WO2013073266A1 - 成形用金型の温度調整システム - Google Patents

成形用金型の温度調整システム Download PDF

Info

Publication number
WO2013073266A1
WO2013073266A1 PCT/JP2012/072613 JP2012072613W WO2013073266A1 WO 2013073266 A1 WO2013073266 A1 WO 2013073266A1 JP 2012072613 W JP2012072613 W JP 2012072613W WO 2013073266 A1 WO2013073266 A1 WO 2013073266A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
temperature
flow path
tank
coolant
Prior art date
Application number
PCT/JP2012/072613
Other languages
English (en)
French (fr)
Inventor
千葉 昇
英雄 吉留
彰弘 吉村
Original Assignee
ナックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナックス株式会社 filed Critical ナックス株式会社
Priority to KR1020147010726A priority Critical patent/KR101606893B1/ko
Priority to JP2013544162A priority patent/JP5706969B2/ja
Publication of WO2013073266A1 publication Critical patent/WO2013073266A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/007Tempering units for temperature control of moulds or cores, e.g. comprising heat exchangers, controlled valves, temperature-controlled circuits for fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine

Definitions

  • the present invention relates to a temperature adjustment system for controlling a synthetic resin molding die to a desired set temperature.
  • the present invention relates to a temperature control system for a molding die that can use a desired mold temperature over a wider temperature range than before by utilizing waste heat of the mold and cold heat from a cooler. Is.
  • a molten resin injected from a molding machine into a mold is cooled and solidified in the mold, and after sufficiently cooled, taken out of the mold to produce a plastic molded product.
  • a method of circulating the coolant cooled by the cooling device to the mold is employed. Temperature control is generally performed so that the mold temperature matches the molding temperature by providing a circulation flow path through which the coolant flows inside the mold and maintaining the coolant at a constant temperature.
  • the mold temperature is generally controlled within a range of 10 ° C. to 30 ° C. (hereinafter also referred to as “low temperature region”) according to the heat deformation temperature of the resin to be molded.
  • the mold temperature is to be maintained at a room temperature or higher, for example, 40 ° C. to 60 ° C. (hereinafter also referred to as “medium temperature range”) like EVA resin or ABS resin.
  • medium temperature range 40 ° C. to 60 ° C.
  • the present applicant has proposed a temperature control system for a molding die as shown in Patent Document 1.
  • the desired mold temperature can be used efficiently and efficiently from the low temperature range of 10 ° C. to the middle temperature range of around 60 ° C. become able to.
  • the present invention makes it possible to use a desired mold temperature from a low temperature range to a medium temperature range by utilizing waste heat of the mold and cold heat from a cooler, and at a higher temperature range (that is, 10 ° C. to 90 ° C.).
  • the main object of the present invention is to provide a temperature control system for a molding die that can be used stably over a temperature range of [° C.] with a simple configuration.
  • An object of the present invention is to provide a temperature control system that can easily and efficiently perform ice temperature generation and actively melt ice while performing temperature control operation. .
  • a cooling tank that stores the cooling liquid cooled by the cooling device, and an adjustment that stores the cooling liquid from the cooling tank.
  • a tank a coolant circulation path that returns from the adjustment tank to the adjustment tank through a mold, a branch path that branches from the middle of the coolant circulation path and reaches the cooling tank, and a middle of the branch path
  • a control valve provided in the control tank, a first temperature sensor for detecting the temperature of the coolant in the coolant circulation channel, or in the coolant tank or the coolant circulation channel
  • the heater includes a heater having a control function that performs an ON / OFF operation by comparing the temperature detected by the first temperature sensor with a preset heating start preset temperature.
  • Heating start set temperature When the temperature rises, the control valve is opened when the detected temperature of the first temperature sensor is equal to or higher than a preset cooling start temperature, and the high-temperature coolant in the coolant circulation passage is opened. A part was formed so as to be returned to the cooling tank, and a low-temperature cooling liquid was allowed to flow from the cooling tank into the adjustment tank by the amount of liquid returned to the cooling tank.
  • the mold is cooled by the circulation of the cooling liquid in the adjustment tank separated from the cooling tank, and the circulating cooling liquid is set to a predetermined cooling start temperature or higher by the mold temperature.
  • a part of the high-temperature coolant in the coolant circulation flow path is returned to the cooling tank, and the low-temperature coolant flows from the cooling tank into the adjustment tank by the amount of the returned liquid.
  • the circulating coolant of the mold can be automatically adjusted to the set temperature, so that the temperature of the mold coolant can be reduced to a low temperature range of about 10 ° C by effective use of the waste heat of the mold and cooling by the cooler. Can be obtained with energy saving up to about 60 ° C in the middle temperature range.
  • a heater added to the system is used.
  • the temperature of the mold coolant in the adjustment tank can be raised to a high temperature of, for example, 90 ° C., and can be used even when resin molding is performed in a high temperature region such as a polycarbonate resin. Since the heater only needs to be attached in the middle of the adjustment tank or the circulation flow path, the structure is simple and the cost can be reduced.
  • the cooling tub and the adjustment tub are formed as an integral structure separated by a partition wall, and the cooling tub is provided with a second temperature sensor for detecting the temperature of the cooling liquid in the cooling tub. It is preferable that the cooling machine is controlled so that the temperature of the cooling liquid in the cooling tank is maintained constant. With this two tank integrated structure, the entire tank can be made compact and the installation space can be reduced, and the temperature of the cooling liquid in the cooling tank can be kept constant by the second temperature sensor, and the mold can be cooled constantly. It can be carried out.
  • the evaporator of the cooling device which cools a cooling fluid may be arrange
  • the cooling tank communicates with the cooling space in which the evaporator is disposed with the upstream side as a closed end and the downstream side of the cooling space to adjust the coolant.
  • the branch flow path may be provided with a flow path switching mechanism for switching a cooling tank connection flow path for sending a high-temperature cooling liquid from the cooling liquid circulation flow path.
  • ice is generated in the cooling space in which the evaporator of the cooling tank is arranged, or the generated ice is melted, but the position where the high-temperature coolant from the branch flow path is introduced into the cooling tank.
  • a flow path switching mechanism is provided so that it can be changed between ice generation and ice melting. That is, when ice is melted, in order to easily melt the ice generated in the cooling space, a high-temperature coolant is introduced toward the ice generated from the connection port (ice melting connection port) provided in the cooling space itself. .
  • connection port provided in the liquid feed space or the cooling space in the vicinity of the liquid feed space (connection for ice production) is used in order to promote the cooling by putting the coolant as low as possible near the evaporator in the cooling space. Coolant is introduced from the mouth)
  • control valve may be provided on a flow path after the branch flow path is branched into each cooling tank connection flow path, and the control valve may also function as the flow path switching mechanism.
  • control valve is provided on the upstream side of the branch flow path branching to each cooling tank connection flow path, and separately from the control valve, the flow switching for switching the flow path on each cooling tank connection flow path A mechanism may be provided.
  • FIG. 1 is an explanatory view showing a first embodiment of a temperature control system for a molding die according to the present invention
  • FIG. 2 is a block diagram thereof.
  • This temperature adjustment system includes a cooling tank 1 for storing a cooling liquid and an adjusting tank 2 for storing a cooling liquid from the cooling tank 1.
  • the cooling tank 1 includes an upstream cooling space 1a and a downstream liquid feeding space 1b. The upstream side of the cooling space 1a is closed by a wall, and an evaporator 8 of the cooling device 5 described later is disposed in the space.
  • the liquid feeding space 1b communicates with the downstream side of the cooling space 1a, and the cooling liquid cooled in the cooling space 1a is sent to the adjustment tank 2 through the liquid feeding space 1b.
  • the cooling tank 1 and the adjustment tank 2 are formed in a two-tank integrated structure separated by a partition wall 3, and are arranged so that the liquid level of the liquid feeding space 1 b of the cooling tank 1 is higher than the liquid level of the adjustment tank 2.
  • the upper edge of the partition wall 3 of the cooling tank 1 is cut away to form an overflow port 4, and the overflow from the overflow port 4 is provided to flow into the adjustment tank 2.
  • the cooling device 5 which cools a cooling fluid.
  • the cooling device 5 includes a compressor 6 that compresses a refrigerant such as chlorofluorocarbon, a condenser 7 that condenses the compressed refrigerant from the compressor 6, a screw-type evaporator (heat exchanger) 8, and a refrigerant circulation circuit 9 that connects these devices.
  • the evaporator 8 is arranged inside the cooling space 1a of the cooling tank 1, and is configured to directly cool the cooling liquid in the cooling tank 1 by heat exchange.
  • the cooling device 5 is a heat pump type cooling device using the heat of evaporation of the refrigerant.
  • This is configured not only to generate cold / hot water in the periphery of the screw tube of the evaporator 8 in the cooling tank 1 but also to set the temperature at which ice can be generated. Accordingly, it is possible to store a large amount of cold using the latent heat (melting heat) of ice, that is, to store ice. As a result, the coolant temperature in the cooling bath 1 can be stably maintained at approximately 0 ° C., and the thermal efficiency can be increased.
  • the cooling liquid in the cooling tank 1 is formed so as to maintain the cooling liquid temperature in the cooling tank 1 constant by controlling the cooling device 5 based on the temperature detected by the second temperature sensor 18 provided in the cooling tank 1. Has been.
  • the second temperature sensor 18 mounted on the cooling tank 1 is preferably installed at a position close to the screw tube surface of the evaporator 8 so that the temperature sensing part does not contact the screw tube.
  • the temperature sensing part of the temperature sensor is preferably installed at a position that is 1 cm to 10 cm, preferably 3 cm away from the screw tube surface of the evaporator 8 and that does not contact the tank wall surface.
  • ice generation can be continued.
  • a low temperature below the freezing point is detected.
  • ice formation and growth can be monitored from the display temperature of the second temperature sensor.
  • the coolant circulation path 11 returns from the adjustment tank 2 to the adjustment tank 2 through the pump P and the mold 10 of the plastic molding machine, and is branched from the middle of the flow path to the mold 10 of the circulation path 11.
  • a branch flow path 12 that reaches the cooling tank 1 and a first temperature sensor 15 that detects the temperature of the coolant in the adjustment tank 2 are provided.
  • a bypass channel 14 is provided that branches from the middle of the circulation channel 11 from the pump P to the mold 10 and returns to the adjustment tank 2, and a valve 16 is provided in the middle of the bypass channel 14.
