WO2013073160A1 - エッチング終了検出方法及び装置 - Google Patents

エッチング終了検出方法及び装置 Download PDF

Info

Publication number
WO2013073160A1
WO2013073160A1 PCT/JP2012/007255 JP2012007255W WO2013073160A1 WO 2013073160 A1 WO2013073160 A1 WO 2013073160A1 JP 2012007255 W JP2012007255 W JP 2012007255W WO 2013073160 A1 WO2013073160 A1 WO 2013073160A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
etching end
end detection
electrode
layer
Prior art date
Application number
PCT/JP2012/007255
Other languages
English (en)
French (fr)
Inventor
浩 冨澤
卓也 古市
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to EP12850303.4A priority Critical patent/EP2680298A1/en
Priority to CN2012800182403A priority patent/CN103477421A/zh
Priority to US14/110,128 priority patent/US20140131707A1/en
Publication of WO2013073160A1 publication Critical patent/WO2013073160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00563Avoid or control over-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0235Accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0128Processes for removing material
    • B81C2201/013Etching
    • B81C2201/0132Dry etching, i.e. plasma etching, barrel etching, reactive ion etching [RIE], sputter etching or ion milling

Definitions

  • the present invention relates to an etching end detection method and apparatus for etching an annular opening reaching the insulating layer in the silicon layer in an SOI substrate in which a silicon layer is disposed on the insulating layer.
  • the movable electrode and the fixed electrode are formed on an SOI substrate.
  • patterning is performed on the SOI substrate surface so as to provide a plurality of grooves, for example, with a resist corresponding to the movable electrode and the fixed electrode, and then the silicon layer is dry etched.
  • the etching process at this time is performed by calculating the processing time until the insulating layer under the silicon layer is exposed in advance, and measuring the depth with a laser microscope or the like to determine whether the silicon layer has been removed up to the insulating layer. There is a way to do it.
  • the intrinsic plasma emission spectrum generated by the reaction product of the etching gas and silicon is monitored, and when the silicon layer is etched away and the intensity of the plasma emission spectrum falls below a predetermined value, the etching is judged to be completed. There is a way to do it.
  • an impurity layer is formed at the same depth as the required groove depth below the surface of the semiconductor substrate made of silicon, a mask is formed on the semiconductor substrate, and grooves are formed by ion plasma etching.
  • a method for manufacturing a semiconductor device in which electrical resistance between both sides across a groove is measured with a measuring needle, and etching is stopped when the resistance rapidly increases (see, for example, Patent Document 2).
  • a semiconductor thin film made of low-resistance n + amorphous silicon is formed on a high-resistance semiconductor layer made of polysilicon, for example, on the surface of the insulating substrate, and a conductive resist pattern is formed on the semiconductor thin film to reduce the thickness.
  • Patent Document 3 it is necessary to form a low-resistance semiconductor thin film on a high-resistance semiconductor layer, and to form a conductive mask on the semiconductor thin film, and to remove the mask after completion of etching.
  • a first embodiment of an etching completion detection method is an annular structure that reaches the insulating layer on the silicon layer in an SOI substrate in which a conductive silicon layer is disposed on the insulating layer.
  • This is an etching end detection method when etching an opening.
  • the first electrode portion is disposed on the surface of the island-shaped region surrounded by the annular opening formed by the etching, and the second electrode portion is disposed in a region outside the island-shaped region to complete the etching.
  • a detection unit is configured, the electrical resistance between the first electrode unit and the second electrode unit is measured, and it is determined that the etching end position has been reached when the electrical resistance exceeds a preset threshold value.
  • the surface of the island region surrounded by the annular opening formed by etching and the outside of the island region are The electrical resistance between the two electrode parts is measured by disposing the first and second electrode parts on the surface.
  • the etching depth of the annular opening forming the island-shaped region does not reach the insulating region, the island-shaped region and the outer side facing each other across the annular opening are maintained connected by the silicon layer. Therefore, the electrical resistance between the first and second electrode parts maintains a low resistance state.
  • the first and second electrodes are in a state of being connected via the insulating layer.
  • the electrical resistance between the parts exceeds a preset threshold value and a high resistance state is obtained. Thereby, it can be detected that the etching end position has been reached.
  • the second form of the etching end detection method according to the present invention is to etch the annular opening while measuring the electric resistance between the first electrode part and the second electrode part, and the electric resistance is When the preset threshold value is exceeded, it is determined that the etching end position has been reached.
  • the etching can be finished when the etching end position is reached, and the annular opening reaching the insulating layer is accurately formed. can do.
  • finish detection method which concerns on this invention WHEREIN:
  • annular opening part is formed with the circular groove
  • the annular opening is formed of a circular or polygonal annular groove, when the etching depth of the annular groove reaches the etching end position, the annular groove causes Are reliably insulated without being electrically connected. Therefore, the etching end position can be accurately detected.
  • finish detection method based on this invention WHEREIN:
  • finish detection part is formed in the area
  • the etching completion detection unit is formed on an SOI substrate on which the processing target site is formed. According to the fifth embodiment, since the etching end detector is formed on the SOI substrate on which the processing target portion is formed, it can be accurately detected that the opening of the processing target portion has reached the etching end position.
  • the etching end detecting portion is formed on an SOI substrate different from the SOI substrate on which the processing target portion is formed.
  • the etching end detection unit cannot be formed on the SOI substrate on which the processing target site is formed, or when a plurality of SOI substrates on which the processing target site is formed are simultaneously etched, one SOI is provided. It is only necessary to form the etching end detection portion on the substrate, and the manufacturing cost of the SOI substrate can be reduced.
  • the annular opening is set to have a width equal to the width of the opening of the processing target site.
  • the width of the annular opening of the etching end detection unit is set to be equal to the width of the opening of the processing target portion. It is possible to accurately match the etching end timing.
  • the etching completion detection unit is composed of a plurality of etching completion detection units that have different etching rates. According to the eighth aspect, since the end of etching can be detected stepwise by a plurality of etching end detection units, the end of etching can be detected more accurately.
  • the first aspect of the etching completion detection device is an etching process for etching an opening reaching the insulating layer in the silicon layer in an SOI substrate in which a conductive silicon layer is disposed on the insulating layer. It is an end detection device.
  • the etching completion detection device includes an annular opening reaching the insulating layer formed by the etching, an island region surrounded by the annular opening, and a first electrode portion disposed on the surface of the island region. And an etching end detecting portion having a second electrode portion arranged outside the island-like region. Further, the etching end detection device measures the electrical resistance between the first electrode portion and the second electrode portion with a resistance measuring instrument, and when the electrical resistance exceeds a preset threshold, An etching end determination unit that determines that the value has reached is provided.
  • the first electrode portion is disposed in the island-shaped region surrounded by the annular opening reaching the insulating layer by etching
  • the second electrode portion is disposed in the outer region, and between the two electrode portions. Since the electrical resistance is measured, when the etching progresses and the etching depth of the annular opening reaches the insulating layer, the electrical resistance exceeds a preset threshold, and the end of etching is accurately detected. be able to.
  • FIGS. 2A and 2B are diagrams illustrating an etching end detection unit in FIG. 1, in which FIG. 1A is a plan view, and FIG. It is explanatory drawing which shows the electrode formation method of an etching completion
  • FIG. 1 is a plan view showing an SOI (Silicon On Insulator) substrate that can be applied to the etching method according to the present invention.
  • reference numeral 1 denotes an SOI substrate.
