WO2013075344A1 - 触摸识别方法及装置、空间鼠标及其控制方法 - Google Patents

触摸识别方法及装置、空间鼠标及其控制方法 Download PDF

Info

Publication number
WO2013075344A1
WO2013075344A1 PCT/CN2011/083273 CN2011083273W WO2013075344A1 WO 2013075344 A1 WO2013075344 A1 WO 2013075344A1 CN 2011083273 W CN2011083273 W CN 2011083273W WO 2013075344 A1 WO2013075344 A1 WO 2013075344A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
button
charge
touched
electrode
Prior art date
Application number
PCT/CN2011/083273
Other languages
English (en)
French (fr)
Inventor
龙涛
刘正东
龙江
唐元浩
严松
Original Assignee
江苏惠通集团有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏惠通集团有限责任公司 filed Critical 江苏惠通集团有限责任公司
Publication of WO2013075344A1 publication Critical patent/WO2013075344A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/960725Charge-transfer

Definitions

  • the present invention relates to the field of touch sensing technologies, and in particular, to a touch recognition method and device, a space mouse and a control method thereof. Background technique
  • the common mouse devices on the market are divided into two types according to the principle of their operation, one is a ball mouse and the other is an optical mouse.
  • the ball mouse uses the direction and path of the conversion ball on the placed desktop or plane to control the pointing position of the mouse pointer (cursor or cursor) displayed in the computer system; and the optical mouse is generated by using The light is reflected on the table or the plane to control it.
  • Most of the positioning of the mouse pointer of the optical mouse relies on optical sensors or laser sensors, which are based on physical optics, so that the sensor needs to rely on a platform such as a desktop.
  • the space mouse is an input device that operates the screen cursor (mouse pointer) like a traditional mouse, but does not need to be placed on any plane. In the air, it can directly control the mouse pointer by relying on the perception of the air movement posture.
  • the inertial device is generally set in the space mouse, and the inertial device measurement technology is used to track the posture of the motion carrier. Most of the current mouse devices still use the traditional mechanical button structure, which affects the user's experience.
  • touch buttons are increasingly used as an alternative to traditional mechanical buttons in various electronic applications.
  • touch-sensitive buttons have been gradually used in the market to replace traditional mechanical buttons.
  • the design of capacitive touch buttons is also a hot spot in touch-sensitive button technology.
  • the capacitive touch button systems that are commonly used today use plastic as the material of the touch panel, and generally do not contain metal components, so as to avoid triggering of misalignment.
  • the plastic panel has a PCB board (printed circuit board) sensing disc. By touching the plastic panel directly above the PCB board sensing disc, the button can be triggered to realize the touch operation.
  • the panel material is made of metal material or the panel material contains metal components, the touch will trigger the button at any position of the panel, which cannot identify which button the trigger is assigned to. , which will trigger a touch operation error and affect the user's use.
  • the problem to be solved by the present invention is to provide a touch recognition method and device, a space mouse and a control method thereof, so as to improve the accuracy of touch recognition and effectively avoid false triggering of keys.
  • the technical solution of the present invention provides a touch recognition method, including: when a touch key structure faces a touch or a proximity touch, recording a voltage corresponding to a total amount of charges transferred from each electrode of the touch key structure reaches a reference The number of times of charge transfer of each electrode at a voltage; collecting the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charges transferred on each electrode reaches a reference voltage every predetermined period, as the button corresponding to the electrode faces the touch on the touch button structure Or the proximity of the charge sample value when the touch is; the button that is the first predetermined number of predetermined cycles to collect the charge sample value is smaller than the touch sensing threshold is recognized as the touched button; the touch button structure includes: a touch panel and a detecting board insulated from the touch panel, wherein
  • the touch sensing threshold is associated with a long-term average of the charge sample values in the first preset time. Value.
  • the long-term average value of the charge sample values in the first preset time is obtained by summing and calculating the average value of the plurality of charge sample values obtained in the first preset time or Obtained in a weighted average manner.
  • the technical solution of the present invention further provides a method for controlling a space mouse, comprising: after identifying the touched button by the touch recognition method, generating a corresponding control signal according to the recognition result to control the operation of the space mouse, Implementing a preset function of the touched button.
  • the preset function of the touched button includes a confirmation function for the selected position of the mouse pointer controlled by the space mouse, and if the touched button is recognized as a button for implementing the confirmation function, delaying the second preset The time produces the control signal.
  • the control method of the space mouse further includes: shielding, during a second preset time of delay, processing of output data of the inertial device included in the space mouse, where the data output by the inertial device is used to implement Spatial positioning of the space mouse to control movement of the mouse pointer.
  • control method of the space mouse further includes: triggering proximity sensing when the charge sample values are less than the proximity sensing threshold and greater than the touch sensing threshold in a continuous second predetermined number of predetermined periods
  • the event, the proximity sensing event includes turning on a light source that is under the button facing the touch or proximity touch.
  • the proximity sensing threshold is associated with a long-term average value of the charge sample values in the first preset time.
  • the light source under the touched button is illuminated.
  • the technical solution of the present invention further provides a touch recognition device, including: a counting unit, configured to record a total amount of charge transferred from each electrode of the touch button structure when the touch button structure faces a touch or a proximity touch The number of charge transfer times of each electrode when the voltage corresponding to the voltage reaches the reference voltage; the sampling unit is adapted to collect, as the electrode, the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charge transferred on each electrode reaches the reference voltage every predetermined period a corresponding sample of the charge sample value when the touch button structure faces a touch or a proximity touch; An identification unit, configured to identify, as a touched button, a button that is less than the touch sensing threshold for each of the consecutive first predetermined number of predetermined periods; the touch button structure includes: a touch panel and the touch The panel is insulated and insulated, and the touch panel is provided with a plurality of metal buttons, and the detecting board has a plurality of electrodes respectively corresponding to the metal buttons.
  • the counting unit includes: a plurality of unit capacitors respectively connected to respective electrodes in the touch button structure; a plurality of voltage detecting units respectively connected to the plurality of unit capacitors, and detecting corresponding two ends of the unit capacitor a voltage, and when the voltage across the unit capacitor reaches a reference voltage, outputting a counting signal, the counting signal including a count value of the number of charge transfer times of each electrode when a voltage corresponding to the total amount of charges transferred on each electrode reaches a reference voltage And a recording unit that connects the plurality of voltage detecting units, records a count value included in the count signal output by each voltage detecting unit, and transmits the count value to the sampling unit.
  • the technical solution of the present invention further provides a space mouse, comprising: a control unit and the touch recognition device and a touch button structure, wherein the control unit is adapted to: after the touch recognition device recognizes the touched button, And generating a corresponding control signal according to the recognition result to control the operation of the space mouse, and implementing a preset function of the touched button.
  • the technical solution has at least the following advantages:
  • the touch button structure faces a touch or a proximity touch
  • the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charge transferred from each electrode of the touch button structure reaches a reference voltage is recorded, and each electrode is collected every predetermined period.
  • the number of charge transfer times of each electrode when the voltage corresponding to the total amount of transferred charges reaches the reference voltage is used as the charge sample value of the button corresponding to the electrode when the touch button structure faces a touch or proximity touch, and will be continuously for a plurality of predetermined periods.
  • the collected keys whose sound sample values are smaller than the touch sensing threshold are recognized as touched keys, thereby improving the accuracy of the touch recognition and effectively avoiding false triggering of the keys.
  • the corresponding control signal can be generated according to the recognition result to accurately control the operation of the space mouse, thereby realizing the preset function of the touched button, thereby improving the user's space mouse The target operating experience.
  • the preset function of the touched button includes the confirmation function of the selected position of the mouse pointer controlled by the space mouse, delaying the second preset time when the touched button is recognized as the button for implementing the confirming function
  • the control signal can prevent the shaking of the mouse pointer when the confirmation function is implemented, and improve the user operation experience.
  • FIG. 1 is a schematic flow chart of a touch recognition method according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic top plan view of a touch button structure according to Embodiment 1 of the present invention
  • FIG. 3 is a cross-sectional view of the touch button structure shown in FIG. 2 along A-A direction;
  • FIG. 4 is a schematic diagram of a touch recognition device according to the touch key structure shown in FIG. 2;
  • FIG. 5 is a schematic structural diagram of a touch recognition device according to a first embodiment of the present invention;
  • FIG. 5 is a schematic structural diagram of a touch recognition device according to a first embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a space mouse according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic diagram of touch recognition of a pressure touch button structure.
  • Embodiment 1 1 is a schematic flow chart of a touch recognition method according to Embodiment 1 of the present invention. As shown in FIG. 1, the touch recognition method includes:
  • Step S101 When the touch button structure faces a touch or a proximity touch, record the number of charge transfer times of each electrode when a voltage corresponding to the total amount of charge transferred from each electrode of the touch button structure reaches a reference voltage;
  • Step S102 collecting, according to a predetermined period, a voltage corresponding to the total amount of charges transferred on each electrode to a value of a charge sample when the structure faces a touch or a proximity touch; and step S103, collecting the continuous first predetermined number of predetermined cycles.
  • a button whose charge sample value is smaller than the touch sensing threshold is recognized as a touched button.
  • the touch button structure includes: a touch panel and a detecting board, wherein the touch panel is insulated from the detecting board, the touch panel is provided with a plurality of metal buttons, and the detecting board has multiple Corresponding to the electrodes of the metal button, the metal keys insulated from each other and the corresponding electrodes constitute a plate electric valley.
  • the touch button structure specifically includes: a touch panel 201 and a detecting board 203 opposite to the touch panel 201 , the touch panel 201 includes a board body 201 a and a plurality of metal The touch panel is grounded, and the touch panel 201 is grounded.
  • the detecting board 203 has a plurality of electrodes A to E corresponding to the metal buttons, The detecting board 203 is insulated from the touch panel 201; the area between the plurality of metal buttons and the corresponding electrodes constitutes a flat panel capacitor.
  • each metal button is separated from the plate body 201a by the insulating layer 202, and a plurality of buttons each having a separate key position are formed.
  • the button is triggered only when the user presses the metal button (triggering the touch sensing event), and there is no response between the adjacent two metal buttons, and the sensing range is better.
  • the user's finger touches the metal button a part of the electric charge escapes through the human body. And performing charge transfer via the electrode corresponding to the metal button, thereby realizing touch recognition of the metal button by detecting charge transfer.
  • the touch button structure can be a touch button structure that realizes zero pressure, and the user can detect the touch behavior more accurately without pressing the metal button hard, thereby improving the user experience.
  • the touch surface of the metal button may be flush with the board 201a, or may be higher or lower than the board 201a.
  • the metal button and the plate body 201a may be of the same material to save manufacturing cost and optimize the manufacturing process.
  • the metal button and the material of the plate body 201a may each be copper.
  • the plate body 201a may be formed first, and the hole size of the buttons and the key position distribution may be punched on the plate body 201a, and the hole size of the punching hole should be larger than the size of each button. Then, each metal button is formed, and each metal button is aligned and fixed with the plate body 201a, and an insulating material is formed in the gap between each metal button and the plate body 201a to form an insulating layer 202 for isolation.
  • a distance between one side of the metal button relative to the detecting board and the detecting board may be smaller than a distance between a side of the board body relative to the detecting board and the detecting board, and further It makes it easier for the charge to escape through the metal button (ie, it is easier to escape to the metal button than to escape to the grounded touch panel).
  • each metal button may be a solid metal disk, and the shape of the solid metal disk may be any shape suitable for the structure of the touch button, such as a circle or a square, which is not limited herein.
  • each of the metal buttons can also be a metal character, and the metal button can simultaneously implement the touch detection and prompt button functions, and the button characters need not be re-screened on the board 201a.
  • the material of the insulating layer 202 may be glass, or may be other various insulating materials known.
  • the electrode is a copper foil, or it may be other known conductive materials.
  • the five metal buttons provided on the touch panel 201 are merely examples, and the implementation manner thereof is not limited.
  • the number of the buttons and the function of the button can be set according to the actual desired touch function.
  • the touch panel 201 can have 8 or 20 metal buttons. More. It can be seen from the description of the above-mentioned touch button structure that when the touch button structure is to be operated, the influence of the user's finger on the amount of charge in the charge accumulation region is not directly achieved by touching the charged electrode, but is contacted.
  • Metal button The principle that causes the above to occur is that each of the electrodes generates a source electric field after charging, the source electric field is an electrostatic field, and a charge accumulation region is formed on each electrode surface.
  • the metal button corresponding to the electrode has a touch operation. Therefore, based on the situation, the charge sample value of the corresponding charge accumulation region when the button is facing the touch can be obtained by performing charge replenishment on the charge accumulation region, and determining that the charge sample value is smaller than the touch sensing threshold is a touch event occurrence. Judgment basis.
  • step S101 when the touch key structure faces a touch or a proximity touch, the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charges transferred from the electrodes of the touch key structure reaches the reference voltage is recorded.
  • the material of the board body and the metal button included in the touch panel is copper
  • the material of the insulating layer between the metal button and the board is glass
  • the detecting board is The electrode corresponding to the position of the metal button is copper foil.
  • FIG. 4 is a schematic diagram of touch recognition by using the touch key structure shown in FIG. 2 . Referring to FIG.
  • a plurality of unit capacitors may be disposed, and respectively connected to electrodes (copper foils) in the touch button structure.
  • electrodes copper foils
