WO2016129272A1 - 送信装置、受信装置、及び半導体チップ - Google Patents

送信装置、受信装置、及び半導体チップ Download PDF

Info

Publication number
WO2016129272A1
WO2016129272A1 PCT/JP2016/000676 JP2016000676W WO2016129272A1 WO 2016129272 A1 WO2016129272 A1 WO 2016129272A1 JP 2016000676 W JP2016000676 W JP 2016000676W WO 2016129272 A1 WO2016129272 A1 WO 2016129272A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
unit
polarization
interleaving
inter
Prior art date
Application number
PCT/JP2016/000676
Other languages
English (en)
French (fr)
Inventor
慎悟 朝倉
円香 本田
研一 村山
拓也 蔀
進 齋藤
善一 成清
宏明 宮坂
佐藤 明彦
知明 竹内
健一 土田
正寛 岡野
政幸 高田
澁谷 一彦
Original Assignee
日本放送協会
一般財団法人Nhkエンジニアリングシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015129968A external-priority patent/JP6502764B2/ja
Application filed by 日本放送協会, 一般財団法人Nhkエンジニアリングシステム filed Critical 日本放送協会
Priority to CA2976191A priority Critical patent/CA2976191C/en
Priority to US15/549,221 priority patent/US10771132B2/en
Priority to KR1020177023307A priority patent/KR102359983B1/ko
Publication of WO2016129272A1 publication Critical patent/WO2016129272A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing

Definitions

  • the present invention relates to a transmitter and a receiver that perform MIMO (Multiple Input Multiple Multiple Output) transmission using a plurality of different antennas, and in particular, a transmitter that performs interleaving between a plurality of antennas in a MIMO system, and a deinterleave between a plurality of antennas.
  • MIMO Multiple Input Multiple Multiple Output
  • the present invention relates to a receiving device that performs the above and a semiconductor chip mounted thereon.
  • a MIMO (Multiple Input Multiple Multiple Output) system using a plurality of transmission / reception antennas has been proposed as a method for expanding the data transmission capacity by radio.
  • space division multiplexing (SDM) and space-time codes (STC) are performed.
  • SDM space division multiplexing
  • STC space-time codes
  • a polarization MIMO scheme that uses both horizontal polarization and vertical polarization simultaneously has been proposed.
  • the reception level of one of the reception antennas may drop significantly due to differences in reflection characteristics.
  • SDM transmission separate streams are transmitted by a plurality of antennas, and therefore the BER characteristics of the entire system are greatly deteriorated due to the deterioration of the bit error rate (BER) characteristics due to a decrease in the reception level of one of them.
  • BER bit error rate
  • the Japanese terrestrial digital broadcasting system ISDB-T (Integrated Services Digital Broadcasting Terrestrial) employs bit interleaving, time interleaving, and frequency interleaving to rearrange the order of transmission data in order to improve error correction efficiency.
  • ISDB-T Integrated Services Digital Broadcasting Terrestrial
  • IEEE 802.11 interleaving is extended to a MIMO system, one stream is distributed to a plurality of transmitters in units of bits, and bit interleaving is performed in units of each transmitter (see, for example, Patent Document 1). ).
  • the reception level of antenna 1 is R 1
  • the reception level of antenna 2 is R 2
  • the bit error rate of antenna 1 is BER 1.
  • the reception level R of the entire MIMO transmission system using both antennas and the bit error rate BER are averaged by the following equations (1) and (2). Can be expressed as:
  • R (R 1 + R 2 ) / 2 (1)
  • BER (BER 1 + BER 2 ) / 2 (2)
  • An object of the present invention is to provide a transmitter, a receiver, and a semiconductor chip capable of improving the BER characteristics in a MIMO system that performs SDM-MIMO transmission in order to solve the above-described problem.
  • a transmission apparatus is a transmission apparatus that generates an OFDM signal transmitted by a plurality of transmission antennas, a data distribution unit that distributes data for each transmission antenna, and the data A mapping unit that maps the data distributed by the distributing unit to the IQ plane and generates carrier symbols each subjected to carrier modulation, and interleaved polarization interleaved data obtained by interleaving a plurality of carrier symbols between the plurality of transmitting antennas.
  • An inter-polarization interleaving unit to be generated, a time interleaving unit that generates time interleaved data obtained by interleaving the inter-polarization interleaved data in the time direction for each of the transmission antennas, and an OFDM signal for the time interleaved data are generated OF And an M-output processor.
  • a receiving apparatus demodulates an OFDM signal received by a plurality of receiving antennas, and demodulates the OFDM signal to generate a complex baseband signal.
  • a data inter-polarization deinterleaving unit that generates a carrier symbol by deinterleaving the plurality of data separated by the MIMO detection unit between the plurality of reception antennas.
  • a semiconductor chip is a semiconductor chip that generates an OFDM signal transmitted by a plurality of transmission antennas, and a data distribution unit that distributes data for each transmission antenna;
  • a mapping unit that maps data distributed by the data distribution unit to an IQ plane and generates carrier symbols each subjected to carrier modulation, and inter-polarization interleaving in which a plurality of carrier symbols are interleaved between the plurality of transmission antennas.
  • An interleaved interleave unit for generating data, a time interleave unit for generating time interleaved data obtained by interleaving the interleaved interleaved data in the time direction for each of the transmission antennas, and an OFDM signal for the time interleaved data Comprises generating an OFDM output processing unit which, a.
  • a semiconductor chip is a semiconductor chip that demodulates an OFDM signal received by a plurality of receiving antennas, and demodulates the OFDM signal to generate a complex baseband signal.
  • BER characteristics can be improved by performing interleaving between polarized waves in a MIMO system that performs SDM-MIMO transmission.
  • the receivable area can be expanded and stable reception can be achieved.
  • ISDB-T a Japanese digital broadcasting system
  • bit interleaving processing is designed to achieve optimum performance under various conditions by performing bit interleaving processing, frequency interleaving processing, and time interleaving processing, respectively.
  • interleaving processing between transmitting antennas is performed, so that error data due to a level difference between the transmitting antennas is distributed among the transmitting antennas, thereby improving the transmission characteristics of the entire MIMO system.
  • polarization MIMO using orthogonality between polarizations will be described as a specific example.
  • the present invention is effective not only for polarization MIMO transmission but also for general SDM-MIMO transmission.
  • FIG. 1 is a block diagram showing a configuration of a transmission apparatus according to the first embodiment of the present invention.
  • the transmission apparatus 1 includes an error correction encoding unit 11, a bit interleaving unit 12, a data distribution unit (antenna stream demultiplexer) 13, and two mapping units 14 (14-1 and 14-).
  • the transmission device 1 may be configured by one or a plurality of semiconductor chips.
  • the error correction coding unit 11 performs error correction coding on the input transmission signal and outputs the transmission signal to the bit interleaving unit 12 so that a transmission error can be corrected on the receiving side.
  • error correction for example, a BCH code is used as an outer code, and an LDPC (Low Density Parity Check) code is used as an inner code.
  • the bit interleaving unit 12 interleaves the transmission signal output from the error correction encoding unit 11 in units of bits and outputs it to the data distribution unit 13 in order to improve the performance of the error correction code.
  • an LDPC code as an outer code for error correction
  • the bit interleaving method is effective by the method used in DVB-C2. Refer to ETSI2EN ⁇ 302 769 ⁇ V1.2.1 (p.32) and http://www.dvb.org/technology/dvbc2/ for the DVB-C2 bit interleaving method.
  • the data distribution unit 13 distributes the data input from the bit interleaving unit 12 to the mapping unit 14-1 and the mapping unit 14-2 in a predetermined number. As a result, the transmission signal is divided into the number of antennas. For example, data for one carrier symbol is distributed, that is, bits corresponding to odd-numbered carrier symbols are output to mapping section 14-1 for transmitting antenna 19-1, and bits corresponding to even-numbered carrier symbols are transmitted. The data is output to the mapping unit 14-2 for the antenna 19-2.
  • the mapping unit 14 performs mapping on the IQ plane using the data input from the data distribution unit 13 as m bits / carrier symbol, generates a carrier symbol subjected to carrier modulation according to the modulation scheme, and inter-polarization interleaving unit 15 is output.
  • the inter-polarization interleaving unit 15 rearranges the order of the carrier symbols input from the mapping units 14-1 and 14-2 between the polarizations (between transmission antennas), and generates data subjected to interleaving processing for each transmission antenna 19. To the time interleaving units 16-1 and 16-2. A specific example of the interleaving interleaving process will be described later.
  • the time interleaving unit 16 generates interleaved data by rearranging the order of the carrier symbols input from the inter-polarization interleaving unit 15 in the time direction, and outputs the data to the frequency interleaving unit 17.
  • the frequency interleaving unit 17 generates interleaved data by rearranging the order of the carrier symbols input from the time interleaving unit 16 in the frequency direction, and outputs the data to the OFDM output processing unit 18. For example, an interleaving process is performed by the method used in ISDB-T, and interleaving is performed in the frequency direction for every 1 OFDM symbol. A specific example of the frequency interleaving process will be described later.
  • the OFDM output processing unit 18 forms an OFDM frame for the interleaved data input from each frequency interleaving unit 17 and transmits an OFDM signal via the transmission antenna 19.
  • the OFDM output processing unit 18-1 performs processing on the transmission data for the first polarization
  • the OFDM output processing unit 18-2 performs processing on the transmission data for the second polarization.
  • the first polarization and the second polarization are two types of separable polarizations such as horizontal polarization and vertical polarization, right-handed circular polarization, and left-handed circular polarization.
  • Each OFDM output processing unit 18 includes an OFDM frame configuration unit 181, an IFFT unit 182, and a GI addition unit 183.
  • the OFDM frame configuration unit 181 inserts a pilot signal (SP signal, CP signal), a TMCC signal indicating control information, and an AC signal indicating additional information into a signal input from each frequency interleaving unit 17, and sets all carriers to 1
  • An OFDM frame is composed of a predetermined number of OFDM symbol blocks as OFDM symbols.
  • the IFFT unit 182 performs an IFFT (Inverse Fourier Transform) process on the OFDM symbol input from each OFDM frame configuration unit 181 to generate an effective symbol signal in the time domain.
  • IFFT Inverse Fourier Transform
  • the GI adding unit 183 inserts a guard interval obtained by copying the latter half of the effective symbol signal at the head of the effective symbol signal input from each IFFT unit 182, and outputs an OFDM signal subjected to orthogonal modulation processing and D / A conversion. Then, it is transmitted to the outside via the transmission antenna 19.
  • the transmission antenna 19 is a horizontal polarization antenna and a vertical polarization antenna, or a right-hand circular polarization antenna and a left-hand circular polarization antenna.
  • FIG. 2 is a block diagram showing the configuration of the receiving apparatus according to the first embodiment of the present invention.
  • the receiving apparatus 2 includes two OFDM input processing units 22 (22-1 and 22-2), a transmission line response calculation unit 23, and two frequency deinterleaving units 24 (24-1 and 24-1). 24-2), two time deinterleaving units 25 (25-1 and 25-2), a MIMO detecting unit 26, a depolarization unit 27 between data polarizations, a noise variance calculating unit 28, and a noise variance value bias.
  • the receiving device 2 is connected to two receiving antennas 21 (21-1 and 21-2).
  • the receiving device 2 may be configured by one or a plurality of semiconductor chips.
  • the receiving antenna 21 is a horizontally polarized antenna and a vertically polarized antenna, or a right circularly polarized antenna and a left circularly polarized antenna.
  • the OFDM input processing unit 22 receives the OFDM signal transmitted from the transmission device 1 via the reception antenna 21 and demodulates it.
  • Each OFDM input processing unit 22 includes a GI removal unit 221, an FFT unit 222, and a pilot signal extraction unit 223.
  • the GI removal unit 221 generates a baseband signal by performing orthogonal demodulation processing on the received OFDM signal, and generates a digital signal by A / D conversion. Then, the GI removal unit 221 extracts a valid symbol signal by removing the guard interval, and outputs it to the FFT unit 222.
  • the FFT unit 222 performs an FFT (Fast Fourier Transform) process on the effective symbol signal input from the GI removal unit 221 to generate a complex baseband signal. Output to the interleave unit 24.
  • FFT Fast Fourier Transform
  • the pilot signal extraction unit 223 extracts a pilot signal (SP signal, CP signal) from the complex baseband signal input from the FFT unit 222 and outputs it to the transmission path response calculation unit 23.
  • the transmission path response calculation unit 23 calculates a transmission path response using the pilot signal input from the pilot signal extraction unit 223 and outputs it to the MIMO detection unit 26.
  • the frequency deinterleave unit 24 performs deinterleave processing on the complex baseband signal input from the OFDM input processing unit 22 in the frequency direction.
  • the deinterleaving process in the frequency direction is a process for returning the data rearranged in the frequency direction by the frequency interleaving unit 17 of the transmission device 1 to the original order.
  • the time deinterleaving unit 25 performs a deinterleaving process on the data input from the frequency deinterleaving unit 24 in the time direction.
  • the deinterleaving process in the time direction is a process for returning the data rearranged in the time direction by the time interleaving unit 16 of the transmission device 1 to the original order.
  • the MIMO detection unit 26 uses the baseband signal input from the time deinterleaving unit 25 by using the transmission path response input from the transmission path response calculation unit 23, ZF (Zero Forcing), MMSE (Minimum Mean Squared Error). , BLAST (Bell Laboratories Layered Space-Time), MLD (Maximum Likelihood Detection), etc., perform waveform equalization and MIMO separation of the two polarization signals transmitted from the transmission apparatus 1, and data between data polarization The data is output to the interleave unit 27 and the noise variance calculation unit 28.
  • ZF Zero Forcing
  • MMSE Minimum Mean Squared Error
  • BLAST Bell Laboratories Layered Space-Time
  • MLD Maximum Likelihood Detection
  • the inter-polarization data deinterleaving unit 27 performs deinterleaving processing between the polarizations (between receiving antennas) on the data input from the MIMO detection unit 26 and outputs the deinterleaving processing to the LLR calculation unit 30.
  • the deinterleaving process between the polarizations is a process for returning the data rearranged between the polarizations by the interpolarization interleaving unit 15 of the transmission apparatus 1 to the original order.
  • the noise variance calculation unit 28 calculates average noise variance from each polarization signal input from the MIMO detection unit 26 and outputs the average noise variance to the noise dispersion value inter-polarization deinterleaving unit 29.
  • the noise variance ⁇ 2 means the deviation between the symbol point on the IQ coordinate where the carrier symbol should be originally and the symbol point P of the actually observed carrier symbol. For example, the noise variance ⁇ 2 is obtained by calculating the modulation error ratio and taking the reciprocal. .
  • FIG. 3 is a diagram for explaining the processing of the noise variance calculation unit 28.
  • the noise variance calculation unit 28 calculates the average noise variance of the entire OFDM carrier symbol using AC symbols and / or TMCC symbols.
  • a noise matrix is determined by weighting the average noise variance of the entire band with each carrier using a weight matrix obtained from the transmission path response. It is known that the weight matrix in each carrier can be expressed as (H H H) ⁇ 1 as a transmission path response matrix H. The weight component of each carrier can be represented by this diagonal component. This is normalized by all carriers and weighted by multiplying the average noise variance of the entire band.
  • the noise dispersion value inter-polarization deinterleaving unit 29 performs deinterleaving processing (reverse permutation to the inter-polarization interleaving unit 15 of the transmission apparatus 1) for noise dispersion corresponding to each polarization signal input from the noise dispersion calculating unit 28. Process) and output to the LLR calculator 30.
