WO2013073535A1 - Blood purification device - Google Patents

Blood purification device Download PDF

Info

Publication number
WO2013073535A1
WO2013073535A1 PCT/JP2012/079427 JP2012079427W WO2013073535A1 WO 2013073535 A1 WO2013073535 A1 WO 2013073535A1 JP 2012079427 W JP2012079427 W JP 2012079427W WO 2013073535 A1 WO2013073535 A1 WO 2013073535A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
pressure
arterial
blood circuit
venous
Prior art date
Application number
PCT/JP2012/079427
Other languages
French (fr)
Japanese (ja)
Inventor
智洋 古橋
竹内 聡
寛 二村
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to CN201280055321.0A priority Critical patent/CN103906538B/en
Publication of WO2013073535A1 publication Critical patent/WO2013073535A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow

Definitions

  • the present invention relates to a blood purification apparatus for purifying a patient's blood while circulating it extracorporeally, such as dialysis treatment using a dialyzer.
  • a dialysis device as a blood purification device includes an arterial blood circuit with an arterial puncture needle attached to the tip, a blood circuit comprising a venous blood circuit with a venous puncture needle attached to the tip, an arterial blood circuit, and a vein
  • a dialyzer disposed between the side blood circuits to purify blood flowing through the blood circuit, a blood pump disposed in the arterial blood circuit, and a blood pump disposed in the arterial blood circuit and the venous blood circuit, respectively. It mainly comprises an arterial air trap chamber and a venous air trap chamber for foaming, and a dialyzer body capable of supplying dialysate to the dialyzer.
  • a storage bag containing physiological saline is connected between the arterial puncture needle and the blood pump in the arterial blood circuit via a physiological saline supply line, and during priming before dialysis treatment, dialysis is performed.
  • the physiological saline solution in the accommodation bag can be supplied into the blood circuit via the physiological saline supply line at the time of fluid replacement during treatment or when returning blood after dialysis treatment.
  • physiological saline solution is supplied into the blood circuit as a replacement liquid, and blood can be returned by replacing the blood in the blood circuit with the replacement liquid (for example, Patent Document 1). reference).
  • the pressure detection means is generally not provided upstream of the blood pump in the blood circuit, it is not possible to directly detect the occlusion on the artery side blood circuit side in the artery side blood return step.
  • obstruction blocking of the flow path or narrowing of the flow path, etc.
  • the blood pump is driven to rotate forward while closing the venous side electromagnetic valve disposed at the distal end of the venous side blood circuit, so that the blood pump and the venous side electromagnetic valve are connected to each other.
  • the blood pump After increasing the internal pressure to a predetermined pressure, the blood pump is driven in reverse to perform the arterial blood return process, and the actual internal pressure and the assumed downward tendency (the arterial blood circuit is assumed not to be blocked) In this case, the presence / absence of blockage can be detected by comparing with a decrease tendency of internal pressure calculated in this case.
  • JP 2006-280775 A Japanese Patent Laid-Open No. 6-261938 JP 2006-255331 A
  • the conventional blood purification device detects an occlusion of the arterial blood circuit during the arterial blood return process by comparing the actual downward tendency of the internal pressure applied in advance with the assumed downward tendency (calculated value).
  • the downward trend of assumptions to be calculated differs depending on the dimensions or specifications of the components that make up the blood purification device, or changes in various conditions during blood return. It was difficult to accurately detect the occlusion.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a blood purification apparatus capable of accurately detecting the occlusion of the arterial blood circuit in the arterial blood return process.
  • the invention according to claim 1 is composed of an arterial blood circuit and a venous blood circuit, a blood circuit capable of extracorporeally circulating a patient's blood from the tip of the arterial blood circuit to the tip of the venous blood circuit, and the blood
  • a blood purification means for purifying blood flowing between the artery-side blood circuit and the vein-side blood circuit of the circuit and flowing in the blood circuit A blood pump capable of flowing the liquid in the blood circuit, and disposed at a predetermined position on the venous blood circuit side from the position of the blood pump in the blood circuit.
  • a closing means capable of closing the path
  • a fluid pressure detecting means capable of detecting the pressure of the liquid between the disposition position of the blood pump and the disposition position of the closing means in the blood circuit
  • replacement after treatment Liquid A blood purification apparatus comprising: a control means capable of supplying blood to the liquid circuit and replacing the blood in the blood circuit with the replacement liquid to return the blood.
  • the invention according to claim 2 is the blood purification apparatus according to claim 1, wherein the corresponding predetermined time point in the arterial blood return step is a time point when the pressure accumulation step is shifted to the pressure release step. To do.
  • the invention described in claim 3 is characterized in that, in the blood purification apparatus according to claim 1, the corresponding predetermined time point in the arterial blood return step is a time point when each arterial blood return step is completed.
  • the control means performs a specific arterial blood return step among a plurality of arterial blood return steps.
  • the control means performs a specific arterial blood return step among a plurality of arterial blood return steps.
  • the arterial blood circuit by setting an alarm value and determining whether or not the pressure at a predetermined time detected by the fluid pressure detecting means in the subsequent arterial blood return step exceeds the alarm value. The blockage of the flow path can be detected.
  • an arterial valve means provided so as to be able to open and close a tip end of the arterial blood circuit, and the venous side
  • a venous valve means provided so that the vicinity of the tip of the blood circuit can be opened and closed, and the closing means comprises the venous valve means.
  • a sixth aspect of the present invention is the blood purification apparatus according to any one of the first to fifth aspects, wherein the bubbles are removed from the liquid connected to the venous blood circuit and flowing through the venous blood circuit.
  • a venous pressure sensor capable of detecting venous pressure, which is the pressure of blood flowing through the venous blood circuit by detecting the pressure in the air trap chamber, and the fluid pressure detecting means Comprises the venous pressure sensor.
  • the arterial blood is returned based on a change in pressure at a predetermined time point in each arterial blood return process, with the fluid pressure detecting means detecting the pressure while performing the arterial blood return process a plurality of times. Since the blockage of the flow path in the circuit can be detected, it is possible to accurately detect the blockage of the arterial blood circuit in the arterial blood return step.
  • the predetermined time point corresponding to the arterial blood return step is the time point when the pressure accumulation step is shifted to the pressure release step, the arterial blood circuit in the arterial blood return step is earlier. Blockage can be detected.
  • the corresponding predetermined time point in the arterial blood return step is the time point when each arterial blood return step is completed, the arterial blood circuit in the arterial blood return step can be more accurately performed. Blockage can be detected.
  • the control means sets an alarm value at the time of a specific arterial blood return step among a plurality of arterial blood return steps, and detects the fluid pressure in the subsequent arterial blood return step. Since it is possible to detect the blockage of the flow path in the arterial blood circuit by determining whether or not the pressure at a predetermined time detected by the means exceeds the alarm value, the blockage of the flow path can be detected more accurately and smoothly. Detection can be performed.
  • the arterial valve means provided so that the vicinity of the tip of the arterial blood circuit can be opened and closed
  • the venous valve means provided so that the vicinity of the tip of the venous blood circuit can be opened and closed.
  • the closing means is composed of the venous valve means, the venous valve means used in the steps related to blood purification treatment can be used to detect blockage of the flow path in the arterial blood circuit.
  • an air trap chamber connected to the venous blood circuit for removing bubbles in the liquid flowing through the venous blood circuit, and detecting the pressure in the air trap chamber
  • a venous pressure sensor capable of detecting venous pressure, which is the pressure of blood flowing through the venous blood circuit, and the fluid pressure detecting means comprises a venous pressure sensor, so that the vein used in the process related to blood purification treatment The blockage of the flow path in the arterial blood circuit can be detected by using the pressure sensor.
  • FIG. 1 is a schematic view showing a blood purification apparatus (during a venous side blood return step) according to a first embodiment of the present invention.
  • Schematic showing the blood purification device at the time of pressure accumulation in the arterial blood return process
  • Schematic showing the blood purification device at the time of pressure release in the arterial blood return process
  • the graph which shows the change of the pressure when there is no obstruction at the time of an arterial blood return process in the blood purification device The graph which shows the change of the pressure when there is obstruction at the time of an arterial blood return process in the blood purification device
  • the flowchart which shows the control content at the time of the artery side blood return by the control means of the blood purification apparatus The graph which shows the change of the pressure when there is no obstruction
  • the graph which shows the change of the pressure when there is obstruction at the time of an arterial blood return process in the blood purification device The
  • the blood purification apparatus includes a dialysis apparatus for performing dialysis treatment.
  • a blood circuit including an arterial blood circuit 1 and a venous blood circuit 2, and an artery Dialyzer 3 (blood purification means) interposed between the side blood circuit 1 and the venous side blood circuit 2 to purify blood flowing through the blood circuit, the blood pump 4, the arterial side blood circuit 1 and the venous side blood circuit 2
  • An arterial side air trap chamber 5 and a venous side air trap chamber 6 capable of supplying dialysate to the dialyzer 3, a physiological saline supply line 8 (substitution fluid supply line),
  • An accommodating means 9 containing a physiological saline solution as a replacement liquid, a venous pressure sensor 21 as a fluid pressure detecting means, an electromagnetic valve V1 as an arterial side valve means, and an electromagnetic valve V2 (closing means) as a venous
  • the arterial blood circuit 1 is connected with an arterial puncture needle at the tip thereof, and an iron-type blood pump 4 and an arterial air trap chamber 5 for defoaming are disposed in the middle of the arterial blood circuit 1.
  • a venous puncture needle is connected to the distal end of the side blood circuit 2, and a venous air trap chamber 6 is connected to the side blood circuit 2.
  • An air layer is formed in the arterial air trap chamber 5 and the venous air trap chamber 6, and bubbles in the liquid flowing through the arterial blood circuit 1 can be removed, and a filtration network (not shown) is provided. For example, a thrombus or the like when returning blood can be captured.
  • the arterial air trap chamber 5 is disposed downstream of the blood pump 4 in the arterial blood circuit 1 (between the blood pump 4 and the dialyzer 3 in the arterial blood circuit 1), and venous air
  • the trap chamber 6 is disposed on the downstream side of the dialyzer 3 in the venous blood circuit 2 (between the tip of the venous blood circuit 2 and the dialyzer 3).
  • a venous pressure sensor 21 is connected to the venous air trap chamber 6 via a monitor tube, and the fluid pressure in the venous air trap chamber 6 (that is, the pressure of blood flowing through the venous blood circuit 2).
  • the venous pressure can be detected.
  • the venous pressure sensor 21 is disposed between the position where the blood pump 4 is disposed in the blood circuit and the position where the electromagnetic valve V2 (venous valve means) serving as the closing means is disposed.
  • the pressure of the liquid can be detected.
  • An overflow line 20 is extended from the upper part (air layer side) of the venous air trap chamber 6, and an electromagnetic valve V4 is disposed in the middle thereof. Then, by opening the electromagnetic valve V4, the liquid (priming liquid or the like) flowing in the blood circuit can be overflowed via the overflow line 20.
  • the blood pump 4 is composed of a squeezing type pump disposed in the arterial blood circuit 1 and is capable of normal rotation and reverse rotation and allows fluid in the blood circuit to flow in the driving direction. That is, the arterial blood circuit 1 is connected to a corrugated tube 1a that is softer and larger in diameter than the other flexible tubes that constitute the arterial blood circuit 1, and the blood pump 4 includes the corrugated tube 1a. A roller for squeezing the tube 1a in the longitudinal direction is provided. When the blood pump 4 is driven in this manner, the roller rotates to squeeze the ironing tube 1a, and the liquid inside can flow in the driving direction (rotating direction of the roller).
  • the blood pump 4 When the blood pump 4 is driven to rotate forward (left rotation in the figure) while the patient is punctured with the arterial puncture needle and the venous puncture needle, the blood of the patient passes through the arterial blood circuit 1 and the dialyzer. After reaching 3, blood purification is performed by the dialyzer 3, and defoaming is performed in the venous air trap chamber 6, and then returns to the patient's body through the venous blood circuit 2. That is, the blood of the patient can be purified by the dialyzer 3 while circulating externally from the tip of the arterial blood circuit 1 to the tip of the venous blood circuit 2 of the blood circuit.
  • the dialyzer 3 is formed with a blood introduction port 3a, a blood outlet port 3b, a dialysate inlet port 3c, and a dialysate outlet port 3d in the casing.
  • the blood inlet port 3a includes the arterial blood circuit 1.
  • the venous blood circuit 2 is connected to the blood outlet port 3b.
  • the dialysate introduction port 3c and the dialysate lead-out port 3d are connected to a dialysate introduction line La and a dialysate discharge line Lb extending from the dialyzer body B, respectively.
  • a plurality of hollow fibers are accommodated in the dialyzer 3, the inside of the hollow fibers is used as a blood flow path, and the flow of dialysate is between the hollow fiber outer peripheral surface and the inner peripheral surface of the housing. It is considered a road.
  • a hollow fiber membrane is formed in the hollow fiber by forming a large number of minute holes (pores) penetrating the outer circumferential surface and the inner circumferential surface, and impurities in the blood are passed through the membrane in the dialysate. It is comprised so that it can permeate
  • the dialyzer main body B is provided with a dual pump 17 across the dialysate introduction line La and the dialysate discharge line Lb, and the bypass line Lc that bypasses the dual pump 17 is provided in the dialyzer 3.
  • a dewatering pump 18 is provided for removing water from the flowing patient's blood.
  • one end of the dialysate introduction line La is connected to the dialyzer 3 (dialyte introduction port 3c), and the other end is connected to a dialysate supply device (not shown) for preparing a predetermined concentration of dialysate.
  • dialysate discharge line Lb is connected to the dialyzer 3 (dialysate outlet port 3d), and the other end is connected to a drain means (not shown), and the dialysate supplied from the dialysate supply device After passing through the dialysate introduction line La to the dialyzer 3, it is sent to the drainage means through the dialysate discharge line Lb.
  • a physiological saline supply line 8 (substitution liquid supply line) is connected at one end to a T-shaped tube T between the position of the blood pump 4 in the artery-side blood circuit 1 and the tip of the artery-side blood circuit 1.
  • the flow path (for example, a flexible tube etc.) which can supply the physiological saline solution (substitution liquid) for replacing with the blood in the blood circuit to the artery side blood circuit 1 is provided.
  • the other end of the physiological saline supply line 8 is connected to a storage means 9 that stores a predetermined amount of physiological saline, and an air trap chamber 7 is connected in the middle.
  • Reference numeral 16 in the figure denotes a tube detector comprising a sensor or the like for detecting the presence or absence of the physiological saline supply line 8.
  • the physiological saline solution supply line 8 is provided with a solenoid valve V3.
  • the electromagnetic valve V3 is provided so that the physiological saline supply line 8 can be opened and closed, and the flow path can be closed and opened. By opening and closing the electromagnetic valve V3, the physiological saline supply line 8 flows. It is possible to arbitrarily switch between a closed state in which the path is closed and a flowing state in which a physiological saline solution (substitution solution) can flow.
  • the electromagnetic valve V3 is configured such that the opening / closing operation at the time of returning blood is controlled by the control means 19 described in detail later.
  • an arterial-side bubble detecting means 10 is disposed in the vicinity of the tip of the arterial blood circuit 1 (near the electromagnetic valve V1 as the arterial-side valve means), and in the vicinity of the tip of the venous-side blood circuit 2 (the venous valve). In the vicinity of the electromagnetic valve V2 as a means), the venous side bubble detecting means 11 is disposed.
  • the arterial-side bubble detection means 10 and the venous-side bubble detection means 11 are composed of sensors that can detect bubbles in the liquid flowing in the flow path, and are electrically connected to the control means 19.
  • reference numerals 12 and 13 and reference numerals 14 and 15 denote blood discriminators disposed near the tip of the arterial blood circuit 1 and near the tip of the venous blood circuit 2 (where blood flows in the flow path). And a tube detector (a sensor or the like for detecting the presence or absence of the arterial blood circuit 1 and the venous blood circuit 2).
  • a control means 19 composed of, for example, a microcomputer is disposed.
  • the control means 19 includes, for example, actuators such as the blood pump 4 and electromagnetic valves V1, V2, and V3, venous pressure sensors 21, arterial-side bubble detection means 10 and venous-side bubble detection means 11, and blood discriminators 12, 13 and the like.
  • actuators such as the blood pump 4 and electromagnetic valves V1, V2, and V3, venous pressure sensors 21, arterial-side bubble detection means 10 and venous-side bubble detection means 11, and blood discriminators 12, 13 and the like.
  • control means 19 drives the blood pump 4 to rotate forward at the time of returning blood, and from the connection portion (position of the T-shaped tube T) to the physiological saline supply line 8 in the blood circuit, the venous blood circuit 2 is connected to the physiological saline supply line 8 in the blood circuit by reversely driving the blood pump 4 to return the blood up to the tip of the blood 2 by replacing the blood with physiological saline to return the blood.
  • an arterial blood return step (see FIG. 3) for returning blood by replacing the blood from (position of the T-shaped tube T) to the tip of the arterial blood circuit 1 with physiological saline. .
  • the control means 19 drives the blood pump 4 to rotate forward while the flow path is closed by the electromagnetic valve V2 (venous side electromagnetic valve), and the arrangement position of the blood pump 4 and the electromagnetic valve
  • the pressure accumulation step (see FIG. 2) for accumulating pressure between the position where V2 is disposed and the blood pump 4 is driven in reverse while maintaining the closing of the flow path by the electromagnetic valve V2, and blood is returned from the tip of the arterial blood circuit 1
  • the pressure is detected by the venous pressure sensor 21 (hydraulic pressure detecting means) while performing the arterial blood return step including the pressure release step (see FIG. 3) to be performed a plurality of times, and corresponding predetermined time points in each arterial blood return step It is assumed that the blockage of the flow path in the arterial blood circuit 1 can be detected based on the change in pressure of the blood flow.
  • the solenoid valve V3 and the solenoid valve V2 are closed while the solenoid valve V1 and the solenoid valve V2 are closed under the control of the control means 19, and the blood pump 4 is set to the normal state.
  • This is a step of accumulating by increasing the pressure of the liquid between the disposition position of the blood pump 4 and the disposition position of the electromagnetic valve V2 by rolling driving (clockwise driving in the figure).
  • the solenoid valve V1 is opened while the solenoid valve V2 and the solenoid valve V3 are closed under the control of the control means 19, and the blood pump 4 is driven in reverse (same as above). This is a step of returning blood to the patient from the tip of the arterial blood circuit 1 while releasing the pressure applied in the pressure accumulation step.
  • the pressure accumulation process and the pressure release process as described above are performed once to complete one venous blood return process.
  • the venous blood return process is performed a plurality of times.
  • the venous pressure sensor 21 is configured to detect the pressure. When the pressure is detected by the venous pressure sensor 21 while repeatedly performing the venous side blood return step including the pressure accumulation step and the pressure release step, as shown in the graph of FIG. A plurality will be formed according to the side blood return process.
  • FIG. 4 As shown in FIG. 4, the blood pump 4 between the pressure accumulation process and the pressure release process is stopped when the corresponding predetermined time (the pressure change monitoring time) in the arterial blood return process is shifted from the pressure accumulation process to the pressure release process. And a change in pressure at that time (ac) is monitored, and by determining whether or not the pressure at the predetermined time exceeds the alarm value, It is configured to detect the blockage of the flow path in the arterial blood circuit 1.
  • the corresponding predetermined time the pressure change monitoring time
  • ac a change in pressure at that time
  • the pressure at the predetermined time point c exceeds the alarm value in the pressure waveform corresponding to the third arterial blood return step, and thereby the blockage of the flow path is detected.
  • the corresponding predetermined time points (pressure change monitoring time points) in the arterial blood return step are time points a to c when the blood pump 4 is stopped between the pressure accumulation step and the pressure release step. The blood pump 4 does not need to be stopped at the time when the pressure accumulation process is shifted to the pressure release process.
  • the control means 19 sets an alarm value during a specific arterial blood return step (preferably during the first arterial blood return step) among a plurality of arterial blood return steps. Then, it is determined whether or not the pressure at a predetermined time point (time points a to c at which the pressure accumulation process is shifted to the pressure release process) detected by the venous pressure sensor 21 in the arterial blood return process performed thereafter has exceeded the alarm value. Thus, the blockage of the flow path in the arterial blood circuit 1 can be detected.
  • the blood pump 4 is stopped (S1), and then the blood pump 4 is driven to rotate forward to perform the pressure accumulation process (S2).
  • the electromagnetic valve V3 is opened while the electromagnetic valve V1 and the electromagnetic valve V2 are closed (see FIG. 2).
  • the blood pump is stopped (S3), the pressure is detected by the venous pressure sensor 21 (S4), and an alarm value is set based on the detected pressure (S5).
  • a value obtained by adding a predetermined value ⁇ (see FIGS. 4 and 5) determined in advance to the pressure value detected in S4 is set as an alarm value.
  • the blood pump 4 is driven in reverse to perform the pressure release process (S6).
  • the solenoid valve V2 and the solenoid valve V3 are closed while the solenoid valve V1 is opened, and the saline solution supplied from the saline supply line 8 is used.
  • the physiological saline and blood are replaced, and blood is returned from the tip of the arterial blood circuit 1 (see FIG. 3).
  • the blood pump 4 is driven to rotate forward again to perform the pressure accumulation process (S9), and when the pressure accumulation process S9 is completed (in this embodiment, a predetermined time point b when the pressure accumulation process is shifted to the pressure release process). It is determined whether or not the pressure exceeds the alarm value set in S5 (S10). Here, if it is determined that the pressure at the predetermined time point b exceeds the alarm value, an alarm indicating that the flow path is blocked in the artery side blood circuit 1 is output (S11).
  • the alarm may be any of sound and sound effect generation, image display, lighting by a lighting means or blinking display, and control may be performed so as to stop blood return simultaneously with the alarm.
  • the blood pump 4 is stopped (S12), and then the blood pump 4 is driven in reverse to perform the pressure release step (S13).
  • the blood is returned from the tip of the arterial blood circuit 1, and it is determined whether or not the fluid that has flowed by driving the blood pump 4 has reached a predetermined amount (S14), and it is determined that the predetermined amount has been reached. Then, the blood pump 4 is stopped (S15), and the second arterial blood return step is completed.
  • the introduced physiological saline solution replacement solution
  • the introduced physiological saline solution replacement solution
  • the process returns to S9, and the pressure accumulation step S9 and the pressure release step S13 are performed again sequentially, and the next (third and subsequent) arterial blood return step is performed. Will be.
  • the corresponding predetermined time point in the arterial blood return step (that is, the time point at which the pressure change in each arterial blood return step is monitored) is set as the time point when the pressure accumulation step is shifted to the pressure release step. Therefore, the peak of the pressure waveform formed in accordance with the venous blood return process is monitored, and the occlusion of the arterial blood circuit in the arterial blood return process can be detected with higher accuracy. Further, an alarm value is set during the first arterial blood return process, and it is determined whether or not the alarm value has been exceeded in the subsequent arterial blood return process. It can be done early.
  • an alarm value is set when the first arterial blood return process is completed, and the alarm value is exceeded at the end of the subsequent arterial blood return process with reference to the alarm value.
  • the alarm value may be set again after the determination of S10.
  • the alarm value can be set by various methods in addition to the present embodiment. Furthermore, even before reaching the time points a, b, and c at the time of each arterial blood return step, if the detected pressure exceeds an alarm value, an alarm can be generated when the detected pressure exceeds the alarm value. In this case, the abnormal state can be grasped earlier.
  • the blood purification apparatus according to the present embodiment includes a dialysis apparatus for performing dialysis treatment.
  • the apparatus configuration is the same as that of the first embodiment (see FIGS. 1 to 3), and the first The control content at the time of blood return on the arterial blood circuit 1 side by the control means 19 is different from that of the embodiment.
  • the specific apparatus configuration according to this embodiment is the same as that of the first embodiment, and thus detailed description thereof is omitted here.
  • the control means 19 drives the blood pump 4 to rotate forward while closing the flow path with the electromagnetic valve V2 (venous side electromagnetic valve), and the blood pump 4 is arranged.
  • the pressure accumulation step (see FIG. 2) for accumulating pressure between the installed position and the position where the electromagnetic valve V2 is disposed, and the blood pump 4 is driven in reverse while maintaining the flow path closed by the electromagnetic valve V2, thereby causing the arterial blood circuit 1
  • the pressure is detected by the venous pressure sensor 21 (hydraulic pressure detecting means) while performing the arterial blood return process including the pressure release process (see FIG. 3) for returning blood from the tip of each of the arteries, and each arterial blood return process.
  • the blockage of the flow path in the arterial blood circuit 1 can be detected based on the corresponding change in pressure at a predetermined time.
  • the corresponding predetermined time point (pressure change monitoring time point) in the arterial blood return step is the time point at which each arterial blood return step ends (each arterial side)
  • the time point d to f) is the time when the blood return process is completed and the blood pump 4 is stopped, and the pressure change at that time (d to f) is monitored.
  • the pressure at a predetermined time point e exceeds the alarm value in the pressure waveform corresponding to the second arterial blood return step, and thus the blockage of the flow path is detected.
  • control means 19 sets an alarm value during a specific arterial blood return step (preferably during the first arterial blood return step) among a plurality of arterial blood return steps. Then, it is determined whether or not the pressure at a predetermined time point detected by the venous pressure sensor 21 in the subsequent arterial blood return process (time points d to f when each arterial blood return process is completed) exceeds the alarm value. Thus, the blockage of the flow path in the arterial blood circuit 1 can be detected.
  • the content of control at the time of artery side blood return by the control means 19 according to the second embodiment will be described based on the flowchart of FIG.
  • the blood pump 4 is stopped (S1)
  • the pressure is detected by the venous pressure sensor 21 (S2)
  • an alarm value is set based on the detected pressure (S3).
  • a value obtained by adding a predetermined value ⁇ (see FIGS. 7 and 8) to the pressure value detected in S2 is set as the alarm value.
  • the blood pump 4 is driven forward to perform the pressure accumulation step (S4).
  • the electromagnetic valve V3 is opened while the electromagnetic valve V1 and the electromagnetic valve V2 are closed (see FIG. 2).
  • the blood pump 4 is driven in reverse to perform the pressure release step (S6).
  • the solenoid valve V2 and the solenoid valve V3 are closed while the solenoid valve V1 is opened, and the saline solution supplied from the saline supply line 8 is used. The physiological saline and blood are replaced, and blood is returned from the tip of the arterial blood circuit 1 (see FIG. 3).
  • the blood pump 4 is stopped (S8) and the first time.
  • the pressure at this time point in this embodiment, the predetermined time point d when the arterial blood return process is completed
  • an alarm indicating that the flow path is blocked in the arterial blood circuit 1 is output (S10).
  • the alarm may be any of sound and sound effect generation, image display, lighting by a lighting means or blinking display, and control may be performed so as to stop blood return simultaneously with the alarm.
  • the blood pump 4 is driven forward again to perform the pressure accumulation step (S11). Thereafter, the blood pump 4 is stopped (S12), and then the blood pump 4 is driven in reverse to perform a pressure release step (S13) to return blood from the distal end of the arterial blood circuit 1, and the blood pump 4 It is determined whether or not the amount of fluid that has flowed through the driving has reached a predetermined amount (S14). If it is determined that the predetermined amount has been reached, the blood pump 4 is stopped (S15), and the second arterial return is performed. The process ends.
  • the introduced physiological saline solution replacement solution
  • the introduced physiological saline solution replacement solution
  • the process returns to S9, and after the determination in S9 is performed again, the next (third and subsequent) arterial blood return step is performed.
  • a predetermined time point corresponding to the arterial blood return process (that is, a time point at which a change in pressure in each arterial blood return process is monitored) is a time point at which each arterial blood return process is completed. Therefore, the blockage of the arterial blood circuit 1 in the arterial blood return process can be detected earlier. Further, an alarm value is set when the first arterial blood return process is completed, and it is determined whether or not the alarm value is exceeded at the end of the subsequent arterial blood return process. The occlusion can be detected at an early stage.
  • an alarm value is set when the first arterial blood return process is completed, and the alarm value is exceeded at the end of the subsequent arterial blood return process with reference to the alarm value.
  • the alarm value may be set again after the determination of S9.
  • the alarm value can be set by various methods in addition to the present embodiment.
  • the pressure is detected by the venous pressure sensor 21 (hydraulic pressure detecting means) while performing the arterial blood return process a plurality of times, and the corresponding predetermined time points in each arterial blood return process Since the blockage of the flow path in the arterial blood circuit 1 can be detected based on the change in pressure, the blockage of the arterial blood circuit 1 in the arterial blood return process can be detected with high accuracy.
  • the corresponding predetermined time point (the time point at which the pressure is monitored) is not limited to the time point when the pressure accumulation step is shifted to the pressure release step and the time point when each arterial blood return step is completed as in the above embodiment.
  • the time point may be any time point, such as when a predetermined time has elapsed since the start of the arterial blood return step.
  • control means 19 sets an alarm value during a specific arterial blood return process among a plurality of arterial blood return processes, and in the subsequent arterial blood return process, the venous pressure sensor 21 (hydraulic pressure detection means) ), It is possible to detect the blockage of the flow path in the arterial blood circuit 1 by determining whether or not the pressure at the predetermined time point detected in (1) has exceeded the alarm value, so that the flow path is blocked more accurately and smoothly. Can be detected.
  • an electromagnetic valve V1 cardiac side valve means
  • an electromagnetic valve V2 venous side valve
  • an air trap chamber (corresponding to the venous air trap chamber 6 of the present embodiment) connected to the venous blood circuit 2 for removing bubbles in the liquid flowing through the venous blood circuit 2, and the air
  • a venous pressure sensor 21 capable of detecting venous pressure, which is the pressure of blood flowing through the venous blood circuit 2 by detecting the pressure in the trap chamber, and the fluid pressure detecting means (in the blood circuit) according to the present invention.
  • the means for detecting the pressure of the liquid in the blood circuit which is arranged between the position where the blood pump 4 is disposed and the position where the closing means is disposed, comprises the venous pressure sensor 21, and is therefore involved in blood purification treatment.
  • the venous pressure sensor 21 used in the process can be used to detect blockage of the flow path in the arterial blood circuit 1.
  • the substitution liquid used at the time of a blood return is not limited to a physiological saline,
  • a dialysate introduction line By connecting the La or dialysate discharge line Lb and the T-shaped tube T, or by reversely filtering the dialysate from the dialyzer 3 (blood purification means), the arterial blood circuit 1 and the venous blood are obtained using the dialysate as a replacement liquid. It may be supplied to the circuit 2.
  • the compound pump 17 or the dewatering pump is used instead of the blood pump 4 or together with the blood pump 4 in a state where the flow path is closed by the closing means (the electromagnetic valve V2 in the present embodiment). 18 may be driven so that the dialysate is back-filtered between the disposition position of the blood pump 4 and the disposition position of the closing means to accumulate pressure.
  • the arterial blood circuit is determined by determining whether or not the pressure at a predetermined time detected by the venous pressure sensor 21 (hydraulic pressure detecting means) in the arterial blood return step exceeds an alarm value. 1, it is sufficient if it is possible to detect the blockage of the flow path in the arterial blood circuit 1 based on the corresponding change in pressure at a predetermined time in each arterial blood return step.
  • the pressures at the corresponding predetermined time points in the plurality of arterial blood return steps may be compared, and an alarm may be issued when the difference is greater than or equal to a predetermined value.
  • the closing means is configured by diverting the electromagnetic valve V2 (venous valve means) that has been conventionally provided in the blood purification apparatus, but is separate from the electromagnetic valve V2. It may be arranged in the.
  • the disposition position of the closing means is not limited to the vicinity of the distal end of the venous blood circuit, but may be a predetermined position on the venous blood circuit 2 side (downstream side) from the disposition position of the blood pump 4 in the blood circuit. Any position may be sufficient.
  • the fluid pressure detecting means is configured by diverting the venous pressure sensor 21 that has been conventionally provided in the blood purification apparatus, but separately from the venous pressure sensor 21. It may be arranged.
  • the disposition position of the fluid pressure detecting means is not limited to the venous air trap chamber 6, and any position between the disposition position of the blood pump 4 and the disposition position of the closing means in the blood circuit. It may be.
  • the fluid pressure detecting means can detect the pressure of the liquid between the position where the blood pump 4 is disposed in the blood circuit and the position where the closing means (the electromagnetic valve V2 in this embodiment) is disposed.
  • a dialysis fluid pressure sensor that is disposed in the dialysis fluid discharge line and detects the fluid pressure of the dialysis fluid flowing through the dialysis fluid discharge line may be used. May be.
  • the present invention is applied to a dialysis apparatus used at the time of dialysis treatment, but other forms of blood purification apparatus (for example, blood filtration dialysis method, blood filtration method) that can purify the patient's blood while circulating it extracorporeally.
  • the present invention may be applied to blood purification devices, plasma adsorption devices, etc. used in AFBF.