  • the charge is usually transferred from the electrodes of the touch button structure to the corresponding unit capacitors at a certain pulse frequency (the amount of charge may be different each time), and therefore, the unit capacitance Fully charging requires a multiple charge transfer process, and the number of charge transfer times in step S101 is directed to the number of charge transfer processes occurring during the charging of the unit capacitor.
  • a unit capacitor with a small capacitance can be used, and a pF capacitor, for example, 0.5 pF can be usually used.
  • the unit capacitance is more easily filled with the charge transferred from the copper foil. Since the voltage across the capacitor is easily measured, it is possible to pass the voltage across the unit capacitor. Line detection to obtain charge transfer conditions.
  • a plurality of voltage detecting devices correspondingly connected to the plurality of unit capacitors may be disposed, and a voltage across the corresponding unit capacitor is detected in real time, and a voltage across the unit capacitor is compared with a voltage (reference voltage) at both ends when the unit capacitor is full.
  • the counting signal is output, and the counting signal includes a count value of the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charges transferred on each electrode reaches the reference voltage, that is, The number of charge transfer times of each electrode in the process of completing the full charge of the unit capacitor.
  • the amount of charge transferred to the unit capacitor is not the same every time, and the unit capacitor is completed once.
  • the amount of charge transferred to the unit capacitance is large each time on average, it is clear that the number of charge transfer times of each electrode that is fully charged once is small, and vice versa.
  • the charge transferred through the copper foil may be greater than the required charge of the unit capacitor, and a plurality of discharge circuits corresponding to the number of unit capacitors may be disposed. When it is detected that the voltage across the unit capacitor reaches the reference voltage, the discharge circuit initiates discharge of the unit capacitor.
  • the capacitance of the unit capacitor is small, it is also relatively easy to be quickly discharged by the discharge circuit, and thus the time required for discharge is small. Thereby, the accuracy of the entire touch recognition process can be ensured. After discharging the unit capacitor, the unit capacitor will be filled again by the charge transferred through the copper foil, and then will undergo another discharge, and the process continues until the finger touches or approaches the end of a metal button on the touch panel.
  • step S102 is performed to collect the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charge transferred on each electrode reaches the reference voltage every predetermined period, as the button corresponding to the electrode faces the touch or the proximity of the touch button structure.
  • the predetermined period is a sampling period in which the value of the charge sample is collected. The shorter the sampling period is, the higher the accuracy of the touch recognition is.
  • the time interval of acquisition can be set between 1 and 100 milliseconds (ms), for example, 10 ms.
  • the charge sample value can be obtained according to the number of charge transfer of each electrode (count value of the count signal) when the voltage corresponding to the total amount of charge transferred on each electrode of the record reaches the reference voltage.
  • the speed of the unit capacitor to complete a charge and discharge process is very fast, and usually, during the sampling period, the unit capacitor will complete multiple charge and discharge processes, that is, The voltage of the unit capacitor is detected to reach the reference voltage a plurality of times. Therefore, in the sampling period, a plurality of counts of the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charges transferred on each electrode reaches the reference voltage is generally recorded.
  • a value, in a specific sampling a plurality of the count values of the record may be taken as an arithmetic mean value as the charge sample value, or a count value closest to the time of sampling may be used as the charge sample value, or The largest count value and the smallest count value among the plurality of the count values recorded are taken as the charge sample value.
  • the charge sample value sampled in a predetermined period is compared with a preset touch sensing threshold, where the touch sensing threshold is a threshold value that defines whether the metal button in the touch button structure is touched, when When the value of the charge sample corresponding to the electrode is less than the touch sensing threshold, the button corresponding to the electrode may be initially determined to be touched.
  • the touch sensing threshold is a threshold value that defines whether the metal button in the touch button structure is touched
  • step S103 when the value of the charge sample corresponding to an electrode is smaller than the touch sensing threshold in a predetermined first predetermined number of predetermined periods, the button corresponding to the electrode is recognized as the touched button. .
  • the first preset quantity is a number of consecutive predetermined periods that are determined by whether a certain key is recognized as a touched key, and is generally set according to an actual situation.
  • the first preset quantity may be set.
  • the button is set to 8, that is, the button whose charge sample value is smaller than the touch sensing threshold is recognized as the touched button for 8 consecutive predetermined periods. By determining the value of the charge sample collected continuously for a plurality of predetermined periods, the accuracy of the touch recognition can be improved, and the false trigger of the button can be effectively avoided.
  • the embodiment further provides a touch recognition device.
  • FIG. 5 is a schematic structural diagram of a touch recognition apparatus according to Embodiment 1. As shown in FIG.
  • the touch recognition apparatus 10 includes: a counting unit 101 adapted to record when the touch key structure faces a touch or a proximity touch The number of charge transfer times of each electrode when the voltage corresponding to the total amount of charge transferred on each electrode of the touch button structure reaches the reference voltage; the sampling unit 102 is connected to the counting unit 101, and is adapted to collect the transfer on each electrode every predetermined period.
  • the number of charge transfer times of each electrode when the voltage corresponding to the total amount of electric charge reaches the reference voltage is used as a charge sample value of the button corresponding to the electrode when the touch button structure faces a touch or proximity touch; the identification unit 103, and the sampling unit
  • the 102 is connected, and is adapted to recognize, as a touched button, a button that is collected by the first predetermined number of predetermined periods and that is less than the touch sensing threshold.
  • the touch button structure includes: a touch panel and a detecting board insulated from the touch panel, wherein the touch panel is provided with a plurality of metal buttons, and the detecting board has a plurality of electrodes respectively corresponding to the metal buttons .
  • the counting unit 101 may include: a plurality of unit capacitors respectively connected to respective electrodes in the touch button structure; and a plurality of voltage detecting units respectively connected to the plurality of unit capacitors to detect corresponding unit capacitors Voltage at both ends, and when the voltage across the unit capacitor reaches the reference voltage, outputting a counting signal, the counting signal includes the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charges transferred on each electrode reaches the reference voltage a count value; a recording unit that connects the plurality of voltage detecting units, records a count value included in the count signal output by each voltage detecting unit, and transmits the count value to the sampling unit 102.
  • the embodiment further provides a method for controlling a space mouse.
  • the space mouse has the touch button structure described in this embodiment.
  • the method for controlling the space mouse includes: after the touch recognition method in the embodiment recognizes the touched button, generates a corresponding control signal according to the recognition result to control the operation of the space mouse, and realizes the pre-touch of the touched button. Set the function.
  • Each button on the touch button structure has a corresponding preset function, and when a button is touched, a preset function corresponding to the button is triggered, and the triggering of the preset function is specifically implemented in the form of generating a control signal.
  • the receiving device having the control signal in the operation object, after receiving the control signal, the receiving device may perform corresponding according to the control signal Operation (different control signals perform different operations) to implement preset functions corresponding to each button.
  • the preset functions set by the space mouse for example: When the space mouse is operated as a TV, the preset functions include TV on/off, increasing the volume, Reduce volume, channel input, switch to previous channel, switch to next channel, etc.; when the space mouse is operated by computer (computer), preset functions include icon or menu selection, page turning, input letters, etc. When the space mouse is operated as a DVD player, the preset functions include DVD on/off, broadcast/pause, volume up, volume down, menu selection, and the like.
  • the touch recognition method of the embodiment can ensure the accuracy of the touch recognition and effectively avoid the false triggering of the button, so that the space mouse control method can improve the user's operation experience for the space mouse.
  • the touch function of a certain button may be preset to start/close the space mouse, and when the button is touched, the space mouse may be controlled to be turned on or off; otherwise, if the button is not touched, The space mouse will not be activated or turned off.
  • the preset function of the touched button includes a confirmation function for the selected position of the mouse pointer controlled by the space mouse. If the touched button is recognized as a button for implementing the confirmation function, the second pre-delay is delayed.
  • Space mouse usually has the basic function of the mouse, that is, controlling the movement of the mouse pointer to select the execution target, and outputting the confirmed control signal after the execution target is selected to determine the execution of the selected target.
  • the control of the mouse pointer by the space mouse is specifically to set the inertial device (such as a gyro sensor, a gravity acceleration sensor, etc.) in the space mouse, and use the inertial device measurement technology to track the air movement posture of the space mouse, and obtain the space.
  • the spatial coordinate of the mouse or its variation, and the obtained spatial coordinate or its variation is converted into the coordinates of the mouse pointer or its variation, and the coordinates of the mouse pointer or its variation is output to control the movement of the mouse pointer.
  • the space coordinate of the space mouse or the amount of change thereof is obtained by processing the data output by the inertial device.
  • the space mouse uses the space mouse to control the mouse pointer to move to the target position, to confirm the selected position of the mouse pointer to execute the corresponding application, only need to touch the button with the confirmation function of the selected position of the mouse pointer controlled by the space mouse.
  • the touch button A sinking force is formed, which may cause the mouse pointer to deviate from the selected target position, causing the validation function to fail.
  • the second preset time is delayed to generate the control signal.
  • the button with the preset function being the confirmation function is touched, the mouse pointer is shaken, and the control signal with the confirmation function is temporarily not generated and output, and after the user adjusts, the mouse pointer is moved to the accurate position. Then, the control signal is generated and outputted, and the confirmation function can be accurately implemented.
  • the second preset time is set according to the actual situation. Generally, the time required for the user to make the adjustment is generally considered.
  • the time required for the adjustment is generally very short.
  • the control signal is generated by delaying for a period of time (second preset time), so that the user can adjust the position of the mouse pointer to avoid the failure of the confirmation function due to the shaking of the mouse pointer.
  • the time required for the user to adjust is more difficult to determine in the actual situation, so that the second preset time is also difficult to set. If the setting is too short, the position of the mouse pointer cannot be adjusted in time. If the setting is too long, the delay may be caused. This can seriously affect the user experience.
  • the control method of the space mouse further includes: shielding, during a second preset time of delay, processing of output data of the inertial device included in the space mouse, the inertia
  • the data output by the device is used to implement spatial positioning of the space mouse to control the movement of the mouse pointer. Since the movement of the mouse pointer depends on the data output by the inertial device included in the space mouse lock, if the touched button is recognized as the button having the confirmation function, the time before the output of the control signal is delayed.
  • the processing chip in the shielded space mouse processes the output data of the inertial device, and the mouse pointer will not move when the button is touched, thereby effectively preventing the mouse pointer from being shaken.
  • the embodiment further provides a space mouse.
  • FIG. 6 is a schematic structural diagram of a space mouse according to Embodiment 1 of the present invention. See 6 , the space mouse includes: a control unit 30 and the above-described touch recognition device 10 and a touch button structure 20, wherein the control unit 30 is adapted to generate a touch button according to the recognition result after the touch recognition device 10 recognizes the touched button Corresponding control signals are used to control the operation of the space mouse to implement a preset function of the touched button.
  • the preset function of the touched button includes a confirmation function of the selected position of the mouse pointer controlled by the space mouse
  • the control unit 30 includes a delay unit adapted to be recognized by the touch recognition device 10
  • the touched button recognized by the unit is a button for realizing the confirmation function, and the control signal is generated by delaying a second preset time.
  • control unit 30 further includes a shielding unit, configured to block processing of output data of the inertial device included in the space mouse during the second preset time of the delay, where the data output by the inertial device is used.
  • the spatial positioning of the space mouse is implemented to control the movement of the mouse pointer.
  • the touch recognition device is applied to a space mouse, and the space mouse can operate as a remote controller, for example, a television, a computer (computer), a DVD, etc., in other embodiments.
  • the touch recognition device can also be applied to other products (the product has a touch button structure and a control unit), for example, a control panel (non-remote control) that can be disposed on an electronic device such as a television or a DVD.
  • a control panel non-remote control
  • the second embodiment is different from the first embodiment in that the touch sensing threshold is set according to the actual situation in the touch recognition method in the first embodiment, and can be generally set to a fixed value.
  • the touch sensing threshold is related to the long term average (LTA, Long Term Average) of the first predetermined time.
  • the long-term average refers to an average of charge sample values of a plurality of predetermined periods sampled over a period of time.
  • the button whose charge sample value is smaller than the touch sensing threshold is recognized as the touched button in a continuous first predetermined number of predetermined periods.
  • the capacitive touch device does not always detect that the touch button structure is touched by the user, and the detected environment should be the knot of the entire environment change. If you have a variety of different sensations and factors, these need to be compensated to be able to detect the triggering of touch-sensitive events more accurately.
  • the LTA value can be understood as a long-term average of the previously stable charge sample values, that is, the LTA value is calculated with the previous charge sample value as a reference, and the LTA indicates that the charge is sampled when the touch-sensitive event is not triggered.
  • the long-term average value of the sample values so the charge sample value is ideally equal to the LTA value when no conditions are triggered, but if the environment is unstable, the noise interference is large, and the charge sample value will have slight fluctuations near the LTA value. .
  • the touch sensing threshold is set to a fixed value, it is difficult to adapt to changes in the surrounding environment. In this embodiment, the touch sensing threshold may be set according to the LTA value, for example, setting the touch sensing threshold to 1/16 LTA.
  • the LTA mentioned above is an overall estimate of the value of the charge sample in the previous time environment, so the LTA is a dynamic change value.
  • the touch recognition device is turned on, the detection is performed, the environment is used to automatically adjust the LTA value, and then the touch sensing threshold is adjusted, so the touch sensing threshold is also dynamic, so that the purpose of adaptively adjusting the touch sensing threshold is achieved.
