WO2013073195A1 - 送信装置、受信装置、送信方法、及び受信方法 - Google Patents

送信装置、受信装置、送信方法、及び受信方法 Download PDF

Info

Publication number
WO2013073195A1
WO2013073195A1 PCT/JP2012/007374 JP2012007374W WO2013073195A1 WO 2013073195 A1 WO2013073195 A1 WO 2013073195A1 JP 2012007374 W JP2012007374 W JP 2012007374W WO 2013073195 A1 WO2013073195 A1 WO 2013073195A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
data
transmission
interleaving
frequency
Prior art date
Application number
PCT/JP2012/007374
Other languages
English (en)
French (fr)
Inventor
慎悟 朝倉
研一 村山
誠 田口
拓也 蔀
澁谷 一彦
Original Assignee
日本放送協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本放送協会 filed Critical 日本放送協会
Priority to US14/358,980 priority Critical patent/US20140321575A1/en
Priority to CA2856197A priority patent/CA2856197A1/en
Priority to JP2013544142A priority patent/JP6047101B2/ja
Priority to EP12850079.0A priority patent/EP2782278A4/en
Priority to KR1020147015285A priority patent/KR20140090660A/ko
Publication of WO2013073195A1 publication Critical patent/WO2013073195A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • H03M13/1165QC-LDPC codes as defined for the digital video broadcasting [DVB] specifications, e.g. DVB-Satellite [DVB-S2]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/152Bose-Chaudhuri-Hocquenghem [BCH] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint

Definitions

  • the present invention relates to a transmission apparatus, a reception apparatus, a transmission method, and a reception method that perform MIMO (Multiple Input Multiple Output) using a plurality of different antennas, and in particular, a transmission apparatus that performs interleaving between a plurality of antennas in a MIMO system. And a receiving apparatus that performs deinterleaving between a plurality of antennas, and a method thereof.
  • MIMO Multiple Input Multiple Output
  • the Japanese terrestrial digital broadcasting system ISDB-T Integrated Services Digital Broadcasting Terrestrial
  • high-definition broadcasting or multiple standard-definition broadcasting
  • next-generation terrestrial digital broadcasting system it is required to provide services with a larger amount of information such as 3D high-definition broadcasting and super high-definition with 16 times the resolution of high-definition instead of conventional high-definition.
  • a MIMO (Multiple Input Multiple Multiple Output) system using a plurality of transmission / reception antennas has been proposed as a method for expanding the data transmission capacity by radio.
  • space division multiplexing (SDM) and space-time codes (STC) are performed.
  • SDM space division multiplexing
  • STC space-time codes
  • SDM a polarization MIMO system that uses both horizontal polarization and vertical polarization simultaneously has been proposed.
  • the reception level of one of the reception antennas may drop significantly due to differences in reflection characteristics.
  • SDM transmission separate streams are transmitted by a plurality of antennas, and therefore the BER characteristics of the entire system are greatly deteriorated due to the deterioration of the bit error rate (BER) characteristics due to a decrease in the reception level of one of them.
  • BER bit error rate
  • bit interleaving, time interleaving, and frequency interleaving that rearrange the order of transmission data are employed in order to increase the efficiency of error correction (see, for example, Non-Patent Document 1).
  • IEEE 802.11 interleaving is extended to a MIMO system, one stream is distributed to a plurality of transmitters in units of bits, and bit interleaving is performed in units of each transmitter (see, for example, Patent Document 1). ).
  • the reception level of antenna 1 is R 1
  • the reception level of antenna 2 is R 2
  • the bit error rate of antenna 1 is BER 1.
  • the reception level R of the entire MIMO transmission system using both antennas and the bit error rate BER are averaged by the following equations (1) and (2). Can be expressed as:
  • R (R 1 + R 2 ) / 2 (1)
  • BER (BER 1 + BER 2 ) / 2 (2)
  • An object of the present invention is to provide a transmission apparatus, a reception apparatus, and a method thereof that can improve the BER characteristics in a MIMO system that performs SDM-MIMO transmission in order to solve the above-described problem.
  • a transmission apparatus is a transmission apparatus that transmits an OFDM signal using a plurality of transmission antennas, and maps a transmission signal to an IQ plane and performs carrier modulation on carrier symbols.
  • An interleaving unit and an output processing unit that configures an OFDM frame for the data interleaved for each transmission antenna and transmits an OFDM signal via each transmission antenna.
  • the frequency / transmitting antenna interleaving unit distributes the carrier symbols by a predetermined number to generate data of the transmitting antennas, and the data of the transmitting antennas.
  • a frequency interleave unit that performs interleaving processing in the frequency direction for each 1 OFDM carrier symbol and generates data subjected to interleaving processing for each transmission antenna.
  • the data distribution unit converts the carrier symbol into I data arranged on the I axis coordinate of the IQ plane and Q data arranged on the Q axis coordinate of the IQ plane.
  • the data is divided and a predetermined number of I data and Q data are distributed as a minimum unit to generate data of each transmitting antenna.
  • the frequency / transmitting antenna interleaving unit interleaves the carrier symbols in the frequency direction for each OFDM carrier symbol corresponding to the number of transmitting antennas, and performs interleaving processing between the segments.
  • the inter-segment interleaving unit includes the carrier symbol, the I data arranged on the I axis coordinate of the IQ plane, and the Q data arranged on the Q axis coordinate of the IQ plane.
  • the data is subjected to interleaving processing in the frequency direction for each OFDM carrier symbol corresponding to the number of transmission antennas using I data and Q data as a minimum unit, and data interleaved between the segments is generated.
  • the interleave unit between the frequency and the transmission antenna stores a random number table that stores a random number table for determining an arrangement of OFDM carrier symbols corresponding to the number of transmission antennas of the carrier-modulated data. And, for each OFDM carrier symbol corresponding to the number of transmission antennas, a data randomizing unit that rearranges the carrier symbols with reference to the random number table, and a predetermined number of carrier symbols rearranged by the data randomizing unit, A data distribution unit that generates interleaved data for each transmission antenna.
  • the data randomizing unit converts the carrier symbol into I data arranged on the I axis coordinate of the IQ plane and Q data arranged on the Q axis coordinate of the IQ plane.
  • the data is decomposed and rearranged with reference to the random number table for each OFDM carrier symbol corresponding to the number of transmission antennas, with I data and Q data as a minimum unit.
  • a transmission apparatus is a transmission apparatus that transmits a plurality of channels of OFDM signals using a plurality of transmission antennas for each channel.
  • a mapping unit that generates carrier symbols for a plurality of channels that are mapped to each other and carrier-modulated, and data obtained by interleaving the carrier symbols for the plurality of channels between the frequency direction and the transmission antennas, and interleaving processing for each transmission antenna
  • a frequency / transmitting antenna interleaving unit (frequency-polarized wave / channel interleaving unit in the embodiment to be described later) for generating data and an interleaved data for each transmitting antenna constitute an OFDM frame, and each transmission OFDM signal via antenna
  • an output processing unit for transmitting.
  • the output processing unit may transmit the OFDM signal via, for example, a horizontally polarized antenna and a vertically polarized antenna, or a right circularly polarized antenna and a left circularly polarized antenna. Send.
  • a receiving apparatus is a receiving apparatus that receives an OFDM signal using a plurality of receiving antennas, and uses the transmission path response for the OFDM signals received by the plurality of receiving antennas.
  • a MIMO detection unit that generates a separated signal that has been subjected to waveform equalization and separation, and a first deinterleaving unit that performs deinterleaving processing on the separated signal between the frequency direction and the receiving antenna (in the embodiments described later, the first frequency A deinterleaving unit 25 between polarizations or a first frequency / polarization / interchannel deinterleaving unit 32), a noise dispersion calculating unit for calculating noise dispersion of the OFDM signal, and deinterleaving the noise dispersion between the frequency direction and the receiving antenna.
  • Second deinterleave unit to be processed (in the embodiment described later, the second frequency / polarized wave deinterleave unit 2 Alternatively, the second frequency / polarization / interchannel deinterleaving unit 33), the separated signal deinterleaved by the first frequency / receiving antenna deinterleaving unit, and the second frequency / receiving antenna deinterleaving.
  • a likelihood ratio calculation unit that calculates a likelihood ratio using the noise variance deinterleaved by the unit, and an error correction code decoding unit that decodes an error correction code using the likelihood ratio.
  • a transmission method is a transmission method for generating an OFDM signal transmitted from a plurality of transmission antennas, wherein the transmission signal is mapped to an IQ plane and subjected to carrier modulation. Generating carrier symbols, interleaving the carrier symbols between the frequency direction and the transmission antennas, generating interleaved data for each transmission antenna, and interleaved data for each transmission antenna. Forming an OFDM frame and generating an OFDM signal transmitted from each transmission antenna.
  • a transmission method is a transmission method for generating OFDM signals transmitted from a plurality of transmission antennas for each channel, and maps transmission signals for a plurality of channels to an IQ plane. And generating carrier symbols for a plurality of channels subjected to carrier modulation, interleaving the carrier symbols for the plurality of channels between the frequency direction and the transmission antennas, and generating interleaved data for each transmission antenna. And a step of constructing an OFDM frame for the interleaved data for each transmission antenna and generating an OFDM signal transmitted from each transmission antenna.
  • a receiving method is a receiving method for processing OFDM signals received from a plurality of receiving antennas, and the OFDM signals are subjected to waveform equalization and separation using a channel response.
  • calculating the likelihood ratio using the likelihood ratio Ri comprises a step of decoding the correction codes, the.
  • BER characteristics can be improved by performing interleaving between polarized waves in a MIMO system that performs SDM-MIMO transmission.
  • the receivable area can be expanded and stable reception can be achieved.
  • FIG. 9 is a diagram illustrating simulation results of bit error rates of the transmission device 1 illustrated in FIG. 1 and the transmission device 1 ′ illustrated in FIG. 8. It is a figure explaining the process of the interleaving part between segments of the 2nd example of the interleaving between frequency and polarization in the transmitter which concerns on the 1st Embodiment of this invention. It is a block diagram which shows the structure of the interleave part between the frequency / polarized waves of the 3rd example in the transmitter which concerns on the 1st Embodiment of this invention.
  • 3 is a flowchart illustrating a transmission method according to the present invention.
  • 3 is a flowchart illustrating a receiving method according to the present invention.
  • ISDB-T a Japanese digital broadcasting system
  • bit interleaving processing is designed to achieve optimum performance under various conditions by performing bit interleaving processing, frequency interleaving processing, and time interleaving processing, respectively.
  • interleaving processing between transmission antennas is performed, whereby error data due to a level difference between the transmission antennas is distributed among the transmission antennas, and transmission characteristics of the entire MIMO system are improved.
  • polarization MIMO using orthogonality of horizontal polarization and vertical polarization will be described as a specific example.
  • the transmission apparatus and the reception apparatus according to the present invention are effective not only for polarization MIMO transmission but also for general SDM-MIMO transmission.
  • FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to the first embodiment of the present invention.
  • the transmission apparatus 1 includes an error correction encoding unit 11, a bit interleaving unit 12, a mapping unit 13, a time interleaving unit 14, a frequency / polarized wave interleaving unit 15, and a first polarization.
  • the first polarization output processing unit 16-1 includes a first polarization OFDM frame configuration unit 161-1, a first polarization IFFT unit 162-1, and a first polarization GI addition unit 163-1. And comprising.
  • the second polarization output processing unit 16-2 includes a second polarization OFDM frame configuration unit 161-2, a second polarization IFFT unit 162-2, and a second polarization GI addition unit 163-2. And comprising. It is assumed that the bit interleaving unit 12 follows the DVB-C2 (Digital Video Broadcasting-Cable 2) method for the reason described later. In addition, the processing of each block excluding the frequency / polarized wave interleaving unit 15 follows the ISDB-T method.
  • DVB-C2 Digital Video Broadcasting-Cable 2
  • the first polarization output processing unit 16-1 performs processing on the transmission data for the first polarization
  • the second polarization output processing unit 16-2 performs processing on the transmission data for the second polarization.
  • the first polarization and the second polarization are two types of separable polarizations such as horizontal polarization and vertical polarization, right-handed circular polarization, and left-handed circular polarization.
  • the first polarized wave output processing unit 16-1 and the second polarized wave output processing unit 16 -2 is called the output processing unit 16
  • the first polarization OFDM frame configuration unit 161-1 and the second polarization OFDM frame configuration unit 161-2 are called the OFDM frame configuration unit 161
  • the first polarization IFFT Section 162-1 and second polarization IFFT section 162-2 are referred to as IFFT section 162
  • first polarization GI addition section 163-1 and second polarization GI addition section 163-2 are referred to as GI addition section 163.
  • the first polarized wave transmission antenna 17-1 and the second polarized wave transmission antenna 17-2 are referred to as a transmission antenna 17.
  • the error correction encoding unit 11 performs error correction encoding on the input transmission signal so that transmission errors can be corrected on the receiving side.
  • error correction for example, a BCH code is used as an outer code, and an LDPC (Low Density Parity Check) code is used as an inner code.
  • LDPC Low Density Parity Check
  • the bit interleaving unit 12 interleaves the transmission signal output from the error correction encoding unit 11 bit by bit in order to improve the performance of the error correction code.
  • an LDPC code as an outer code for error correction
  • the bit interleaving method is effective by the method used in DVB-C2. Refer to ETSI2EN ⁇ 302 769 ⁇ V1.2.1 (p.32) and http://www.dvb.org/technology/dvbc2/ for the DVB-C2 bit interleaving method.
  • the mapping unit 13 performs mapping to the IQ plane as m bits / symbol, and generates a carrier symbol subjected to carrier modulation according to the modulation scheme.
  • the time interleaving unit 14 rearranges the order of the carrier symbols input from the mapping unit 13 in the time direction.
  • the frequency / polarized wave interleaving unit 15 rearranges the order of the carrier symbols interleaved in the time direction input from the time interleaving unit 14 between the frequency direction and the polarized waves (between transmitting antennas), and interleaves each transmitting antenna 17. Generate processed data. A specific example of the interleaving process will be described later.
  • the output processing unit 16 configures an OFDM frame for the interleaved data input from the frequency / polarized wave interleaving unit 15 and transmits an OFDM signal via each transmission antenna 17.
  • the transmission antenna 17 is a horizontally polarized antenna and a vertically polarized antenna, or a right circularly polarized antenna and a left circularly polarized antenna.
  • the OFDM frame configuration unit 161 inserts a pilot signal (SP signal), a TMCC signal indicating control information, and an AC signal indicating additional information into the signal input from the frequency / polarized wave interleaving unit 15, and adds 1 OFDM to all carriers.
  • An OFDM frame is composed of a predetermined number of OFDM symbol blocks as symbols.
  • the IFFT unit 162 performs an IFFT (Inverse Fourier Transform) process on the OFDM symbol input from the OFDM frame configuration unit 161 to generate an effective symbol signal in the time domain.
  • IFFT Inverse Fourier Transform
  • the GI adding unit 163 inserts a guard interval obtained by copying the latter half of the effective symbol signal at the beginning of the effective symbol signal input from the IFFT unit 162, and outputs an analog signal subjected to orthogonal modulation processing and D / A conversion. It transmits to the outside via the transmission antenna 17.
  • FIG. 2 is a block diagram showing the configuration of the receiving apparatus according to the first embodiment of the present invention. As shown in FIG.
  • the receiving apparatus 2 includes a first polarization receiving antenna 21-1, a second polarization receiving antenna 21-2, a first polarization input processing unit 22-1, Two-polarization input processing unit 22-2, transmission line response calculation unit 23, MIMO detection unit 24, first frequency / polarized wave deinterleaving unit 25, noise dispersion calculation unit 26, second frequency / bias A wave deinterleaving unit 27, a likelihood ratio calculating unit 28, a time deinterleaving unit 29, a bit deinterleaving unit 30, and an error correction code decoding unit 31 are provided.
  • the first polarization input processing unit 22-1 includes a first polarization GI removal unit 221-1, a first polarization FFT unit 222-1 and a first polarization pilot signal extraction unit 223-1. And comprising.
  • the second polarization input processing unit 22-2 includes a second polarization GI removal unit 221-2, a second polarization FFT unit 222-2, and a second polarization pilot signal extraction unit 223-2. And comprising.
  • the first polarization and the second polarization are the same as the first polarization and the second polarization of the transmission device 1.
  • the first polarized wave receiving antenna 21-1 and the second polarized wave receiving antenna 21-2 are used.
  • the first polarization input processing unit 22-1 and the second polarization input processing unit 22-2 are called the input processing unit 22, and the first polarization GI removal unit 221-1 and The second polarization GI removal unit 221-2 is called a GI removal unit 221, the first polarization FFT unit 222-1 and the second polarization FFT unit 222-2 are called FFT units 222, and the first polarization GI removal unit 221-2 is called a GI removal unit 221.
  • the wave pilot signal extraction unit 223-1 and the second polarization pilot signal extraction unit 223-2 are referred to as a pilot signal extraction unit 223.
  • the input processing unit 22 receives the OFDM signal transmitted from the transmission device 1 via the reception antenna 21.
  • the GI removal unit 221 performs orthogonal demodulation processing on the received OFDM signal to generate a baseband signal, and generates an analog signal by A / D conversion. Then, the GI removing unit 221 extracts the effective symbol signal by removing the guard interval.
  • the FFT unit 222 performs an FFT (Fast Fourier Transform) process on the effective symbol signal input from the GI removal unit 221 to generate a complex baseband signal.
  • FFT Fast Fourier Transform
  • the pilot signal extraction unit 223 extracts a pilot signal (SP signal) from the complex baseband signal input from the FFT unit 222.
  • the transmission line response calculation unit 23 calculates a transmission line response using the pilot signal input from the pilot signal extraction unit 223.