Abstract

[Problem] To provide a blood purification device capable of precisely detecting blockages of an arterial blood circuit in an arterial blood return step. [Solution] A controlling means (19) detects pressure with a venous pressure sensor (21) while also carrying out a plurality of iterations of arterial blood return steps comprising a pressure accumulation step for forward-driving a blood pump (4) while also closing off a flow path with an electromagnetic valve (V2) to accumulate pressure between the installation position of the blood pump (4) and the installation position of the electromagnetic valve (V2), and a pressure release step for reverse-driving the blood pump (4) while also maintaining the closing off of the flow path by the electromagnetic valve (V2) to return blood from the distal end of an arterial blood circuit (2); and blockages of the flow path in an arterial blood circuit (1) can be detected on the basis of the change in pressure at corresponding predetermined points in time in each of the arterial blood return steps.

Description

血液浄化装置Blood purification equipment
 本発明は、ダイアライザを使用した透析治療等、患者の血液を体外循環させつつ浄化するための血液浄化装置に関するものである。 The present invention relates to a blood purification apparatus for purifying a patient's blood while circulating it extracorporeally, such as dialysis treatment using a dialyzer.
 血液浄化装置としての透析装置は、先端に動脈側穿刺針が取り付けられた動脈側血液回路、先端に静脈側穿刺針が取り付けられた静脈側血液回路から成る血液回路と、動脈側血液回路及び静脈側血液回路の間に介装されて血液回路を流れる血液を浄化するダイアライザと、動脈側血液回路に配設された血液ポンプと、動脈側血液回路及び静脈側血液回路にそれぞれ配設されて除泡するための動脈側エアトラップチャンバ及び静脈側エアトラップチャンバと、ダイアライザに透析液を供給し得る透析装置本体とから主に構成されている。 A dialysis device as a blood purification device includes an arterial blood circuit with an arterial puncture needle attached to the tip, a blood circuit comprising a venous blood circuit with a venous puncture needle attached to the tip, an arterial blood circuit, and a vein A dialyzer disposed between the side blood circuits to purify blood flowing through the blood circuit, a blood pump disposed in the arterial blood circuit, and a blood pump disposed in the arterial blood circuit and the venous blood circuit, respectively. It mainly comprises an arterial air trap chamber and a venous air trap chamber for foaming, and a dialyzer body capable of supplying dialysate to the dialyzer.
 また、動脈側血液回路における動脈側穿刺針と血液ポンプとの間には、生理食塩液供給ラインを介して生理食塩液を収容した収容バッグが接続されており、透析治療前のプライミング時、透析治療中の補液時、又は透析治療後の返血時に収容バッグ内の生理食塩液を生理食塩液供給ラインを介して血液回路内に供給し得るようになっている。例えば、返血時においては、生理食塩液を置換液として血液回路内に供給し、当該血液回路内の血液を置換液に置換させることにより返血し得るものとされている(例えば特許文献1参照)。 In addition, a storage bag containing physiological saline is connected between the arterial puncture needle and the blood pump in the arterial blood circuit via a physiological saline supply line, and during priming before dialysis treatment, dialysis is performed. The physiological saline solution in the accommodation bag can be supplied into the blood circuit via the physiological saline supply line at the time of fluid replacement during treatment or when returning blood after dialysis treatment. For example, at the time of returning blood, physiological saline solution is supplied into the blood circuit as a replacement liquid, and blood can be returned by replacing the blood in the blood circuit with the replacement liquid (for example, Patent Document 1). reference).
 ところで、近時においては、医療従事者の負担軽減を図るべく、血液浄化治療における種々工程を自動化させるニーズが高まりつつあり、例えば、返血時、血液ポンプを正転駆動させることにより、静脈側血液回路の先端から患者に返血する静脈側返血工程と、血液ポンプを逆転駆動させることにより、動脈側血液回路の先端から患者に返血する動脈側返血工程とを交互に行わせる制御手段を具備させた血液浄化装置が提案されている(例えば特許文献2参照)。 Recently, there is a growing need to automate various steps in blood purification treatment in order to reduce the burden on medical staff. For example, when blood is returned, the blood pump is driven forward to drive the vein side. Control that alternately performs the venous return process for returning blood to the patient from the tip of the blood circuit and the arterial return process for returning blood to the patient from the tip of the arterial blood circuit by driving the blood pump in reverse. A blood purification apparatus provided with means has been proposed (see, for example, Patent Document 2).
 しかるに、血液回路における血液ポンプよりも上流側には、一般に、圧力検出手段が配設されていないため、動脈側返血工程で動脈側血液回路側の閉塞を直接検出することができないことから、返血の自動化を図る上で安全性を確保すべく、動脈側返血工程において動脈側血液回路の何れかの部位に閉塞(異物による流路の詰まりや流路の狭窄等)が生じたことを検知し得る血液浄化装置が提案されている(例えば特許文献3参照)。かかる従来の血液浄化装置によれば、静脈側血液回路の先端部に配設された静脈側電磁弁を閉じつつ血液ポンプを正転駆動させることにより、当該血液ポンプと静脈側電磁弁との間の内圧を所定圧まで上昇させた後、血液ポンプを逆転駆動させて動脈側返血工程を行わせ、当該内圧の実際の下落傾向と仮定下落傾向(動脈側血液回路に閉塞がないと仮定した場合に算出される内圧の下落傾向)とを比較して閉塞の有無を検知し得るよう構成されている。 However, since the pressure detection means is generally not provided upstream of the blood pump in the blood circuit, it is not possible to directly detect the occlusion on the artery side blood circuit side in the artery side blood return step. In order to ensure safety in automating blood return, obstruction (blockage of the flow path or narrowing of the flow path, etc.) occurred in any part of the arterial blood circuit during the arterial return process Has been proposed (see, for example, Patent Document 3). According to such a conventional blood purification device, the blood pump is driven to rotate forward while closing the venous side electromagnetic valve disposed at the distal end of the venous side blood circuit, so that the blood pump and the venous side electromagnetic valve are connected to each other. After increasing the internal pressure to a predetermined pressure, the blood pump is driven in reverse to perform the arterial blood return process, and the actual internal pressure and the assumed downward tendency (the arterial blood circuit is assumed not to be blocked) In this case, the presence / absence of blockage can be detected by comparing with a decrease tendency of internal pressure calculated in this case.
特開2006-280775号公報JP 2006-280775 A 特開平6-261938号公報Japanese Patent Laid-Open No. 6-261938 特開2006-255331号公報JP 2006-255331 A
 しかしながら、上記従来の血液浄化装置は、予め付与した内圧の実際の下落傾向と仮定の下落傾向(算出値)とを比較することにより動脈側返血工程時における動脈側血液回路の閉塞を検知し得るものであったので、血液浄化装置を構成する部品の寸法若しくは仕様、又は返血時の種々条件の変化等により、算出されるべき仮定の下落傾向が相違してしまい、動脈側血液回路の閉塞を精度よく検知することが困難であった。 However, the conventional blood purification device detects an occlusion of the arterial blood circuit during the arterial blood return process by comparing the actual downward tendency of the internal pressure applied in advance with the assumed downward tendency (calculated value). As a result, the downward trend of assumptions to be calculated differs depending on the dimensions or specifications of the components that make up the blood purification device, or changes in various conditions during blood return. It was difficult to accurately detect the occlusion.
 本発明は、このような事情に鑑みてなされたもので、動脈側返血工程における動脈側血液回路の閉塞を精度よく検知することができる血液浄化装置を提供することにある。 The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a blood purification apparatus capable of accurately detecting the occlusion of the arterial blood circuit in the arterial blood return process.
 請求項1記載の発明は、動脈側血液回路及び静脈側血液回路から成るとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させ得る血液回路と、該血液回路の動脈側血液回路及び静脈側血液回路の間に介装されて当該血液回路を流れる血液を浄化する血液浄化手段と、前記動脈側血液回路に配設されるとともに、正転駆動及び逆転駆動が可能とされ、前記血液回路内の液体を流動させ得る血液ポンプと、前記血液回路における前記血液ポンプの配設位置より前記静脈側血液回路側の所定位置に配設され、当該血液回路の流路を閉止可能な閉止手段と、前記血液回路内における前記血液ポンプの配設位置と前記閉止手段の配設位置との間の液体の圧力を検出し得る液圧検出手段と、治療後、置換液を前記血液回路に供給させ、当該血液回路内の血液を前記置換液に置換させて返血させ得る制御手段とを具備した血液浄化装置であって、前記制御手段は、前記閉止手段にて流路を閉止させ、当該血液ポンプの配設位置と前記閉止手段の配設位置との間で蓄圧させる蓄圧工程と、前記閉止手段による流路の閉止を維持させつつ前記血液ポンプを逆転駆動させ、前記動脈側血液回路の先端から返血させる圧解放工程とを含む動脈側返血工程を複数回行わせつつ前記液圧検出手段で圧力を検出させ、各動脈側返血工程における対応する所定時点の圧力の変化に基づき前記動脈側血液回路における流路の閉塞を検知し得ることを特徴とする。 The invention according to claim 1 is composed of an arterial blood circuit and a venous blood circuit, a blood circuit capable of extracorporeally circulating a patient's blood from the tip of the arterial blood circuit to the tip of the venous blood circuit, and the blood A blood purification means for purifying blood flowing between the artery-side blood circuit and the vein-side blood circuit of the circuit and flowing in the blood circuit; A blood pump capable of flowing the liquid in the blood circuit, and disposed at a predetermined position on the venous blood circuit side from the position of the blood pump in the blood circuit. A closing means capable of closing the path, a fluid pressure detecting means capable of detecting the pressure of the liquid between the disposition position of the blood pump and the disposition position of the closing means in the blood circuit, and replacement after treatment Liquid A blood purification apparatus comprising: a control means capable of supplying blood to the liquid circuit and replacing the blood in the blood circuit with the replacement liquid to return the blood. A pressure accumulating step for closing and accumulating pressure between the disposition position of the blood pump and the disposition position of the closing means; and the blood pump is driven in reverse while maintaining the closing of the flow path by the closing means, and the artery Pressure is detected by the fluid pressure detecting means while performing a plurality of arterial blood return steps including a pressure release step of returning blood from the tip of the side blood circuit, and pressure corresponding to a predetermined time in each arterial blood return step It is possible to detect the blockage of the flow path in the arterial blood circuit based on the change of the above.
 請求項2記載の発明は、請求項1記載の血液浄化装置において、前記動脈側返血工程における対応する所定時点は、前記蓄圧工程から前記圧解放工程に移行する時点とされたことを特徴とする。 The invention according to claim 2 is the blood purification apparatus according to claim 1, wherein the corresponding predetermined time point in the arterial blood return step is a time point when the pressure accumulation step is shifted to the pressure release step. To do.
 請求項3記載の発明は、請求項1記載の血液浄化装置において、前記動脈側返血工程における対応する所定時点は、各動脈側返血工程が終了した時点とされたことを特徴とする。 The invention described in claim 3 is characterized in that, in the blood purification apparatus according to claim 1, the corresponding predetermined time point in the arterial blood return step is a time point when each arterial blood return step is completed.
 請求項4記載の発明は、請求項1~3の何れか1つに記載の血液浄化装置において、前記制御手段は、複数行われる動脈側返血工程のうち特定の前記動脈側返血工程時に警報値を設定するとともに、その後行われる動脈側返血工程において前記液圧検出手段で検出された所定時点の圧力が当該警報値を超えたか否かを判定することにより、前記動脈側血液回路における流路の閉塞を検知し得ることを特徴とする。 According to a fourth aspect of the present invention, in the blood purification apparatus according to any one of the first to third aspects, the control means performs a specific arterial blood return step among a plurality of arterial blood return steps. In the arterial blood circuit, by setting an alarm value and determining whether or not the pressure at a predetermined time detected by the fluid pressure detecting means in the subsequent arterial blood return step exceeds the alarm value. The blockage of the flow path can be detected.
 請求項5記載の発明は、請求項1~4の何れか1つに記載の血液浄化装置において、前記動脈側血液回路の先端近傍を開閉可能として設けられた動脈側弁手段と、前記静脈側血液回路の先端近傍を開閉可能として設けられた静脈側弁手段とを具備するとともに、前記閉止手段は、前記静脈側弁手段から成ることを特徴とする。 According to a fifth aspect of the present invention, in the blood purification apparatus according to any one of the first to fourth aspects, an arterial valve means provided so as to be able to open and close a tip end of the arterial blood circuit, and the venous side And a venous valve means provided so that the vicinity of the tip of the blood circuit can be opened and closed, and the closing means comprises the venous valve means.
 請求項6記載の発明は、請求項1~5の何れか1つに記載の血液浄化装置において、前記静脈側血液回路に接続され、当該静脈側血液回路を流れる液体中の気泡を除去するためのエアトラップチャンバと、該エアトラップチャンバ内の圧力を検出することにより前記静脈側血液回路を流れる血液の圧力である静脈圧を検出し得る静脈圧センサとを具備するとともに、前記液圧検出手段は、前記静脈圧センサから成ることを特徴とする。 A sixth aspect of the present invention is the blood purification apparatus according to any one of the first to fifth aspects, wherein the bubbles are removed from the liquid connected to the venous blood circuit and flowing through the venous blood circuit. And a venous pressure sensor capable of detecting venous pressure, which is the pressure of blood flowing through the venous blood circuit by detecting the pressure in the air trap chamber, and the fluid pressure detecting means Comprises the venous pressure sensor.
 請求項1の発明によれば、動脈側返血工程を複数回行わせつつ液圧検出手段で圧力を検出させ、各動脈側返血工程における対応する所定時点の圧力の変化に基づき動脈側血液回路における流路の閉塞を検知し得るので、動脈側返血工程における動脈側血液回路の閉塞を精度よく検知することができる。 According to the first aspect of the present invention, the arterial blood is returned based on a change in pressure at a predetermined time point in each arterial blood return process, with the fluid pressure detecting means detecting the pressure while performing the arterial blood return process a plurality of times. Since the blockage of the flow path in the circuit can be detected, it is possible to accurately detect the blockage of the arterial blood circuit in the arterial blood return step.
 請求項2の発明によれば、動脈側返血工程における対応する所定時点は、蓄圧工程から圧解放工程に移行する時点とされたので、より早期に動脈側返血工程における動脈側血液回路の閉塞を検知することができる。 According to the invention of claim 2, since the predetermined time point corresponding to the arterial blood return step is the time point when the pressure accumulation step is shifted to the pressure release step, the arterial blood circuit in the arterial blood return step is earlier. Blockage can be detected.
 請求項3の発明によれば、動脈側返血工程における対応する所定時点は、各動脈側返血工程が終了した時点とされたので、より精度よく動脈側返血工程における動脈側血液回路の閉塞を検知することができる。 According to the invention of claim 3, since the corresponding predetermined time point in the arterial blood return step is the time point when each arterial blood return step is completed, the arterial blood circuit in the arterial blood return step can be more accurately performed. Blockage can be detected.
