感器。
28. 根据权利要求 1所述的具有触摸按键的控制设备,其特征在于,所述控制 设备包括空间鼠标、 遥控器和计算机键盘的其中一种或任意组合。
29. 根据权利要求 1所述的具有触摸按键的控制设备,其特征在于,所述接口 单元包括红外接口、 蓝牙接口和射频接口的其中一种或任意组合。
30. 根据权利要求 1所述的具有触摸按键的控制设备,其特征在于,所述按键 为金属按键或空气按键。
PCT/CN2011/083280 2011-11-23 2011-12-01 具有触摸按键的控制设备 WO2013075346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110376339.8 2011-11-23
CN201110376339.8A CN102495681B (zh) 2011-11-23 2011-11-23 具有触摸按键的控制设备

Publications (1)

Publication Number Publication Date
WO2013075346A1 true WO2013075346A1 (zh) 2013-05-30

Family

ID=46187510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083280 WO2013075346A1 (zh) 2011-11-23 2011-12-01 具有触摸按键的控制设备

Country Status (2)

Country Link
CN (1) CN102495681B (zh)
WO (1) WO2013075346A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385447B (zh) * 2011-11-23 2015-03-11 江苏惠通集团有限责任公司 触摸识别方法及装置、空间鼠标及其控制方法
CN102495682B (zh) * 2011-11-23 2015-05-20 江苏惠通集团有限责任公司 触摸识别方法及装置、空间鼠标及其控制方法
CN104009744B (zh) * 2013-02-26 2017-03-01 智慧光科技股份有限公司 电子卡及其电容式触碰感应方法
CN103747314A (zh) * 2013-08-02 2014-04-23 乐视致新电子科技(天津)有限公司 一种触控式遥控器及其触控方法
CN104349196A (zh) * 2013-08-07 2015-02-11 华为终端有限公司 一种遥控器及使用遥控器控制设备的方法
CN108111907B (zh) * 2013-09-04 2020-06-16 青岛海信宽带多媒体技术有限公司 电视节目播放方法
CN104181824A (zh) * 2014-07-23 2014-12-03 合肥荣事达三洋电器股份有限公司 一种安全隔离触摸控制电路
CN104238667B (zh) * 2014-08-28 2019-07-26 联想(北京)有限公司 一种电子设备
CN104898854A (zh) * 2015-06-05 2015-09-09 苏州新奇迅网络有限公司 一种夜光键盘
CN105704280B (zh) * 2016-04-06 2019-02-05 Oppo广东移动通信有限公司 一种内置式的防静电侧键结构及其移动终端
CN106648911B (zh) * 2016-11-28 2020-04-10 武汉斗鱼网络科技有限公司 一种按键除抖的方法及装置
CN106683384B (zh) * 2017-02-28 2023-11-24 国网山东省电力公司烟台供电公司 智能遥控器、家用电器及方法
JP7042839B2 (ja) * 2017-03-29 2022-03-28 ベクトン・ディキンソン・アンド・カンパニー スワイプ及びタップして確認の特徴を有する送達デバイスのコントローラを操作するためのシステム及び方法
CN107612538A (zh) * 2017-08-22 2018-01-19 苏州瀚瑞微电子有限公司 触摸按键及其唤醒屏幕的方法
CN108491118A (zh) * 2018-06-15 2018-09-04 珠海普林芯驰科技有限公司 金属触控装置
CN109167593A (zh) * 2018-11-09 2019-01-08 厦门星科电子有限公司 一种铝合金触摸面板
CN109842727B (zh) * 2019-01-31 2021-03-09 Oppo广东移动通信有限公司 触控信号的上报方法、装置、终端及存储介质
CN110174958B (zh) * 2019-05-31 2023-12-01 维沃移动通信有限公司 终端设备及终端设备的控制方法
CN110704013B (zh) * 2019-09-30 2021-12-24 联想(北京)有限公司 一种电子设备及信息处理方法
CN113168258B (zh) * 2019-10-30 2022-09-20 深圳市汇顶科技股份有限公司 触摸事件侦测方法、mcu、触控设备及存储介质
CN113131915A (zh) * 2019-12-31 2021-07-16 梅特勒-托利多(常州)测量技术有限公司 金属按键的判键方法
CN111490768A (zh) * 2020-04-27 2020-08-04 南京天擎汽车电子有限公司 触摸按键的触摸识别方法、装置、车辆、设备和介质
CN112083828A (zh) * 2020-08-28 2020-12-15 厦门盈点科技有限公司 一种触摸屏防止误输入的方法、控制装置以及电子设备
IT202100000293A1 (it) * 2021-01-08 2022-07-08 St Microelectronics Srl Dispositivo e metodo di rilevamento di una variazione di ambiente operativo per un apparecchio elettronico
CN113484742A (zh) * 2021-06-25 2021-10-08 歌尔光学科技有限公司 按键检测方法及系统
CN115291786A (zh) * 2022-09-30 2022-11-04 深圳市广和通无线通信软件有限公司 一种基于机器学习的误触判断方法、装置和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060294523A1 (en) * 2005-06-23 2006-12-28 Paul Beard Touch wake for electronic devices
CN101359907A (zh) * 2007-08-01 2009-02-04 星电株式会社 触控式面板输入装置
CN101414819A (zh) * 2007-10-16 2009-04-22 通泰积体电路股份有限公司 电流源控制及补偿触控电容感测方法及其装置
CN101963865A (zh) * 2010-09-30 2011-02-02 江苏惠通集团有限责任公司 触摸识别方法、触摸键结构及触摸装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040763A (ja) * 2005-08-01 2007-02-15 Toyota Motor Corp 加速度センサの補正装置
JP4702475B2 (ja) * 2008-12-25 2011-06-15 ソニー株式会社 入力装置、ハンドヘルド装置及び制御方法
CN201667058U (zh) * 2009-11-19 2010-12-08 嘉兴淳祥电子科技有限公司 手写触摸电脑键盘
CN102207783A (zh) * 2010-03-31 2011-10-05 鸿富锦精密工业(深圳)有限公司 可自定义触摸动作的电子装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060294523A1 (en) * 2005-06-23 2006-12-28 Paul Beard Touch wake for electronic devices
CN101359907A (zh) * 2007-08-01 2009-02-04 星电株式会社 触控式面板输入装置
CN101414819A (zh) * 2007-10-16 2009-04-22 通泰积体电路股份有限公司 电流源控制及补偿触控电容感测方法及其装置
CN101963865A (zh) * 2010-09-30 2011-02-02 江苏惠通集团有限责任公司 触摸识别方法、触摸键结构及触摸装置