  • deinterleaving processing reverse permutation to the inter-polarization interleaving unit 15 of the transmission apparatus 1
  • the LLR calculator 30 By similarly performing the deinterleaving process on the noise variance value necessary for calculating the LLR, it is possible to reflect different noise variance values due to the difference in the transmission path between the plurality of antennas on the LLR.
  • the LLR calculation unit 30 can calculate a more accurate LLR, and the improvement effect in the error correction code decoding unit 33 can be exhibited.
  • the LLR calculation unit 30 uses the deinterleaved data input from the data inter-polarization deinterleaving unit 27 and the noise variance ⁇ 2 input from the noise dispersion value inter-polarization deinterleaving unit 29 corresponding to the data.
  • the LLR is calculated and output to the data integration unit 31.
  • Wadayama “Low Density Parity Check Code and its Decoding Method”, Trikes.
  • the data integration unit 31 integrates the LLR corresponding to each bit calculated by each LLR calculation unit 30 (30-1 and 30-2) (the reverse process to the data distribution unit 13 of the transmission apparatus 1), Output to the interleave unit 32.
  • the bit deinterleaving unit 32 performs a deinterleaving process on the LLR corresponding to each bit input from the data integration unit 31.
  • This deinterleaving process is a process for returning the data rearranged by the bit interleaving unit 12 of the transmission apparatus 1 to the original order.
  • the error correction code decoding unit 33 performs LDPC decoding using the LLR input from the bit deinterleaving unit 32, and further performs BCH decoding, thereby decoding the signal transmitted from the transmission device 1.
  • the transmitting apparatus 1 may perform the processing of the time interleaving unit 16 after performing the processing of the frequency interleaving unit 17 by reversing the processing order of the time interleaving unit 16 and the frequency interleaving unit 17.
  • the receiving apparatus 2 similarly performs the processing of the frequency deinterleaving unit 24 after performing the processing of the time deinterleaving unit 25 by reversing the processing order of the frequency deinterleaving unit 24 and the time deinterleaving unit 25. I do.
  • the transmission apparatus 1 may perform the inter-polarization interleaving process and the frequency interleaving process at the same time, and then perform the time interleaving process.
  • the receiving device 2 similarly performs the time deinterleaving process, and then simultaneously performs the interpolarization deinterleaving process and the frequency deinterleaving process.
  • FIG. 4 is a diagram illustrating a first interleaving process example of the inter-polarization interleaving unit 15.
  • rearrangement is performed in units of carrier symbols for each OFDM carrier symbol corresponding to the number of transmission antennas according to a predetermined rule. If the number of OFDM carrier symbols is N, the inter-polarization interleaving unit 15 inputs carrier symbols of carrier symbol numbers 0 to N-1 from the mapping unit 14-1, and receives the carrier symbol number N from the mapping unit 14-2. Enter ⁇ 2N-1 carrier symbols.
  • the inter-polarization interleaving unit 15 associates the position of the carrier symbol before rearrangement and the position of the carrier symbol after rearrangement according to a predetermined rule (rule table) for the OFDM carrier symbols for the number of transmission antennas. ) In advance.
  • inter-polarization interleaving section 15 inputs carrier symbols with carrier symbol numbers 0 to N-1 from mapping section 14-1, and receives carrier symbols with carrier symbol numbers N to 2N-1 from mapping section 14-2. Then, every 2N carrier symbols are rearranged with reference to the rule table.
  • FIG. 5 is a diagram illustrating a second interleaving process example of the inter-polarization interleaving unit 15.
  • each OFDM carrier symbol for the number of transmission antennas is rearranged in units of carrier symbols according to a predetermined rule
  • a predetermined rule for each OFDM carrier symbol for the number of transmission antennas are arranged in units of data (hereinafter referred to as “I data”) arranged on the I axis coordinate of the IQ plane and data (hereinafter referred to as “Q data”) arranged on the Q axis coordinate of the IQ plane.
  • I data data
  • Q data data
  • the inter-polarization interleaving unit 15 inputs carrier symbols of carrier symbol numbers 0 to N ⁇ 1 from the mapping unit 14-1, and decomposes them into I data and Q data.
  • the I data or the Q data (hereinafter referred to as “IQ data”) with data numbers 0 to 2N ⁇ 1 is used.
  • carrier symbols of carrier symbol numbers N to 2N-1 are input from mapping section 14-2, and are decomposed into I data and Q data to obtain IQ data of data numbers 2N to 4N-1.
  • IQ data is written in one row (p) in the row direction, it is read out one column (2q) in the column direction.
  • a new carrier symbol (I, Q data pair) is formed.
  • p ⁇ 2q 4N.
  • the inter-polarization interleaving unit 15 associates the position of IQ data before rearrangement with the position of IQ data after rearrangement according to a predetermined rule for the OFDM carrier symbols for the number of transmission antennas (rule table). ) In advance.
  • the inter-polarization interleaving unit 15 receives the carrier symbols with carrier symbol numbers 0 to N ⁇ 1 from the mapping unit 14-1 and decomposes them into I data and Q data to obtain IQ data with data numbers 0 to 2N ⁇ 1.
  • carrier symbols of carrier symbol numbers N to 2N-1 are input from mapping section 14-2, and are decomposed into I data and Q data to obtain IQ data of data numbers 2N to 4N-1. Then, every 4N IQ data in total is rearranged with reference to the rule table.
  • the inter-polarization interleaving unit 15 randomly maps the position of the carrier symbol before rearrangement and the position of the carrier symbol after rearrangement with respect to the OFDM carrier symbols for the number of transmission antennas. Rule table) in advance.
  • Inter-polarization interleaving section 15 receives carrier symbols of carrier symbol numbers 0 to N-1 from mapping section 14-1, and receives carrier symbols of carrier symbol numbers N to 2N-1 from mapping section 14-2. The 2N carrier symbols are rearranged with reference to the irregular table.
  • the inter-polarization interleaving unit 15 randomly associates the position of IQ data before rearrangement and the position of IQ data after rearrangement with respect to the OFDM carrier symbols for the number of transmission antennas ( Irregular table) in advance.
  • the inter-polarization interleaving unit 15 receives the carrier symbols of carrier symbol numbers 0 to N-1 from the mapping unit 14-1, and decomposes them into I data and Q data to obtain IQ data of data numbers 0 to 2N-1.
  • carrier symbols of carrier symbol numbers N to 2N-1 are input from mapping section 14-2, and are decomposed into I data and Q data to obtain IQ data of data numbers 2N to 4N-1. Then, every 4N IQ data in total is rearranged with reference to the irregular table. After interleaving, a new carrier symbol (I, Q data pair) is formed.
  • periodicity can be eliminated by one processing and BER characteristics are good, but it is necessary to have a table, and processing is performed according to a predetermined rule. Since this is not possible, the load when implemented in hardware increases.
  • the inter-polarization interleaving unit 15 rearranges the OFDM carrier symbols for the number of transmission antennas for each carrier symbol unit or IQ data unit, but for each arbitrary number of carrier symbols. You may rearrange by a symbol unit or IQ data unit.
  • the inter-polarization interleaving unit 15 may rearrange only one of the I data and the Q data.
  • the data inter-polarization deinterleaving unit 27 rearranges the data separated by MIMO by the MIMO detection unit 26 in the reverse direction to the inter-polarization interleaving unit 15 and restores the original order.
  • the data inter-polarization de-interleaving unit 27 writes the data in the row direction by one row (q pieces), and then in the column direction. Read one column (p) at a time.
  • the data inter-polarization de-interleaving unit 27 When the inter-polarization interleaving unit 15 performs the above-described interleaving process of the second example, the data inter-polarization de-interleaving unit 27 writes the data one row (2q) at a time in the row direction, and then the column direction. Read one column (p) at a time.
  • the data inter-polarization de-interleaving unit 27 interchanges the positions before and after the rearrangement of the table. Sort by browsing the table.
  • inter-polarization data de-interleaving unit 27 is configured so that when the inter-polarization interleaving unit 15 rearranges only one of the I data and the Q data in the second example or the fourth example described above, Sort only one of the th data.
  • the data inter-polarization deinterleaving unit 27 performs the MIMO separation on the data separated by the MIMO detection unit 26. After deinterleaving between the polarized waves, carrier symbols are generated by using adjacent data as I data arranged on the I axis coordinate of the IQ plane and Q data arranged on the Q axis coordinate.
  • the noise dispersion value inter-polarization deinterleaving unit 29 rearranges the noise dispersion input from the noise dispersion calculating unit 28 in the reverse direction to the inter-polarization interleaving unit 15, similarly to the data inter-polarization deinterleaving unit 27.
  • FIG. 6 is a block diagram illustrating a configuration example of the frequency interleave unit 17.
  • the frequency interleave unit 17 includes an inter-segment interleave unit 171, a data rotation unit 172, and a data randomization unit 173.
  • the inter-polarization interleave unit 15 also substantially serves as the inter-segment interleave unit 171, the inter-segment interleave unit 171 may be omitted.
  • FIG. 7 is a diagram for explaining the processing of the inter-segment interleaving unit 171.
  • FIG. 7 (a) shows a symbol arrangement before interleaving
  • FIG. 7 (b) shows a symbol arrangement after interleaving.
  • the inter-segment interleaving unit 171 performs interleaving processing on the carrier symbols input from the time interleaving unit 16 in the frequency direction between segments for each 1 OFDM carrier symbol.
  • FIG. 8 is a diagram for explaining the processing of the data rotation unit 172.
  • FIG. 8 (a) shows a symbol arrangement before interleaving
  • FIG. 8 (b) shows a symbol arrangement after interleaving.
  • the number of carrier symbols per segment is 384.
  • the data rotation unit 172 performs interleaving processing by data rotation for each segment on the carrier symbols input from the inter-segment interleaving unit 171.
  • the data rotation unit 172 rearranges the k th segment and the i th data into the k th segment and the i ′ th data rotation.
  • i ′ (i + k) mod 384. Note that the rearrangement order is an example, and the present invention is not limited to this.
  • FIG. 9 is a diagram for explaining the processing of the data randomizing unit 173.
  • FIG. 9 (a) shows symbol arrangement before interleaving
  • FIG. 9 (b) shows symbol arrangement after interleaving.
  • the number of carrier symbols per segment is 384.
  • the data randomizing unit 173 has an irregular table for the number of carrier symbols in the segment in advance (the same irregular table is used on the transmitting side and the receiving side), and the data randomizing unit 173 has an irregular table for the data input from the data rotation unit 172. Randomization processing is performed in the segment with reference to the rule table to eliminate periodicity.
  • the random number is an example, and the present invention is not limited to this.
  • the inter-segment interleaving unit 171, the data rotation unit 172, and the data randomizing unit 173 may perform different sorting in the frequency interleaving units 17-1 and 17-2.
  • FIG. 10 is a diagram for explaining processing of the inter-segment interleaving unit 171.
  • FIG. 10 (a) shows the arrangement of I data or Q data before interleaving
  • FIG. 10 (b) shows the arrangement of IQ data after interleaving.
  • the inter-segment interleaving unit 171 performs interleaving processing on the IQ data input from the time interleaving unit 16 in the frequency direction between segments for each 1 OFDM carrier symbol.
  • the inter-segment interleaving unit 171 rearranges data in IQ data units, not in carrier symbol units. Note that the rearrangement is an example, and the present invention is not limited to this.
  • the data rotation unit 172 performs interleaving processing by data rotation for each segment on the IQ data input from the inter-segment interleaving unit 171, and the data randomizing unit 173
  • a random number of carrier symbols corresponding to the number of carrier symbols is previously provided on the transmission side and the reception side, and the carrier symbols input from the data rotation unit 172 are randomly rearranged within the segment with reference to the irregular table, and the periodicity is determined.
  • periodicity in the frequency direction can be eliminated by the irregular table included in the inter-polarization interleaving unit 15, and therefore the frequency interleaving unit 17 is omitted. It is also possible. In that case, the frequency deinterleaving unit 24 is omitted in the receiving apparatus 2 as well.
  • the transmission apparatus 1 uses the inter-polarization interleave unit 15 to rearrange the order of the carrier symbols between the polarizations, and generates interleaved data for each transmission antenna 19.
  • the receiving apparatus 2 deinterleaves the data interleaved by the transmitting apparatus 1 by using the data inter-polarization deinterleaving unit 27 and the noise dispersion value inter-polarization deinterleaving unit 29. Therefore, according to the transmission device 1 and the reception device 2 of the first embodiment, even when there is a reception level difference between the polarizations, it is possible to disperse the data on the single polarization side including a lot of error data, The effect of the error correction code can be improved and the BER characteristics can be improved.
  • the transmission apparatus 1 does not divide data between a plurality of antennas after time interleaving processing and frequency interleaving processing, and performs inter-polarization interleaving processing.
  • the interleaved polarization interleaving process is performed.
  • the processing of the receiving device 2 is equivalent to processing the processing of the transmitting device 1 in the reverse direction, and is followed by OFDM demodulation processing, frequency deinterleaving processing, time deinterleaving processing, and MIMO detection processing after signal reception.
  • iterative demodulation / decoding such as turbo equalization processing is performed in the receiving apparatus 2
  • the decoding result is input to the MIMO detection unit 26 and the LLR calculation units 30-1 and 30-2, and the iterative processing is performed. May do.
  • the receiving device 2 arranges the time deinterleaving unit 25 before the MIMO detection unit 26, and the transmitting device 1 arranges the time interleaving unit 16 after the inter-polarization interleaving unit 15. Therefore, according to the present invention, it is possible to realize the receiving apparatus 2 that performs iterative demodulation / decoding processing without increasing the circuit scale.
  • the transmission apparatus transmits a plurality of OFDM signals for each channel.
  • a case will be described in which transmission is performed using an antenna, and a reception apparatus receives a plurality of channels of OFDM signals using a plurality of reception antennas for each channel.
  • the number of channels is two will be described as an example, but the number of channels is not limited to two.
  • FIG. 11 is a block diagram illustrating a configuration of the transmission device 3 according to the second embodiment.
  • the transmission device 3 includes an error correction encoding unit 11, a bit interleaving unit 12, a data distribution unit 13, four mapping units 14 (14-1 to 14-4), a polarization, Interchannel interleaving unit 20, four time interleaving units 16 (16-1 to 16-4), four frequency interleaving units 17 (17-1 to 17-4), and first channel output processing unit 180 -1 and a second channel output processing unit 180-2, and four transmission antennas 19 (19-1 to 19-4) are connected to the transmission device 3.
  • the transmission device 3 may be configured by one or a plurality of semiconductor chips.