 請求項4の発明によれば、制御手段は、複数行われる動脈側返血工程のうち特定の動脈側返血工程時に警報値を設定するとともに、その後行われる動脈側返血工程において液圧検出手段で検出された所定時点の圧力が当該警報値を超えたか否かを判定することにより、動脈側血液回路における流路の閉塞を検知し得るので、より精度よく且つ円滑に流路の閉塞の検知を行わせることができる。 According to the invention of claim 4, the control means sets an alarm value at the time of a specific arterial blood return step among a plurality of arterial blood return steps, and detects the fluid pressure in the subsequent arterial blood return step. Since it is possible to detect the blockage of the flow path in the arterial blood circuit by determining whether or not the pressure at a predetermined time detected by the means exceeds the alarm value, the blockage of the flow path can be detected more accurately and smoothly. Detection can be performed.
 請求項5の発明によれば、動脈側血液回路の先端近傍を開閉可能として設けられた動脈側弁手段と、静脈側血液回路の先端近傍を開閉可能として設けられた静脈側弁手段とを具備するとともに、閉止手段は、静脈側弁手段から成るので、血液浄化治療に関わる工程で使用される静脈側弁手段を流用して動脈側血液回路における流路の閉塞を検知することができる。 According to the invention of claim 5, the arterial valve means provided so that the vicinity of the tip of the arterial blood circuit can be opened and closed, and the venous valve means provided so that the vicinity of the tip of the venous blood circuit can be opened and closed. In addition, since the closing means is composed of the venous valve means, the venous valve means used in the steps related to blood purification treatment can be used to detect blockage of the flow path in the arterial blood circuit.
 請求項6の発明によれば、静脈側血液回路に接続され、当該静脈側血液回路を流れる液体中の気泡を除去するためのエアトラップチャンバと、該エアトラップチャンバ内の圧力を検出することにより静脈側血液回路を流れる血液の圧力である静脈圧を検出し得る静脈圧センサとを具備するとともに、液圧検出手段は、静脈圧センサから成るので、血液浄化治療に関わる工程で使用される静脈圧センサを流用して動脈側血液回路における流路の閉塞を検知することができる。 According to the invention of claim 6, an air trap chamber connected to the venous blood circuit for removing bubbles in the liquid flowing through the venous blood circuit, and detecting the pressure in the air trap chamber A venous pressure sensor capable of detecting venous pressure, which is the pressure of blood flowing through the venous blood circuit, and the fluid pressure detecting means comprises a venous pressure sensor, so that the vein used in the process related to blood purification treatment The blockage of the flow path in the arterial blood circuit can be detected by using the pressure sensor.
本発明の第1の実施形態に係る血液浄化装置(静脈側返血工程時)を示す模式図1 is a schematic view showing a blood purification apparatus (during a venous side blood return step) according to a first embodiment of the present invention. 同血液浄化装置(動脈側返血工程の蓄圧工程時)を示す模式図Schematic showing the blood purification device (at the time of pressure accumulation in the arterial blood return process) 同血液浄化装置(動脈側返血工程の圧解放工程時)を示す模式図Schematic showing the blood purification device (at the time of pressure release in the arterial blood return process) 同血液浄化装置において動脈側返血工程時に閉塞がない場合の圧力の変化を示すグラフThe graph which shows the change of the pressure when there is no obstruction at the time of an arterial blood return process in the blood purification device 同血液浄化装置において動脈側返血工程時に閉塞がある場合の圧力の変化を示すグラフThe graph which shows the change of the pressure when there is obstruction at the time of an arterial blood return process in the blood purification device 同血液浄化装置の制御手段による動脈側返血時の制御内容を示すフローチャートThe flowchart which shows the control content at the time of the artery side blood return by the control means of the blood purification apparatus 本発明の第2の実施形態に係る血液浄化装置において動脈側返血工程時に閉塞がない場合の圧力の変化を示すグラフThe graph which shows the change of the pressure when there is no obstruction | occlusion at the time of an artery side blood return process in the blood purification apparatus which concerns on the 2nd Embodiment of this invention. 同血液浄化装置において動脈側返血工程時に閉塞がある場合の圧力の変化を示すグラフThe graph which shows the change of the pressure when there is obstruction at the time of an arterial blood return process in the blood purification device 同血液浄化装置の制御手段による動脈側返血時の制御内容を示すフローチャートThe flowchart which shows the control content at the time of the artery side blood return by the control means of the blood purification apparatus
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 第1の実施形態に係る血液浄化装置は、透析治療を行うための透析装置から成り、図1~3に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化手段)と、血液ポンプ4と、動脈側血液回路1及び静脈側血液回路2にそれぞれ配設された動脈側エアトラップチャンバ5及び静脈側エアトラップチャンバ6と、ダイアライザ3に透析液を供給し得る透析装置本体Bと、生理食塩液供給ライン8(置換液供給ライン)と、置換液としての生理食塩液を収容した収容手段9と、液圧検出手段としての静脈圧センサ21と、動脈側弁手段としての電磁弁V1及び静脈側弁手段としての電磁弁V2(閉止手段)と、制御手段19とから主に構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
The blood purification apparatus according to the first embodiment includes a dialysis apparatus for performing dialysis treatment. As shown in FIGS. 1 to 3, a blood circuit including an arterial blood circuit 1 and a venous blood circuit 2, and an artery Dialyzer 3 (blood purification means) interposed between the side blood circuit 1 and the venous side blood circuit 2 to purify blood flowing through the blood circuit, the blood pump 4, the arterial side blood circuit 1 and the venous side blood circuit 2 An arterial side air trap chamber 5 and a venous side air trap chamber 6, a dialyzer body B capable of supplying dialysate to the dialyzer 3, a physiological saline supply line 8 (substitution fluid supply line), An accommodating means 9 containing a physiological saline solution as a replacement liquid, a venous pressure sensor 21 as a fluid pressure detecting means, an electromagnetic valve V1 as an arterial side valve means, and an electromagnetic valve V2 (closing means) as a venous side valve means. , It is mainly a control unit 19..
 動脈側血液回路1には、その先端に動脈側穿刺針が接続されるとともに、途中にしごき型の血液ポンプ4及び除泡のための動脈側エアトラップチャンバ5が配設されている一方、静脈側血液回路2には、その先端に静脈側穿刺針が接続されるとともに、途中に静脈側エアトラップチャンバ6が接続されている。動脈側エアトラップチャンバ5及び静脈側エアトラップチャンバ6には、空気層が形成されており、動脈側血液回路1を流れる液体中の気泡を除去し得るとともに、濾過網(不図示)が配設されており、例えば返血時の血栓等を捕捉し得るようになっている。 The arterial blood circuit 1 is connected with an arterial puncture needle at the tip thereof, and an iron-type blood pump 4 and an arterial air trap chamber 5 for defoaming are disposed in the middle of the arterial blood circuit 1. A venous puncture needle is connected to the distal end of the side blood circuit 2, and a venous air trap chamber 6 is connected to the side blood circuit 2. An air layer is formed in the arterial air trap chamber 5 and the venous air trap chamber 6, and bubbles in the liquid flowing through the arterial blood circuit 1 can be removed, and a filtration network (not shown) is provided. For example, a thrombus or the like when returning blood can be captured.
 また、動脈側エアトラップチャンバ5は、動脈側血液回路1における血液ポンプ4の下流側(動脈側血液回路1における血液ポンプ4とダイアライザ3との間)に配設されているとともに、静脈側エアトラップチャンバ6は、静脈側血液回路2におけるダイアライザ3の下流側(静脈側血液回路2における先端部とダイアライザ3との間)に配設されている。 The arterial air trap chamber 5 is disposed downstream of the blood pump 4 in the arterial blood circuit 1 (between the blood pump 4 and the dialyzer 3 in the arterial blood circuit 1), and venous air The trap chamber 6 is disposed on the downstream side of the dialyzer 3 in the venous blood circuit 2 (between the tip of the venous blood circuit 2 and the dialyzer 3).
 さらに、静脈側エアトラップチャンバ6には、モニタチューブを介して静脈圧センサ21が接続されており、当該静脈側エアトラップチャンバ6内の液圧(すなわち、静脈側血液回路2を流れる血液の圧力である静脈圧)を検出し得るよう構成されている。しかして、この静脈圧センサ21は、血液回路における血液ポンプ4の配設位置と閉止手段としての電磁弁V2(静脈側弁手段)の配設位置との間に配設され、当該血液回路内の液体の圧力を検出し得るものとされている。なお、静脈側エアトラップチャンバ6の上部(空気層側)からは、オーバーフローライン20が延設されており、その途中に電磁弁V4が配設されている。そして、電磁弁V4を開状態とすることにより、オーバーフローライン20を介して、血液回路中を流れる液体(プライミング液等)をオーバーフローし得るようになっている。 Furthermore, a venous pressure sensor 21 is connected to the venous air trap chamber 6 via a monitor tube, and the fluid pressure in the venous air trap chamber 6 (that is, the pressure of blood flowing through the venous blood circuit 2). The venous pressure) can be detected. The venous pressure sensor 21 is disposed between the position where the blood pump 4 is disposed in the blood circuit and the position where the electromagnetic valve V2 (venous valve means) serving as the closing means is disposed. The pressure of the liquid can be detected. An overflow line 20 is extended from the upper part (air layer side) of the venous air trap chamber 6, and an electromagnetic valve V4 is disposed in the middle thereof. Then, by opening the electromagnetic valve V4, the liquid (priming liquid or the like) flowing in the blood circuit can be overflowed via the overflow line 20.
 血液ポンプ4は、動脈側血液回路1に配設されたしごき型ポンプから成り、正転駆動及び逆転駆動可能とされるとともに、血液回路内の液体を駆動方向に流動させ得るものである。すなわち、動脈側血液回路1には、当該動脈側血液回路1を構成する他の可撓性チューブより軟質かつ大径の被しごきチューブ1aが接続されており、血液ポンプ4には、この被しごきチューブ1aを長手方向にしごくためのローラが配設されているのである。このように血液ポンプ4が駆動すると、そのローラが回動して被しごきチューブ1aをしごき、内部の液体を駆動方向(ローラの回転方向)に流動させることができるのである。 The blood pump 4 is composed of a squeezing type pump disposed in the arterial blood circuit 1 and is capable of normal rotation and reverse rotation and allows fluid in the blood circuit to flow in the driving direction. That is, the arterial blood circuit 1 is connected to a corrugated tube 1a that is softer and larger in diameter than the other flexible tubes that constitute the arterial blood circuit 1, and the blood pump 4 includes the corrugated tube 1a. A roller for squeezing the tube 1a in the longitudinal direction is provided. When the blood pump 4 is driven in this manner, the roller rotates to squeeze the ironing tube 1a, and the liquid inside can flow in the driving direction (rotating direction of the roller).
 しかして、動脈側穿刺針及び静脈側穿刺針を患者に穿刺した状態で、血液ポンプ4を正転駆動(図中左回転)させると、患者の血液は、動脈側血液回路1を通ってダイアライザ3に至った後、該ダイアライザ3によって血液浄化が施され、静脈側エアトラップチャンバ6で除泡がなされつつ静脈側血液回路2を通って患者の体内に戻る。すなわち、患者の血液を血液回路の動脈側血液回路1の先端から静脈側血液回路2の先端まで体外循環させつつダイアライザ3にて浄化させ得るのである。 When the blood pump 4 is driven to rotate forward (left rotation in the figure) while the patient is punctured with the arterial puncture needle and the venous puncture needle, the blood of the patient passes through the arterial blood circuit 1 and the dialyzer. After reaching 3, blood purification is performed by the dialyzer 3, and defoaming is performed in the venous air trap chamber 6, and then returns to the patient's body through the venous blood circuit 2. That is, the blood of the patient can be purified by the dialyzer 3 while circulating externally from the tip of the arterial blood circuit 1 to the tip of the venous blood circuit 2 of the blood circuit.
 ダイアライザ3は、その筐体部に、血液導入ポート3a、血液導出ポート3b、透析液導入ポート3c及び透析液導出ポート3dが形成されており、このうち血液導入ポート3aには動脈側血液回路1が、血液導出ポート3bには静脈側血液回路2がそれぞれ接続されている。また、透析液導入ポート3c及び透析液導出ポート3dは、透析装置本体Bから延設された透析液導入ラインLa及び透析液排出ラインLbとそれぞれ接続されている。 The dialyzer 3 is formed with a blood introduction port 3a, a blood outlet port 3b, a dialysate inlet port 3c, and a dialysate outlet port 3d in the casing. Among these, the blood inlet port 3a includes the arterial blood circuit 1. However, the venous blood circuit 2 is connected to the blood outlet port 3b. The dialysate introduction port 3c and the dialysate lead-out port 3d are connected to a dialysate introduction line La and a dialysate discharge line Lb extending from the dialyzer body B, respectively.
 ダイアライザ3内には、複数の中空糸が収容されており、該中空糸内部が血液の流路とされるとともに、中空糸外周面と筐体部の内周面との間が透析液の流路とされている。中空糸には、その外周面と内周面とを貫通した微少な孔(ポア)が多数形成されて中空糸膜を形成しており、該膜を介して血液中の不純物等が透析液内に透過し得るよう構成されている。 A plurality of hollow fibers are accommodated in the dialyzer 3, the inside of the hollow fibers is used as a blood flow path, and the flow of dialysate is between the hollow fiber outer peripheral surface and the inner peripheral surface of the housing. It is considered a road. A hollow fiber membrane is formed in the hollow fiber by forming a large number of minute holes (pores) penetrating the outer circumferential surface and the inner circumferential surface, and impurities in the blood are passed through the membrane in the dialysate. It is comprised so that it can permeate | transmit.
 一方、透析装置本体Bには、透析液導入ラインLa及び透析液排出ラインLbに跨って複式ポンプ17が配設されているとともに、当該複式ポンプ17をバイパスするバイパスラインLcにはダイアライザ3中を流れる患者の血液から水分を除去するための除水ポンプ18が配設されている。さらに、透析液導入ラインLaの一端がダイアライザ3(透析液導入ポート3c)に接続されるとともに、他端が所定濃度の透析液を調製する透析液供給装置(不図示)に接続されている。また、透析液排出ラインLbの一端は、ダイアライザ3(透析液導出ポート3d)に接続されるとともに、他端が図示しない排液手段と接続されており、透析液供給装置から供給された透析液が透析液導入ラインLaを通ってダイアライザ3に至った後、透析液排出ラインLbを通って排液手段に送られるようになっている。 On the other hand, the dialyzer main body B is provided with a dual pump 17 across the dialysate introduction line La and the dialysate discharge line Lb, and the bypass line Lc that bypasses the dual pump 17 is provided in the dialyzer 3. A dewatering pump 18 is provided for removing water from the flowing patient's blood. Furthermore, one end of the dialysate introduction line La is connected to the dialyzer 3 (dialyte introduction port 3c), and the other end is connected to a dialysate supply device (not shown) for preparing a predetermined concentration of dialysate. In addition, one end of the dialysate discharge line Lb is connected to the dialyzer 3 (dialysate outlet port 3d), and the other end is connected to a drain means (not shown), and the dialysate supplied from the dialysate supply device After passing through the dialysate introduction line La to the dialyzer 3, it is sent to the drainage means through the dialysate discharge line Lb.
 生理食塩液供給ライン8(置換液供給ライン)は、動脈側血液回路1における血液ポンプ4の配設位置と当該動脈側血液回路1の先端との間のT字管Tに一端が接続され、血液回路内の血液と置換させるための生理食塩液(置換液)を当該動脈側血液回路1に供給可能な流路(例えば可撓性チューブ等)から成るものである。かかる生理食塩液供給ライン8の他端には、所定量の生理食塩液を収容した収容手段9が接続されているとともに、途中には、エアトラップチャンバ7が接続されている。なお、図中符号16は、生理食塩液供給ライン8の有無を検出するためのセンサ等から成るチューブ検出器を示している。 A physiological saline supply line 8 (substitution liquid supply line) is connected at one end to a T-shaped tube T between the position of the blood pump 4 in the artery-side blood circuit 1 and the tip of the artery-side blood circuit 1. The flow path (for example, a flexible tube etc.) which can supply the physiological saline solution (substitution liquid) for replacing with the blood in the blood circuit to the artery side blood circuit 1 is provided. The other end of the physiological saline supply line 8 is connected to a storage means 9 that stores a predetermined amount of physiological saline, and an air trap chamber 7 is connected in the middle. Reference numeral 16 in the figure denotes a tube detector comprising a sensor or the like for detecting the presence or absence of the physiological saline supply line 8.