  • the long-term average value of the charge sample values in the first preset time is specifically obtained by accumulating and summing the plurality of charge sample values obtained in the first preset time, and calculating the average value thereof. acquired.
  • the preset period for sampling is set to 10 ms, that is, data of one charge sample value can be collected every 10 ms
  • the first preset time is set to 1 second (s)
  • the 100 data are summed and the arithmetic mean is calculated, and the calculated arithmetic mean is the long-term average of the charge sample values in Is.
  • the charge sample value sets a smaller weight, that is, the last long-term average value is the average value of the charge sample values over a period of time after the weight is set, instead of calculating the arithmetic mean value of the charge sample values for a period of time. Can be more in line with the current environment.
  • the touch sensing threshold set in the touch recognition device provided by the embodiment is associated with a long-term average value of the charge sample values in the first preset time.
  • the touch recognition apparatus further includes an averaging unit adapted to accumulate and calculate the average value of the plurality of charge sample values obtained in the first preset time or obtain the average value in a weighted average manner.
  • the embodiment further provides a space mouse including the touch recognition device.
  • a space mouse including the touch recognition device.
  • the present embodiment further includes a determination of a trigger proximity sensing event.
  • the source electric field is an electrostatic field
  • a charge accumulation region is formed on each electrode surface
  • the triggering of the touch sensing event is due to
  • the distribution of the electric field is changed, and the transfer of the charge in the charge accumulation region is caused, so that the amount of charge in the charge accumulation region changes, and a severe charge occurs in the charge accumulation region of an electrode.
  • a change in quantity it is generally considered that a touch operation has occurred on a button corresponding to the electrode.
  • the charge sample value of the corresponding charge accumulation region when the button is facing the touch is obtained by performing charge replenishment on the charge accumulation region, and the charge sample values collected by the first predetermined number of predetermined cycles are smaller than A button that touches the sensing threshold is recognized as a touched button.
  • a dramatic change in the amount of charge in the charge accumulation region of the electrode can be defined as triggering a proximity sensing event, except that the proximity sensing event has a relatively small change in charge amount relative to a touch sensing event, but can still be based on multiple During the predetermined predetermined period, the sampled charge sample value is compared with the proximity sensing threshold to identify a trigger for the proximity sensing event.
  • the touch sensing threshold is a threshold value for defining whether the metal button in the touch button structure is approached.
  • the button corresponding to the electrode When the value of the charge sample corresponding to an electrode is less than the proximity sensing threshold and greater than the touch sensing threshold, It is preliminarily determined that the button corresponding to the electrode is approached. However, since the cause of the change in the charge in the charge accumulation region is not only the user's finger approaching the touch button structure, there may be other environmental interference effects, which may easily cause a false trigger of the proximity sensing event (for example, The user may also trigger a proximity sensing event by passing the space mouse with the touch button structure.
  • the control method of the space mouse further includes: triggering proximity when the charge sample values are less than the proximity sensing threshold and greater than the touch sensing threshold in a continuous second predetermined number of predetermined periods
  • the proximity sensing event includes turning on a light source under the button facing the touch or proximity touch
  • the material of the insulating layer is a transparent insulating material.
  • the second preset number in the embodiment is a number of consecutive predetermined periods determined by whether the button is recognized as being approached by the button, generally according to the actual situation. Make settings.
  • the second preset number of settings is the same as the first preset number, and is also set to 8, that is, within 8 consecutive predetermined periods, the charge sample values are smaller than the proximity sensing.
  • a button having a threshold and greater than the touch sensing threshold is recognized as being approached by a button.
  • a light source is added under the button of the space mouse, and when a continuous detection of a charge sample value of a button is less than a proximity sensing threshold and greater than a touch sensing threshold in a continuous second predetermined number of predetermined periods, the actual occurrence occurs.
  • the light source can be controlled to be turned on at this time, so that the user can see the keys in a dark environment, thereby enhancing the user's operating experience and further improving the user's use experience.
  • the detection of the charge transfer condition may be stopped, that is, the sensing channel corresponding to the touch panel is prohibited, so that the potential of the touch panel is re-fixed to the ground potential, and the button function is ensured. Normal use.
  • the light source under all the keys in the touch button structure of the space mouse can be turned on.
  • the amount of charge generated in the charge accumulation region of the electrode corresponding to the metal button is much more intense than when the finger approaches the button, and the sampled sample of the charge is smaller.
  • the light source under the touched key may be brightened, so that when the user touches a certain When the button is pressed, the light at the key position can be brighter to prompt the button, so that the user's operating experience is further enhanced.
  • the charge sample value also began to rise slowly.
  • the charge sample value satisfies: charge sample value > (touch sensing threshold + LTA) x 75%, it can be determined that the touch sensing event is terminated, and the brightness before the light source under the touched button is restored.
  • the LTA indicates the long-term average value of the charge sample value when no condition is triggered.
  • the 75% parameter can also be adjusted to other values, such as 87.5%, depending on the noise impact of the touch button structure.
  • charge sample value > (proximity sensing threshold + LTA) x 75% As the user's finger moves further away from the touch button structure, the charge sample value continues to rise, and when the charge sample value satisfies: charge sample value > (proximity sensing threshold + LTA) x 75%, then it can be determined that the proximity sensing event also terminates, and Turn off the light source under all the keys, re-monitor the state of the charge sample value, and turn on or brighten the light source according to the above trigger conditions.
  • the touch sensing threshold value described in the second embodiment may be associated with a long-term average value of the charge sample values in the first preset time.
  • the proximity sensing threshold may also be associated with the first preset.
  • the long-term average of the charge sample values over time Specifically, after obtaining the long-term average value of the charge sample values in the first preset time, the proximity sensing threshold may be set according to the LTA value, for example, setting the proximity sensing threshold to 1/8 LTA.
  • the embodiment further provides a space mouse.
  • the space mouse according to the first embodiment or the second embodiment further includes a proximity sensing unit 40 connected to the touch recognition device 10, specifically Connected to the sampling unit 102 in the touch recognition device 10, adapted to trigger proximity sensing when the charge sample values are less than the proximity sensing threshold and greater than the touch sensing threshold for a second consecutive predetermined number of predetermined periods
  • the event, the proximity sensing event includes turning on a light source under the button facing the touch or proximity touch, and the material of the insulating layer 202 shown in FIG. 2 or FIG. 3 is a transparent insulating material.
  • the space mouse further includes a brightness adjusting unit 50 connected to the touch recognition device 10, specifically connected to the identification unit 103 in the touch recognition device 10, and adapted to recognize the touched button at the recognition unit 103. After that, the light source under the touched button is illuminated.
  • the proximity sensing threshold may also be associated with a long-term average value of the charge sample values in the first preset time.
  • the touch button structure described in any one of the first embodiment to the third embodiment is a pressureless (zero pressure) touch button structure.
  • Pressing the metal button hard can detect the touch behavior more accurately. Even if the metal button has a slight deformation under pressure, it does not detect the touch behavior according to the deformation of the metal button under the applied pressure and pressure.
  • the process of identification refer to the related description in Embodiment 1.
  • the touch button structure described in any one of Embodiments 1 to 3 because the metal button included in the touch panel is separated from the board by an insulating layer, the touched metal button can be more accurately recognized. If the touch panel is an all-metal touch panel integrally formed with the metal button and the board body, after touching a metal button, part of the charge is also transferred to other buttons, thereby affecting the accuracy of the touched button recognition.
  • the touch button structure is a pressure touch button structure.
  • Figure 8 is a schematic diagram of touch recognition of a pressurized touch button structure.
  • the metal button in the touch button structure of the embodiment is slightly deformed after being pressed by the user's finger, as shown by the button 4 in FIG. 8, the embodiment is positively under the action of the metal under pressure.
  • the deformation of the button causes a change in capacitance to achieve touch recognition.
  • the touch button structure of the embodiment includes: a touch panel 801 and a detecting board 803 coupled to the touch panel 801, and an insulating layer 802 between the touch panel 801 and the detecting board 803.
  • the touch panel 801 can be an all-metal panel, and its shape can be designed according to actual needs, usually a square panel.
  • the touch panel 801 may be an integrally formed metal panel.
  • the touch panel 801 includes: a first surface 801a provided with a plurality of metal buttons 801c and a second surface 801b opposite to the first surface 801a, the second surface 801b having a plurality of grooves 801d, the groove 801d of the second surface 801b and the first surface 801a
  • the metal button 801c - correspondingly, for example, has five metal buttons 801c, and correspondingly, there are five grooves 801d.
  • the metal button 801c on the touch panel 801 is a touch button, that is, the metal button region of the first surface 801a and other regions are substantially on the same plane, and only need to touch the metal button region (or apply light pressure on the metal button).
  • the button trigger can be detected to implement the corresponding button function.
  • the detecting plate 803 includes a plurality of electrodes 804, and the plurality of electrodes 804 respectively correspond to the metal buttons 801c of the first surface 801a. For example, five metal buttons 801c are illustrated, and five electrodes 804 are also provided, corresponding to the metal button 801c. .
  • the electrode 804 is a conductive material that is substantially the same shape and size as the metal button region of the first surface 801a.
  • the potential of the button on the button panel needs to be fixed.
  • the touch panel 801 is an all-metal button panel, the touch panel 801 can be grounded, such that the touch panel 801
  • the metal button has a fixed potential, ie a zero potential.
  • the capacitance C between the metal button 801c on the touch panel 801 and the electrode 804 on the detecting board 803 can be expressed by the following formula:
  • is the dielectric constant, relating to the medium between the metal button 801c and the electrode 804, S is the facing area between the metal button 801c and the electrode 804, and d is the distance between the metal button 801c and the electrode 804. It is assumed that when the metal button 801c is not touched, the distance between the metal button 801c and the electrode 804 is dl as shown in FIG. 8 (as indicated by the fourth metal button from left to right), when the metal button 801c is touched As shown in FIG. 8, the touch panel 801 is slightly deformed at the touched button position (as indicated by the third metal button from left to right), and the distance between the metal button 801c and the electrode 804 is reduced to d2.
  • the capacitance C between the metal button 801c and the electrode 804 is increased, and the amount of charge transfer due to the increase in the capacitance C is escaping from the human body due to the charge being touched after the metal button is touched in the first embodiment.
  • the amount of charge change in the charge accumulation region of the electrode corresponding to the metal button is changed, and the amount of charge transferred to the unit capacitor is of a different order of magnitude, that is, relative to the first embodiment, the metal button is touched in this embodiment.
  • the amount of charge is larger, and the value of the charge sample thus collected becomes smaller, so that it is more accurate to determine that the value of the charge sample collected in a plurality of predetermined periods is smaller than the touch sensing threshold.
  • the example embodiment of the touched key to be identified more accurately than any of embodiments one to three cases of embodiment of identifying a touch key embodiment of the present embodiment.
  • the touch panel is an all-metal touch panel in which the metal button and the board body are integrally formed, since the amount of charge transfer caused by the touched button is much higher than the amount of charge transfer caused by the untouched button, it is only necessary to set the appropriate amount.
  • the touch-sensing threshold is a good way to avoid false triggering.
  • the capacitance C between the metal button and the electrode is increased, accordingly, the voltage on the electrode is increased, whereby the button corresponding to the electrode whose change in voltage is detected can also be recognized as the touched button.
  • the touch button structure shown in FIG. 3 can also identify the touched button by using the method described in this embodiment, that is, by touching the metal button, the metal button is slightly deformed under the action of pressure, so that The capacitance C increases, the amount of transferred charge increases correspondingly, and the collected charge sample value becomes smaller, and the button of the first predetermined number of predetermined cycles that is less than the touch sensing threshold is recognized as being Touching the button makes the recognition of the touched button more accurate.
  • the touch recognition method and apparatus, the space mouse and the control method thereof provided by the embodiments of the present invention have at least the following beneficial effects:
  • the touch button structure faces a touch or a proximity touch
  • the number of charge transfer times of each electrode when the voltage corresponding to the total amount of charge transferred from each electrode of the touch button structure reaches a reference voltage is recorded, and each electrode is collected every predetermined period.
  • the number of charge transfer times of each electrode when the voltage corresponding to the total amount of transferred charges reaches the reference voltage is used as the charge sample value of the button corresponding to the electrode when the touch button structure faces a touch or proximity touch, and will be continuously for a plurality of predetermined periods.
  • the collected keys whose sound sample values are smaller than the touch sensing threshold are recognized as touched keys, thereby improving the accuracy of the touch recognition and effectively avoiding false triggering of the keys.
  • the corresponding control signal can be generated according to the recognition result to accurately control the operation of the space mouse, and the preset function of the touched button can be realized, thereby improving the user's operation experience on the space mouse.
  • the preset function of the touched button includes the confirmation function of the selected position of the mouse pointer controlled by the space mouse, delaying the second preset time when the touched button is recognized as the button for implementing the confirming function
  • the control signal can prevent the shaking of the mouse pointer when the confirmation function is implemented, and improve the user operation experience.
  • the second preset time of the delay by shielding the processing of the output data of the inertial device included in the space mouse, the shaking of the mouse pointer controlled by the space mouse is further prevented, and the user operation experience is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触摸识别方法及装置、空间鼠标及其控制方法,所述触摸识别方法包括:当触摸按键结构面临触摸或临近触摸时,记录从所述触摸按键结构的各电极上转移的电荷总量对应的电压达到参考电压时各电极的电荷转移次数;每隔预定周期采集各电极上转移的电荷总量对应的电压达到参考电压时各电极的电荷转移次数作为所述电极对应的按键在所述触摸按键结构面临触摸或临近触摸时的电荷样本值;将连续的第一预设数量个预定周期内采集的所述电荷样本值均小于触摸感应阈值的按键识别为被触摸按键。本发明技术方案能提高触摸识别的准确度,并有效避免按键的误触发。