  • the control valve 13 provided in the branch flow path 12 is normally closed.
  • the control valve 13 is opened and the flow reaching the cooling tank 1 of the branch flow path 12
  • the passage is opened, a part of the cooling liquid in the circulation flow path 11 is returned to the cooling tank 1 via the branch flow path 12, and when the detected temperature becomes equal to or lower than the cooling start set temperature, the control valve 13 is closed to the cooling tank 1.
  • the branch flow path 12 is set to be closed.
  • the means for controlling such settings can be easily performed by a computer incorporating a control program. It can also be implemented by a combination of electronic control units.
  • the bypass flow path 14 is used for returning the coolant in the circulation flow path 11 to the adjustment tank 2 when a trouble occurs in the flow path in the mold 10 for some reason.
  • the flow rate inside is appropriately adjusted by the valve 16, and the valve 16 is closed when bypass is not required. Further, the bypass channel 14 can be omitted from the present system.
  • the adjustment tank 2 is provided with a heater 17 for heating the cooling liquid in the adjustment tank 2 and the coolant circulation passage 11 when used in a high temperature range.
  • the heater 17 is operated when the mold 10 needs to be cooled with a coolant in a high temperature range of 50 ° C. to 90 ° C.
  • the temperature detected by the first temperature sensor 15 is set in advance. The temperature is set to be ON when the temperature is lower than a desired heating start set temperature, and OFF when the temperature is higher than the set temperature.
  • the coolant supply channel 19 from the cold water tower 23 provided outside is communicated via the float valve 20, and the water level drops from the set value.
  • the float 20a is moved downward to open the float valve 20, and the coolant from the cold water tower 23 is supplied to maintain the water level at a constant value.
  • a reduction flow path 21 for returning the coolant in the system to the cold water tower 23 communicates with the cold water tower 23 from the middle of the branch flow path 12.
  • a valve 22 for opening and closing the reduction channel 21 is provided in the middle of the reduction channel 21.
  • water is usually used, but it is possible to use an antifreeze obtained by mixing an antifreeze such as ethylene glycol in the water or a liquid having equivalent physical properties.
  • the detection set temperature (cooling start set temperature) of the coolant circulating through the mold 10 is set to, for example, 40 ° C. and driven, the coolant in the adjustment tank 2 is passed through the circulation flow path 11 by the pump P. Circulate and cool the mold 10. At this stage, the cooling liquid in the cooling tank 1 does not flow into the adjustment tank 2. The heater 17 in the adjustment tank 2 is turned off.
  • the temperature in the adjustment tank 2 recirculated from the circulation channel 11 absorbs the heat of the mold 10 and exceeds 40 ° C. (cooling start set temperature)
  • the temperature is detected by the first temperature sensor 15 and the control valve. 13 opens, the branch flow path 12 leading to the cooling tank 1 is opened, and a part of the coolant having a high temperature in the circulation flow path 11 is returned to the cooling tank 1.
  • the liquid amount in the cooling tank 1 is increased by the returned liquid amount, the liquid level rises, overflows from the overflow port 4 and flows into the adjustment tank 2, and the liquid temperature in the adjustment tank 2 decreases.
  • the coolant in the adjustment tank 2 becomes 40 ° C.
  • the first temperature sensor 15 detects and the branch flow path 12 reaching the cooling tank 1 is closed by the control valve 13.
  • the temperature of the coolant flowing through the mold 10 can always be automatically adjusted to the set temperature (cooling start set temperature) of 40 ° C.
  • the control valve 13 By suppressing the inflow of the high-temperature reflux liquid from the mold 10 into the cooling tank 1 by the control valve 13, it is possible to suppress an increase in the cooling liquid temperature in the adjustment tank 2, and in the cooling tank 1.
  • the ice can be continuously formed and melted.
  • the second temperature sensor 18 is provided at a position away from the screw tube surface of the evaporator 8 and not in contact with the tank wall surface, as described above, while the temperature-sensing portion maintains the aqueous phase, The temperature of the cooling water in the cooling tank 1 can be accurately detected without being below the freezing point.
  • the control valve 13 is not completely closed even when the cooling liquid in the adjustment tank 2 becomes 40 ° C. or lower.
  • the temperature sensor 18 is installed at a position about 3 cm away from the surface of the screw tube of the evaporator 8 and is set to be turned on when the cooling water temperature is about 10 ° C. or higher, preferably 5 ° C. or higher. The generation of ice on the tube surface could be continued and the cooling water temperature inside the cooling bath 1 could be stably maintained at the set temperature.
  • the mold 10 is cooled with a coolant in a high temperature region of, for example, 85 ° C. like a polycarbonate resin
  • the power of the heater 17 is turned on, the temperature at which the heater 17 is turned on (heating start set temperature) is set to 85 ° C., and the control valve 13 of the branch flow path 12 connected to the cooling tank 1 is opened.
  • the temperature of the coolant (cooling start set temperature) is set to 85 ° C. or higher, for example 90 ° C.
  • the coolant in the adjustment tank 2 recirculated from the circulation flow path 11 is warmed to 90 ° C.
  • the control valve 13 is opened and the flow path to the cooling tank 1 is opened, and the circulation flow A part of the coolant having a high temperature in the passage 11 is returned to the cooling tank 1.
  • the liquid amount in the cooling tank 1 is increased by the returned liquid amount, the liquid level rises, overflows from the overflow port 4 and flows into the adjustment tank 2, and the liquid temperature in the adjustment tank 2 decreases.
  • the first temperature sensor 15 detects and the branch flow path 12 reaching the cooling tank 1 is closed by the control valve 13. Thereby, it is possible to reliably prevent the temperature of the coolant passing through the mold 10 from deviating from the set temperature range.
  • the temperature of the mold coolant is changed from a low temperature range of about 10 ° C. to a middle temperature range of about 50 ° C. to 60 ° C. by effective use of the waste heat of the mold 10 and cooling by the cooling device 5. You can get up to energy saving.
  • the temperature of the mold coolant can be raised to a high temperature of 90 ° C., for example, and resin molding in a high temperature range such as polycarbonate resin is possible. Become. Thereby, the mold cooling temperature can be covered in a wide range from a low temperature range to a high temperature range, and various demands can be dealt with.
  • the heater 17 since the heater 17 only needs to be attached in the middle of the adjusting tank 2 or the circulation flow path 11, the configuration is simple and the cost can be reduced.
  • the screw-type evaporator 8 of the cooling device 5 is disposed inside the cooling space 1a of the cooling tank 1 so as to cool the coolant directly, so that the evaporator 8 is hidden and the appearance image is smart.
  • the pipeline and the pump for circulating the coolant between the evaporator 8 and the cooling tank 1 can be omitted, and the configuration can be simplified. It becomes.
  • a large amount of cold energy can be stored by generating ice in the evaporator 8 in the cooling tank 1, and the thermal efficiency can be increased.
  • by providing a timer function for cooling the cooling device 5 at the reserved time ice can be generated in the middle of the night when the electricity bill is inexpensive.
  • FIG. 3 is an explanatory view showing a second embodiment of a temperature control system for a molding die according to the present invention.
  • the heater 17 is provided in the middle of the coolant circulation channel 11 from the mold 10 to the adjustment tank 2. In this case, since the heater 17 is outside the adjustment tank 2, maintenance of the heater 17 is facilitated.
  • Comparative product 1 is a commercially available mold cooling device that cools mold cooling water only with a refrigerator
  • comparative product 2 is a mold cooling device having the mechanism of Patent Document 1
  • comparative product 3 is a freezer.
  • This is a mold cooling apparatus that includes a machine and a heater, and generates cold / hot water in a temperature range of 5 ° C. to 90 ° C. in a circulation path of only one cooling tank.
  • the number in the table indicates the COP simple value measured in accordance with the cooling capacity test method of JIS B 8613 “Water Chilling Unit” Appendix 1, and the COP value is obtained by the following calculation formula.
  • COP value cooling capacity (kcal) ⁇ power consumption (kWh)
  • 1 kWh 860 kcal
  • the mold cooling apparatus was operated for about 1 hour, and the electric power required to generate cooling water at a predetermined set temperature was measured and calculated according to the above formula.
  • the larger the COP value the higher the power-to-heat conversion efficiency. From this test, as shown in Table 1 below, it can be seen that the product of the present invention is superior in conversion efficiency to any of the comparative products.
  • FIG. 4 is an explanatory view showing a third embodiment of a temperature control system for a molding die according to the present invention. The same components of the temperature adjustment system shown in FIG.
  • the branch flow path 12 that branches from the middle of the flow path to the mold 10 of the coolant circulation flow path 11 and reaches the cooling tank 1 is further connected to the first cooling tank at the end side of the branch flow path 12.
  • the flow path 31 and the second cooling tank connection flow path 32 are branched.
  • the first cooling tank connection channel 31 is connected to an ice melting connection port 33 provided in the cooling space 1 a of the cooling tank 1.
  • the ice melting connection port 33 is preferably provided on the upstream side of the cooling space 1a as much as possible.
  • the second cooling tank connection channel 32 is connected to an ice generating connection port 34 provided in the cooling space 1a (or the liquid feeding space 1b) in the vicinity of the liquid feeding space 1b.
  • the ice melting connection port 33 is provided upstream of the ice generation connection port 34.
  • a first control valve 35 that performs open / close control is provided in the middle of the first cooling tank connection flow path 31 after branching from the branch flow path 12.
  • the second cooling after branching from the branch flow path 12 is provided.
  • a second control valve 36 that performs opening / closing control is also provided in the middle of the tank connection flow path 32.
  • a first temperature sensor 15 that detects the temperature of the coolant is provided in the adjustment tank 2.
  • the first control valve 35 and the second control valve 36 provided in the branch flow path 12 are normally closed.
  • the first control valve 35 or the second control valve 36 may be used. Is opened and the flow path from the branch flow path 12 to the cooling tank 1 (via the first cooling tank connection flow path 31 or the second cooling tank connection flow path 32) is opened, and a part of the coolant in the circulation flow path 11 is opened. Is returned to the cooling tank 1 through the branch flow path 12.
  • the opened first control valve 35 or the second control valve 36 is closed so that the branch flow path 12 to the cooling tank 1 is closed. It is.
  • the means for controlling such settings can be easily performed by a computer incorporating a control program. It can also be implemented by a combination of electronic control units.
  • the evaporator 8 is disposed inside the cooling tank 1, and is configured to directly cool the cooling liquid in the cooling tank 1 by heat exchange, and is maintained at a temperature at which ice can be generated. Also configured to be able to.
  • the flow path for returning the high-temperature coolant from the circulation flow path 11 to the cooling tank 1 from the branch flow path 12 is branched into a plurality of channels so that the position of introducing the coolant into the cooling tank can be switched. It is.