 また、本実施形態に係る生理食塩液供給ライン8には、電磁弁V3が配設されている。かかる電磁弁V3は、生理食塩液供給ライン8を開閉可能として設けられ、流路の閉塞及び開放を行わせ得るもので、当該電磁弁V3を開閉させることにより、生理食塩液供給ライン8の流路を閉塞させる閉塞状態と生理食塩液(置換液)を流通させ得る流通状態とを任意に切り替え可能とされている。この電磁弁V3は、特に返血時の開閉動作が後で詳述する制御手段19にて制御されるよう構成されている。 In addition, the physiological saline solution supply line 8 according to the present embodiment is provided with a solenoid valve V3. The electromagnetic valve V3 is provided so that the physiological saline supply line 8 can be opened and closed, and the flow path can be closed and opened. By opening and closing the electromagnetic valve V3, the physiological saline supply line 8 flows. It is possible to arbitrarily switch between a closed state in which the path is closed and a flowing state in which a physiological saline solution (substitution solution) can flow. The electromagnetic valve V3 is configured such that the opening / closing operation at the time of returning blood is controlled by the control means 19 described in detail later.
 さらに、動脈側血液回路1における動脈側穿刺針の近傍(動脈側血液回路1の先端近傍であって生理食塩液供給ライン8の接続部(T字管Tの位置)と動脈側穿刺針との間)、及び静脈側血液回路2における静脈側穿刺針の近傍(静脈側血液回路2の先端近傍であって静脈側エアトラップチャンバ6と静脈側穿刺針との間)には、動脈側弁手段としての電磁弁V1及び静脈側弁手段としての電磁弁V2(閉止手段)がそれぞれ配設されている。これら電磁弁V1及びV2は、開閉動作により、配設された各々の部位における流路を閉塞及び開放し得るものであり、特に返血時の開閉動作が後で詳述する制御手段19にて制御されるよう構成されている。 Further, in the vicinity of the arterial puncture needle in the arterial blood circuit 1 (near the tip of the arterial blood circuit 1 and the connection portion of the physiological saline supply line 8 (position of the T-shaped tube T) and the arterial puncture needle. Between the vein side blood circuit 2 and the vicinity of the vein side puncture needle (near the tip of the vein side blood circuit 2 and between the vein side air trap chamber 6 and the vein side puncture needle). And a solenoid valve V2 (closing means) as a venous valve means. These solenoid valves V1 and V2 are capable of closing and opening the flow paths in the respective portions provided by opening and closing operations, and the opening and closing operations at the time of returning blood are performed by the control means 19 described in detail later. It is configured to be controlled.
 また、動脈側血液回路1の先端近傍(動脈側弁手段としての電磁弁V1近傍)には、動脈側気泡検出手段10が配設されるとともに、静脈側血液回路2の先端近傍(静脈側弁手段としての電磁弁V2近傍)には、静脈側気泡検出手段11が配設されている。これら動脈側気泡検出手段10及び静脈側気泡検出手段11は、流路内を流れる液体中の気泡を検出し得るセンサから成り、制御手段19と電気的に接続されている。なお、図中符号12、13及び符号14、15は、動脈側血液回路1の先端近傍及び静脈側血液回路2の先端近傍に配設された血液判別器(流路内を血液が流通しているか否かを判別するセンサ等)及びチューブ検出器(動脈側血液回路1及び静脈側血液回路2の有無を検出するためのセンサ等)を示している。 In addition, an arterial-side bubble detecting means 10 is disposed in the vicinity of the tip of the arterial blood circuit 1 (near the electromagnetic valve V1 as the arterial-side valve means), and in the vicinity of the tip of the venous-side blood circuit 2 (the venous valve). In the vicinity of the electromagnetic valve V2 as a means), the venous side bubble detecting means 11 is disposed. The arterial-side bubble detection means 10 and the venous-side bubble detection means 11 are composed of sensors that can detect bubbles in the liquid flowing in the flow path, and are electrically connected to the control means 19. In the figure, reference numerals 12 and 13 and reference numerals 14 and 15 denote blood discriminators disposed near the tip of the arterial blood circuit 1 and near the tip of the venous blood circuit 2 (where blood flows in the flow path). And a tube detector (a sensor or the like for detecting the presence or absence of the arterial blood circuit 1 and the venous blood circuit 2).
 本実施形態に係る透析装置本体B内には、例えばマイコン等から成る制御手段19が配設されている。かかる制御手段19は、例えば血液ポンプ4や電磁弁V1、V2及びV3等のアクチュエータ、静脈圧センサ21、動脈側気泡検出手段10及び静脈側気泡検出手段11や血液判別器12、13等のセンサ類と電気的に接続されたものであり、血液浄化治療後、電磁弁V3を流通状態として生理食塩液(置換液)を血液回路に供給させ、当該血液回路内の血液を生理食塩液(置換液)に置換させて返血させ得るものである。 In the dialyzer main body B according to the present embodiment, a control means 19 composed of, for example, a microcomputer is disposed. The control means 19 includes, for example, actuators such as the blood pump 4 and electromagnetic valves V1, V2, and V3, venous pressure sensors 21, arterial-side bubble detection means 10 and venous-side bubble detection means 11, and blood discriminators 12, 13 and the like. After the blood purification treatment, the physiological valve (replacement liquid) is supplied to the blood circuit after the blood purification treatment, and the blood in the blood circuit is replaced with the physiological saline (replacement). The blood can be returned to the blood.
 より具体的には、制御手段19は、返血時、血液ポンプ4を正転駆動させ、血液回路における生理食塩液供給ライン8との接続部(T字管Tの位置)から静脈側血液回路2の先端までの血液を生理食塩液に置換させて返血する静脈側返血工程(図1参照)と、血液ポンプ4を逆転駆動させ、血液回路における生理食塩液供給ライン8との接続部(T字管Tの位置)から動脈側血液回路1の先端までの血液を生理食塩液に置換させて返血する動脈側返血工程(図3参照)とを行わせ得るものとされている。 More specifically, the control means 19 drives the blood pump 4 to rotate forward at the time of returning blood, and from the connection portion (position of the T-shaped tube T) to the physiological saline supply line 8 in the blood circuit, the venous blood circuit 2 is connected to the physiological saline supply line 8 in the blood circuit by reversely driving the blood pump 4 to return the blood up to the tip of the blood 2 by replacing the blood with physiological saline to return the blood. It is supposed that an arterial blood return step (see FIG. 3) for returning blood by replacing the blood from (position of the T-shaped tube T) to the tip of the arterial blood circuit 1 with physiological saline. .
 ここで、本実施形態に係る制御手段19は、電磁弁V2(静脈側電磁弁)にて流路を閉止させつつ血液ポンプ4を正転駆動させ、当該血液ポンプ4の配設位置と電磁弁V2の配設位置との間で蓄圧させる蓄圧工程(図2参照)と、電磁弁V2による流路の閉止を維持させつつ血液ポンプ4を逆転駆動させ、動脈側血液回路1の先端から返血させる圧解放工程(図3参照)とを含む動脈側返血工程を複数回行わせつつ静脈圧センサ21(液圧検出手段)で圧力を検出させ、各動脈側返血工程における対応する所定時点の圧力の変化に基づき動脈側血液回路1における流路の閉塞を検知し得るものとされている。 Here, the control means 19 according to this embodiment drives the blood pump 4 to rotate forward while the flow path is closed by the electromagnetic valve V2 (venous side electromagnetic valve), and the arrangement position of the blood pump 4 and the electromagnetic valve The pressure accumulation step (see FIG. 2) for accumulating pressure between the position where V2 is disposed and the blood pump 4 is driven in reverse while maintaining the closing of the flow path by the electromagnetic valve V2, and blood is returned from the tip of the arterial blood circuit 1 The pressure is detected by the venous pressure sensor 21 (hydraulic pressure detecting means) while performing the arterial blood return step including the pressure release step (see FIG. 3) to be performed a plurality of times, and corresponding predetermined time points in each arterial blood return step It is assumed that the blockage of the flow path in the arterial blood circuit 1 can be detected based on the change in pressure of the blood flow.
 より具体的には、蓄圧工程は、図2に示すように、制御手段19による制御にて、電磁弁V1及び電磁弁V2を閉状態としつつ電磁弁V3を開状態とし、血液ポンプ4を正転駆動(同図において左回りの駆動)させることにより、当該血液ポンプ4の配設位置と電磁弁V2の配設位置との間の液体の圧力を上昇させて蓄圧する工程である。この蓄圧工程により、動脈側血液回路1の先端から返血する際に使用する所定量の置換液を貯め込んで確保することができる。また、圧解放工程は、図3に示すように、制御手段19による制御にて、電磁弁V1を開状態としつつ電磁弁V2及び電磁弁V3を閉状態とし、血液ポンプ4を逆転駆動(同図において右回りの駆動)させることにより、蓄圧工程で付与された圧力を解放しつつ動脈側血液回路1の先端から患者に返血する工程である。 More specifically, in the pressure accumulating step, as shown in FIG. 2, the solenoid valve V3 and the solenoid valve V2 are closed while the solenoid valve V1 and the solenoid valve V2 are closed under the control of the control means 19, and the blood pump 4 is set to the normal state. This is a step of accumulating by increasing the pressure of the liquid between the disposition position of the blood pump 4 and the disposition position of the electromagnetic valve V2 by rolling driving (clockwise driving in the figure). By this pressure accumulating step, a predetermined amount of replacement liquid used when returning blood from the tip of the arterial blood circuit 1 can be stored and secured. In the pressure release process, as shown in FIG. 3, the solenoid valve V1 is opened while the solenoid valve V2 and the solenoid valve V3 are closed under the control of the control means 19, and the blood pump 4 is driven in reverse (same as above). This is a step of returning blood to the patient from the tip of the arterial blood circuit 1 while releasing the pressure applied in the pressure accumulation step.
 そして、上記の如き蓄圧工程及び圧解放工程を1回ずつ行わせて1回の静脈側返血工程が終了するのであるが、本実施形態においては、かかる静脈側返血工程を複数回行わせつつ静脈圧センサ21にて圧力を検出させるよう構成されている。蓄圧工程及び圧解放工程から成る静脈側返血工程を複数回繰り返し行わせつつ静脈圧センサ21にて圧力を検出すると、図4のグラフに示すように、圧力の上昇及び下降を示す波形が静脈側返血工程に応じて複数個形成されることとなる。 Then, the pressure accumulation process and the pressure release process as described above are performed once to complete one venous blood return process. In this embodiment, the venous blood return process is performed a plurality of times. However, the venous pressure sensor 21 is configured to detect the pressure. When the pressure is detected by the venous pressure sensor 21 while repeatedly performing the venous side blood return step including the pressure accumulation step and the pressure release step, as shown in the graph of FIG. A plurality will be formed according to the side blood return process.
 しかるに、動脈側血液回路1における流路の閉塞がない場合、蓄圧工程で付与された圧力が圧解放工程でほぼ全て解放される(すなわち、蓄圧工程で貯め込んだ置換液が全て流れた)ことから、図4に示すように、静脈側返血工程に応じて順次形成された複数の圧力の波形が略同一の圧力値で推移するのに対し、動脈側血液回路1における流路の閉塞が生じている場合、蓄圧工程で付与された圧力が流路の閉塞によって圧解放工程においても解放しきれない(すなわち、蓄圧工程で貯め込んだ置換液の一部又は全部が流れない)ことから、図5に示すように、静脈側返血工程に応じて形成された圧力の波形が順次上昇して推移することとなる。 However, when there is no blockage of the flow path in the arterial blood circuit 1, almost all of the pressure applied in the pressure accumulation process is released in the pressure release process (that is, all the replacement fluid stored in the pressure accumulation process flows). As shown in FIG. 4, the plurality of pressure waveforms sequentially formed in accordance with the venous side blood return process change at substantially the same pressure value, whereas the flow path in the arterial blood circuit 1 is blocked. If it occurs, the pressure applied in the pressure accumulation process cannot be released even in the pressure release process due to blockage of the flow path (that is, part or all of the replacement liquid stored in the pressure accumulation process does not flow). As shown in FIG. 5, the pressure waveform formed in accordance with the venous blood return process sequentially rises and changes.
 そこで、各動脈側返血工程における対応する所定時点の圧力の変化に基づき動脈側血液回路1における流路の閉塞を検知することが可能であることから、本実施形態においては、図4、5に示すように、動脈側返血工程における対応する所定時点(圧力変化の監視時点)を蓄圧工程から圧解放工程に移行する時点(蓄圧工程と圧解放工程との間の血液ポンプ4を停止させた時点である時点a~c)とし、その時点(a~c)の圧力の変化を監視するものとされており、当該所定時点の圧力が警報値を超えたか否かを判定することにより、動脈側血液回路1における流路の閉塞を検知し得るよう構成されている。本実施形態の図5においては、3回目の動脈側返血工程に対応する圧力の波形において所定時点cの圧力が警報値を超えており、これにより流路の閉塞が検知されることとなる。なお、本実施形態においては、動脈側返血工程における対応する所定時点(圧力変化の監視時点)を蓄圧工程と圧解放工程との間の血液ポンプ4を停止させた時点a~cとしているが、蓄圧工程から圧解放工程に移行する時点であれば血液ポンプ4を停止させる必要はない。 Therefore, since it is possible to detect the blockage of the flow path in the arterial blood circuit 1 based on a change in pressure at a corresponding predetermined time in each arterial blood return step, in the present embodiment, FIG. As shown in FIG. 4, the blood pump 4 between the pressure accumulation process and the pressure release process is stopped when the corresponding predetermined time (the pressure change monitoring time) in the arterial blood return process is shifted from the pressure accumulation process to the pressure release process. And a change in pressure at that time (ac) is monitored, and by determining whether or not the pressure at the predetermined time exceeds the alarm value, It is configured to detect the blockage of the flow path in the arterial blood circuit 1. In FIG. 5 of the present embodiment, the pressure at the predetermined time point c exceeds the alarm value in the pressure waveform corresponding to the third arterial blood return step, and thereby the blockage of the flow path is detected. . In the present embodiment, the corresponding predetermined time points (pressure change monitoring time points) in the arterial blood return step are time points a to c when the blood pump 4 is stopped between the pressure accumulation step and the pressure release step. The blood pump 4 does not need to be stopped at the time when the pressure accumulation process is shifted to the pressure release process.
 また、本実施形態においては、制御手段19は、複数行われる動脈側返血工程のうち特定の動脈側返血工程時(最初の動脈側返血工程時が好ましい)に警報値を設定するとともに、その後行われる動脈側返血工程において静脈圧センサ21で検出された所定時点(蓄圧工程から圧解放工程に移行する時点a~c)の圧力が当該警報値を超えたか否かを判定することにより、動脈側血液回路1における流路の閉塞を検知し得るよう構成されている。 In the present embodiment, the control means 19 sets an alarm value during a specific arterial blood return step (preferably during the first arterial blood return step) among a plurality of arterial blood return steps. Then, it is determined whether or not the pressure at a predetermined time point (time points a to c at which the pressure accumulation process is shifted to the pressure release process) detected by the venous pressure sensor 21 in the arterial blood return process performed thereafter has exceeded the alarm value. Thus, the blockage of the flow path in the arterial blood circuit 1 can be detected.
 次に、第1の実施形態に係る制御手段19による動脈側返血時の制御内容について図6のフローチャートに基づいて説明する。
 静脈側返血工程が終了すると、血液ポンプ4を停止(S1)させた後、当該血液ポンプ4を正転駆動させて蓄圧工程(S2)を行わせる。この蓄圧工程においては、既述したように、電磁弁V1及び電磁弁V2を閉状態としつつ電磁弁V3を開状態としている(図2参照)。その後、血液ポンプを停止(S3)させ、静脈圧センサ21にて圧力を検出する(S4)とともに、検出された圧力に基づき警報値を設定する(S5)。本実施形態においては、S4で検出された圧力の値に対して予め定められた所定値α(図4、5参照)を加算した値が警報値とされる。
Next, the contents of control performed by the control means 19 according to the first embodiment at the time of return of the artery side will be described based on the flowchart of FIG.
When the venous blood return process is completed, the blood pump 4 is stopped (S1), and then the blood pump 4 is driven to rotate forward to perform the pressure accumulation process (S2). In this pressure accumulating step, as described above, the electromagnetic valve V3 is opened while the electromagnetic valve V1 and the electromagnetic valve V2 are closed (see FIG. 2). Thereafter, the blood pump is stopped (S3), the pressure is detected by the venous pressure sensor 21 (S4), and an alarm value is set based on the detected pressure (S5). In the present embodiment, a value obtained by adding a predetermined value α (see FIGS. 4 and 5) determined in advance to the pressure value detected in S4 is set as an alarm value.