  • the error correction encoding unit 11 and the bit interleaving unit 12 perform the same processing as in the first embodiment on the transmission signals for two channels.
  • the data distribution unit 13 divides the data input from the bit interleaving unit 12 into four streams by a predetermined number and distributes the data to the mapping units 14-1 to 14-4. For example, data for one carrier symbol is distributed, that is, bits corresponding to odd-numbered carrier symbols are output to mapping sections 14-1 and 14-3, and bits corresponding to even-numbered carrier symbols are mapped to mapping section 14- 2 and 14-4.
  • the mapping unit 14 performs mapping on the IQ plane using the data input from the data distribution unit 13 as m bits / carrier symbols, generates carrier symbols subjected to carrier modulation according to the modulation scheme, and generates polarization / channels. Output to the interleaving unit 20.
  • the polarization / channel interleaving unit 20 rearranges the order of carrier symbols input from the mapping units 14-1 to 14-4 between polarizations (between transmission antennas) and between channels, and performs interleaving processing for each transmission antenna 19
  • the generated data is generated and output to the time interleave units 16-1 to 16-4.
  • the polarization / channel interleaving unit 20 performs first polarization transmission data for the first channel, second polarization transmission data for the first channel, and first polarization transmission for the second channel for each predetermined number of carrier symbols.
  • the data is classified into credit data and second polarization transmission data for the second channel.
  • a specific example of polarization / channel interleaving processing will be described later.
  • the time interleaving unit 16 generates interleaved data by rearranging the order of the carrier symbols input from the polarization / channel interleaving unit 20 in the time direction, and outputs the data to the frequency interleaving unit 17.
  • the frequency interleaving unit 17 generates interleaved data by rearranging the order of the carrier symbols input from the time interleaving unit 16 in the frequency direction, and outputs the data to the OFDM output processing unit 18. For example, an interleaving process is performed by the method used in ISDB-T, and interleaving is performed in the frequency direction for every 1 OFDM symbol.
  • the OFDM output processing unit 18 performs OFDM frame configuration processing, IFFT processing, and GI addition processing on each stream input from the frequency interleaving unit 17 as in the first embodiment.
  • the transmission apparatus 3 transmits the first channel OFDM signal from the transmission antennas 19-1 and 19-2, and transmits the second channel OFDM signal from the transmission antennas 19-3 and 19-4.
  • FIG. 12 is a block diagram showing a configuration of a receiving apparatus according to the second embodiment of the present invention.
  • the receiving device 4 includes a first channel input processing unit 220-1, a second channel input processing unit 220-2, and two transmission path response calculation units 23 (23-1 and 23).
  • the reception device 4 includes four reception antennas 21 (21-1 to 21-4). Contact It is.
  • the receiving device 4 may be configured by one or a plurality of semiconductor chips.
  • the reception device 4 receives the OFDM signal of the first channel transmitted from the transmission antennas 19-1 and 19-2 of the transmission device 3 by the reception antennas 21-1 and 21-2, and receives the reception antennas 21-3 and 21-2. -4 receives the OFDM signal of the second channel transmitted from the transmission antennas 19-3 and 19-4 of the transmission apparatus 3. That is, 2 ⁇ 2 MIMO transmission corresponding to the number of channels is realized by the transmission device 3 and the reception device 4.
  • the OFDM input processing unit 22 performs GI removal processing, FFT processing, and pilot signal extraction processing on the OFDM signals received by the respective receiving antennas 21 as in the first embodiment.
  • the transmission line response calculation unit 23-1 For the received signal of the first channel processed by the first channel input processing unit 220-1, the transmission line response calculation unit 23-1, the frequency deinterleaving units 24-1 and 24-2, and the time deinterleaving unit 25. -1 and 25-2 and the MIMO detection unit 26-1 perform the same processing as in the first embodiment. Further, for the received signal of the second channel processed by the second channel input processing unit 220-2, the transmission line response calculating unit 23-2, the frequency deinterleaving units 24-3 and 24-4, and the time deinterleaving. The units 25-3 and 25-4 and the MIMO detection unit 26-2 perform the same processing as in the first embodiment.
  • the data polarization / inter-channel deinterleaving unit 41 performs deinterleaving processing between the polarization and the channel on the data input from the MIMO detection unit 26, and outputs the result to the LLR calculation unit 30.
  • the deinterleaving process between polarizations and between channels is a process for returning the data rearranged between polarizations and between channels by the polarization / interchannel interleaving unit 20 of the transmission apparatus 1 to the original order.
  • the noise variance calculation unit 28 calculates the average noise variance from each polarization signal input from the MIMO detection unit 26 and outputs the average noise variance to the noise variance polarization / interchannel deinterleaving unit 42.
  • the noise dispersion value polarization / inter-channel deinterleaving unit 42 performs deinterleaving processing between waves and channels on the noise dispersion corresponding to each polarization signal input from the noise dispersion calculating unit 28, and the LLR calculating unit 30. Output to.
  • the LLR calculation unit 30, the data integration unit 31, the bit deinterleaving unit 32, and the error correction code decoding unit 33 perform the same processing as in the first embodiment on the reception signals for two channels.
  • FIG. 13 is a diagram illustrating a first interleaving process example of the polarization / channel interleaving unit 20.
  • rearrangement is performed in units of carrier symbols for each OFDM carrier symbol corresponding to the number of transmission antennas according to a predetermined rule.
  • the polarization / channel interleaving unit 20 inputs carrier symbols of carrier symbol numbers 0 to N ⁇ 1 from the mapping unit 14-1, and receives the carrier symbols from the mapping unit 14-2.
  • Carrier symbols of symbol numbers N to 2N-1 are input, carrier symbols of carrier symbol numbers 2N to 3N-1 are input from mapping unit 14-3, and carrier symbols of carrier symbol numbers 3N to 4N-1 are input from mapping unit 14-4. Enter the carrier symbol.
  • the polarization / channel interleaving unit 20 associates the position of the carrier symbol before rearrangement with the position of the carrier symbol after rearrangement according to a predetermined rule for the OFDM carrier symbols for the number of transmission antennas. (Rule table) may be provided in advance. In this case, polarization / channel interleaving section 20 receives carrier symbols of carrier symbol numbers 0 to N-1 from mapping section 14-1, and receives carrier symbol numbers of carrier symbol numbers N to 2N-1 from mapping section 14-2.
  • the symbols are input, the carrier symbols of the carrier symbol numbers 2N to 3N-1 are input from the mapping unit 14-3, the carrier symbols of the carrier symbol numbers 3N to 4N-1 are input from the mapping unit 14-4, and a total of 4N For each carrier symbol, sort by referring to the rule table.
  • FIG. 14 is a diagram illustrating a second interleaving process example of the polarization / channel interleaving unit 20.
  • each OFDM carrier symbol for the number of transmission antennas is rearranged in units of carrier symbols according to a predetermined rule, whereas in the second example, a predetermined rule for each OFDM carrier symbol for the number of transmission antennas. Accordingly, the I data arranged on the I axis coordinate of the IQ plane and the Q data arranged on the Q axis coordinate of the IQ plane are rearranged.
  • the polarization / channel interleaving unit 20 inputs carrier symbols of carrier symbol numbers 0 to N ⁇ 1 from the mapping unit 14-1, and the I data and Q
  • the data is decomposed into IQ data of data numbers 0 to 2N ⁇ 1
  • the carrier symbols of carrier symbol numbers N to 2N ⁇ 1 are input from the mapping unit 14-2, and are decomposed into I data and Q data to be data number 2N To 4N-1
  • carrier symbols of carrier symbol numbers 2N to 3N-1 are input from the mapping unit 14-3, and decomposed into I data and Q data to obtain IQ data of data numbers 4N to 6N-1.
  • the polarization / channel interleaving unit 20 associates the position of IQ data before rearrangement and the position of IQ data after rearrangement according to a predetermined rule for OFDM carrier symbols for the number of transmission antennas. (Rule table) may be provided in advance.
  • the polarization / channel interleaving unit 20 receives the carrier symbols of the carrier symbol numbers 0 to N-1 from the mapping unit 14-1, decomposes them into I data and Q data, and data numbers 0 to 2N-1
  • the carrier symbol of the carrier symbol numbers N to 2N-1 is input from the mapping unit 14-2 and decomposed into I data and Q data to obtain IQ data of the data numbers 2N to 4N-1
  • the mapping unit 14 -3 carrier symbols of carrier symbol numbers 2N to 3N-1 are input and decomposed into I data and Q data to form IQ data of data numbers 4N to 6N-1
  • carrier symbol numbers 3N to 3N to 4N-1 carrier symbols are input and decomposed into I data and Q data, and IQ data of data numbers 6N to 8N-1 Data to. And it sorts with reference to a rule table for every IQ data of a total of 8N.
  • the polarization / channel interleaving unit 20 randomly associates the position of the carrier symbol before rearrangement and the position of the carrier symbol after rearrangement with respect to the OFDM carrier symbols for the number of transmission antennas.
  • a table is provided in advance.
  • Polarization / channel interleaving section 20 receives carrier symbols having carrier symbol numbers 0 to N-1 from mapping section 14-1 and carrier symbols having carrier symbol numbers N to 2N-1 from mapping section 14-2.
  • the carrier symbols of carrier symbol numbers 2N to 3N-1 are input from the mapping unit 14-3, the carrier symbols of carrier symbol numbers 3N to 4N-1 are input from the mapping unit 14-4, and a total of 4N carriers Sort by symbol by referring to the irregular table.
  • the polarization / channel interleaving unit 20 randomly associates the position of IQ data before rearrangement and the position of IQ data after rearrangement with respect to OFDM carrier symbols for the number of transmission antennas.
  • a table (irregular table).
  • Polarization / channel interleaving section 20 receives carrier symbols of carrier symbol numbers 0 to N-1 from mapping section 14-1 and decomposes them into I data and Q data to obtain IQ data of data numbers 0 to 2N-1.
  • the carrier symbols of the carrier symbol numbers N to 2N-1 are input from the mapping unit 14-2 and decomposed into I data and Q data to obtain IQ data of the data numbers 2N to 4N-1, and from the mapping unit 14-3
  • Carrier symbols of carrier symbol numbers 2N to 3N-1 are input, decomposed into I data and Q data, and converted to IQ data of data numbers 4N to 6N-1, and carrier symbol numbers 3N to 4N-1 are transmitted from mapping section 14-4.
  • the carrier symbol is input and decomposed into I data and Q data to obtain IQ data of data numbers 6N to 8N-1.Then, the data is rearranged with reference to the irregular table for every IQ data of 8N in total. After interleaving, a new carrier symbol (I, Q data pair) is formed.
  • the inter-polarization / channel interleaving unit 20 rearranges the OFDM carrier symbols for the number of transmission antennas in units of carrier symbols or IQ data, but an arbitrary number of carrier symbols. You may rearrange for every carrier symbol unit or IQ data unit.
  • the polarization / channel interleaving unit 20 may rearrange only one of the I data and the Q data when rearranging the carrier symbols in units of IQ data in the second example or the fourth example described above. Good.
  • the data polarization / channel deinterleaving unit 41 rearranges the data separated by MIMO by the MIMO detection unit 26 in the reverse direction to the polarization / channel interleaving unit 20 and restores the original order.
  • the data polarization / channel interleaving unit 41 stores data in one row (2q) in the row direction. After writing, read one column (p) at a time in the column direction.
  • the data polarization / channel interleaving unit 41 stores data one row (4q) at a time in the row direction. After writing, read one column (p) at a time in the column direction.
  • the data polarization / channel deinterleaving unit 41 rearranges the table. Sort by referring to the table with the front and rear positions interchanged.
  • the data polarization / interchannel deinterleaving unit 41 when the polarization / interchannel interleaving unit 20 rearranges only one of the I data and the Q data in the second example or the fourth example described above, Only one of odd-numbered data and even-numbered data is rearranged.
  • the data polarization / channel deinterleaving unit 41 is the MIMO detection unit 26 when the polarization / channel interleaving unit 20 performs the polarization / channel interleaving process according to the second or fourth example described above. After de-interleaving processing between polarization and channel for data separated by MIMO, adjacent data is set as I data arranged on the I-axis coordinate of the IQ plane and Q data arranged on the Q-axis coordinate. A carrier symbol is generated.
  • the noise dispersion polarization / interchannel deinterleave unit 42 reverses the noise dispersion input from the noise dispersion calculation unit 28 to the polarization / interchannel interleave unit 20. Sort by direction.
  • the transmission device 3 uses the polarization / channel interleaving unit 20 to rearrange the order of carrier symbols for a plurality of channels between polarizations and between channels, and generates interleaved data for each transmission antenna 19. , Transmit OFDM signals of multiple channels.
  • the receiving device 4 receives a plurality of channels of OFDM signals, and is interleaved by the transmitting device 3 by the data polarization / interchannel deinterleave unit 41 and the noise dispersion polarization / interchannel deinterleave unit 42. Channel data is deinterleaved between polarizations and between channels.
  • the transmission device 3 and the reception device 4 of the second embodiment when performing bulk transmission using a plurality of channels, similarly to the first embodiment, there is a reception level difference between polarized waves. Even in this case, it is possible to disperse data on the one-polarization side including a lot of error data. Furthermore, even when the same channel interference occurs in only one channel, it is possible to disperse the data on the one channel side containing a lot of error data. As a result, the effect of the error correction code can be improved and the BER characteristics can be improved.
  • the receiving device 4 has a time deinterleaving unit 25 arranged before the MIMO detecting unit 26, and the transmitting device 3 has a time interleaving unit 16 arranged after the polarization / interchannel interleaving unit 20. Therefore, according to the present invention, it is possible to realize the receiving device 4 that performs iterative demodulation / decoding processing without increasing the circuit scale.
  • the case where the error correction encoding unit 11 of the transmission apparatus 1 employs an LDPC code as an inner code has been described.
  • the calculation unit 28, the noise dispersion value inter-polarization deinterleaving unit 29, and the LLR calculation unit 30 may not be provided.
  • the case where the transmitting apparatus and the receiving apparatus according to the present invention are applied to 2 ⁇ 2 MIMO transmission has been described.
  • the present invention can also be applied to 2 ⁇ 4 or 4 ⁇ 4 MIMO transmission. Of course.
  • the present invention is useful for a MIMO system that performs SDM-MIMO transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radio Transmission System (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 MIMOシステムにおいてBER特性を改善する。 送信装置1は、送信アンテナごとに分配されたデータをIQ平面へマッピングしてキャリアシンボルを生成し、複数のキャリアシンボルを複数の送信アンテナ間でインターリーブ処理した偏波間インターリーブデータを時間方向にインターリーブ処理し、OFDM信号を生成する。受信装置2は、OFDM信号の複素ベースバンド信号を時間方向にデインターリーブ処理した時間デインターリーブデータをMIMO分離し、MIMO分離された複数のデータを複数の受信アンテナ間でデインターリーブ処理してキャリアシンボルを生成する。