  • the second control valve 36 is controlled to open and close to function as a control valve (the control valve 13 in FIG. 1) (the first control valve 35 is closed), and the “ice melting mode” is selected by selecting the “ice melting mode”.
  • the first control valve 35 is controlled to open and close to function as a control valve (the second control valve 36 is closed). That is, a function as a flow path switching mechanism that switches between the first cooling tank connection flow path 31 and the second cooling tank connection flow path 32 and a function as a control valve by the first control valve 35 and the second control valve 36. Is also used.
  • the second control valve 36 is The flow path from the second cooling tank connection flow path 32 to the cooling tank 1 is opened, and a part of the cooling liquid in the circulation flow path 11 is returned to the cooling tank 1 from the ice generation connection port 34.
  • the second control valve 36 is closed and the branch flow path 12 to the cooling tank 1 is closed.
  • the high-temperature cooling liquid that has entered the cooling tank 1 through the ice generating connection port 34 touches only the vicinity of the downstream side of the cooling space 1a, exchanges heat, and is sent to the liquid sending space 1b.
  • the second control valve 36 is controlled to open and close so that the cooling liquid in the liquid feeding space 1b flows into the adjustment tank 2 and the temperature of the cooling liquid in the adjustment tank 2 becomes the cooling start set temperature.
  • a large amount of the cooling liquid existing in the cooling space 1a is hardly affected by the high-temperature cooling liquid entering from the ice generating connection port 34, and is continuously cooled by the evaporator 8 in a stagnant state. Ice is produced upon cooling to below 0 ° C.
  • the electric power consumed by the cooler 5 becomes latent heat of ice and is stored as cold energy.
  • the first control valve 35 In the state where the “ice melting mode” is selected, when the temperature detected by the first temperature sensor 15 of the coolant in the adjustment tank 2 is equal to or higher than the preset cooling start temperature, the first control valve 35 is The flow path from the first cooling tank connection flow path 31 to the cooling tank 1 is opened and a part of the cooling liquid in the circulation flow path 11 is returned to the cooling tank 1 from the ice melting connection port 33. When the detected temperature is equal to or lower than the cooling start set temperature, the first control valve 35 is closed and the branch flow path 12 to the cooling tank 1 is closed. In this case, the high-temperature coolant that has entered the cooling tank 1 is heat-exchanged while melting the ice accumulated in the cooling space 1a (assuming that the ice is already stored in the cooling space 1a).
  • the first control valve 35 is controlled to open and close so that the temperature of the cooling liquid in the adjustment tank 2 becomes the cooling start set temperature. Then, the coolant can be sent to the adjustment tank 2 while saving power until the accumulated ice melts. Therefore, by generating ice in the “Ice Generation Mode” at a time when the electricity bill is cheap at night, and cooling while saving electricity in the “Ice Melting Mode” during peak hours of daytime power consumption, the power cost is reduced. This can reduce power consumption at the peak of power consumption.
  • FIG. 5 is an explanatory view showing a fourth embodiment.
  • the branch flow path 12 that branches from the middle of the flow path to the mold 10 of the coolant circulation flow path 11 and reaches the cooling tank 1 is connected to the first cooling tank connection flow on the terminal side of the branch flow path 12.
  • the path 41 and the second cooling tank connection channel 42 are branched.
  • the first cooling tank connection channel 41 is connected to an ice melting connection port 43 provided on the upstream side of the cooling space 1 a of the cooling tank 1.
  • the second cooling tank connection channel 42 is connected to an ice generation connection port 44 provided on the downstream side of the cooling space 1a.
  • a control valve 13 is provided in the middle of the branch flow path 12, and branches into a first cooling tank connection flow path 41 and a second cooling tank connection flow path 42 on the downstream side of the control valve 13.
  • a first switching valve 45 for switching the flow path is provided in the middle of the first cooling tank connection flow path 41, and a first switching valve 45 for switching the flow path also in the middle of the second cooling tank connection flow path 42.
  • Two control valves 46 are respectively provided. That is, in the present embodiment, a first switching valve 45 and a second switching valve 46 which are flow path switching mechanisms are provided separately after the control valve 13.
  • the second switching valve 46 When the “ice generation mode” is selected, the second switching valve 46 is opened and the first switching valve 45 is closed. When the “ice melting mode” is selected, the first switching valve 45 is opened and the second switching valve 46 is closed.
  • the detection temperature of the coolant in the adjustment tank 2 detected by the first temperature sensor 15 is set to the desired cooling start set in advance.
  • the control valve 13 is opened, the flow path from the second cooling tank connection flow path 42 to the cooling tank 1 is opened, and a part of the cooling liquid in the circulation flow path 11 passes through the ice generation connection port 44. Returned to the cooling bath 1.
  • the control valve 13 is closed and the branch flow path 12 to the cooling tank 1 is closed.
  • the detected temperature of the coolant in the adjustment tank 2 by the first temperature sensor 15 is a preset cooling start set temperature.
  • the control valve 13 is opened and the flow path from the first cooling tank connection flow path 41 to the cooling tank 1 is opened, and a part of the coolant in the circulation flow path 11 is cooled from the ice melting connection port 43 to the cooling tank. Returned to 1.
  • the control valve 13 is closed and the branch flow path 12 to the cooling tank 1 is closed. In this way, the same control can be realized even if the control valve 13 and the flow path switching mechanism (the first switching valve 45 and the second switching valve 46) are provided separately.
  • the flow path returning to the cooling tank 1 is set to one of the first cooling tank connection flow path 41 and the second cooling tank connection flow path 42 by the “ice generation mode” and the “ice melting mode”.
  • the first cooling tank connection flow path 41 and the second cooling tank connection flow path 42 are alternately switched to open and close, and the high-temperature coolant returned to the two flow paths
  • the ratio may be changed.
  • the flow rate ratio between the first cooling tank connection channel 41 and the second cooling tank connection channel 42 may be set to 9: 1, and in the “ice melting mode”, 1: 9 may be set. .
  • the branch flow path branched into two cooling tank connection flow paths it branches into three or more, for example, connects the three places of the upstream, downstream, and center of the cooling space 1a. A mouth may be provided. Thereby, it becomes possible to easily adjust the amount of ice generated by ice heat storage.
  • Example 2 Next, the verification experiment of the ice heat storage in the temperature control system of Embodiment 2 was conducted. That is, ice generation (ice heat storage) is carried out concurrently while circulating cold temperature controlled water set to a predetermined temperature to the mold, and then the cooler 5 is stopped and the mold temperature is adjusted using ice heat storage. It was adjusted. Experiments and experimental results at that time will be described.
  • FIG. 6 is a block diagram showing a fifth embodiment of the mold temperature control system according to the present invention used in Experiment 2.
  • the control valve 13 is provided in the middle of the branch flow path 12 to the cooling tank 1, and the terminal side of the branch flow path 12 is the 1st cooling tank connection flow path 51, the 2nd cooling tank connection flow.
  • the passage 52, the third cooling tank connection flow path 53, and the fourth cooling tank connection flow path 54 are branched into four flow paths, each of which includes a first switching valve 55, a second switching valve 56, a third switching valve 57, and a first switching valve.
  • a four-switching valve 58 is provided.
  • the first cooling tank connection channel 51 is connected to an ice generation connection port 51 a provided on the downstream side of the cooling space 1 a of the cooling tank 1.
  • the fourth cooling tank connection channel 54 is connected to an ice melting connection port 54 provided on the upstream side of the cooling space 1 a of the cooling tank 1.
  • the 2nd cooling tank connection flow path 52 and the 3rd cooling tank connection flow path 53 are connected to the connection port 52a, 53a for intermediate
  • the intermediate connection ports 52a and 53a are used as both ice generation connection ports and ice melting connection ports.
  • the four switching valves of the first switching valve 55, the second switching valve 56, the third switching valve 57, and the fourth switching valve 58 are provided so that the flow rate in the cooling space 1a of the cooling tank 1 can be adjusted. I made it.
  • Each of the connection ports 51a to 54a can be attached to any part of the side surface or bottom surface of the cooling tank 1, but is attached to the side surface for ease of maintenance and attachment work.
  • the coolant temperature to be sent to the mold 10 is determined at the set temperature of the first temperature sensor 15 installed in the adjustment tank 2, and the cooler is operated by the second temperature sensor 18 installed in the cooling tank 1.
  • Five refrigeration cycles were operated.
  • the first switching valve 51 is opened and the other switching valves 52 to 54 are closed after the branch flow path 12.
  • the switching valves 52 to 54 are opened and the switching valve 51 is closed.
  • the switching valves 54 and 51 were opened.
  • a flow meter was installed in the mold channel 11 (coolant circulation channel) for grasping the operation status and monitoring each part of the system configuration. Moreover, the liquid temperature of the cooling liquid inlet to the metal mold
  • the cooler shown in the block diagram of each embodiment shows connection with an external chilled water tower
  • a cooler equipped with an air-cooled heat exchange unit may be arranged instead of the cooler using the external chilled water tower. good.
  • the cooler not only a cold water tower but also an air-cooled heat exchange unit is suitable.
  • the liquid flow in this space is controlled by selection of the flow path connected to the cooling space 1a in the cooling tank 1, as a means of liquid flow control, for example, the bottom face of the adjustment tank 2 It is also effective to make a small hole and let it pass through the cooling tank. In particular, it is convenient to allow both tanks to have a communication structure during water supply and drainage when performing maintenance of cooling water for the daily mold temperature control system.
  • the adjusting tank 2 may be configured such that the partition wall with the cooling tank 1 is divided into a partition plate and a bottom plate, and the position of the partition plate can be moved and adjusted with respect to the bottom plate. This makes it possible to arbitrarily change the volume ratio between the adjustment tank and the cooling tank and the partition wall area adjacent to both tanks.
  • the present invention can be applied as a temperature adjustment system for a molding die in a plastic injection molding machine, and can be used as a temperature adjusting water for air conditioning, for example, as a device for generating temperature-controlled water for air conditioning.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 金型の廃熱と冷却機による冷熱とを利用して、金型温度を低温域から高温域にわたって安定して使用可能な成形用金型の温度調整システムを提供するために、冷却槽1からの冷却液を収納する調整槽2と、冷却液循環流路11と、この循環流路11から分岐されて冷却槽1に至る分岐流路12と、分岐流路12に設けられた制御弁13と、調整槽2内もしくは循環流路11の冷却液の温度を検出する温度センサ15と、調整槽2内もしくは循環流路11内に設けられた加熱器17とからなり、温度センサ15の検出温度が設定温度以上になると、制御弁13が開いて循環流路11の高温の冷却液が冷却槽1に戻され、冷却槽1に戻された液量だけ冷却槽1から調整槽2に低温の冷却液が流入するように形成する。