 そして、血液ポンプ4を逆転駆動させて圧解放工程(S6)を行わせる。この圧解放工程においては、既述したように、電磁弁V1を開状態としつつ電磁弁V2及び電磁弁V3を閉状態とされており、生理食塩液供給ライン8から供給される生理食塩液によって当該生理食塩液と血液とが置換され、動脈側血液回路1の先端から返血が行われることとなる(図3参照)。その後、血液ポンプ4の駆動によって流動した液体が所定量に達したか否かが判定され(S7)、所定量に達したと判定されると、血液ポンプ4を停止し(S8)、1回目の動脈側返血工程が終了する。 Then, the blood pump 4 is driven in reverse to perform the pressure release process (S6). In this pressure release process, as described above, the solenoid valve V2 and the solenoid valve V3 are closed while the solenoid valve V1 is opened, and the saline solution supplied from the saline supply line 8 is used. The physiological saline and blood are replaced, and blood is returned from the tip of the arterial blood circuit 1 (see FIG. 3). Thereafter, it is determined whether or not the liquid that has flowed by driving the blood pump 4 has reached a predetermined amount (S7). If it is determined that the predetermined amount has been reached, the blood pump 4 is stopped (S8) and the first time. The arterial blood return process is completed.
 次に、再び血液ポンプ4を正転駆動させて蓄圧工程を行わせ(S9)、当該蓄圧工程S9が終了した時点(本実施形態においては、蓄圧工程から圧解放工程に移行する所定時点b)の圧力がS5で設定した警報値を超えているか否かが判定される(S10)。ここで、所定時点bの圧力が警報値を超えていると判定されると、動脈側血液回路1において流路の閉塞が生じていることを示す警報を出力する(S11)。なお、警報は音声や効果音の発生、画像表示、点灯手段による点灯若しくは点滅表示の何れであってもよく、警報と同時に返血を停止させるよう制御してもよい。 Next, the blood pump 4 is driven to rotate forward again to perform the pressure accumulation process (S9), and when the pressure accumulation process S9 is completed (in this embodiment, a predetermined time point b when the pressure accumulation process is shifted to the pressure release process). It is determined whether or not the pressure exceeds the alarm value set in S5 (S10). Here, if it is determined that the pressure at the predetermined time point b exceeds the alarm value, an alarm indicating that the flow path is blocked in the artery side blood circuit 1 is output (S11). Note that the alarm may be any of sound and sound effect generation, image display, lighting by a lighting means or blinking display, and control may be performed so as to stop blood return simultaneously with the alarm.
 一方、S10にて所定時点bの圧力が警報値を超えていないと判定されると、血液ポンプ4を停止(S12)した後、当該血液ポンプ4を逆転駆動させて圧解放工程(S13)を行わせ、動脈側血液回路1の先端から返血を行うとともに、血液ポンプ4の駆動によって流動した液体が所定量に達したか否かが判定され(S14)、所定量に達したと判定されると、血液ポンプ4を停止し(S15)、2回目の動脈側返血工程が終了する。 On the other hand, if it is determined in S10 that the pressure at the predetermined time point b does not exceed the alarm value, the blood pump 4 is stopped (S12), and then the blood pump 4 is driven in reverse to perform the pressure release step (S13). The blood is returned from the tip of the arterial blood circuit 1, and it is determined whether or not the fluid that has flowed by driving the blood pump 4 has reached a predetermined amount (S14), and it is determined that the predetermined amount has been reached. Then, the blood pump 4 is stopped (S15), and the second arterial blood return step is completed.
 その後、動脈側血液回路1側の返血が開始されて以降、導入された生理食塩液(置換液)が動脈側血液回路1側の返血を十分に行わせ得る規定量(規定回数でもよい)に達したか否かが判定され(S16)、規定量に達していると判定されると、一連の動脈側血液回路1側の返血が終了する。なお、S16にて規定量に達していないと判定されると、S9に戻り、再び蓄圧工程S9及び圧解放工程S13が順次行われて、次回(3回目以降)の動脈側返血工程が行われることとなる。 Thereafter, since the return of blood on the side of the arterial blood circuit 1 is started, the introduced physiological saline solution (replacement solution) can sufficiently perform the return of blood on the side of the arterial blood circuit 1 (the number of times may be specified). ) Has been reached (S16). If it is determined that the prescribed amount has been reached, a series of blood return on the side of the arterial blood circuit 1 is completed. If it is determined in S16 that the prescribed amount has not been reached, the process returns to S9, and the pressure accumulation step S9 and the pressure release step S13 are performed again sequentially, and the next (third and subsequent) arterial blood return step is performed. Will be.
 上記実施形態によれば、動脈側返血工程における対応する所定時点(すなわち、各動脈側返血工程における圧力の変化を監視する時点)は、蓄圧工程から圧解放工程に移行する時点とされたので、静脈側返血工程に応じて形成される圧力の波形のピークを監視することとなり、より精度よく動脈側返血工程における動脈側血液回路の閉塞を検知することができる。また、1回目の動脈側返血工程時に警報値を設定し、それ以降の動脈側返血工程において警報値を超えたか否かが判定されるので、動脈側血液回路1における閉塞の検知を更に早期に行わせることができる。 According to the embodiment, the corresponding predetermined time point in the arterial blood return step (that is, the time point at which the pressure change in each arterial blood return step is monitored) is set as the time point when the pressure accumulation step is shifted to the pressure release step. Therefore, the peak of the pressure waveform formed in accordance with the venous blood return process is monitored, and the occlusion of the arterial blood circuit in the arterial blood return process can be detected with higher accuracy. Further, an alarm value is set during the first arterial blood return process, and it is determined whether or not the alarm value has been exceeded in the subsequent arterial blood return process. It can be done early.
 なお、本実施形態においては、1回目の動脈側返血工程が終了した時に警報値を設定し、その警報値を基準として、それ以降の動脈側返血工程の終了時において警報値を超えたか否かが判定されるよう構成されているが、例えばS10の判定後に再度、警報値を設定するようにしてもよい。また、警報値は、本実施形態の他、種々方法で設定することができる。さらに、各動脈側返血工程時の時点a、b、cに至る前であっても、検出された圧力が警報値を超えた場合、その超えた時点で警報を発生させることができる。この場合、異常状態の把握をより早期に行わせることができる。 In this embodiment, an alarm value is set when the first arterial blood return process is completed, and the alarm value is exceeded at the end of the subsequent arterial blood return process with reference to the alarm value. Although it is configured to determine whether or not, for example, the alarm value may be set again after the determination of S10. The alarm value can be set by various methods in addition to the present embodiment. Furthermore, even before reaching the time points a, b, and c at the time of each arterial blood return step, if the detected pressure exceeds an alarm value, an alarm can be generated when the detected pressure exceeds the alarm value. In this case, the abnormal state can be grasped earlier.
 次に、本発明の第2の実施形態に係る血液浄化装置について説明する。
 本実施形態に係る血液浄化装置は、透析治療を行うための透析装置から成り、装置構成は、当該第1の実施形態と同様のものとされる(図1~3参照)とともに、当該第1の実施形態とは、制御手段19による動脈側血液回路1側の返血時の制御内容が相違するものとされる。なお、本実施形態に係る具体的装置構成については第1の実施形態と重複するため、ここでは詳細な説明を省略する。
Next, a blood purification apparatus according to a second embodiment of the present invention will be described.
The blood purification apparatus according to the present embodiment includes a dialysis apparatus for performing dialysis treatment. The apparatus configuration is the same as that of the first embodiment (see FIGS. 1 to 3), and the first The control content at the time of blood return on the arterial blood circuit 1 side by the control means 19 is different from that of the embodiment. The specific apparatus configuration according to this embodiment is the same as that of the first embodiment, and thus detailed description thereof is omitted here.
 本実施形態に係る制御手段19は、第1の実施形態と同様、電磁弁V2(静脈側電磁弁)にて流路を閉止させつつ血液ポンプ4を正転駆動させ、当該血液ポンプ4の配設位置と電磁弁V2の配設位置との間で蓄圧させる蓄圧工程(図2参照)と、電磁弁V2による流路の閉止を維持させつつ血液ポンプ4を逆転駆動させ、動脈側血液回路1の先端から返血させる圧解放工程(図3参照)とを含む動脈側返血工程を複数回行わせつつ静脈圧センサ21(液圧検出手段)で圧力を検出させ、各動脈側返血工程における対応する所定時点の圧力の変化に基づき動脈側血液回路1における流路の閉塞を検知し得るものとされている。 Similarly to the first embodiment, the control means 19 according to the present embodiment drives the blood pump 4 to rotate forward while closing the flow path with the electromagnetic valve V2 (venous side electromagnetic valve), and the blood pump 4 is arranged. The pressure accumulation step (see FIG. 2) for accumulating pressure between the installed position and the position where the electromagnetic valve V2 is disposed, and the blood pump 4 is driven in reverse while maintaining the flow path closed by the electromagnetic valve V2, thereby causing the arterial blood circuit 1 The pressure is detected by the venous pressure sensor 21 (hydraulic pressure detecting means) while performing the arterial blood return process including the pressure release process (see FIG. 3) for returning blood from the tip of each of the arteries, and each arterial blood return process. The blockage of the flow path in the arterial blood circuit 1 can be detected based on the corresponding change in pressure at a predetermined time.
 ここで、本実施形態においては、図7、8に示すように、動脈側返血工程における対応する所定時点(圧力変化の監視時点)を各動脈側返血工程が終了した時点(各動脈側返血工程が終了して血液ポンプ4を停止させた時点である時点d~f)とし、その時点(d~f)の圧力の変化を監視するものとされており、当該所定時点の圧力が警報値を超えたか否かを判定することにより、動脈側血液回路1における流路の閉塞を検知し得るよう構成されている。なお、図8においては、2回目の動脈側返血工程に対応する圧力の波形において所定時点eの圧力が警報値を超えており、これにより流路の閉塞が検知されることとなる。 Here, in this embodiment, as shown in FIGS. 7 and 8, the corresponding predetermined time point (pressure change monitoring time point) in the arterial blood return step is the time point at which each arterial blood return step ends (each arterial side) The time point d to f) is the time when the blood return process is completed and the blood pump 4 is stopped, and the pressure change at that time (d to f) is monitored. By determining whether or not the alarm value is exceeded, the blockage of the flow path in the arterial blood circuit 1 can be detected. In FIG. 8, the pressure at a predetermined time point e exceeds the alarm value in the pressure waveform corresponding to the second arterial blood return step, and thus the blockage of the flow path is detected.
 また、本実施形態においては、制御手段19は、複数行われる動脈側返血工程のうち特定の動脈側返血工程時(最初の動脈側返血工程時が好ましい)に警報値を設定するとともに、その後行われる動脈側返血工程において静脈圧センサ21で検出された所定時点(各動脈側返血工程が終了した時点d~f)の圧力が当該警報値を超えたか否かを判定することにより、動脈側血液回路1における流路の閉塞を検知し得るよう構成されている。 In the present embodiment, the control means 19 sets an alarm value during a specific arterial blood return step (preferably during the first arterial blood return step) among a plurality of arterial blood return steps. Then, it is determined whether or not the pressure at a predetermined time point detected by the venous pressure sensor 21 in the subsequent arterial blood return process (time points d to f when each arterial blood return process is completed) exceeds the alarm value. Thus, the blockage of the flow path in the arterial blood circuit 1 can be detected.
 次に、第2の実施形態に係る制御手段19による動脈側返血時の制御内容について図9のフローチャートに基づいて説明する。
 静脈側返血工程が終了すると、血液ポンプ4を停止(S1)させ、静脈圧センサ21にて圧力を検出する(S2)とともに、検出された圧力に基づき警報値を設定する(S3)。本実施形態においては、S2で検出された圧力の値に対して予め定められた所定値α(図7、8参照)を加算した値が警報値とされる。
Next, the content of control at the time of artery side blood return by the control means 19 according to the second embodiment will be described based on the flowchart of FIG.
When the venous blood return process is completed, the blood pump 4 is stopped (S1), the pressure is detected by the venous pressure sensor 21 (S2), and an alarm value is set based on the detected pressure (S3). In the present embodiment, a value obtained by adding a predetermined value α (see FIGS. 7 and 8) to the pressure value detected in S2 is set as the alarm value.
 その後、血液ポンプ4を正転駆動させて蓄圧工程(S4)を行わせる。この蓄圧工程においては、既述したように、電磁弁V1及び電磁弁V2を閉状態としつつ電磁弁V3を開状態としている(図2参照)。続いて、血液ポンプを停止(S5)させた後、当該血液ポンプ4を逆転駆動させて圧解放工程(S6)を行わせる。この圧解放工程においては、既述したように、電磁弁V1を開状態としつつ電磁弁V2及び電磁弁V3を閉状態とされており、生理食塩液供給ライン8から供給される生理食塩液によって当該生理食塩液と血液とが置換され、動脈側血液回路1の先端から返血が行われることとなる(図3参照)。 Thereafter, the blood pump 4 is driven forward to perform the pressure accumulation step (S4). In this pressure accumulating step, as described above, the electromagnetic valve V3 is opened while the electromagnetic valve V1 and the electromagnetic valve V2 are closed (see FIG. 2). Subsequently, after stopping the blood pump (S5), the blood pump 4 is driven in reverse to perform the pressure release step (S6). In this pressure release process, as described above, the solenoid valve V2 and the solenoid valve V3 are closed while the solenoid valve V1 is opened, and the saline solution supplied from the saline supply line 8 is used. The physiological saline and blood are replaced, and blood is returned from the tip of the arterial blood circuit 1 (see FIG. 3).
 そして、血液ポンプ4の駆動によって流動した液体が所定量に達したか否かが判定され(S7)、所定量に達したと判定されると、血液ポンプ4を停止し(S8)、1回目の動脈側返血工程が終了するとともに、この時点(本実施形態においては、動脈側返血工程が終了した所定時点d)の圧力がS3で設定した警報値を超えているか否かが判定される(S9)。ここで、所定時点dの圧力が警報値を超えていると判定されると、動脈側血液回路1において流路の閉塞が生じていることを示す警報を出力する(S10)。なお、警報は音声や効果音の発生、画像表示、点灯手段による点灯若しくは点滅表示の何れであってもよく、警報と同時に返血を停止させるよう制御してもよい。 Then, it is determined whether or not the liquid that has flowed by driving the blood pump 4 has reached a predetermined amount (S7). If it is determined that the predetermined amount has been reached, the blood pump 4 is stopped (S8) and the first time. When the arterial blood return process is completed, it is determined whether or not the pressure at this time point (in this embodiment, the predetermined time point d when the arterial blood return process is completed) exceeds the alarm value set in S3. (S9). Here, if it is determined that the pressure at the predetermined time point d exceeds the alarm value, an alarm indicating that the flow path is blocked in the arterial blood circuit 1 is output (S10). Note that the alarm may be any of sound and sound effect generation, image display, lighting by a lighting means or blinking display, and control may be performed so as to stop blood return simultaneously with the alarm.
 一方、S9にて所定時点dの圧力が警報値を超えていないと判定されると、再び血液ポンプ4を正転駆動させて蓄圧工程(S11)を行わせる。その後、血液ポンプ4を停止(S12)させた後、当該血液ポンプ4を逆転駆動させて圧解放工程(S13)を行わせ、動脈側血液回路1の先端から返血を行うとともに、血液ポンプ4の駆動によって流動した液体が所定量に達したか否かが判定され(S14)、所定量に達したと判定されると、血液ポンプ4を停止し(S15)、2回目の動脈側返血工程が終了する。 On the other hand, if it is determined in S9 that the pressure at the predetermined time point d does not exceed the alarm value, the blood pump 4 is driven forward again to perform the pressure accumulation step (S11). Thereafter, the blood pump 4 is stopped (S12), and then the blood pump 4 is driven in reverse to perform a pressure release step (S13) to return blood from the distal end of the arterial blood circuit 1, and the blood pump 4 It is determined whether or not the amount of fluid that has flowed through the driving has reached a predetermined amount (S14). If it is determined that the predetermined amount has been reached, the blood pump 4 is stopped (S15), and the second arterial return is performed. The process ends.