Description

触摸识别方法及装置、 空间鼠标及其控制方法 本申请要求于 2011 年 11 月 23 日提交中国国家知识产权局、 申请号为 201110377558.8、 发明名称为"触摸识别方法及装置、 空间鼠标及其控制方法" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及触摸传感技术领域,特别涉及一种触摸识别方法及装置、 空间 鼠标及其控制方法。 背景技术
目前, 市场上常见的鼠标装置依据其运作的原理不同分为两种, 其一是滚 球鼠标, 另一种则是光学鼠标。 其中, 滚球鼠标是利用换算滚球在所放置的桌 面或者平面上的移动方向和路径来控制计算机系统中所显示的鼠标指针(游标 或光标)的指向位置; 而光学鼠标则是利用所产生的光线在桌面或者平面上所 造成的反射情况来进行其控制。对于光学鼠标的鼠标指针的定位大多数都依靠 光学传感器或激光传感器来实现, 这些传感器都基于物理光学原理,使得传感 器需要依靠桌面等平台来实现。 此外, 在很多场合, 例如在计算机多媒体教学 中,用户想在空中操控鼠标指针或是通过在空中操控鼠标指针来实现多媒体电 视播放、 网页浏览等应用, 仅使用传统的传感器就无法实现, 于是空间鼠标应 运而生。空间鼠标是一种输入设备,像传统鼠标一样操作屏幕光标(鼠标指针 ), 但却不需要放在任何平面上,在空中晃动就能直接依靠空中运动姿态的感知实 现对鼠标指针的控制。要实现空中运动姿态的感知, 一般在空间鼠标内设置惯 性器件, 利用惯性器件测量技术实现对运动载体姿态的跟踪。 目前的鼠标装置大部分仍然采用传统的机械式按键结构,影响了用户的使 用感受。传统机械式按键的使用寿命有限和操控体验差, 而且其突兀外观显然 不美观和不易清洁, 因此, 触摸式按键作为传统机械式按键的一种替代方案, 越来越多地应用在各种电子产品上, 不但可以提高可靠性, 而且有助于实现完 全密封和富于现代感的设计。 实际上, 目前市场上已逐渐采用触摸感应按键来 替代传统的机械式按键, 其中, 电容式触摸按键的设计也是触摸感应按键技术 中的一项热点。
现在普遍使用的电容式触摸按键系统都是使用塑料作为触摸面板的材料, 一般都不含金属成分, 以免引起错位的触发。所述塑料面板下具有 PCB板(印 制电路板)感应盘, 通过触摸在 PCB板感应盘正上方的塑料面板, 就可触发 按键, 以实现触控操作。 然而, 对于现有的电容式触摸按键系统, 如果面板材 料采用金属材料或面板材料含金属成分,则触摸在面板的任何位置都将触发按 键,这就无法识别某一次的触发是属于哪一个按键,从而将引发触摸操作错误, 影响用户的使用。
因此,如何在触摸按键结构中实现采用金属材料或含金属成分的面板,且 达到准确识别触摸的目的, 就成为了技术上亟待解决的问题。 发明内容
本发明要解决的问题是提供一种触摸识别方法及装置、空间鼠标及其控制 方法, 以提高触摸识别的准确度, 并有效避免按键的误触发。 为解决上述问题, 本发明技术方案提供一种触摸识别方法, 包括: 当触摸按键结构面临触摸或临近触摸时,记录从所述触摸按键结构的各电 极上转移的电荷总量对应的电压达到参考电压时各电极的电荷转移次数; 每隔预定周期采集各电极上转移的电荷总量对应的电压达到参考电压时 各电极的电荷转移次数作为所述电极对应的按键在所述触摸按键结构面临触 摸或临近触摸时的电荷样本值; 将连续的第一预设数量个预定周期采集的所述电荷样本值均小于触摸感 应阈值的按键识别为被触摸按键; 所述触摸按键结构包括: 触摸面板以及与所述触摸面板绝缘隔离的侦测 板, 所述触摸面板设有多个金属按键, 所述侦测板上具有多个分别对应所述金 属按键的电极。 可选的,所述触摸感应阈值关联于第一预设时间内电荷样本值的长期平均 值。 可选的, 所述第一预设时间内电荷样本值的长期平均值,是通过对在第一 预设时间内得到的多个电荷样本值进行累加求和并计算其平均值的方式或是 以加权平均的方式获得的。 为解决上述问题,本发明技术方案还提供一种空间鼠标的控制方法,包括: 以上述触摸识别方法识别出被触摸按键后,根据识别结果产生对应的控制信号 以控制所述空间鼠标的操作, 实现所述被触摸按键的预设功能。 可选的,所述被触摸按键的预设功能包括对所述空间鼠标控制的鼠标指针 选中位置的确认功能, 若识别出被触摸按键为实现所述确认功能的按键, 则延 迟第二预设时间产生所述控制信号。 可选的, 所述空间鼠标的控制方法还包括: 在延迟的第二预设时间内, 屏 蔽对所述空间鼠标所包括的惯性器件输出数据的处理,所述惯性器件输出的数 据用于实现对所述空间鼠标的空间定位以控制鼠标指针的移动。 可选的, 所述空间鼠标的控制方法还包括: 在连续的第二预设数量个预定 周期内, 当所述电荷样本值均小于接近感应阈值且大于所述触摸感应阈值时, 触发接近感应事件,所述接近感应事件包括开启面临触摸或临近触摸的按键下 方所具有的光源。 可选的,所述接近感应阈值关联于第一预设时间内电荷样本值的长期平均 值。 可选的, 在识别出被触摸按键后, 调亮所述被触摸按键下方的光源。 为解决上述问题, 本发明技术方案还提供一种触摸识别装置, 包括: 计数单元,适于当触摸按键结构面临触摸或临近触摸时,记录从所述触摸 按键结构的各电极上转移的电荷总量对应的电压达到参考电压时各电极的电 荷转移次数; 采样单元,适于每隔预定周期采集各电极上转移的电荷总量对应的电压达 到参考电压时各电极的电荷转移次数作为所述电极对应的按键在所述触摸按 键结构面临触摸或临近触摸时的电荷样本值; 识别单元,适于将连续的第一预设数量个预定周期采集的所述电荷样本值 均小于触摸感应阈值的按键识别为被触摸按键; 所述触摸按键结构包括: 触摸面板以及与所述触摸面板绝缘隔离的侦测 板, 所述触摸面板设有多个金属按键, 所述侦测板上具有多个分别对应所述金 属按键的电极。 可选的, 所述计数单元包括: 多个单位电容, 分别与触摸按键结构中的各电极对应连接; 多个电压检测单元, 分别与所述多个单位电容对应连接,检测对应单位电 容两端电压, 并在所述单位电容两端电压达到参考电压时, 输出计数信号, 所 述计数信号包括对于各电极上转移的电荷总量对应的电压达到参考电压时各 电极的电荷转移次数的计数值; 记录单元, 连接多个电压检测单元,记录各电压检测单元输出的计数信号 中包括的计数值, 并将所述计数值发送至所述采样单元。 为解决上述问题, 本发明技术方案还提供一种空间鼠标, 包括: 控制单元 和上述的触摸识别装置、触摸按键结构, 所述控制单元适于在所述触摸识别装 置识别出被触摸按键后,根据识别结果产生对应的控制信号以控制所述空间鼠 标的操作, 实现所述被触摸按键的预设功能。 与现有技术相比, 本技术方案至少具有以下优点:
通过当触摸按键结构面临触摸或临近触摸时,记录从所述触摸按键结构的 各电极上转移的电荷总量对应的电压达到参考电压时各电极的电荷转移次数, 每隔预定周期采集各电极上转移的电荷总量对应的电压达到参考电压时各电 极的电荷转移次数作为所述电极对应的按键在所述触摸按键结构面临触摸或 临近触摸时的电荷样本值,并将连续多个预定周期内采集的所述电荷样本值均 小于触摸感应阈值的按键识别为被触摸按键, 从而能提高触摸识别的准确度, 并有效避免按键的误触发。 在识别出被触摸按键后,能够根据识别结果产生对应的控制信号准确控制 空间鼠标的操作, 实现所述被触摸按键的预设功能,从而提高用户对于空间鼠 标的操作体验。
若所述被触摸按键的预设功能包括对所述空间鼠标控制的鼠标指针选中 位置的确认功能, 则在识别出被触摸按键为实现所述确认功能的按键时,延迟 第二预设时间产生所述控制信号,从而能够在实现确认功能时防止鼠标指针的 抖动, 提高用户操作体验。
此外,在延迟的第二预设时间内,通过屏蔽对空间鼠标所包括的惯性器件 输出数据的处理, 进一步防止所述空间鼠标控制的鼠标指针的抖动,提高用户 操作体验。 附图说明 图 1是本发明实施例一提供的触摸识别方法的流程示意图;
图 2是本发明实施例一提供的触摸按键结构的俯视示意图; 图 3是图 2所示触摸按键结构沿 A-A方向的剖视示意图;
图 4是应用图 2所示触摸键结构进行触摸识别的示意图; 图 5是本发明实施例一提供的触摸识别装置的结构示意图; 图 6是本发明实施例一提供的空间鼠标的结构示意图;
图 7是本发明实施例三提供的空间鼠标的结构示意图; 图 8是有压力的触摸按键结构的触摸识别示意图。
具体实施方式 为使本发明的上述目的、特征和优点能够更为明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。在以下描述中阐述了具体细节以便于充 分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施, 本 领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受 下面公开的具体实施方式的限制。 实施例一 图 1是本发明实施例一提供的触摸识别方法的流程示意图。 如图 1所示, 所述触摸识别方法包括:
步骤 S101 , 当触摸按键结构面临触摸或临近触摸时, 记录从所述触摸按 键结构的各电极上转移的电荷总量对应的电压达到参考电压时各电极的电荷 转移次数;
步骤 S102, 每隔预定周期采集各电极上转移的电荷总量对应的电压达到 结构面临触摸或临近触摸时的电荷样本值; 步骤 S103 , 将连续的第一预设数量个预定周期采集的所述电荷样本值均 小于触摸感应阈值的按键识别为被触摸按键。
其中, 所述触摸按键结构包括: 触摸面板以及侦测板, 所述触摸面板与侦 测板之间绝缘隔离, 所述触摸面板设有多个金属按键, 所述侦测板上具有多个 分别对应所述金属按键的电极,相互绝缘的金属按键和对应的电极构成平板电 谷。
下面结合附图对上述触摸识别方法作详细说明。 图 2是本发明实施例一提供的触摸按键结构的俯视示意图。 图 3是图 2 所示触摸按键结构沿 A-A方向的剖视示意图。 结合图 2和图 3 , 本实施例中, 所述触摸按键结构具体包括:触摸面板 201以及与所述触摸面板 201相对的侦 测板 203 , 所述触摸面板 201包括板体 201a和多个金属按键 1~5 , 所述金属按 键与板体 201a之间通过绝缘层 202隔离, 所述触摸面板 201接地, 所述侦测 板 203上具有多个分别对应所述金属按键的电极 A ~ E, 所述侦测板 203与所 述触摸面板 201间绝缘隔离;所述多个金属按键及对应电极间的区域构成平板 电容。
上述触摸按键结构中, 通过绝缘层 202将各金属按键与板体 201a隔离, 形成了各自键位独立的多个按键。 而通过将触摸面板 201接地, 只有当用户手 指按到金属按键时候才会触发按键(触发触摸感应事件), 相邻两金属按键之 间不会有任何响应, 感应范围的约束效果也较好。 并且,当用户手指触摸在金属按键上时,电荷就会有一部分通过人体逃逸, 并经由金属按键对应的电极进行电荷转移,从而通过检测电荷转移来实现对所 述金属按键的触摸识别。 由此可以看出, 上述触摸按键结构可以为实现了零压 力的触摸按键结构,用户无需用力按压所述金属按键就可被较为准确地检测到 触摸行为, 从而提升了用户的使用感受。 在具体实施例中, 所述金属按键的触摸面可以与所述板体 201a平齐, 也 可以高于或低于所述板体 201a。