  • the MIMO detection unit 24 uses the baseband signal input from the FFT unit 222 as the transmission path response input from the transmission path response calculation unit 23, ZF (Zero Forcing), MMSE (Minimum Mean Squared Error), BLAST.
  • ZF Zero Forcing
  • MMSE Minimum Mean Squared Error
  • BLAST BLAST
  • a separated signal is generated by waveform equalization and separation of a plurality of polarization signals transmitted from the transmission apparatus 1.
  • the first frequency / polarized wave deinterleaving unit 25 performs deinterleaving processing on the separated signal input from the MIMO detecting unit 24 between the frequency direction and the polarized wave (between the receiving antennas) (the frequency / polarized wave interleaving unit of the transmission device 1). 15).
  • the receiving device 2 needs to calculate noise variance in order to calculate the likelihood ratio necessary for LDPC decoding.
  • the noise dispersion of the entire band may be calculated from the data carrier (separated signal) deinterleaved by the first frequency / polarized wave deinterleaving unit 25, a more accurate noise dispersion will be described later.
  • the noise variance calculation unit 26 is not between the first frequency / polarization deinterleaving unit 25 and the likelihood ratio calculation unit 28 but the first frequency / polarization deinterleaving unit. It is arranged in front of 25.
  • the noise dispersion calculation unit 26 obtains noise dispersion from each polarization signal input from the MIMO detection unit 24.
  • the noise variance ⁇ 2 means the deviation between the symbol point on the IQ coordinate where the carrier symbol should be originally and the symbol point P of the actually observed carrier symbol, and is obtained by obtaining the modulation error ratio and taking the reciprocal. This is because the normalization coefficient which makes the average power in the band 1 is multiplied.
  • FIG. 3 is a diagram for explaining the processing of the noise variance calculation unit 26. There are several methods for calculating the noise variance. As shown in FIG. 3, when calculating the noise variance of the symbol point P, it is obtained from data symbols that are multi-level modulated (64QAM in the example of FIG. 3).
  • the noise variance calculation unit 26 calculates the average noise variance of the entire OFDM carrier symbol using the AC symbol and / or the TMCC symbol before the data symbol is frequency / polarized wave deinterleave processing. .
  • a noise matrix is determined by weighting the average noise variance of the entire band with each carrier using a weight matrix obtained from the transmission path response. It is known that the weight matrix in each carrier can be expressed as (H H H) ⁇ 1 as a transmission path response matrix H. The weight component of each carrier can be represented by this diagonal component. This is normalized by all carriers and weighted by multiplying the average noise variance of the entire band.
  • the second frequency / polarized wave deinterleaving unit 27 performs deinterleaving processing (transmitting apparatus) between the frequency direction and between polarized waves (between receiving antennas) with respect to noise dispersion corresponding to each polarization signal input from the noise dispersion calculating unit 26. 1 frequency / polarized wave interleaving unit 15).
  • the likelihood ratio calculation unit 28 receives deinterleaved data input from the first frequency / polarized wave deinterleaving unit 25 and noise input from the second frequency / polarized wave deinterleaving unit 27 corresponding to the data.
  • the likelihood ratio ⁇ is calculated using the variance ⁇ 2 .
  • the likelihood ratio ⁇ is calculated for each bit of the error correction code and represents the probabilistic reliability information of the received signal.
  • a log-likelihood ratio (LLR) is generally used.
  • LLR log-likelihood ratio
  • the time deinterleaving unit 29 performs deinterleaving processing (processing opposite to the time interleaving unit 14 of the transmission device 1) in the time direction on the likelihood ratio ⁇ input from the likelihood ratio calculating unit 28. Then, the likelihood ratio ⁇ subjected to the deinterleaving process is output to the bit deinterleaving unit 30.
  • the bit deinterleaving unit 30 performs deinterleaving processing (processing opposite to the bit interleaving unit 12 of the transmission device 1) in the bit direction on the likelihood ratio ⁇ generated by the time deinterleaving unit 29. Then, the likelihood ratio ⁇ subjected to the deinterleaving process is output to the error correction code decoding unit 31.
  • the error correction code decoding unit 31 performs error correction decoding using the likelihood ratio ⁇ input from the bit deinterleaving unit 30 and outputs an estimated value of the bit transmitted from the transmission device 1.
  • the frequency / polarized wave interleaving unit 15 will be described.
  • the first frequency / polarized wave deinterleaving unit 25 and the second frequency / polarized wave deinterleaving unit 27 rearrange the data in the opposite direction to the frequency / polarized wave interleaving unit 15 to return to the original order. Since only the direction of the arrow of the signal line and the block diagram of the frequency / polarized wave interleaving unit 15 is reversed, the description thereof is omitted.
  • the frequency / polarized wave interleaving unit 15 classifies the data into the first polarization transmission data and the second polarization transmission data for each predetermined number of carrier symbols, and then performs frequency interleaving for each polarization.
  • FIG. 4 is a block diagram showing the configuration of the first example of the interleave unit 15 between frequency and polarization.
  • the inter-frequency / polarized wave interleaving unit 15 includes a data distribution unit 151, a first polarization frequency interleaving unit 150-1, and a second polarization frequency interleaving unit 150-2.
  • the first polarization frequency interleaving unit 150-1 includes a first polarization inter-segment interleaving unit 152-1, a first polarization data rotation unit 153-1, and a first polarization data randomization unit 154-. 1.
  • the second polarization frequency interleaving unit 150-2 includes a second polarization inter-segment interleaving unit 152-2, a second polarization data rotation unit 153-2, and a second polarization data randomization unit 154-. 2 is provided.
  • the first polarization frequency interleaving unit 150-1 and the second polarization frequency interleaving unit 150 are used.
  • a frequency interleaving unit 150 is referred to as a frequency interleaving unit 150
  • the first polarization inter-segment interleaving unit 152-1 and the second polarization inter-segment interleaving unit 152-2 are referred to as an inter-segment interleaving unit 152
  • the rotation unit 153-1 and the second polarization data rotation unit 153-2 are referred to as a data rotation unit 153
  • the first polarization data randomization unit 154-1 and the second polarization data randomization unit 154-2 are used as data. This is called a randomizing unit 154.
  • the data distribution unit 151 distributes a predetermined number of carrier symbols input from the time interleaving unit 14 to the first polarization frequency interleaving unit 150-1 and the second polarization frequency interleaving unit 150-2.
  • each carrier symbol is distributed, that is, odd-numbered carrier symbols are output to the first polarization frequency interleaving section 150-1, and even-numbered carrier symbols are output to the second polarization frequency. It is preferable to output to the interleave unit 150-2.
  • the frequency interleaving unit 150 performs an interleaving process by the method used in ISDB-T, for example, and the data for each polarization (data of each transmission antenna) distributed by the data distribution unit 151 for each 1 OFDM symbol Interleave in the frequency direction.
  • FIG. 5 is a diagram for explaining the processing of the inter-segment interleaving unit 152.
  • FIG. 5 (a) shows a symbol arrangement before interleaving
  • FIG. 5 (b) shows a symbol arrangement after interleaving.
  • the inter-segment interleaving unit 152 performs interleaving processing on the carrier symbols input from the data distribution unit 151 in the frequency direction between the segments for each 1 ⁇ ⁇ ⁇ ⁇ OFDM carrier symbol.
  • FIG. 6A and 6B are diagrams for explaining the processing of the data rotation unit 153.
  • FIG. 6A shows a symbol arrangement before interleaving
  • FIG. 6B shows a symbol arrangement after interleaving.
  • the data rotation unit 153 performs interleaving processing by data rotation for each segment on the carrier symbol input from the inter-segment interleaving unit 152.
  • the number of carrier symbols per segment is 384, as in FIG.
  • the data rotation unit 153 rearranges the k-th segment and i-th data into the k-th segment and i′-th by data rotation.
  • i ′ (i + k) mod 384 is set. Note that the rearrangement order is an example, and the present invention is not limited to this.
  • FIG. 7 is a diagram for explaining the processing of the data randomizing unit 154.
  • FIG. 7 (a) shows the symbol arrangement before interleaving
  • FIG. 7 (b) shows the symbol arrangement after interleaving.
  • the data randomizing unit 154 has a random number table in advance corresponding to the number of carrier symbols in the segment (the same random number table is used on the transmission side and the reception side), and the random number table is generated for the data input from the data rotation unit 153. Refer to and perform randomization within the segment to eliminate periodicity.
  • the number of carrier symbols per segment is 384, as in FIGS.
  • the random number is an example, and the present invention is not limited to this.
  • FIG. 8 is a diagram illustrating a configuration of a transmission device 1 ′ for distributing data to bit data before mapping by the mapping unit 13, for comparison with the transmission device 1 according to the present invention.
  • AWGN additive white Gaussian noise
  • interleaving between polarizations is performed on bit data before mapping as in the transmission device 1 ′, and on carrier symbols after mapping as in the transmission device 1
  • the difference in characteristics does not occur much when compared with the case where it is performed.
  • bits that are more likely to be erroneous in the case of allocating in units of one carrier symbol are distributed (for example, the lower two bits in a gray code that is one bit different between adjacent carrier symbols). To do. Therefore, in the transmission apparatus 1 according to the present invention, distribution is performed in units of one carrier symbol, not in units of 1 bit as in the transmission apparatus 1 '. Thereby, the BER characteristic in a multipath environment can be improved.
  • FIG. 9 is a diagram illustrating a BER simulation result of the transmission apparatus 1 and the transmission apparatus 1 ′ in the case where the frequency / polarized wave interleaving unit 15 is the above-described first example in a multipath environment.
  • the parameters used in this simulation are a multipath wave delay difference of 1.17 [us], a D / U ratio of 6 dB, a phase difference of 180 °, and a modulation multi-level number of 1024 QAM. Others comply with ISDB-T mode 3.
  • the data distribution unit 151 divides one carrier symbol input from the time interleaving unit 14 into I data and Q data, and sets a predetermined number of I data or Q data (hereinafter referred to as “IQ data”) as a minimum unit.
  • the first polarization frequency interleaving unit 150-1 and the second polarization frequency interleaving unit 150-2 are distributed. In order to enhance the effect of interleaving, 1 IQ data is distributed, that is, I data is distributed to the first polarization frequency interleaving unit 150-1 and Q data is distributed to the second polarization frequency interleaving unit 150-2. Is preferred.
  • FIG. 10 is a diagram for explaining the processing of the inter-segment interleaving unit 152.
  • FIG. 10 (a) shows the arrangement of I data or Q data before interleaving
  • FIG. 10 (b) shows the arrangement of IQ data after interleaving.
  • the inter-segment interleaving unit 152 interleaves the IQ data input from the data distribution unit 151 in the frequency direction between segments for each 1 ⁇ OFDM carrier symbol.
  • the illustrated data indicates I data in the case of the first polarization frequency interleaving unit 150-1, and indicates Q data in the case of the second polarization frequency interleaving unit 150-2. In the example shown in FIG.
  • Inter-segment interleaving section 152 rearranges data in IQ data units, not in carrier symbol units. Note that the rearrangement is an example, and the present invention is not limited to this.
  • the data rotation unit 153 performs interleaving processing by data rotation for each segment on the IQ data input from the inter-segment interleaving unit 152.
  • the first polarization data rotation unit 153-1 rearranges the kth segment and the xth data into the kth segment and the x'th through the data rotation.
  • the value obtained by adding 384 is taken as the value of y'.
  • the rotation is an example and is not limited to this. Further, the first polarization data rotation unit 153-1 and the second polarization data rotation unit 153-2 may perform rotation using the same equation.
  • the data randomizing unit 154 has a random number table corresponding to the number of carrier symbols in the segment in advance on the transmitting side and the receiving side, and the carrier symbol input from the data rotation unit 153 is randomly selected in the segment with reference to the random number table. Reorder, eliminate periodicity.
  • the first polarization data randomization unit 154-1 and the second polarization data randomization unit 154-2 may use different random number tables.
  • FIG. 11 is a block diagram showing a configuration of the interleave unit 15 between frequency and polarization in the third example of interleaving.
  • the inter-frequency / polarization interleaving unit 15 includes an inter-segment interleaving unit 155, a data distribution unit 156, a first polarization data rotation unit 153-1, and a second polarization data rotation unit 153. -2, a first polarization data randomization unit 154-1, and a second polarization data randomization unit 154-2.
  • FIG. 12 is a diagram for explaining the processing of the inter-segment interleaving unit 155.
  • FIG. 12 (a) shows a symbol arrangement before interleaving
  • FIG. 12 (b) shows a symbol arrangement after interleaving.
  • Inter-segment interleaving section 155 interleaves the carrier symbols input from time interleaving section 14 in the frequency direction between segments for each OFDM carrier symbol for the number of transmission antennas.
  • the number of transmitting antennas is 2
  • the number of carrier symbols per segment is 384. Note that the rearrangement is an example, and the present invention is not limited to this.
  • the data distribution unit 156 receives the segment number after interleaving input from the inter-segment interleaving unit 155.
  • the carrier symbols from 0 to n ⁇ 1 are output to the first polarization data rotation unit 153-1, and the segment numbers “No. Data from n to 2n-1 is output to the second polarization data rotation unit 153-2.
  • the distribution of carrier symbols is an example and is not limited to this.
  • the frequency / polarized wave interleaving unit 15 has the same configuration as that of the third example shown in FIG. However, in the third example, interleaving is performed in units of carrier symbols, whereas in the fourth example, interleaving is performed in units of IQ data.
  • FIG. 13 is a diagram for explaining the processing of the inter-segment interleaving unit 155.
  • FIG. 13 (a) shows a symbol arrangement before interleaving
  • FIG. 13 (b) shows a symbol arrangement after interleaving.
  • Inter-segment interleaving section 155 decomposes the carrier symbols input from time interleaving section 14 into IQ data, and performs interleaving processing in the frequency direction between segments for each OFDM carrier symbol for the number of transmission antennas, with IQ data as a minimum unit. To do. In the example shown in FIG.
  • the data distribution unit 156 receives the segment number after interleaving input from the inter-segment interleaving unit 155.
  • the IQ data from 0 to n-1 is output to the first polarization data rotation unit 153-1, and the segment No. IQ data from n to 2n ⁇ 1 is output to the second polarization data rotation unit 153-2.
  • the IQ data distribution is an example, and is not limited to this.
  • FIG. 14 is a block diagram showing a configuration of the inter-frequency / polarized wave interleaving unit 15 of the fifth example.
  • the frequency / polarized wave interleaving unit 15 includes a random number table storage unit 157, a data randomization unit 158, and a data distribution unit 159.
  • the random number table storage unit 157 stores a random number table (the same random number table is used on the transmission side and the reception side) that determines the arrangement of OFDM carrier symbols for the number of transmission antennas.
  • the data randomizing unit 158 rearranges the carrier symbols input from the time interleaving unit 14 with reference to the random number table storage unit 157 for each OFDM carrier symbol for the number of transmission antennas.
  • Data distribution section 159 distributes a predetermined number of interleaved carrier symbols input from data randomization section 158 to first polarization output processing section 16-1 and second polarization output processing section 16-2. To do.
  • the frequency / polarized wave interleaving unit 15 randomly rearranges all IQ data for the number of transmission antennas.
  • the configuration of the frequency / polarized wave interleaving unit 15 of the sixth example is the same as the configuration of the fifth example shown in FIG.
  • the fifth example differs in that interleaving is performed in units of carrier symbols, whereas in the sixth example, interleaving is performed in units of IQ data.
  • the data randomizing unit 158 decomposes the carrier symbols input from the time interleaving unit 14 into IQ data, and refers to the random number table storage unit 157 for each OFDM carrier symbol for the number of transmission antennas using the IQ data as a minimum unit. Rearrange.
  • the data distribution unit 159 distributes the interleaved IQ data input from the data randomization unit 158 to the first polarization output processing unit 16-1 and the second polarization output processing unit 16-2 by a predetermined number. To do.
  • FIG. 15 is a diagram showing a simulation result of the transmission apparatus 1 and shows the BER characteristics of the first to sixth examples of the interleaving described above.
  • a simulation was performed for a case where the first polarization was a horizontal polarization and the second polarization was a vertical polarization, and there was a 6 dB power difference between the two.
  • the modulation method is 1024QAM, the coding rate is 3/4, and the GI ratio is 1/8.
  • the bandwidth, the total number of carriers, and the like comply with ISDB-T mode 3.
  • ZF Zero Forcing
  • ZF Zero Forcing
  • the transmission apparatus 1 uses the frequency / polarized wave interleaving unit 15 to rearrange the order of the carrier symbols between the frequency direction and the polarized wave, and generates interleaved data for each transmission antenna.
  • the receiving apparatus 2 deinterleaves the data interleaved by the transmitting apparatus 1 between the frequency direction and the polarization by the first frequency / polarized wave deinterleaving unit 25 and the second frequency / polarized wave deinterleaving unit 27. .