 その後、動脈側血液回路1側の返血が開始されて以降、導入された生理食塩液(置換液)が動脈側血液回路1側の返血を十分に行わせ得る規定量(規定回数でもよい)に達したか否かが判定され(S16)、規定量に達していると判定されると、一連の動脈側血液回路1側の返血が終了する。なお、S16にて規定量に達していないと判定されると、S9に戻り、再びS9による判定が行われた後、次回(3回目以降)の動脈側返血工程が行われることとなる。 Thereafter, since the return of blood on the side of the arterial blood circuit 1 is started, the introduced physiological saline solution (replacement solution) can sufficiently perform the return of blood on the side of the arterial blood circuit 1 (the number of times may be specified). ) Has been reached (S16). If it is determined that the prescribed amount has been reached, a series of blood return on the side of the arterial blood circuit 1 is completed. If it is determined in S16 that the specified amount has not been reached, the process returns to S9, and after the determination in S9 is performed again, the next (third and subsequent) arterial blood return step is performed.
 上記実施形態によれば、動脈側返血工程における対応する所定時点(すなわち、各動脈側返血工程における圧力の変化を監視する時点)は、各動脈側返血工程が終了した時点とされたので、より早期に動脈側返血工程における動脈側血液回路1の閉塞を検知することができる。また、1回目の動脈側返血工程が終了した時に警報値を設定し、それ以降の動脈側返血工程の終了時において警報値を超えたか否かが判定されるので、動脈側血液回路1における閉塞の検知を早期に行わせることができる。 According to the above-described embodiment, a predetermined time point corresponding to the arterial blood return process (that is, a time point at which a change in pressure in each arterial blood return process is monitored) is a time point at which each arterial blood return process is completed. Therefore, the blockage of the arterial blood circuit 1 in the arterial blood return process can be detected earlier. Further, an alarm value is set when the first arterial blood return process is completed, and it is determined whether or not the alarm value is exceeded at the end of the subsequent arterial blood return process. The occlusion can be detected at an early stage.
 なお、本実施形態においては、1回目の動脈側返血工程が終了した時に警報値を設定し、その警報値を基準として、それ以降の動脈側返血工程の終了時において警報値を超えたか否かが判定されるよう構成されているが、例えばS9の判定後に再度、警報値を設定するようにしてもよい。また、警報値は、本実施形態の他、種々方法で設定することができる。 In this embodiment, an alarm value is set when the first arterial blood return process is completed, and the alarm value is exceeded at the end of the subsequent arterial blood return process with reference to the alarm value. Although it is configured to determine whether or not, for example, the alarm value may be set again after the determination of S9. The alarm value can be set by various methods in addition to the present embodiment.
 上記第1、2の実施形態によれば、動脈側返血工程を複数回行わせつつ静脈圧センサ21(液圧検出手段)で圧力を検出させ、各動脈側返血工程における対応する所定時点の圧力の変化に基づき動脈側血液回路1における流路の閉塞を検知し得るので、動脈側返血工程における動脈側血液回路1の閉塞を精度よく検知することができる。なお、対応する所定時点(圧力を監視する時点)は、上記実施形態の如く蓄圧工程から圧解放工程に移行する時点及び各動脈側返血工程が終了した時点に限定されず、例えば蓄圧工程開始時点、動脈側返血工程が開始されてから所定時間経過時等、任意の時点とすることができる。 According to the first and second embodiments, the pressure is detected by the venous pressure sensor 21 (hydraulic pressure detecting means) while performing the arterial blood return process a plurality of times, and the corresponding predetermined time points in each arterial blood return process Since the blockage of the flow path in the arterial blood circuit 1 can be detected based on the change in pressure, the blockage of the arterial blood circuit 1 in the arterial blood return process can be detected with high accuracy. Note that the corresponding predetermined time point (the time point at which the pressure is monitored) is not limited to the time point when the pressure accumulation step is shifted to the pressure release step and the time point when each arterial blood return step is completed as in the above embodiment. The time point may be any time point, such as when a predetermined time has elapsed since the start of the arterial blood return step.
 また、制御手段19は、複数行われる動脈側返血工程のうち特定の動脈側返血工程時に警報値を設定するとともに、その後行われる動脈側返血工程において静脈圧センサ21(液圧検出手段)で検出された所定時点の圧力が当該警報値を超えたか否かを判定することにより、動脈側血液回路1における流路の閉塞を検知し得るので、より精度よく且つ円滑に流路の閉塞の検知を行わせることができる。 Further, the control means 19 sets an alarm value during a specific arterial blood return process among a plurality of arterial blood return processes, and in the subsequent arterial blood return process, the venous pressure sensor 21 (hydraulic pressure detection means) ), It is possible to detect the blockage of the flow path in the arterial blood circuit 1 by determining whether or not the pressure at the predetermined time point detected in (1) has exceeded the alarm value, so that the flow path is blocked more accurately and smoothly. Can be detected.
 さらに、動脈側血液回路1の先端近傍を開閉可能として設けられた電磁弁V1(動脈側弁手段)と、静脈側血液回路2の先端近傍を開閉可能として設けられた電磁弁V2(静脈側弁手段)とを具備するとともに、本発明に係る閉止手段(血液回路における血液ポンプ4の配設位置より静脈側血液回路2側の所定位置に配設されて血液回路の流路を閉止可能な手段)が電磁弁V2(静脈側弁手段)から成るので、血液浄化治療に関わる工程で使用される電磁弁V2(静脈側弁手段)を流用して動脈側血液回路1における流路の閉塞を検知することができる。 Further, an electromagnetic valve V1 (arterial side valve means) provided to be able to open and close the vicinity of the distal end of the arterial blood circuit 1 and an electromagnetic valve V2 (venous side valve) provided to be able to open and close the distal end of the venous blood circuit 2 And means for closing the flow path of the blood circuit by being disposed at a predetermined position on the venous blood circuit 2 side from the position of the blood pump 4 in the blood circuit. ) Comprises an electromagnetic valve V2 (venous side valve means), and the blockage of the flow path in the arterial blood circuit 1 is detected by diverting the electromagnetic valve V2 (venous side valve means) used in the process related to blood purification treatment. can do.
 またさらに、静脈側血液回路2に接続され、当該静脈側血液回路2を流れる液体中の気泡を除去するためのエアトラップチャンバ(本実施形態の静脈側エアトラップチャンバ6に相当)と、該エアトラップチャンバ内の圧力を検出することにより静脈側血液回路2を流れる血液の圧力である静脈圧を検出し得る静脈圧センサ21とを具備するとともに、本発明に係る液圧検出手段(血液回路における血液ポンプ4の配設位置と閉止手段の配設位置との間に配設され、当該血液回路内の液体の圧力を検出し得る手段)が静脈圧センサ21から成るので、血液浄化治療に関わる工程で使用される静脈圧センサ21を流用して動脈側血液回路1における流路の閉塞を検知することができる。 Furthermore, an air trap chamber (corresponding to the venous air trap chamber 6 of the present embodiment) connected to the venous blood circuit 2 for removing bubbles in the liquid flowing through the venous blood circuit 2, and the air And a venous pressure sensor 21 capable of detecting venous pressure, which is the pressure of blood flowing through the venous blood circuit 2 by detecting the pressure in the trap chamber, and the fluid pressure detecting means (in the blood circuit) according to the present invention. The means for detecting the pressure of the liquid in the blood circuit, which is arranged between the position where the blood pump 4 is disposed and the position where the closing means is disposed, comprises the venous pressure sensor 21, and is therefore involved in blood purification treatment. The venous pressure sensor 21 used in the process can be used to detect blockage of the flow path in the arterial blood circuit 1.
 以上、本実施形態に係る血液浄化装置ついて説明したが、本発明はこれらに限定されるものではなく、返血時に使用される置換液は、生理食塩液に限定されず、例えば透析液導入ラインLa又は透析液排出ラインLbとT字管Tとを連結させ、或いはダイアライザ3(血液浄化手段)から透析液を逆濾過させることにより、透析液を置換液として動脈側血液回路1及び静脈側血液回路2内に供給するものとしてもよい。この場合、蓄圧工程において、閉止手段(本実施形態においては電磁弁V2)にて流路を閉止させた状態で、血液ポンプ4の代わりに又は当該血液ポンプ4と共に、複式ポンプ17又は除水ポンプ18を駆動して、血液ポンプ4の配設位置と閉止手段の配設位置との間に透析液を逆濾過させて蓄圧させるようにしてもよい。 As mentioned above, although the blood purification apparatus which concerns on this embodiment was demonstrated, this invention is not limited to these, The substitution liquid used at the time of a blood return is not limited to a physiological saline, For example, a dialysate introduction line By connecting the La or dialysate discharge line Lb and the T-shaped tube T, or by reversely filtering the dialysate from the dialyzer 3 (blood purification means), the arterial blood circuit 1 and the venous blood are obtained using the dialysate as a replacement liquid. It may be supplied to the circuit 2. In this case, in the pressure accumulating step, the compound pump 17 or the dewatering pump is used instead of the blood pump 4 or together with the blood pump 4 in a state where the flow path is closed by the closing means (the electromagnetic valve V2 in the present embodiment). 18 may be driven so that the dialysate is back-filtered between the disposition position of the blood pump 4 and the disposition position of the closing means to accumulate pressure.
 また、本実施形態においては、動脈側返血工程において静脈圧センサ21(液圧検出手段)で検出された所定時点の圧力が警報値を超えたか否かを判定することにより、動脈側血液回路1における流路の閉塞を検知しているが、各動脈側返血工程における対応する所定時点の圧力の変化に基づき動脈側血液回路1における流路の閉塞を検知し得るものであれば足り、複数の動脈側返血工程における対応する所定時点の圧力同士を比較して、その差分が所定以上の場合に警報を行わせるものとしてもよい。 In this embodiment, the arterial blood circuit is determined by determining whether or not the pressure at a predetermined time detected by the venous pressure sensor 21 (hydraulic pressure detecting means) in the arterial blood return step exceeds an alarm value. 1, it is sufficient if it is possible to detect the blockage of the flow path in the arterial blood circuit 1 based on the corresponding change in pressure at a predetermined time in each arterial blood return step. The pressures at the corresponding predetermined time points in the plurality of arterial blood return steps may be compared, and an alarm may be issued when the difference is greater than or equal to a predetermined value.
 さらに、本実施形態においては、従来より血液浄化装置に汎用的に配設された電磁弁V2(静脈側弁手段)を流用して閉止手段を構成しているが、当該電磁弁V2とは別個に配設するものであってもよい。この場合、閉止手段の配設位置は、静脈側血液回路の先端近傍に限定されず、血液回路における血液ポンプ4の配設位置より静脈側血液回路2側(下流側)の所定位置であれば何れの位置であってもよい。 Further, in the present embodiment, the closing means is configured by diverting the electromagnetic valve V2 (venous valve means) that has been conventionally provided in the blood purification apparatus, but is separate from the electromagnetic valve V2. It may be arranged in the. In this case, the disposition position of the closing means is not limited to the vicinity of the distal end of the venous blood circuit, but may be a predetermined position on the venous blood circuit 2 side (downstream side) from the disposition position of the blood pump 4 in the blood circuit. Any position may be sufficient.
 またさらに、本実施形態においては、従来より血液浄化装置に汎用的に配設された静脈圧センサ21を流用して液圧検出手段を構成しているが、当該静脈圧センサ21とは別個に配設するものであってもよい。この場合、液圧検出手段の配設位置は、静脈側エアトラップチャンバ6に限定されず、血液回路における血液ポンプ4の配設位置と閉止手段の配設位置との間であれば何れの位置であってもよい。また、液圧検出手段は、血液回路内における血液ポンプ4の配設位置と閉止手段(本実施形態においては電磁弁V2)の配設位置との間の液体の圧力を検出し得るものであれば、何れの位置に配設されたものであってもよく、例えば透析液排出ラインに配設されて当該透析液排出ラインを流れる透析液の液圧を検出するための透析液圧センサであってもよい。 Furthermore, in the present embodiment, the fluid pressure detecting means is configured by diverting the venous pressure sensor 21 that has been conventionally provided in the blood purification apparatus, but separately from the venous pressure sensor 21. It may be arranged. In this case, the disposition position of the fluid pressure detecting means is not limited to the venous air trap chamber 6, and any position between the disposition position of the blood pump 4 and the disposition position of the closing means in the blood circuit. It may be. The fluid pressure detecting means can detect the pressure of the liquid between the position where the blood pump 4 is disposed in the blood circuit and the position where the closing means (the electromagnetic valve V2 in this embodiment) is disposed. For example, a dialysis fluid pressure sensor that is disposed in the dialysis fluid discharge line and detects the fluid pressure of the dialysis fluid flowing through the dialysis fluid discharge line may be used. May be.
 なお、本実施形態においては、透析治療時に用いられる透析装置に適用されているが、患者の血液を体外循環させつつ浄化し得る他の形態の血液浄化装置(例えば血液濾過透析法、血液濾過法若しくはAFBFで使用される血液浄化装置、血漿吸着装置等)に適用してもよい。 In this embodiment, the present invention is applied to a dialysis apparatus used at the time of dialysis treatment, but other forms of blood purification apparatus (for example, blood filtration dialysis method, blood filtration method) that can purify the patient's blood while circulating it extracorporeally. Alternatively, the present invention may be applied to blood purification devices, plasma adsorption devices, etc. used in AFBF.
 閉止手段にて流路を閉止させ、当該血液ポンプの配設位置と閉止手段の配設位置との間で蓄圧させる蓄圧工程と、閉止手段による流路の閉止を維持させつつ血液ポンプを逆転駆動させ、動脈側血液回路の先端から返血させる圧解放工程とを含む動脈側返血工程を複数回行わせつつ液圧検出手段で圧力を検出させ、各動脈側返血工程における対応する所定時点の圧力の変化に基づき動脈側血液回路における流路の閉塞を検知し得る制御手段を備えた血液浄化装置であれば、他の機能が付加されたもの等にも適用することができる。 An accumulating step of closing the flow path by the closing means and accumulating pressure between the arrangement position of the blood pump and the arrangement position of the closing means, and driving the blood pump in reverse while maintaining the closing of the flow path by the closing means A pressure release step including a pressure release step for returning the blood from the tip of the arterial blood circuit and detecting the pressure by the fluid pressure detecting means while performing the arterial blood return step a plurality of times. As long as it is a blood purification device provided with a control means capable of detecting blockage of the flow path in the arterial blood circuit based on the pressure change, it can be applied to devices to which other functions are added.
1 動脈側血液回路
2 静脈側血液回路
3 ダイアライザ(血液浄化手段)
4 血液ポンプ
5 動脈側エアトラップチャンバ
6 静脈側エアトラップチャンバ
7 エアトラップチャンバ
8 生理食塩液供給ライン
9 収容手段
10 動脈側気泡検出手段
11 静脈側気泡検出手段
12、13 血液判別器
14、15、16 チューブ検出器
17 複式ポンプ
18 除水ポンプ
19 制御手段
20 オーバーフローライン
21 静脈圧センサ(液圧検出手段)
V1 電磁弁(動脈側弁手段)
V2 電磁弁(静脈側弁手段)(閉止手段)
1 Arterial blood circuit 2 Venous blood circuit 3 Dialyzer (blood purification means)
4 Blood pump 5 Arterial side air trap chamber 6 Vein side air trap chamber 7 Air trap chamber 8 Saline supply line 9 Accommodating means 10 Arterial side bubble detecting means 11 Vein side bubble detecting means 12, 13 Blood discriminators 14, 15 16 Tube detector 17 Duplex pump 18 Dewatering pump 19 Control means 20 Overflow line 21 Vein pressure sensor (hydraulic pressure detection means)
V1 solenoid valve (arterial valve means)
V2 Solenoid valve (Venous valve means) (closing means)