  • a processing target region 2 on which various vibrators such as a pressure sensor, an acceleration sensor, an angular velocity sensor, and an attitude sensor for MEMS (Micro Electro Mechanical System) application are formed.
  • various vibrators such as a pressure sensor, an acceleration sensor, an angular velocity sensor, and an attitude sensor for MEMS (Micro Electro Mechanical System) application are formed.
  • part 2 is formed.
  • an etching stop layer 6 made of an insulating layer is formed on a base material 5, and a layer 7 to be etched is formed on the etching stop layer 6.
  • the main material of the substrate 5 and the layer 7 to be etched is silicon, and has a low resistance characteristic with a specific resistance of about 0.01 to 0.04 [ ⁇ ⁇ cm].
  • the etching stop layer 6 is an insulating film usually formed of an oxide film and has high resistance characteristics.
  • an opening 2a composed of a groove or a space reaching at least the etching stop layer 6 shown in FIG. 3 is formed by dry etching.
  • dry etching reactive ion etching (RIE) using capacitively coupled plasma (CCP), inductively coupled plasma (ICP), electron cyclotron resonance (ECR) plasma, or the like. Reactive (Ion) Etching) can be applied.
  • the etching end detection unit 3 is formed with an island region 12 surrounded by the annular opening 11 reaching the etching stop layer 6 by the dry etching described above.
  • the annular opening 11 is formed of a rectangular frame-shaped annular groove as viewed from the plane.
  • the width of the annular opening 11 is preferably set to be equal to the width of the opening 2a of the processing target site.
  • a first electrode portion 13 formed in a square shape similar to the annular opening 11 is formed at the center of the surface of the island region 12.
  • aluminum or an aluminum alloy that is not etched by dry etching is preferably used for the first electrode portion 13.
  • an insulating mask 14 for etching the annular opening 11 is formed around the first electrode portion 13.
  • a second electrode portion 16 having the same shape as the first electrode portion 13 described above is formed on the surface of the outer region 15 across the annular opening 11 of the island region 12.
  • the second electrode portion 16 is preferably made of, for example, aluminum or an aluminum alloy that is not etched by dry etching like the first electrode portion described above.
  • a mask 17 for etching the annular opening 11 is formed around the second electrode portion 16 and outside the annular opening 11.
  • the first electrode portion 13 and the second electrode portion 16 are made of aluminum or aluminum alloy on the upper surface of the layer 7 to be etched. Then, a mask layer 18 serving as an insulating layer is formed so as to cover the first electrode portion 13 and the second electrode portion 16. Next, as shown in FIG. 3B, the mask layer 18 is etched to expose the first electrode portion 13 and the second electrode portion 16, and the annular opening 19 is located at a position facing the annular opening 11. And masks 14 and 17 are formed.
  • the mask 17 also has an opening 2 a formed in the processing target site 2, and a portion facing the opening 2 a is opened in the same manner as the etching end detection unit 3.
  • a resistance measuring instrument such as a multi-tester is provided between the first electrode portion 13 and the second electrode portion 16. 20 is connected, and an etching end determination unit 21 is connected to the resistance measurement value output side of the resistance measuring instrument 20.
  • the electrical resistance R measured by the resistance measuring instrument 20 is such that the specific resistance ⁇ of the etched layer 7 is 0.01 to 0.04 [ ⁇ ⁇ cm]. R ⁇ 1 k ⁇ .
  • a relatively thick layer 7 to be etched exists between the annular opening 11 and the etching stopper layer 6 even when the etching depth is close to the etching stopper layer 6.
  • the electrical resistance R measured by the resistance measuring device 20 maintains a state of R ⁇ 1 k ⁇ .
  • the electrical resistance R measured by the resistance measuring device 20 increases rapidly as shown in FIG.
  • the specific resistance ⁇ of the layer 7 to be etched is 0.01 to 0.04 [ ⁇ ⁇ cm] due to the high resistance value of the layer 6, the measured electric resistance R reaches R> 1 G ⁇ . Increase rapidly.
  • the etching end determination unit 21 reaches the etching end position where the etching depth of the annular opening 11 reaches the etching stop layer 6 And the dry etching by the dry etching apparatus is terminated.
  • the etching is terminated with a delay of a relatively short predetermined delay time after the measured electric resistance R exceeds the threshold value Rth. Etching can be terminated in a state where the annular opening 11 has reached the etching stop layer 6 with certainty.
  • the etching end detection unit 3 detects the end of etching by matching the width of the annular opening 11 of the etching end detection unit 3 with the width of the opening 2a of the processing target site 2 to be actually etched. At that time, the etching depth reaches the etching stop layer 6 also in the opening 2a of the processing target portion 2, and accurate etching end management can be performed.
  • the electrical resistance R between the first electrode portion 13 and the second electrode portion 16 measured by the resistance measuring instrument 20 after starting dry etching exceeds the threshold value Rth, By completing the dry etching, it is possible to accurately detect that the annular opening 11 has reached the etching stop layer 6.
  • the annular opening 11 facing both the electrode portions 13 and 16 is formed.
  • the electric resistance R increases rapidly. Therefore, the etching end timing is reached when the annular opening 11 reaches the etching stop layer 6 in substantially the entire length of the annular opening 11 facing the first electrode portion 13 and the second electrode portion 16. Therefore, even when the etching rate in the circumferential direction of the annular opening 11 is different, the end of etching can be accurately detected.
  • the etching end detection unit 3 is independent from the processing target portion 2 and the first electrode unit 13 and the second electrode unit 16 are formed exclusively for the etching end detection unit 3, the etching end is completed. There is no need to remove the first electrode portion 13 and the second electrode portion 16 later, and the electrode removal step can be omitted.
  • the present invention is not limited to the above, and when the annular opening 11 has reached the etching stop layer 6 reliably, the electric resistance R becomes saturated as shown in FIG. Etching may be terminated by detecting a saturated state.
  • the dry etching time at this time is preferably set by measuring the etching time from the etching start time to the etching end time when dry etching is performed while measuring the electrical resistance R.
  • the first electrode portion 13 formed in the island region 12 and the annular opening portion in the island region 12 Therefore, it is not necessary to form the second electrode portion 16 formed in the region 15 facing through 11, and the entire surface can be covered with a mask. Then, whether or not the annular opening 11 of the SOI substrate 1 etched for the set etching time has reached the etching stop layer 6 is determined by measuring the electric resistance R between the island region 12 and the region 15 outside thereof as a resistance measuring device. Confirm by measuring at 20.
  • the outer region 15 is removed via the island-like region 12 and the annular opening 11.
  • the resistance 22 is used to measure the electrical resistance R by contacting the probes 22 and 23, which are electrode pieces wider than the measuring needle or the measuring needle, on the surface to be the electrode part.
  • the annular opening 11 reliably reaches the etching stop layer 6, and the opening 2 a stops etching even at the processing target portion 2. It can be determined that the etching end position reaching the layer 6 has been reached.
  • the annular opening 11 of the etching end detection unit 3 has a rectangular frame shape as viewed from the plane.
  • the present invention is not limited to this, and the annular opening 11 may be triangular or
  • the polygon can be a pentagon or more polygon, or a circle.
  • finish detection part 3 was formed in the SOI substrate 1 in which the process target site
  • the etching end detection unit 3 may be formed on an SOI substrate 30 different from the SOI substrate 1 on which the processing target site 2 is formed.
  • the present invention is not limited to the above configuration, and a plurality of, for example, two etching end detection units 3A and 3B having different opening widths of the annular opening 11 are prepared as shown in FIG. Then, the etching end timing may be detected stepwise by measuring the electrical resistance R between the first electrode portion 13 and the second electrode portion 16 of each etching end detection portion 3. In this case, the etching end timing can be detected stepwise by decreasing the etching rate as the width of the annular opening 11 becomes narrower from the etching end detecting part 3 having a larger width of the annular opening 11. .
  • an etching end detection method and apparatus capable of accurately detecting the end of etching when a groove formed by etching in the silicon layer of the SOI substrate reaches the insulating layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Micromachines (AREA)
  • Drying Of Semiconductors (AREA)
  • Pressure Sensors (AREA)