Description

成形用金型の温度調整システム
 本発明は、合成樹脂成形用金型を所望する設定温度にコントロールする温度調整システムに関する。特に本発明は、金型の廃熱と冷却機による冷熱とを利用することによって所望する金型温度をこれまでよりも広範囲の温度領域にわたって使用することができる成形用金型の温度調整システムに関するものである。
 従来、プラスチック成形において、成形機から金型内に射出された溶融樹脂は、金型内で冷却固形し、十分に冷却された後に金型外部に取り出されてプラスチック成形品が製造されている。
 金型を冷却する手段として、冷却装置で冷却した冷却液を金型に循環する手法がとられている。金型内部に冷却液を通す循環流路を設け、この冷却液を一定温度に維持することにより金型温度が成形温度に適合するように温度制御が一般的に行われている。金型温度は、成形される樹脂の熱変形温度に応じて一般的に10℃~30℃(以下、「低温域」ともいう)の範囲内でコントロールされている。
 しかし、熱変形温度の高い樹脂の場合には金型温度を常温以上の温度で、例えばEVA樹脂やABS樹脂のように40℃~60℃(以下、「中温域」ともいう)で維持したいケースがある。このような場合、上記したような冷却液循環回路のみによる冷却システムでは対処できない。
 そこで、本出願人は、特許文献1に示すような成形用金型の温度調整システムを提案した。この発明によれば、金型の廃熱と冷却機による冷熱とを利用することによって、所望する金型温度を低温域の10℃から中温域の60℃近傍まで省エネで熱効率よく使用することができるようになる。
特許第4755677号公報
 しかし、ポリカーボネート樹脂のように、金型温度を約90℃程度の高温域で維持したい場合がある。その場合には、上述したような金型の廃熱利用のみでは冷却液を90℃に継続維持することが困難であった。
 そこで本発明は、金型の廃熱と冷却機による冷熱とを利用することによって、所望する金型温度を低温域から中温域まで使用することができるとともに、さらに高温域(すなわち10℃~90℃)にわたって安定して使用することができる成形用金型の温度調整システムを、簡単な構成で提供することを主たる目的とするものである。
 また、冷却機を使用する際には、電力を消費することになるが電力料金は電力使用量がピークになる昼間よりも電力使用量が少ない夜間の方が安価に設定されている。そこで、電力料金の安い夜間に冷却機を作動して氷を生成することで冷熱を蓄熱しておき、昼間の電力使用量のピーク時に氷を融解して節電を図りながら温調することができる温調システムが望まれているが、これまでの温度調整システムでは、装置の使用状態を、効率的に氷を生成するモードに変更したり、生成した氷を効率的に利用して節電するモードに変更したりすることが容易に行える工夫はなされていなかった。本発明は、温調動作をしながら積極的に氷を生成したり、積極的に氷を融解したりすることが簡単かつ効率的に行うことができる温調システムを提供することを目的とする。
 上記目的を達成するため、本発明に係る成形用金型の温度調整システムにあっては、冷却装置により冷却された冷却液を収納する冷却槽と、前記冷却槽からの冷却液を収納する調整槽と、前記調整槽から金型を経て調整槽に戻る冷却液循環流路と、前記冷却液循環流路の途中から分岐されて前記冷却槽に至る分岐流路と、前記分岐流路の途中に設けられた制御弁と、前記調整槽内もしくは前記冷却液循環流路の冷却液の温度を検出する第1の温度センサと、前記調整槽内もしくは前記冷却液循環流路内に設けられ、第1の温度センサの検出温度とあらかじめ設定された加熱開始設定温度との比較によってON/OFF動作する制御機能を備えた加熱器とからなり、前記加熱器は加熱開始設定温度以下になるとON動作し、加熱開始設定温度以上になるとOFF動作するように形成され、第1の温度センサの検出温度があらかじめ設定された冷却開始設定温度以上になると、前記制御弁が開いて前記冷却液循環流路の高温の冷却液の一部が前記冷却槽に戻されるように形成され、冷却槽に戻された液量だけ冷却槽から前記調整槽に低温の冷却液が流入するように形成されている構成とした。
 本発明は上記のごとく構成されているので、冷却槽と区分けされた調整槽内の冷却液の循環によって金型が冷却され、金型温度により循環冷却液があらかじめ設定された冷却開始設定温度以上に上昇すると、冷却液循環流路の高温の冷却液の一部が冷却槽に戻されて、この戻された液量だけ冷却槽から調整槽に低温の冷却液が流入して、調整槽内の循環冷却液を自動的に設定温度に調整することができ、これにより、金型の廃熱の有効利用と、冷却機による冷熱とによって、金型冷却液の温度を約10℃の低温域から約60℃の中温域までは省エネで得ることができる。
 さらに、ポリカーボネート樹脂のような60℃より高温、具体的には90℃程度の高温域での樹脂成形が要求される場合には、システムに付加された加熱器を使用する。これにより、調整槽の金型冷却液の温度を例えば90℃の高温まで昇温させることができ、ポリカーボネート樹脂のような高温域での樹脂成形を行う場合にも使用可能となる。なお、加熱器は調整槽または循環流路の途中に取り付けるだけでよいので、構成が簡単であり、コストの低減化を図ることができるといった効果もある。
 上記発明において、前記冷却槽と調整槽が隔壁で区分けされた一体構造で形成され、冷却槽には冷却槽内の冷却液の温度を検出する第2の温度センサが設けられ、その検出温度により冷却機を制御して、冷却槽内の冷却液の温度を一定に維持するように形成されている構成とするのが好ましい。
 この二槽一体構造により、槽全体をコンパクトにして設置スペースを小さくすることができるとともに、第2の温度センサにより冷却槽内の冷却液の温度を一定に維持して金型の冷却をコンスタントに行うことができる。
 また、上記発明において、冷却槽内部に冷却液を冷却する冷却装置のエバポレータが配置され、このエバポレータにより冷却槽内に氷が生成するように形成されている構成とするのがよい。
 これにより、エバポレータが隠れて外観イメージがスマートになるとともに、冷却槽内に生成された氷により、多量の冷熱を蓄熱させることができて熱効率を高めることができる。
 ここで、エバポレータが冷却槽内部に配置された上記発明において、前記冷却槽は、上流側を閉塞端にして前記エバポレータが配置される冷却空間と当該冷却空間の下流側に連通し冷却液を調整槽に送る流路となる送液空間とからなり、前記分岐流路の末端部分は少なくとも二つに分岐されて複数の冷却槽接続流路が形成され、前記冷却槽接続流路の一つが前記冷却空間に設けられた氷融解用接続口に接続され、前記冷却槽接続流路の一つが前記送液空間または送液空間近傍の冷却空間に設けられた氷生成用接続口に接続され、前記分岐流路には前記冷却液循環流路からの高温の冷却液を送る冷却槽接続流路を切り替える流路切替機構を設けてもよい。
 この発明によれば、冷却槽のエバポレータが配置された冷却空間において氷を生成したり、生成した氷を融解したりするが、分岐流路からの高温の冷却液を冷却槽へ導入する位置を、氷生成時と氷融解時とで変更できるように流路切替機構を設けてある。
 すなわち氷融解時には冷却空間に生成された氷が融解されやすくするために、冷却空間自体に設けた接続口(氷融解用接続口)から生成されている氷に向けて高温の冷却液を導入する。
 また、氷生成時には冷却空間のエバポレータ近傍にできるだけ低温の冷却液が淀んで冷却が促進されるようにするため、送液空間または送液空間近傍の冷却空間に設けた接続口(氷生成用接続口)から冷却液を導入する
 上記発明において、前記制御弁は、前記分岐流路が各冷却槽接続流路に分岐した後の流路上にそれぞれ設けられ、当該制御弁が前記流路切替機構の機能を兼ねてもよい。
 また、前記制御弁は、前記分岐流路が各冷却槽接続流路に分岐するよりも前段側に設けられ、前記制御弁とは別に、各冷却槽接続流路上に流路を切り替える流路切替機構を設けてもよい。
本発明に係る金型温度調整システムの第1実施例を示す説明図。 図1に示す第1実施例のブロック図。 本発明に係る金型温度調整システムの第2実施例を示す説明図。 本発明に係る金型温度調整システムの第3実施例を示すブロック図。 本発明に係る金型温度調整システムの第4実施例を示すブロック図。 本発明に係る金型温度調整システムの第5実施例を示すブロック図。
(実施形態1)
以下において、本発明に係る成形用金型の温度調整システムについて図面に示した実施例に基づき説明する。
 図1は本発明に係る成形用金型の温度調整システムの第1実施例を示す説明図であり、図2はそのブロック図である。この温度調整システムは、冷却液を収納する冷却槽1と、冷却槽1からの冷却液を収納する調整槽2を備えている。冷却槽1は、上流側の冷却空間1aと下流側の送液空間1bとからなる。冷却空間1aは上流側が壁で閉じられ、後述する冷却装置5のエバポレータ8が空間内に配設される。送液空間1bは冷却空間1aの下流側に連通し、冷却空間1aで冷やされた冷却液がこの送液空間1bを介して調整槽2に送られる。