Claims (6)

  1.  動脈側血液回路及び静脈側血液回路から成るとともに、当該動脈側血液回路の先端から静脈側血液回路の先端まで患者の血液を体外循環させ得る血液回路と、
     該血液回路の動脈側血液回路及び静脈側血液回路の間に介装されて当該血液回路を流れる血液を浄化する血液浄化手段と、
     前記動脈側血液回路に配設されるとともに、正転駆動及び逆転駆動が可能とされ、前記血液回路内の液体を流動させ得る血液ポンプと、
     前記血液回路における前記血液ポンプの配設位置より前記静脈側血液回路側の所定位置に配設され、当該血液回路の流路を閉止可能な閉止手段と、
     前記血液回路内における前記血液ポンプの配設位置と前記閉止手段の配設位置との間の液体の圧力を検出し得る液圧検出手段と、
     治療後、置換液を前記血液回路に供給させ、当該血液回路内の血液を前記置換液に置換させて返血させ得る制御手段と、
    を具備した血液浄化装置であって、
     前記制御手段は、
     前記閉止手段にて流路を閉止させ、当該血液ポンプの配設位置と前記閉止手段の配設位置との間で蓄圧させる蓄圧工程と、
     前記閉止手段による流路の閉止を維持させつつ前記血液ポンプを逆転駆動させ、前記動脈側血液回路の先端から返血させる圧解放工程と、
    を含む動脈側返血工程を複数回行わせつつ前記液圧検出手段で圧力を検出させ、各動脈側返血工程における対応する所定時点の圧力の変化に基づき前記動脈側血液回路における流路の閉塞を検知し得ることを特徴とする血液浄化装置。
    A blood circuit comprising an arterial blood circuit and a venous blood circuit, and capable of extracorporeally circulating the patient's blood from the distal end of the arterial blood circuit to the distal end of the venous blood circuit;
    A blood purification means for purifying blood flowing between the arterial blood circuit and the venous blood circuit of the blood circuit and flowing through the blood circuit;
    A blood pump that is disposed in the arterial blood circuit and is capable of normal rotation and reverse rotation and capable of flowing fluid in the blood circuit;
    A closing means that is disposed at a predetermined position on the venous blood circuit side from an arrangement position of the blood pump in the blood circuit, and capable of closing a flow path of the blood circuit;
    Fluid pressure detecting means capable of detecting the pressure of the liquid between the blood pump arrangement position and the closing means arrangement position in the blood circuit;
    Control means for supplying a replacement fluid to the blood circuit after treatment, and replacing the blood in the blood circuit with the replacement fluid to return blood;
    A blood purification apparatus comprising:
    The control means includes
    A pressure accumulation step of closing the flow path by the closing means and accumulating pressure between the arrangement position of the blood pump and the arrangement position of the closing means;
    A pressure release step of driving the blood pump in a reverse direction while maintaining the closing of the flow path by the closing means, and returning blood from the tip of the arterial blood circuit;
    The fluid pressure detecting means detects the pressure while performing the arterial blood return step including a plurality of times, and the flow path of the arterial blood circuit is changed based on a change in pressure at a predetermined time point corresponding to each arterial blood return step. A blood purification apparatus capable of detecting an obstruction.
  2.  前記動脈側返血工程における対応する所定時点は、前記蓄圧工程から前記圧解放工程に移行する時点とされたことを特徴とする請求項1記載の血液浄化装置。 The blood purification apparatus according to claim 1, wherein the corresponding predetermined time point in the arterial blood return step is a time point when the pressure accumulation step is shifted to the pressure release step.
  3.  前記動脈側返血工程における対応する所定時点は、各動脈側返血工程が終了した時点とされたことを特徴とする請求項1記載の血液浄化装置。 The blood purification apparatus according to claim 1, wherein the corresponding predetermined time point in the arterial blood return step is a time point at which each arterial blood return step is completed.
  4.  前記制御手段は、複数行われる動脈側返血工程のうち特定の前記動脈側返血工程時に警報値を設定するとともに、その後行われる動脈側返血工程において前記液圧検出手段で検出された所定時点の圧力が当該警報値を超えたか否かを判定することにより、前記動脈側血液回路における流路の閉塞を検知し得ることを特徴とする請求項1~3の何れか1つに記載の血液浄化装置。 The control means sets an alarm value during a specific arterial blood return process among a plurality of arterial blood return processes, and the predetermined pressure detected by the fluid pressure detection means in the subsequent arterial blood return process 4. The blockage of the flow path in the arterial blood circuit can be detected by determining whether or not the pressure at the time exceeds the alarm value, according to any one of claims 1 to 3. Blood purification device.
  5.  前記動脈側血液回路の先端近傍を開閉可能として設けられた動脈側弁手段と、
     前記静脈側血液回路の先端近傍を開閉可能として設けられた静脈側弁手段と、
    を具備するとともに、前記閉止手段は、前記静脈側弁手段から成ることを特徴とする請求項1~4の何れか1つに記載の血液浄化装置。
    An arterial valve means provided to be capable of opening and closing the vicinity of the distal end of the arterial blood circuit;
    Venous valve means provided so as to be able to open and close the tip of the venous blood circuit; and
    The blood purification apparatus according to any one of claims 1 to 4, wherein the closing means includes the vein-side valve means.
  6.  前記静脈側血液回路に接続され、当該静脈側血液回路を流れる液体中の気泡を除去するためのエアトラップチャンバと、
     該エアトラップチャンバ内の圧力を検出することにより前記静脈側血液回路を流れる血液の圧力である静脈圧を検出し得る静脈圧センサと、
    を具備するとともに、前記液圧検出手段は、前記静脈圧センサから成ることを特徴とする請求項1~5の何れか1つに記載の血液浄化装置。
    An air trap chamber connected to the venous blood circuit for removing bubbles in the liquid flowing through the venous blood circuit;
    A venous pressure sensor capable of detecting venous pressure, which is the pressure of blood flowing through the venous blood circuit, by detecting the pressure in the air trap chamber;
    The blood purification apparatus according to any one of claims 1 to 5, wherein the fluid pressure detecting means includes the venous pressure sensor.
PCT/JP2012/079427 2011-11-14 2012-11-13 Blood purification device WO2013073535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280055321.0A CN103906538B (en) 2011-11-14 2012-11-13 Apparatus for purifying blood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-248446 2011-11-14
JP2011248446A JP5778004B2 (en) 2011-11-14 2011-11-14 Blood purification equipment