  • the transmission device 1 and the reception device 2 of the first embodiment even when there is a reception level difference between the polarizations, it is possible to disperse the data on the single polarization side including a lot of error data, The effect of the error correction code can be improved and the BER characteristics can be improved.
  • the transmission apparatus transmits a plurality of OFDM signals for each channel.
  • a case will be described in which transmission is performed using an antenna, and a reception apparatus receives a plurality of channels of OFDM signals using a plurality of reception antennas for each channel.
  • the number of channels is two will be described as an example, but the number of channels is not limited to two.
  • FIG. 16 is a block diagram illustrating a configuration of the transmission device 3 according to the second embodiment.
  • the error correction encoding unit 11, the bit interleaving unit 12, the mapping unit 13, and the time interleaving unit 14 perform the same processing as in the first embodiment on the transmission signals for two channels.
  • the frequency / polarization / inter-channel interleaving unit 18 changes the order of carrier symbols for two channels interleaved in the time direction input from the time interleaving unit 14 into the frequency direction and between polarization / channel (between transmitting antennas).
  • the data is rearranged and interleaved data is generated for each transmission antenna 17.
  • the frequency / polarization / inter-channel interleave unit 18 divides the data into four streams for output. A specific example of the interleaving process will be described later.
  • Each output processing unit 16 performs OFDM frame configuration processing, IFFT processing, and GI addition processing on each stream output from the frequency / polarization / interchannel interleaving unit 18 as in the first embodiment.
  • the transmission apparatus 3 transmits the first channel OFDM signal from the transmission antennas 17-1 and 17-2, and transmits the second channel OFDM signal from the transmission antennas 17-3 and 17-4.
  • FIG. 17 is a block diagram showing a configuration of a receiving apparatus according to the second embodiment of the present invention.
  • the reception device 4 receives the OFDM signal of the first channel transmitted from the transmission antennas 17-1 and 17-2 of the transmission device 3 by the reception antennas 21-1 and 21-2, and receives the reception antennas 21-3 and 21-2.
  • -4 receives the OFDM signal of the second channel transmitted from the transmission antennas 17-3 and 17-4 of the transmission apparatus 3. That is, 2 ⁇ 2 MIMO transmission corresponding to the number of channels is realized by the transmission device 3 and the reception device 4.
  • Each input processing unit 22 performs GI removal processing, FFT processing, and pilot signal extraction processing on the OFDM signal received by each receiving antenna 21 in the same manner as in the first embodiment.
  • the transmission line response calculation unit 23-1 and the MIMO detection unit 24-1 calculate the transmission line response for the received signal of the first channel processed by the first channel input processing unit 220-1, and perform waveform equalization / Perform separation.
  • the transmission path response calculation unit 23-2 and the MIMO detection unit 24-2 calculate the transmission path response and perform waveform equalization / reduction for the received signal of the second channel processed by the second channel input processing unit 220-2. Perform separation.
  • the first frequency / polarization / interchannel deinterleaving unit 32 and the second frequency / polarization / interchannel deinterleaving unit 33 rearrange the data in the opposite direction to the frequency / polarization / interchannel deinterleaving unit 18 to restore the original data.
  • the order is returned, and the block diagram of the frequency / polarization / inter-channel interleaving unit 18 described later and the direction of the arrow of the signal line are only reversed, and the description thereof will be omitted.
  • the noise variance calculation unit 26, likelihood ratio calculation unit 28, time deinterleaving unit 29, bit deinterleaving unit 30, and error correction code decoding unit 31 are the same as those in the first embodiment for received signals for two channels. Similar processing is performed.
  • the frequency / polarization / interchannel interleaving unit 18 performs the first polarization transmission data of the first channel and the second polarization transmission data of the first channel for each predetermined number of carrier symbols. Then, after classifying the data into the first channel transmission data for the second channel and the second channel transmission data for the second channel, frequency interleaving is performed.
  • FIG. 18 is a block diagram showing the configuration of the first example of the frequency / polarized wave / channel interleaving unit 18.
  • the frequency / polarized wave / channel interleave unit 18 includes a data distribution unit 181, a first channel frequency interleave unit 180-1, and a second channel frequency interleave unit 180-2. .
  • the data distribution unit 181 divides a predetermined number of carrier symbols input from the time interleaving unit 14 into four streams, a first polarization frequency interleaving unit for the first channel, and a second polarization frequency for the first channel.
  • the interleaving unit, the second channel frequency interleaving unit for the first polarization, and the second channel frequency interleaving unit for the second channel are distributed.
  • inter-segment interleaving processing, data rotation processing, and data randomization processing are performed on the four streams output from the data distribution unit 181, respectively. Since the processing of each stream is the same as the first example of the first embodiment, the description thereof is omitted.
  • the data distribution unit 181 decomposes the one carrier symbol input from the time interleaving unit 14 into I data and Q data, divides the IQ data into a predetermined number of four streams with the minimum unit as the first data of the first channel.
  • the polarization frequency interleaving unit, the second channel frequency interleaving unit for the first channel, the first channel frequency interleaving unit for the second channel, and the second channel frequency interleaving unit for the second channel are distributed. In order to enhance the interleaving effect, it is preferable to distribute 1 IQ data.
  • inter-segment interleave processing, data rotation processing, and data randomization processing are performed on the four streams output from the data distribution unit 181, respectively. Since the processing of each stream is the same as the second example of the first embodiment, the description thereof is omitted.
  • FIG. 19 is a block diagram illustrating a configuration of the frequency / polarized wave / channel interleaving unit 18 of the third example of interleaving.
  • the frequency / polarized wave / channel interleaving unit 18 includes an inter-segment interleaving unit 185, a data distribution unit 186, a first channel inter-segment interleaving unit 190-1, and a second channel intra-segment interleaving unit.
  • An interleave unit 190-2 is a block diagram illustrating a configuration of the frequency / polarized wave / channel interleaving unit 18 of the third example of interleaving.
  • the frequency / polarized wave / channel interleaving unit 18 includes an inter-segment interleaving unit 185, a data distribution unit 186, a first channel inter-segment interleaving unit 190-1, and a second channel intra-segment interleaving unit.
  • FIG. 20 is a diagram for explaining the processing of the inter-segment interleaving unit 185.
  • FIG. 20 (a) shows a symbol arrangement before interleaving
  • FIG. 20 (b) shows a symbol arrangement after interleaving.
  • Inter-segment interleaving section 185 interleaves the carrier symbols input from time interleaving section 14 in the frequency direction between segments for each OFDM carrier symbol for the number of transmission antennas.
  • the data distribution unit 186 receives the segment number after interleaving input from the inter-segment interleaving unit 185.
  • the carrier symbols from 0 to n ⁇ 1 are output to the first polarization data rotation unit 183-1 of the first channel, and the segment No. n to 2n ⁇ 1 are output to the second polarization data rotation unit 183-2 of the first channel, and the segment No.
  • the data from 2n to 3n-1 is output to the first polarization data rotation unit 183-3 for the second channel.
  • the data from 3n to 4n-1 is output to the second polarization data rotation unit 183-4 of the second channel.
  • the distribution of carrier symbols is an example and is not limited to this.
  • the processing of the intra-segment interleaving unit (data rotation unit 183 and data randomization unit 184) is the same as that in the first example of interleaving, and thus description thereof is omitted.
  • the frequency / polarized wave / channel interleaving unit 18 has the same configuration as that of the third example shown in FIG. However, in the third example, interleaving is performed in units of carrier symbols, whereas in the fourth example, interleaving is performed in units of IQ data.
  • FIG. 21 is a diagram for explaining the processing of the inter-segment interleaving unit 185.
  • FIG. 21 (a) shows a symbol arrangement before interleaving
  • FIG. 21 (b) shows a symbol arrangement after interleaving.
  • Inter-segment interleaving section 185 decomposes the carrier symbols input from time interleaving section 14 into IQ data, and performs interleaving processing in the frequency direction between segments for each OFDM carrier symbol for the number of transmission antennas, with IQ data as a minimum unit. To do. In the example shown in FIG.
  • the data distribution unit 186 receives the segment number after interleaving input from the inter-segment interleaving unit 185.
  • the carrier symbols from 0 to n ⁇ 1 are output to the first polarization data rotation unit 183-1 of the first channel, and the segment No. n to 2n ⁇ 1 are output to the second polarization data rotation unit 183-2 of the first channel, and the segment No.
  • the data from 2n to 3n-1 is output to the first polarization data rotation unit 183-3 for the second channel.
  • the data from 3n to 4n-1 is output to the second polarization data rotation unit 183-4 of the second channel.
  • the IQ data distribution is an example, and is not limited to this.
  • FIG. 22 is a block diagram illustrating the configuration of the frequency / polarized wave / channel interleaving unit 18 of the fifth example.
  • the frequency / polarization / channel interleaving unit 18 includes a random number table storage unit 187, a data randomization unit 188, and a data distribution unit 189.
  • the random number table storage unit 187 stores a random number table that determines the arrangement of OFDM carrier symbols for the number of transmission antennas (the same random number table is used on the transmission side and the reception side).
  • the data randomizing unit 188 rearranges the carrier symbols input from the time interleaving unit 14 with reference to the random number table storage unit 187 for each OFDM carrier symbol for the number of transmission antennas.
  • the data distribution unit 189 divides the interleaved carrier symbols input from the data randomization unit 188 into four streams by a predetermined number, and outputs the first polarization output processing unit 16-1 for the first channel and the first channel. Distribution is performed to the second polarization output processing unit 16-2, the second channel output processing unit 16-3 for the second channel, and the second polarization output processing unit 16-4 for the second channel.
  • the frequency / polarized wave / channel interleaving unit 18 rearranges all IQ data for the number of transmission antennas at random.
  • the configuration of the frequency / polarized wave / channel interleaving unit 18 in the sixth example is the same as that of the fifth example shown in FIG.
  • the fifth example differs in that interleaving is performed in units of carrier symbols, whereas in the sixth example, interleaving is performed in units of IQ data.
  • the data randomizing unit 188 decomposes the carrier symbols input from the time interleaving unit 14 into IQ data, and refers to the random number table storage unit 187 for each OFDM carrier symbol for the number of transmission antennas with the IQ data as a minimum unit. Rearrange.
  • the data distribution unit 189 receives a predetermined number of interleaved IQ data input from the data randomization unit 188, the first polarization output processing unit 16-1 for the first channel, and the second polarization output for the first channel. This is distributed to the processing unit 16-2, the first polarization output processing unit 16-3 for the second channel, and the second polarization output processing unit 16-4 for the second channel.
  • the transmission apparatus 3 uses the frequency / polarization / inter-channel interleaving unit 18 to rearrange the order of the carrier symbols for a plurality of channels in the frequency direction and between the polarizations, and generates interleaved data for each transmission antenna. Then, a plurality of channels of OFDM signals are transmitted.
  • the receiving device 4 receives OFDM signals of a plurality of channels, and is interleaved by the transmitting device 3 by the first frequency / polarization / interchannel deinterleaving unit 32 and the second frequency / polarization / interchannel deinterleaving unit 33.
  • the processed data for a plurality of channels is deinterleaved between the frequency direction and the polarization.
  • the transmission device 3 and the reception device 4 of the second embodiment when performing bulk transmission using a plurality of channels, similarly to the first embodiment, there is a reception level difference between polarized waves. Even in this case, it is possible to disperse the data on the single polarization side containing a lot of error data. Furthermore, even when the same channel interference occurs in only one channel, it is possible to disperse the data on the one channel side containing a lot of error data. As a result, the effect of the error correction code can be improved and the BER characteristics can be improved.
  • FIG. 24 is a flowchart showing a transmission method by the transmission apparatuses 1 and 3 described above.
  • the transmission method will be briefly described with reference to FIG.
  • the error correction encoding unit 11 performs error correction encoding on the transmission signal (step S101).
  • the bit interleave unit 12 interleaves the correction-encoded transmission signal in bit units (step S102).
  • the mapping unit 13 performs mapping on the IQ plane and generates a carrier symbol subjected to carrier modulation according to the modulation scheme (step S103).
  • the order of carrier symbols is rearranged in the time direction by the time interleaving unit 14 (step S104).
  • the order of the carrier symbols interleaved in the time direction by the frequency / polarized wave interleaving unit 15 or 18 is rearranged between the frequency direction and the polarized wave (between transmitting antennas), and the data subjected to the interleaving process for each transmitting antenna 17 Is generated (step S105).
  • the details of the interleaving processing by the frequency / polarized wave interleaving unit 15 or 18 are as described above.
  • the output processing unit 16 forms an OFDM frame for the interleaved data, and transmits an OFDM signal via each transmission antenna 17 (step S106).
  • FIG. 25 is a flowchart showing a receiving method by the receiving apparatuses 2 and 4 described above.
  • the reception method will be briefly described with reference to FIG.
  • the input processing unit 22 receives an OFDM signal via the receiving antenna 21 (step S201).
  • the transmission path response calculation unit 23 calculates a transmission path response (step S202).
  • the MIMO detection unit 24 equalizes and separates the received OFDM signal using the transmission path response to generate a separated signal (step S203).
  • the first frequency / polarized wave deinterleave unit 25 or the first frequency / polarized wave / interchannel deinterleave unit 32 performs deinterleave processing on the separated signal in the frequency direction and between polarized waves (between receiving antennas) ( Step S204).
  • the noise dispersion calculation unit 26 obtains the noise dispersion ⁇ 2 from each polarization signal (step S205), and the second frequency / polarization deinterleaving unit 27 or the second frequency / polarization / channel deinterleaving unit 33.
  • deinterleaving processing is performed on the noise variance ⁇ 2 in the frequency direction and between the polarizations (between receiving antennas) (step S206).
  • the likelihood ratio calculation unit 28 calculates the likelihood ratio ⁇ using the data deinterleaved in step S204 and the noise variance ⁇ 2 deinterleaved in step S206 (step S207).
  • the time deinterleave unit 29 performs time deinterleave processing on the likelihood ratio ⁇ (step S208), and the bit deinterleave unit 30 performs bit deinterleave processing on the likelihood ratio ⁇ subjected to time deinterleave processing. (Step S209).
  • the error correction code decoding unit 31 decodes the error correction code using the likelihood ratio ⁇ subjected to the bit deinterleave processing (step S210).
  • the case where the error correction encoding unit 11 of the transmission apparatus 1 employs the LDPC code as the inner code has been described.
  • the reception apparatus 2 performs noise dispersion.
  • the calculation unit 26, the second frequency / polarized wave deinterleaving unit 27, and the likelihood ratio calculation unit 28 may not be provided.
  • the case where the transmitting apparatus and the receiving apparatus according to the present invention are applied to 2 ⁇ 2 MIMO transmission has been described.
  • the present invention can also be applied to 2 ⁇ 4 or 4 ⁇ 4 MIMO transmission. Of course.
  • the transmission apparatus 1 and 3 demonstrated the case where the transmission apparatuses 1 and 3 were provided with the bit interleaving part 12 and the time interleaving part 14 in the above-mentioned embodiment, these are not essential structures, and even if it is a structure provided only with either one. Good.
  • the interleaving process may be performed in a plurality of blocks.
  • the time interleaving process is performed not only in the time interleaving unit 14 but also in the frequency / polarization interleaving unit 15 or the frequency / polarization / interchannel interleaving unit 18. Also good.
  • the receiving apparatuses 2 and 4 include the time deinterleaving unit 29 and the bit deinterleaving unit 30 has been described. However, these are not essential configurations, and are configured to include only one of them. There may be. Further, the deinterleaving process may be performed in a plurality of blocks. For example, the time deinterleaving process is performed in addition to the time deinterleaving unit 29, the first frequency / polarized wave deinterleaving unit 25 and the second frequency / polarized wave deinterleaving unit. 27, or the first frequency / polarization / interchannel deinterleaving unit 32 and the second frequency / polarization / interchannel deinterleaving unit 33. Furthermore, the processing order in the present invention is not limited to the order of the above-described embodiments. For example, in the receiving apparatuses 2 and 4, the process of the time deinterleaving unit 29 may be performed before the process of the likelihood ratio calculating unit 28.
  • the present invention is useful for a MIMO system that performs SDM-MIMO transmission.