 冷却槽1と調整槽2は隔壁3で区分けされた二槽一体構造で形成されており、冷却槽1の送液空間1bの液面が調整槽2の液面より上位となるように配置され、冷却槽1の隔壁3の上縁が切除されてオーバーフロー口4を形成しており、このオーバーフロー口4から溢れた分が調整槽2へ流入するように設けられている。
 さらに、本発明の温度調整システムでは、冷却液を冷却する冷却装置5が設けられている。この冷却装置5は、フロン等の冷媒を圧縮するコンプレッサ6と、コンプレッサ6からの圧縮冷媒を凝縮するコンデンサ7、螺管式のエバポレータ(熱交換器)8並びにこれら機器をつなぐ冷媒循環回路9とからなり、前記エバポレータ8が冷却槽1の冷却空間1aの内部に配置されて、冷却槽1内の冷却液を熱交換により直接冷却するように構成されている。
 なお、冷却装置5は、冷媒の蒸発熱を利用したヒートポンプ式の冷却装置である。これは冷却槽1内でエバポレータ8の螺管周辺部に冷温水を生成するだけでなく、氷が生成できる温度に設定することもできるように構成されている。
 これにより、氷の潜熱(融解熱)を利用して多量の冷熱を蓄熱すること、すなわち、氷蓄熱が可能となる。その結果、冷却槽1内の冷却液温度を概ね0℃に安定維持することができるとともに、熱効率を高めることができる。冷却槽1内の冷却液は、冷却槽1内に設けられた第2温度センサ18による検出温度により、冷却装置5を制御して冷却槽1内の冷却液温度を一定に維持するように形成されている。
 前記冷却槽1に装着される第2温度センサ18は、エバポレータ8の螺管表面に近接し、感温部が螺管に接触しない位置に設置するのがよい。具体的には、エバポレータ8の螺管表面から1cm~10cm、好ましくは、3cm離れた位置で、槽壁面に接触しない位置に温度センサの感温部を設置するのがよい。また、冷却空間1内での第2温度センサ18の取り付け位置としては、冷却空間1aと送液空間1bとの境界近傍に設けるのが好ましい。このような取り付け位置を確保することにより、螺管表面に氷が生成してもセンサー感温部回りが水相を維持している間は、第2温度センサは概ね氷点温度(0℃)を検出し表示するので、氷生成を継続させることが出来る。氷が成長して厚みを増しセンサー感温部に接触すると氷点以下の低温度を検出することになる。その結果、氷生成とその成長を第2温度センサの表示温度から監視することが出来る。
 また、調整槽2からポンプP、プラスチック成形機の金型10を通って調整槽2に戻る冷却液循環流路11と、この循環流路11の金型10に至る流路途中から分岐されて冷却槽1に至る分岐流路12と、調整槽2内の冷却液の温度を検出する第1温度センサ15とが設けられている。さらに、ポンプPから金型10に至る循環流路11の途中から分岐されて調整槽2に戻るバイパス流路14が設けられ、このバイパス流路14の途中にバルブ16が設けられている。
 分岐流路12に設けられた制御弁13は、常時は閉じた状態にある。第1温度センサ15による調整槽2内の冷却液の検出温度が、予め設定してある所望の冷却開始設定温度以上になると、制御弁13が開いて分岐流路12の冷却槽1に至る流路が開放され、循環流路11の冷却液の一部が分岐流路12を経て冷却槽1に戻され、検出温度が冷却開始設定温度以下になると、制御弁13が閉じて冷却槽1への分岐流路12が閉ざされるように設定されている。このような設定を制御する手段は、制御プログラムを組み込んだコンピュータによって容易に行うことができる。また、電子制御ユニットの組み合わせによっても実施することができる。
 なお、バイパス流路14は、何らかの原因で金型10内の流路にトラブルが生じた場合に、循環流路11の冷却液を調整槽2に還流させるためのものであり、バイパス流路14中の流量はバルブ16によって適宜調整され、バイパスを必要としない場合はバルブ16が閉ざされている。また、このバイパス流路14は、本システムから省略することも可能である。
 また、調整槽2には、高温域での使用の際に、調整槽2並びに冷却液循環流路11内の冷却液を加熱する加熱器17が設けられている。この加熱器17は、金型10を、50℃~90℃の高温域の冷却液で冷却する必要のあるときに動作させるものであって、第1温度センサ15の検出温度が予め設定してある所望の加熱開始設定温度以下になるとON動作し、設定温度以上になるとOFF動作するように設定されている。
 さらに、調整槽2内の水位を一定に調整するために、外部に設けた冷水塔23からの冷却液供給流路19がフロート弁20を介して連通されており、水位が設定値から下がるとフロート20aが下動してフロート弁20が開き、冷水塔23からの冷却液を補給して水位を一定値に維持する。
 また、本システムのメンテナンスおよび冷却槽1や調整槽2の清掃のために、システム中の冷却液を冷水塔23に戻す還元流路21が、分岐流路12の途中から冷水塔23に連通して設けられており、還元流路21の途中には、還元流路21を開閉するバルブ22が設けられている。
 本システムで使用される冷却液としては、通常、水が使用されるが、水にエチレングリコール等の不凍剤を混入した不凍液や、同等の物性を有する液体を使用することが可能である。
 上記の構成において、金型10を循環する冷却液の検出設定温度(冷却開始設定温度)を、例えば40℃に設定して駆動すると、調整槽2の冷却液がポンプPによって循環流路11を循環し、金型10を冷却する。この段階では、冷却槽1内の冷却液は調整槽2に流入していない。また、調整槽2内の加熱器17は、その電源を切断しておく。
 循環流路11から還流される調整槽2内の冷却液が金型10の熱を吸収して40℃(冷却開始設定温度)を超えると、第1温度センサ15によって温度が検出されて制御弁13が開き、冷却槽1に至る分岐流路12が開放されて循環流路11の温度の高い冷却液の一部が冷却槽1に戻される。この戻された液量だけ冷却槽1内の液量が増加して液面が上昇し、オーバーフロー口4から溢れて調整槽2に流入して調整槽2内の液温が低下する。調整槽2内の冷却液が40℃以下になると、第1温度センサ15が検知して制御弁13により冷却槽1に至る分岐流路12が閉ざされる。この動作の繰り返しにより、金型10に流れる冷却液の温度を常に設定温度(冷却開始設定温度)の40℃に自動調整することができる。
 また、制御弁13により、金型10からの高温環流液の冷却槽1への流入を抑制することにより、調整槽2内の冷却液温度の上昇を抑えることができるとともに、冷却槽1内での氷の生成と融解とを継続して行うことができる。さらに、第2温度センサ18は、エバポレータ8の螺管表面から離れて槽壁面に接触しない位置に設けられているので、前記した通り、感温部回りが水相を維持している間は、氷点下以下にはならず、冷却槽1内の冷却水温度を正確に検出することができる。
 なお、冷却槽1内での継続した氷の生成には、第2温度センサ18の感温部の取付位置と、分岐流路12から冷却槽1に流入する冷却液の流量制御とが重要な要素となる。
 本発明者の実験によれば、調整槽2内の冷却液が40℃以下になっても制御弁13が完全に閉じるのではなく、少量の冷却液が流通するように設定するとともに、第2温度センサ18を、エバポレータ8の螺管表面から3cm程度離れた位置に設置して冷却水温度が約10℃以上、好ましくは5℃以上でON動作するように設定することにより、エバポレータ8の螺管表面における氷の生成を継続して維持することができるとともに、冷却槽1内部の冷却水温度を設定温度に安定維持することができた。
 次いで、ポリカーボネート樹脂などのように、金型10を例えば85℃の高温域の冷却液で冷却する場合について説明する。
 まず、加熱器17の電源を入れ、加熱器17がON動作する温度(加熱開始設定温度)を85℃に設定するとともに、冷却槽1に連なる分岐流路12の制御弁13の開動作を行う冷却液の温度(冷却開始設定温度)を85℃以上、例えば90℃に設定する。
 これにより、循環流路11から還流される調整槽2内の冷却液は加熱器17によって90℃まで暖められ、90℃を超えると、第1温度センサ15によって温度が検出されて加熱器17がOFFに切り替わり、冷却液は概ね90℃に維持される。もし、冷却液が金型からの熱を吸収して異常に上昇して90℃(冷却開始設定温度)に達すると、制御弁13が開いて冷却槽1に至る流路が開放され、循環流路11の温度の高い冷却液の一部が冷却槽1に戻される。この戻された液量だけ冷却槽1内の液量が増加して液面が上昇し、オーバーフロー口4から溢れて調整槽2に流入して調整槽2内の液温が低下する。調整槽2内の冷却液の温度が下がると、第1温度センサ15が検知して制御弁13により冷却槽1に至る分岐流路12が閉ざされる。これにより、金型10を通る冷却液の温度が設定温度範囲から逸脱するのを確実に防ぐことができる。
 上記のように本発明では、金型10の廃熱の有効利用と、冷却装置5による冷熱とによって、金型冷却液の温度を約10℃の低温域から約50℃~60℃の中温域まで省エネで得ることができる。また、システムに付加された加熱器17を使用することにより、金型冷却液の温度を例えば90℃の高温まで昇温させることができ、ポリカーボネート樹脂のような高温域での樹脂成形が可能となる。これにより、金型冷却温度を低温域から高温域まで広範囲にカバーできて多様な需要に対処することができる。加えて、加熱器17は調整槽2または循環流路11の途中に取り付けるだけでよいので、構成が簡単であり、コストの低減化を図ることができる。