Description

送信装置、受信装置、及び半導体チップ 関連出願の相互参照
 本出願は、2015年2月10日に出願された日本国特許出願2015-24655号及び2015年6月29日に出願された日本国特許出願2015-129968号の優先権を主張するものであり、この先の出願の開示全体をここに参照のために取り込む。
 本発明は、異なる複数のアンテナを用いてMIMO(Multiple Input Multiple Output)伝送を行う送信装置及び受信装置であって、特にMIMOシステムにおける複数アンテナ間でインターリーブを行う送信装置、複数アンテナ間でデインターリーブを行う受信装置、及びそれら搭載される半導体チップに関するものである。
 近年、無線によるデータ伝送容量を拡大するための手法として、複数の送受信アンテナを用いるMIMO(Multiple Input Multiple Output)システムが提案されている。MIMOを用いる伝送システムでは、空間分割多重(SDM:Space Division Multiplexing)や、時空間符号(STC:Space Time Codes)が行われる。MIMOシステムの実現例としては、水平偏波及び垂直偏波の両偏波を同時に用いる偏波MIMO方式などが提案されている。
 複数の送受信アンテナを用いたMIMO伝送における、放送サービスを想定した実際の伝搬路では、反射特性の違いなどから片方の受信アンテナのみ受信レベルが大きく落ち込むことがある。SDM伝送では複数アンテナによりそれぞれ別々のストリームを伝送するため、片方の受信レベル低下によるビット誤り率(BER:Bit Error Rate)特性の劣化によって、系全体のBER特性も大きく劣化する。
 日本の地上デジタル放送方式であるISDB-T(Integrated Services Digital Broadcasting - Terrestrial)方式では、誤り訂正の効率を上げるために、送信データの順序を並べ替える、ビットインターリーブ、時間インターリーブ、及び周波数インターリーブが採用されている(例えば、非特許文献1参照)。また、IEEE802.11のインターリーブをMIMOシステムに拡張し、1つのストリームをビット単位で複数の送信機に振り分け、各送信機単位でビットインターリーブを行う技法が知られている(例えば、特許文献1参照)。
特表2008-505558号公報
「地上デジタルテレビジョンの伝送方式」、ARIB STD-B31、社団法人電波産業会
 複数アンテナ(例えば2つ)を用いてそれぞれ別々のストリームを伝送するSDM-MIMO伝送において、アンテナ1の受信レベルをR、アンテナ2の受信レベルをR、アンテナ1のビット誤り率をBER、アンテナ2のビット誤り率をBERとすると、両アンテナを用いたMIMO伝送システム全体の受信レベルR、及びビット誤り率BERは、それぞれの平均を取って、次式(1)(2)のように表すことができる。
 R=(R+R)/2                   (1)
 BER=(BER+BER)/2             (2)
 実際に野外で行うSDM-MIMO伝送では、各アンテナから発射される電波の伝搬路特性の違いなどから、場所によってはアンテナ間に大きなレベル差が生じる。伝搬路によってのみ受信レベルが下がりビット誤り率が劣化した場合、上式より系全体のビット誤り率も劣化する。図15では、アンテナそれぞれのBER特性を実線で示し、合成後のBER特性を破線で示している。これより、合成後のBER特性が劣化することが分かる。したがって、複数アンテナを用いたSDM-MIMO伝送では、アンテナ間のレベル差に起因するBER特性の劣化によって、安定して受信できない、受信可能エリアが狭くなる、といった課題があった。
 本発明の目的は、上記問題を解決するため、SDM-MIMO伝送を行うMIMOシステムにおいて、BER特性を改善することが可能な送信装置、受信装置、及び半導体チップを提供することにある。
 上記課題を解決するため、本発明に係る送信装置は、複数の送信アンテナにより送信されるOFDM信号を生成する送信装置であって、前記送信アンテナごとにデータを分配するデータ分配部と、前記データ分配部により分配されたデータをIQ平面へマッピングし、それぞれキャリア変調を施したキャリアシンボルを生成するマッピング部と、複数の前記キャリアシンボルを前記複数の送信アンテナ間でインターリーブ処理した偏波間インターリーブデータを生成する偏波間インターリーブ部と、前記送信アンテナごとに、前記偏波間インターリーブデータをそれぞれ時間方向にインターリーブ処理した時間インターリーブデータを生成する時間インターリーブ部と、前記時間インターリーブデータに対してOFDM信号を生成するOFDM出力処理部と、を備える。
 また、上記課題を解決するため、本発明に係る受信装置は、複数の受信アンテナにより受信されるOFDM信号を復調する受信装置であって、前記OFDM信号を復調し、複素ベースバンド信号を生成するOFDM入力処理部と、前記受信アンテナごとに、前記複素ベースバンド信号を時間方向にデインターリーブ処理した時間デインターリーブデータを生成する時間デインターリーブ部と、前記時間デインターリーブデータをMIMO分離するMIMO検出部と、前記MIMO検出部によりMIMO分離された複数のデータに対し、前記複数の受信アンテナ間でデインターリーブ処理してキャリアシンボルを生成するデータ偏波間デインターリーブ部と、を備える。
 また、上記課題を解決するため、本発明に係る半導体チップは、複数の送信アンテナにより送信されるOFDM信号を生成する半導体チップであって、前記送信アンテナごとにデータを分配するデータ分配部と、前記データ分配部により分配されたデータをIQ平面へマッピングし、それぞれキャリア変調を施したキャリアシンボルを生成するマッピング部と、複数の前記キャリアシンボルを前記複数の送信アンテナ間でインターリーブ処理した偏波間インターリーブデータを生成する偏波間インターリーブ部と、前記送信アンテナごとに、前記偏波間インターリーブデータをそれぞれ時間方向にインターリーブ処理した時間インターリーブデータを生成する時間インターリーブ部と、前記時間インターリーブデータに対してOFDM信号を生成するOFDM出力処理部と、を備える。
 また、上記課題を解決するため、本発明に係る半導体チップは、複数の受信アンテナにより受信されるOFDM信号を復調する半導体チップであって、前記OFDM信号を復調し、複素ベースバンド信号を生成するOFDM入力処理部と、前記受信アンテナごとに、前記複素ベースバンド信号を時間方向にデインターリーブ処理した時間デインターリーブデータを生成する時間デインターリーブ部と、前記時間デインターリーブデータをMIMO分離するMIMO検出部と、前記MIMO検出部によりMIMO分離された複数のデータに対し、前記複数の受信アンテナ間で所定の規則に従って並べ替えた後、隣り合うデータをIQ平面のI軸座標上に配置されるIデータ及びQ軸座標上に配置されるQデータとしてキャリアシンボルを生成するデータ偏波間デインターリーブ部と、を備える。
 本発明によれば、SDM-MIMO伝送を行うMIMOシステムにおいて偏波間でインターリーブ処理を行うことにより、BER特性を改善することができる。これにより、受信可能エリアの拡大や安定受信化を図ることができる。
本発明の第1の実施形態に係る送信装置の構成を示すブロック図である。 本発明の第1の実施形態に係る受信装置の構成を示すブロック図である。 本発明の第1の実施形態に係る受信装置における雑音分散算出部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における偏波間インターリーブ部の第1の処理例を説明する図である。 本発明の第1の実施形態に係る送信装置における偏波間インターリーブ部の第2の処理例を説明する図である。 本発明の第1の実施形態に係る送信装置における周波数インターリーブ部の構成例を示すブロック図である。 本発明の第1の実施形態に係る送信装置における周波数インターリーブ部のセグメント間インターリーブ部の第1の処理例を説明する図である。 本発明の第1の実施形態に係る送信装置における周波数インターリーブ部のデータローテーション部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における周波数インターリーブ部のデータランダマイズ部の処理を説明する図である。 本発明の第1の実施形態に係る送信装置における周波数インターリーブ部のセグメント間インターリーブ部の第2の処理例を説明する図である。 本発明の第2の実施形態に係る送信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る受信装置の構成を示すブロック図である。 本発明の第2の実施形態に係る送信装置における偏波間インターリーブ部の第1の処理例を説明する図である。 本発明の第2の実施形態に係る送信装置における偏波間インターリーブ部の第2の処理例を説明する図である。 受信レベル差に起因するビット誤り率特性の劣化を示す図である。
 一般に誤り訂正符号は、データが連続的に誤ると訂正が効きにくい。そのため、送信装置ではデータをインターリーブ処理し、受信装置では受信したデータをデインターリーブ処理して元のデータに戻すことで、誤りデータを全体に分散させ、誤り訂正能力を向上させている。日本のデジタル放送方式であるISDB-Tでは、ビットインターリーブ処理、周波数インターリーブ処理、時間インターリーブ処理をそれぞれ行うことで、様々な条件下で最適のパフォーマンスを実現するように設計されている。本発明では、これらのインターリーブに加えて送信アンテナ間のインターリーブ処理を行うことで、送信アンテナ間のレベル差等に起因する誤りデータを送信アンテナ間に分散させ、MIMOシステム全体の伝送特性を改善する。以下、複数アンテナを用いたMIMOの一例として、偏波間の直交性を利用した偏波MIMOを具体例にとり説明する。ただし、本発明は、偏波MIMO伝送のみならず、一般的なSDM-MIMO伝送に対しても有効である。
<第1の実施形態>
 第1の実施形態では、送信アンテナ数が2、受信アンテナ数が2の2×2MIMOを例に説明するが、アンテナ数はこれに限定されるものではない。
[送信装置]
 まず、本発明の第1の実施形態に係る送信装置について説明する。送信装置は、複数の送信アンテナからそれぞれ異なる偏波を用いてOFDM信号を送信する。図1は、本発明の第1の実施形態に係る送信装置の構成を示すブロック図である。図1に示すように、送信装置1は、誤り訂正符号化部11と、ビットインターリーブ部12と、データ分配部(アンテナストリームデマルチプレクサ)13と、2つのマッピング部14(14-1及び14-2)と、偏波間インターリーブ部(MIMOプリコーダ)15と、2つの時間インターリーブ部16(16-1及び16-2)と、2つの周波数インターリーブ部17(17-1及び17-2)と、2つのOFDM出力処理部18(18-1及び18-2)とを備え、送信装置1には2つの送信アンテナ19(19-1及び19-2)が接続される。送信装置1は、1つ又は複数の半導体チップにより構成されてもよい。
 誤り訂正符号化部11は、受信側で伝送誤りを訂正可能とするために、入力される送信信号を誤り訂正符号化し、ビットインターリーブ部12に出力する。誤り訂正は、例えば外符号としてBCH符号を用い、内符号としてLDPC(Low Density Parity Check)符号を用いる。
 ビットインターリーブ部12は、誤り訂正符号の性能を高めるために、誤り訂正符号化部11より出力された送信信号をビット単位でインターリーブし、データ分配部13に出力する。誤り訂正に外符号としてLDPC符号を用いる場合、ビットインターリーブ方法はDVB-C2で用いられている方法などで効果があることが知られている。DVB-C2のビットインターリーブ方法については、ETSI EN 302 769 V1.2.1(p.32)や、http://www.dvb.org/technology/dvbc2/を参照されたい。
 データ分配部13は、ビットインターリーブ部12から入力されるデータを所定数ずつ、マッピング部14-1及びマッピング部14-2に分配する。これにより、送信信号はアンテナ数分に分割される。例えば、1キャリアシンボル分のデータずつ分配する、すなわち奇数番目のキャリアシンボルに該当するビットを送信アンテナ19-1用のマッピング部14-1に出力し、偶数番目のキャリアシンボルに該当するビットを送信アンテナ19-2用のマッピング部14-2に出力する。
 マッピング部14は、データ分配部13から入力されるデータをmビット/キャリアシンボルとしてIQ平面へのマッピングを行い、変調方式に応じたキャリア変調が施されたキャリアシンボルを生成し、偏波間インターリーブ部15に出力する。
 偏波間インターリーブ部15は、マッピング部14-1及び14-2から入力されるキャリアシンボルの順序を、偏波間(送信アンテナ間)で並べ替えて送信アンテナ19ごとにインターリーブ処理されたデータを生成し、時間インターリーブ部16-1及び16-2に出力する。偏波間インターリーブ処理の具体例は後述する。
 時間インターリーブ部16は、偏波間インターリーブ部15から入力されるキャリアシンボルの順序を時間方向に並べ替えてインターリーブ処理されたデータを生成し、周波数インターリーブ部17に出力する。
 周波数インターリーブ部17は、時間インターリーブ部16から入力されるキャリアシンボルの順序を周波数方向に並べ替えてインターリーブ処理されたデータを生成し、OFDM出力処理部18に出力する。例えばISDB-Tで行われている方法でインターリーブ処理を行い、1 OFDMシンボルごとに、周波数方向にインターリーブする。周波数インターリーブ処理の具体例は後述する。
 OFDM出力処理部18は、各周波数インターリーブ部17から入力されるインターリーブ処理されたデータに対して、OFDMフレームを構成し、送信アンテナ19を介してOFDM信号を送信する。OFDM出力処理部18-1は、第1偏波用の送信データについての処理を行い、OFDM出力処理部18-2は、第2偏波用の送信データについての処理を行う。第1偏波及び第2偏波は、水平偏波及び垂直偏波や、右旋円偏波及び左旋円偏波など、2種類の分離可能な偏波とする。各OFDM出力処理部18は、OFDMフレーム構成部181と、IFFT部182と、GI付加部183とを備える。
 OFDMフレーム構成部181は、各周波数インターリーブ部17から入力される信号にパイロット信号(SP信号、CP信号)、制御情報を示すTMCC信号、及び付加情報を示すAC信号を挿入し、全キャリアを1 OFDMシンボルとして、所定数のOFDMシンボルのブロックでOFDMフレームを構成する。
 IFFT部182は、各OFDMフレーム構成部181から入力されるOFDMシンボルに対して、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)処理を施して時間領域の有効シンボル信号を生成する。
 GI付加部183は、各IFFT部182から入力される有効シンボル信号の先頭に、有効シンボル信号の後半部分をコピーしたガードインターバルを挿入し、直交変調処理及びD/A変換を施したOFDM信号を、送信アンテナ19を介して外部に送信する。
 送信アンテナ19は、水平偏波用アンテナ及び垂直偏波用アンテナ、又は右旋円偏波用アンテナ及び左旋円偏波用アンテナである。
[受信装置]
 次に、本発明の第1の実施形態に係る受信装置について説明する。受信装置は、上述した送信装置1から送信されるOFDM信号を、複数の受信アンテナにより受信して復調する。図2は、本発明の第1の実施形態に係る受信装置の構成を示すブロック図である。図2に示すように、受信装置2は、2つのOFDM入力処理部22(22-1及び22-2)と、伝送路応答算出部23と、2つの周波数デインターリーブ部24(24-1及び24-2)と、2つの時間デインターリーブ部25(25-1及び25-2)と、MIMO検出部26と、データ偏波間デインターリーブ部27と、雑音分散算出部28と、雑音分散値偏波間デインターリーブ部29と、2つのLLR(Log Likelihood Ratio:対数尤度比)算出部30(30-1及び30-2)と、データ統合部31と、ビットデインターリーブ部32と、誤り訂正符号復号部33とを備え、受信装置2には2つの受信アンテナ21(21-1及び21-2)が接続される。なお、受信装置2は、1つ又は複数の半導体チップにより構成されてもよい。
 受信アンテナ21は、水平偏波用アンテナ及び垂直偏波用アンテナ、又は右旋円偏波用アンテナ及び左旋円偏波用アンテナである。
 OFDM入力処理部22は、送信装置1から送信されるOFDM信号を、受信アンテナ21を介して受信し、復調する。各OFDM入力処理部22は、GI除去部221と、FFT部222と、パイロット信号抽出部223とを備える。
 GI除去部221は、受信したOFDM信号を直交復調処理してベースバンド信号を生成し、A/D変換によりデジタル信号を生成する。そして、GI除去部221は、ガードインターバルを除去して有効シンボル信号を抽出し、FFT部222に出力する。
 FFT部222は、GI除去部221から入力される有効シンボル信号に対して、FFT(Fast Fourier Transform:高速フーリエ変換)処理を施して複素ベースバンド信号を生成し、パイロット信号抽出部223及び周波数デインターリーブ部24に出力する。
 パイロット信号抽出部223は、FFT部222から入力される複素ベースバンド信号からパイロット信号(SP信号、CP信号)を抽出し、伝送路応答算出部23に出力する。
 伝送路応答算出部23は、パイロット信号抽出部223から入力されるパイロット信号を用いて伝送路応答を算出し、MIMO検出部26に出力する。
 周波数デインターリーブ部24は、OFDM入力処理部22から入力される複素ベースバンド信号に対し、周波数方向にデインターリーブ処理を行う。周波数方向のデインターリーブ処理とは、送信装置1の周波数インターリーブ部17により周波数方向に並べ替えられたデータを、元の順序に戻す処理である。
 時間デインターリーブ部25は、周波数デインターリーブ部24から入力されるデータに対し、時間方向にデインターリーブ処理を行う。時間方向のデインターリーブ処理とは、送信装置1の時間インターリーブ部16により時間方向に並べ替えられたデータを、元の順序に戻す処理である。
 MIMO検出部26は、時間デインターリーブ部25から入力されるベースバンド信号を、伝送路応答算出部23から入力される伝送路応答を用いて、ZF(Zero Forcing)、MMSE(Minimum Mean Squared Error)、BLAST(Bell Laboratories Layered Space-Time)、MLD(Maximum Likelihood Detection)などの既知の手法により、送信装置1から送信される2つの偏波信号の波形等化及びMIMO分離を行い、データ偏波間デインターリーブ部27及び雑音分散算出部28に出力する。
 データ偏波間デインターリーブ部27は、MIMO検出部26から入力されるデータに対し、偏波間(受信アンテナ間)でデインターリーブ処理を行い、LLR算出部30に出力する。偏波間のデインターリーブ処理とは、送信装置1の偏波間インターリーブ部15により偏波間で並べ替えられたデータを、元の順序に戻す処理である。
 雑音分散算出部28は、MIMO検出部26から入力される各偏波信号から平均雑音分散を求め、雑音分散値偏波間デインターリーブ部29に出力する。雑音分散σは、キャリアシンボルが本来あるべきIQ座標上のシンボル点と実際に観測したキャリアシンボルのシンボル点Pとのずれを意味し、例えば変調誤差比を求めて逆数を取ることで得られる。
 図3は、雑音分散算出部28の処理を説明する図である。雑音分散の算出方法は幾つか存在するが、図3に示すように、シンボル点Pの雑音分散を算出する際には、多値変調(図3の例では64QAM)されているデータシンボルから求めるよりも、ACシンボル及び/又はTMCCシンボルから求めるほうが、誤って認識される確率が低い。そこで、雑音分散算出部28は、ACシンボル及び/又はTMCCシンボルを用いて、OFDMキャリアシンボル全体の平均雑音分散を算出するのが好適である。