Abstract

 複数のアンテナを用いてMIMO伝送を行うMIMOシステムにおいて、BER特性を改善する。 送信装置1は、送信信号をIQ平面へマッピングし、キャリア変調を施したキャリアシンボルを生成するマッピング部13と、前記キャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナ17ごとにインターリーブ処理されたデータを生成する周波数・送信アンテナ間インターリーブ部(周波数・偏波間インターリーブ部15)と、前記送信アンテナ17ごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナ17を介してOFDM信号を送信する出力処理部16と、を備える。

Description

送信装置、受信装置、送信方法、及び受信方法 関連出願の相互参照
 本出願は、2011年11月18日に出願された日本国特許出願2011-253146号、および2012年8月22日に出願された日本国特許出願2012-183571号の優先権を主張するものであり、これらの先の出願の開示全体を、ここに参照のために取り込む。
 本発明は、異なる複数のアンテナを用いてMIMO(Multiple Input Multiple Output)伝送を行う送信装置、受信装置、送信方法、及び受信方法であって、特にMIMOシステムにおける複数アンテナ間でインターリーブを行う送信装置、及び複数アンテナ間でデインターリーブを行う受信装置、及びそれらの方法に関する。
 日本の地上デジタル放送方式であるISDB-T(Integrated Services Digital Broadcasting - Terrestrial)は、固定受信機向けにハイビジョン放送(又は複数標準画質放送)を実現している。次世代の地上デジタル放送方式では、従来のハイビジョンに変わり、3Dハイビジョン放送やハイビジョンの16倍の解像度を持つスーパーハイビジョンなど、さらに情報量の多いサービスを提供することが求められている。
 近年、無線によるデータ伝送容量を拡大するための手法として、複数の送受信アンテナを用いるMIMO(Multiple Input Multiple Output)システムが提案されている。MIMOを用いる伝送システムでは、空間分割多重(SDM:Space Division Multiplexing)や、時空間符号(STC:Space Time Codes)が行われる。SDMの実現例としては、水平偏波及び垂直偏波の両偏波を同時に用いる偏波MIMO方式などが提案されている。
 複数の送受信アンテナを用いたMIMO伝送における、放送サービスを想定した実際の伝搬路では、反射特性の違いなどから片方の受信アンテナのみ受信レベルが大きく落ち込むことがある。SDM伝送では複数アンテナによりそれぞれ別々のストリームを伝送するため、片方の受信レベル低下によるビット誤り率(BER:Bit Error Rate)特性の劣化によって、系全体のBER特性も大きく劣化する。
 従来、ISDB-T方式では、誤り訂正の効率を上げるために、送信データの順序を並べ替える、ビットインターリーブ、時間インターリーブ、及び周波数インターリーブが採用されている(例えば、非特許文献1参照)。また、IEEE802.11のインターリーブをMIMOシステムに拡張し、1つのストリームをビット単位で複数の送信機に振り分け、各送信機単位でビットインターリーブを行う技法が知られている(例えば、特許文献1参照)。
特表2008-505558号公報
「地上デジタルテレビジョンの伝送方式」、ARIB STD-B31、社団法人電波産業会
 複数アンテナ(例えば2つ)を用いてそれぞれ別々のストリームを伝送するSDM-MIMO伝送において、アンテナ1の受信レベルをR、アンテナ2の受信レベルをR、アンテナ1のビット誤り率をBER、アンテナ2のビット誤り率をBERとすると、両アンテナを用いたMIMO伝送システム全体の受信レベルR、及びビット誤り率BERは、それぞれの平均を取って、次式(1)(2)のように表すことができる。
 R=(R+R)/2                    (1)
 BER=(BER+BER)/2              (2)
 実際に野外で行うSDM-MIMO伝送では、各アンテナから発射される電波の伝搬路特性の違いなどから、場所によってはアンテナ間に大きなレベル差が生じる。伝搬路によってのみ受信レベルが下がりビット誤り率が劣化した場合、上式より系全体のビット誤り率も劣化する。図23では、アンテナそれぞれのBER特性を実線、合成後のBER特性を破線で示している。これより、合成後のBER特性が劣化することが分かる。したがって、複数アンテナを用いたSDM-MIMO伝送では、アンテナ間のレベル差に起因するBER特性の劣化によって、安定して受信できない、受信可能エリアが狭くなる、といった課題があった。
 本発明の目的は、上記問題を解決するため、SDM-MIMO伝送を行うMIMOシステムにおいて、BER特性を改善することが可能な送信装置、受信装置、及びそれらの方法を提供することにある。
 上記課題を解決するため、本発明に係る送信装置は、OFDM信号を複数の送信アンテナを用いて送信する送信装置であって、送信信号をIQ平面へマッピングし、キャリア変調を施したキャリアシンボルを生成するマッピング部と、前記キャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成する周波数・送信アンテナ間インターリーブ部(後述する実施形態では周波数・偏波間インターリーブ部)と、前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナを介してOFDM信号を送信する出力処理部と、を備える。
 さらに、本発明に係る送信装置において、前記周波数・送信アンテナ間インターリーブ部は、前記キャリアシンボルを所定数ずつ分配して各送信アンテナのデータを生成するデータ分配部と、前記各送信アンテナのデータを、1 OFDMキャリアシンボルごとに周波数方向にインターリーブ処理して、前記送信アンテナごとにインターリーブ処理されたデータを生成する周波数インターリーブ部と、を備える。
 さらに、本発明に係る送信装置において、前記データ分配部は、前記キャリアシンボルを、IQ平面のI軸座標上に配置されるIデータ、及びIQ平面のQ軸座標上に配置されるQデータに分解し、Iデータ及びQデータを最小単位として所定数ずつ分配して、前記各送信アンテナのデータを生成する。
 さらに、本発明に係る送信装置において、前記周波数・送信アンテナ間インターリーブ部は、前記キャリアシンボルを送信アンテナ数分のOFDMキャリアシンボルごとに周波数方向にインターリーブ処理し、セグメント間でインターリーブ処理されたデータを生成するセグメント間インターリーブ部と、前記セグメント間でインターリーブ処理されたデータを所定数ずつ分配して、前記送信アンテナごとにインターリーブ処理されたデータを生成するデータ分配部と、を備える。
 さらに、本発明に係る送信装置において、前記セグメント間インターリーブ部は、前記キャリアシンボルを、IQ平面のI軸座標上に配置されるIデータ、及びIQ平面のQ軸座標上に配置されるQデータに分解し、Iデータ及びQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに周波数方向にインターリーブ処理して、前記セグメント間でインターリーブ処理されたデータを生成する。
 さらに、本発明に係る送信装置において、前記周波数・送信アンテナ間インターリーブ部は、前記キャリア変調を施したデータの送信アンテナ数分のOFDMキャリアシンボルの配置を決定する乱数テーブルを記憶する乱数テーブル記憶部と、前記キャリアシンボルを送信アンテナ数分のOFDMキャリアシンボルごとに、前記乱数テーブルを参照して並べ替えるデータランダマイズ部と、前記データランダマイズ部により並べ替えられたキャリアシンボルを所定数ずつ分配して、前記送信アンテナごとにインターリーブ処理されたデータを生成するデータ分配部と、を備える。
 さらに、本発明に係る送信装置において、前記データランダマイズ部は、前記キャリアシンボルを、IQ平面のI軸座標上に配置されるIデータ、及びIQ平面のQ軸座標上に配置されるQデータに分解し、Iデータ及びQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに、前記乱数テーブルを参照して並べ替える。
 また、上記課題を解決するため、本発明に係る送信装置は、複数チャンネルのOFDM信号を各チャンネルあたり複数の送信アンテナを用いて送信する送信装置であって、複数チャンネル分の送信信号をIQ平面へマッピングし、キャリア変調を施した複数チャンネル分のキャリアシンボルを生成するマッピング部と、前記複数チャンネル分のキャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成する周波数・送信アンテナ間インターリーブ部(後述する実施形態では周波数・偏波・チャンネル間インターリーブ部)と、前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナを介してOFDM信号を送信する出力処理部と、を備える。
 なお、本発明に係る送信装置において、前記出力処理部は、例えば水平偏波用アンテナ及び垂直偏波用アンテナ、又は右旋円偏波用アンテナ及び左旋円偏波用アンテナを介して前記OFDM信号を送信する。
 また、上記課題を解決するため、本発明に係る受信装置は、OFDM信号を複数の受信アンテナを用いて受信する受信装置であって、複数の受信アンテナにより受信したOFDM信号を伝送路応答を用いて波形等化及び分離した分離信号を生成するMIMO検出部と、前記分離信号に対し、周波数方向及び受信アンテナ間でデインターリーブ処理する第1のデインターリーブ部(後述する実施形態では第1周波数・偏波間デインターリーブ部25又は第1周波数・偏波・チャンネル間デインターリーブ部32)と、OFDM信号の雑音分散を算出する雑音分散算出部と、前記雑音分散を周波数方向及び受信アンテナ間でデインターリーブ処理する第2のデインターリーブ部(後述する実施形態では第2周波数・偏波間デインターリーブ部27又は第2周波数・偏波・チャンネル間デインターリーブ部33)と、前記第1の周波数・受信アンテナ間デインターリーブ部によりデインターリーブ処理された分離信号、及び前記第2の周波数・受信アンテナ間デインターリーブ部によりデインターリーブ処理された雑音分散を用いて尤度比を算出する尤度比算出部と、前記尤度比を用いて誤り訂正符号を復号する誤り訂正符号復号部と、を備える。
 また、上記課題を解決するため、本発明に係る送信方法は、複数の送信アンテナから送信されるOFDM信号を生成する送信方法であって、送信信号をIQ平面へマッピングし、キャリア変調を施したキャリアシンボルを生成するステップと、前記キャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成するステップと、前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナから送信されるOFDM信号を生成するステップと、を含む。
 また、上記課題を解決するため、本発明に係る送信方法は、各チャンネルあたり複数の送信アンテナから送信されるOFDM信号を生成する送信方法であって、複数チャンネル分の送信信号をIQ平面へマッピングし、キャリア変調を施した複数チャンネル分のキャリアシンボルを生成するステップと、前記複数チャンネル分のキャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成するステップと、前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナから送信されるOFDM信号を生成するステップと、を含む。
 また、上記課題を解決するため、本発明に係る受信方法は、複数の受信アンテナから受信したOFDM信号を処理する受信方法であって、OFDM信号を伝送路応答を用いて波形等化及び分離した分離信号を生成するステップと、前記分離信号に対し、周波数方向及び受信アンテナ間でデインターリーブ処理する第1のデインターブステップと、OFDM信号の雑音分散を算出するステップと、前記雑音分散を周波数方向及び受信アンテナ間でデインターリーブ処理する第2のデインターリーブステップと、前記第1のデインターリーブステップによりデインターリーブ処理された分離信号、及び前記第2のデインターリーブステップによりデインターリーブ処理された雑音分散を用いて尤度比を算出するステップと、前記尤度比を用いて誤り訂正符号を復号するステップと、を含む。
 本発明によれば、SDM-MIMO伝送を行うMIMOシステムにおいて偏波間でインターリーブ処理を行うことにより、BER特性を改善することができる。これにより、受信可能エリアの拡大や安定受信化を図ることができる。
本発明の第1の実施形態に係る送信装置の構成を示すブロック図である。 本発明の第1の実施形態に係る受信装置の構成を示すブロック図である。 本発明の第1の実施形態に係る受信装置における雑音分散算出部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における第1の例の周波数・偏波間インターリーブ部の構成を示すブロック図である。 本発明の第1の実施形態に係る送信装置における周波数・偏波間インターリーブの第1の例のセグメント間インターリーブ部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における周波数・偏波間インターリーブの第1の例のデータローテーション部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における周波数・偏波間インターリーブの第1の例のデータランダマイズ部の処理を説明する図である。 本発明に第1の実施形態に係る送信装置との比較のために示す、マッピング前のビットデータに対してデータ分配を行う送信装置の構成を示す図である。 図1に示す送信装置1と、図8に示す送信装置1’のビット誤り率のシミュレーション結果を示す図である。 本発明の第1の実施形態に係る送信装置における周波数・偏波間インターリーブの第2の例のセグメント間インターリーブ部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における第3の例の周波数・偏波間インターリーブ部の構成を示すブロック図である。 本発明の第1の実施形態に係る送信装置における周波数・偏波間インターリーブの第3の例のセグメント間インターリーブ部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における周波数・偏波間インターリーブの第4の例のセグメント間インターリーブ部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における第5の例の周波数・偏波間インターリーブ部の構成を示すブロック図である。 本発明の第1の実施形態に係る送信装置のビット誤り率のシミュレーション結果を示す図である。 本発明の第2の実施形態に係る送信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る受信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る送信装置における第1の例の周波数・偏波・チャンネル間インターリーブ部の構成を示すブロック図である。 本発明の第2の実施形態に係る送信装置における第3の例の周波数・偏波・チャンネル間インターリーブ部の構成を示すブロック図である。 本発明の第2の実施形態に係る送信装置における周波数・偏波・チャンネル間インターリーブの第3の例のセグメント間インターリーブ部の処理を説明する図である。 本発明の第2の実施形態に係る送信装置における周波数・偏波・チャンネル間インターリーブの第4の例のセグメント間インターリーブ部の処理を説明する図である。 本発明の第2の実施形態に係る送信装置における第5の例の周波数・偏波・チャンネル間インターリーブ部の構成を示すブロック図である。 受信レベル差に起因するビット誤り率特性の劣化を示す図である。 本発明による送信方法を示すフローチャートである。 本発明による受信方法を示すフローチャートである。
 一般に誤り訂正符号は、データが連続的に誤ると訂正が効きにくい。そのため、送信装置ではデータをインターリーブ処理し、受信装置では受信したデータをデインターリーブ処理して元のデータに戻すことで、誤りデータを全体に分散させ、誤り訂正能力を向上させている。日本のデジタル放送方式であるISDB-Tでは、ビットインターリーブ処理、周波数インターリーブ処理、時間インターリーブ処理をそれぞれ行うことで、様々な条件下で最適のパフォーマンスを実現するように設計されている。本発明では、これらのインターリーブに加えて送信アンテナ間のインターリーブ処理を行うことで、送信アンテナ間のレベル差による誤りデータを送信アンテナ間に分散させ、MIMOシステム全体の伝送特性を改善する。以下、複数アンテナを用いたMIMOの一例として、水平偏波、垂直偏波の直交性を利用した偏波MIMOを具体例にとり説明する。ただし、本発明による送信装置及び受信装置は、偏波MIMO伝送のみならず、一般的なSDM-MIMO伝送に対して有効である。
<第1の実施形態>
[送信装置]
 まず、本発明の第1の実施形態に係る送信装置について説明する。送信装置は、複数の送信アンテナからそれぞれ異なる偏波を用いてOFDM信号を送信する。図1は、本発明の第1の実施形態に係る送信装置の構成を示すブロック図である。図1に示すように、送信装置1は、誤り訂正符号化部11と、ビットインターリーブ部12と、マッピング部13と、時間インターリーブ部14と、周波数・偏波間インターリーブ部15と、第1偏波用出力処理部16-1と、第2偏波用出力処理部16-2と、第1偏波用送信アンテナ17-1と、第2偏波用送信アンテナ17-2と、を備える。第1偏波用出力処理部16-1は、第1偏波用OFDMフレーム構成部161-1と、第1偏波用IFFT部162-1と、第1偏波用GI付加部163-1と、を備える。第2偏波用出力処理部16-2は、第2偏波用OFDMフレーム構成部161-2と、第2偏波用IFFT部162-2と、第2偏波用GI付加部163-2と、を備える。ビットインターリーブ部12は、後述の理由によりDVB-C2(Digital Video Broadcasting-Cable 2)方式を踏襲したものとする。その他、周波数・偏波間インターリーブ部15を除く各ブロックの処理は、ISDB-T方式を踏襲したものとする。
 第1偏波用出力処理部16-1は、第1偏波用の送信データについての処理を行い、第2偏波用出力処理部16-2は、第2偏波用の送信データについての処理を行う。第1偏波及び第2偏波は、水平偏波及び垂直偏波や、右旋円偏波及び左旋円偏波など、2種類の分離可能な偏波とする。以下の説明において、第1偏波用と第2偏波用とで両者を区別する必要が無い場合には、第1偏波用出力処理部16-1及び第2偏波用出力処理部16-2を出力処理部16と称し、第1偏波用OFDMフレーム構成部161-1及び第2偏波用OFDMフレーム構成部161-2をOFDMフレーム構成部161と称し、第1偏波用IFFT部162-1及び第2偏波用IFFT部162-2をIFFT部162と称し、第1偏波用GI付加部163-1及び第2偏波用GI付加部163-2をGI付加部163と称し、第1偏波用送信アンテナ17-1及び第2偏波用送信アンテナ17-2を送信アンテナ17と称する。
 誤り訂正符号化部11は、受信側で伝送誤りを訂正可能とするために、入力される送信信号を誤り訂正符号化する。誤り訂正は、例えば外符号としてBCH符号を用い、内符号としてLDPC(Low Density Parity Check)符号を用いる。
 ビットインターリーブ部12は、誤り訂正符号の性能を高めるために、誤り訂正符号化部11より出力された送信信号をビット単位でインターリーブする。誤り訂正に外符号としてLDPC符号を用いる場合、ビットインターリーブ方法はDVB-C2で用いられている方法などで効果があることが知られている。DVB-C2のビットインターリーブ方法については、ETSI EN 302 769 V1.2.1(p.32)や、http://www.dvb.org/technology/dvbc2/を参照されたい。
 マッピング部13は、mビット/シンボルとしてIQ平面へのマッピングを行い、変調方式に応じたキャリア変調が施されたキャリアシンボルを生成する。
 時間インターリーブ部14は、マッピング部13から入力されるキャリアシンボルの順序を、時間方向に並べ替える。
 周波数・偏波間インターリーブ部15は、時間インターリーブ部14から入力される時間方向にインターリーブ処理されたキャリアシンボルの順序を、周波数方向及び偏波間(送信アンテナ間)で並べ替え、送信アンテナ17ごとにインターリーブ処理されたデータを生成する。インターリーブ処理の具体例は後述する。
 出力処理部16は、周波数・偏波間インターリーブ部15から入力されるインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナ17を介してOFDM信号を送信する。送信アンテナ17は、水平偏波用アンテナ及び垂直偏波用アンテナ、又は右旋円偏波用アンテナ及び左旋円偏波用アンテナである。
 OFDMフレーム構成部161は、周波数・偏波間インターリーブ部15から入力される信号にパイロット信号(SP信号)、制御情報を示すTMCC信号、及び付加情報を示すAC信号を挿入し、全キャリアを1 OFDMシンボルとして、所定数のOFDMシンボルのブロックでOFDMフレームを構成する。
 IFFT部162は、OFDMフレーム構成部161から入力されるOFDMシンボルに対して、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)処理を施して時間領域の有効シンボル信号を生成する。
 GI付加部163は、IFFT部162から入力される有効シンボル信号の先頭に、有効シンボル信号の後半部分をコピーしたガードインターバルを挿入し、直交変調処理及びD/A変換を施したアナログ信号を、送信アンテナ17を介して外部に送信する。
[受信装置]
 次に、本発明の第1の実施形態に係る受信装置について説明する。受信装置は、上述した送信装置1から送信されるOFDM信号を、複数の受信アンテナにより受信する。図2は、本発明の第1の実施形態に係る受信装置の構成を示すブロック図である。図2に示すように、受信装置2は、第1偏波用受信アンテナ21-1と、第2偏波用受信アンテナ21-2と、第1偏波用入力処理部22-1と、第2偏波用入力処理部22-2と、伝送路応答算出部23と、MIMO検出部24と、第1周波数・偏波間デインターリーブ部25と、雑音分散算出部26と、第2周波数・偏波間デインターリーブ部27と、尤度比算出部28と、時間デインターリーブ部29と、ビットデインターリーブ部30と、誤り訂正符号復号部31と、を備える。第1偏波用入力処理部22-1は、第1偏波用GI除去部221-1と、第1偏波用FFT部222-1と、第1偏波用パイロット信号抽出部223-1と、を備える。第2偏波用入力処理部22-2は、第2偏波用GI除去部221-2と、第2偏波用FFT部222-2と、第2偏波用パイロット信号抽出部223-2と、を備える。