在具体实施例中, 所述金属按键和所述板体 201a可以采用同一种材料, 以节约制造成本及优化制造流程。 例如, 所述金属按键和所述板体 201a的材 料均可以为铜。 在实际制造时, 可以先形成板体 201a, 并在所述板体 201a上 按各按键的大小及键位分布进行打孔, 打孔的孔径大小应大于各按键的大小。 随后, 再形成各金属按键, 并将各金属按键与板体 201a进行对位后固定, 在 各金属按键与板体 201a的间隙内填充绝缘材料形成绝缘层 202以进行隔离。 另外,所述金属按键相对于所述侦测板的一面与所述侦测板间的距离可以 小于所述板体相对于所述侦测板的一面与所述侦测板间的距离,进一步使得电 荷比较容易通过金属按键逃逸(即逃逸到金属按键比逃逸到接地的触摸面板更 容易 )。
在具体实施例中,各金属按键可以为实心金属盘, 所述实心金属盘的形状 可以为任意适合所述触摸按键结构的形状, 例如圓形或方形, 此处并不以此限 定。
在具体实施例中,各金属按键也可以为金属字符, 则所述金属按键可同时 实现触摸检测及提示按键功能, 无需再在板体 201a上重新丝印按键字符。
在具体实施例中, 所述绝缘层 202的材料可以为玻璃, 或者也可以为其他 已知的各种绝缘材料。所述电极为铜箔, 或者也可以为其他已知的各种导电材 料。
需要说明的是, 所述触摸面板 201设置的金属按键为 5个仅为举例, 并不 应对其实现方式加以限制。所述按键的个数及功能的分配都可以依据实际所需 实现的触摸功能而相应设置, 例如, 在其他的实施例中, 所述触摸面板 201 设置的金属按键可以为 8个、 20个或者更多。 通过上述触摸按键结构的说明可以看到,当要对所述触摸按键结构进行操 作时,用户的手指对电荷累积区域中电荷量的影响并非是直接触摸带电荷的电 极来实现的, 而是接触了金属按键。 导致上述情况出现的原理在于, 当各电极在充电后各自产生了源电场, 所 述源电场为静电场,且在各电极表面形成电荷累积区域。 当用户的手指接触到 金属按键时,会使得所述电场分布产生变化,引发电荷累积区域中电荷的转移, 从而电荷累积区域中电荷量发生了变化。 由此可以看出, 一旦某个电极的电荷累积区域中发生了剧烈的电荷量变 化, 一般就可以认为所述电极对应的金属按键发生了触摸操作。 从而, 基于此 情况,就可通过对电荷累积区域进行电荷补充的方式来获得按键在面临触摸时 对应的电荷累积区域的电荷样本值,并确定电荷样本值小于触摸感应阈值的情 况为触摸事件发生的判定依据。 具体地, 执行步骤 S101 , 当触摸按键结构面临触摸或临近触摸时, 记录 从所述触摸按键结构的各电极上转移的电荷总量对应的电压达到参考电压时 各电极的电荷转移次数。 如前所述, 本实施例所述的触摸按键结构中, 触摸面 板包括的板体和金属按键的材料均为铜,金属按键和板体间的绝缘层的材料为 玻璃,侦测板上与金属按键位置对应的电极为铜箔。 图 4应用图 2所示触摸键 结构进行触摸识别的示意图, 可参阅图 4, 在具体实施时, 可设置多个单位电 容, 分别与所述触摸按键结构中的各电极(铜箔)对应连接, 由于当手指触摸 或临近触摸面板上的某一金属按键时,从人体逃逸的电荷会有一部分经由所述 铜箔产生电荷转移, 而由于单位电容与所述铜箔已存在电连接, 电荷就会向所 述单位电容转移, 此过程即相当于对单位电容进行充电。在对单位电容进行充 电的过程中,电荷通常是在一定脉沖频率下从所述触摸按键结构的各电极向各 自对应的单位电容转移的 (每次转移的电荷量可能不同), 因此, 单位电容充 满电需要多次电荷转移的过程, 而步骤 S101中所述电荷转移次数是指向单位 电容充电过程中所发生的电荷转移过程的次数。 实际实施时, 采用电容量较小 的单位电容, 通常可以采用 pF级的电容, 例如 0.5pF。 这样, 单位电容就较容 易被从铜箔转移的电荷充满。 由于电容两端的电压很容易测得,因此可以通过对单位电容两端的电压进 行检测来获得电荷转移的情况。具体可设置与所述多个单位电容对应连接的多 个电压检测器件, 实时检测对应单位电容两端电压,将单位电容两端的电压与 所述单位电容充满时两端的电压(参考电压)进行比较, 在所述单位电容两端 电压达到参考电压时,输出计数信号, 所述计数信号包括对于各电极上转移的 电荷总量对应的电压达到参考电压时各电极的电荷转移次数的计数值,即单位 电容完成 1次充满电的过程各电极的电荷转移次数。 需要说明的是, 由于环境处于不断变化过程中, 所述触摸按键结构上的电 荷量同样在不断变化, 因此, 每次向单位电容转移的电荷量也并不相同, 在单 位电容完成 1次充满电的过程中, 若平均每次向单位电容转移的电荷量较大, 则显然完成 1次充满电各电极的电荷转移次数较少, 反之则较多。 由于手指触摸或临近触摸面板上某一金属按键过程中,经由所述铜箔转移 的电荷可能大于单位电容充满所需电荷,还可设置多个与单位电容数量对应的 放电电路。在检测到单位电容两端电压达到参考电压时, 所述放电电路就启动 对单位电容的放电。 由于单位电容的电容量较小, 因此也较容易被所述放电电 路快速放电, 进而放电所需时间很少。 从而, 可以保证整个触摸识别过程的精 确性。 在对单位电容放电后, 单位电容又将被经由铜箔转移的电荷充满, 随后 又将经历再次放电,此过程一直循环直至手指触摸或临近触摸面板上某一金属 按键的动作结束。
因为在单位电容两端电压达到参考电压时会输出计数信号,就可以记录相 应计数信号的计数值,该计数值即为所述单位电容充满电各电极的电荷转移次 数。 基于此, 执行步骤 S102, 每隔预定周期采集各电极上转移的电荷总量对 应的电压达到参考电压时各电极的电荷转移次数作为所述电极对应的按键在 所述触摸按键结构面临触摸或临近触摸时的电荷样本值。所述预定周期为采集 所述电荷样本值的采样周期, 所述采样周期越短, 则触摸识别的精度越高, 但 处理芯片需要处理的数据量较大, 负担重, 而采样周期过长, 则又难以实现准 确的触摸识别, 一般地, 采集的时间间隔可以设定为 1~100毫秒(ms )之间, 例如为 10ms。 在采样周期内, 根据记录的各电极上转移的电荷总量对应的电 压达到参考电压时各电极的电荷转移次数(计数信号的计数值), 可以获得所 述电荷样本值。 需要说明的是,在所述触摸按键结构面临触摸或临近触摸时,单位电容完 成一次充放电过程的速度是非常快的, 通常在采样周期内,单位电容会完成多 次充放电的过程, 即会多次检测到单位电容的电压达到所述参考电压, 因此, 在采样周期内一般记录有多个当各电极上转移的电荷总量对应的电压达到参 考电压时各电极的电荷转移次数的计数值, 在具体采样时, 可以将记录的多个 所述计数值取算术平均值后作为所述电荷样本值,也可以将离采样时最近的一 个计数值作为所述电荷样本值,还可以将记录的多个所述计数值中最大的计数 值和最小的计数值取算术平均值后作为所述电荷样本值。 采样到所述电荷样本值后, 执行步骤 S103 , 将连续的第一预设数量个预 定周期采集的所述电荷样本值均小于触摸感应阈值的按键识别为被触摸按键。 具体地,将一个预定周期内采样到的所述电荷样本值与预先设定的触摸感应阈 值进行比较,所述触摸感应阈值是界定触摸按键结构中的金属按键是否被触摸 的临界值, 当某电极对应采集到的所述电荷样本值小于所述触摸感应阈值时, 则可初步判定为该电极对应的按键被触摸。 然而, 由于引发所述电荷累积区域 中电荷发生变化的原因并不仅仅是用户手指触碰到所述触摸按键结构,可能还 会有其他环境干扰的影响, 此时容易引起按键的误触发(触摸感应事件的误触 发), 从而错误地将某按键识别为被触摸按键, 为了获得更准确的判定结果, 需要综合更多次的判定来最终获得触摸感应事件的触发是否对应了用户手指 触摸到触摸按键结构上的按键的情况。 因此, 步骤 S103中, 需要在连续的第 一预设数量个预定周期内,某电极对应采集到的所述电荷样本值均小于触摸感 应阈值时, 才将该电极对应的按键识别为被触摸按键。所述第一预设数量为衡 量某按键是否识别为被触摸按键所确定的连续预定周期的个数,一般根据实际 情况进行设定, 本实施例中, 可以将所述第一预设数量设定为 8, 即将连续 8 个预定周期内, 所述电荷样本值均小于触摸感应阈值的按键识别为被触摸按 键。通过对连续多个预定周期内采集到的所述电荷样本值的判定, 能提高触摸 识别的准确度, 并有效避免按键的误触发。 基于上述触摸识别方法, 本实施例还提供一种触摸识别装置。 图 5是实施 例一提供的触摸识别装置的结构示意图。 如图 5所示, 所述触摸识别装置 10 包括: 计数单元 101 , 适于当触摸按键结构面临触摸或临近触摸时, 记录从所 述触摸按键结构的各电极上转移的电荷总量对应的电压达到参考电压时各电 极的电荷转移次数; 采样单元 102, 与所述计数单元 101相连, 适于每隔预定 周期采集各电极上转移的电荷总量对应的电压达到参考电压时各电极的电荷 转移次数作为所述电极对应的按键在所述触摸按键结构面临触摸或临近触摸 时的电荷样本值; 识别单元 103 , 与所述采样单元 102相连, 适于将连续的第 一预设数量个预定周期采集的所述电荷样本值均小于触摸感应阈值的按键识 别为被触摸按键。所述触摸按键结构包括: 触摸面板以及与所述触摸面板绝缘 隔离的侦测板, 所述触摸面板设有多个金属按键, 所述侦测板上具有多个分别 对应所述金属按键的电极。所述触摸按键结构具体可参阅图 2和图 3以及所述 触摸识别方法中的相关描述。
具体实施时, 所述计数单元 101可以包括: 多个单位电容, 分别与触摸按 键结构中的各电极对应连接; 多个电压检测单元, 分别与所述多个单位电容对 应连接,检测对应单位电容两端电压, 并在所述单位电容两端电压达到参考电 压时,输出计数信号, 所述计数信号包括对于各电极上转移的电荷总量对应的 电压达到参考电压时各电极的电荷转移次数的计数值; 记录单元, 连接多个电 压检测单元,记录各电压检测单元输出的计数信号中包括的计数值, 并将所述 计数值发送至所述采样单元 102。 本实施例所述触摸识别装置的具体实施可参考上述触摸识别方法的实施, 在此不再赘述。 基于上述触摸识别方法, 本实施例还提供一种空间鼠标的控制方法。所述 空间鼠标具有本实施例所述的触摸按键结构。 所述空间鼠标的控制方法包括: 以本实施例所述触摸识别方法识别出被触摸按键后,根据识别结果产生对应的 控制信号以控制所述空间鼠标的操作, 实现所述被触摸按键的预设功能。所述 触摸按键结构上的各个按键都具有对应的预设功能,触碰了某个按键即触发了 该按键对应的预设功能,所述预设功能的触发具体是以产生控制信号的形式实 现的,通过将所述控制信号发送至所述空间鼠标的操作对象, 该操作对象中具 有控制信号的接收装置, 当所述接收装置接收到所述控制信号后, 可以根据该 控制信号执行对应的操作 (不同的控制信号执行不同的操作), 从而实现各个 按键对应的预设功能。 需要说明的是,对于空间鼠标所操作的对象不同,设置的预设功能存在着 一些差异, 例如: 当空间鼠标的操作对象为电视机时, 预设功能包括电视开启 /关闭、 增大音量、 降低音量、 频道的输入、 切换至上一频道、 切换至下一频 道等等; 当空间鼠标的操作对象为计算机(电脑)时, 预设功能包括图标或菜 单的选择、 翻页、 输入字母等; 当空间鼠标的操作对象为 DVD播放器时, 预 设功能包括 DVD开启 /关闭、 播^ /暂停、 增大音量、 降低音量、 菜单选择等。 由于本实施例所述触摸识别方法能够确保触摸识别的准确度,并有效避免 按键的误触发,从而使所述空间鼠标的控制方法能提高用户对于空间鼠标的操 作体验。