Abstract

 SOI基板のエッチング終了位置を開口幅にかかわらず正確に検出するエッチング終了検出方法を提供する。絶縁層上にシリコン層が配置されたSOI基板における前記シリコン層に前記絶縁層に達する環状の開口部をエッチングする際のエッチング終了検出方法であって、前記エッチングによって形成される開口部で囲まれる島状領域の表面に第1の電極層を形成するとともに、縞状領域の外側の領域に第2の電極層を形成してエッチング終了検出領域を形成し、前記第1の電極層及び前記第2の電極層間の電気抵抗を計測し、当該電気抵抗が予め設定した閾値を超えたときにエッチング終了位置に達したと判定する。

Description

エッチング終了検出方法及び装置
 本発明は、絶縁層上にシリコン層が配置されたSOI基板における前記シリコン層に前記絶縁層に達する環状の開口部をエッチングする際のエッチング終了検出方法及び装置に関する。
 加速度を容量変化として検出する可動電極及び固定電極が形成されている容量式加速度センサでは、SOI基板に可動電極及び固定電極を形成するようにしている。
 この容量式加速度センサを製作するには、SOI基板表面に可動電極及び固定電極に対応した形状に、例えばレジストなどで複数の溝を設けるようにパターニングしてからシリコン層のドライエッチングを行う。この際のエッチング処理方法は、シリコン層の下側の絶縁層が露出するまでの処理時間を予め算出して処理を行い、絶縁層までシリコン層が除去されているかレーザー顕微鏡などで深さ測定を実施する方法がある。またはエッチングガスとシリコンとの反応生成物が出す固有のプラズマ発光スペクトルをモニタリングし、シリコン層がエッチングして無くなることにより、そのプラズマ発光スペクトルの強度が所定値以下となると、エッチングが終了したと判断する方法がある。
 しかしながら、加工対象部位の構造が微細化すると、レーザー顕微鏡などで深さを測定することが困難になるとともに、プラズマが発生する固有の波長の光量も小さくなるため、エッチングの終了を正確に検出することができない。
 このため、従来、マスクを介して被エッチング層に対して加工対象部位へのエッチングと同一又は等価な条件のもとでエッチングを行うとき、開口部に対応する被エッチング層の部分がエッチング停止材に達するまで除去され、エッチング停止材に沿ってサイドエッチングが生じることにより、検出用部分に対応する被エッチング層の部分がエッチング停止材から離脱することにより、エッチングの終了を検出するようにしたエッチングの終了検出方法が提案されている(例えば、特許文献1参照)。
 また、シリコンからなる半導体基板の表面下に所要溝深さと同じ深さに不純物層を形成し、この半導体基板上にマスクを形成し、イオンプラズマエッチングにより溝を形成していき、上記半導体基板の溝を跨いだ両側間の電気抵抗を測定針で測定し、抵抗が急増した時点でエッチングを停止する半導体装置の製造方法が提案されている(例えば、特許文献2参照)。
 さらに、絶縁基板の表面の高抵抗の例えばポリシリコンでなる半導体層上に、低抵抗のn+アモルファスシリコンでなる半導体薄膜が形成され、この半導体薄膜上に導電性のレジストパターンを形成して低抵抗薄膜のみをエッチングでカットし、島状のパターンを残す場合、所望パターン近辺に低抵抗領域の残渣を電気抵抗の測定で検出できるような対向する2個の島状のパターンからなる検査用領域を形成するようにしたエッチング終点制御パターンが提案されている(例えば、特許文献3参照)。
特開2006-150563号公報 特開昭60-167332号公報 特開昭62-256438号公報
 ところで、上記特許文献1に記載された従来例にあっては、SOI基板のエッチング時にシリコン層から絶縁層に達したときのエッチングの終了を物理的に検出することができる。すなわち、シリコン層のエッチングが終了してからエッチング停止材に沿って生じるサイドエッチングによって、検出用部分に対応する被エッチング層の部分がエッチング停止材から離脱することを検出する。しかしながら、この特許文献1に記載の従来例にあっては、エッチングがエッチング停止材に達した後にエッチング停止材に沿って生じるサイドエッチングを利用して、検出用部分に対応する被エッチング層の部分が離脱することを検出しているので、エッチングの終了を検出するタイミングが遅れることになるという未解決の課題がある。
 これに対して、特許文献2及び3に記載された従来例では、SOI基板ではない半導体基板についてのエッチング終了を抵抗変化によって検出するようにしている。そして、特許文献2に記載された従来例では、不純物層のエッチングによって形成する溝の両側の不純物層にそれぞれマスクを通して測定針を当てるようにしているので、測定針の当て方によって測定結果が左右されるとともに、電気抵抗を検出する範囲が狭く、比較的長い範囲でエッチングが終了しているか否かを判定することができないという未解決の課題がある。
 また、特許文献3では、高抵抗の半導体層上に低抵抗の半導体薄膜を形成し、この半導体薄膜の上に導電性のマスクを形成する必要があるとともに、エッチング終了後にマスクを除去する工程が必要であり、SOI基板のようにエッチング用のマスクとして絶縁性のマスクを使用する場合には適用することができないという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、SOI基板のシリコン層にエッチングによって形成する溝が絶縁層に達したエッチング終了時を正確に検出することができるエッチング終了検出方法及び装置を提供することを目的としている。