Publications (1)

Publication Number Publication Date
WO2013073535A1 true WO2013073535A1 (en) 2013-05-23

Family

ID=48429592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079427 WO2013073535A1 (en) 2011-11-14 2012-11-13 Blood purification device

Country Status (3)

Country Link
JP (1) JP5778004B2 (en)
CN (1) CN103906538B (en)
WO (1) WO2013073535A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315150B1 (en) * 2015-06-24 2020-12-09 Nikkiso Co., Ltd. Blood purifying device
EP3231465B1 (en) * 2016-04-15 2022-11-23 B. Braun Avitum AG Extracorporeal alarm suppression device
CN109498874B (en) * 2018-12-26 2023-12-29 贝恩医疗设备(广州)有限公司 Extracorporeal circulation pipeline for venous hemodialysis
JP2024004226A (en) * 2022-06-28 2024-01-16 日機装株式会社 blood purification device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016619A (en) * 2002-06-19 2004-01-22 Kita Kyushu Biophysics Kenkyusho:Kk Automatic hemodialyzer
JP2006255331A (en) * 2005-03-18 2006-09-28 Jms Co Ltd Hemocatharsis device
JP2010269050A (en) * 2009-05-25 2010-12-02 Nikkiso Co Ltd Blood purifying device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833706A (en) * 1994-07-26 1996-02-06 Otsuka Pharmaceut Factory Inc Clogging detecting method for body fluid external circulating device
EP1295617A4 (en) * 2000-06-15 2008-04-09 Jms Co Ltd Automatic dialyzer and dialyzing method
JP4094600B2 (en) * 2004-10-06 2008-06-04 日機装株式会社 Blood purification equipment
EP2174677A1 (en) * 2007-06-29 2010-04-14 JMS Co., Ltd. Hemodialyzer
EP2519278B1 (en) * 2009-12-28 2015-01-28 Gambro Lundia AB Method and device for detecting a fault condition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004016619A (en) * 2002-06-19 2004-01-22 Kita Kyushu Biophysics Kenkyusho:Kk Automatic hemodialyzer
JP2006255331A (en) * 2005-03-18 2006-09-28 Jms Co Ltd Hemocatharsis device
JP2010269050A (en) * 2009-05-25 2010-12-02 Nikkiso Co Ltd Blood purifying device

Also Published As

Publication number Publication date
JP5778004B2 (en) 2015-09-16
JP2013102927A (en) 2013-05-30
CN103906538A (en) 2014-07-02
CN103906538B (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5247864B2 (en) Blood purification equipment
JP5205036B2 (en) Blood purification equipment
JP6478393B2 (en) Blood purification apparatus and priming method thereof
JP4281835B2 (en) Hemodialysis machine
JP4716409B2 (en) Blood purification equipment
US10751459B2 (en) Blood purification apparatus
WO2013031965A1 (en) Blood purification device
JP5699008B2 (en) Blood purification equipment
JP5778004B2 (en) Blood purification equipment
JP5319381B2 (en) Blood purification apparatus and method for removing bubbles
JP6424041B2 (en) Blood purification equipment
JP5276906B2 (en) Blood purification equipment
JP5401354B2 (en) Dialysis machine
JP6475284B2 (en) Blood purification equipment
JP6613266B2 (en) Blood purification equipment
JP6613062B2 (en) Blood purification apparatus and blood purification system
WO2023032960A1 (en) Blood purification device
WO2019244941A1 (en) Blood purification device, and plasma flow rate acquisition method using blood purification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850408

Country of ref document: EP

Kind code of ref document: A1