本实施例中, 还可以预先设定某一按键的触摸功能为启动 /关闭空间鼠标, 则当该按键被触摸后就可以控制所述空间鼠标启动或关闭;反之, 若该按键未 被触摸, 空间鼠标则不会被启动或关闭。 这样, 用户在实际操作中, 只有通过 触摸该按键才能实现对所述空间鼠标的启动或关闭,触摸其他按键不会对空间 鼠标的启动 /关闭造成干扰, 因而可以有效地避免用户在实际应用中产生的误 操作, 并且有效地减小了误操作造成的能量损耗。 本实施例中,所述被触摸按键的预设功能包括对所述空间鼠标控制的鼠标 指针选中位置的确认功能, 若识别出被触摸按键为实现所述确认功能的按键, 则延迟第二预设时间产生所述控制信号。 空间鼠标通常具有鼠标的基本功能, 即控制鼠标指针的移动以选中执行目标,并在选中执行目标后输出确认的控制 信号以确定执行所选中的目标。 空间鼠标对鼠标指针的控制, 具体是通过在所 述空间鼠标内设置惯性器件(例如陀螺仪传感器、 重力加速度传感器等), 利 用惯性器件测量技术实现对空间鼠标的空中运动姿态的跟踪,获得空间鼠标的 空间坐标或其变化量,并将获得的空间坐标或其变化量相应转换为鼠标指针的 坐标或其变化量,输出所述鼠标指针的坐标或其变化量, 以控制鼠标指针的移 动。其中, 空间鼠标的空间坐标或其变化量是对所述惯性器件输出的数据进行 处理后获得的。 当用户使用空间鼠标控制鼠标指针移动到目标位置后,欲对鼠 标指针选中位置进行确认以执行相应的应用,只需要触摸具有对所述空间鼠标 控制的鼠标指针选中位置的确认功能的按键即可, 然而, 用户在触摸所述具有 确认功能的按键时, 一方面用户的手本身有一定抖动, 另一方面, 触摸按键的 时候会形成下沉力,从而可能使鼠标指针偏离所选中的目标位置,导致确认功 能的失效。 因此, 为了避免实现确认功能时鼠标指针的抖动, 当识别出被触摸 按键的预设功能为对所述空间鼠标控制的鼠标指针选中位置的确认功能时,则 延迟第二预设时间产生所述控制信号。这样即使在触摸预设功能为所述确认功 能的按键时, 鼠标指针产生了抖动, 具有确认功能的控制信号暂时不会产生和 输出, 待用户进行调整后, 将鼠标指针移动到准确的位置上, 再产生该控制信 号并输出,便能准确实现所述确认功能。所述第二预设时间根据实际情况进行 设定, 一般可以考虑用户作出调整通常所需要的时间, 由于鼠标指针的抖动幅 度不会艮大, 因此调整所需时间一般也是非常短的。 如前所述, 当触摸具有确认功能的按键时, 通过延迟一段时间(第二预设 时间)产生所述控制信号, 可以让用户调整鼠标指针的位置, 避免因鼠标指针 抖动导致确认功能的失效。 然而, 用户调整所需时间在实际情况中较难确定, 从而所述第二预设时间也较难设定, 设置过短则不能及时调整鼠标指针的位 置,设置过长则会因产生的延迟导致严重影响用户操作体验。 为了解决这一问 题,本实施例中,所述空间鼠标的控制方法还包括:在延迟的第二预设时间内, 屏蔽对所述空间鼠标所包括的惯性器件输出数据的处理,所述惯性器件输出的 数据用于实现对所述空间鼠标的空间定位以控制鼠标指针的移动。由于鼠标指 针的移动取决于空间鼠标锁包括的惯性器件输出的数据,若在识别出被触摸按 键为具有所述确认功能的按键后, 所述控制信号输出前的这段时间内, 即在延 迟的所述第二预设时间内,屏蔽空间鼠标中的处理芯片对所述惯性器件输出数 据的处理, 则鼠标指针将在触摸该按键时便不再移动,从而能够有效地防止鼠 标指针的抖动。 此时, 由于不存在由用户进行调整的情况, 因此所述第二预设 时间的设定也不存在对用户调整所需时间的考虑,只需考虑识别出被触摸按键 进而发出屏蔽对惯性器件输出数据进行处理的信号的时间即可,而该时间是极 其短暂而且易确定的。 因此, 在延迟的第二预设时间内, 通过屏蔽对空间鼠标 所包括的惯性器件输出数据的处理,进一步有效地防止所述空间鼠标控制的鼠 标指针的抖动, 提高用户操作体验。 基于上述触摸识别装置,对应于上述空间鼠标的控制方法, 本实施例还提 供一种空间鼠标。 图 6是本发明实施例一提供的空间鼠标的结构示意图。参阅 图 6, 所述空间鼠标包括: 控制单元 30和上述的触摸识别装置 10、 触摸按键 结构 20, 所述控制单元 30适于在所述触摸识别装置 10识别出被触摸按键后, 根据识别结果产生对应的控制信号以控制所述空间鼠标的操作,实现所述被触 摸按键的预设功能。
本实施例中,所述被触摸按键的预设功能包括对所述空间鼠标控制的鼠标 指针选中位置的确认功能, 所述控制单元 30包括延迟单元, 适于当所述触摸 识别装置 10的识别单元识别出的被触摸按键为实现所述确认功能的按键, 延 迟第二预设时间产生所述控制信号。
另外, 所述控制单元 30还包括屏蔽单元, 适于在延迟的所述第二预设时 间内,屏蔽对所述空间鼠标所包括的惯性器件输出数据的处理, 所述惯性器件 输出的数据用于实现对所述空间鼠标的空间定位以控制鼠标指针的移动。 需要说明的是, 在本实施例中, 所述触摸识别装置应用于空间鼠标, 所述 空间鼠标可作为遥控器对例如电视机、计算机(电脑)、 DVD等设备进行操作, 在其他实施例中, 所述触摸识别装置也可以应用于其他产品(该产品具有触摸 按键结构和控制单元), 例如可以设置在电视机、 DVD等电子设备上的控制面 板(非遥控器)。 本实施例所述空间鼠标的具体实施可参考上述空间鼠标的控制方法的实 施, 在此不再赘述。 实施例二 本实施例与实施例一的区别在于,实施例一中所述触摸识别方法中所述触 摸感应阈值是根据实际情况进行设定的, 一般可以设定为固定值, 而本实施例 中, 触摸感应阈值是与第一预设时间内电荷样本值的长期平均值(LTA, Long Term Average )有所关联的。 所述长期平均值是指一段时间内所采样到的多个 预定周期的电荷样本值的平均值。
如实施例一中所述, 当采样到所述电荷样本值后,将连续的第一预设数量 个预定周期内, 所述电荷样本值均小于触摸感应阈值的按键识别为被触摸按 键。 然而, 处在不同的环境, 各方面都很复杂, 而电容式触摸设备检测到的并 非总是与用户碰触所述触摸按键结构有关,检测到的应该是整个环境变化的结 果, 包含各种不同的感觉与因素, 这些都需要经过补偿以便能够更加准确地检 测到触摸感应事件的触发。
LTA值可以理解为对前面稳定的电荷样本值的一种长期平均, 即 LTA值 以前面的电荷样本值作为参考来计算的, 而且, LTA表示没有触发触摸感应事 件时, 采样到的所述电荷样本值的长期平均值, 所以在没有触发任何条件时, 电荷样本值理想状态下是和 LTA值相等的, 但如果环境不稳定, 噪声干扰大, 电荷样本值会在 LTA值附近有微小的波动。 如果将触摸感应阈值设定为固定值, 则难以适应周围环境的变化, 本实施 例中, 触摸感应阈值可以根据 LTA值来进行设定, 例如设定触摸感应阈值为 1/16LTA。而前面提到 LTA是对前段时间环境中的电荷样本值的一个整体估算, 因此 LTA是一个动态变化值。 在触摸识别装置开启时, 便会进行检测, 使用 环境来自动调整 LTA值, 进而调整所述触摸感应阈值, 所以触摸感应阈值也 是动态的, 这样就达到自适应调整触摸感应阈值的目的。 本实施例中,所述第一预设时间内电荷样本值的长期平均值, 具体是通过 对在第一预设时间内得到的多个电荷样本值进行累加求和,并计算其平均值后 获得的。举例来说, 若进行采样的预设周期设定为 10ms, 即每隔 10ms可以采 集到一个电荷样本值的数据, 若所述第一预设时间设定为 1秒(s ), 则 Is内 共采集到 100个电荷样本值的数据,将这 100个数据相加求和, 并计算其算术 平均值, 所计算出的算术平均值即为 Is内电荷样本值的长期平均值。 在其他实施例中,也可以考虑对距离当前时间较近的几个预设周期内采样 到的电荷样本值设置较大的权重,而对距离当前时间较远的几个预设周期内采 样到的电荷样本值设置较小的权重,即最后得到的长期平均值是设置权重后的 一段时间内电荷样本值的平均值,而不是筒单地计算一段时间内电荷样本值的 算术平均值, 这样可以更符合当前的环境。 对应于本实施例中的触摸识别方法,本实施例提供的触摸识别装置中所设 定的所述触摸感应阈值关联于第一预设时间内电荷样本值的长期平均值。具体 地, 所述触摸识别装置还包括均值单元,适于对在第一预设时间内得到的多个 电荷样本值进行累加求和并计算其平均值的方式或是以加权平均的方式获得 所述第一预设时间内电荷样本值的长期平均值。 此外,基于本实施例提供的触摸识别装置, 本实施例还提供一种包括所述 触摸识别装置的空间鼠标。 至于本实施例所述触摸识别装置、 空间鼠标的具体 实施可参考本实施例所述触摸识别方法以及实施例一所述触摸识别装置、空间 鼠标的实施, 在此不再赘述。
实施例三 相对于前述实施例一或实施例二,本实施例中还包括对触发接近感应事件 的判定。如实施例一中所述, 当触摸按键结构中的各电极在充电后各自产生了 源电场, 所述源电场为静电场, 且在各电极表面形成电荷累积区域, 触摸感应 事件的触发是由于接触到金属按键时,会使得所述电场分布产生变化, 引发电 荷累积区域中电荷的转移,从而电荷累积区域中电荷量发生了变化, 而一旦某 个电极的电荷累积区域中发生了剧烈的电荷量变化,一般就可以认为所述电极 对应的按键发生了触摸操作。具体是通过对电荷累积区域进行电荷补充的方式 来获得按键在面临触摸时对应的电荷累积区域的电荷样本值,并将连续的第一 预设数量个预定周期采集的所述电荷样本值均小于触摸感应阈值的按键识别 为被触摸按键。 然而, 事实上, 除了触摸所述触摸按键结构的金属按键会触发触摸感应事 件之外, 接近(未碰触到 )所述触摸按键结构时, 电荷也会有一部分通过人体 逃逸, 因此同样会引起电极的电荷累积区域中发生剧烈的电荷量变化, 可定义 为触发接近感应事件, 只不过所述接近感应事件相对于触摸感应事件来说, 电 荷量的变化相对较弱,但仍然能够根据多个连续的预定周期内,将采样到的所 述电荷样本值与接近感应阈值进行比较后,识别出接近感应事件的触发。所述 触摸感应阈值是界定触摸按键结构中的金属按键是否被接近的临界值,当某电 极对应采集到的所述电荷样本值小于所述接近感应阈值且大于所述触摸感应 阈值时, 则可初步判定为该电极对应的按键被接近。 然而, 由于引发所述电荷 累积区域中电荷发生变化的原因并不仅仅是用户手指接近所述触摸按键结构, 可能还会有其他环境干扰的影响, 此时容易引起接近感应事件的误触发(例如 用户从具有所述触摸按键结构的空间鼠标旁边经过也可能触发接近感应事 件), 事实上, 周围环境对接近感应事件触发判定的影响比对触摸感应事件触 发判定的影响更为严重, 为了获得更准确的判定结果, 类似于对触摸感应事件 触发的判定,也需要综合更多次的判定来最终获得接近感应事件的触发是否对 应了用户手指接近触摸按键结构上的按键的情况。 