 伝送路にマルチパスが存在する場合は、各OFDMキャリアで電力が異なるため雑音分散にばらつきが生じる。雑音分散σは、各キャリアシンボルを構成するビット単位の対数尤度比(LLR)を求めるために必要であり、キャリア毎の雑音分散をなるべく正確に算出することがLDPC復号の性能を決める。そこで、伝送路応答から求まるウェイト行列を利用し、帯域全体の平均雑音分散に対して各キャリアで重み付けを行って雑音分散を定める。各キャリアにおけるウェイト行列は、伝送路応答行列Hとして(HH)-1と表せることが知られている。各キャリアのウェイト成分は、この対角成分で表せる。これを全キャリアで正規化し、帯域全体の平均雑音分散に乗算することで重み付けを行う。各キャリアの信号対電力の情報(=C/N)を尤度計算に乗算する復号法については、例えば、中原、「マルチパス伝送路における64QAM-OFDM信号の軟判定復号法の検討」、ITE Technical Report vol.22、no.34、PP1-6、Jun.1998を参照されたい。ウェイト行列の算出等の詳細は、例えば、大鐘・小川、「わかりやすいMIMOシステム技術」、オーム社、p.101を参照されたい。
 雑音分散値偏波間デインターリーブ部29は、雑音分散算出部28から入力される各偏波信号に対応する雑音分散に対し、デインターリーブ処理(送信装置1の偏波間インターリーブ部15と逆の並べ替え処理)を行い、LLR算出部30に出力する。LLRの算出に必要な雑音分散値も同様にデインターリーブ処理することにより、複数アンテナ間の伝送路の違いに起因する異なる雑音分散値をLLRに反映させることができる。その結果、LLR算出部30にてより正確なLLRを算出することができ、誤り訂正符号復号部33での改善効果を発揮することができる。
 LLR算出部30は、データ偏波間デインターリーブ部27から入力されるデインターリーブ処理されたデータと、該データに対応する雑音分散値偏波間デインターリーブ部29から入力される雑音分散σとを用いてLLRを算出し、データ統合部31に出力する。例えば、BPSK変調でのLLRは、観測した値をyとして、2値(x=0,1)それぞれの確率P(=尤度関数)はガウス分布となるため、次式(3)で表される。詳細は、例えば、和田山、「低密度パリティ検査符号とその復号法」、トリケップスを参照されたい。
Figure JPOXMLDOC01-appb-M000001
 データ統合部31は、各LLR算出部30(30-1及び30-2)により算出された各ビットに対応するLLRを統合し(送信装置1のデータ分配部13と逆の処理)、ビットデインターリーブ部32に出力する。
 ビットデインターリーブ部32は、データ統合部31から入力される各ビットに対応するLLRに対し、デインターリーブ処理を行う。このデインターリーブ処理は、送信装置1のビットインターリーブ部12により並べ替えられたデータを、元の順序に戻す処理である。
 誤り訂正符号復号部33は、ビットデインターリーブ部32から入力されるLLRを用いてLDPC復号を行い、さらにBCH復号を行うことで、送信装置1から送信された信号を復号する。
 なお、送信装置1は、時間インターリーブ部16と周波数インターリーブ部17の処理順を逆にして、周波数インターリーブ部17の処理を行った後に、時間インターリーブ部16の処理を行うようにしてもよい。その場合には、受信装置2も同様に、周波数デインターリーブ部24と時間デインターリーブ部25の処理順を逆にして、時間デインターリーブ部25の処理を行った後に、周波数デインターリーブ部24の処理を行う。
 また、送信装置1は、偏波間インターリーブ処理及び周波数インターリーブ処理を同時に行い、その後時間インターリーブ処理を行うようにしてもよい。その場合には、受信装置2も同様に、時間デインターリーブ処理を行った後、偏波間デインターリーブ処理及び周波数デインターリーブ処理を同時に行う。
[偏波間インターリーブ部]
 次に、偏波間インターリーブ部15の処理の詳細について説明する。なお、インターリーブ処理によるデータの並べ替え順は以下の例に限られるものではない。
[偏波間インターリーブ処理の第1の例]
 図4は、偏波間インターリーブ部15の第1のインターリーブ処理例を説明する図である。第1の例では、送信アンテナ数分のOFDMキャリアシンボルごとに、所定の規則に従ってキャリアシンボル単位で並べ替える。OFDMキャリアシンボルのキャリアシンボル数をNとすると、偏波間インターリーブ部15は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力する。第1の例では、偏波間インターリーブ部15は、キャリアシンボルを行方向に1行(p個)ずつ書き込んだ後に、列方向に1列(q個)ずつ読み出す。p×q=2Nである。
 同様に、偏波間インターリーブ部15は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のキャリアシンボルの位置と並べ替え後のキャリアシンボルの位置とを所定の規則に従って対応付けたテーブル(規則テーブル)を予め有してもよい。この場合、偏波間インターリーブ部15は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、計2Nのキャリアシンボルごとに、規則テーブルを参照して並べ替える。
[偏波間インターリーブ処理の第2の例]
 次に、偏波間インターリーブ処理の第2の例について説明する。図5は、偏波間インターリーブ部15の第2のインターリーブ処理例を説明する図である。第1の例では送信アンテナ数分のOFDMキャリアシンボルごとに、所定の規則に従ってキャリアシンボル単位で並べ替えたのに対し、第2の例では送信アンテナ数分のOFDMキャリアシンボルごとに、所定の規則に従って、IQ平面のI軸座標上に配置されるデータ(以下、「Iデータ」と称する)及びIQ平面のQ軸座標上に配置されるデータ(以下、「Qデータ」と称する)単位で並べ替える点が相違する。
 つまり第2の例では、偏波間インターリーブ部15は、キャリアシンボル数をNとすると、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号0~2N-1のIデータ又はQデータ(以下、「IQデータ」と称する)とする。同様に、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号2N~4N-1のIQデータとする。そして、IQデータを行方向に1行(p個)ずつ書き込んだ後に、列方向に1列(2q個)ずつ読み出す。インターリーブ後は、新たなキャリアシンボル(I,Qデータの対)を構成する。p×2q=4Nである。
 同様に、偏波間インターリーブ部15は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のIQデータの位置と並べ替え後のIQデータの位置とを所定の規則に従って対応付けたテーブル(規則テーブル)を予め有してもよい。この場合、偏波間インターリーブ部15は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号0~2N-1のIQデータとする。同様に、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号2N~4N-1のIQデータとする。そして、計4NのIQデータごとに、規則テーブルを参照して並べ替える。
[偏波間インターリーブ処理の第3の例]
 次に、偏波間インターリーブ処理の第3の例について説明する。第3の例では、偏波間インターリーブ部15は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のキャリアシンボルの位置と並べ替え後のキャリアシンボルの位置とをランダムに対応付けたテーブル(不規則テーブル)を予め有する。偏波間インターリーブ部15は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、計2Nのキャリアシンボルごとに、不規則テーブルを参照して並べ替える。
[偏波間インターリーブ処理の第4の例]
 次に、偏波間インターリーブ処理の第4の例について説明する。第3の例では送信アンテナ数分のOFDMキャリアシンボルごとに、キャリアシンボル単位で不規則に並べ替えたのに対し、第4の例では送信アンテナ数分のOFDMキャリアシンボルごとに、IQデータ単位で不規則に並べ替える点が相違する。
 つまり第4の例では、偏波間インターリーブ部15は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のIQデータの位置と並べ替え後のIQデータの位置とをランダムに対応付けたテーブル(不規則テーブル)を予め有する。偏波間インターリーブ部15は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号0~2N-1のIQデータとする。同様に、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号2N~4N-1のIQデータとする。そして、計4NのIQデータごとに、不規則テーブルを参照して並べ替える。インターリーブ後は、新たなキャリアシンボル(I,Qデータの対)を構成する。
 なお、偏波間インターリーブ処理の第3の例及び第4の例では、一度の処理で周期性を排除でき、かつBER特性も良いが、テーブルを有する必要があり、また所定の規則に従って処理を行うことができないため、ハードウェアに実装した場合の負荷が大きくなる。
 なお、上述した偏波間インターリーブ処理の例では、偏波間インターリーブ部15は、送信アンテナ数分のOFDMキャリアシンボルごとにキャリアシンボル単位又はIQデータ単位で並べ替えるが、任意の数のキャリアシンボルごとにキャリアシンボル単位又はIQデータ単位で並べ替えてもよい。
 また、偏波間インターリーブ部15は、上述した第2の例又は第4の例においてキャリアシンボルをIQデータ単位で並べ替える場合には、Iデータ及びQデータの一方のみを並べ替えてもよい。
 一方、データ偏波間デインターリーブ部27は、MIMO検出部26によりMIMO分離されたデータを、偏波間インターリーブ部15と逆方向に並び替えて元の順序に戻すものである。例えば、偏波間インターリーブ部15が上述した第1の例のインターリーブ処理を行う場合には、データ偏波間デインターリーブ部27は、データを行方向に1行(q個)ずつ書き込んだ後に、列方向に1列(p個)ずつ読み出す。また、偏波間インターリーブ部15が上述した第2の例のインターリーブ処理を行う場合には、データ偏波間デインターリーブ部27は、データを行方向に1行(2q個)ずつ書き込んだ後に、列方向に1列(p個)ずつ読み出す。また、偏波間インターリーブ部15が上述したテーブル(規則テーブル又は不規則テーブル)を用いてインターリーブ処理を行う場合には、データ偏波間デインターリーブ部27は、該テーブルの並べ替え前後の位置を入れ換えたテーブルを参照して並べ替える。
 なお、データ偏波間デインターリーブ部27は、偏波間インターリーブ部15が上述した第2の例又は第4の例においてIデータ及びQデータの一方のみを並べ替える場合には、奇数番目のデータ及び偶数番目のデータの一方のみを並べ替える。
 データ偏波間デインターリーブ部27は、偏波間インターリーブ部15が上述した第2の例又は第4の例により偏波間インターリーブ処理を行う場合には、MIMO検出部26によりMIMO分離されたデータに対し、偏波間でデインターリーブ処理した後、隣り合うデータをIQ平面のI軸座標上に配置されるIデータ及びQ軸座標上に配置されるQデータとしてキャリアシンボルを生成することとなる。
 雑音分散値偏波間デインターリーブ部29は、データ偏波間デインターリーブ部27と同様に、雑音分散算出部28から入力される雑音分散を偏波間インターリーブ部15と逆方向に並び替える。
[周波数インターリーブ部]
 次に、周波数インターリーブ部17の処理の詳細について説明する。なお、周波数デインターリーブ部24は、周波数インターリーブ部17と逆方向にデータを並び替えて元の順序に戻すものであるため、説明を省略する。図6は、周波数インターリーブ部17の構成例を示すブロック図である。周波数インターリーブ部17は、セグメント間インターリーブ部171と、データローテーション部172と、データランダマイズ部173とを備える。ただし、偏波間インターリーブ部15が実質的にセグメント間インターリーブ部171の処理も兼ねているため、セグメント間インターリーブ部171は省略してもよい。
[周波数インターリーブ処理の第1の例]
 偏波間インターリーブ部15の偏波間インターリーブ処理が上述した第1又は第3の例である場合の周波数インターリーブ部17の処理を、周波数インターリーブ処理の第1の例として説明する。
 図7は、セグメント間インターリーブ部171の処理を説明する図であり、図7(a)はインターリーブ前のシンボル配置を表し、図7(b)はインターリーブ後のシンボル配置を表す。セグメント間インターリーブ部171は、時間インターリーブ部16から入力されるキャリアシンボルを、1 OFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図7に示す例では、1 OFDMキャリアシンボル内のセグメント数をn(ISDB-T方式では、n=13)とし、1セグメントあたりのキャリアシンボル数を384としている。なお、並び替え順は一例であり、これに限られるものではない。
 図8は、データローテーション部172の処理を説明する図であり、図8(a)はインターリーブ前のシンボル配置を表し、図8(b)はインターリーブ後のシンボル配置を表す。図7と同様に、1セグメントあたりのキャリアシンボル数を384としている。データローテーション部172は、セグメント間インターリーブ部171から入力されるキャリアシンボルに対し、1セグメントごとに、データのローテーションによるインターリーブ処理を行う。データローテーション部172は、k番目セグメント、i番目のデータを、データローテーションによって、k番目セグメント、i’番目に並べ替える。図8に示す例では、i’=(i+k)mod384としている。なお、並べ替え順は一例であり、これに限られるものではない。
 図9は、データランダマイズ部173の処理を説明する図であり、図9(a)はインターリーブ前のシンボル配置を表し、図9(b)はインターリーブ後のシンボル配置を表す。図7,8と同様に、1セグメントあたりのキャリアシンボル数を384としている。データランダマイズ部173は、セグメント内のキャリアシンボル数分の不規則テーブルを予め有し(送信側及び受信側で同じ不規則テーブルとする)、データローテーション部172から入力されるデータに対して、不規則テーブルを参照してセグメント内でランダマイズ処理を行い、周期性を排除する。なお、乱数は一例であり、これに限られるものではない。また、セグメント間インターリーブ部171、データローテーション部172、及びデータランダマイズ部173は、周波数インターリーブ部17-1及び17-2で異なる並び替えを行ってもよい。
[周波数インターリーブ処理の第2の例]
 次に、偏波間インターリーブ部15の偏波間インターリーブ処理が上述した第2又は第4の例である場合の周波数インターリーブ部17の処理を、周波数インターリーブ処理の第2の例として説明する。
 図10は、セグメント間インターリーブ部171の処理を説明する図であり、図10(a)はインターリーブ前のIデータ又はQデータの配置を表し、図10(b)はインターリーブ後のIQデータの配置を表す。セグメント間インターリーブ部171は、時間インターリーブ部16から入力されるIQデータを、1 OFDMキャリアシンボルごとに、セグメント間で周波数方向にインターリーブ処理する。図10に示す例では、1 OFDMシンボル内のセグメント数をn(ISDB-T方式では、n=13)とし、1セグメントあたりのキャリアシンボル数を384(すなわち、IQデータ数は768)としている。セグメント間インターリーブ部171は、キャリアシンボル単位ではなく、IQデータ単位でデータを並び替える。なお、並び替えは一例であり、これに限られるものではない。
 第1の例と同様に、データローテーション部172は、セグメント間インターリーブ部171から入力されるIQデータに対し、1セグメントごとに、データのローテーションによるインターリーブ処理を行い、データランダマイズ部173は、セグメント内のキャリアシンボル数分の不規則テーブルを予め送信側、受信側で有し、データローテーション部172から入力されるキャリアシンボルを、不規則テーブルを参照してセグメント内でランダムに並べ替え、周期性を排除する。
 なお、偏波間インターリーブ処理の第3の例、及び第4の例では、偏波間インターリーブ部15が有する不規則テーブルにより周波数方向の周期性も排除することができるため、周波数インターリーブ部17を省略することも可能である。その場合には受信装置2も同様に、周波数デインターリーブ部24を省略する。
 このように、送信装置1は、偏波間インターリーブ部15により、キャリアシンボルの順序を偏波間で並べ替え、送信アンテナ19ごとにインターリーブ処理されたデータを生成する。また、受信装置2は、データ偏波間デインターリーブ部27及び雑音分散値偏波間デインターリーブ部29により、送信装置1によりインターリーブ処理されたデータを偏波間にデインターリーブ処理する。このため、第1の実施形態の送信装置1及び受信装置2によれば、偏波間に受信レベル差があった場合でも、誤りデータを多く含む片偏波側のデータを分散させることができ、誤り訂正符号の効果を向上させ、BER特性を改善することができるようになる。
 また、送信装置1は、時間インターリーブ処理及び周波数インターリーブ処理の後にデータを複数アンテナ間に分割して偏波間インターリーブ処理を行うのではなく、時間インターリーブ処理及び周波数インターリーブ処理の前にデータを複数アンテナ間に分割して偏波間インターリーブ処理を行っている。一方、受信装置2の処理は、送信装置1の処理を逆方向に処理することと等価であり、信号受信後にOFDM復調処理、周波数デインターリーブ処理、時間デインターリーブ処理、MIMO検出処理と続く。ここで、受信装置2内でターボ等化処理などのように繰り返し復調・復号を行う際には、MIMO検出部26やLLR算出部30-1,30-2に復号結果を入力して繰り返し処理を行う場合がある。この時、繰り返し処理内に時間デインターリーブ部が存在すると、復号結果を入力する際に改めて時間インターリーブ処理が必要になり、回路規模が増大してしまう。そこで本発明では、受信装置2はMIMO検出部26の前に時間デインターリーブ部25を配置しており、送信装置1は偏波間インターリーブ部15の後に時間インターリーブ部16を配置している。したがって、本発明によれば、繰り返し復調・復号処理を行う受信装置2を、回路規模を増大させることなく実現することが可能となる。
<第2の実施形態>
 次に、第2の実施形態として、複数チャンネルを同時に用いて1つのデータストリームを伝送する(以後、バルク伝送と呼ぶ)場合、すなわち、送信装置が複数チャンネルのOFDM信号を各チャンネルあたり複数の送信アンテナを用いて送信し、受信装置が複数チャンネルのOFDM信号を各チャンネルあたり複数の受信アンテナを用いて受信する場合について説明する。第2の実施形態では、チャンネル数が2の場合を例に説明するが、チャンネル数は2に限定されるものではない。
[送信装置]
 図11は、第2の実施形態に係る送信装置3の構成を示すブロック図である。図11に示すように、送信装置3は、誤り訂正符号化部11と、ビットインターリーブ部12と、データ分配部13と、4つのマッピング部14(14-1乃至14-4)と、偏波・チャンネル間インターリーブ部20と、4つの時間インターリーブ部16(16-1乃至16-4)と、4つの周波数インターリーブ部17(17-1乃至17-4)と、第1チャンネル用出力処理部180-1と、第2チャンネル用出力処理部180-2とを備え、送信装置3には4つの送信アンテナ19(19-1乃至19-4)が接続される。なお、送信装置3は、1つ又は複数の半導体チップにより構成されてもよい。