 また、本実施例では、冷却槽1の冷却空間1aの内部に冷却装置5の螺管式エバポレータ8を配置して冷却液を直接冷却するようにしたので、エバポレータ8が隠れて外観イメージがスマートになるとともに、エバポレータ8を冷却槽1の外部に設置した場合に比べて、エバポレータ8と冷却槽1とに冷却液を循環させるパイプラインやポンプを省略できて、構成を簡略化することが可能となる。また、冷却槽1内のエバポレータ8に氷を生成することによって多量の冷熱を蓄熱させることができ、熱効率を高めることができる。さらに、冷却装置5について、予約した時間に冷却を行うタイマ機能を設けておくことで、電気料金の安価な深夜の内に氷を生成しておくこともできる。
 図3は本発明に係る成形用金型の温度調整システムの第2実施例を示す説明図である。第2実施例では、加熱器17を金型10から調整槽2に至る冷却液循環流路11の途中に設けるようにしている。この場合には、加熱器17が調整槽2の外部にあるので加熱器17のメンテナンスが容易となる。
(実験1)
 下記表1は、本発明の実施品と、比較品1、比較品2並びに比較品3とによる冷却効率の試験結果を示すものである。
 比較品1は、冷凍機のみで金型冷却水を冷却する市販金型冷却装置であり、比較品2は、特許文献1の機構を備えた金型冷却装置であり、比較品3は、冷凍機と加熱器とを備え、冷却槽1槽のみの循環経路で5℃~90℃の温度範囲で冷温水を生成する金型冷却装置である。
 表中の数位は、JIS B 8613「ウォーターチリングユニット」付属書1の冷却能力試験法に準拠して測定したCOP簡易値を示すものであり、COP値は次の算出式によって得られる。
  COP値 = 冷却能力(kcal)÷ 消費電力(kWh)
 試験では、1kWh=860kcalに換算して、約1時間金型冷却装置を運転し、所定の設定温度の冷却水を生成するに要した電力を計測し、上記式によって計算した。COP値が大きくなる程、電力→熱量の変換効率が高いことを示す。本試験によって、下記表1に示すように、本発明の実施品が比較品のいずれよりも変換効率が優れていることが判る。
Figure JPOXMLDOC01-appb-T000001
(実施形態2)
 次に、本発明の他の実施形態の温度調整システムについて説明する。ここで説明する実施形態2では、積極的に氷を生成する「氷生成モード」と、節電のために積極的に氷を融解する「氷融解モード」とを簡単に切り替えることができるようにして、例えば電力料金が安い時間帯に冷却槽に「氷生成モード」で多量の氷を作成しておき、電力使用量がピークとなる時間帯に「氷融解モード」で氷を融解することでその時間帯での電力使用量を抑制することが簡単に実現できるようにして、氷蓄熱を第一の実施形態よりも効率的に利用できるようにしている。
 図4は本発明に係る成形用金型の温度調整システムの第3実施例を示す説明図である。なお、図1で示した温度調整システムの同じ構成部分については同符号を付すことにより、説明の一部を省略する。
 本実施例では、冷却液循環流路11の金型10に至る流路途中から分岐して冷却槽1に至る分岐流路12が、分岐流路12の末端側で、さらに第1冷却槽接続流路31と第2冷却槽接続流路32とに分岐するようにしてある。第1冷却槽接続流路31は冷却槽1の冷却空間1aに設けた氷融解用接続口33に接続される。この氷融解用接続口33は冷却空間1aのできるだけ上流側に設ける方が好ましい。また、第2冷却槽接続流路32は、送液空間1b近傍の冷却空間1a(あるいは送液空間1bでもよい)に設けた氷生成用接続口34に接続される。このようにして氷融解用接続口33を氷生成用接続口34よりも上流側に設けるようにしてある。
 分岐流路12から分岐した後の第1冷却槽接続流路31の途中には、開閉制御を行う第1制御弁35が設けられ、同様に、分岐流路12から分岐した後の第2冷却槽接続流路32の途中にも開閉制御を行う第2制御弁36がそれぞれ設けられている。
 調整槽2内には冷却液の温度を検出する第1温度センサ15が設けられている。
 分岐流路12に設けられた第1制御弁35、第2制御弁36は、常時は閉じた状態にある。第1温度センサ15による調整槽2内の冷却液の検出温度が、予め設定してある冷却開始設定温度以上になると、第1制御弁35、または、第2制御弁36(あるいは両方でもよい)が開いて分岐流路12から(第1冷却槽接続流路31または第2冷却槽接続流路32を経て)冷却槽1に至る流路が開放され、循環流路11の冷却液の一部が分岐流路12を経て冷却槽1に戻される。第1温度センサ15の検出温度が冷却開始設定温度以下になると、開いていた第1制御弁35、または、第2制御弁36が閉じて冷却槽1への分岐流路12が閉ざされるようにしてある。このような設定を制御する手段は、制御プログラムを組み込んだコンピュータによって容易に行うことができる。また、電子制御ユニットの組み合わせによっても実施することができる。
 冷却槽1の冷却空間1aでは、エバポレータ8が冷却槽1の内部に配置されて、冷却槽1内の冷却液を熱交換により直接冷却するように構成され、氷が生成できる温度に維持することもできるように構成されている。
 さらに、本実施形態では、冷却槽1内に氷を生成して氷蓄熱を促進する状態(氷生成モード)と、蓄積された氷を融解する状態(氷融解モード)とを簡単に切り替えることができるようにするために、循環流路11からの高温の冷却液を分岐流路12から冷却槽1に戻す流路を複数に分岐し、冷却槽への冷却液の導入位置の切替ができるようにしてある。 具体的には、上述した制御プログラムを組み込んだコンピュータあるいは電子制御ユニットなどの制御手段に付設される入力装置(不図示)での入力によって「氷生成モード」を選択することにより、或いは単純に手動操作によって、第2制御弁36が開閉制御されて制御弁(図1の制御弁13)として機能するようになり(第1制御弁35は閉止)、「氷融解モード」を選択することによって第1制御弁35が開閉制御されて制御弁として機能するようになる(第2制御弁36は閉止)。すなわち、第1制御弁35と第2制御弁36とによって、第1冷却槽接続流路31と第2冷却槽接続流路32とを切り替える流路切替機構としての機能と制御弁としての機能とが兼用されている。
 次に各モードでの動作について説明する。「氷生成モード」が選択された状態においては、第1温度センサ15による調整槽2内の冷却液の検出温度が、予め設定してある冷却開始設定温度以上になると、第2制御弁36が開いて第2冷却槽接続流路32から冷却槽1に至る流路が開放され、循環流路11の冷却液の一部が氷生成用接続口34から冷却槽1に戻される。検出温度が冷却開始設定温度以下になると、第2制御弁36が閉じて冷却槽1への分岐流路12が閉ざされる。
 この場合、冷却槽1に氷生成用接続口34から入り込んだ高温の冷却液は冷却空間1aの下流側近傍だけに触れて熱交換されて送液空間1bに送られる。そして送液空間1bの冷却液が調整槽2へ流入するようになり、調整槽2の冷却液の温度が冷却開始設定温度になるように第2制御弁36が開閉制御される。その際に、冷却空間1aに存在する多量の冷却液は氷生成用接続口34から入り込んだ高温の冷却液の影響をほとんど受けることなく、淀んだ状態でエバポレータ8により冷却され続け、効率的に0℃以下まで冷却されて氷が生成されるようになる。このとき冷却機5で消費された電力は氷の潜熱になり冷熱エネルギーとして蓄積されることになる。
 「氷融解モード」が選択された状態においては、第1温度センサ15による調整槽2内の冷却液の検出温度が、予め設定してある冷却開始設定温度以上になると、第1制御弁35が開いて第1冷却槽接続流路31から冷却槽1に至る流路が開放され、循環流路11の冷却液の一部が氷融解用接続口33から冷却槽1に戻される。検出温度が冷却開始設定温度以下になると、第1制御弁35が閉じて冷却槽1への分岐流路12が閉ざされる。
 この場合、冷却槽1に入り込んだ高温の冷却液は、(既に冷却空間1aに氷蓄熱がなされているとして)冷却空間1aに蓄積された氷を融解しながら熱交換されていく。氷が融解するときの潜熱(融解熱)を利用して冷却できるので、冷却機5で冷却する必要がなくなり、電力消費を抑えることができる。そして送液空間1bの冷却液が調整槽2へ流入するようになるので、調整槽2の冷却液の温度が冷却開始設定温度になるように第1制御弁35が開閉制御される。そして蓄積された氷が融けるまで節電しながら冷却液を調整槽2に送ることができる。
 したがって、夜間の電気料金が安価な時間に「氷生成モード」で氷を生成しておき、昼間の電力使用量のピーク時間に「氷融解モード」で節電しながら冷却することで、電力コストを低減でき、電力使用量のピーク時の節電を実現することができる。
 次に、変形例について説明する。図5は第4実施例を示す説明図である。なお、図4で示した温度調整システムの同じ構成部分については同符号を付すことにより、説明の一部を省略する。