因此, 本实施例中, 空间鼠标的控制方法还包括: 在连续的第二预设数量 个预定周期内,当所述电荷样本值均小于接近感应阈值且大于所述触摸感应阈 值时,触发接近感应事件, 所述接近感应事件包括开启面临触摸或临近触摸的 按键下方所具有的光源, 绝缘层的材料为透明绝缘材料。 其中, 类似于实施例 一所述的第一预设数量,本实施例所述第二预设数量为衡量某按键是否识别为 被接近按键所确定的连续预定周期的个数, 一般根据实际情况进行设定。本实 施例中, 对于所述第二预设数量的设定, 与所述第一预设数量相同, 也设定为 8, 即将连续 8个预定周期内, 所述电荷样本值均小于接近感应阈值且大于触 摸感应阈值的按键识别为被接近按键。通过对连续多个预定周期内采集到的所 述电荷样本值的判定, 能有效避免接近感应事件的误触发。 所述空间鼠标的按键下方增设了光源,在连续的第二预设数量个预定周期 内,当连续检测到某一按键的电荷样本值均小于接近感应阈值且大于触摸感应 阈值时, 实际发生的情况是用户的手指靠近所述空间鼠标时, 此时可控制开启 光源,从而能够使用户在黑暗的环境中看清各个按键,增强了用户的操作体验, 进一步提高了用户的使用感受。而为了保证后续对用户手指触碰按键的触摸识 别的准确性, 可以停止对电荷转移情况的检测, 即禁止触摸面板对应的感应通 道, 以使得触摸面板的电位重新固定到接地电位, 保证按键功能正常使用。 当然, 在实际情况中, 为了筒化控制, 只要当触摸按键结构中的任意一个 按键被识别为被接近按键,即可开启空间鼠标的触摸按键结构中的所有按键下 方的光源。 进一步地, 随着用户手指触摸到金属按键, 该金属按键对应的电极的电荷 累积区域中发生电荷量变化相对于手指接近按键时剧烈得多,采样的所述电荷 样本值会更小,通过将连续的第一预设数量个预定周期内, 所述电荷样本值均 小于触摸感应阈值的按键识别为被触摸按键后,还可以调亮所述被触摸按键下 方的光源, 从而当用户触摸某个按键时, 可以将该键位处的光线更明亮, 以提 示按键, 使得用户的操作体验进一步获得增强。 当触摸按键的过程结束后, 用户手指逐渐远离所述触摸按键结构时, 电荷 样本值也开始緩緩升高。 当电荷样本值满足: 电荷样本值 > (触摸感应阈值 +LTA) x75%时, 则可判定触摸感应事件终止,恢复所述被触摸按键下方的光源调亮前的亮 度。 其中, LTA表示没有触发任何条件时, 所述电荷样本值的长期平均值, 具 体可参考实施例二中相关描述。而判定时的参数 75%也可调整为其他数值,例 如 87.5%, 主要视环境对所述触摸按键结构的噪声影响而定。 随着用户手指进一步远离所述触摸按键结构, 电荷样本值继续升高, 当电 荷样本值满足: 电荷样本值 > (接近感应阈值 +LTA) x75%时, 则可判定接近感应事件也终止, 并关闭所有按键下方的光源, 重新处于监 控所述电荷样本值的状态, 并相应地根据上述触发条件开启或调亮光源。 另外,类似于实施例二中描述的所述触摸感应阈值可以关联于第一预设时 间内电荷样本值的长期平均值, 本实施例中, 所述接近感应阈值也可以关联于 第一预设时间内电荷样本值的长期平均值。 具体地,在获得第一预设时间内电 荷样本值的长期平均值后, 所述接近感应阈值可以根据 LTA值来进行设定, 例如设定接近感应阈值为 1/8LTA。 至于 LTA值的获取可参考实施例二中相关 描述, 在此不再赘述。 对应于上述空间鼠标的控制方法, 本实施例还提供一种空间鼠标。 图 7 是本发明实施例三提供的空间鼠标的结构示意图。 结合图 6和图 7, 本实施例 所述的空间鼠标在实施例一或实施例二中所述空间鼠标的基础上,还包括接近 感应单元 40, 与所述触摸识别装置 10相连, 具体是与触摸识别装置 10中的 采样单元 102相连,适于在连续的第二预设数量个预定周期内, 当所述电荷样 本值均小于接近感应阈值且大于所述触摸感应阈值时,触发接近感应事件, 所 述接近感应事件包括开启面临触摸或临近触摸的按键下方所具有的光源, 图 2 或图 3所示绝缘层 202的材料为透明绝缘材料。 进一步地, 所述空间鼠标还包 括光亮调节单元 50, 与所述触摸识别装置 10相连, 具体是与触摸识别装置 10 中的识别单元 103相连,适于在所述识别单元 103识别出被触摸按键后,调亮 所述被触摸按键下方的光源。 此外, 本实施例中, 所述接近感应阈值也可以关联于第一预设时间内电荷 样本值的长期平均值。
至于本实施例所述空间鼠标的具体实施可参考本实施例所述空间鼠标的 控制方法、 实施例一或实施例二所述空间鼠标及其控制方法的实施,在此不再 实施例四 实施例一至实施例三中任一实施例中所述的触摸按键结构为无压力(零压 力)的触摸按键结构, 可参阅图 3 , 即用户手指触碰到触摸面板 201上的金属 按键后, 无需用力按压所述金属按键就可被较为准确地检测到触摸行为, 即使 金属按键在压力作用下有微小形变,也并非根据施加的压力及压力作用下的金 属按键的形变去检测触摸行为,具体触摸识别的过程可参考实施例一中相关描 述。
实施例一至实施例三中任一实施例中所述的触摸按键结构,由于触摸面板 包括的金属按键与板体之间通过绝缘层隔离,因此能够较准确地识别出被触摸 的金属按键, 然而,如果触摸面板为金属按键与板体一体成型的全金属触摸面 板, 则触摸某金属按键后, 部分电荷也会转移到其他按键上, 从而影响被触摸 按键识别的准确性。
因此, 本实施例中, 所述触摸按键结构为有压力的触摸按键结构。 图 8 是有压力的触摸按键结构的触摸识别示意图。本实施例所述触摸按键结构中的 金属按键在用户手指触摸后, 受到压力后会产生微小的形变,如图 8中的按键 4所示, 本实施例正^ ^于在压力作用下因金属按键的形变而引起电容量的变 化去实现触摸识别的。
本实施例所述触摸按键结构包括: 触摸面板 801 和与所述触摸面板 801 结合的侦测板 803 , 位于触摸面板 801和侦测板 803之间的绝缘层 802。 触摸 面板 801可以为全金属面板, 其形状可以根据实际需求而设计,通常为方形面 板。 触摸面板 801可以为一体成型的金属面板, 触摸面板 801包括: 设有多个 金属按键 801c的第一表面 801a和相对于第一表面 801a的第二表面 801b, 第 二表面 801b具有多个凹槽 801d,第二表面 801b的凹槽 801d与第一表面 801a 的金属按键 801c——对应,例如图示有 5个金属按键 801c,对应地,凹槽 801d 也有 5个。 触摸面板 801上的金属按键 801c为触摸式按键, 即第一表面 801a 的金属按键区域和其他区域基本在同一平面上, 只需轻触金属按键区域(或者 说在金属按键上施加轻压力), 即可以检测到按键触发, 实现相应的按键功能。 侦测板 803包括多个电极 804, 多个电极 804分别对应第一表面 801a的金属 按键 801c, 例如, 图示的金属按键 801c有 5个, 电极 804也有 5个, 与金属 按键 801c——对应。 电极 804为导电材料, 其形状和大小与第一表面 801a的 金属按键区域基本相同。
具体地,对于电容式按键检测方式,需要将按键面板上的按键的电位固定, 本实施例中, 由于触摸面板 801 为全金属的按键面板, 可以将触摸面板 801 接地, 这样触摸面板 801上的金属按键具有固定的电位, 即 0电位。 触摸面板 801上的金属按键 801c和侦测板 803上的电极 804之间的电容量 C可以用如 下公式表示:
C = s-S
d 其中, ε为介电常数, 与金属按键 801c和电极 804之间的介质有关, S为 金属按键 801c和电极 804之间的正对面积, d为金属按键 801c和电极 804之 间的距离。假设当金属按键 801c没有被触摸时, 金属按键 801c和电极 804之 间的距离为图 8所示的 dl (如从左至右方向第四个金属按键所示 ), 当金属按 键 801c被触摸时, 如图 8所示, 触摸面板 801在被触摸的按键位置(如从左 至右方向第三个金属按键所示)处发生微小形变, 金属按键 801c和电极 804 之间的距离减小为 d2,因此,金属按键 801c和电极 804之间的电容量 C增大, 由于该电容量 C的增大所引起的电荷转移量相对于实施例一中触摸到金属按 键后,因电荷从人体逃逸而使该金属按键对应的电极的电荷累积区域中发生电 荷量变化, 进而使电荷向单位电容转移的量属于不同的数量级, 即相对于实施 例一, 本实施例中碰触到金属按键后所转移的电荷量更大, 由此采集的电荷样 本值变得更小,从而使判定多个预定周期内采集的所述电荷样本值均小于所述 触摸感应阈值更为准确, 因此, 本实施例对于被触摸按键的识别比实施例一至 实施例三中任一实施例中的被触摸按键的识别更为准确。 而且, 即使触摸面板为金属按键与板体一体成型的全金属触摸面板, 由于 被触摸按键所引起的电荷转移量远远高于未被触摸按键所引起的电荷转移量, 因此, 只需要设置合适的触摸感应阈值, 能够很好地避免误触发的产生。 当然, 由于金属按键和电极之间的电容量 C增大, 相应地, 电极上的电 压增大,由此还可以将通过检测到电压发生变化的电极对应的按键识别为被触 摸按键。
需要说明的是,如图 3所示的触摸按键结构同样可以采用本实施例中所述 方式对被触摸按键进行识别, 即通过触摸金属按键, 所述金属按键在压力作用 下发生微小形变, 使电容量 C增大, 转移的电荷量相应增大, 采集的电荷样 本值变小,将连续的第一预设数量个预定周期采集的所述电荷样本值均小于触 摸感应阈值的按键识别为被触摸按键, 可以使得对被触摸按键的识别更为准 确。 综上, 本发明实施方式提供的触摸识别方法及装置、 空间鼠标及其控制方 法, 至少具有如下有益效果:
通过当触摸按键结构面临触摸或临近触摸时,记录从所述触摸按键结构的 各电极上转移的电荷总量对应的电压达到参考电压时各电极的电荷转移次数, 每隔预定周期采集各电极上转移的电荷总量对应的电压达到参考电压时各电 极的电荷转移次数作为所述电极对应的按键在所述触摸按键结构面临触摸或 临近触摸时的电荷样本值,并将连续多个预定周期内采集的所述电荷样本值均 小于触摸感应阈值的按键识别为被触摸按键, 从而能提高触摸识别的准确度, 并有效避免按键的误触发。
在识别出被触摸按键后,能够根据识别结果产生对应的控制信号准确控制 空间鼠标的操作, 实现所述被触摸按键的预设功能,从而提高用户对于空间鼠 标的操作体验。
若所述被触摸按键的预设功能包括对所述空间鼠标控制的鼠标指针选中 位置的确认功能, 则在识别出被触摸按键为实现所述确认功能的按键时,延迟 第二预设时间产生所述控制信号,从而能够在实现确认功能时防止鼠标指针的 抖动, 提高用户操作体验。 此外,在延迟的第二预设时间内,通过屏蔽对空间鼠标所包括的惯性器件 输出数据的处理, 进一步防止所述空间鼠标控制的鼠标指针的抖动,提高用户 操作体验。 本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 改、 等同变化及修饰, 均属于本发明技术方案的保护范围。