 誤り訂正符号化部11及びビットインターリーブ部12は、2チャンネル分の送信信号について、第1の実施形態と同様の処理を行う。
 データ分配部13は、ビットインターリーブ部12から入力されるデータを所定数ずつ4つのストリームに分割し、マッピング部14-1~14-4に分配する。例えば、1キャリアシンボル分のデータずつ分配する、すなわち奇数番目のキャリアシンボルに該当するビットをマッピング部14-1及び14-3に出力し、偶数番目のキャリアシンボルに該当するビットをマッピング部14-2及び14-4に出力する。
 マッピング部14は、データ分配部13から入力されるデータをmビット/キャリアシンボルとしてIQ平面へのマッピングを行い、変調方式に応じたキャリア変調が施されたキャリアシンボルを生成し、偏波・チャンネル間インターリーブ部20に出力する。
 偏波・チャンネル間インターリーブ部20は、マッピング部14-1~14-4から入力されるキャリアシンボルの順序を、偏波間(送信アンテナ間)及びチャンネル間で並べ替えて送信アンテナ19ごとにインターリーブ処理されたデータを生成し、時間インターリーブ部16-1~16-4に出力する。偏波・チャンネル間インターリーブ部20は、所定数のキャリアシンボルごとに第1チャンネルの第1偏波送信用データ、第1チャンネルの第2偏波送信用データ、第2チャンネルの第1偏波送信用データ、及び第2チャンネルの第2偏波送信用データに分類する。偏波・チャンネル間インターリーブ処理の具体例は後述する。
 時間インターリーブ部16は、偏波・チャンネル間インターリーブ部20から入力されるキャリアシンボルの順序を時間方向に並べ替えてインターリーブ処理されたデータを生成し、周波数インターリーブ部17に出力する。
 周波数インターリーブ部17は、時間インターリーブ部16から入力されるキャリアシンボルの順序を周波数方向に並べ替えてインターリーブ処理されたデータを生成し、OFDM出力処理部18に出力する。例えばISDB-Tで行われている方法でインターリーブ処理を行い、1 OFDMシンボルごとに、周波数方向にインターリーブする。
 OFDM出力処理部18は、周波数インターリーブ部17から入力される各ストリームについて、第1の実施形態と同様にOFDMフレーム構成処理、IFFT処理、及びGI付加処理を行う。そして送信装置3は、送信アンテナ19-1及び19-2から第1チャンネルのOFDM信号を送信し、送信アンテナ19-3及び19-4から第2チャンネルのOFDM信号を送信する。
[受信装置]
 次に、第2の実施形態に係る受信装置について説明する。図12は、本発明の第2の実施形態に係る受信装置の構成を示すブロック図である。図12に示すように、受信装置4は、第1チャンネル用入力処理部220-1と、第2チャンネル用入力処理部220-2と、2つの伝送路応答算出部23(23-1及び23-2)と、4つの周波数デインターリーブ部24(24-1乃至24-4)と、4つの時間デインターリーブ部25(25-1乃至25-4)と、2つのMIMO検出部26(26-1及び26-2)と、データ偏波・チャンネル間デインターリーブ部41と、雑音分散算出部28と、雑音分散値偏波・チャンネル間デインターリーブ部42と、4つのLLR算出部30(30-1乃至30-4)と、データ統合部31と、ビットデインターリーブ部32と、誤り訂正符号復号部33とを備え、受信装置4には4つの受信アンテナ21(21-1乃至21-4)が接続される。なお、受信装置4は、1つ又は複数の半導体チップにより構成されてもよい。
 受信装置4は、受信アンテナ21-1及び21-2により、送信装置3の送信アンテナ19-1及び19-2から送信された第1チャンネルのOFDM信号を受信し、受信アンテナ21-3及び21-4により、送信装置3の送信アンテナ19-3及び19-4から送信された第2チャンネルのOFDM信号を受信する。すなわち、送信装置3及び受信装置4により、チャンネル数分の2×2MIMO伝送を実現する。
 OFDM入力処理部22は、各受信アンテナ21により受信したOFDM信号について、それぞれ第1の実施形態と同様にGI除去処理、FFT処理、及びパイロット信号抽出処理を行う。
 第1チャンネル用入力処理部220-1により処理された第1チャンネルの受信信号について、伝送路応答算出部23-1と、周波数デインターリーブ部24-1及び24-2と、時間デインターリーブ部25-1及び25-2と、MIMO検出部26-1とが、第1の実施形態と同様の処理を行う。また、第2チャンネル用入力処理部220-2により処理された第2チャンネルの受信信号について、伝送路応答算出部23-2と、周波数デインターリーブ部24-3及び24-4と、時間デインターリーブ部25-3及び25-4と、MIMO検出部26-2とが、第1の実施形態と同様の処理を行う。
 データ偏波・チャンネル間デインターリーブ部41は、MIMO検出部26から入力されるデータに対し、偏波間及びチャンネル間でデインターリーブ処理を行い、LLR算出部30に出力する。偏波間及びチャンネル間のデインターリーブ処理とは、送信装置1の偏波・チャンネル間インターリーブ部20により偏波間及びチャンネル間で並べ替えられたデータを、元の順序に戻す処理である。
 雑音分散算出部28は、MIMO検出部26から入力される各偏波信号から平均雑音分散を求め、雑音分散値偏波・チャンネル間デインターリーブ部42に出力する。
 雑音分散値偏波・チャンネル間デインターリーブ部42は、雑音分散算出部28から入力される各偏波信号に対応する雑音分散に対し、波間及びチャンネル間でデインターリーブ処理を行い、LLR算出部30に出力する。LLR算出部30、データ統合部31、ビットデインターリーブ部32、及び誤り訂正符号復号部33は、2チャンネル分の受信信号について、第1の実施形態と同様の処理を行う。
[偏波・チャンネル間インターリーブ部]
 次に、偏波・チャンネル間インターリーブ部20について説明する。第2の実施形態においても、第1の実施形態と同様にインターリーブ処理の第1の例から第4の例について説明する。
[偏波・チャンネル間インターリーブ処理の第1の例]
 図13は、偏波・チャンネル間インターリーブ部20の第1のインターリーブ処理例を説明する図である。第1の例では、送信アンテナ数分のOFDMキャリアシンボルごとに、所定の規則に従ってキャリアシンボル単位で並べ替える。OFDMキャリアシンボルのキャリアシンボル数をNとすると、偏波・チャンネル間インターリーブ部20は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、マッピング部14-3からキャリアシンボル番号2N~3N-1のキャリアシンボルを入力し、マッピング部14-4からキャリアシンボル番号3N~4N-1のキャリアシンボルを入力する。第1の例では、偏波・チャンネル間インターリーブ部20は、キャリアシンボルを行方向に1行(p個)ずつ書き込んだ後に、列方向に1列(2q個)ずつ読み出す。p×2q=4Nである。
 同様に、偏波・チャンネル間インターリーブ部20は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のキャリアシンボルの位置と並べ替え後のキャリアシンボルの位置とを所定の規則に従って対応付けたテーブル(規則テーブル)を予め有してもよい。この場合、偏波・チャンネル間インターリーブ部20は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、マッピング部14-3からキャリアシンボル番号2N~3N-1のキャリアシンボルを入力し、マッピング部14-4からキャリアシンボル番号3N~4N-1のキャリアシンボルを入力し、計4Nのキャリアシンボルごとに、規則テーブルを参照して並べ替える。
[偏波・チャンネル間インターリーブ処理の第2の例]
 次に、偏波・チャンネル間インターリーブ処理の第2の例について説明する。図14は、偏波・チャンネル間インターリーブ部20の第2のインターリーブ処理例を説明する図である。第1の例では送信アンテナ数分のOFDMキャリアシンボルごとに、所定の規則に従ってキャリアシンボル単位で並べ替えたのに対し、第2の例では送信アンテナ数分のOFDMキャリアシンボルごとに、所定の規則に従って、IQ平面のI軸座標上に配置されるIデータ及びIQ平面のQ軸座標上に配置されるQデータ単位で並べ替える点が相違する。
 つまり第2の例では、偏波・チャンネル間インターリーブ部20は、キャリアシンボル数をNとすると、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号0~2N-1のIQデータとし、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号2N~4N-1のIQデータとし、マッピング部14-3からキャリアシンボル番号2N~3N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号4N~6N-1のIQデータとし、マッピング部14-4からキャリアシンボル番号3N~4N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号6N~8N-1のIQデータとする。そして、IQデータを行方向に1行(p個)ずつ書き込んだ後に、列方向に1列(4q個)ずつ読み出す。インターリーブ後は、新たなキャリアシンボル(I,Qデータの対)を構成する。p×4q=8Nである。
 同様に、偏波・チャンネル間インターリーブ部20は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のIQデータの位置と並べ替え後のIQデータの位置とを所定の規則に従って対応付けたテーブル(規則テーブル)を予め有してもよい。この場合、偏波・チャンネル間インターリーブ部20は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号0~2N-1のIQデータとし、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号2N~4N-1のIQデータとし、マッピング部14-3からキャリアシンボル番号2N~3N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号4N~6N-1のIQデータとし、マッピング部14-4からキャリアシンボル番号3N~4N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号6N~8N-1のIQデータとする。そして、計8NのIQデータごとに、規則テーブルを参照して並べ替える。
[偏波・チャンネル間インターリーブ処理の第3の例]
 次に、偏波・チャンネル間インターリーブ処理の第3の例について説明する。第3の例では、偏波・チャンネル間インターリーブ部20は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のキャリアシンボルの位置と並べ替え後のキャリアシンボルの位置とをランダムに対応付けたテーブル(不規則テーブル)を予め有する。そして、偏波・チャンネル間インターリーブ部20は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、マッピング部14-3からキャリアシンボル番号2N~3N-1のキャリアシンボルを入力し、マッピング部14-4からキャリアシンボル番号3N~4N-1のキャリアシンボルを入力し、計4Nのキャリアシンボルごとに、不規則テーブルを参照して並べ替える。
[偏波・チャンネル間インターリーブ処理の第4の例]
 次に、偏波・チャンネル間インターリーブ処理の第4の例について説明する。第3の例では送信アンテナ数分のOFDMキャリアシンボルごとに、キャリアシンボル単位で不規則に並べ替えたのに対し、第4の例では送信アンテナ数分のOFDMキャリアシンボルごとに、IQデータ単位で不規則に並べ替える点が相違する。
 つまり第4の例では、偏波・チャンネル間インターリーブ部20は、送信アンテナ数分のOFDMキャリアシンボルについて、並べ替え前のIQデータの位置と並べ替え後のIQデータの位置とをランダムに対応付けたテーブル(不規則テーブル)を予め有する。偏波・チャンネル間インターリーブ部20は、マッピング部14-1からキャリアシンボル番号0~N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号0~2N-1のIQデータとし、マッピング部14-2からキャリアシンボル番号N~2N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号2N~4N-1のIQデータとし、マッピング部14-3からキャリアシンボル番号2N~3N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号4N~6N-1のIQデータとし、マッピング部14-4からキャリアシンボル番号3N~4N-1のキャリアシンボルを入力し、Iデータ及びQデータに分解してデータ番号6N~8N-1のIQデータとする。そして、計8NのIQデータごとに、不規則テーブルを参照して並べ替える。インターリーブ後は、新たなキャリアシンボル(I,Qデータの対)を構成する。
 なお、上述した偏波間インターリーブ処理の例では、偏波・チャンネル間インターリーブ部20は、送信アンテナ数分のOFDMキャリアシンボルごとにキャリアシンボル単位又はIQデータ単位で並べ替えるが、任意の数のキャリアシンボルごとにキャリアシンボル単位又はIQデータ単位で並べ替えてもよい。
 また、偏波・チャンネル間インターリーブ部20は、上述した第2の例又は第4の例においてキャリアシンボルをIQデータ単位で並べ替える際には、Iデータ及びQデータの一方のみを並べ替えてもよい。
 一方、データ偏波・チャンネル間デインターリーブ部41は、MIMO検出部26によりMIMO分離されたデータを、偏波・チャンネル間インターリーブ部20と逆方向に並び替えて元の順序に戻すものである。例えば、偏波・チャンネル間インターリーブ部20が上述した第1の例のインターリーブ処理を行う場合には、データ偏波・チャンネル間デインターリーブ部41は、データを行方向に1行(2q個)ずつ書き込んだ後に、列方向に1列(p個)ずつ読み出す。また、偏波・チャンネル間インターリーブ部20が上述した第2の例のインターリーブ処理を行う場合には、データ偏波・チャンネル間デインターリーブ部41は、データを行方向に1行(4q個)ずつ書き込んだ後に、列方向に1列(p個)ずつ読み出す。また、偏波・チャンネル間インターリーブ部20が上述したテーブル(規則テーブル又は不規則テーブル)を用いてインターリーブ処理を行う場合には、データ偏波・チャンネル間デインターリーブ部41は、該テーブルの並べ替え前後の位置を入れ換えたテーブルを参照して並べ替える。
 なお、データ偏波・チャンネル間デインターリーブ部41は、偏波・チャンネル間インターリーブ部20が上述した第2の例又は第4の例においてIデータ及びQデータの一方のみを並べ替える場合には、奇数番目のデータ及び偶数番目のデータの一方のみを並べ替える。
 データ偏波・チャンネル間デインターリーブ部41は、偏波・チャンネル間インターリーブ部20が上述した第2の例又は第4の例により偏波・チャンネル間インターリーブ処理を行う場合には、MIMO検出部26によりMIMO分離されたデータに対し、偏波・チャンネル間でデインターリーブ処理した後、隣り合うデータをIQ平面のI軸座標上に配置されるIデータ及びQ軸座標上に配置されるQデータとしてキャリアシンボルを生成することとなる。
 雑音分散値偏波・チャンネル間デインターリーブ部42は、データ偏波・チャンネル間デインターリーブ部41と同様に、雑音分散算出部28から入力される雑音分散を偏波・チャンネル間インターリーブ部20と逆方向に並べ替える。
 このように、送信装置3は、偏波・チャンネル間インターリーブ部20により、複数チャンネル分のキャリアシンボルの順序を偏波間及びチャンネル間で並べ替え、送信アンテナ19ごとにインターリーブ処理されたデータを生成し、複数チャンネルのOFDM信号を送信する。また、受信装置4は、複数チャンネルのOFDM信号を受信し、データ偏波・チャンネル間デインターリーブ部41及び雑音分散値偏波・チャンネル間デインターリーブ部42により、送信装置3によりインターリーブ処理された複数チャンネル分のデータを偏波間及びチャンネル間でデインターリーブ処理する。このため、第2の実施形態の送信装置3及び受信装置4によれば、複数チャンネルを用いたバルク伝送を行う際についても第1の実施形態と同様に、偏波間に受信レベル差があった場合でも、誤りデータを多く含む片偏波側のデータを分散させることができる。更に、片方のチャンネルのみ同一チャンネル干渉が発生した場合でも、誤りデータを多く含む片チャンネル側のデータを分散させることができる。結果、誤り訂正符号の効果を向上させ、BER特性を改善することができるようになる。
 また、受信装置4はMIMO検出部26の前に時間デインターリーブ部25を配置しており、送信装置3は偏波・チャンネル間インターリーブ部20の後に時間インターリーブ部16を配置している。したがって、本発明によれば、繰り返し復調・復号処理を行う受信装置4を、回路規模を増大させることなく実現することが可能となる。
 上述の実施形態は、代表的な例として説明したが、本発明の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 例えば、上述の実施形態では送信装置1の誤り訂正符号化部11が内符号としてLDPC符号を採用する場合について説明したが、内符号としてLDPC符号を採用しない場合には、受信装置2は雑音分散算出部28、雑音分散値偏波間デインターリーブ部29、及びLLR算出部30を備えなくてよい。また、上述の実施形態では本発明による送信装置及び受信装置を2×2のMIMO伝送に適用する場合について説明したが、2×4や4×4のMIMO伝送にも適用することができるのは勿論である。
 このように、本発明は、SDM-MIMO伝送を行うMIMOシステムに有用である。
 1,3   送信装置
 2,4   受信装置
 11    誤り訂正符号化部
 12    ビットインターリーブ部
 13    データ分配部(アンテナストリームデマルチプレクサ)
 14    マッピング部
 15    偏波間インターリーブ部(MIMOプリコーダ)
 16-1,16-2,16-3,16-4 時間インターリーブ部
 17-1,17-2,17-3,17-4 周波数インターリーブ部
 18-1,18-2,18-3,18-4 OFDM出力処理部
 19-1,19-2,19-3,19-4 送信アンテナ
 20    偏波・チャンネル間インターリーブ部
 21-1,21-2,21-3,21-4 受信アンテナ
 22-1,22-2 OFDM入力処理部
 23,23-1,23-2 伝送路応答算出部
 24-1,24-2,24-3,24-4 周波数デインターリーブ部
 25-1,25-2,25-3,25-4 時間デインターリーブ部
 26,26-1,26-2 MIMO検出部
 27    データ偏波間デインターリーブ部
 28    雑音分散算出部
 29    雑音分散値偏波間デインターリーブ部
 30    LLR算出部
 31    データ統合部
 32    ビットデインターリーブ部
 33    誤り訂正符号復号部
 41    データ偏波・チャンネル間デインターリーブ部
 42    雑音分散値偏波・チャンネル間デインターリーブ部
 180-1 第1チャンネル用出力処理部
 180-2 第2チャンネル用出力処理部
 181-1,181-2,181-3,181-4 OFDMフレーム構成部
 182-1,182-2,182-3,182-4 IFFT部
 183-1,183-2,183-3,183-4 GI付加部
 220-1 第1チャンネル用入力処理部
 220-2 第2チャンネル用入力処理部
 221-1,221-2,221-3,221-4 GI除去部
 222-1,222-2,222-3,222-4 FFT部
 223-1,223-2,223-3,223-4 パイロット信号抽出部
 