 本実施例では、冷却液循環流路11の金型10に至る流路途中から分岐して冷却槽1に至る分岐流路12が、分岐流路12の末端側で、第1冷却槽接続流路41と第2冷却槽接続流路42とに分岐する。図4の実施形態と同様に、第1冷却槽接続流路41は冷却槽1の冷却空間1aの上流側に設けた氷融解用接続口43に接続される。第2冷却槽接続流路42は、冷却空間1aの下流側に設けた氷生成用接続口44に接続される。
 分岐流路12の途中には制御弁13が設けてあり、制御弁13の下流側で第1冷却槽接続流路41と第2冷却槽接続流路42とに分岐する。そして、第1冷却槽接続流路41の途中には流路切替を行うための第1切替弁45が設けられ、第2冷却槽接続流路42の途中にも流路切替を行うための第2制御弁46がそれぞれ設けられる。すなわち、本実施例では、制御弁13の後段に流路切替機構となる第1切替弁45、第2切替弁46が別に設けられている。
 そして「氷生成モード」が選択されたときは、第2切替弁46が開き、第1切替弁45が閉じる。「氷融解モード」が選択されたときは、第1切替弁45が開き、第2切替弁46が閉じる。
 次に各モードでの動作について説明する。「氷生成モード」が選択された状態(第2切替弁46が開状態)においては、第1温度センサ15による調整槽2内の冷却液の検出温度が、予め設定してある所望の冷却開始設定温度以上になると、制御弁13が開いて第2冷却槽接続流路42から冷却槽1に至る流路が開放され、循環流路11の冷却液の一部が氷生成用接続口44から冷却槽1に戻される。検出温度が冷却開始設定温度以下になると、制御弁13が閉じて冷却槽1への分岐流路12が閉ざされる。
 「氷融解モード」が選択された状態(第1切替弁45が開状態)においては、第1温度センサ15による調整槽2内の冷却液の検出温度が、予め設定してある冷却開始設定温度以上になると、制御弁13が開いて第1冷却槽接続流路41から冷却槽1に至る流路が開放され、循環流路11の冷却液の一部が氷融解用接続口43から冷却槽1に戻される。検出温度が冷却開始設定温度以下になると、制御弁13が閉じて冷却槽1への分岐流路12が閉ざされる。
 このようにして、制御弁13と流路切替機構(第1切替弁45、第2切替弁46)とを別に設けても同様の制御を実現することができる。
 上述した実施形態では、「氷生成モード」と「氷融解モード」とにより、冷却槽1に戻す流路を第1冷却槽接続流路41と第2冷却槽接続流路42とのいずれかに完全に切り替えたが、これに代えて、第1冷却槽接続流路41と第2冷却槽接続流路42とを開閉を交互に切り替えるようにして、2つの流路に戻す高温の冷却液の比率を変化させるようにしてもよい。例えば「氷生成モード」では第1冷却槽接続流路41と第2冷却槽接続流路42との流量比を9:1、「氷融解モード」では1:9に設定するようにしてもよい。
 また、上記各実施形態では、分岐流路を2つの冷却槽接続流路に分岐したが、3つ以上に分岐して、例えば、冷却空間1aの上流側、下流側、中央の3箇所に接続口を設けてもよい。これにより、氷蓄熱で生成する氷の量を調整することが簡単にできるようになる。
(実験2)
 次に、実施形態2の温度調整システムでの氷蓄熱の検証実験を行った。すなわち、所定温度に設定した冷温調水を金型に循環しながら、氷生成(氷蓄熱)を併行的に実施し、その後、冷却機5を停止して氷蓄熱を利用して金型温度を調整した。そのときの実験および実験結果について説明する。
 図6は、実験2に用いた本発明に係る金型温度調整システムの第5実施例を示すブロック図である。図4、図5で示したものと同じ機能部分については同一符号を付して説明の一部を省略する。
 第5実施例では、冷却槽1への分岐流路12の途中には制御弁13が設けてあり、分岐流路12の末端側が、第1冷却槽接続流路51、第2冷却槽接続流路52、第3冷却槽接続流路53、第4冷却槽接続流路54の4つの流路に分岐し、それぞれに第1切替弁55、第2切替弁56、第3切替弁57、第4切替弁58が設けられている。
 第1冷却槽接続流路51は冷却槽1の冷却空間1aにおける下流側に設けた氷生成用接続口51aに接続される。第4冷却槽接続流路54は冷却槽1の冷却空間1aにおける上流側に設けた氷融解用接続口54に接続される。さらに第2冷却槽接続流路52および第3冷却槽接続流路53は、冷却空間1aの中央寄りに設けた中間用接続口52a,53aに接続される。中間接続口52a,53aは氷生成時、氷融解時のいずれで使用するかによって、氷生成用の接続口にも、氷融解用の接続口にも使用されることになる。
 このように、第1切替弁55、第2切替弁56、第3切替弁57、第4切替弁58の4つの切替弁を設置し、冷却槽1の冷却空間1a内の流速を調節できるようにした。なお、各接続口51a~54aは、冷却槽1の側面又は底面の任意の部位に取付けることができるが、メンテナンスおよび取付け作業の容易さから側面に取付けるようにしている。
 本実験2では、調整槽2の設定温度によって所定の冷温調水を金型へ送出しながら、冷却槽内に氷蓄熱を行い、その後、冷却槽1内に生成した氷を融解して冷熱を取りだす事により、冷却機を停止したまま継続して所定の冷温調水で金型温度調節を実現するための好適な条件について確認した。
 氷生成と氷融解工程においては、冷却槽1へ暖められた冷却水を還流させるための接続口の選択条件が重要である。そこで本実験2では、切替弁の調整による実用的な金型温度調整システムとしての好適な使用方法を検討した。
 本実験2では、調整槽2内に設置した第1の温度センサー15の設定温度で金型10へ送出する冷却液温度を定め、冷却槽1内に設置した第2の温度センサー18によって冷却機5の冷凍サイクルを稼動させた。
 通常の金型温度調整システムとして運転しながら氷蓄熱するための“氷生成運転”では、分岐流路12以降は、第1切替弁51を開にし、他の切替弁52~54を閉にした。
 氷を融解して冷熱を取り出す“解氷運転”では、逆に切替弁52~54を開にし、切替弁51を閉にした。なお、一部の比較実験例(実験No.3)では、切替弁54,51を開にした。
 また、稼動状況の把握用、および、本システム構成各部位のモニタリング用に、金型流路11(冷却液循環流路)に流量計を設置した。また、金型10への冷却液入口および金型から調整槽2側への液戻り口の液温を熱電対にて計測した。前記した金型入口および戻り口の液温を監視することによって、金型温度調整が所定の条件にて実現しているか、或いは、制御不能になっているかの状況判断が可能であった。以下に示す表2に実験2での監視結果を一括して示す。
 表2において、実験No.2の条件では、1時間強(67分)の通常運転下で氷蓄熱が併行して実現し、その後51分に亘って冷却機を停止しても正常に金型温度調整が為された。これにより、本実施例の金型温度調整システムでの氷蓄熱が有効であることが確認された。
 実験No.1の条件でも、180分の通常運転下で氷蓄熱が実現でき、その後49分に亘って冷却機を停止しても正常に金型温度調整が為された。
 一方、比較実験としての実験No.3では、氷蓄熱された冷熱が十分には取り出せなかった。No.3では解氷過程で全ての氷を融解させられなかったが、その原因は冷却液の流路選択(解氷時に切替弁51を開にしたこと)が不適当であったと判断した。
Figure JPOXMLDOC01-appb-T000002
 以上、本発明の代表的な実施例について説明したが、本発明は必ずしも上記の実施例構造のみに特定されるものでなく、その目的を達成し、請求の範囲を逸脱しない範囲内で適宜修正、変更することが可能である。各実施例のブロック図に示す冷却機は、外部冷水塔との接続を示しているが、外部冷水塔を使用する冷却機の代わりに空冷式熱交換ユニットを備えた冷却機を配置しても良い。冷却機には、冷水塔のみならず空冷式熱交換ユニットを備えたものでも適当である。
 また、各実施例では、冷却槽1内の冷却空間1aへ接続する流路の選択により該空間内の液流を制御しているが、液流制御の手段としては、例えば調整槽2の底面に小孔を開け冷却槽に貫通させておく方法も有効である。特に、日常の金型温度調整システムの冷却用水のメンテナンスを行う際の給水時および排水時には両槽を連通構造にできるようにしておくと便利である。
 また、調整槽2は、冷却槽1との隔壁を仕切り板と底板とに分割し、底板に対して仕切り板の位置を移動調整できるような構成にしてもよい。これにより調整槽と冷却槽との容積比および両槽が隣接する隔壁面積を任意に変更することが可能になる。
 本発明は、プラスチック射出成形機における成形用金型の温度調整システムとして適用することができ、また、住環境の温度調整用として、例えば空調用温調水の生成機器として利用することができる。
 1 冷却槽
 1a 上流側空間
 1b 下流側空間
 2 調整槽
 3 隔壁
 4 オーバーフロー口
 5 冷却装置
 8 エバポレータ
10 金型
11 冷却液循環流路
12 分岐流路
13 制御弁
14 バイパス流路
15 第1温度センサ
17 加熱器
18 第2温度センサ
31 第1冷却槽接続流路
32 第2冷却祖接続流路
33 氷融解用接続口
34 氷生成用接続口
35 第1制御弁
36 第2制御弁
 P ポンプ