Also Published As

Publication number Publication date
CN102495681B (zh) 2014-07-09
CN102495681A (zh) 2012-06-13

Similar Documents

Publication Publication Date Title
WO2013075346A1 (zh) 具有触摸按键的控制设备
US8614693B2 (en) Touch and hover signal drift compensation
WO2013075345A1 (zh) 触摸识别方法及装置、空间鼠标及其控制方法
CN101611371B (zh) 输入设备、控制设备、控制系统、手持设备和控制方法
US8502800B1 (en) Method for improving sensitivity of capacitive touch sensors in an electronic device
US9442598B2 (en) Detecting interference in an input device having electrodes
US10379637B2 (en) Rotational element enabling touch-like gestures
CN105045445B (zh) 用于噪声测量的驱动传感器电极
WO2014014785A1 (en) Capacitance measurement
WO2014018732A2 (en) Gesture and touch input detection through force sensing
KR20160041845A (ko) 상호작용 감지
WO2013075344A1 (zh) 触摸识别方法及装置、空间鼠标及其控制方法
WO2021174543A1 (zh) 电容检测电路、触控装置和终端设备
KR102329097B1 (ko) 용량형 센서 시스템에서의 터치 검출
JP2014508948A (ja) 携帯デバイスへの接近の検出のための測定デバイスおよび方法
CN100383713C (zh) 一种便携式电子设备的信息输入装置及控制方法
US20110134077A1 (en) Input Device and Input Method
GB2422906A (en) Slide Pad Cursor Control System And Method
Lin et al. Tracking touched trajectory on capacitive touch panels using an adjustable weighted prediction covariance matrix
US20120283972A1 (en) System and method for determining user input using dual baseline modes
WO2010008148A2 (ko) 움직임을 인식하는 장치 및 방법
US20110227823A1 (en) Puck-type pointing apparatus, pointing system, and pointing method
EP2624108B1 (en) Touch recognition method, touch key structure and touch device
CN206312017U (zh) 一种电容屏会议一体机
US20120182231A1 (en) Virtual Multi-Touch Control Apparatus and Method Thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876395

Country of ref document: EP

Kind code of ref document: A1