Claims (10)

  1.  複数の送信アンテナにより送信されるOFDM信号を生成する送信装置であって、
     前記送信アンテナごとにデータを分配するデータ分配部と、
     前記データ分配部により分配されたデータをIQ平面へマッピングし、それぞれキャリア変調を施したキャリアシンボルを生成するマッピング部と、
     複数の前記キャリアシンボルを前記複数の送信アンテナ間でインターリーブ処理した偏波間インターリーブデータを生成する偏波間インターリーブ部と、
     前記送信アンテナごとに、前記偏波間インターリーブデータをそれぞれ時間方向にインターリーブ処理した時間インターリーブデータを生成する時間インターリーブ部と、
     前記時間インターリーブデータに対してOFDM信号を生成するOFDM出力処理部と、
    を備える送信装置。
  2.  前記偏波間インターリーブ部は、並べ替え前後の位置を示すテーブルを参照して前記偏波間インターリーブデータを生成する、請求項1に記載の送信装置。
  3.  前記偏波間インターリーブ部は、複数の前記キャリアシンボルをIQ平面のI軸座標上に配置されるIデータ及びQ軸座標上に配置されるQデータに分解した後、前記複数の送信アンテナ間で所定の規則に従ってIデータ及びQデータ単位で並べ替えて前記偏波間インターリーブデータを生成する、請求項1に記載の送信装置。
  4.  複数の受信アンテナにより受信されるOFDM信号を復調する受信装置であって、
     前記OFDM信号を復調し、複素ベースバンド信号を生成するOFDM入力処理部と、
     前記受信アンテナごとに、前記複素ベースバンド信号を時間方向にデインターリーブ処理した時間デインターリーブデータを生成する時間デインターリーブ部と、
     前記時間デインターリーブデータをMIMO分離するMIMO検出部と、
     前記MIMO検出部によりMIMO分離された複数のデータに対し、前記複数の受信アンテナ間でデインターリーブ処理してキャリアシンボルを生成するデータ偏波間デインターリーブ部と、
    を備える受信装置。
  5.  前記データ偏波間デインターリーブ部は、並べ替え前後の位置を示すテーブルを参照して前記キャリアシンボルを生成する、請求項4に記載の受信装置。
  6.  前記データ偏波間デインターリーブ部は、前記MIMO検出部によりMIMO分離された複数のデータに対し、前記複数の受信アンテナ間で所定の規則に従って並べ替えた後、隣り合うデータをIQ平面のI軸座標上に配置されるIデータ及びQ軸座標上に配置されるQデータとして前記キャリアシンボルを生成する、請求項4に記載の受信装置。
  7.  複数の送信アンテナにより送信されるOFDM信号を生成する半導体チップであって、
     前記送信アンテナごとにデータを分配するデータ分配部と、
     前記データ分配部により分配されたデータをIQ平面へマッピングし、それぞれキャリア変調を施したキャリアシンボルを生成するマッピング部と、
     複数の前記キャリアシンボルを前記複数の送信アンテナ間でインターリーブ処理した偏波間インターリーブデータを生成する偏波間インターリーブ部と、
     前記送信アンテナごとに、前記偏波間インターリーブデータをそれぞれ時間方向にインターリーブ処理した時間インターリーブデータを生成する時間インターリーブ部と、
     前記時間インターリーブデータに対してOFDM信号を生成するOFDM出力処理部と、
    を備える半導体チップ。
  8.  前記偏波間インターリーブ部は、複数の前記キャリアシンボルをIQ平面のI軸座標上に配置されるIデータ及びQ軸座標上に配置されるQデータに分解した後、前記複数の送信アンテナ間で所定の規則に従ってIデータ及びQデータ単位で並べ替えて前記偏波間インターリーブデータを生成する、請求項7に記載の半導体チップ。
  9.  複数の受信アンテナにより受信されるOFDM信号を復調する半導体チップであって、
     前記OFDM信号を復調し、複素ベースバンド信号を生成するOFDM入力処理部と、
     前記受信アンテナごとに、前記複素ベースバンド信号を時間方向にデインターリーブ処理した時間デインターリーブデータを生成する時間デインターリーブ部と、
     前記時間デインターリーブデータをMIMO分離するMIMO検出部と、
     前記MIMO検出部によりMIMO分離された複数のデータに対し、前記複数の受信アンテナ間でデインターリーブ処理してキャリアシンボルを生成するデータ偏波間デインターリーブ部と、
    を備える半導体チップ。
  10.  前記データ偏波間デインターリーブ部は、前記MIMO検出部によりMIMO分離された複数のデータに対し、前記複数の受信アンテナ間で所定の規則に従って並べ替えた後、隣り合うデータをIQ平面のI軸座標上に配置されるIデータ及びQ軸座標上に配置されるQデータとして前記キャリアシンボルを生成する、請求項9に記載の半導体チップ。
PCT/JP2016/000676 2015-02-10 2016-02-09 送信装置、受信装置、及び半導体チップ WO2016129272A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2976191A CA2976191C (en) 2015-02-10 2016-02-09 Transmitter, receiver, and semiconductor chip
US15/549,221 US10771132B2 (en) 2015-02-10 2016-02-09 Transmitter, receiver, and semiconductor chip
KR1020177023307A KR102359983B1 (ko) 2015-02-10 2016-02-09 송신 장치, 수신 장치, 및 반도체 칩

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-024655 2015-02-10
JP2015024655 2015-02-10
JP2015129968A JP6502764B2 (ja) 2015-02-10 2015-06-29 送信装置、受信装置、及び半導体チップ
JP2015-129968 2015-06-29

Publications (1)

Publication Number Publication Date
WO2016129272A1 true WO2016129272A1 (ja) 2016-08-18

Family

ID=56614564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000676 WO2016129272A1 (ja) 2015-02-10 2016-02-09 送信装置、受信装置、及び半導体チップ

Country Status (2)

Country Link
KR (1) KR102359983B1 (ja)
WO (1) WO2016129272A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959443A (zh) * 2017-02-27 2017-07-18 中国人民解放军空军工程大学 一种基于空间差异矩阵重构的低角目标doa估计方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167499A (ja) * 2003-12-01 2005-06-23 Ntt Docomo Inc 送信機及び受信機
WO2008062587A1 (fr) * 2006-11-22 2008-05-29 Fujitsu Limited Système et procédé de communication mimo-ofdm
JP2009278313A (ja) * 2008-05-14 2009-11-26 Nippon Hoso Kyokai <Nhk> Mimo受信装置
WO2013073195A1 (ja) * 2011-11-18 2013-05-23 日本放送協会 送信装置、受信装置、送信方法、及び受信方法
JP2014241475A (ja) * 2013-06-11 2014-12-25 日本放送協会 送信装置、受信装置、及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148405B1 (ko) 2004-07-01 2012-05-21 콸콤 인코포레이티드 개선된 다중 입력 다중 출력 인터리빙 방법 및 인터리버시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005167499A (ja) * 2003-12-01 2005-06-23 Ntt Docomo Inc 送信機及び受信機
WO2008062587A1 (fr) * 2006-11-22 2008-05-29 Fujitsu Limited Système et procédé de communication mimo-ofdm
JP2009278313A (ja) * 2008-05-14 2009-11-26 Nippon Hoso Kyokai <Nhk> Mimo受信装置
WO2013073195A1 (ja) * 2011-11-18 2013-05-23 日本放送協会 送信装置、受信装置、送信方法、及び受信方法
JP2014241475A (ja) * 2013-06-11 2014-12-25 日本放送協会 送信装置、受信装置、及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106959443A (zh) * 2017-02-27 2017-07-18 中国人民解放军空军工程大学 一种基于空间差异矩阵重构的低角目标doa估计方法及装置
CN106959443B (zh) * 2017-02-27 2020-03-27 中国人民解放军空军工程大学 一种基于空间差异矩阵重构的低角目标doa估计方法及装置

Also Published As

Publication number Publication date
KR20170117088A (ko) 2017-10-20
KR102359983B1 (ko) 2022-02-09

Similar Documents

Publication Publication Date Title
JP6502764B2 (ja) 送信装置、受信装置、及び半導体チップ
JP6047101B2 (ja) 送信装置及び受信装置
US20220278694A1 (en) Transmitting apparatus and bit interleaving method thereof
US10355817B2 (en) Transmitting apparatus and interleaving method thereof
US11637655B2 (en) Transmitting apparatus and interleaving method thereof
US11133830B2 (en) Transmitting apparatus and interleaving method thereof
US9748975B2 (en) Transmitting apparatus and interleaving method thereof
US11057056B2 (en) Transmitting apparatus and interleaving method thereof
US11043974B2 (en) Transmitting apparatus and interleaving method thereof
CN110719114A (zh) 传输设备及其交织方法
WO2016129274A1 (ja) 送信装置、受信装置、及び半導体チップ
KR20080105356A (ko) 신호 송수신 방법 및 신호 송수신 장치
US11398841B2 (en) Transmitting apparatus and interleaving method thereof
WO2016129272A1 (ja) 送信装置、受信装置、及び半導体チップ
KR20080106135A (ko) 신호 송수신 방법 및 신호 송수신 장치
KR20080106134A (ko) 신호 송수신 방법 및 신호 송수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549221

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2976191

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177023307

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16748917

Country of ref document: EP

Kind code of ref document: A1