Claims (7)

  1.  冷却装置により冷却された冷却液を収納する冷却槽と、
     前記冷却槽からの冷却液を収納する調整槽と、
     前記調整槽から金型を経て調整槽に戻る冷却液循環流路と、
     前記冷却液循環流路の途中から分岐されて前記冷却槽に至る分岐流路と、
     前記分岐流路の途中に設けられた制御弁と、
     前記調整槽内もしくは前記冷却液循環流路の冷却液の温度を検出する第一の温度センサと、
     前記調整槽内もしくは前記冷却液循環流路内に設けられ、第一の温度センサの検出温度とあらかじめ設定された加熱開始設定温度との比較によってON/OFF動作する制御機能を備えた加熱器とからなり、
     前記加熱器は加熱開始設定温度以下になるとON動作し、加熱開始設定温度以上になるとOFF動作するように形成され、第一の温度センサの検出温度があらかじめ設定された冷却開始設定温度以上になると、前記制御弁が開いて前記冷却液循環流路の高温の冷却液の一部が前記冷却槽に戻されるように形成され、冷却槽に戻された液量だけ冷却槽から前記調整槽に低温の冷却液が流入するように形成されている成形用金型の温度調整システム。
  2.  前記冷却槽と前記調整槽が隔壁で区分けされた一体構造で形成され、前記冷却槽には冷却槽内の冷却液の温度を検出する第2の温度センサが設けられ、前記第2の温度センサの検出温度により前記冷却装置を制御して、冷却槽内の冷却液の温度を制御するように形成されている、請求項1に記載の成形用金型の温度調整システム。
  3.  前記冷却槽内部に前記冷却装置の冷却液を冷却するエバポレータが配置され、このエバポレータにより冷却槽内に氷が生成されるように形成されている、請求項1または請求項2に記載の成形用金型の温度調整システム。
  4.  前記冷却槽は、上流側を閉塞端にして前記エバポレータが配置される冷却空間と当該冷却空間の下流側に連通し冷却液を調整槽に送る流路となる送液空間とからなり、
     前記分岐流路の末端部分は少なくとも二つに分岐されて複数の冷却槽接続流路が形成され、前記冷却槽接続流路の一つが前記冷却空間に設けられた氷融解用接続口に接続され、前記冷却槽接続流路の一つが前記送液空間または送液空間近傍の冷却空間に設けられた氷生成用接続口に接続され、
     前記分岐流路には前記冷却液循環流路からの高温の冷却液を送る冷却槽接続流路を切り替える流路切替機構を設けた請求項3に記載の温度調整システム。
  5.  前記制御弁は、前記分岐流路が各冷却槽接続流路に分岐した後の流路上にそれぞれ設けられ、当該制御弁が前記流路切替機構の機能を兼ねる請求項4に記載の温度調整システム。
  6.  前記制御弁は、前記分岐流路が各冷却槽接続流路に分岐するよりも前段側に設けられ、前記制御弁とは別に、各冷却槽接続流路上に流路を切り替える流路切替機構を設けた請求項4に記載の温調システム。
  7.  前記冷却槽内に設けられた第2の温度センサは、エバポレータの螺管表面から1cm~10cm離れて槽壁面に接触しない位置に配置されている、請求項1~請求項6のいずれか1項に記載の成形用金型の温度調整システム。
PCT/JP2012/072613 2011-11-17 2012-09-05 成形用金型の温度調整システム WO2013073266A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147010726A KR101606893B1 (ko) 2011-11-17 2012-09-05 성형용 금형의 온도 조정 장치
JP2013544162A JP5706969B2 (ja) 2011-11-17 2012-09-05 成形用金型の温度調整システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011251797 2011-11-17
JP2011-251797 2011-11-17

Publications (1)

Publication Number Publication Date
WO2013073266A1 true WO2013073266A1 (ja) 2013-05-23

Family

ID=48429340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072613 WO2013073266A1 (ja) 2011-11-17 2012-09-05 成形用金型の温度調整システム

Country Status (4)

Country Link
JP (1) JP5706969B2 (ja)
KR (1) KR101606893B1 (ja)
TW (1) TWI594864B (ja)
WO (1) WO2013073266A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043070A (ja) * 2015-08-28 2017-03-02 株式会社サーモテック 温度調節システム
JP2018105591A (ja) * 2016-12-28 2018-07-05 パーパス株式会社 給水サーバー
CN108859103A (zh) * 2018-06-25 2018-11-23 宁夏共享模具有限公司 一种控制fdm打印体成型温度的装置
JP2020118443A (ja) * 2020-04-24 2020-08-06 パーパス株式会社 給水サーバーの制御方法、制御装置、プログラムおよび記録媒体
CN114322442A (zh) * 2021-07-06 2022-04-12 青岛海尔电冰箱有限公司 用于冰箱的制冰控制方法与冰箱
CN114602566A (zh) * 2022-03-23 2022-06-10 电子科技大学 一种研究姆潘巴效应的实验设备及其实验方法
CN115195063A (zh) * 2022-07-08 2022-10-18 广东文穗智能装备股份有限公司 注塑辅助集成系统用制冷系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107289654B (zh) * 2016-04-11 2019-08-02 青月村燊股份有限公司 具有储备冷冻能力的冷冻机
CN108407242B (zh) * 2018-05-11 2023-10-27 珠海格力精密模具有限公司 模具
TWI696541B (zh) * 2019-04-11 2020-06-21 均賀科技股份有限公司 塑膠射出模具之調溫裝置
JP6787609B1 (ja) * 2019-10-04 2020-11-18 Necプラットフォームズ株式会社 多重成形用金型及び成形機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414006A (en) * 1987-07-09 1989-01-18 Canon Kk Temperature control instrument of mold
JPH1165681A (ja) * 1997-08-21 1999-03-09 Fujikura Rubber Ltd 自動温度調整システム
JP2001147066A (ja) * 1999-11-18 2001-05-29 Okazaki Mfg Co Ltd 冷却水供給装置
JP2010099844A (ja) * 2008-10-21 2010-05-06 Nax Co Ltd 成形用金型の温度調整システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748866A (en) * 1971-04-23 1973-07-31 Owens Illinois Inc Method and apparatus for chilling mold elements
US4680001A (en) * 1984-11-28 1987-07-14 Application Engineering Corporation Passive mold cooling and heating system
TWI248863B (en) * 2004-02-12 2006-02-11 Mitsubishi Heavy Ind Ltd Apparatus and method for mold temperature adjustment, and mold temperature control unit
KR100627185B1 (ko) * 2005-04-19 2006-09-25 이평기 사출시스템의 냉각수 온도를 제어하기 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414006A (en) * 1987-07-09 1989-01-18 Canon Kk Temperature control instrument of mold
JPH1165681A (ja) * 1997-08-21 1999-03-09 Fujikura Rubber Ltd 自動温度調整システム
JP2001147066A (ja) * 1999-11-18 2001-05-29 Okazaki Mfg Co Ltd 冷却水供給装置
JP2010099844A (ja) * 2008-10-21 2010-05-06 Nax Co Ltd 成形用金型の温度調整システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043070A (ja) * 2015-08-28 2017-03-02 株式会社サーモテック 温度調節システム
JP2018105591A (ja) * 2016-12-28 2018-07-05 パーパス株式会社 給水サーバー
CN108859103A (zh) * 2018-06-25 2018-11-23 宁夏共享模具有限公司 一种控制fdm打印体成型温度的装置
CN108859103B (zh) * 2018-06-25 2023-11-03 共享智能装备有限公司 一种控制fdm打印体成型温度的装置
JP2020118443A (ja) * 2020-04-24 2020-08-06 パーパス株式会社 給水サーバーの制御方法、制御装置、プログラムおよび記録媒体
CN114322442A (zh) * 2021-07-06 2022-04-12 青岛海尔电冰箱有限公司 用于冰箱的制冰控制方法与冰箱
CN114322442B (zh) * 2021-07-06 2023-08-15 青岛海尔电冰箱有限公司 用于冰箱的制冰控制方法与冰箱
CN114602566A (zh) * 2022-03-23 2022-06-10 电子科技大学 一种研究姆潘巴效应的实验设备及其实验方法
CN115195063A (zh) * 2022-07-08 2022-10-18 广东文穗智能装备股份有限公司 注塑辅助集成系统用制冷系统

Also Published As

Publication number Publication date
TWI594864B (zh) 2017-08-11
JPWO2013073266A1 (ja) 2015-04-02
TW201343353A (zh) 2013-11-01
KR20140064998A (ko) 2014-05-28
JP5706969B2 (ja) 2015-04-22
KR101606893B1 (ko) 2016-03-28

Similar Documents

Publication Publication Date Title
JP5706969B2 (ja) 成形用金型の温度調整システム
CN101619916B (zh) 冰箱
CN103335469B (zh) 风冷冰箱的控制方法及风冷冰箱
KR20080006427U (ko) 제빙기능을 구비한 냉온수 공급기
CN101929779A (zh) 冰箱
JP5816422B2 (ja) 冷凍装置の排熱利用システム
JP4755677B2 (ja) 成形用金型の温度調整システム
CN102798245B (zh) 制冷设备及其制冷系统和该制冷设备的深度制冷方法
CN102353210A (zh) 冰箱及其制冷方法和用于冰箱的速冷装置
KR20120105662A (ko) 냉수 및 얼음 생성 장치 및 방법
CN110671884A (zh) 一种用于风冷冰箱除霜时的送风控制方法、风冷冰箱
JP4369331B2 (ja) 過冷却水ダイナミック式氷蓄熱槽装置
CN116154585A (zh) 一种冷却系统及冷却方法
CN215373661U (zh) 适用于寒冷地区的冷水系统及乏燃料后处理系统
KR101665138B1 (ko) 얼음정수기용 취수장치
JP5253863B2 (ja) 自動製氷機
CN216795588U (zh) 用于冷水机组的变频柜冷却装置及变频柜
CN209655616U (zh) 一种空气源热水机组
CN211650796U (zh) 一种节省能耗的风冷式工业冷水机组
CN203893476U (zh) 用于冰箱的制冷系统及冰箱
CN220028641U (zh) 一种模具冷热温度控制装置
CN110623538A (zh) 饮水机
JPH0828913A (ja) 氷蓄熱式冷凍機ユニット
CN219720409U (zh) 一种具有制冰功能的净饮机
JP4507274B2 (ja) 蓄氷型冷水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544162

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147010726

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849741

Country of ref document: EP

Kind code of ref document: A1