 第1偏波及び第2偏波は、送信装置1の第1偏波及び第2偏波と同一である。以下の説明において、第1偏波用と第2偏波用とで両者を区別する必要が無い場合には、第1偏波用受信アンテナ21-1及び第2偏波用受信アンテナ21-2を受信アンテナ21と称し、第1偏波用入力処理部22-1及び第2偏波用入力処理部22-2を入力処理部22と称し、第1偏波用GI除去部221-1及び第2偏波用GI除去部221-2をGI除去部221と称し、第1偏波用FFT部222-1及び第2偏波用FFT部222-2をFFT部222と称し、第1偏波用パイロット信号抽出部223-1及び第2偏波用パイロット信号抽出部223-2をパイロット信号抽出部223と称する。
 入力処理部22は、送信装置1から送信されるOFDM信号を、受信アンテナ21を介して受信する。GI除去部221は、受信したOFDM信号を直交復調処理してベースバンド信号を生成し、A/D変換によりアナログ信号を生成する。そして、GI除去部221は、ガードインターバルを除去して有効シンボル信号を抽出する。
 FFT部222は、GI除去部221から入力される有効シンボル信号に対して、FFT(Fast Fourier Transform:高速フーリエ変換)処理を施して複素ベースバンド信号を生成する。
 パイロット信号抽出部223は、FFT部222から入力される複素ベースバンド信号からパイロット信号(SP信号)を抽出する。
 伝送路応答算出部23は、パイロット信号抽出部223から入力されるパイロット信号を用いて伝送路応答を算出する。
 MIMO検出部24は、FFT部222から入力されるベースバンド信号を、伝送路応答算出部23から入力される伝送路応答を用いて、ZF(Zero Forcing)、MMSE(Minimum Mean Squared Error)、BLAST(Bell Laboratories Layered Space-Time)、MLD(Maximum Likelihood Detection)などの既知の手法により、送信装置1から送信される複数の偏波信号を波形等化及び分離した分離信号を生成する。
 第1周波数・偏波間デインターリーブ部25は、MIMO検出部24から入力される分離信号に対し、周波数方向及び偏波間(受信アンテナ間)でデインターリーブ処理(送信装置1の周波数・偏波間インターリーブ部15と逆の処理)を行う。
 受信装置2は、LDPC復号に必要な尤度比を算出するために、雑音分散を算出する必要がある。第1周波数・偏波間デインターリーブ部25によりデインターリーブ処理されたデータキャリア(分離信号)から帯域全体の雑音分散を算出してもよいが、より精度の高い雑音分散を算出するには、後述するように、各キャリアに対して雑音分散の重み付けを行う必要がある。したがって、図2に示す受信装置2では、雑音分散算出部26を、第1周波数・偏波間デインターリーブ部25と尤度比算出部28との間ではなく、第1周波数・偏波間デインターリーブ部25の前に配置している。
 雑音分散算出部26は、MIMO検出部24から入力される各偏波信号から雑音分散を求める。雑音分散σは、キャリアシンボルが本来あるべきIQ座標上のシンボル点と実際に観測したキャリアシンボルのシンボル点Pとのずれを意味し、変調誤差比を求めて逆数を取ることで得られる。これは、帯域内平均電力を1とする正規化係数を乗じているためである。図3は、雑音分散算出部26の処理を説明する図である。雑音分散の算出方法は幾つか存在するが、図3に示すように、シンボル点Pの雑音分散を算出する際には、多値変調(図3の例では64QAM)されているデータシンボルから求めるよりも、ACシンボル及び/又はTMCCシンボルから求めるほうが、誤って認識される確率が低い。そこで、雑音分散算出部26は、データシンボルを周波数・偏波間デインターリーブ処理する前に、ACシンボル及び/又はTMCCシンボルを用いて、OFDMキャリアシンボル全体の平均雑音分散を算出するのが好適である。
 伝送路にマルチパスが存在する場合は、各OFDMキャリアで電力が異なるため雑音分散にばらつきが生じる。雑音分散σは、各キャリアシンボルを構成するビット単位の尤度比を求めるために必要であり、キャリア毎の雑音分散をなるべく正確に算出することがLDPC復号の性能を決める。そこで、伝送路応答から求まるウェイト行列を利用し、帯域全体の平均雑音分散に対して各キャリアで重み付けを行って雑音分散を定める。各キャリアにおけるウェイト行列は、伝送路応答行列Hとして(HH)-1と表せることが知られている。各キャリアのウェイト成分は、この対角成分で表せる。これを全キャリアで正規化し、帯域全体の平均雑音分散に乗算することで重み付けを行う。各キャリアの信号対電力の情報(=C/N)を尤度計算に乗算する復号法については、例えば、中原、「マルチパス伝送路における64QAM-OFDM信号の軟判定復号法の検討」、ITE Technical Report vol.22、no.34、PP1-6、Jun.1998を参照されたい。ウェイト行列の算出等の詳細は、例えば、大鐘・小川、「わかりやすいMIMOシステム技術」、オーム社、p.101を参照されたい。
 第2周波数・偏波間デインターリーブ部27は、雑音分散算出部26から入力される各偏波信号に対応する雑音分散に対し、周波数方向及び偏波間(受信アンテナ間)でデインターリーブ処理(送信装置1の周波数・偏波間インターリーブ部15と逆の処理)を行う。
 尤度比算出部28は、第1周波数・偏波間デインターリーブ部25から入力されるデインターリーブ処理されたデータと、該データに対応する第2周波数・偏波間デインターリーブ部27から入力される雑音分散σとを用いて尤度比λを算出する。尤度比λは誤り訂正符号の各ビットについて算出されるものであり、受信信号の確率的な信頼度情報を表す。尤度比としては、一般的に対数尤度比(LLR:Log-Likelihood Ratio)が用いられる。例えば、BPSK変調での対数尤度比λは、観測した値をyとして、2値(x=0,1)それぞれの確率P(=尤度関数)はガウス分布となるため、次式(3)で表される。詳細は、例えば、和田山、「低密度パリティ検査符号とその復号法」、トリケップスを参照されたい。
Figure JPOXMLDOC01-appb-M000001
 時間デインターリーブ部29は、尤度比算出部28から入力される尤度比λに対し、時間方向にデインターリーブ処理(送信装置1の時間インターリーブ部14と逆の処理)を行う。そして、デインターリーブ処理された尤度比λを、ビットデインターリーブ部30に出力する。
 ビットデインターリーブ部30は、時間デインターリーブ部29により生成された尤度比λに対し、ビット方向にデインターリーブ処理(送信装置1のビットインターリーブ部12と逆の処理)を行う。そして、デインターリーブ処理された尤度比λを、誤り訂正符号復号部31に出力する。
 誤り訂正符号復号部31は、ビットデインターリーブ部30から入力される尤度比λを用いて誤り訂正復号の復号を行い、送信装置1から送信されたビットの推定値を出力する。
[周波数・偏波間インターリーブ部]
 次に、周波数・偏波間インターリーブ部15について説明する。なお、第1周波数・偏波間デインターリーブ部25及び第2周波数・偏波間デインターリーブ部27は、周波数・偏波間インターリーブ部15と逆方向にデータを並び替えて元の順序に戻すものであり、周波数・偏波間インターリーブ部15のブロック図と信号線の矢印の向きが逆になるだけであるため、説明を省略する。
[インターリーブの第1の例]
 インターリーブの第1の例では、周波数・偏波間インターリーブ部15は、所定数のキャリアシンボルごとに第1偏波送信用データ及び第2偏波送信用データに分類した後に、偏波ごとに周波数インターリーブ処理を行う。図4は、周波数・偏波間インターリーブ部15の第1の例の構成を示すブロック図である。第1の例では、周波数・偏波間インターリーブ部15は、データ分配部151と、第1偏波用周波数インターリーブ部150-1と、第2偏波用周波数インターリーブ部150-2とを備える。第1偏波用周波数インターリーブ部150-1は、第1偏波用セグメント間インターリーブ部152-1と、第1偏波用データローテーション部153-1と、第1偏波用データランダマイズ部154-1と、を備える。第2偏波用周波数インターリーブ部150-2は、第2偏波用セグメント間インターリーブ部152-2と、第2偏波用データローテーション部153-2と、第2偏波用データランダマイズ部154-2と、を備える。以下の説明において、第1偏波用と第2偏波用とで両者を区別する必要が無い場合には、第1偏波用周波数インターリーブ部150-1及び第2偏波用周波数インターリーブ部150-2を周波数インターリーブ部150と称し、第1偏波用セグメント間インターリーブ部152-1及び第2偏波用セグメント間インターリーブ部152-2をセグメント間インターリーブ部152と称し、第1偏波用データローテーション部153-1及び第2偏波用データローテーション部153-2をデータローテーション部153と称し、第1偏波用データランダマイズ部154-1及び第2偏波用データランダマイズ部154-2をデータランダマイズ部154と称する。
 データ分配部151は、時間インターリーブ部14から入力されるキャリアシンボルを所定数ずつ、第1偏波用周波数インターリーブ部150-1、及び第2偏波用周波数インターリーブ部150-2に分配する。インターリーブの効果を高めるためには、1キャリアシンボルずつ分配する、すなわち奇数番目のキャリアシンボルを第1偏波用周波数インターリーブ部150-1に出力し、偶数番目のキャリアシンボルを第2偏波用周波数インターリーブ部150-2に出力するのが好適である。
 周波数インターリーブ部150は、例えばISDB-Tで行われている方法でインターリーブ処理を行い、データ分配部151により分配された各偏波用のデータ(各送信アンテナのデータ)を、1 OFDMシンボルごとに、周波数方向にインターリーブする。
 図5は、セグメント間インターリーブ部152の処理を説明する図であり、図5(a)はインターリーブ前のシンボル配置を表し、図5(b)はインターリーブ後のシンボル配置を表す。セグメント間インターリーブ部152は、データ分配部151から入力されるキャリアシンボルを、1 OFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図5に示す例では、1 OFDMキャリアシンボル内のセグメント数をn(ISDB-T方式では、n=13)とし、1セグメントあたりのキャリアシンボル数を384としている。なお、並び替え順は一例であり、これに限られるものではない。
 図6は、データローテーション部153の処理を説明する図であり、図6(a)はインターリーブ前のシンボル配置を表し、図6(b)はインターリーブ後のシンボル配置を表す。データローテーション部153は、セグメント間インターリーブ部152から入力されるキャリアシンボルに対し、1セグメントごとに、データのローテーションによるインターリーブ処理を行う。図6では、図5と同様に、1セグメントあたりのキャリアシンボル数を384としている。データローテーション部153は、k番目セグメント、i番目のデータを、データローテーションによって、k番目セグメント、i’番目に並べ替える。図6に示す例では、i’=(i+k)mod384としている。なお、並べ替え順は一例であり、これに限られるものではない。
 図7は、データランダマイズ部154の処理を説明する図であり、図7(a)はインターリーブ前のシンボル配置を表し、図7(b)はインターリーブ後のシンボル配置を表す。データランダマイズ部154は、セグメント内のキャリアシンボル数分の乱数テーブルを予め有し(送信側及び受信側で同じ乱数テーブルとする)、データローテーション部153から入力されるデータに対して、乱数テーブルを参照してセグメント内でランダマイズ処理を行い、周期性を排除する。図7では、図5、6と同様に、1セグメントあたりのキャリアシンボル数を384としている。なお、乱数は一例であり、これに限られるものではない。
 ここで、図1に示すように、周波数・偏波間インターリーブ部15は、インターリーブを、マッピング部13によるマッピングが行われる前のビットデータに対してではなく、マッピング部13によるマッピングが行われた後のキャリアシンボルに対して行う点に留意されたい。その理由を以下に説明する。図8は、本発明に係る送信装置1との比較のために示す、マッピング部13によるマッピングが行われる前のビットデータに対してデータ分配を行う送信装置1’の構成を示す図である。
 AWGN(additive white Gaussian noise)環境などでは、偏波間のインターリーブを、送信装置1’のようにマッピング前のビットデータに対して行う場合と、送信装置1のようにマッピング後のキャリアシンボルに対して行う場合とでは、特性差はあまり生じない。しかし、例えばマルチパス環境下においては、1キャリアシンボル単位で振り分ける方が、1ビット単位で振り分ける方法よりも誤りやすいビット(例えば隣り合うキャリアシンボル同士で1ビット異なるグレー符号において下位2ビット)が分散する。そのため、本発明による送信装置1では、送信装置1’のように1ビット単位で分配するのではなく、1キャリアシンボル単位で分配する。これにより、マルチパス環境下におけるBER特性を向上させることができる。
 図9は、マルチパス環境下における、周波数・偏波間インターリーブ部15が上述した第1の例の場合における送信装置1と、送信装置1’のBERのシミュレーション結果を示す図である。このシミュレーションの際に使用したパラメータは、マルチパス波の遅延差を1.17[us]、D/U比を6dB、位相差を180°としており、変調多値数は1024QAMである。その他はISDB-Tモード3に準拠している。
[インターリーブの第2の例]
 次に、インターリーブの第2の例について説明する。インターリーブの第2の例では、周波数・偏波間インターリーブ部15の構成は、図4に示した構成例と同じである。ただし、第1の例ではキャリアシンボル単位でインターリーブ処理したのに対し、第2の例ではIQ平面のI軸座標上に配置されるデータ(以下、「Iデータ」と称する)又はIQ平面のQ軸座標上に配置されるデータ(以下、「Qデータ」と称する)単位でインターリーブ処理する点が相違する。
 データ分配部151は、時間インターリーブ部14から入力される1キャリアシンボルを、Iデータ及びQデータに分解し、Iデータ又はQデータ(以下、「IQデータ」と称する)を最小単位として所定数ずつ、第1偏波用周波数インターリーブ部150-1、及び第2偏波用周波数インターリーブ部150-2に分配する。インターリーブの効果を高めるためには、1IQデータずつ分配する、すなわちIデータを第1偏波用周波数インターリーブ部150-1に、Qデータを第2偏波用周波数インターリーブ部150-2に分配するのが好適である。
 図10は、セグメント間インターリーブ部152の処理を説明する図であり、図10(a)はインターリーブ前のIデータ又はQデータの配置を表し、図10(b)はインターリーブ後のIQデータの配置を表す。セグメント間インターリーブ部152は、データ分配部151から入力されるIQデータを、1 OFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図示のデータは、第1偏波用周波数インターリーブ部150-1の場合にはIデータを示しており、第2偏波用周波数インターリーブ部150-2の場合にはQデータを示している。図10に示す例では、1 OFDMシンボル内のセグメント数をn(ISDB-T方式では、n=13)とし、1セグメントあたりのキャリアシンボル数を384(すなわち、IQデータ数は768)としている。セグメント間インターリーブ部152は、キャリアシンボル単位ではなく、IQデータ単位でデータを並び替える。なお、並び替えは一例であり、これに限られるものではない。
 データローテーション部153は、セグメント間インターリーブ部152から入力されるIQデータに対し、1セグメントごとに、データのローテーションによるインターリーブ処理を行う。第1偏波用データローテーション部153-1は、k番目セグメント、x番目のデータを、データローテーションによって、k番目セグメント、x’番目に並べ替える。第2偏波用データローテーション部153-2は、k番目セグメント、y番目のデータを、データローテーションによって、k番目セグメント、y’番目に並べ替える。例えば、1セグメントあたりのキャリアシンボル数を384とした場合、x’=(x+k)mod384とする。また、y’=(y-k)mod384とする。ただしy’が負の場合は、384加えた値をy’の値とする。なお、ローテーションは一例であり、これに限られるものではない。また、第1偏波用データローテーション部153-1と第2偏波用データローテーション部153-2とで同じ式によりローテーションを行ってもよい。
 データランダマイズ部154は、セグメント内のキャリアシンボル数分の乱数テーブルを予め送信側、受信側で有し、データローテーション部153から入力されるキャリアシンボルを、乱数テーブルを参照してセグメント内でランダムに並べ替え、周期性を排除する。第1偏波用データランダマイズ部154-1と、第2偏波用データランダマイズ部154-2は、それぞれ別の乱数テーブルを用いるようにしてもよい。
[インターリーブの第3の例]
 次に、インターリーブの第3の例について説明する。図11は、インターリーブの第3の例の周波数・偏波間インターリーブ部15の構成を示すブロック図である。第3の例では、周波数・偏波間インターリーブ部15は、セグメント間インターリーブ部155と、データ分配部156と、第1偏波用データローテーション部153-1と、第2偏波用データローテーション部153-2と、第1偏波用データランダマイズ部154-1と、第2偏波用データランダマイズ部154-2と、を備える。
 図12は、セグメント間インターリーブ部155の処理を説明する図であり、図12(a)はインターリーブ前のシンボル配置を表し、図12(b)はインターリーブ後のシンボル配置を表す。セグメント間インターリーブ部155は、時間インターリーブ部14から入力されるキャリアシンボルを、送信アンテナ数分のOFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図12に示す例では、送信アンテナ数を2、2 OFDMキャリアシンボル内のセグメント数を2n(ISDB-T方式では、n=13)、1セグメントあたりのキャリアシンボル数を384としている。なお、並び替えは一例であり、これに限られるものではない。
 データ分配部156は、セグメント間インターリーブ部155から入力されるインターリーブ後のセグメントNo.0~n-1までのキャリアシンボルを第1偏波用データローテーション部153-1に出力し、セグメントNo.n~2n-1までのデータを第2偏波用データローテーション部153-2に出力する。なお、キャリアシンボルの分配は一例であり、これに限られるものではない。
 セグメント内インターリーブ部(データローテーション部153及びデータランダマイズ部154)の処理は、インターリーブの第1の例と同様であるため、説明を省略する。
[インターリーブの第4の例]
 次に、インターリーブの第4の例について説明する。インターリーブの第4の例では、周波数・偏波間インターリーブ部15は、図11に示した第3の例の構成と同じである。ただし、第3の例ではキャリアシンボル単位でインターリーブ処理したのに対し、第4の例ではIQデータ単位でインターリーブ処理する点が相違する。
 図13は、セグメント間インターリーブ部155の処理を説明する図であり、図13(a)はインターリーブ前のシンボル配置を表し、図13(b)はインターリーブ後のシンボル配置を表す。セグメント間インターリーブ部155は、時間インターリーブ部14から入力されるキャリアシンボルをIQデータに分解し、IQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図13に示す例では、送信アンテナ数を2、2 OFDMシンボル内のセグメント数を2n(ISDB-T方式では、n=13)、1セグメントあたりのキャリアシンボル数を384としている。なお、並び替えは一例であり、これに限られるものではない。インターリーブ後は、セグメント毎にIデータ又はQデータのみが集まり、新たなキャリアシンボル(I,Qデータの対)を構成する。
 データ分配部156は、セグメント間インターリーブ部155から入力されるインターリーブ後のセグメントNo.0~n-1までのIQデータを第1偏波用データローテーション部153-1に出力し、セグメントNo.n~2n-1までのIQデータを第2偏波用データローテーション部153-2に出力する。なお、IQデータの分配は一例であり、これに限られるものではない。
 セグメント内インターリーブ部(データローテーション部153及びデータランダマイズ部154)の処理は、インターリーブの第2の例と同様であるため、説明を省略する。
[インターリーブの第5の例]
 次に、インターリーブの第5の例について説明する。インターリーブの第5の例では、周波数・偏波間インターリーブ部15は、送信アンテナ数分の全てのキャリアシンボルをランダムに並べ替える。図14は、第5の例の周波数・偏波間インターリーブ部15の構成を示すブロック図である。図14に示すように、周波数・偏波間インターリーブ部15は、乱数テーブル記憶部157と、データランダマイズ部158と、データ分配部159と、を備える。
 乱数テーブル記憶部157は、送信アンテナ数分のOFDMキャリアシンボルの配置を決定する乱数テーブル(送信側及び受信側で同じ乱数テーブルとする)を記憶する。
 データランダマイズ部158は、時間インターリーブ部14から入力されるキャリアシンボルを、送信アンテナ数分のOFDMキャリアシンボルごとに、乱数テーブル記憶部157を参照して並べ替える。
 データ分配部159は、データランダマイズ部158から入力されるインターリーブ後のキャリアシンボルを所定数ずつ、第1偏波用出力処理部16-1、及び第2偏波用出力処理部16-2に分配する。
[インターリーブの第6の例]
 次に、インターリーブの第6の例について説明する。インターリーブの第6の例では、周波数・偏波間インターリーブ部15は、送信アンテナ数分の全てのIQデータをランダムに並べ替える。第6の例の周波数・偏波間インターリーブ部15の構成は、図14に示した第5の例の構成と同じである。ただし、第5の例ではキャリアシンボル単位でインターリーブ処理したのに対し、第6の例ではIQデータ単位でインターリーブ処理する点が相違する。
 データランダマイズ部158は、時間インターリーブ部14から入力されるキャリアシンボルをIQデータに分解し、IQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに、乱数テーブル記憶部157を参照して並べ替える。
 データ分配部159は、データランダマイズ部158から入力されるインターリーブ後のIQデータを所定数ずつ、第1偏波用出力処理部16-1、及び第2偏波用出力処理部16-2に分配する。
 図15は、送信装置1のシミュレーション結果を示す図であり、上述したインターリーブの第1の例~第6の例のBER特性を示す。ここでは、第1偏波を水平偏波、第2偏波を垂直偏波とし、両者間で6dBの電力差がある場合についてシミュレーションを行った。変調方式は1024QAMとし、符号化率は3/4、GI比は1/8としている。帯域幅、キャリア総数などはISDB-Tのモード3に準拠している。MIMO復調アルゴリズムにはZF(Zero Forcing)を適用し、LDPC符号長は64800、sum-product復号法による反復復号回数は20回とした。