 上記目的を達成するために、本発明に係るエッチング終了検出方法の第1の形態は、絶縁層上に導電性のシリコン層が配置されたSOI基板における前記シリコン層に前記絶縁層に達する環状の開口部をエッチングする際のエッチング終了検出方法である。そして、前記エッチングによって形成される環状開口部で囲まれる島状領域の表面に第1の電極部を配置するとともに、前記島状領域の外側の領域に第2の電極部を配置してエッチング終了検出部を構成し、前記第1の電極部及び前記第2の電極部間の電気抵抗を計測し、当該電気抵抗が予め設定した閾値を超えたときにエッチング終了位置に達したと判定する。
 この第1の形態では、SOI基板のシリコン層への絶縁層に達する溝をエッチングによって形成する際に、エッチングによって形成される環状開口部で囲まれる島状領域の表面と島状領域の外側とに第1及び第2の電極部を配置することにより、両電極部間の電気抵抗を計測する。このとき、島状領域を形成する環状開口部のエッチング深さが絶縁領域に達していないときには、島状領域と環状開口部を挟んで対向する外側とがシリコン層で接続された状態を維持するので、第1及び第2の電極部間の電気抵抗が低抵抗状態を維持する。その後、エッチングが進んで環状開口部のエッチング深さが絶縁層に達すると、第1及び第2の電極部間が絶縁層を介して接続される状態となるので、第1及び第2の電極部間の電気抵抗が予め設定した閾値を越えて高抵抗状態となる。これにより、エッチング終了位置に達したことを検出することができる。
 また、本発明に係るエッチング終了検出方法の第2の形態は、前記第1の電極部及び第2の電極部間の電気抵抗を計測しながら前記環状開口部のエッチングを行い、当該電気抵抗が予め設定した閾値を超えたときにエッチング終了位置に達したと判定する。
 この第2の形態では、電気抵抗を計測しながら環状開口部のエッチングを行うので、エッチング終了位置に達したときに、エッチングを終了することができ、絶縁層に達する環状開口部を正確に形成することができる。
 また、本発明に係るエッチング終了検出方法の第3の形態は、前記環状開口部が円形又は多角形の環状溝で形成されている。
 第3の形態によると、環状開口部が円形又は多角形の環状溝で形成されているので、環状溝のエッチング深さがエッチング終了位置に達したとき、環状溝によって島状領域とその外側とが電気的に接続されることなく確実に絶縁される。したがって、エッチング終了位置を正確に検出することができる。
 また、本発明に係るエッチング終了検出方法の第4の態様は、前記エッチング終了検出部が、同時にエッチングされる加工対象部位とは異なる領域に形成されている。
 この第4の態様によると、加工対象部位に環状ではない開口部が形成されている場合でも、エッチング終了検出部で加工対象部位の開口部がエッチング終了位置に達したことを検出することができる。
 また、本発明に係るエッチング終了検出方法の第5の形態は、前記エッチング終了検出部が、前記加工対象部位を形成したSOI基板に形成されている。
 この第5の形態によると、エッチング終了検出部が加工対象部位を形成したSOI基板に形成されているので、加工対象部位の開口がエッチング終了位置に達したことを正確に検出することができる。
 また、本発明に係るエッチング終了位置検出方法の第6の形態は、前記エッチング終了検出部が、前記加工対象部位を形成したSOI基板とは異なるSOI基板に形成されている。
 この第6の形態によると、加工対象部位を形成したSOI基板にエッチング終了検出部を形成することができない場合や、加工対象部位を形成した複数のSOI基板を同時にエッチングする場合に、1つのSOI基板にエッチング終了検出部を形成するだけで済み、SOI基板の製作コストを低減することができる。
 また、本発明に係るエッチング終了検出方法の第7の形態は、前記環状開口部が、加工対象部位の開口部の幅と等しい幅に設定されている。
 この第7の形態によると、エッチング終了検出部の環状開口部の幅が加工対象部位の開口部の幅と等しく設定されるので、環状開口部のエッチング終了タイミングを、加工対象部位における開口部のエッチング終了タイミングに正確に合わせることができる。
 また、本発明に係るエッチング終了検出方法の第8の態様は、前記エッチング終了検出部が、エッチング速度が異なるようにした複数のエッチング終了検出部で構成されている。
 この第8の態様によると、複数のエッチング終了検出部で段階的にエッチングの終了を検出することができるので、エッチングの終了をより正確に検出することができる。
 また、本発明に係るエッチング終了検出装置の第1の態様は、絶縁層上に導電性のシリコン層が配置されたSOI基板における前記シリコン層に前記絶縁層に達する開口部をエッチングする際のエッチング終了検出装置である。このエッチング終了検出装置は、前記エッチングによって形成される前記絶縁層に達する環状開口部と、該環状開口部で囲まれる島状領域と、該島状領域の表面に配置した第1の電極部と、前記島状領域の外側の領域配置した第2の電極部とを有するエッチング終了検出部を備えている。また、エッチング終了検出装置は、前記第1の電極部及び前記第2の電極部間の電気抵抗を抵抗測定器で測定して当該電気抵抗が予め設定した閾値を超えたときにエッチング終了位置に達したと判定するエッチング終了判定部を備えている。
 本発明によれば、エッチングによって絶縁層に達する環状開口部で囲まれる島状領域に第1の電極部を配置し、その外側の領域に第2の電極部を配置し、両電極部間の電気抵抗を計測するようにしたので、エッチングが進んで環状開口部のエッチング深さが絶縁層に達するときに、電気抵抗が予め設定した閾値を越えることになり、エッチングの終了を正確に検出することができる。