Claims

1.一种触摸识别方法, 其特征在于, 包括:
当触摸按键结构面临触摸或临近触摸时,记录从所述触摸按键结构的各电 极上转移的电荷总量对应的电压达到参考电压时各电极的电荷转移次数; 每隔预定周期采集各电极上转移的电荷总量对应的电压达到参考电压时 各电极的电荷转移次数作为所述电极对应的按键在所述触摸按键结构面临触 摸或临近触摸时的电荷样本值;
将连续的第一预设数量个预定周期采集的所述电荷样本值均小于触摸感 应阈值的按键识别为被触摸按键;
所述触摸按键结构包括: 触摸面板以及与所述触摸面板绝缘隔离的侦测 板, 所述触摸面板设有多个金属按键, 所述侦测板上具有多个分别对应所述金 属按键的电极。
2.根据权利要求 1所述的触摸识别方法, 其特征在于, 所述触摸感应阈值 关联于第一预设时间内电荷样本值的长期平均值。
3.根据权利要求 2所述的触摸识别方法, 其特征在于, 所述第一预设时间 内电荷样本值的长期平均值,是通过对在第一预设时间内得到的多个电荷样本 值进行累加求和并计算其平均值的方式或是以加权平均的方式获得的。
4.一种空间鼠标的控制方法, 其特征在于, 包括: 以权利要求 1至 3任一 项所述触摸识别方法识别出被触摸按键后,根据识别结果产生对应的控制信号 以控制所述空间鼠标的操作, 实现所述被触摸按键的预设功能。
5.根据权利要求 4所述的空间鼠标的控制方法, 其特征在于, 所述被触摸 按键的预设功能包括对所述空间鼠标控制的鼠标指针选中位置的确认功能,若 识别出被触摸按键为实现所述确认功能的按键,则延迟第二预设时间产生所述 控制信号。
6.根据权利要求 5所述的空间鼠标的控制方法, 其特征在于,还包括在延 迟的第二预设时间内, 屏蔽对所述空间鼠标所包括的惯性器件输出数据的处 理,所述惯性器件输出的数据用于实现对所述空间鼠标的空间定位以控制鼠标 指针的移动。
7.根据权利要求 4所述的空间鼠标的控制方法, 其特征在于, 还包括: 在 连续的第二预设数量个预定周期内,当所述电荷样本值均小于接近感应阈值且 大于所述触摸感应阈值时,触发接近感应事件, 所述接近感应事件包括开启面 临触摸或临近触摸的按键下方所具有的光源。
8.根据权利要求 7所述的空间鼠标的控制方法, 其特征在于, 所述接近感 应阈值关联于第一预设时间内电荷样本值的长期平均值。
9.根据权利要求 7所述的空间鼠标的控制方法, 其特征在于,在识别出被 触摸按键后, 调亮所述被触摸按键下方的光源。
10. 一种触摸识别装置, 其特征在于, 包括:
计数单元,适于当触摸按键结构面临触摸或临近触摸时,记录从所述触摸 按键结构的各电极上转移的电荷总量对应的电压达到参考电压时各电极的电 荷转移次数;
采样单元,适于每隔预定周期采集各电极上转移的电荷总量对应的电压达 到参考电压时各电极的电荷转移次数作为所述电极对应的按键在所述触摸按 键结构面临触摸或临近触摸时的电荷样本值;
识别单元,适于将连续的第一预设数量个预定周期采集的所述电荷样本值 均小于触摸感应阈值的按键识别为被触摸按键;
所述触摸按键结构包括: 触摸面板以及与所述触摸面板绝缘隔离的侦测 板, 所述触摸面板设有多个金属按键, 所述侦测板上具有多个分别对应所述金 属按键的电极。
11. 根据权利要求 10所述的触摸识别装置, 其特征在于, 所述计数单元 包括:
多个单位电容, 分别与触摸按键结构中的各电极对应连接;
多个电压检测单元, 分别与所述多个单位电容对应连接,检测对应单位电 容两端电压, 并在所述单位电容两端电压达到参考电压时, 输出计数信号, 所 述计数信号包括对于各电极上转移的电荷总量对应的电压达到参考电压时各 电极的电荷转移次数的计数值;
记录单元, 连接多个电压检测单元,记录各电压检测单元输出的计数信号 中包括的计数值, 并将所述计数值发送至所述采样单元。
12. 根据权利要求 10所述的触摸识别装置, 其特征在于, 所述触摸感应 阈值关联于第一预设时间内电荷样本值的长期平均值。
13. 根据权利要求 12所述的触摸识别装置, 其特征在于,还包括均值单 元,适于对在第一预设时间内得到的多个电荷样本值进行累加求和并计算其平 均值的方式或是以加权平均的方式获得所述第一预设时间内电荷样本值的长 期平均值。
14. 一种空间鼠标, 其特征在于, 包括: 控制单元和权利要求 10至 13 任一项所述的触摸识别装置、触摸按键结构, 所述控制单元适于在所述触摸识 别装置识别出被触摸按键后,根据识别结果产生对应的控制信号以控制所述空 间鼠标的操作, 实现所述被触摸按键的预设功能。
15. 根据权利要求 14所述的空间鼠标, 其特征在于, 所述被触摸按键的 预设功能包括对所述空间鼠标控制的鼠标指针选中位置的确认功能,所述控制 单元包括延迟单元,适于当所述识别单元识别出的被触摸按键为实现所述确认 功能的按键, 延迟第二预设时间产生所述控制信号。
16. 根据权利要求 14所述的空间鼠标, 其特征在于, 所述控制单元还包 括屏蔽单元,适于在延迟的所述第二预设时间内,屏蔽对所述空间鼠标所包括 的惯性器件输出数据的处理,所述惯性器件输出的数据用于实现对所述空间鼠 标的空间定位以控制鼠标指针的移动。
17. 根据权利要求 14所述的空间鼠标, 其特征在于,还包括接近感应单 元,适于在连续的第二预设数量个预定周期内, 当所述电荷样本值均小于接近 感应阈值且大于所述触摸感应阈值时, 触发接近感应事件, 所述接近感应事件 包括开启面临触摸或临近触摸的按键下方所具有的光源。
18. 根据权利要求 17所述的空间鼠标, 其特征在于, 所述接近感应阈值 关联于第一预设时间内电荷样本值的长期平均值。
19. 根据权利要求 17所述的空间鼠标, 其特征在于,还包括光亮调节单 元,适于在所述识别单元识别出被触摸按键后,调亮所述被触摸按键下方的光 源。
PCT/CN2011/083273 2011-11-23 2011-12-01 触摸识别方法及装置、空间鼠标及其控制方法 WO2013075344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110377558.8 2011-11-23
CN201110377558.8A CN102495682B (zh) 2011-11-23 2011-11-23 触摸识别方法及装置、空间鼠标及其控制方法

Publications (1)

Publication Number Publication Date
WO2013075344A1 true WO2013075344A1 (zh) 2013-05-30

Family

ID=46187511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083273 WO2013075344A1 (zh) 2011-11-23 2011-12-01 触摸识别方法及装置、空间鼠标及其控制方法

Country Status (2)

Country Link
CN (1) CN102495682B (zh)
WO (1) WO2013075344A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007901B (zh) * 2013-02-26 2017-11-28 联想(北京)有限公司 一种响应方法及电子设备
FR3015713A1 (fr) * 2013-12-19 2015-06-26 Dav Interface homme machine permettant de commander au moins deux fonctions d'un vehicule automobile
FR3015714B1 (fr) * 2013-12-19 2017-04-21 Dav Interface homme machine permettant de commander au moins deux fonctions d'un vehicule automobile
CN105677083B (zh) * 2015-12-30 2018-12-11 中颖电子股份有限公司 一种提高电容式触摸按键抗电磁干扰性能的方法
CN106484282B (zh) * 2016-09-14 2020-02-07 北京小米移动软件有限公司 设备控制方法及装置
CN106411310B (zh) * 2016-10-31 2023-09-19 青岛海尔科技有限公司 一种触摸按键、响应方法及系统
CN109560804A (zh) * 2018-11-07 2019-04-02 珠海格力电器股份有限公司 一种触摸按键控制方法、控制电路、芯片
WO2020133278A1 (zh) * 2018-12-28 2020-07-02 深圳市柔宇科技有限公司 人流量的监测方法、装置及相关设备
CN113131915A (zh) * 2019-12-31 2021-07-16 梅特勒-托利多(常州)测量技术有限公司 金属按键的判键方法
CN113126813B (zh) * 2021-03-01 2023-03-21 卧安科技(深圳)有限公司 一种按键误判的修正方法、装置、终端设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101414819A (zh) * 2007-10-16 2009-04-22 通泰积体电路股份有限公司 电流源控制及补偿触控电容感测方法及其装置
CN101908875A (zh) * 2010-07-23 2010-12-08 中颖电子有限公司 电容式触摸按键判键方法
CN101963865A (zh) * 2010-09-30 2011-02-02 江苏惠通集团有限责任公司 触摸识别方法、触摸键结构及触摸装置
CN101060321B (zh) * 2006-04-19 2011-04-06 北京希格玛和芯微电子技术有限公司 电荷转移装置、触摸感应装置及方法
EP2339751A2 (en) * 2009-12-22 2011-06-29 Sanyo Electric Co., Ltd. Capacitance discrimination circuit and touch switch equipped with the same
CN102495681A (zh) * 2011-11-23 2012-06-13 江苏惠通集团有限责任公司 具有触摸按键的控制设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201047934Y (zh) * 2007-02-02 2008-04-16 黄春克 悬浮按键式手握鼠标
CN102006045B (zh) * 2010-11-04 2012-06-27 江苏惠通集团有限责任公司 电容式触摸按键的判断方法
CN101977049B (zh) * 2010-11-04 2012-02-22 江苏惠通集团有限责任公司 按键识别的信号处理方法及其处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060321B (zh) * 2006-04-19 2011-04-06 北京希格玛和芯微电子技术有限公司 电荷转移装置、触摸感应装置及方法
CN101414819A (zh) * 2007-10-16 2009-04-22 通泰积体电路股份有限公司 电流源控制及补偿触控电容感测方法及其装置
EP2339751A2 (en) * 2009-12-22 2011-06-29 Sanyo Electric Co., Ltd. Capacitance discrimination circuit and touch switch equipped with the same
CN101908875A (zh) * 2010-07-23 2010-12-08 中颖电子有限公司 电容式触摸按键判键方法
CN101963865A (zh) * 2010-09-30 2011-02-02 江苏惠通集团有限责任公司 触摸识别方法、触摸键结构及触摸装置
CN102495681A (zh) * 2011-11-23 2012-06-13 江苏惠通集团有限责任公司 具有触摸按键的控制设备

Also Published As

Publication number Publication date
CN102495682A (zh) 2012-06-13
CN102495682B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2013075344A1 (zh) 触摸识别方法及装置、空间鼠标及其控制方法
WO2013075345A1 (zh) 触摸识别方法及装置、空间鼠标及其控制方法
US8102376B2 (en) Method for object detection on a capacitive touchpad
KR102262597B1 (ko) 터치 입력 자극을 결정하기 위한 정전용량 센서 및 방법
US8013842B2 (en) Method for gesture detection on a capacitive touchpad
WO2013075346A1 (zh) 具有触摸按键的控制设备
US20070165005A1 (en) Method for multiple objects detection on a capacitive touchpad
US20090002199A1 (en) Piezoelectric sensing as user input means
EP2160673A1 (en) Improvements in or relating to user interfaces and associated apparatus and methods
US7804490B2 (en) Method for multiple gesture detection and verification on a touchpad
WO2013060057A1 (zh) 触摸按键结构及触摸装置
WO2012040972A1 (zh) 触摸识别方法、触摸键结构及触摸装置
US7982717B2 (en) Method for gesture detection on a touchpad
US20070013670A1 (en) Method for gesture detection on a touchpad
WO2012161843A2 (en) System and method for determining user input and interference on an input device
US20110227823A1 (en) Puck-type pointing apparatus, pointing system, and pointing method
JP4732489B2 (ja) 静電容量式タッチパネルの物品検出方法
JP4695451B2 (ja) 静電容量式タッチパネルの物品検出方法
WO2013060059A1 (zh) 空间鼠标及其控制方法
JP4098314B2 (ja) 静電容量式タッチパネルの複数物品検出方法
EP2624108B1 (en) Touch recognition method, touch key structure and touch device
US11561111B2 (en) Displacement sensing
JP6262576B2 (ja) 静電入力装置
TW202331480A (zh) 具有壓力感測的電子裝置、其壓力感測單元、及其電容感應控制方法
CN201489510U (zh) 可提高输入准确率的软键盘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11876238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11876238

Country of ref document: EP

Kind code of ref document: A1