なお、インターリーブの第5の例及び第6の例では、一度の処理で周期性を排除でき、かつBER特性も良いが、乱数テーブルが大きいためにハードウェアに実装した場合の負荷が大きくなる。
 このように、送信装置1は、周波数・偏波間インターリーブ部15により、キャリアシンボルの順序を周波数方向及び偏波間で並べ替え、送信アンテナごとにインターリーブ処理されたデータを生成する。また、受信装置2は、第1周波数・偏波間デインターリーブ部25及び第2周波数・偏波間デインターリーブ部27により、送信装置1によりインターリーブ処理されたデータを周波数方向及び偏波間にデインターリーブ処理する。このため、第1の実施形態の送信装置1及び受信装置2によれば、偏波間に受信レベル差があった場合でも、誤りデータを多く含む片偏波側のデータを分散させることができ、誤り訂正符号の効果を向上させ、BER特性を改善することができるようになる。
<第2の実施形態>
 次に、第2の実施形態として、複数チャンネルを同時に用いて1つのデータストリームを伝送する(以後、バルク伝送と呼ぶ)場合、すなわち、送信装置が複数チャンネルのOFDM信号を各チャンネルあたり複数の送信アンテナを用いて送信し、受信装置が複数チャンネルのOFDM信号を各チャンネルあたり複数の受信アンテナを用いて受信する場合について説明する。第2の実施形態では、チャンネル数が2の場合を例に説明するが、チャンネル数は2に限定されるものではない。
[送信装置]
 図16は、第2の実施形態に係る送信装置3の構成を示すブロック図である。誤り訂正符号化部11、ビットインターリーブ部12、マッピング部13、及び時間インターリーブ部14は2チャンネル分の送信信号について、第1の実施形態と同様の処理を行う。
 周波数・偏波・チャンネル間インターリーブ部18は、時間インターリーブ部14から入力される時間方向にインターリーブ処理された2チャンネル分のキャリアシンボルの順序を、周波数方向及び偏波・チャンネル間(送信アンテナ間)で並べ替え、送信アンテナ17ごとにインターリーブ処理されたデータを生成する。第2の実施形態では送信アンテナ数は4本であるため、周波数・偏波・チャンネル間インターリーブ部18は、4つのストリームに分割して出力する。インターリーブ処理の具体例は後述する。
 各出力処理部16は、周波数・偏波・チャンネル間インターリーブ部18から出力される各ストリームについて、第1の実施形態と同様にOFDMフレーム構成処理、IFFT処理、及びGI付加処理を行う。そして送信装置3は、送信アンテナ17-1及び17-2から第1チャンネルのOFDM信号を送信し、送信アンテナ17-3及び17-4から第2チャンネルのOFDM信号を送信する。
[受信装置]
 次に、第2の実施形態に係る受信装置について説明する。図17は、本発明の第2の実施形態に係る受信装置の構成を示すブロック図である。受信装置4は、受信アンテナ21-1及び21-2により、送信装置3の送信アンテナ17-1及び17-2から送信された第1チャンネルのOFDM信号を受信し、受信アンテナ21-3及び21-4により、送信装置3の送信アンテナ17-3及び17-4から送信された第2チャンネルのOFDM信号を受信する。すなわち、送信装置3及び受信装置4により、チャンネル数分の2×2MIMO伝送を実現する。
 各入力処理部22は、各受信アンテナ21により受信したOFDM信号について、それぞれ第1の実施形態と同様にGI除去処理、FFT処理、及びパイロット信号抽出処理を行う。
 伝送路応答算出部23-1、及びMIMO検出部24-1は、第1チャンネル用入力処理部220-1により処理された第1チャンネルの受信信号について伝送路応答の算出、及び波形等化・分離を行う。伝送路応答算出部23-2、及びMIMO検出部24-2は、第2チャンネル用入力処理部220-2により処理された第2チャンネルの受信信号について伝送路応答の算出、及び波形等化・分離を行う。
 第1周波数・偏波・チャンネル間デインターリーブ部32及び第2周波数・偏波・チャンネル間デインターリーブ部33は、周波数・偏波・チャンネル間インターリーブ部18と逆方向にデータを並び替えて元の順序に戻すものであり、後述する周波数・偏波・チャンネル間インターリーブ部18のブロック図と信号線の矢印の向きが逆になるだけであるため、説明を省略する。また、雑音分散算出部26、尤度比算出部28、時間デインターリーブ部29、ビットデインターリーブ部30、及び誤り訂正符号復号部31は、2チャンネル分の受信信号について、第1の実施形態と同様の処理を行う。
[周波数・偏波・チャンネル間インターリーブ部]
 次に、周波数・偏波・チャンネル間インターリーブ部18について説明する。第2の実施形態においても、第1の実施形態と同様にインターリーブの第1の例からインターリーブの第6の例について説明する。
[インターリーブの第1の例]
 インターリーブの第1の例では、周波数・偏波・チャンネル間インターリーブ部18は、所定数のキャリアシンボルごとに第1チャンネルの第1偏波送信用データ、第1チャンネルの第2偏波送信用データ、第2チャンネルの第1偏波送信用データ、及び第2チャンネルの第2偏波送信用データに分類した後に、それぞれ周波数インターリーブ処理を行う。図18は、周波数・偏波・チャンネル間インターリーブ部18の第1の例の構成を示すブロック図である。第1の例では、周波数・偏波・チャンネル間インターリーブ部18は、データ分配部181と、第1チャンネル用周波数インターリーブ部180-1と、第2チャンネル用周波数インターリーブ部180-2と、を備える。
 データ分配部181は、時間インターリーブ部14から入力されるキャリアシンボルを所定数ずつ4つのストリームに分割し、第1チャンネルの第1偏波用周波数インターリーブ部、第1チャンネルの第2偏波用周波数インターリーブ部、第2チャンネルの第1偏波用周波数インターリーブ部、及び第2チャンネルの第2偏波用周波数インターリーブ部に分配する。インターリーブの効果を高めるためには、1キャリアシンボルずつ分配するのが好適である。第2の実施形態では、データ分配部181から出力される4つのストリームについてそれぞれセグメント間インターリーブ処理、データローテーション処理、データランダマイズ処理を行う。各ストリームの処理は第1の実施形態の第1の例と同一であるため、説明を省略する。
[インターリーブの第2の例]
 次に、インターリーブの第2の例について説明する。インターリーブの第2の例では、周波数・偏波・チャンネル間インターリーブ部18の構成は、図18に示した構成例と同じである。ただし、第1の例ではキャリアシンボル単位でインターリーブ処理したのに対し、第2の例ではIデータ又はQデータ単位でインターリーブ処理する点が相違する。
 データ分配部181は、時間インターリーブ部14から入力される1キャリアシンボルを、Iデータ及びQデータに分解し、IQデータを最小単位として所定数ずつ4つのストリームに分割し、第1チャンネルの第1偏波用周波数インターリーブ部、第1チャンネルの第2偏波用周波数インターリーブ部、第2チャンネルの第1偏波用周波数インターリーブ部、及び第2チャンネルの第2偏波用周波数インターリーブ部に分配する。インターリーブの効果を高めるためには、1IQデータずつ分配するのが好適である。第2の実施形態ではデータ分配部181から出力される4つのストリームについてそれぞれセグメント間インターリーブ処理、データローテーション処理、及びデータランダマイズ処理を行う。各ストリームの処理は第1の実施形態の第2の例と同一であるため、説明を省略する。
[インターリーブの第3の例]
 次に、インターリーブの第3の例について説明する。図19は、インターリーブの第3の例の周波数・偏波・チャンネル間インターリーブ部18の構成を示すブロック図である。第3の例では、周波数・偏波・チャンネル間インターリーブ部18は、セグメント間インターリーブ部185と、データ分配部186と、第1チャンネル用セグメント内インターリーブ部190-1と、第2チャンネル用セグメント内インターリーブ部190-2と、を備える。
 図20は、セグメント間インターリーブ部185の処理を説明する図であり、図20(a)はインターリーブ前のシンボル配置を表し、図20(b)はインターリーブ後のシンボル配置を表す。セグメント間インターリーブ部185は、時間インターリーブ部14から入力されるキャリアシンボルを、送信アンテナ数分のOFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図20に示す例では、送信アンテナ数を4、4 OFDMキャリアシンボル内のセグメント数を4n(ISDB-T方式では、n=13)、1セグメントあたりのキャリアシンボル数を384としている。なお、並び替えは一例であり、これに限られるものではない。
 データ分配部186は、セグメント間インターリーブ部185から入力されるインターリーブ後のセグメントNo.0~n-1までのキャリアシンボルを第1チャンネルの第1偏波用データローテーション部183-1に出力し、セグメントNo.n~2n-1までのデータを第1チャンネルの第2偏波用データローテーション部183-2に出力し、セグメントNo.2n~3n-1までのデータを第2チャンネルの第1偏波用データローテーション部183-3に出力し、セグメントNo.3n~4n-1までのデータを第2チャンネルの第2偏波用データローテーション部183-4に出力する。なお、キャリアシンボルの分配は一例であり、これに限られるものではない。
 セグメント内インターリーブ部(データローテーション部183及びデータランダマイズ部184)の処理は、インターリーブの第1の例と同様であるため、説明を省略する。
[インターリーブの第4の例]
 次に、インターリーブの第4の例について説明する。インターリーブの第4の例では、周波数・偏波・チャンネル間インターリーブ部18は、図19に示した第3の例の構成と同じである。ただし、第3の例ではキャリアシンボル単位でインターリーブ処理したのに対し、第4の例ではIQデータ単位でインターリーブ処理する点が相違する。
 図21は、セグメント間インターリーブ部185の処理を説明する図であり、図21(a)はインターリーブ前のシンボル配置を表し、図21(b)はインターリーブ後のシンボル配置を表す。セグメント間インターリーブ部185は、時間インターリーブ部14から入力されるキャリアシンボルをIQデータに分解し、IQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図21に示す例では、送信アンテナ数を4、4 OFDMシンボル内のセグメント数を4n(ISDB-T方式では、n=13)、1セグメントあたりのキャリアシンボル数を384としている。なお、並び替えは一例であり、これに限られるものではない。インターリーブ後は、セグメント毎にIデータ又はQデータのみが集まり、新たなキャリアシンボル(I,Qデータの対)を構成する。
 データ分配部186は、セグメント間インターリーブ部185から入力されるインターリーブ後のセグメントNo.0~n-1までのキャリアシンボルを第1チャンネルの第1偏波用データローテーション部183-1に出力し、セグメントNo.n~2n-1までのデータを第1チャンネルの第2偏波用データローテーション部183-2に出力し、セグメントNo.2n~3n-1までのデータを第2チャンネルの第1偏波用データローテーション部183-3に出力し、セグメントNo.3n~4n-1までのデータを第2チャンネルの第2偏波用データローテーション部183-4に出力する。なお、IQデータの分配は一例であり、これに限られるものではない。
 セグメント内インターリーブ部(データローテーション部183及びデータランダマイズ部184)の処理は、インターリーブの第2の例と同様であるため、説明を省略する。
[インターリーブの第5の例]
 次に、インターリーブの第5の例について説明する。インターリーブの第5の例では、周波数・偏波・チャンネル間インターリーブ部18は、送信アンテナ数分の全てのキャリアシンボルをランダムに並べ替える。図22は、第5の例の周波数・偏波・チャンネル間インターリーブ部18の構成を示すブロック図である。図22に示すように、周波数・偏波・チャンネル間インターリーブ部18は、乱数テーブル記憶部187と、データランダマイズ部188と、データ分配部189と、を備える。
 乱数テーブル記憶部187は、送信アンテナ数分のOFDMキャリアシンボルの配置を決定する乱数テーブル(送信側及び受信側で同じ乱数テーブルとする)を記憶する。
 データランダマイズ部188は、時間インターリーブ部14から入力されるキャリアシンボルを、送信アンテナ数分のOFDMキャリアシンボルごとに、乱数テーブル記憶部187を参照して並べ替える。
 データ分配部189は、データランダマイズ部188から入力されるインターリーブ後のキャリアシンボルを所定数ずつ4つのストリームに分割し、第1チャンネルの第1偏波用出力処理部16-1、第1チャンネルの第2偏波用出力処理部16-2、第2チャンネルの第1偏波用出力処理部16-3、及び第2チャンネルの第2偏波用出力処理部16-4に分配する。
[インターリーブの第6の例]
 次に、インターリーブの第6の例について説明する。インターリーブの第6の例では、周波数・偏波・チャンネル間インターリーブ部18は、送信アンテナ数分の全てのIQデータをランダムに並べ替える。第6の例の周波数・偏波・チャンネル間インターリーブ部18の構成は、図22に示した第5の例の構成と同じである。ただし、第5の例ではキャリアシンボル単位でインターリーブ処理したのに対し、第6の例ではIQデータ単位でインターリーブ処理する点が相違する。
 データランダマイズ部188は、時間インターリーブ部14から入力されるキャリアシンボルをIQデータに分解し、IQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに、乱数テーブル記憶部187を参照して並べ替える。
 データ分配部189は、データランダマイズ部188から入力されるインターリーブ後のIQデータを所定数ずつ、第1チャンネルの第1偏波用出力処理部16-1、第1チャンネルの第2偏波用出力処理部16-2、第2チャンネルの第1偏波用出力処理部16-3、及び第2チャンネルの第2偏波用出力処理部16-4に分配する。
 このように、送信装置3は、周波数・偏波・チャンネル間インターリーブ部18により、複数チャンネル分のキャリアシンボルの順序を周波数方向及び偏波間で並べ替え、送信アンテナごとにインターリーブ処理されたデータを生成し、複数チャンネルのOFDM信号を送信する。また、受信装置4は、複数チャンネルのOFDM信号を受信し、第1周波数・偏波・チャンネル間デインターリーブ部32及び第2周波数・偏波・チャンネル間デインターリーブ部33により、送信装置3によりインターリーブ処理された複数チャンネル分のデータを周波数方向及び偏波間にデインターリーブ処理する。このため、第2の実施形態の送信装置3及び受信装置4によれば、複数チャンネルを用いたバルク伝送を行う際についても第1の実施形態と同様に、偏波間に受信レベル差があった場合でも、誤りデータを多く含む片偏波側のデータを分散させることができる。更に、片方のチャンネルのみ同一チャンネル干渉が発生した場合でも、誤りデータを多く含む片チャンネル側のデータを分散させることができる。結果、誤り訂正符号の効果を向上させ、BER特性を改善することができるようになる。
 図24は、上述した送信装置1,3による送信方法を示すフローチャートである。図24を参照して送信方法を簡潔に説明する。まず、誤り訂正符号化部11により、送信信号を誤り訂正符号化する(ステップS101)。次に、ビットインターリーブ部12により、訂正符号化された送信信号をビット単位でインターリーブする(ステップS102)。次に、マッピング部13により、IQ平面へのマッピングを行い変調方式に応じたキャリア変調が施されたキャリアシンボルを生成する(ステップS103)。次に、時間インターリーブ部14により、キャリアシンボルの順序を時間方向に並べ替える(ステップS104)。そして、周波数・偏波間インターリーブ部15又は18により、時間方向にインターリーブ処理されたキャリアシンボルの順序を、周波数方向及び偏波間(送信アンテナ間)で並べ替え、送信アンテナ17ごとにインターリーブ処理されたデータを生成する(ステップS105)。周波数・偏波間インターリーブ部15又は18によるインターリーブ処理の詳細については上述した通りである。最後に、出力処理部16により、インターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナ17を介してOFDM信号を送信する(ステップS106)。
 図25は、上述した受信装置2,4による受信方法を示すフローチャートである。図25を参照して受信方法を簡潔に説明する。まず、入力処理部22により、OFDM信号を受信アンテナ21を介して受信する(ステップS201)。次に、伝送路応答算出部23により、伝送路応答を算出する(ステップS202)。次に、MIMO検出部24により、受信したOFDM信号を伝送路応答を用いて波形等化及び分離し、分離信号を生成する(ステップS203)。そして、第1周波数・偏波間デインターリーブ部25又は第1周波数・偏波・チャンネル間デインターリーブ部32により、分離信号に対して周波数方向及び偏波間(受信アンテナ間)でデインターリーブ処理を行う(ステップS204)。次に、雑音分散算出部26により、各偏波信号から雑音分散σを求め(ステップS205)、第2周波数・偏波間デインターリーブ部27又は第2周波数・偏波・チャンネル間デインターリーブ部33により、雑音分散σに対して周波数方向及び偏波間(受信アンテナ間)でデインターリーブ処理を行う(ステップS206)。
 続いて尤度比算出部28により、ステップS204にてデインターリーブ処理されたデータ、及びステップS206にてデインターリーブ処理された雑音分散σを用いて尤度比λを算出する(ステップS207)。次に、時間デインターリーブ部29により、尤度比λに対し時間デインターリーブ処理を行い(ステップS208)、ビットデインターリーブ部30により、時間デインターリーブ処理された尤度比λに対しビットデインターリーブ処理を行う(ステップS209)。最後に、誤り訂正符号復号部31により、ビットデインターリーブ処理された尤度比λを用いて誤り訂正符号を復号する(ステップS210)。
 上述の実施形態は、代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 例えば、上述の実施形態では送信装置1の誤り訂正符号化部11が内符号としてLDPC符号を採用する場合について説明したが、内符号としてLDPC符号を採用しない場合には、受信装置2は雑音分散算出部26、第2周波数・偏波間デインターリーブ部27、及び尤度比算出部28を備えなくてよい。また、上述の実施形態では本発明による送信装置及び受信装置を2×2のMIMO伝送に適用する場合について説明したが、2×4や4×4のMIMO伝送にも適用することができるのは勿論である。
 また、上述の実施形態では送信装置1,3がビットインターリーブ部12及び時間インターリーブ部14を備える場合について説明したが、これらは必須の構成ではなく、またいずれか一方のみを備える構成であってもよい。また、インターリーブ処理を複数のブロックで行うようにしてもよく、例えば時間インターリーブ処理を時間インターリーブ部14以外に周波数・偏波間インターリーブ部15又は周波数・偏波・チャンネル間インターリーブ部18でも行うようにしてもよい。同様に、上述の実施形態では受信装置2,4が時間デインターリーブ部29及びビットデインターリーブ部30を備える場合について説明したが、これらは必須の構成ではなく、またいずれか一方のみを備える構成であってもよい。また、デインターリーブ処理を複数のブロックで行うようにしてもよく、例えば時間デインターリーブ処理を時間デインターリーブ部29以外に第1周波数・偏波間デインターリーブ部25及び第2周波数・偏波間デインターリーブ部27、又は第1周波数・偏波・チャンネル間デインターリーブ部32及び第2周波数・偏波・チャンネル間デインターリーブ部33でも行うようにしてもよい。さらに、本発明における処理順序も上述の実施形態の順序に限定されるものではない。例えば、受信装置2,4において、時間デインターリーブ部29の処理を尤度比算出部28の処理の前段で行ってもよい。
 このように、本発明は、SDM-MIMO伝送を行うMIMOシステムに有用である。
 1,3   送信装置
 2,4   受信装置
 11    誤り訂正符号化部
 12    ビットインターリーブ部
 13    マッピング部
 14    時間インターリーブ部
 15    周波数・偏波間インターリーブ部
 16-1,16-3 第1偏波用出力処理部
 16-2,16-4 第2偏波用出力処理部
 17-1,17-3 第1偏波用送信アンテナ
 17-2,17-4 第2偏波用送信アンテナ
 18    周波数・偏波・チャンネル間インターリーブ部
 21-1,21-3 第1偏波用受信アンテナ
 21-2,21-4 第2偏波用受信アンテナ
 22-1  第1偏波用入力処理部
 22-2  第2偏波用入力処理部
 23,23-1,23-2 伝送路応答算出部
 24,24-1,24-2 MIMO検出部
 25    第1周波数・偏波間デインターリーブ部
 26    雑音分散算出部
 27    第2周波数・偏波間デインターリーブ部
 28    尤度比算出部
 29    時間デインターリーブ部
 30    ビットデインターリーブ部
 31    誤り訂正符号復号部
 32    第1周波数・偏波・チャンネル間デインターリーブ部
 33    第2周波数・偏波・チャンネル間デインターリーブ部
 150-1 第1偏波用周波数インターリーブ部
 150-2 第2偏波用周波数インターリーブ部
 151,156,159,181,186,189 データ分配部
 152-1,182-1,182-3 第1偏波用セグメント間インターリーブ部
 152-2,182-2,182-4 第2偏波用セグメント間インターリーブ部
 153-1,183-1,183-3 第1偏波用データローテーション部
 153-2,183-2,183-4 第2偏波用データローテーション部
 154-1,184-1,184-3 第1偏波用データランダマイズ部
 154-2,184-2,184-4 第2偏波用データランダマイズ部
 155,185 セグメント間インターリーブ部
 157,187 乱数テーブル記憶部
 158,188 データランダマイズ部
 159,189 データ分配部
 160-1 第1チャンネル用出力処理部
 160-2 第2チャンネル用出力処理部
 161-1,161-3 第1偏波用OFDMフレーム構成部
 161-2,161-4 第2偏波用OFDMフレーム構成部
 162-1,162-3 第1偏波用IFFT部
 162-2,162-4 第2偏波用IFFT部
 163-1,163-3 第1偏波用GI付加部
 163-2,163-4 第2偏波用GI付加部
 180-1 第1チャンネル用周波数インターリーブ部
 180-2 第2チャンネル用周波数インターリーブ部
 190-1 第1チャンネル用セグメント内インターリーブ部
 190-2 第2チャンネル用セグメント内インターリーブ部
 220-1 第1チャンネル用入力処理部
 220-2 第2チャンネル用入力処理部
 221-1,221-3 第1偏波用GI除去部
 221-2,221-4 第2偏波用GI除去部
 222-1,222-3 第1偏波用FFT部
 222-2,222-4 第2偏波用FFT部
 223-1,223-3 第1偏波用パイロット信号抽出部
 223-2,223-4 第2偏波用パイロット信号抽出部
 