本発明に係るエッチング終了検出方法に適用し得るSOI基板を示す平面図である。 図1のエッチング終了検出部を示す図であって、(a)は平面図、(b)は(a)のA-A線断面図である。 エッチング終了検出部の電極形成方法を示す説明図である。 エッチング終了検出方法を示す説明図である。 エッチング時の抵抗変化を示す図である。 エッチング終了検出方法の他の例を示す説明図である。 エッチング終了検出部の他の例を示す説明図である。 エッチング終了検出部のさらに他の例を示す説明図である。
 以下、本発明の実施の形態を図面について説明する。
 図1は本発明に係るエッチング方法に適用し得るSOI(Silicon On Insulator)基板を示す平面図である。
 図中、1はSOI基板であって、このSOI基板1には、MEMS(Micro Electro Mechanical System)応用の圧力センサ、加速度センサ、角速度センサ、姿勢センサ等の各種振動子を形成する加工対象部位2と、この加工対象部位2とは離間して形成されたエッチング終了検出部3とが形成されている。
 このSOI基板1は、図2(b)に示すように、基材5上に絶縁層でなるエッチング停止層6が形成され、このエッチング停止層6上に被エッチング層7が形成されている。ここで、基材5及び被エッチング層7の主材料はシリコンであり比抵抗が0.01~0.04〔Ω・cm〕程度の低抵抗特性を有する。また、エッチング停止層6は通常は酸化膜で形成される絶縁膜であり、高抵抗特性を有する。
 加工対象部位2には、少なくとも図3に示すエッチング停止層6に達する溝や空間でなる開口部2aがドライエッチングによって形成される。ここで、ドライエッチングとしては容量結合プラズマ(CCP:CapacitivelyCoupled Plasma)、誘導結合プラズマ(ICP:Inductive Coupled Plasma)、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)プラズマ等を使用した反応性イオンエッチング(RIE:Reactive Ion Etching)を適用することができる。
 エッチング終了検出部3は、図2に拡大図示するように、上述したドライエッチングによってエッチング停止層6に達する環状開口部11によって囲まれる島状領域12が形成されている。ここで、環状開口部11は平面からみて方形枠状の環状溝で構成されている。また、環状開口部11の幅は加工対象部位の開口部2aの幅と等しく設定することが好ましい。この島状領域12の表面の中央部に例えば環状開口部11と相似形の方形に形成された第1の電極部13が形成されている。この第1の電極部13は、ドライエッチングによってエッチングされない例えばアルミニウム、アルミニウム合金を適用することが好ましい。また、第1の電極部13の周りには環状開口部11をエッチングする際の絶縁性のマスク14が形成されている。
 また、島状領域12の環状開口部11を挟んで外側の領域15の表面には、前述した第1の電極部13と同一形状の第2の電極部16が形成されている。この第2の電極部16も上述した第1の電極部と同様にドライエッチングによってエッチングされない例えばアルミニウム、アルミニウム合金を適用することが好ましい。また、第2の電極部16の周り及び環状開口部11の外側に環状開口部11をエッチングする際のマスク17が形成されている。
 このエッチング終了検出部3を形成するには、図3(a)に示すように、被エッチング層7の上面に、先ず、第1の電極部13及び第2の電極部16をアルミニウム、アルミニウム合金を蒸着又はスパッタリングして形成し、次いで、第1の電極部13及び第2の電極部16を覆うように絶縁層となるマスク層18を形成する。次いで、図3(b)に示すように、マスク層18をエッチングして第1の電極部13及び第2の電極部16を露出させると共に、環状開口部11に対向する位置に環状開口部19を形成してマスク14及び17を形成する。
 なお、マスク17は、加工対象部位2に形成する開口部2aについてもこの開口部2aに対向する部分をエッチング終了検出部3と同様に開口している。
 そして、上記構成を有するSOI基板1をドライエッチングするには、先ず、図4(a)に示すように、第1の電極部13及び第2の電極部16間にマルチテスタ等の抵抗測定器20を接続し、この抵抗測定器20の抵抗測定値出力側にエッチング終了判定部21を接続する。
 そして、SOI基板1のみをドライエッチング装置に装着する。このとき、ドライエッチングを開始していない状態では、抵抗測定器20で測定される電気抵抗Rは、被エッチング層7の比抵抗ρが0.01~0.04[Ω・cm]であるとしたとき、R<1kΩとなる。
 この状態でドライエッチングを開始すると、マスク14及び17間の環状開口部11でエッチングが進行するとともに、加工対象部位2でも開口部2aでエッチングが進行する。
 そして、図4(a)に示すように、エッチング深さがエッチング停止層6に近い状態となっても、環状開口部11とエッチング停止層6との間に比較的厚い被エッチング層7が存在することにより、抵抗測定器20で測定される電気抵抗RはR<1kΩの状態を維持する。
 しかしながら、図4(b)に示すように、環状開口部11がエッチング停止層6に達すると、抵抗測定器20で測定される電気抵抗Rは、図5に示すように急増して、エッチング停止層6の高抵抗値によって、被エッチング層7の比抵抗ρが前述したように0.01~0.04[Ω・cm]であるときに、測定される電気抵抗RはR>1GΩにまで急増する。
 このとき、測定した電気抵抗Rが予め設定した閾値Rthを超えたときに、エッチング終了判定部21で、環状開口部11のエッチング深さがエッチング停止層6に達したエッチング終了位置に到達したものと判定してドライエッチング装置によるドライエッチングを終了させる。
 この場合、環状開口部11のエッチング停止層6への到達を確実にするために、測定した電気抵抗Rが閾値Rthを越えてから比較的短い所定遅延時間だけ遅らせてエッチングを終了することにより、環状開口部11がエッチング停止層6へ確実に到達した状態でエッチングを終了することができる。
 そして、エッチング終了検出部3の環状開口部11の幅と実際にエッチングを行う加工対象部位2の開口部2aの幅とを一致させておくことにより、エッチング終了検出部3でエッチング終了を検出した時点で、加工対象部位2の開口部2aでもエッチング深さがエッチング停止層6に達することになり、正確なエッチング終了管理を行うことができる。
 このように、上記実施形態によると、ドライエッチングを開始して抵抗測定器20で計測した第1の電極部13及び第2の電極部16間の電気抵抗Rが閾値Rthを超えたときに、ドライエッチングを終了することにより、環状開口部11がエッチング停止層6に達したことを正確に検出することができる。
 このとき、環状開口部11を挟んで形成される第1の電極部13及び第2の電極部16がともに方形に形成されているので、両電極部13及び16に対向する環状開口部11の略全てがエッチング停止層6に達したときに、電気抵抗Rが急増することになる。このため、第1の電極部13及び第2の電極部16に対向している環状開口部11の長さの略全域で環状開口部11がエッチング停止層6に達したときに、エッチング終了タイミングと判断するので、環状開口部11の周方向のエッチング速度が異なる場合でも、正確にエッチング終了を検出することができる。
 さらに、エッチング終了検出部3が加工対象部位2から独立しており、しかも、第1の電極部13及び第2の電極部16はエッチング終了検出部3に対して専用に形成するので、エッチング終了後に第1の電極部13及び第2の電極部16を除去する必要がなく、電極除去工程を省略することができる。
 なお、上記実施形態においては、抵抗測定器20で測定した電気抵抗Rが閾値Rthを超えたときに環状開口部11がエッチング停止層6に到達したエッチング終了タイミングであるとして検出した場合について説明した。しかしながら、本発明は、上記に限定されるものではなく、環状開口部11がエッチング停止層6に確実に到達した状態では、図5に示すように電気抵抗Rが飽和状態となることから、この飽和状態を検出してエッチングを終了させるようにしてもよい。
 また、上述したように、抵抗測定器20で第1の電極部13及び第2の電極部16間の電気抵抗Rを測定しながらドライエッチングを行う場合に代えて、予め計測したエッチング時間だけエッチチッングしたときに、エッチングを終了させるようにしてもよい。このときのドライエッチングのエッチング時間は、上述したように、電気抵抗Rを測定しながらドライエッチングを行ったときのエッチング開始時間からエッチング終了時間までのエッチング時間を計測して設定することが好ましい。
 この場合に、ドライエッチングを行いながら電気抵抗Rを測定する必要がないので、図6に示すように、島状領域12に形成する第1の電極部13及びこの島状領域12に環状開口部11を介して対向する領域15に形成する第2の電極部16を形成する必要がなく、全面をマスクで覆うことができる。
 そして、設定したエッチング時間でエッチングを行ったSOI基板1の環状開口部11がエッチング停止層6に達しているか否かを島状領域12及びその外側の領域15間の電気抵抗Rを抵抗測定器20で測定することにより確認する。
 すなわち、図6に示すようにマスクを除去して島状領域12及びその外側の領域15の表面を露出させた状態で、島状領域12及びその環状開口部11を介して外側の領域15の電極部となる表面に計測針又は計測針に比較して幅広の電極片でなるプローブ22及び23を接触させて抵抗測定器20で電気抵抗Rを計測する。このとき、測定した電気抵抗Rが閾値Rth以上好ましくは飽和抵抗値に達しているときに、環状開口部11がエッチング停止層6に確実に達して、加工対象部位2でも開口部2aがエッチング停止層6に達したエッチング終了位置に到達しているものと判断することができる。
 また、上記実施形態においては、エッチング終了検出部3の環状開口部11が平面からみて方形枠状である場合について説明したが、これに限定されるものではなく、環状開口部11を3角形あるいは5角形以上の多角形さらには円形とすることができる。
 また、上記実施形態においては、エッチング終了検出部3を、加工対象部位2を形成したSOI基板1に形成した場合について説明したが、これに限定されるものではなく、図7に示すように、エッチング終了検出部3を、加工対象部位2を形成したSOI基板1とは異なるSOI基板30に形成するようにしてもよい。
 さらに、上記実施形態においては、エッチング終了検出部3が1つ形成されている場合について説明した。しかしながら、本発明は、上記構成に限定されるものではなく、図8に示すように、環状開口部11の開口幅の異なる複数例えば2個のエッチング終了検出部3A,3Bを用意する。そして、各エッチング終了検出部3の第1の電極部13及び第2の電極部16間の電気抵抗Rを計測することにより、エッチング終了タイミングを段階的に検出するようにしてもよい。この場合には、環状開口部11の幅が広いエッチング終了検出部3から環状開口部11の幅が狭くなるにしたがってエッチング速度が低下することにより、エッチング終了タイミングを段階的に検出することができる。
 本発明によれば、SOI基板のシリコン層にエッチングによって形成する溝が絶縁層に達したエッチング終了時を正確に検出することができるエッチング終了検出方法及び装置を提供することができる。
 1…SOI基板、2…加工対象部位、3…エッチング終了検出部、5…基材、6…エッチング停止層、7…被エッチング層、11…環状開口部、12…島状領域、13…第1の電極部、14…マスク、15…外側の領域、16…第2の電極部、20…抵抗測定器、21…エッチング終了判定部、30…SOI基板