Claims (13)

  1.  OFDM信号を複数の送信アンテナを用いて送信する送信装置であって、
     送信信号をIQ平面へマッピングし、キャリア変調を施したキャリアシンボルを生成するマッピング部と、
     前記キャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成する周波数・送信アンテナ間インターリーブ部と、
     前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナを介してOFDM信号を送信する出力処理部と、
    を備える送信装置。
  2.  前記周波数・送信アンテナ間インターリーブ部は、
     前記キャリアシンボルを所定数ずつ分配して各送信アンテナのデータを生成するデータ分配部と、
     前記各送信アンテナのデータを、1 OFDMキャリアシンボルごとに周波数方向にインターリーブ処理して、前記送信アンテナごとにインターリーブ処理されたデータを生成する周波数インターリーブ部と、
    を備える、請求項1に記載の送信装置。
  3.  前記データ分配部は、前記キャリアシンボルを、IQ平面のI軸座標上に配置されるIデータ、及びIQ平面のQ軸座標上に配置されるQデータに分解し、Iデータ及びQデータを最小単位として所定数ずつ分配して、前記各送信アンテナのデータを生成する、請求項2に記載の送信装置。
  4.  前記周波数・送信アンテナ間インターリーブ部は、
     前記キャリアシンボルを送信アンテナ数分のOFDMキャリアシンボルごとに周波数方向にインターリーブ処理し、セグメント間でインターリーブ処理されたデータを生成するセグメント間インターリーブ部と、
     前記セグメント間でインターリーブ処理されたデータを所定数ずつ分配して、前記送信アンテナごとにインターリーブ処理されたデータを生成するデータ分配部と、
    を備える、請求項1に記載の送信装置。
  5.  前記セグメント間インターリーブ部は、前記キャリアシンボルを、IQ平面のI軸座標上に配置されるIデータ、及びIQ平面のQ軸座標上に配置されるQデータに分解し、Iデータ及びQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに周波数方向にインターリーブ処理して、前記セグメント間でインターリーブ処理されたデータを生成する、請求項4に記載の送信装置。
  6.  前記周波数・送信アンテナ間インターリーブ部は、
     前記キャリア変調を施したデータの送信アンテナ数分のOFDMキャリアシンボルの配置を決定する乱数テーブルを記憶する乱数テーブル記憶部と、
     前記キャリアシンボルを送信アンテナ数分のOFDMキャリアシンボルごとに、前記乱数テーブルを参照して並べ替えるデータランダマイズ部と、
     前記データランダマイズ部により並べ替えられたキャリアシンボルを所定数ずつ分配して、前記送信アンテナごとにインターリーブ処理されたデータを生成するデータ分配部と、
    を備える、請求項1に記載の送信装置。
  7.  前記データランダマイズ部は、前記キャリアシンボルを、IQ平面のI軸座標上に配置されるIデータ、及びIQ平面のQ軸座標上に配置されるQデータに分解し、Iデータ及びQデータを最小単位として、送信アンテナ数分のOFDMキャリアシンボルごとに、前記乱数テーブルを参照して並べ替える、請求項6に記載の送信装置。
  8.  複数チャンネルのOFDM信号を各チャンネルあたり複数の送信アンテナを用いて送信する送信装置であって、
     複数チャンネル分の送信信号をIQ平面へマッピングし、キャリア変調を施した複数チャンネル分のキャリアシンボルを生成するマッピング部と、
     前記複数チャンネル分のキャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成する周波数・送信アンテナ間インターリーブ部と、
     前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナを介してOFDM信号を送信する出力処理部と、
    を備える送信装置。
  9.  前記出力処理部は、水平偏波用アンテナ及び垂直偏波用アンテナ、又は右旋円偏波用アンテナ及び左旋円偏波用アンテナを介して前記OFDM信号を送信する、請求項1から8のいずれか一項に記載の送信装置。
  10.  OFDM信号を複数の受信アンテナを用いて受信する受信装置であって、
     複数の受信アンテナにより受信したOFDM信号を伝送路応答を用いて波形等化及び分離した分離信号を生成するMIMO検出部と、
     前記分離信号に対し、周波数方向及び受信アンテナ間でデインターリーブ処理する第1のデインターリーブ部と、
     OFDM信号の雑音分散を算出する雑音分散算出部と、
     前記雑音分散を周波数方向及び受信アンテナ間でデインターリーブ処理する第2のデインターリーブ部と、
     前記第1のデインターリーブ部によりデインターリーブ処理された分離信号、及び前記第2のデインターリーブ部によりデインターリーブ処理された雑音分散を用いて尤度比を算出する尤度比算出部と、
     前記尤度比を用いて誤り訂正符号を復号する誤り訂正符号復号部と、
    を備える受信装置。
  11.  複数の送信アンテナから送信されるOFDM信号を生成する送信方法であって、
     送信信号をIQ平面へマッピングし、キャリア変調を施したキャリアシンボルを生成するステップと、
     前記キャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成するステップと、
     前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナから送信されるOFDM信号を生成するステップと、
    を含む送信方法。
  12.  各チャンネルあたり複数の送信アンテナから送信されるOFDM信号を生成する送信方法であって、
     複数チャンネル分の送信信号をIQ平面へマッピングし、キャリア変調を施した複数チャンネル分のキャリアシンボルを生成するステップと、
     前記複数チャンネル分のキャリアシンボルを周波数方向及び送信アンテナ間でインターリーブ処理し、送信アンテナごとにインターリーブ処理されたデータを生成するステップと、
     前記送信アンテナごとにインターリーブ処理されたデータに対して、OFDMフレームを構成し、各送信アンテナから送信されるOFDM信号を生成するステップと、
    を含む送信方法。
  13.  複数の受信アンテナから受信したOFDM信号を処理する受信方法であって、
     OFDM信号を伝送路応答を用いて波形等化及び分離した分離信号を生成するステップと、
     前記分離信号に対し、周波数方向及び受信アンテナ間でデインターリーブ処理する第1のデインターブステップと、
     OFDM信号の雑音分散を算出するステップと、
     前記雑音分散を周波数方向及び受信アンテナ間でデインターリーブ処理する第2のデインターリーブステップと、
     前記第1のデインターリーブステップによりデインターリーブ処理された分離信号、及び前記第2のデインターリーブステップによりデインターリーブ処理された雑音分散を用いて尤度比を算出するステップと、
     前記尤度比を用いて誤り訂正符号を復号するステップと、
    を含む受信方法。
     
PCT/JP2012/007374 2011-11-18 2012-11-16 送信装置、受信装置、送信方法、及び受信方法 WO2013073195A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/358,980 US20140321575A1 (en) 2011-11-18 2012-11-16 Transmission device, reception device, transmission method, and reception method
CA2856197A CA2856197A1 (en) 2011-11-18 2012-11-16 Transmission device, reception device, transmission method, and reception method
JP2013544142A JP6047101B2 (ja) 2011-11-18 2012-11-16 送信装置及び受信装置
EP12850079.0A EP2782278A4 (en) 2011-11-18 2012-11-16 TRANSMISSION DEVICE, RECEIVING DEVICE, TRANSMISSION METHOD AND RECEIVING METHOD
KR1020147015285A KR20140090660A (ko) 2011-11-18 2012-11-16 송신 장치, 수신 장치, 송신 방법, 및 수신 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011253146 2011-11-18
JP2011-253146 2011-11-18
JP2012-183571 2012-08-22
JP2012183571 2012-08-22

Publications (1)

Publication Number Publication Date
WO2013073195A1 true WO2013073195A1 (ja) 2013-05-23

Family

ID=48429287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007374 WO2013073195A1 (ja) 2011-11-18 2012-11-16 送信装置、受信装置、送信方法、及び受信方法

Country Status (6)

Country Link
US (1) US20140321575A1 (ja)
EP (1) EP2782278A4 (ja)
JP (1) JP6047101B2 (ja)
KR (1) KR20140090660A (ja)
CA (1) CA2856197A1 (ja)
WO (1) WO2013073195A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070333A (ja) * 2013-09-26 2015-04-13 日本放送協会 送信装置、受信装置及びチップ
WO2016038954A1 (ja) * 2014-09-11 2016-03-17 株式会社東芝 無線送信装置、無線受信装置、無線送信方法及び無線受信方法
WO2016129274A1 (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
WO2016129272A1 (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
JP2016149739A (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
JP2017034339A (ja) * 2015-07-29 2017-02-09 日本放送協会 Ts分割送信装置及びts合成受信装置
JP2017103592A (ja) * 2015-12-01 2017-06-08 三菱電機株式会社 基地局装置
JP2018014679A (ja) * 2016-07-22 2018-01-25 日本放送協会 Ofdm信号送信装置及びofdm信号受信装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8897398B2 (en) * 2012-01-27 2014-11-25 Apple Inc. Methods and apparatus for error rate estimation
US9838226B2 (en) 2012-01-27 2017-12-05 Apple Inc. Methods and apparatus for the intelligent scrambling of control symbols
US9450790B2 (en) 2013-01-31 2016-09-20 Apple Inc. Methods and apparatus for enabling and disabling scrambling of control symbols
US9210010B2 (en) 2013-03-15 2015-12-08 Apple, Inc. Methods and apparatus for scrambling symbols over multi-lane serial interfaces
US10606676B2 (en) * 2014-04-23 2020-03-31 Comcast Cable Communications. LLC Data interpretation with modulation error ratio analysis
JP6188106B2 (ja) * 2014-09-24 2017-08-30 株式会社日立国際電気 Mimo受信装置及びmimo受信方法
CN109150198B (zh) * 2017-06-16 2021-05-14 华为技术有限公司 一种极化码的交织处理方法及装置
CN109039467A (zh) * 2018-06-26 2018-12-18 天津师范大学 基于iq调制器的准恒包络光ofdm信号调制解调系统及其调制解调方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505558A (ja) 2004-07-01 2008-02-21 クアルコム インコーポレイテッド 先進mimoインターリービング
JP4594361B2 (ja) * 2006-08-31 2010-12-08 三星電子株式会社 多重アンテナシステムにおけるデータ送受信装置及び方法とそれを支援するシステム
JP2011129981A (ja) * 2009-12-15 2011-06-30 Internatl Business Mach Corp <Ibm> ノイズ分散による入力対数尤度比のスケーリングに基づくsum−product復号法(ビリーフプロパゲーション法)の計算手法
WO2011086953A1 (ja) * 2010-01-13 2011-07-21 ソニー株式会社 基地局、端末装置、通信制御方法及び無線通信システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100385A4 (en) * 2007-01-05 2012-07-25 Lg Electronics Inc METHODS OF LAYER MAPPING AND DATA TRANSMISSION FOR MIMO SYSTEM
JP5089270B2 (ja) * 2007-06-29 2012-12-05 パナソニック株式会社 マルチアンテナ送信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505558A (ja) 2004-07-01 2008-02-21 クアルコム インコーポレイテッド 先進mimoインターリービング
JP4594361B2 (ja) * 2006-08-31 2010-12-08 三星電子株式会社 多重アンテナシステムにおけるデータ送受信装置及び方法とそれを支援するシステム
JP2011129981A (ja) * 2009-12-15 2011-06-30 Internatl Business Mach Corp <Ibm> ノイズ分散による入力対数尤度比のスケーリングに基づくsum−product復号法(ビリーフプロパゲーション法)の計算手法
WO2011086953A1 (ja) * 2010-01-13 2011-07-21 ソニー株式会社 基地局、端末装置、通信制御方法及び無線通信システム

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Transmission System for Digital Terrestrial Television Broadcasting", ARIB STD-B31, ASSOCIATION OF RADIO INDUSTRIES AND BUSINESSES
NAKAHARA: "A Study on soft decision decoding of 64QAM modulated OFDM signals under multi path distortion", ITE TECHNICAL REPORT, vol. 22, no. 34, June 1998 (1998-06-01), pages 1 - 6
OHGANE; OGAWA: "English translation of original Japanese title", OHMSHA, article "Easy to understand MIMO system technology", pages: 101
See also references of EP2782278A4
SEOKJOON HONG ET AL.: "Interleaved Spatial Diversity Transmission with Coordinate Interleaver for MIMO-OFDM Systems", VEHICULAR TECHNOLOGY CONFERENCE, 2009., 29 April 2009 (2009-04-29), pages 1 - 4, XP055150099 *
SHINGO ASAKURA ET AL.: "Technology for the next generation of digital terrestrial broadcasting : A study of decoding method of LDPC code in dual polarized MIMO transmission", ITE TECHNICAL REPORT, vol. 36, no. 23, 8 June 2012 (2012-06-08), pages 25 - 30, XP008174011 *
SHINGO ASAKURA ET AL.: "Technology for the next generation of digital terrestrial broadcasting : A study of multi dimensional interleaving", ITE TECHNICAL REPORT, vol. 36, no. 6, February 2012 (2012-02-01), pages 53 - 58, XP008174010 *
TAKUYA SHITOMI ET AL.: "Technology for the next generation of digital terrestrial broadcasting: field experiment of dual polarized MIMO transmission using circularly and skew polarization", ITE TECHNICAL REPORT, vol. 35, no. 13, 4 March 2011 (2011-03-04), pages 1 - 4, XP008174009 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070333A (ja) * 2013-09-26 2015-04-13 日本放送協会 送信装置、受信装置及びチップ
WO2016038954A1 (ja) * 2014-09-11 2016-03-17 株式会社東芝 無線送信装置、無線受信装置、無線送信方法及び無線受信方法
JP2016058968A (ja) * 2014-09-11 2016-04-21 株式会社東芝 無線送信装置及び無線受信装置
WO2016129274A1 (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
WO2016129272A1 (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
JP2016149739A (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
JP2016149740A (ja) * 2015-02-10 2016-08-18 日本放送協会 送信装置、受信装置、及び半導体チップ
US10009078B2 (en) 2015-02-10 2018-06-26 Nippon Hoso Kyokai Transmitter, receiver, and semiconductor chip
US10771132B2 (en) 2015-02-10 2020-09-08 Nippon Hoso Kyokai Transmitter, receiver, and semiconductor chip
JP2017034339A (ja) * 2015-07-29 2017-02-09 日本放送協会 Ts分割送信装置及びts合成受信装置
JP2017103592A (ja) * 2015-12-01 2017-06-08 三菱電機株式会社 基地局装置
JP2018014679A (ja) * 2016-07-22 2018-01-25 日本放送協会 Ofdm信号送信装置及びofdm信号受信装置

Also Published As

Publication number Publication date
EP2782278A4 (en) 2015-06-24
US20140321575A1 (en) 2014-10-30
EP2782278A1 (en) 2014-09-24
JPWO2013073195A1 (ja) 2015-04-02
KR20140090660A (ko) 2014-07-17
JP6047101B2 (ja) 2016-12-21
CA2856197A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6047101B2 (ja) 送信装置及び受信装置
US11757471B2 (en) Transmitting apparatus and bit interleaving method thereof
JP6507047B2 (ja) 送信装置、受信装置、及び半導体チップ
US10355817B2 (en) Transmitting apparatus and interleaving method thereof
US10873343B2 (en) Transmitter apparatus and bit interleaving method thereof
US20180069571A1 (en) Transmitting apparatus and interleaving method thereof
US10924314B2 (en) Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
US11637655B2 (en) Transmitting apparatus and interleaving method thereof
US9748975B2 (en) Transmitting apparatus and interleaving method thereof
US9692453B2 (en) Transmitting apparatus and interleaving method thereof
US20160344417A1 (en) Transmitting apparatus and interleaving method thereof
JP2014241475A (ja) 送信装置、受信装置、及びプログラム
JP5973848B2 (ja) 送信装置、受信装置、及びプログラム
US20190305880A1 (en) Transmitting apparatus and interleaving method thereof
KR102359850B1 (ko) 송신 장치, 수신 장치, 및 반도체 칩
US9705530B2 (en) Transmitting apparatus and interleaving method thereof
KR102359983B1 (ko) 송신 장치, 수신 장치, 및 반도체 칩
WO2009002069A2 (en) Method of transmitting and receiving a signal and apparatus for transmitting and receiving a signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544142

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2856197

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14358980

Country of ref document: US

Ref document number: 2012850079

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147015285

Country of ref document: KR

Kind code of ref document: A