Claims (9)

  1.  絶縁層上に導電性のシリコン層が配置されたSOI基板における前記シリコン層に前記絶縁層に達する開口部をエッチングする際のエッチング終了検出方法であって、
     前記エッチングによって形成される環状開口部で囲まれる島状領域の表面に第1の電極部を配置するとともに、前記島状領域の外側の領域に第2の電極部を配置してエッチング終了検出部を構成し、前記第1の電極部及び前記第2の電極部間の電気抵抗を計測し、当該電気抵抗が予め設定した閾値を超えたときにエッチング終了位置に達したと判定することを特徴とするエッチング終了検出方法。
  2.  前記第1の電極層及び第2の電極層間の電気抵抗を計測しながら前記開口部のエッチングを行い、当該電気抵抗が予め設定した閾値を超えたときにエッチング終了位置に達したと判定する請求項1に記載のエッチング終了検出方法。
  3.  前記環状開口部は円形又は多角形の環状溝で形成されていることを特徴とする請求項1又は2に記載のエッチング終了検出方法。
  4.  前記エッチング終了検出部は、同時にエッチングされる加工対象部位とは異なる領域に形成されていることを特徴とする請求項1乃至3の何れか1項に記載のエッチング終了検出方法。
  5.  前記エッチング終了検出部は、前記加工対象部位を形成したSOI基板に形成されていることを特徴とする請求項1乃至4の何れか1項に記載のエッチング終了検出方法。
  6.  前記エッチング終了検出部は、前記加工対象部位を形成したSOI基板とは異なるSOI基板に形成されていることを特徴とする請求項1乃至4の何れか1項に記載のエッチング終了検出方法。
  7.  前記環状開口部は、加工対象部位の開口部の幅と等しい幅に設定されていることを特徴とする請求項1乃至6の何れか1項に記載のエッチング終了検出方法。
  8.  前記エッチング終了検出部は、エッチング速度が異なるようにした複数のエッチング終了検出部で構成されていることを特徴とする請求項1乃至6の何れか1項に記載のエッチング終了検出方法。
  9.  絶縁層上に導電性のシリコン層が配置されたSOI基板における前記シリコン層に前記絶縁層に達する開口部をエッチングする際のエッチング終了検出装置であって、
     前記エッチングによって形成される前記絶縁層に達する環状開口部と、該環状開口部で囲まれる島状領域と、該島状領域の表面に配置した第1の電極部と、前記島状領域の外側の領域配置した第2の電極部とを有するエッチング終了検出部と、
     前記第1の電極部及び前記第2の電極部間の電気抵抗を抵抗測定器で測定して当該電気抵抗が予め設定した閾値を超えたときにエッチング終了位置に達したと判定するエッチング終了判定部と
     を備えたことを特徴とするエッチング終了検出装置。
PCT/JP2012/007255 2011-11-14 2012-11-12 エッチング終了検出方法及び装置 WO2013073160A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12850303.4A EP2680298A1 (en) 2011-11-14 2012-11-12 Method and device for detecting termination of etching
CN2012800182403A CN103477421A (zh) 2011-11-14 2012-11-12 蚀刻完成检测方法及装置
US14/110,128 US20140131707A1 (en) 2011-11-14 2012-11-12 Method and device for detecting termination of etching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-248861 2011-11-14
JP2011248861 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073160A1 true WO2013073160A1 (ja) 2013-05-23

Family

ID=48429256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007255 WO2013073160A1 (ja) 2011-11-14 2012-11-12 エッチング終了検出方法及び装置

Country Status (5)

Country Link
US (1) US20140131707A1 (ja)
EP (1) EP2680298A1 (ja)
JP (1) JPWO2013073160A1 (ja)
CN (1) CN103477421A (ja)
WO (1) WO2013073160A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950341B (zh) * 2019-03-28 2020-08-25 昆山协鑫光电材料有限公司 薄膜太阳能电池组件和检测薄膜太阳能电池组件p2刻断情况的方法
CN110752187B (zh) * 2019-10-30 2021-08-31 云谷(固安)科技有限公司 显示基板的制备方法及显示基板
CN112880540A (zh) * 2021-01-14 2021-06-01 合肥维信诺科技有限公司 显示面板制程中刻蚀量的检测方法及显示面板母板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984377A (ja) * 1972-12-18 1974-08-13
JPS60167332A (ja) 1984-02-09 1985-08-30 Mitsubishi Electric Corp 半導体装置の製造方法
JPS62256438A (ja) 1986-04-30 1987-11-09 Hitachi Ltd エツチング終点制御パタ−ン
JPH0371630A (ja) * 1989-08-10 1991-03-27 Fujitsu Ltd 半導体装置の製造方法
JPH0465836A (ja) * 1990-07-06 1992-03-02 Nec Kansai Ltd 半導体装置の製造方法
JPH0555548A (ja) * 1991-08-23 1993-03-05 Sumitomo Electric Ind Ltd ヘテロ接合バイポーラトランジスタの製造方法
JPH11274142A (ja) * 1998-03-20 1999-10-08 Nissan Motor Co Ltd エッチング深さ検知方法、この検知方法を利用した半導体デバイスの製造方法及びこの検知方法を利用した力学量センサの製造方法
JP2006150563A (ja) 2004-12-01 2006-06-15 Seiko Epson Corp エッチング終了検出用構造体、エッチングの終了検出方法、およびエッチング方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548465A (en) * 1977-06-22 1979-01-22 Hitachi Ltd Etching method
JPS6384116A (ja) * 1986-09-29 1988-04-14 Toshiba Corp エツチング方法および装置
CN100359660C (zh) * 2005-01-27 2008-01-02 北京北方微电子基地设备工艺研究中心有限责任公司 一种等离子体刻蚀工艺的终点检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4984377A (ja) * 1972-12-18 1974-08-13
JPS60167332A (ja) 1984-02-09 1985-08-30 Mitsubishi Electric Corp 半導体装置の製造方法
JPS62256438A (ja) 1986-04-30 1987-11-09 Hitachi Ltd エツチング終点制御パタ−ン
JPH0371630A (ja) * 1989-08-10 1991-03-27 Fujitsu Ltd 半導体装置の製造方法
JPH0465836A (ja) * 1990-07-06 1992-03-02 Nec Kansai Ltd 半導体装置の製造方法
JPH0555548A (ja) * 1991-08-23 1993-03-05 Sumitomo Electric Ind Ltd ヘテロ接合バイポーラトランジスタの製造方法
JPH11274142A (ja) * 1998-03-20 1999-10-08 Nissan Motor Co Ltd エッチング深さ検知方法、この検知方法を利用した半導体デバイスの製造方法及びこの検知方法を利用した力学量センサの製造方法
JP2006150563A (ja) 2004-12-01 2006-06-15 Seiko Epson Corp エッチング終了検出用構造体、エッチングの終了検出方法、およびエッチング方法

Also Published As

Publication number Publication date
US20140131707A1 (en) 2014-05-15
CN103477421A (zh) 2013-12-25
EP2680298A1 (en) 2014-01-01
JPWO2013073160A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
KR100996157B1 (ko) Mems 센서 및 제조방법
US7795045B2 (en) Trench depth monitor for semiconductor manufacturing
KR101107341B1 (ko) 반도체 센서 및 그 제조 방법
JP5649474B2 (ja) 静電容量型圧力センサおよび静電容量型圧力センサの製造方法
JP4688600B2 (ja) 半導体センサの製造方法
US20180208461A1 (en) Semiconductor element and methods for manufacturing the same
WO2013073160A1 (ja) エッチング終了検出方法及び装置
US20170307587A1 (en) Device and method for forming same
JP5639985B2 (ja) 半導体圧力センサおよび半導体圧力センサの製造方法
US8991262B2 (en) Capacitive pressure sensor, manufacturing method thereof, and pressure sensor package
CN104609359B (zh) 电容式mems惯性传感器的形成方法
US9490137B2 (en) Method for structuring a layered structure from two semiconductor layers, and micromechanical component
US20160293336A1 (en) Electronic device and method of manufacturing the same
JPH11274142A (ja) エッチング深さ検知方法、この検知方法を利用した半導体デバイスの製造方法及びこの検知方法を利用した力学量センサの製造方法
KR102110299B1 (ko) 고감도 수소센서 및 이의 제조방법
JP2011038780A (ja) 半導体装置及び半導体装置の製造方法
CN114823626A (zh) 测试结构及其形成方法、套刻精度的检测方法
JP2009111164A (ja) 圧力センサ及びその製造方法
JP4914789B2 (ja) プラズマプロセス検出用センサ、そのセンサの製造方法、及びそれを用いた半導体装置の製造方法
US20120119371A1 (en) Method of fabricating semiconductor device and semiconductor device
KR102091722B1 (ko) 심도-에칭된 멀티포인트 프로브
JP2002289875A (ja) 半導体力学量センサ及びその製造方法
TW201837977A (zh) 半導體元件及其關鍵尺寸的定義方法
US11939216B2 (en) Method with stealth dicing process for fabricating MEMS semiconductor chips
JP2005079289A (ja) 終点検出方法及び膜質評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850303

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012850303

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013544123

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14110128

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE