WO2013071877A1 - 旋转容器、使用该旋转容器的流体过滤装置及系统 - Google Patents

旋转容器、使用该旋转容器的流体过滤装置及系统 Download PDF

Info

Publication number
WO2013071877A1
WO2013071877A1 PCT/CN2012/084693 CN2012084693W WO2013071877A1 WO 2013071877 A1 WO2013071877 A1 WO 2013071877A1 CN 2012084693 W CN2012084693 W CN 2012084693W WO 2013071877 A1 WO2013071877 A1 WO 2013071877A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
container
rotating
output
rotating container
Prior art date
Application number
PCT/CN2012/084693
Other languages
English (en)
French (fr)
Inventor
陈家祺
Original Assignee
博研国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博研国际有限公司 filed Critical 博研国际有限公司
Publication of WO2013071877A1 publication Critical patent/WO2013071877A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • A01K63/045Filters for aquaria
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • B04B1/04Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles with inserted separating walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/04Periodical feeding or discharging; Control arrangements therefor
    • B04B11/043Load indication with or without control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/06Arrangement of distributors or collectors in centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/12Inserts, e.g. armouring plates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a rotating container, a fluid filtering device and system using the same, and more particularly to a rotating container for separating a substance having a higher or lower mass density from a fluid, a fluid filtering device using the rotating container, and a fluid
  • a filter device is used to purify water, air, fluids that contaminate seawater, plasma, and the like.
  • a reverse osmosis membrane is properly installed, it can be used for desalination. Background technique
  • a fluid such as a liquid, a gas, or a plasma which is contaminated with impurities.
  • impurities Some of the lower or higher impurities having a mass density of liquid, gas or ion are filtered out for the purpose of purifying the fluid, or the filtered impurities are required for some purposes.
  • fluids mixed with impurities For example, suspended particles in the air from the factory or car, dust in the air; organic pollutants, gas, oil, radioactive substances, algae, proteins, bacteria and even viruses in the water; in the waste incinerator Some metal ions or particles in a gas or flame (ion).
  • the existing fluid filtering device generally uses a filter material such as a filter core or a strainer for physical filtration. After a certain period of use, the filter material is clogged with contaminants, and the filter material must be replaced or cleaned. Moreover, if fine contaminants are to be filtered, the mesh of the filter material is small, which increases the chance of the filter material being clogged. Shorten the life of the filter material.
  • a filter material such as a filter core or a strainer for physical filtration.
  • the present invention provides a rotating container, a fluid filtering device and system using the same, and a method of operating the same.
  • Maximum wheelbase refers to the distance from the axis of rotation in a hole or opening; for example, the axis of the hole is at the center of the square hole, the maximum of the square hole
  • the wheelbase is half the length of the diagonal of the square.
  • Peripheral refers to the position inside the rotating container away from the rotating shaft. If it is said that the periphery of an article is understood, it should be understood as: when the article is placed in the rotating container, away from the axis of rotation.
  • Heavy impurities Heavier impurities in the fluid to be purified.
  • Light impurities Lighter impurities in the fluid to be purified.
  • Input Chamber Rotates the cavity in the container; in this cavity, the fluid flows generally away from the shaft.
  • Output Chamber Rotates the cavity within the container; within the cavity, the fluid generally flows close to the axis of rotation.
  • the present invention provides a rotary container including a housing having an input tube placement port and an output port, the input tube placement port and the output port being located at the same end or opposite end of the housing, and The peripheral edge of the outer casing is at a distance such that the rotating container can store water as it rotates.
  • the input tube placement opening may be fixed to a fixed input tube of the fluid filter device housing and injecting a fluid, and the maximum wheelbase of the input tube placement port is less than a maximum wheelbase of the output port;
  • the outer casing of the rotating container incorporates a stirring piece that rotates in synchronization with the outer casing.
  • the stirring piece may be flat or curved, and the spiral type stirring piece as a whole is the best.
  • the internal design of the rotating container is further divided into three categories in terms of means for controlling the flow of water inside the rotating container. Including: Class A: No input chamber and output chamber; Class B: Separate input and output chambers with circuit separator; Class C: Set one end connection in Class A rotating container An output conduit or output channel structure of the output port.
  • the present invention also includes providing a drain hole on the rotating container and controlling the drain hole switch with an elastic shutter.
  • the present invention provides the design of two types of flexible shutters. Includes lever and piston construction.
  • the present invention also provides a fluid filtering device, comprising the aforementioned rotating container, further comprising an outer casing or supporting structure for fixing the rotating container, and a fixed input tube fixed to the outer casing or the supporting structure And a rotary drive that drives the rotation of the rotating container.
  • the present invention provides another fluid filtering device, comprising: the aforementioned rotating container, further comprising a housing or support structure for fixing the rotating container, and a synchronous input tube of the device at a rotational axis position of the rotating container And a rotary drive that drives the rotation of the rotating container.
  • the invention also provides a synchronous centrifugal pump structure, which is characterized in that a circular symmetrical tube is provided with a stirring piece, and one end of the circular symmetrical tube has a circular cover, and the circular cover has a hole in the center for inputting fluid.
  • the circular symmetrical tube, the circular cover and the inner agitating piece are synchronously rotated.
  • the present invention also provides an automatic purification culture system comprising at least one of the foregoing filtration devices, and operating with at least one algae culture tank and at least one aquaculture tank, the filtration device being input from the algae culture tank and outputted to In the aquaculture tank, there is a water return passage between the algae culture tank and the aquaculture tank to allow the water in the aquaculture tank to return to the algae culture tank.
  • the present invention also provides a reverse osmosis filtration system comprising the aforementioned transfer container with the filter element, the filter element comprising a reverse osmosis membrane.
  • the invention further utilizes the two fluid filtering devices described above, and cooperates with the device in a rotating container made of transparent material, with a flexible valve drain hole, and monitors the accumulation of the rotating container in real time by the light sensing element. .
  • a purifying device capable of automatically removing heavy impurities or light impurities accumulated in the rotating container is implemented.
  • the fluid entering the rotary container can be effectively purified, separated from impurities and the like, and heavy impurities or light impurities can be utilized by centrifugal force.
  • the mass is separated into different locations within the container for easy collection.
  • the invention can also be applied to the purification or separation of gases and plasmas.
  • Figure 1 is a perspective view of an embodiment of a simplest rotating container of the present invention in which the outlet and inlet tube setting ports are at the same end of the rotating container and merged into a combined opening.
  • Figure 2 shows a plan view of the embodiment of the rotating container shown in Figure 1;
  • Fig. 3 shows a cross-sectional view of a fluid filtering device of the present invention in which the outlet port and the inlet tube setting port are at different ends of the rotating container.
  • Fig. 4 shows a cross-sectional view of another embodiment of a fluid filtration device of the present invention in which a fixed input tube directs fluid to a deep portion of the rotating container for injection.
  • Figure 5 is a plan view showing a spiral agitating plate rotating container of the present invention.
  • Figure 6 shows a schematic and top view of an embodiment of a Class B rotating container of the present invention
  • Figure 7 shows a variation of the embodiment of the Class B rotating container of Figure 6, wherein the input chamber is replaced by an input conduit.
  • Figure 8 shows a variation of the embodiment of the Class B rotating container of Figure 6 in which the output chamber is replaced by an output conduit.
  • Figure 9 illustrates an embodiment of a Class C rotating container of the present invention incorporating an output channel structure.
  • Fig. 10 shows another embodiment of the C-type rotating container of the present invention, which comprises an output passage structure and acts as a stirring piece with a perforated partition.
  • Figure 11 illustrates yet another embodiment of a Class C rotating container of the present invention incorporating an output conduit.
  • Fig. 12 shows an embodiment in which a ceramic filter element is incorporated in a class B rotating container of the present invention.
  • Figure 13 illustrates an embodiment of a Class B parallel multi-chamber rotating vessel of the present invention.
  • Figure 14 illustrates an embodiment of a Class B tandem multi-chamber rotating container of the present invention.
  • Figure 15 shows a variation of the embodiment of Figure 13 in which some of the output chambers are replaced with output conduits.
  • Figure 16 shows a variation of the embodiment of Figure 14 in which some of the output chambers are replaced with output conduits.
  • Figure 17 shows an embodiment of a Class B, rotating storage container with an impurity storage space and a planar stirring blade of the present invention.
  • Figure 18 shows an embodiment of a Class C, rotating storage container with an impurity storage space and a planar stirring blade of the present invention.
  • Fig. 19 shows an embodiment of a rotary container of the class B, with an impurity storage space and two spiral agitating blades of the present invention.
  • Figure 20 shows an embodiment of a rotating container of the Class B, with an impurity storage space and four spiral agitating blades of the present invention.
  • Fig. 21 shows an embodiment of a rotary container of the class C, with an impurity storage space and a spiral stirring piece of the present invention.
  • Figure 22 shows an embodiment of a rotating container of the present invention that is not circularly symmetrical inside.
  • Figure 23 shows an embodiment of a Class B, unfilled storage space of the present invention and a rotating vessel with four spiral agitating blades.
  • Fig. 24 shows an embodiment of a Class C, non-impurity storage space and a rotating container with a spiral stirring blade of the present invention.
  • Fig. 25 shows an embodiment in which some axial reinforcing strips are added to the impurity storage space of the rotary container in Fig. 20.
  • Figure 26 shows an embodiment of a retractable rotating container of the present invention.
  • Figure 27 is a view showing the construction of a lever type flexible shutter of the present invention.
  • Figure 28 is a structural view showing another lever type flexible shutter of the present invention, in which the guide is utilized The flow tube moves the drain hole to a position closer to the shaft.
  • Fig. 29 is a view showing the construction of a piston type elastic shutter of the present invention.
  • Figure 30 shows an embodiment of a rotating container with a synchronous input tube of the present invention.
  • Figure 31 shows an embodiment of a rotating container with a small agitating pad of the present invention.
  • the small stir plate can be combined with a fixed input tube to form a centrifugal pump structure.
  • Figure 32 shows an embodiment of a synchronized water pump of the present invention disposed in a liquid purification apparatus including a rotating vessel.
  • Figure 33 shows an embodiment of a seawater, oil stain separation apparatus of the present invention.
  • Figure 34 shows an embodiment of an external cleaning apparatus of the present invention.
  • Fig. 35 shows an automatic purification culture system of the present invention, and the external purification apparatus in this embodiment is basically the same as that shown in Fig. 34.
  • Figure 36 shows an embodiment of the overhead purification apparatus of the present invention.
  • Figure 37 shows a filtration system utilizing a reverse osmosis membrane of the present invention.
  • the invention can be applied to the purification or separation of liquids, gases or ionomers, it is mainly applied to the purification of liquids. Therefore, most of the chapters in this document are for explanations on liquids. Some design adjustments and explanations for gas and ion-ion applications are also made where appropriate. For this reason, the embodiments in this document describe the fluid filtration device as a purifier and describe the purified fluid as water or liquid.
  • a fluid such as a liquid is introduced into a rotating container which is rotated at a high speed by at least one input pipe placing port, and a rotating piece is provided in the rotating container to rotate the liquid in synchronization with the rotating container.
  • Heavy impurities in the liquid accumulate in the rotating container away from the rotating shaft of the rotating container, and light impurities accumulate in the rotating container near the rotating shaft of the rotating container.
  • the rotating container has at least one outlet.
  • the maximum wheelbase of the input tube placement port is smaller than the maximum wheelbase of the output port.
  • the liquid begins to overflow from the output.
  • the overflowed water will be scattered and collected at high speed, and discharged directly or after other filtration.
  • substances of different mass densities in the liquid in the rotating container are separated. Heavy impurities will eventually collect at the inner wall of the rotating container away from the rotating shaft, and light impurities will collect at the inner ring of the near rotating shaft.
  • gas or ionomers although the results are different (for example, the input gas is not like a liquid "fills the rotating container from the outside to the inside until it reaches the output port"), but the main part, that is, the rotating container There is no significant difference in structure.
  • Figure 1 shows a rotary container of an embodiment of the present invention, i.e., the most simple rotating container of the embodiment claimed in the present invention.
  • the rotary container 4 can be rotated at a high speed and can hold water, and the rotary container 4 is provided with four agitating sheets 5 to enable the liquid 1 (not shown) to rotate in synchronization with the rotary container 4.
  • the input pipe T in the figure is placed at the inlet 3 of the input pipe.
  • the maximum wheelbase of the input pipe placement port 3 is smaller than the maximum wheelbase of the output port 7. This arrangement allows the liquid to preferentially flow out of the output port 7 during normal operation.
  • the rotating container if driven by a motor, can be mounted directly on the bottom of the rotating vessel, the shaft of the motor and the rotating container. The axis is aligned.
  • the output port 7 is located in the annular opening around the fixed input tube T and is surrounded by an output port sleeve 4t extending from the outer casing of the rotating container. It should be noted that in this embodiment, the input tube placement port 3 and the output port 7 are at the same end of the rotating container, so that they can be combined into one combined opening.
  • the flow of the present invention includes inputting the liquid 1 into a rotating container 4 capable of holding water at a high speed.
  • a rotating container 4 capable of holding water at a high speed.
  • the liquid 1 in the rotating container 4 is rotated at a high speed, when the medium-density substance is concentrated on the inner wall of the rotating container away from the rotating shaft 6, the substance with a lower density is gathered in the inner ring. Close to the position of the shaft 6.
  • the outer shape of the rotating container 4 is preferably circularly symmetrical, such as a cylinder or a sphere. If you do not consider wind resistance, energy saving and other issues, there is no requirement for appearance. The only thing to do is to align the center of gravity with the axis of rotation before and after water injection. Otherwise, it will cause huge mechanical vibration and noise.
  • the embodiments of this document all employ a cylindrical outer design.
  • the shaft 6 is vertical. However, without affecting the effect of the input (such as input by siphon principle, it may be affected), the shaft 6 can be set in any direction (including reverse, so that the input tube is placed and the output is below).
  • Fig. 2 is a plan view showing a rotary container of the embodiment of the invention as shown in Fig. 1.
  • the direction of rotation D of the rotating container 4 is counterclockwise, but the effect of clockwise rotation is exactly the same.
  • Figure 3 is a cross-sectional view showing a fluid filtering device (i.e., a purifier) in accordance with a preferred embodiment of the present invention, wherein the inlet tube placement opening (the upper end is for the opening through which the inlet tube passes) and the outlet port 7 in the rotating container 4 (colored by the grid) Different end.
  • the rotary container 4 is located in the outer casing 33 of the fluid filtering device, and the fixed input pipe T is fixed to the outer casing 33 and is provided with a side hole for injecting the liquid 1 into the rotary container 4.
  • the liquid 1 is discharged from the rotary container 4 through the output port 7 in the flow direction indicated by the arrow in the figure.
  • the liquid 1 is finally discharged from the purifier output port 34.
  • the rotary container 4 is mounted to the outer casing 33 of the purifier via two bearings 18 and is driven by the motor M in the manner of the synchronous wheel X and the timing belt B.
  • the bearing 18 below is not necessarily required, but a more stable structure is available. Since the stirring piece 5 is directly connected to the outer casing of the rotary container 4, the heavy impurity conducting hole 35 is provided to make the heavy impurities more evenly distributed during operation.
  • the stirring piece 5 is flat if it is.
  • the number is preferably between 3-36 pieces. Too little is prone to bad internal turbulence, which curls up the heavy impurities that have already accumulated, affecting the purification effect. Too much agitator 5 will take up too much space, reducing the effective storage capacity of the container. To make the inner space of the container the most efficient use. Curved, especially spiral stirrer 5 is superior Victory.
  • Figure 5 shows a top view of a rotating container with four spiral agitating blades. (The existing computer-aided design software can easily obtain a spiral shape. It will not be discussed in this document.) The operation is very similar to the embodiment of the planar stirring sheet shown in Fig. 2.
  • the counterclockwise direction of rotation is better than that of the clockwise direction. Since the stress applied to the heavy impurities accumulated at the end of the stirring piece 5 when rotating clockwise causes the heavy impurities to push the direction of the rotary axis along the stirring piece 5, so that the accumulated heavy impurities are easily rolled up and flowed out by the water flow. Rotate the container. Make the purification effect worse. Of course, if the shape of the knob of the stirring piece 5 is reversed, the direction of rotation of the rotating container should also be changed accordingly.
  • the superiority of the spiral agitating blade is mainly due to the fact that heavy impurities can be aggregated at an earlier stage as compared with a sheet-like (planar) stirring piece. In other words, the fluid can be purified at the beginning of entering the rotating vessel 4.
  • the fixed input tube T should be designed according to the internals of the container. In the example shown in Fig. 4, the input pipe insertion port 3 and the output port 7 of the rotary container 4 are all below. With a longer fixed input tube T, fluid can be input from the top end of the rotating container 4, increasing the distance between the input position of the fluid and the output position.
  • the rotary container 4 is directly connected to the motor M to be driven. The bearing 18 reduces the swing when the rotary container 4 is rotated. The purified liquid is discharged from the output port 7 of the rotary container 4 and then output through the purifier drain port 34.
  • the specific internal design is mainly divided into three basic types, which are distinguished by three water flow control means:
  • Class A No input cavity and output cavity respectively
  • Class B Separating the input and output chambers with a circuit separator
  • Class C An output conduit or output channel structure with one end connected to the output port 7 in a Class A rotating container
  • Class A is the simplest structure.
  • the rotary container and purifier shown in Figures 1-4 are of this type. Although it is simple, in some specific cases, for example, due to space constraints, rotating the container This type of internal design can only be considered if the outer diameter is small and the length is large.
  • the B-type internal design rotary container is characterized in that a circuit breaker P is added inside the container to divide the container into an input chamber 29 and an output chamber 30.
  • Figure 6 shows an embodiment of a Class B rotating container included in the present invention. This rotary container 4 is the same as in the embodiment of Fig. 4.
  • a top view of the circuit breaker P is also shown below Figure 6.
  • the liquid 1 is input to the input chamber 29, flows through the return port 14 on the circuit partition P to the output chamber 30, and finally is output through the output port 7.
  • the intermediate hole diameter of the circuit partition P is sufficiently smaller than the output port 7.
  • the outermost ring of the circuit partition P can be used to reinforce the outer casing except that the heavy impurities accumulated in the vicinity are not easily washed away by the water flow, such as in combination with the outer casing of the rotary container 4.
  • the optimum input position is the top end of the near-rotating container 4.
  • a heavy impurity via 35 may be provided on the outermost edge of the circuit spacer P. In general, if the input chamber 29 or the output chamber 30 is small, there is no need to provide a stir plate.
  • the impurities to be filtered are heavy impurities or light impurities.
  • the relative sizes of the input chamber 29 and the output chamber 30 are not critical. However, if it is a light impurity, it should be considered to make the input cavity 29 small. In order to avoid preferential assembly of the light impurities in the input chamber 29, it is difficult to discharge it at the output port 7. This is further illustrated by the following description of an embodiment of a marine oil purifier.
  • the input chamber 29 or output chamber 30 of the embodiment of Figure 6 can be reduced to a small extent and replaced with a conduit or some channel structure. 7 and 8 illustrate this concept; the input conduit 29a in Fig. 7 corresponds to the input cavity 29 shown in Fig. 6, and the annular circuit port 14 of Fig. 6 also evolves into the 4 circular holes of Fig. 7. 29al.
  • the function of the input conduit 29a is to direct fluid to the vicinity of the periphery of the rotating container.
  • the output conduit 30a in Fig. 8 corresponds to the output chamber 30 shown in Fig. 6, and the annular circuit port 14 of Fig. 6 also evolves into the four circular holes 30al of Fig. 8.
  • the output conduit 30a functions to draw fluid from the vicinity of the rotating container to the vicinity of the rotating shaft.
  • the circuit port 14 is a relatively small number of holes, and such a design that replaces the input or output chamber with a conduit or passage structure is highly desirable.
  • Class C The internal feature of Class C is primarily the provision of an output conduit or output channel structure in a Class A rotating vessel.
  • One end opening of this output conduit or output channel structure is in the vicinity of the rotating container, near the periphery. Its function is equivalent to the circuit port 14 in the aforementioned Class B design and the other end is connected to the output port of the rotating container.
  • Figure 9 shows a perspective view and a top view of an embodiment of a Class C internal design rotating container.
  • the spacer 5a having the size almost equal to the agitating piece 5 the spacer 5a having the opening 30b1 and the agitating piece 5 form an output channel structure 30b.
  • the one end opening of the output passage structure 30b is an opening 30b1 near the edge of the container, and the other end is connected to the output port 7 of a circular hole shape.
  • the liquid 1 is injected into the input chamber 29, flows through the opening 30b1 to the output channel structure 30b, and is output through the output port 7 provided at the top end of the rotating container, the flow path being indicated by the arrow in the figure.
  • the top view shows the position of the fixed input tube T and the output port sleeve 4t.
  • the fixed input pipe T and the output port casing 4t are not shown in the perspective view of Fig. 9. This processing method is also applied to the perspective views of Figs. 10 and 11.
  • FIG 10 is a perspective view and a cross-sectional view showing an embodiment of still another rotating container of the present invention.
  • the rotating container in this embodiment also belongs to the C type internal design.
  • the output passage structure 30b is composed of the aforementioned conventional stirring piece 5 and a spacer 5a having a circular opening 30bl. Since the opening of the circular opening is small with respect to the spacer 5a, and the size of the spacer 5a is similar to that of the stirring blade 5, the spacer 5a is conveniently used as a function of the stirring blade.
  • the output channel structure 30b is designed to be about the same size as the input cavity 29.
  • the flow pattern of the liquid 1 in this embodiment is substantially similar to the flow pattern of the liquid 1 in the embodiment shown in Fig. 9, and will not be described again.
  • FIG. 11 Another type C internal design embodiment shown in Fig. 11 can be obtained by replacing the output communication structure 30b in the rotary container of Fig. 9 with the output conduit 30a.
  • the principle is very similar to the previous embodiments of Figs. 9 and 10.
  • the rotation direction D shown in Figure 9 is the most Restricted.
  • the clockwise direction as shown in Fig. 9 becomes counterclockwise, and the spacer 5a collects a large amount of heavy impurities and slides to the periphery.
  • the heavy impurities reach the opening 30b1, they are taken up by the water flow and finally outputted from the output port 7. Therefore, in accordance with the design of the stirring piece 5, the clockwise direction D shown in Fig. 9 is preferable.
  • a filter medium such as a filter element or a filter membrane
  • the filtration ability can be effectively increased.
  • the clogging of the filter material will also be improved.
  • Figure 12 illustrates an embodiment in which a ceramic filter element F1 is incorporated into one of the above-described Class B internal designs.
  • the filter element requires a large water pressure to allow fluid to pass. Therefore, the maximum wheelbase of the output port will be much larger than the maximum wheelbase of the inlet of the input pipe. (Compared with the design without the filter element) As for the gap required for calculation is a well-known physics knowledge, this article will not talk much.
  • the relative position of the circuit spacer P, the ceramic filter element F1 and the stirring piece 5 (not shown in the upper figure) of the input chamber 29 is shown at the bottom of Fig. 12.
  • the ceramic filter element F1 is disposed in the input chamber 29 and has an outer diameter slightly smaller than the circuit port 14.
  • a preferred design is to add a stir plate to the ceramic filter element (not shown) to allow the water in the output chamber 30 to rotate more smoothly.
  • Class B internal design is best suited for adding filter elements.
  • the circuit separator P in the above-described Class B internal design with a disk-shaped filter material.
  • the circular dish-shaped filter material has a central hole for input to the input tube, but does not require the circuit port 14 and its outer edge to be immediately adjacent to the outer casing of the rotating container.
  • this design is inferior to the embodiment of Fig. 12 from the viewpoint of utilizing centrifugal force removal and preventing clogging.
  • the internal design of Class C can also be added to the filter media. Its design principle is similar to that of Class B. That is, the water is filtered before being output to the outlet.
  • the spacer 5a can be replaced by a filter material having no opening 30bl.
  • the filter material can be placed within the output conduit 30al.
  • the filter element in addition to the aforementioned design of the filter element in the output chamber 30, the filter element can also be arranged between the input chamber 29, the stirring piece 5 or the spacer 5a, and the like. Within the space.
  • the filter element selected should be very hydrophobic to avoid clogging.
  • the present invention also includes the above-described basic structure of the rotary container in series or in parallel in the outer casing of a rotating container for better purification.
  • the method of implementation is specifically such that one or more of the three types of basic internal cavity structures are superposed to form a multi-chamber structure.
  • the output chamber 30 or the output conduit 30a or the output channel structure 30b will be turned on and drained to the output port 7 of the rotating container or the edge of the merged opening, and the input cavity 29 or Both the input conduit 29a or the input passage structure 29b are shunted to inject fluid by the stationary input conduit.
  • other output chambers or output conduits or output channel structures are drained to the input of the adjacent layer, except that the output chamber or output conduit or output channel structure closest to the output port is directly discharged through the output port.
  • Cavity 29 or input conduit 29a or input channel structure 29b is specifically such that one or more of the three types of basic internal cavity structures are superposed to form a multi-chamber structure.
  • FIG. 13 and 14 respectively show a rotating container of a multi-chamber parallel structure and a rotating container of a multi-chamber series structure.
  • Figure 13 shows the case where the Class B rotating vessels are connected in parallel. Which loses There are three into the chamber 29 and the output chamber 30.
  • a liquid fixed input tube T is used to dispense liquid to the different input chambers 29.
  • the output chamber 30 closest to the output port 7 is directly output to the rotary container output port 7, the other output chambers 30 are turned on by the conduit Z and finally guided to the output of the rotary container output port 7.
  • Fig. 14 shows a multi-chamber rotating container in which three Class B rotating containers are connected in series, wherein each of the input chamber 29 and the output chamber 30 has three. Except that the output chamber 30 closest to the output port 7 discharges fluid directly through the output port 7, the liquid from the other two output chambers 30 flows directly into the next input chamber 29.
  • the output port is mostly a small hole, it is suitable to use the above-mentioned B-parallel method. That is, the output of the associated output chamber 30 or output conduit 30a or output channel structure 30b is directed to the total rotating container outlet 7 by a conduit.
  • the tandem method of the class C rotary container is to align the proximal output of the associated output chamber 30 or output conduit 30a or output channel structure 30b with the input cavity 29 of the next layer (assuming the total rotary container output 7 is below).
  • the multi-cavity design of the A, C, and A, B, and C hybrids is similar to the multi-cavity design principle of the above B or C. It is not convenient to repeat them here.
  • This multi-cavity parallel or series rotary container design has a better purification effect than the single-cavity design of the same volume, and has the advantage of being more robust and not deformable. This advantage is significant when rotating at high speeds. In other words, the multi-chamber design can accommodate applications with higher speed rotation.
  • FIG. 17 shows a cross-sectional view of an embodiment of the present invention belonging to a Class B rotating container.
  • the triangular configuration of the Figure can be understood as a flap F which is covered with a plurality of V-shaped grooves or tapered holes. These flaps F are the same height as the stirring piece 5, that is, extending from one end of the cylindrical container to the circuit partition P.
  • An impurity storage space 16 is formed between the flap F and the outer casing.
  • the direction of fluid flow in this Class B rotating vessel is similar to that of the embodiment shown in FIG.
  • the impurity discharge port 17 is preferably as small as possible but allows heavy impurities to pass through.
  • the design principle is that the total area of the impurity discharge port 17 should be smaller than the total area of the circuit port 14 (refer to the internal design of the class B) or the near peripheral opening 30bl of the output channel structure 30b (refer to the internal design of the class C). A large amount of liquid is prevented from flowing through the impurity storage space 16, and the accumulated heavy impurities are rolled up.
  • the general size is 0.1 - 3mm.
  • the larger impurity discharge port 17 is more convenient for cleaning the heavy impurities in the impurity storage space in the rotating container having the drain hole 10.
  • the size of the impurity discharge port 17 is preferably narrowed toward the impurity storage space 16. That is, one side of the proximal shaft 6 is large, and one side of the impurity storage space 16 is small.
  • a tapered hole or a V-shaped groove is also suitable. Such holes having different opening sizes on both sides make it easy for heavy impurities to enter the impurity storage space 16, but it is difficult to escape.
  • the tapered surface formed by the tapered hole or the V-shaped groove can prevent heavy impurities from staying on it.
  • the drain hole 10 is provided on a dome of one end of a cylindrical rotating container.
  • FIG 18 shows a top view of another preferred embodiment of the rotating container, this embodiment and Figure 9 The difference is that the impurity storage space 16 is increased.
  • the flap F in Fig. 18 can be understood as a curved surface which is covered with a plurality of V-shaped grooves or tapered holes. These flaps F are the same height as the stirring piece 5, that is, extending from one end of the cylindrical container to the other end.
  • the fluid is injected from the central input tube T into the input chamber 29, through the opening 30b1 formed by the spacer 5a, to the output channel structure 30b, and then outputted from the output port 7.
  • FIG. 19 shows a rotating container having two spiral stirring sheets 5. This embodiment also belongs to the above-mentioned Class B internal design.
  • the spiral stirring piece 5 allows heavy impurities to be collected thereon and slides along the surface to the outermost end. The possibility of heavy impurities being collected is greatly increased.
  • the flap F is substantially annular.
  • An impurity discharge port 17 can be provided in addition to the shutter.
  • An impurity discharge port 17 may also be provided at the proximal end of the spiral stirring piece. In the embodiment of Fig. 20, this concept is shown.
  • Fig. 20 there are four pieces of stirring piece 5 (colored by oblique lines).
  • a tapered hole or a V-shaped groove is provided at the proximal end of the stirring piece 5, and some pipes leading to the impurity storage space 16 on the flap F are connected, so that heavy impurities at the position can discharge the impurity storage. Space 16.
  • This arrangement allows the heavy impurities accumulated at the end of the stirring sheet 5 to be excessively apt to be swept away by the water flow.
  • the impurity discharge port 17 depends on where the heavy impurities to be collected will start to assemble.
  • the height of the flap F is the same as the height of the stirring piece 5.
  • Fig. 21 shows another design in which the impurity discharge port 17 is provided at the peripheral end of the stirring piece 5 and on the flap F.
  • This is a type C rotating container comprising two stirring pieces 5 and two pieces 5a.
  • the design considerations of the impurity discharge port 17 are similar to those of FIG.
  • Figure 19 Figure Similarly to the embodiment of 20, it is preferable that the flap F near the peripheral opening 30b1 of the output passage structure 30b of Fig. 21 is not provided with the impurity discharge port 17.
  • Figure 22 shows an asymmetrical internal design of a rotating container. Similar to Figure 19 and Figure 20, but this design has only one spiral stirring piece 5 .
  • I can adjust the focus to the axis of rotation 6, or after production, correct the position of the center of gravity after the actual test. Most importantly, make sure that the center of gravity is aligned with the axis of rotation when injecting liquid 1 and not injecting liquid 1.
  • the method of correcting the center of gravity some common techniques used in existing electrical products with high-speed rotating structures are not discussed in this application.
  • the impurity storage space 16 is contained.
  • Figure 23 shows a top view of a Class B internal design rotating vessel with four spiral agitator blades 5.
  • the shape of the circuit port is relatively narrow, mainly because it is avoided that the heavy impurities accumulated on the opposite stirring piece 5 are too close in use, and the water flow causes the heavy impurities to be taken away.
  • Figure 24 shows a top view of a Class C internal design rotating container. The principle and structure of operation are relatively close to those of the embodiment of Fig. 21.
  • Figure 25 illustrates an embodiment in which an axial reinforcing strip J is applied to the inner wall of the outer casing. As in the embodiment shown in Fig. 20, there are four spiral stirring piece rotating containers. In this embodiment, the structure in which the axial reinforcing strip J connects the inner portion of the outer casing further strengthens the structure of the rotary container 4. A heavy impurity via 35 is placed on the axial reinforcing strip J.
  • the drain hole 10 is provided to facilitate the removal of heavy impurities accumulated near the periphery of the rotary container 4, and the discharge is generally accomplished by opening the drain hole 10 and rotating the container 4 at a high speed.
  • the water in the container or the cleaning liquid additionally injected for the sewage is injected into the impurity storage space 16 through the impurity discharge port 16 and discharged from the drain hole 10 during the sewage discharge. Therefore, the heavy impurities accumulated near the impurity discharge port 17 are relatively easy to clean. However, heavy impurities in the vicinity of the sheet F having no impurity discharge port 17 are difficult to be cleaned.
  • the drain hole 10 should be set as shown in Figs. 23 and 24. This ensures that the inner wall of the outer casing can be flushed with maximum water flow during cleaning.
  • Figs. 23 and 24 there are four agitating blades 5, and four input chambers 29 or output chambers 30 are formed (depending on whether the top view represents the input chamber 29 or the output chamber 30), but only two Sewage holes 10. The improvement is to add some heavy impurity vias 35 to the end of the stirring blade 5.
  • the number of the drain holes 10 may be at least one. However, it is easier to align the center of gravity of the rotating container 4 with the rotating shaft by two or more. However, the design of a drain hole 10 also has the advantage of being less expensive to repair and operate. In the design of a drain hole 10, it must be ensured that all areas where impurities can be stored are in communication and can be discharged by means of a drain hole 10.
  • One of the methods is to add at least one heavy impurity via 35 to the edge of the connecting piece of the stirring piece 5 to allow heavy impurities to pass. This In addition, if a Class B internal design is employed, it is preferable to place a heavy impurity via 35 on the outermost edge of P on the circuit spacer.
  • the rotating container 4 can ensure that the center of gravity of the rotating container 4 is aligned with the rotating shaft during the discharge operation or during the operation which is generally not discharged.
  • the inner wall of the outer casing 4a of the rotary container 4 is caused Non-circular symmetrical, such as an ellipse. And set the two drain holes 10 at two positions farthest from the center of the ellipse. Due to the original force of the centrifugal force, heavy impurities are preferentially concentrated at the two positions at high speed rotation.
  • Collecting or removing heavy impurities in the rotating container can be designed and processed by the following three methods: 1. Leave in the rotating container, no need to clean
  • the first method is more suitable for some extreme situations. For example, heavy impurities are substances with high radiation. If no special knowledge is used, cleaning is not recommended.
  • the second way is to manually clean the rotating container 4.
  • the switchable drain hole 10 mentioned in the above embodiment may be added to the rotating container.
  • An easy way is to open the screw hole and close it with a screw.
  • Another possibility is to use the structure of a quick clip that is easy to find in a large hardware store.
  • the position of the drain hole 10 is indicated in the embodiment of Figures 17-25.
  • FIG. 26 shows another of the present invention An embodiment of a rotating container wherein the outer casing is twistable. This makes it easy to clean.
  • the steering D of the rotating container during normal operation is clockwise (viewed from above, ie, top view), and the drive motor is directly connected to the lower half 4a2 of the outer casing and directly drives the rotation of the outer casing, rotating the container
  • the upper half 4al of 4 should be designed to be twisted into the lower half 4a2 of the outer casing in a counterclockwise direction, otherwise it will loosen during operation.
  • a rubber-made 0-ring (O-ring) Q is used to prevent leakage.
  • the third method can be divided into three categories, namely, speed control, electromagnetic control, and water pressure control. All three methods involve at least one flexible shutter V. The difference is that the method of opening the elastic shutter V to discharge the dirt is different.
  • the speed control method uses the rotational speed control elastic shutter V to discharge heavy impurities in the rotating container.
  • Fig. 27 shows an embodiment of an elastic shutter V composed of a spring S.
  • the rotating shaft of the rotary container 4 is on the right side of the drawing (the other half is omitted), and the drain hole 10 is at the near edge position of the upper end dome of the rotary container 4.
  • the structure of the flexible shutter V is lever type. The force provided by the spring S closes the shutter.
  • This embodiment mainly pushes the elastic shutter V by increasing the pressure of the liquid in the drain hole 10 when the rotary container 4 is rotated at a high speed.
  • the heavy impurities 9 stored in the container 4 can be discharged.
  • the shutter should be tightly closed and not easily leaked.
  • the head H is preferably made of a resilient material such as rubber.
  • the lever is made of a resilient material such as graphite (carbon fiber)
  • a sufficiently high hard mat can be placed at the position of the spring S to bend the graphite rod to generate the required pressure to make the head H pressed.
  • the position of the drain hole 10 is preferably at the position farthest from the rotating shaft of the container 4, such a arrangement requires a spring having a high strength (especially when applied to a liquid) to press the shutter to operate without draining. Will not leak. Further, in some cases, for example, a heavy-mass collecting container having a small diameter is disposed under the rotating container 4, and the drain hole 10 is relatively easy to achieve at a position closer to the rotating shaft.
  • Figure 28 shows another embodiment of an elastic shutter V consisting of a spring S. Similar to the embodiment shown in Fig. 27, the rotating shaft is on the right side. Use the drainage tube 25 to move the position of the drain hole 10 from the position farthest from the rotation axis (left side) to the closer Rotary shaft position (right). As the closer to the shaft, the pressure at which the liquid is discharged will be smaller. In other words, the valve can be closed with less force. Therefore, compared with the embodiment of Fig. 27, the spring of Fig. 28 has a lower strength to close the drain hole 10.
  • Figure 29 shows an embodiment of another resilient shutter V.
  • the position of the drain hole 10 is moved from the position farthest from the rotation axis (left side) to the position closer to the rotation axis (right side) by the drain pipe 25.
  • the flexible shutter V is provided in the form of a piston.
  • the elastic shutters V of Figs. 27-29 are disposed on the edge of the dome of one end of the rotary container 4. Since the structure is very simple, it can be understood that the design can also be disposed on the cylindrical surface of the rotary container 4. However, it should be noted that the piston structure of FIG. 29 is disposed on the cylindrical curved surface of the rotating container 4, and is twisted by 90 degrees with respect to the rotating shaft 6 (ie, becomes parallel to the rotating shaft 6), and the characteristics of the switching piston are change. That is, the centrifugal force of the piston Y itself does not play a large role in the elastic valve V of the switch.
  • this quick-control valve switch design is very high. To obtain a heavier substance in the liquid, the substance can be discharged at the drain hole 10 at a high rotational speed. If a lighter material is to be obtained, it can be kept at a speed that does not open the speed control valve and continuously input the liquid, allowing lighter substances to be discharged at the output port 7.
  • the shutter can also be opened by electromagnetic means.
  • the method is to add a magnet to the end of the lever near the spring S position of the lever valve of Fig. 27 or Fig. 28, and to add a coil around the rotating container at the height of the periphery of the rotating container. The coil is fixed and does not contact the rotating container.
  • current is input to the coil to generate a magnetic force in the coil and the magnet is pressed down to open the shutter.
  • the third type of valve opening method is only applicable to rotating containers with a large gap between the maximum wheelbase of the output port and the maximum wheelbase of the input port.
  • the input chamber is not full (ie, the water level does not reach the maximum wheelbase position of the input port), assuming that the water pressure of the near drain hole 10 is just not possible. Push open the flexible shutter. If the speed of the input water is suddenly increased enough to bring the water level of the input chamber closer to the rotating shaft, the water pressure near the drain hole 10 will increase. At this time, the drain hole will open.
  • the above water pressure control method requires automatic control of the amount of input water and the use of an optical sensor for detecting the accumulation of heavy impurities to achieve full-automatic sewage discharge.
  • an optical sensor for detecting the accumulation of heavy impurities to achieve full-automatic sewage discharge.
  • the rotary container 4 of the present invention typically utilizes a fixed input tube secured to the purifier housing for fluid input.
  • a porous tube as a fixed input tube, and separately inputting fluid into different input chambers, it is difficult to stably maintain the water supply speed of each input chamber for a long time. .
  • the reason is that the input water flow is generally not so strong that the water outlet of the porous tube is easily clogged with contaminants or the like.
  • the solution is to provide a synchronizing input tube R near the rotating shaft in the rotating container 4. This synchronizing input pipe R is rotated in synchronization with the rotating container 4.
  • FIG. 30 shows this design. Basically, the embodiment of Fig. 30 is very similar to that of Fig. 15.
  • a synchronizing input pipe R is provided at the rotational axis position of the rotary container in Fig. 30.
  • the inlet of the synchronizing input pipe R is narrowed by an annular dome so that the input fluid does not flow out of the inlet at high speeds.
  • the rotating container with the synchronous input tube R is also required to have a fixed input tube T input. But this fixed input tube T does not have to be a porous tube anymore.
  • FIG. 31 shows a band An embodiment of a rotating container having a small stirring piece for 5 seconds.
  • the small stir plate 5s and the fixed input pipe T constitute the structure of a centrifugal pump.
  • the small stirring piece 5s may be formed by extending the main stirring piece 5 in the container in addition to the independent setting.
  • a synchronous centrifugal pump 27 can be installed as the input water pump at the rotating shaft position of the rotating container.
  • Figure 32 illustrates an embodiment of a fluid filtration device with a synchronized centrifugal pump 27.
  • the synchronous centrifugal pump 27 rotates together.
  • the water in the water tank W below the fluid filtering device is pumped into the rotating container 4.
  • the air in the rotating container can be discharged from the vent hole 32.
  • the bottom view of the synchronous centrifugal pump 27 is shown at the bottom of the figure.
  • the structure is very simple: a stirrer is built into a cylindrical tube (in this case, there are four).
  • the inlet end is provided with a circular cover with a middle hole.
  • the present invention includes, in addition to the aforementioned rotary container 4, a purifier developed using the rotary container 4.
  • Purifier example 1 seawater oil separator
  • Figure 33 shows an embodiment of a seawater oil separator.
  • the structure of the rotary container 4 in this embodiment is similar to that of the rotary container 4 in the embodiment of Fig. 7, and the rotary container 4 is manufactured using a transparent material and is directly driven by the motor M.
  • the motor M is fixed to the outer casing 33 of the purifier by means of a shock-proof rubber nail N.
  • the combination of two light-sensitive elements is used to measure the oil and seawater reserves in the container to make a decision to drain or drain the oil.
  • the light sensing element combination (consisting of the light source L and the light sensing element R) is transmissive. If not blocked, the light of the light source L can be received by the opposite light sensing element R.
  • the signals received by all of the light sensing elements R are lowpass filtered to reduce the effects of possible contamination of the flexible shutter V and the input conduit 29a (see Figure 7).
  • the oil is discharged from the outlet port 7, and the seawater is discharged from the drain hole 10. It is assumed that seawater is more transparent than oil (oil oil).
  • oil oil oil
  • the oil discharge process should be run; Enter seawater and turn at a lower speed to avoid the speed control valve V hitting the door.
  • the oil accumulated in the inner ring is discharged from the output port 7.
  • both light-sensing elements R sense light again, the process of discharging seawater should be started; that is, the high-speed rotation causes the elastic sewage valve V to open.
  • the purified seawater is discharged through the drain port 38 on the purifier housing, and the oil is collected in the collecting container C.
  • the structure and principle of the elastic sewage valve (V) can be referred to the embodiment of Figs. 27-29.
  • a filter may be appropriately added in front of the two photosensitive elements R to increase the resolving power of seawater and the oil stain.
  • the oil stain is yellow in peanut oil and the light source L is white
  • a filter that filters out the yellow light should be used.
  • the stronger light sensing value corresponds to seawater, and the weaker light sensing value corresponds to oil stain.
  • MCU microcontroller
  • the type selection of the rotary container 4 is quite important. If the input conduit 29a is replaced with a larger input chamber 29, the oil collects at the inner ring of the input chamber 29 at a faster speed than the output chamber 30, so that the value obtained by the photosensitive element R does not correctly reflect the output. The actual situation of the cavity 30 has thus made a wrong decision.
  • Purifier example 2 external water filter
  • Figure 34 shows an embodiment of an external water purifier.
  • the upper cover of the inner rotating container 4 is made of a transparent material and the uppermost piece of the circuit separator P is made of a white material so that the light of the light source L can be reflected to the light sensing element R.
  • the rotating container is the aforementioned Class B multi-chamber series design with a small stirrer 5s.
  • the small stirring piece 5s and the fixed input pipe T fixed to the top of the purifier form the structure of the centrifugal pump.
  • the fixed input pipe T is an inverted U-shaped, and can also draw water from the water tank W using the characteristics of the siphon input. In other words, even if there is no small stirrer 5s, the siphon input can be automatically input by siphoning.
  • a heavy impurity collecting container D is hung under the outer casing 33 of the purifier. Heavy impurities are discharged from the elastic shutter V and passed through the heavy impurity output holes 38 of the purifier to the heavy impurity collecting container D.
  • a reflective combination of light sensing elements In order to achieve the effect of automatic sewage discharge, it is also set A reflective combination of light sensing elements.
  • the output signal of the photo-sensitive element R is low-pass filtered and passed through a micro-control unit board (not shown) having a comparison circuit.
  • the speed of the motor M is also controlled by the micro control unit board.
  • the specific operation is as follows: It is assumed that the heavy impurities accumulated in the rotating container 4 are dark; if the value sensed by the photosensitive element R is a heavy impurity corresponding to a dark color, the process of discharging the heavy impurities in the container begins. That is, the rotating container 4 is rotated at a high speed to open the elastic shutter V. In this embodiment, the length of time for maintaining the state of discharging heavy impurities may be set in advance.
  • a further feature of this embodiment is that it can be utilized. That is, when the input water has a gas, the gas therein can be regarded as a light impurity and discharged from the output port 7. (If the light impurities are liquid, the situation is a little different. For details, refer to the embodiment of Figure 33.)
  • the practical application includes the removal of chlorine from the water. Some uses, such as changing water during aquaculture, and reducing chlorine in tap water can also be applied.
  • an automatic purification culture system can be formed with at least two water tanks or a tank with a space inside. This concept is illustrated in Fig. 35; the automatic purification culture system in this embodiment can be used as a domestic ornamental fish.
  • the external water purifier used is basically the same as the embodiment of Fig. 34. There is a gap in the water tank, which divides the water tank into two parts, namely the aquaculture tank W1 and the algae culture tank W2 shown in the figure.
  • Aquaculture tank W1 and algae culture tank W2 is best equipped with a simple biochemical purification system to convert highly toxic pollutants such as ammonia and nitrite into nitrate.
  • the biochemical purification system in the algae culture tank W2 can also increase the carbon dioxide content in the tank. If it is necessary to further increase the speed of algae cultivation, the carbon dioxide can be injected into the algae culture tank W2 or the electric light can increase the illuminance of the algae culture tank W2.
  • the aquaculture tank W1 is used to raise ornamental fish or some target aquatic products.
  • the algae culture tank W2 is mainly used to culture algae (of course, it is possible to breed some aquatic organisms that are small or do not require active space). Therefore, the algae culture tank W2 should be placed close to the window and often exposed to sunlight SS.
  • the ornamental fish is initially cultured, the external purifier can be left untouched. After a few days or when the algae begin to grow in the container on the left or right side, the external purifier is activated intermittently to allow the water in the algae culture tank W2 to exchange with the water in the aquaculture tank W1.
  • the amount of water exchanged per day is 5-10% of the total water is sufficient.
  • more nutrients required for the reproduction of nitrates, nitrites, ammonia and other algae can enter the algae culture tank from the aquaculture tank W1.
  • W2 to help algae to multiply.
  • the algae in the algae culture tank W2 will grow rapidly, and then you can enter a sustainable automatic purification operation mode.
  • the concept of a sustainable automatic decontamination mode is to use additional sensitized detectors to detect water entering the external water purifier (for example, to detect water in the fixed input tube T) or to directly detect water in the algae culture tank W2. Transmittance to determine whether to activate the external water purifier. If the transmittance is lower than a certain level, the external water purifier is activated. In addition, it is theoretically possible to measure the growth of algae in the water in the algae culture tank W2 by means of a timed method; the method is to activate the external water purifier and measure the speed at which the heavy impurities are concentrated in the rotating container. If less than a certain time, the impurity storage space can be filled, and the representative should continue to operate the purifier.
  • the impurity storage space cannot be filled at a certain time, the operation should be suspended, and the density of the algae is enough to be tested after waiting for one or two days.
  • the advantage of this timing method is that no additional photosensitive elements are used.
  • the external water purifier in the figure is placed on the front side of the sink (fish tank). A better arrangement should be placed on the side of the sink, near the spacer to minimize the length of the lateral portion of the fixed input tube T.
  • the height of the spacer is slightly lower than the height of the sink. This allows a water return channel to be formed above the spacer. If the aquaculture tank W1 and the algae tank W2 are made up of two separate tanks of similar height, an inverted U-tube filled with water can be used as a siphonic water return channel.
  • Figure 36 shows an embodiment of a shelf-mounted water purifier. (Although a heavy impurity collecting container D is attached, the rotating container 4 is above the water tank W.)
  • the structure is basically the same as that of the embodiment of Fig. 32.
  • the feature is the use of a synchronous centrifugal pump 27 to input water from the sink W.
  • the method of automatically discharging and collecting heavy impurities is similar to the embodiment of Fig. 34.
  • Purifier example four car exhaust gas purifier
  • the invention can also be applied to gases. For example, it is to remove suspended particles from the car's atmosphere.
  • the method is to use the Xiamen gas pipe of the automobile as a fixed input pipe T. If the car's air pipe is sufficiently stable, the two bearings can be placed over it and the rotating container 4 can be placed. Other accessories, such as motors, are also hung on the building air pipe. If it is not stable enough, the purifier must be fixed to the chassis of the car by means of a support frame. In terms of power, it can be driven by the electric motor or the power of the internal combustion engine of the car.
  • FIG. 37 illustrates an important embodiment of the present invention.
  • the rotating container contained therein is very similar to the previously described embodiment of FIG.
  • the principle is to use a reverse osmosis membrane as a filter material.
  • the lower cross-sectional view of Fig. 37 shows the construction of the filter element F2 in the upper schematic.
  • the stirring piece 5 is appropriately provided in the input chamber 29 and the output chamber 30.
  • An important application of this invention is seawater desalination. Therefore, this document will explain the principle of operation with a desalination system.
  • the filter element F2 is caused by the reverse osmosis membrane RO being sandwiched between the hard and water permeable substrate SU (substrate).
  • This substrate SU also provides some physical filtration and biological filtration (culture of the substrate of the bacteria).
  • the reverse osmosis membrane RO A wavy design is used to provide a large surface area.
  • the water pressure required for the pure water PW to pass through the reverse osmosis membrane RO is obtained by the centrifugal force generated when the rotating vessel is rotated. Therefore, in order to obtain a larger water pressure, in addition to speeding up the speed, it is also possible to increase the difference between the maximum wheelbase of the output port and the maximum wheelbase of the input port during design.
  • the water pressure of the drain hole in the elastic shutter V can be increased by shifting the water in the input chamber to the rotating shaft by a higher rotation speed or the aforementioned clogging by the filter material.
  • the design of the flexible shutter V can be referred to the design of FIGS. 27-29.
  • the elastic shutter V in this embodiment is disposed on the outer peripheral curved surface of the cylindrical rotating container.
  • the seawater SW is input to the rotary container, and filtered through the filter element F2 to obtain pure water PW.
  • the brine and the sewage DW containing heavy impurities are discharged through the elastic shutter V.
  • the blowdown procedure can be continuous or intermittent.
  • Intermittent blowdown can be determined by using a light sensing element to detect the accumulation of heavy impurities and the water level of the input chamber.
  • a light sensing element to detect the accumulation of heavy impurities and the water level of the input chamber.
  • Continuous blowdown is also a way to monitor the water level of the input chamber and increase the speed to ensure that the input seawater does not overflow from the input tube placement port to the output port 7.
  • the present invention Compared with the reverse osmosis system generally adopting a high pressure water pump, the present invention has the advantages of energy saving, large efficiency (more pure water can pass under the same water pressure), and automatic cleaning.
  • Speed Generally, the sooner the better. However, there are speed limits due to the rotating container 4 and associated mechanical parts such as the bearing 18. The cost of achieving high-speed rotation is the cost increase. Therefore, the design is mainly based on the centrifugal acceleration rate required for practical applications. Of course, at the same centrifugal acceleration rate, the required rotational speed of the large diameter rotary passenger is smaller than that of the small diameter rotary container. For example, in general fresh water or seawater applications, speeds from 500 rpm to 30,000 rpm are common.
  • Liquid 1 input speed Generally, the slower the better. However, the liquid 1 input speed is equal to the speed at which the liquid is treated for purification. Therefore, in practical applications, an acceptable purification effect should be determined before it is Slowly increase the input speed from small to large to find the most appropriate value.
  • the continuous average speed input liquid method It can also be an input that does not continue with a certain waveform. For example, the input method of the square waveform generally can obtain a better purification effect than the average speed input. Inputs of different waveforms are existing techniques (for example, in liquid applications, electromagnetic water valve switches are used to achieve the desired effect). I will not go into details here.
  • Effective capacity of the rotating container 4 In actual operation, the amount of water that can be stored is the effective capacity of the rotating container 4. Generally the bigger the better. However, excessive volume increases manufacturing, operation (such as electricity bills) and maintenance costs.
  • the rotary actuator 19 can be an existing technology such as an electric motor, a pneumatic motor, or an internal combustion engine. It can be directly connected to a rotating container or powered by gears, timing belts, drive belts, etc. Basically, existing technologies have achieved good results.
  • the liquid 1 input method may be a method in which the water pump 20, the water pressure of the tap water itself, a siphon tube, and the like are drained from the high position to the low position by the gravity suction. Further, if the water is supplied from the water pump 20, the power of the water pump 20 and the power of the rotary container 4 can be supplied from the same rotary drive 19 as described above. In addition to the aforementioned examples of synchronous centrifugal pumps, another generally applicable method is to simultaneously transfer power from the rotary drive 19 to the water pump using direct (eg, the shaft is aligned) or the aforementioned indirect connection of gears, timing belts, drive belts, and the like. 20 and rotating the container 4. This arrangement can effectively reduce manufacturing and maintenance costs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Centrifugal Separators (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

一种旋转容器、使用该旋转容器的流体过滤装置及系统。所述旋转容器(4)包括外壳(33),所述外壳(33)具有输入管放置口(3)和输出口(7),所述输入管放置口(3)和所述输出口(7)位于所述外壳(33)的相同端或相对端,并与所述旋转容器(4)的边缘有一段距离,以使所述旋转容器(4)在转动时能储水。所述输入管放置口(3)可被固定在所述流体过滤装置外壳的固定输入管(T)伸入并注入流体,所述输出口(7)最远离所述转轴(6)的位置比所述输入管放置口(3)最远离所述转轴(6)的位置更远离所述转轴(6);所述旋转容器(4)内置有与所述外壳同步旋转的搅拌片(5)。所述旋转容器、流体过滤装置和系统可以有效地净化进入旋转容器中的流体。

Description

旋转容器、 使用该旋转容器的流体过滤装置及系统 技术领域
本发明涉及一种旋转容器、 使用该旋转容器的流体过滤装置及系统, 特别涉及从流体中分离出质量密度较高或较低的物质的旋转容器、 使用该 旋转容器的流体过滤装置及将流体过滤装置用于净化水、 空气、 污染海水、 等离子体等流体的系统。 此外, 如适当地装置了逆渗透薄膜, 更可作海水 化淡之用。 背景技术
目前, 在生产、 水处理、 气体净化等各领域中, 需要对参杂有杂质的 液体、 气体或等离子体 (plasma)等流体进行过滤。 将液体、 气体或电离子体 当中的一些质量密度 (mass density)较低或较高的杂质过滤出来以达到净化 该流体的目的, 又或是需要得到该过滤出来的杂质作某些用途。 这种流体 夹杂着杂质的例子很多。 举例来说, 工厂或汽车排出的廈气中的悬浮粒子、 空气中夹杂的尘埃; 水中夹杂的有机污染物、 气体、 油污、 放射性物质、 藻类、 蛋白质、 细菌甚至是病毒; 垃圾焚化炉中的气体或火焰(电离子体) 中的一些金属离子或微粒。
现有的流体过滤装置, 一般采用过滤材料如滤蕊、 滤网等作物理过滤, 这种方法在使用后一段时间, 过滤材料便会被污染物堵塞, 必须更换或清 洗过滤材料。 而且, 如要过滤细小的污染物, 过滤材料的网目艮便要很小, 这样会增加过滤材料被堵塞的机会。 缩短过滤材料的使用寿命。
因而, 目前急需一种流体过滤装置以从流体中过滤杂质。 发明内容
鉴于现有技术的以上缺陷, 本发明提供一种旋转容器、 使用该旋转容 器的流体过滤装置及系统及其操作方法。
为了更简单清晰地说明本发明, 本文件会采用以下的一些定义: 最大轴距: 是指一个孔或开口中, 最远离转轴的距离; 例如, 转轴在 正方形孔的中心, 该正方形孔的最大轴距就是该正方形的对角线长度的一 半。
外围: 是指所述旋转容器内远离转轴的位置。 如果是说某件物件的外 围, 应该被理解成: 当该物件安置在所述旋转容器内, 远离转轴的位置。
重杂质: 在将会被净化的流体中, 较重的杂质。
轻杂质: 在将会被净化的流体中, 较轻的杂质。
输入腔: 旋转容器内的腔体; 在该腔体内, 流体大致的流向是远离转 轴。
输出腔: 旋转容器内的腔体; 在该腔体内, 流体大致的流向是接近转 轴。
首先, 本发明提供了一种旋转容器, 包括外壳, 所述外壳具有输入管 放置口和输出口, 所述输入管放置口和所述输出口位于所述外壳的相同端 或相对端, 并与所述外壳的外围边缘有一段距离, 以使所述旋转容器在转 动时能储水。 所述输入管放置口可被固定在所述流体过滤装置外壳的固定 输入管伸入并注入流体, 所述输入管放置口的最大轴距比所述输出口的最 大轴距更少; 所述旋转容器的外壳内置有与所述外壳同步旋转的搅拌片。 所述搅拌片可以是平面的或是曲面的, 其中以螺旋型搅拌片整体来说是最 好的。 在控制所述旋转容器内部水流的手段方面, 所述旋转容器的内部设 计还进一步分成三类。 包括: A类: 没有输入腔和输出腔的分别; B类: 利 用回路隔板分隔输入腔和输出腔; C类: 在 A类旋转容器中设置一端连接 所述输出口的输出导管或输出通道结构。
本发明还包括在所述旋转容器上设置排污孔, 并以弹性活门控制排污 孔开关。 本发明提供了两种弹性活门的设计。 包括杠杆式及活塞式的结构。
另外, 本发明还提供了一种流体过滤装置, 其特征在于, 包括前述的 旋转容器, 还包括固定所述旋转容器的外壳或支撑结构、 固定在所述外壳 或所述支撑结构的固定输入管、 及驱动所述旋转容器转动的旋转驱动器。
此外, 本发明还提供了另一种流体过滤装置, 其特征在于, 包括前述 的旋转容器, 还包括固定所述旋转容器的外壳或支撑结构、 装置在所述旋 转容器的转轴位置的同步输入管、 及驱动所述旋转容器转动的旋转驱动器。
本发明还提供了一种同步离心泵结构, 其结构是圆形对称管内装有搅 拌片, 所述圆形对称管的一端有一圆形覆盖, 所述圆形覆盖中央有一孔以 作输入流体之用, 所述圆形对称管、 所述圆形覆盖及所述内里的搅拌片是 同步转动的。
本发明还提供了一种自动净化养殖系统, 包括至少一个前述的过滤装 置, 并与至少一个藻类养殖槽及至少一个水产养殖槽一起操作, 所述过滤 装置从所述藻类养殖槽输入并输出到所述水产养殖槽, 所述藻类养殖槽与 水产养殖槽之间有水回流通道以使水产养殖槽的水能回流到藻类养殖槽。
本发明还提供了一种逆渗透过滤系统, 包括前述带有所述滤芯的施转 容器, 所述滤芯包含逆渗透薄膜。
本发明进一步利用了前述的两种流体过滤装置, 并配合装置在用透明 物料造、 带有弹性活门排污孔的旋转容器, 并以光感元件对该旋转容器内 的集结物的情况作实时监察。 实施了能自动清除集结在旋转容器内的重杂 质或轻杂质的净化装置。
利用本发明的旋转容器、 流体过滤装置, 可以有效地净化进入旋转容 器中的流体, 将其与其中的杂质等分离, 并且利用离心力将重杂质或轻杂 质分离至容器内的不同位置, 以便于收集。
除了应用在液体, 本发明还可以应用于气体及等离子体的净化或分离。 附图说明
下面通过示例, 参照附图, 进一步详细描述实施例, 其中:
图 1 示出了本发明的一个最简单旋转容器的实施例的立体图, 其中输 出口及输入管设置口是在旋转容器的相同端, 而且合并成一个合并开口。
图 2示出了图 1所示的旋转容器实施例的俯视图;
图 3 示出了本发明的一个流体过滤装置的剖面图, 其中输出口及输入 管设置口是在旋转容器的不同端。
图 4示出了本发明的另一个流体过滤装置实施例的剖面图, 其中有一 固定输入管把流体引到旋转容器深处注入。
图 5示出了本发明的一个螺旋形搅拌片旋转容器的俯视图;
图 6示出了本发明的一个 B类旋转容器实施例的原理图和俯视图; 图 7示出了图 6的 B类旋转容器实施例的一个变化型, 其中的输入腔 以输入导管代替。
图 8示出了图 6的 B类旋转容器实施例的一个变化型, 其中的输出腔 以输出导管代替。
图 9示出了本发明的一个 C类旋转容器实施例, 其中包含了输出通道 结构。
图 10示出了本发明的另一个 C类旋转容器实施例,其中包含了输出通 道结构, 并以有孔的隔板充当搅拌片。
图 11示出了本发明再一个 C类旋转容器实施例,其中包含了输出导管。 图 12示出了本发明的一个 B类旋转容器中加入一个陶瓷滤芯的实施 例。
图 13示出了本发明的一个 B类并联多腔式旋转容器实施例。 图 14示出了本发明的一个 B类串联多腔式旋转容器实施例。
图 15示出了图 13的实施例的一个变化型, 其中一些输出腔以输出导 管代替。
图 16示出了图 14的实施例的一个变化型, 其中一些输出腔以输出导 管代替。
图 17示出了本发明的一个 B类、带杂质储存空间及平面搅拌片的旋转 容器的实施例。
图 18示出了本发明的一个 C类、带杂质储存空间及平面搅拌片的旋转 容器的实施例。
图 19示出了本发明的一个 B类、带杂质储存空间及 2片螺旋形搅拌片 的旋转容器的实施例。
图 20示出了本发明的一个 B类、带杂质储存空间及 4片螺旋形搅拌片 的旋转容器的实施例。
图 21示出了本发明的一个 C类、带杂质储存空间及螺旋形搅拌片的旋 转容器的实施例。
图 22示出了本发明的一个内部不是圆对称的旋转容器的实施例。 图 23示出了本发明的一个 B类、没带杂质储存空间及带有 4片螺旋形 搅拌片的旋转容器的实施例。
图 24示出了本发明的一个 C类、没带杂质储存空间及带有螺旋形搅拌 片的旋转容器的实施例。
图 25示出了在图 20中的旋转容器的杂质储存空间内加一些轴向加固 条的实施例。
图 26示出了本发明的一个外壳可拆开的旋转容器实施例。
图 27示出了本发明的一个杠杆式弹性活门的结构图。
图 28示出了本发明的另一个杠杆式弹性活门的结构图, 其中利用了引 流管把排污孔移到较近转轴的地方。
图 29示出了本发明的一个活塞式弹性活门的结构图。
图 30示出了本发明的一个带有同步输入管的旋转容器实施例。
图 31示出了本发明的一个带有小型搅拌片的旋转容器实施例。 该小型 搅拌片能结合固定输入管形成离心泵结构。
图 32示出了本发明的一个同步水泵设置在一个包含旋转容器的液体净 化装置的实施例。
图 33示出了本发明的一个海水、 油污分离装置的实施例。
图 34示出了本发明的一个外挂式净化装置实施例。
图 35示出了本发明的一个自动净化养殖系统, 在该实施例中的外挂式 净化装置基本上是跟图 34所示的一样。
图 36示出了本发明的一个上架式净化装置实施例。
图 37示出了本发明的一个利用了逆渗透薄膜的过滤系统。 具体实施方式
本发明虽然能应用在液体、 气体或电离子体的净化或分离上, 但最主 要还是应用在液体的净化上。 所以本文件大部份章节都是针对液体上的应 用作解释。 在适当的时候, 也会对气体及电离子体上的应用作一些设计上 的调整及解释。 因为这个原因, 本文件中的实施例将流体过滤装置以净化 器来形容, 而且会以水或液体来形容被净化的流体。
本发明是通过至少一个输入管放置口, 把例如液体的流体输入高速旋 转的旋转容器内, 旋转容器内装有搅拌片以使液体跟着旋转容器同步旋转。 液体中的重杂质会积累在旋转容器内远离旋转容器转轴的位置, 轻杂质会 积累在旋转容器内靠近旋转容器转轴的位置。 旋转容器至少有一输出口。 一般而言, 输入管放置口的最大轴距比输出口的最大轴距小。 当液体在旋 转容器高速转动时被输入, 液体会由外至内填满旋转容器直至到达输出口 的最大轴距位置, 液体便开始从输出口溢出。 溢出的水会被高速四散并收 集起来, 直接或再经其他的过滤后排出。 在离心力的作用下, 旋转容器内 的液体中的不同质量密度的物质会分离。 重杂质最终会集结在远离转轴的 旋转容器内壁位置, 轻杂质会集结在近转轴的内圈位置。 在气体或电离子 体上的应用虽然表现出来的结果不一样 (例如输入的气体不像液体般 "由外 至内填满旋转容器直至到达输出口"), 但其主体部分, 即旋转容器的结构 是没有明显分别。
现参照附图详细说明本发明的各个实施例。
旋转容器
图 1表示本发明的实施例的旋转容器, 也就是本发明所要求保护的实 施例中结构最简单的旋转容器。 该实施例中, 旋转容器 4能高速转动并能 盛载水, 旋转容器 4内设置有四片搅拌片 5以使液体 1 (未示出)能与旋转 容器 4同步旋转。 图中的输入管 T是放置在输入管放置口 3的。 一般来说, 输入管放置口 3的最大轴距比输出口 7的最大轴距较小。 这个安排可使在 正常操作时, 液体优先从输出口 7流出。 (在气体或等离子体的应用上, 这 个安排也可确保流体正确地从输出口 7输出。 )该旋转容器如用电机驱动, 电机可以直接安装在旋转容器的底部, 电机的转轴与旋转容器的转轴对齐。 在操作时, 如使用一条固定输入管 T输入流体, 要确保固定输入管 T不会 碰到在转动的旋转容器的内部。 输出口 7就在固定输入管 T周边的环状开 口, 被旋转容器外壳伸延出来的输出口套管 4t包围着。 要注意的是, 这个 实施例中, 输入管放置口 3及输出口 7是在旋转容器的同一端, 所以便能 合并成一个合并开口。
本发明的流程包括, 把液体 1 输入一个在高速转动时能盛载水的旋转 容器 4内。 旋转容器 4内的液体 1在高速旋转时, 当中密度较高的物质会 集结在远离转轴 6 的旋转容器内壁位置, 密度较低的物质会集结在内圈较 接近转轴 6位置。
为了减低风阻, 旋转容器 4的外型最好是圆对称的, 例如是圆柱体或 是球体。 如不考虑风阻、 节能等问题, 外型便没有什么要求。 唯一是要在 注水前及注水后, 其重心都要和旋转轴对齐。 否则会产生巨大的机械震动 及噪音。 为了较容易显示本发明的一些特点, 本文件中的实施例都采用了 圆柱外型的设计。 在这例子中, 转轴 6是垂直的。 但在不影响输入的效果 之情况下(如用虹吸原理输入, 便有可能受到影响), 转轴 6是可以以任何 方向 (包括倒转, 使输入管放置口、 输出口在下面)设置的。
图 2表示如图 1所示的本发明的实施例的旋转容器的俯视图。 在这个 例子中, 旋转容器 4的旋转方向 D是逆时针的, 但顺时针转动的效果是完 全一样的。
图 3表示本发明一优选实施例的流体过滤装置(即净化器)的剖面图, 其中输入管放置口(上端给输入管通过的开口)跟输出口 7在旋转容器 4(以格 子着色)的不同端。 在这个实施例当中, 旋转容器 4位于流体过滤装置的外 壳 33内, 固定输入管 T是固定在外壳 33上并且置有侧孔, 用以 4巴液体 1 注入旋转容器 4内。 如图中箭头所示的流动方向, 液体 1经输出口 7排出 旋转容器 4。 液体 1最后从净化器输出口 34排出。 该实施例中, 旋转容器 4 经由两个轴承 18安装在净化器的外壳 33并由电机 M以同步轮 X及同步 带 B的方法带动。 下面的轴承 18并不是一定需要, 但有了可得到较稳固的 结构。 因搅拌片 5是直接连结旋转容器 4的外壳, 设置了重杂质导通孔 35 可使操作时重杂质较均匀分布。
搅拌片 5如果是平面的。 数量最好在 3-36片之间。 太少的容易产生不 良的内部紊流 (turbulence) ,卷起了本来已集结的重杂质,影响了净化效果。 太多的搅拌片 5会占用了太多空间, 使容器的有效储存能力减少。 要使容 器内部空间得到最有效的利用。 弧形, 特别是螺旋形的搅拌片 5是比较优 胜的。 图 5展示了一个具有 4片螺旋形搅拌片的旋转容器的俯视图。 (现存 一些计算机辅助设计软件是可以轻易得到螺旋形的形状。 在本申请文件就 不再多谈。 )其操作跟图 2所示的平面搅拌片的实施例很相似。 但有一点要 注意的是, 以图 5的旋转容器的螺旋形搅拌片 5的旋纽形态, 逆时针的旋 转方向会比顺时针的好一点。 因为在顺时针转动时, 搅拌片 5施加在其末 端集结的重杂质的应力会使该重杂质沿着搅拌片 5推回转轴方向, 以使那 些已集结的重杂质容易被水流卷起并流出旋转容器。 使净化效果差一点。 当然, 如果搅拌片 5 的旋纽形态相反了, 旋转容器的转动方向也应相应地 改变。 与片状 (平面)搅拌片比较, 螺旋形的搅拌片之所以较优性主要是因为 重杂质可以在较早的阶段便开始集结于其上。 换句话说, 流体在进入旋转 容器 4的初段便能被净化。
为了达到最好的净化或过滤效果, 固定输入管 T应根据容器的内部设 计。 图 4所示的是实例中, 旋转容器 4的输入管放置口 3及输出口 7都在 下方。 利用较长的固定输入管 T使流体能从旋转容器 4近顶端输入, 使流 体的输入位置跟输出位置的距离增大很多。 在该实施例中, 旋转容器 4是 直接连接电机 M驱动的。轴承 18可使旋转容器 4转动时的摆动减少。净化 后的液体从旋转容器 4的输出口 7排出再经由净化器排水口 34输出。
为了更好地实现本发明的过滤目的, 将旋转容器 4的内部进一步的改 进, 具体的内部设计主要分三种基本型, 依三种水流控制手段来区分:
A类: 没有输入腔和输出腔的分别
B类: 利用回路隔板分隔输入腔和输出腔
C类: 在 A类旋转容器中设置一端连接输出口 7的输出导管或输出通 道结构
A类是最简单的结构。图 1-4所示的旋转容器和净化器都是属于这一类 型。 虽然是简单, 但在一些特定的情况下, 例如, 因空间限制, 旋转容器 只能是外径小、 长度大的情况下, 就可以考虑这一类型的内部设计。
B类内部设计旋转容器的特征是容器内部加了一回路隔板 P把容器上 下分隔成输入腔 29及输出腔 30。 图 6展示本发明包括的 B类旋转容器的 一个实施例。 这个旋转容器 4跟图 4的实施例中的一样。 图 6下方还展示 了回路隔板 P的俯视图。 液体 1输入到输入腔 29, 经过回路隔板 P上的回 路口 14 流到输出腔 30, 最后经输出口 7输出。 要确保所有流体都是经回 路口 14到达输出腔 30, 回路隔板 P的中间孔直径要比输出口 7足够小。 回 路隔板 P的最外环除了可使附近集结的重杂质不易被水流沖走, 如跟旋转 容器 4的外壳结合, 可加固外壳。 这个实施例当中, 最佳的输入位置是近 旋转容器 4的顶端。 另外, 为了使在输入腔 29内的重杂质跟输出腔 30内 的重杂质分布平均一点, 可在回路隔板 P的最外边缘上设置重杂质导通孔 35。 一般而言, 如果输入腔 29或输出腔 30是很小的话, 就没有设置搅拌 片的必要。 至于决定输入腔 29、 输出腔 30的相对大小的因素, 主要是要视 乎要过滤出来的杂质是重杂质或是轻杂质。 如是重杂质的话, 则输入腔 29 和输出腔 30的相对大小不是太重要的。 但如是轻杂质的话, 便应考虑把输 入腔 29造得很小。 以免因轻杂质在输入腔 29优先集结而难以使其在输出 口 7排出。 本发明下文描述有一个海水油污净化器的实施例, 就进一步说 明了这一点。
另外, 图 6的实施例中的输入腔 29或输出腔 30都可以缩得很小, 并 以导管或一些通道结构代替。 图 7、 图 8展示了这一概念; 图 7中的输入导 管 29a就是对应于图 6所示的输入腔 29,而图 6的环状回路口 14亦演变成 了图 7的 4个圆孔 29al。 该输入导管 29a的作用就是把流体引流到旋转容 器的近外围的地方。 而图 8中的输出导管 30a就是对应于图 6所示的输出 腔 30, 而图 6的环状回路口 14亦演变成了图 8的 4个圆孔 30al。 该输出 导管 30a的作用就是把流体从旋转容器的近外围的地方引流到接近转轴的 输出口 7。 在下面一些实施例中, 回路口 14是一些较小的孔, 这种以导管 或一些通道结构代替输入腔或输出腔的设计便十分合用。
C类的内部特征主要是在 A类旋转容器内设置输出导管或输出通道结 构。 这输出导管或输出通道结构的一端开口是在旋转容器内, 近外围的位 置。 其作用等同于前述 B类设计中的回路口 14, 而另一端则接上旋转容器 的输出口。
图 9展示了一个 C类内部设计旋转容器的实施例的立体图和俯视图。 在该实施例中,旋转容器内有 4片搅拌片 5。 并利用大小差不多等于搅拌片 5, 带有开口 30bl的隔片 5a与搅拌片 5形成输出通道结构 30b。 该输出通 道结构 30b的一端开口是近容器边缘的开口 30bl , 而另一端则是接上了圆 孔状的输出口 7。 液体 1注入输入腔 29, 经开口 30bl流到输出通道结构 30b,再经设在旋转容器顶端的输出口 7输出,流动路径如图中的箭头所示。 图 9俯视图中标示了固定输入管 T及输出口套管 4t的位置。 为了更清晰展 示该实施例的旋转容器的内部结构,图 9立体图中并没有绘出固定输入管 T 及输出口套管 4t。 这种处理手法同样应用于图 10及图 11的立体图之中。
图 10展示了本发明再一旋转容器的实施例的立体图和剖面图。 该实施 例中的旋转容器也属于 C类内部设计。 在该实施例中, 输出通道结构 30b 是由前述的一般搅拌片 5及带有一圆孔开口 30bl的隔片 5a组成。 因圆孔 开口相对于隔片 5a是很小, 而隔片 5a的大小形状都跟搅拌片 5相近,便利 用了这隔片 5a充当了搅拌片的功能。 所以便把输出通道结构造 30b设计成 与输入腔 29差不多大小。 对于该实施例中液体 1的流动方式, 其与图 9中 所示的实施例中液体 1的流动方式基本相似, 在此便不再赘述。
如图 9的旋转容器内的输出通导结构 30b换成了输出导管 30a,便能得 到图 11所示的另一 C类内部设计实施例。其原理跟前述的图 9、 图 10实施 例十分相似。 不过, 3个 C类内部设计当中, 以图 9所示的旋转方向 D最 受限制。 因搅拌片的转动会使重杂质集结于上而滑向外围, 如图 9所示的 顺时针方向变成逆时针方向转动, 隔片 5a上会集结较多的重杂质, 并且滑 向外围。当重杂质到达开口 30b 1便会被水流卷走而最终会从输出口 7输出。 所以, 对应其搅拌片 5的设计, 图 9所示的顺时针方向 D转动是较好的。
理论上, B类跟 C类的水流控制方法是可以同时结合实施。 但其应用 上的效果并没有明显比单用 B类或 C类的方法好很多。
以滤材增加净化功能
如适当地加入滤芯或滤膜等滤材, 可以有效地增加过滤能力。 而且在 离心力的作用下, 滤材堵塞的情况也会改善。
图 12展示了一个上述 B类内部设计中加入一个陶瓷滤芯 F1的实施例。 该滤芯需要较大的水压才能使流体通过。 所以, 输出口的最大轴距会比输 入管放置口的最大轴距大颇多。 (与没有加入滤芯的设计比较) 至于计算所 需差距是公知的物理知识,本文便不作多谈。 图 12下方展示了回路隔板 P、 陶瓷滤芯 F1及位于输入腔 29的搅拌片 5(上图并没有绘画出)的相对位置。 陶瓷滤芯 F1设置在输入腔 29内, 其外径比回路口 14略小。 较好的设计是 在陶瓷滤芯外加搅拌片(图中并没有绘出) 以使输出腔 30 内的水能更好的 同步旋转。
除了上述的陶瓷滤芯外 F1 , 几乎所有现存的过滤材料也适用。 如用上 了逆渗透薄膜所造成的滤芯, 更可作海水化淡之应用。 本文件的最后部份, 有相关的应用实施例的描述。
B类的内部设计是最适合加入滤芯。 除了图 12的实施例的方法外, 还 可能用圆碟形的滤材取代上述的 B类内部设计中的回路隔板 P。 所述圆碟 形的滤材有中心孔给输入管输入, 但不需要回路口 14及其外边缘紧接旋转 容器之外壳。 但从利用离心力清除及防止堵塞的角度来看, 这种设计比不 上图 12的实施例。 C类的内部设计也可以加入滤材。 其设计原理跟 B类的差不多。 即是 把水流输出到输出口前利用滤材作过滤。 例如, 在图 9及图 10的实施例当 中, 隔片 5a可以被一块没有开口 30bl的滤材代替。 在图 11的实施例中, 可把滤材放入输出导管 30al之内。 当然, 为了得到足够的水压使水流能通 过滤材, 还是要利用前述的手法, 把输出口 7 的位置移到较远离转轴的位 置, 以使输出口的最大轴距跟输入管放置口的最大轴距有相当的差距。 此 外, 如不考虑物理过滤的用途而只着重于生物过滤的用途, 除了前述的在 输出腔 30装置滤芯的设计外, 滤芯也可以装置在输入腔 29,搅拌片 5或隔 片 5a等之间的空间内。 但所选用的滤芯便应该是十分疏水的, 以免造成堵 塞。
多腔式并联 (连)或串联 (连)的者虑及好处
然而, 如果能串联或并联上述八、 B或 C类旋转容器使用, 净化效果 便可以进一步加强。 但制造成本会较高。 所以本发明还包括把上述的旋转 容器的基本型的腔体结构在一个旋转容器的外壳内串联或并联起来以得到 更好的净化效果。
实施的方法具体是这样的: 把 3类基本型的内部腔体结构的其中一种 或多种叠加起来形成多腔式结构。 在并联的情况下, 其中的输出腔 30或输 出导管 30a或输出通道结构 30b都会被导通起来, 并引流到旋转容器的输 出口 7或合并开口的靠近边缘位置, 而其中的输入腔 29或输入导管 29a或 输入通道结构 29b都被固定输入管分流注入流体。 在串联的情况下, 除了 最接近输出口的输出腔或输出导管或输出通道结构是直接经输出口排出流 体外, 其他的输出腔或输出导管或输出通道结构都会被引流到邻近一层的 输入腔 29或输入导管 29a或输入通道结构 29b中。
图 13及图 14分别展示了一个多腔式并联结构的旋转容器及一个多腔 式串联结构的旋转容器。 图 13所示的是 B类旋转容器并联的情况。 其中输 入腔 29及输出腔 30各有三个。 并利用了一条有多孔的固定输入管 T分配 液体给不同的输入腔 29。在输出方面, 除了最接近输出口 7的输出腔 30是 直接输出到旋转容器输出口 7, 其他输出腔 30都是利用导管 Z导通起来并 最终引导到旋转容器输出口 7输出。
B类旋转容器串联的结构是比并联结构简单一点。 如图 14所示, 其表 示三个 B类旋转容器串联而成的一个多腔式旋转容器,其中输入腔 29及输 出腔 30各有三个。 除了最接近输出口 7的输出腔 30是直接经输出口 7排 出流体外, 其余两个输出腔 30出来的液体都直接流到下一个输入腔 29中。
图 15及图 16的实施例当中就是把图 13及图 14当中的其中两个输出 腔 30以导管代替了。
至于 C类旋转容器的并联方法, 因其输出口多是较小的孔, 用上述 B 类并联的手法处理是很合适的。即是用导管把相关输出腔 30或输出导管 30a 或输出通道结构 30b的输出引导到总的旋转容器输出口 7 。 而 C类旋转容 器的串联方法, 就是把相关输出腔 30或输出导管 30a或输出通道结构 30b 的近轴输出口对齐下一层 (假设总的旋转容器输出口 7 在下面) 的输入腔 29。
而 A类的并联及串联多腔式设计原理跟 B类的很相似, 这里就不再重 复。
至于 A、 C类及 A、 B、 C混合的多腔式设计也跟上述 B类或 C类的的 多腔式设计原理^^目似。 这里就不便再赘述。
这种多腔式并联或串联的旋转容器设计比起相同体积的单腔式设计除 了有更好的净化效果, 还有更坚固不易变形的好处。 这优点在高速旋转时 差别很明显。 换言之, 多腔式设计能适应更高速旋转的应用。
杂质储存空间
为了防止已集结的重杂质 (未示出) 因过多的累积而被流经附近的水 流卷起而流走。 较佳的设计是在最外围多加一个杂质储存空间。 图 17展示 本发明的一个属于 B类旋转容器的实施例的剖面图, 图中的三角形组成的 结构可以被理解为布满很多 V形槽或锥形孔的档片 F。 这些档片 F是与搅 拌片 5的高度一样, 即是从圆柱容器的一端伸展到回路隔板 P。挡片 F与外 壳之间形成了杂质储存空间 16。 这个 B类旋转容器内的流体流动的方向与 图 6所示的实施例相似。 重杂质(未示出)是经杂质排出口 17排到杂质储 存空间 16内。 在这类设计中, 杂质排出口 17是应该尽量的小但又能让重 杂质通过为最好。其设计原则是:杂质排出口 17的总面积应比回路口 14(指 B类内部设计)或输出通道结构 30b的近外围开口 30bl (指 C类内部设计)的 总面积小 ί艮多, 才能避免大量液体流经杂质储存空间 16, 卷起已集结的重 杂质。 但考虑到实际制造上的难度及应用上的需要, 一般大小为 0.1 -3mm 已很适当。 较大的杂质排出口 17在没有排污孔 10的旋转容器是比较便于 清洗杂质储存空间内的重杂质。 形状方面, 杂质排出口 17的大小最好是向 杂质储存空间 16方向收窄。 即, 近转轴 6的一面大, 近杂质储存空间 16 的一面小。 例如是类似锥形的孔或 V形的槽也很合适。 这种两边开口大小 不一样的孔能使重杂质很容易进入杂质储存空间 16, 但很难逃出。 而且由 于离心力的作用下, 锥形孔或 V形槽所形成的斜面可以防止重杂质停留在 上面。
如果希望较容易清除杂质储存空间 16内的重杂质, 便应在旋转容器设 置一些可开关的排污孔 10。 此外, 如图 17所示, 如果搅拌片 5最外端是粘 紧旋转容器的外壳 4a, 可以加强旋转容器的物理强度, 但最好是加一些重 杂质导通孔 35在搅拌片 5最外端的边缘上, 以使不同的腔体内集结的重杂 质分布会平均一点并且能经排污孔 10排出。 这个实施例当中, 排污孔 10 是设置在圆柱状的旋转容器的其中一端的圆盖上。
图 18展示了另一优选实施例的旋转容器的俯视图, 这个实施例跟图 9 的分别是多了杂质储存空间 16。 与图 17的实施例相似, 图 18中的档片 F 可以被理解为布满很多 V形槽或锥形孔的曲面。 这些档片 F是与搅拌片 5 的高度一样, 即是从圆柱容器的一端伸展到另一端。流体从中央的输入管 T 注入输入腔 29, 经过隔片 5a形成的开口 30bl到达输出通道结构 30b, 再 由输出口 7输出。
本发明的一个重要部份是螺旋形搅拌片的旋转容器。 而利用上述杂质 储存空间的方法使集结的重杂质避免被水流卷走是特别适合螺旋形搅拌片 的旋转容器。 图 19展示了一个有两片螺旋形搅拌片 5的旋转容器。 这个实 施例也是属于上述 B类内部设计。 因螺旋形搅拌片 5能让重杂质在其上面 集结, 并且沿着其表面滑到最外端。 大大增加重杂质被收集的可能性。 与 前述的两个实施例一样, 图 19的实施例中, 档片 F大致上是环状的。 其中 有两段是带锥形孔或 V形槽 (图中以三角形代表) , 另外两段近回路口 14 的并没有设置锥形孔或 V形槽等。主要是防止在杂质储存空间 16集结的重 杂质被回路口 14附近的较强水流卷起并从回路口 14流走。 除了档片上可 以设置杂质排出口 17。 螺旋形搅拌片的近外围的末端也可以设置杂质排出 口 17。 图 20的实施例当中, 就展示了这个概念。
在图 20当中, 共有四片搅拌片 5(以斜线着色的)。 在搅拌片 5的近外 围末端设置了锥形孔或 V形槽, 并连接了在档片 F上的一些通往杂质储存 空间 16的导管, 以使在该位置上的重杂质能排出杂质储存空间 16。 这种安 排可使在搅拌片 5末端集结的重杂质不至过多而容易被水流卷走。 至于要 在什么位置开始设置杂质排出口 17就要视乎所要收集的重杂质会在什么地 方开始集结。 当然, 档片 F的高度与搅拌片 5的高度是一样的。
图 21展示了另一个在搅拌片 5外围末端及在档片 F上都设置了杂质排 出口 17的设计。 这是一个包含两片搅拌片 5及两片隔片 5a的 C类旋转容 器。 杂质排出口 17的设计考虑因素跟图 20的差不多。 另外, 与图 19、 图 20的实施例相似, 在图 21的输出通道结构 30b的近外围开口 30bl附近的 档片 F最好不要设置杂质排出口 17。
上述的内部设计都是较为对称的。 但其实是否对称并不是本发明必然 的特征。 图 22示出了一种不对称内部设计的旋转容器。 跟图 19、 图 20的 差不多,但这个设计只有一片螺旋形的搅拌片 5。 利用现存一些电脑辅助设 计软件, 可以 I巴重心调到与转轴 6对齐, 又或是在生产后, 作实际测试后 再矫正其重心位置。 最重要的是, 要确保在注入液体 1 及没有注入液体 1 时, 其重心都是跟转轴对齐。 至于矫正重心的方法是现存一些有高速转动 结构的电器产品所采用的一些常用技术, 本申请文件就不再多谈。
在图 19至图 22的螺旋形搅拌片旋转容器的实施例中, 都包含了杂质 储存空间 16。 至于要得到没有杂质储存空间 16的实施例, 可参考图 23与 图 24的实施例。 图 23展示了一个带四片螺旋形搅拌片 5的 B类内部设计 旋转容器的俯视图。 在该实的例中, 回路口的形状比较窄, 主要原因是要 避免在使用时, 太接近集结在对面搅拌片 5上的重杂质, 而导致水流把那 些重杂质卷走。 图 24展示了一个 C类内部设计旋转容器的俯视图。 其操作 原理及结构跟图 21的实施例比较接近。
螺旋形搅拌片 5 的设计虽然有较好的净化效能, 但从生产上看, 比平 面搅拌片的产品技术要求多。
旋转容器的结构加强的手段与方法
如需要加强旋转容器 4的结构以应付高速旋转的需要, 除了以上说的 多腔式设计外, 另一有效方法就是让搅拌片 5及回路隔板 P (只适用于 B类 旋转容器 4)直接粘紧旋转容器 4的外壳上。 但这方法是不适用于外壳能拆 开方便清洗的设计。 此外, 在旋转容器 4的外壳, 内或外加上一些轴向加 固条或沿着圆周加上环状加固物料也是可行的手法。 但如在外壳内壁加上 加固物料, 有可能造成在操作时重杂质被加固物料分隔而造成不均匀的情 况。 解决的方法就是像前述在回路隔板 P或在搅拌片 5上设置重杂质导通 孔 35的手法一样。 图 25展示了在外壳内壁加上轴向加固条 J 的实施例。 与图 20所示的实施例一样,具有 4片螺旋形搅拌片旋转容器。该实施例中, 轴向加固条 J把外壳连结内部的结构使旋转容器 4的结构进一步加强。轴向 加固条 J上置有重杂质导通孔 35。
排污孔的位置与数量
排污孔 10 的设置是为了方便把旋转容器 4 的近外围集结的重杂质排 走, 排出的方法一般是打开排污孔 10并以高速转动旋转容器 4而达成的。 在带有杂质储存空间 16的设计中, 在排污的过程中, 容器内的水或额外为 排污而注入的清洁液都会经杂质排出口 17注入杂质储存空间 16再从排污 孔 10排出。 所以, 杂质排出口 17附近集结的重杂质是比较容易清洗掉。 但在没有杂质排出口 17的档片 F附近的重杂质就较难被清洗掉。把排污孔 10设置在没有杂质排出口 17的档片 F对开的位置是一个改善这种情况的方 法。 原因是在排污时, 排污孔 10附近较急的水流能帮助清洗附近集结的重 杂质。
在没带杂质储存空间 16的设计中,排污孔 10应如图 23、 图 24所展示 的位置设置。 这样便可以确保在清洗时, 外壳内壁能最大可能被水流沖洗。 当然, 在图 23的实施例中有四片搅拌片 5 , 并形成了四个输入腔 29或输出 腔 30(要视乎所述的俯视图是代表输入腔 29还是输出腔 30) , 但只有两个 排污孔 10。 改善的方法就是在搅拌片 5的末端加上一些重杂质导通孔 35。
排污孔 10的数量最少可以是一个。 但两个或以上较容易使旋转容器 4 的重心与转轴对齐。 然而, 一个排污孔 10的设计也有其好处, 就是在维修 及操作上成本较低。 在一个排污孔 10的设计中, 必须确保所有能储存杂质 的区域都是相通而且能利用一个排污孔 10排出。 其中一个方法就是在搅拌 片 5连接外壳的边缘上加最少一个重杂质导通孔 35以使重杂质能通过。 此 外, 如采用了 B类内部设计, 在回路隔板上 P的最外围边缘上也最好置有 重杂质导通孔 35。
当然, 就算是多个排污孔 10的设计, 把所有能储存杂质的区域全部导 通起来也是比较好的设计。 原因是旋转容器 4在排污时或在一般不排污的 操作时, 比较能确保旋转容器 4的重心与转轴对齐。
非圆对称的内壁
要使集合在旋转容器 4外壳 4a内壁的重杂质容易从排污孔 10出, 除 了上述的排污孔 10设置位置的考虑外, 还有一个极有效的方法: 就是把旋 转容器 4外壳 4a的内壁造成非圆对称, 例如椭圆。 并把两个排污孔 10分 别设置在该椭圆的最远离中心的两个位置。 由于离心力的原固, 在高速转 动时, 重杂质会优先在该两个位置集结。
收集或清除在旋转容器内的重杂质有以下三种方法得到的设计处理 一、 留在旋转容器内, 不用清洗
二、 以手动方式清洗。
三、 以自动方式清洗。
第一种方式是比较适用于一些很极端的情况, 例如重杂质是带高辐射 的物质, 如没专门的知识便不建议清洗。
第二种方式是用人手清洗旋转容器 4。除了把清洁液注入旋转容器内并 以交替的顺、 逆时针方向转动旋转容器以达到清洗的目的, 还可以在旋转 容器上加上上述的实施例中提及的可开关的排污孔 10。 一个简单的方法是 开螺孔并用螺丝关上。 另一可能性是利用在大型五金店很容易找到的快速 夹的结构达成。 图 17-图 25的实施例中都标示了排污孔 10的位置。 当排污 孔 10被打开, 并使旋转容器 4高速转动, 容器内的重杂质便会跑出来。 如 有需要, 可同时经固定输入管 T注入清洁液或水帮助进一步清洗。
另一种方便动手清理的设计是可拆开的外壳。 图 26表示本发明的另一 旋转容器的实施例, 其中外壳可扭开。 这样便可以方便清洗。 在这例子中, 旋转容器在正常操作时的转向 D是顺时针的 (从上向下看, 即俯视) , 而且 驱动电机是直接连接外壳的下半部 4a2 并且直接驱动外壳的转动, 旋转容 器 4的上半部 4al便应设计成以逆时针的方向旋扭进外壳的下半部 4a2, 否 则在操作时会松脱。 橡胶造的 0-环 (O-ring)Q是用作防止泄漏。
第三种方法可分为三类, 就是转速控制、 电磁控制及水压控制。 三种 方法都包含最少一个弹性活门 V。 不同的是, 开启弹性活门 V排出污物的 方法不同。 转速控制方法是利用转速控制弹性活门 V来排出旋转容器内的 重杂质。 图 27展示了一个利用弹簧 S组成的弹性活门 V的实施例。在该实 施例中, 旋转容器 4的转轴在图的右边 (省略另一半), 排污孔 10在旋转容 器 4的上端圆盖的近边缘位置。 弹性活门 V的结构是杠杆式的。 弹簧 S提 供的力量把活门关闭。 该实施例主要是靠旋转容器 4 高速转动时, 排污孔 10中的液体压力增加而推开弹性活门 V。 储存在容器 4内的重杂质 9便可 以排出。 活门要关得紧而不容易泄漏, 压头 H最好是用橡胶等有弹性的材 料来制造。 此外, 如杠杆是用石墨 (碳纤维)等有弹性的材料来造, 则可以利 用一块足够高的硬质垫高物放置在弹簧 S 的位置以使石墨杆弯曲而产生所 需的压力使压头 H压下。
虽然排污孔 10的位置最好是在容器 4的最远离转轴位置, 但这样的安 排要有强度较大 (特别是应用在液体时)的弹簧才能压紧活门使其在不需排 污的操作时不会泄漏。 此外, 有些时候, 例如要设置一个直径较少的重杂 质收集容器在旋转容器 4下面, 排污孔 10在较接近转轴位置是比较容易达 到目的。
对于以上问题, 图 28提供了一个解决方案。 图 28展示了另一个利用 弹簧 S组成的弹性活门 V的实施例。跟图 27所示的实施例相似, 转轴在右 边。利用引流管 25把排污孔 10的位置从最远离转轴位置 (左边)移到较接近 转轴位置 (右边)。 因越接近转轴, 液体排出的压力会越小。 换言之, 用较少 的力量便可以把活门关闭。 因此, 跟图 27的实施例比较, 图 28的弹簧强 度低一点也能把排污孔 10 关上。
图 29展示另一个弹性活门 V的实施例。 这个实施例当中, 利用引流管 25把排污孔 10的位置从最远离转轴位置 (左边)移到较接近转轴位置 (右边)。 弹性活门 V是以活塞的形式设置。 当旋转容器在高速旋转时, 活塞 Y自身 的离心力加上排污孔 10上的液压!巴活门(活塞)推开。
图 27-29的弹性活门 V都是设置在旋转容器 4的其中一端的圆盖边缘 上。 因其结构是十分简单, 可以理解得到, 该设计是同样能设置在旋转容 器 4的圆柱曲面上。 但有一点要注意的, 图 29的活塞结构如设置在旋转容 器 4的圆柱曲面上, 相对于转轴 6是扭转了 90度的话 (即变成平行于转轴 6), 其开关活塞的特性会有改变。 即, 活塞 Y 自身的离心力对开关这个弹 性活门 V起不了多大的作用。
这个速控活门开关设计的应用价值十分高。 要得到液体中较重的物质, 可用高转速使该物质在排污孔 10排出。 如要得到较轻的物质, 可保持在不 把速控活门打开的速度并持续地把液体输入, 让较轻的物质在输出口 7排 出。
除了上述利用的弹性活门打开, 还可以利用电磁方式把活门打开。 方 法是在上述图 27或图 28的杠杆式活门的近弹簧 S位置的杠杆末端加上一 个磁石, 并在旋转容器的外围近上述磁石的高度位置加一线圈围绕旋转容 器。 该线圈是固定的, 而且并不接触旋转容器。 当需要打开活门时便把电 流输入上述线圈以使线圈内产生磁力并把上述磁石压下, 打开活门。
第三类活门开启方法只适用于输出口最大轴距与输入口最大轴距有较 大差距的旋转容器。 在一般的净化操作时, 输入腔并不是满注的(即水位并 未到达输入口的最大轴距位置) , 假设这时近排污孔 10的水压是刚刚不能 推开弹性活门。 如把输入水的速度突然增加到足够使输入腔的水位更接近 转轴, 近排污孔 10的水压便会增加。 这时, 排污孔便会打开。
上述水压控制方法是要求对输入水量有控制的能力及要利用光学传感 器对重杂质的集结进行探测才可以实现全自动排污。 但在一些设置有滤芯 的特殊的情况下是可以靠滤芯的堵塞以使输入腔比未堵塞前更满注。 即, 水位更接近转轴。这样会导致弹性活门 V中的排污孔 10的水压增加而打开。 要注意的是, 这种方法是不需要依靠改变转速或输入水速度就能达到自动 排污效果。
同歩输入管
本发明的旋转容器 4一般是利用一条固定在净化器外壳的固定输入管 输入流体。 但在一些情况, 例如在前述的并联多腔式设计的旋转容器, 利 用多孔管作固定输入管之用, 把流体分别输入不同的输入腔是很难长期稳 定地维持每一个输入腔的给水速度。 原因是输入水流一般不会太猛, 以致 多孔管的出水孔很容易因污染物等而堵塞。 解决的方法是在旋转容器 4 内 的转轴附近设置一条同步输入管 R。 这同步输入管 R是跟旋转容器 4同步 转动的。 由于离心力的作用下, 同步输入管 R上的孔基本上是不会堵塞的。 图 30的实施例就展示了这一设计。 基本上, 图 30的实施例是与图 15的很 相似。 在图 30中的旋转容器的转轴位置设置了一条同步输入管 R。 该同步 输入管 R的入口是用了一个环状圆盖修窄了一点以使在高速旋转时, 输入 的流体不会从该入口流出。 要注意的是, 设置了同步输入管 R的旋转容器 也是需要一条固定输入管 T输入的。 但这条固定输入管 T再也不一定要是 多孔管。
水泵及旋转容器一体的结构
如在旋转容器的轴心位置加小型搅拌片 5s, 是可以与适当的固定输入 管 T构成一个离心泵的结构, 对流体的输入很有帮助。 图 31展示了一个带 有小型搅拌片 5s 的旋转容器的实施例。 在图中可以看到, 小型搅拌片 5s 和固定输入管 T组成了一个离心泵的结构。 当然, 小型搅拌片 5s除了独立 设置外, 还可以是由容器内的主要搅拌片 5伸延出来而成的。
除了上述的水泵及旋转容器一体的设计外, 当旋转容器是架设在水槽 上面使用, 就可以在旋转容器的转轴位置装上一个同步离心泵 27作输入水 泵的用作。 图 32展示了带有同步离心泵 27的流体过滤装置的实施例。 当 旋转容器 4转动时, 同步离心泵 27会一同转动。 流体过滤装置下面的水槽 W 的水会被泵进旋转容器 4 内。 同时旋转容器内的空气可以从排气孔 32 排出。 图中最下面展示了同步离心泵 27的仰视图。 其结构十分简单: 在一 条圆柱管内置有搅拌片 (在这例子中, 共有四片)。 进水端置有一圆形带有中 孔的盖。
本发明除了前述的旋转容器 4之外, 还包括利用旋转容器 4发展而成 的净化器。
净化器例一: 海水油污分离器
图 33展示了一个海水油污分离器的实施例。 该实施例中的旋转容器 4 的结构跟图 7的实施例中的旋转容器 4的结构类似, 旋转容器 4采用了透 明的物料来制造, 并直接利用电机 M驱动。 电机 M是利用防震橡胶钉 N 固定在净化器的外壳 33上。 利用两个光感元件组合测量容器内的油污及海 水储量以作出排海水或是排油污的决定。 光感元件组合 (由光源 L及光感元 件 R组成)是穿透式的。 如没有阻挡, 光源 L的光线能被相对的光感元件 R 接收到。 所有光感元件 R接收的信号都被低通过滤 (lowpass filtering) 以减 低弹性活门 V及输入导管 29a (请看图 7的标示) 内可能储存了油污所造成 的影响。在这例子中, 油污是从输出口 7排出, 而海水是从排污孔 10排出。 假设海水比油污 (原油的油污)的透明度高。当两只光感元件 R感测的光线都 被遮挡, 表示容器内差不多全是油污, 便应运行排去油污的程序; 即继续 输入海水并以较低速转动以避免速控活门 V打门。 集结在内圈的油污就会 从输出口 7排出。 当两只光感元件 R都再次感测到光线, 便应开始排出海 水的程序; 即是以高速转动, 使弹性排污活门 V打开。 净化后的海水会经 净化器外壳上的排水口 38排出, 而油污就收集到收集容器 C内。 弹性排污 活门(V)的结构及原理可参考图 27-29的实施例。 当然, 如一些油污是透光 但在颜色上跟海水是有明显分别, 可以适当地在那两个光感元件 R前加上 滤光片以增加海水和该油污的分辨能力。 例如, 油污是花生油的黄色, 而 光源 L是白色的, 就应选用把黄光滤走的滤光片。 较强的光感测值对应海 水, 较弱的光感测值对应油污。 当然, 要实现自动化, 其中一个实现方法 是利用微控制器 (MCU) 来达到目的。 这种技术是相关技术人员能轻易完 成。 在这文件就不再陈述。
还要补充一点, 在这个实施例中, 旋转容器 4的类型选择是相当重要 的。 如输入导管 29a换了较大型的输入腔 29, 因油污在输入腔 29的内圈位 置集结的速度比在输出腔 30的快,这样便会使光感元件 R所得到的值不能 正确反映输出腔 30的实际情况, 因而作出了错误的决定。
净化器例二: 外挂式滤水器
图 34展示了一个外挂式净水器的实施例。 其内里的旋转容器 4的上盖 采用了透明的物料来制造并用白色物料制造最上的一块回路隔片 P,以使光 源 L的光线能被反射到光感元件 R。 旋转容器是前述的 B类多腔式串联设 计, 并带有小型搅拌片 5s。 小型搅拌片 5s与固定在净化器顶部的固定输入 管 T形成了离心泵的结构。 固定输入管 T是倒转的 U型的, 并且还能利用 虹吸输入的特性从水槽 W吸入水。 换句话说, 即使没有小型搅拌片 5s, — 旦虹吸输入形成了, 就可以虹吸作用自动输入。 净化器的外壳 33下面挂着 一个重杂质收集容器 D。 重杂质从弹性活门 V排出并经过净化器的重杂质 输出孔 38到达重杂质收集容器 D。 为了达到自动化排污的效果, 还设置了 一个反射式的光感元件组合。 光感元件 R的输出信号经低通过滤并经具有 比较电路的微控制单元板 (没示出)上。 电机 M的转速也由微控制单元板控 制的。 具体的操作如下: 假设集结在旋转容器 4 内的重杂质是深色的; 如 光感元件 R感测到的值是对应深色的重杂质, 便开始排出容器内的重杂质 的程序。 即, 高速转动旋转容器 4以使弹性活门 V打开。 在这个实施例当 中, 维持排出重杂质的状态的时间长短可以是预先设定的。
这个实施例还有一个特点是可以被利用的。 就是当输入的水带有气体, 当中的气体可被视为轻杂质而从输出口 7排出。 (如轻杂质是液体, 情形就 有点不同,详情可参考图 33的实施例) 其实际应用包括把水中的氯气排除。 一些用途, 例如观赏鱼养殖时更换水, 把自来水中的氯气减少也可以应用 得到。
在实际应用方面, 这个外挂式净水器用途很广泛。 除了如图 34所示, 不断循环净化一个水槽内的水, 还可以跟最少两个水槽或内有间隔的水槽 组成一套自动净化养殖系统。 图 35展示了这一概念; 在该实施例中的自动 净化养殖系统是可以被用作家中养殖观赏鱼之用。 所采用的外挂式净水器 基本上是跟图 34的实施例一样。 水槽内有一间隔, 把水槽分成两部份, 即 图中所示的水产养殖槽 W1及藻类养殖槽 W2。 水产养殖槽 W1及藻类养殖 槽 W2最好都设置简单的生化净化系统把氨及亚硝酸盐等毒性较强的污染 物转变成硝酸盐。 此外, 在藻类养殖槽 W2 内的生化净化系统也可同时增 加槽内二氧化碳的含量。 如有需要进一步增加藻类养殖的速度, 可额把二 氧化碳注入藻类养殖槽 W2或加电灯增加藻类养殖槽 W2的光照度。
水产养殖槽 W1是用来养殖观赏鱼或一些目标水产的。藻类养殖槽 W2 主要是是用来养殖藻类(当然, 是可以同时养殖一些细小或不太需要活动空 间的水中生物)。 所以, 藻类养殖槽 W2应置在靠近窗并经常得到阳光 SS 照射的地方。 在起初养殖观赏鱼的时候, 该外挂式净化器可以不用开动。 过了数天或等到藻类开始在左面或右面的容器内滋生时, 便间歇都开动一 下外挂式净化器以使藻类养殖槽 W2内的水能与水产养殖槽 W1 内的水交 换。 (每天交换的水量是总水量的 5-10%便足够了) 这样, 更多的硝酸盐、 亚硝酸盐、 氨及其他藻类繁殖所需的养份便可以从水产养殖槽 W1 进入藻 类养殖槽 W2以帮助藻类繁殖。到最后,藻类养殖槽 W2内的藻类会迅速增 长, 这时便可以进入可持续的自动净化操作模式。
可持续的自动净化操作模式的概念是利用额外的感光示件探测进入外 挂式净水器的水 (例如,可探测固定输入管 T内的水)或是直接探测藻类养殖 槽 W2 内的水的透光度以决定是否开动外挂式净水器。 如透光度低于某水 平, 便开动所述外挂式净水器。 此外, 理论上是可以利用计时的方式来测 定藻类养殖槽 W2 内的水的藻类生长的情况; 方法是开动外挂式净水器并 量度重杂质集结在旋转容器的速度。 如少于某时间便能注满杂质储存空间, 代表应该继续开动净化器。(当然是要先把旋转容器内的重杂质排出 )若在某 时间内还不能注满杂质储存空间, 便应暂停操作, 等待一两天后藻类的密 度足够再作测试。 这个计时方法的好处是不用额外的感光元件。 当然, 为 了更清楚地表达这个自动净化养殖系统的操作原理, 图中的外挂式净水器 是设置在水槽 (鱼缸)的正面。 较好的安排应该是设置在水槽的侧面, 间隔板 的附近以尽量减小固定输入管 T横向部份的长度。 在这个实施例中, 间隔 板的高度是略低于水槽的高度。 这样便可以在间隔板上方形成一水回流通 道。如果水产养殖槽 W1及藻类养殖槽 W2是分别由两个高度差不多的独立 水槽构成, 可以利用一条注满水的倒转 U形管作虹吸式的水回流通道。
如采用管状的水回流通道, 并使该管在水产养殖槽 W1 那边的端口置 在近水产养殖槽 W1的底部,便可以使水产养殖槽 W1底的污物吸到藻类养 殖槽 W2, 增加被藻类吸收的机会。 如藻类养殖槽 W2是置在比水产养殖槽 W1较高的位置,则需要用电水泵把水产养殖槽 W1内的水抽回藻类养殖槽 W2, 以维持水产养殖槽内的水在一定高度, 不会满溢。 当然, 一个能感知 水位的装置如水深探头或简单的设定一个水位触发开关是必要的。 另外, 用微控制单元 (MCU)板来实施这个自动净化养殖系统的操作是一个十分合 适的选择。
净化器例三: 上架式净水器
图 36展示了一个上架式净水器的实施例。(虽然外挂了一个重杂质收集 容器 D, 但旋转容器 4是在水槽 W之上的。 )其结构基本上是与图 32的实 施例的差不多。 特点是采用了同步离心泵 27从水槽 W输入水。 其自动化 排污出并收集重杂质的方法与图 34的实施例差不多。
净化器例四: 汽车废气净化器
除了上述液体净化的应本外, 发明还可以应用在气体上。 例如是清除 汽车廈气中的悬浮粒子。 方法是把汽车的廈气管作固定输入管 T之用。 如 该汽车的廈气管足够稳固, 便可以把两个轴承套在其上再把旋转容器 4套 上去。 而其他配件, 如电机等也一并挂在该廈气管上。 如不够稳固, 就必 须利用支撑架把净化器固定在汽车底盘。 动力方面, 可用电机或该汽车的 内燃机的动力推动。
净化器例五: 逆滲透过滤系统
图 37展示了本发明的一个重要实施例。 当中所包含的旋转容器与前述 的图 12 的实施例很相似。 其原理是把逆渗透薄膜 (reverse osmosis membrane)作为滤材。 在图 37的实施例当中, 图 37下方的切面图展示了 上方的原理图中的滤芯 F2的构造。 在输入腔 29及输出腔 30都适当地设置 有搅拌片 5。 这个发明的一个重要应用是海水淡化。 因此, 本文件会以海水 淡化系统来阐述其操作原理。 滤芯 F2是利用逆渗透薄膜 RO夹在硬质及能 透水的底物 SU(substrate)之中而造成的。 这底物 SU还能提供一定的物理 过滤及生物过滤 (培养细菌的基质)能力。 在该实施例当中, 逆渗透薄膜 RO 是采用了波浪形的设计以提供较大的表面表积。 纯水 PW通过逆渗透薄膜 RO所需的水压是靠旋转容器旋转时所产生的离心力而获得的。 所以, 要获 得较大水压, 除了加快转速外, 也可以在设计时加大输出口的最大轴距跟 输入口的最大轴距之差距。 另外, 要排走旋转容器进外缘的盐水及杂质, 可用较高的转速或前述的以滤材堵塞的方法使输入腔的水位移向转轴而增 加弹性活门 V中的排污孔的水压。 弹性活门 V的设计可参考图 27-图 29的 设计。在这实施例中的弹性活门 V是设置在圆柱状旋转容器的外缘曲面上。 在图 37中, 海水 SW被输入到旋转容器, 经滤芯 F2过滤后得到纯水 PW。 盐水及含重杂质的污水 DW经弹性活门 V排出。 排污程序可以是连续的也 可以是间歇的。 间歇排污可以是利用光感元件来探测重杂质的集结情况及 输入腔的水位位置来决定。 当然, 如输入腔快注满, 即输入的海水差不多 会从输入管放置口溢出, 便应启动排污程序。 连续排污也是应该对输入腔 的水位位置进行监察并以提高转速的方法来确保输入的海水不会从输入管 放置口溢出到输出口 7。
与一般采用高压水泵的逆渗透系统相比,本发明有节能、较大的效能 (在 同一水压下, 有较多纯水能通过)、 及自动清洗的好处。
净化效杲的影响因素
转速: 一般是越快越好。 但因旋转容器 4及相关之机械零件如轴承 18 等都有速度上限。 要达到高速旋转的代价便是成本的上涨。 所以在设计时 主要是针对实际应用上需要的离心加速率而定出转速。 当然, 在同一离心 加速率的要求下, 大直径的旋转客器所需转速是小于小直径的旋转容器。 例如, 在一般淡水或海水的应用上, 转速在 500 rpm至 30000 rpm是比较 普遍。
液体 1输入速度: 一般是越慢越好。但液体 1输入速度是等于液体被处 理净化的速度。 所以在实际应用上, 应先定出可接受的净化效果, 然后才 由小至大地慢慢增加输入速度以找出最适当的数值。 除了连续均速的输入 液体方法。 也可以是不连续某种波形的输入。 例如方波形的输入方法一般 是可以得到比均速输入更佳的净化效果。 不同波形的输入是现存的技术 (例 如在液体应用中, 利用电磁水阀开关而得到所需效果)。在这里就不再详谈。
旋转容器 4的有效容量:在实际操作时, 能储存的水量就是旋转容器 4 的有效容量。 一般是越大越好。 但过大的体积会增加制造、 操作 (如电费) 及维修成本。
旋转驱动器 19可以是电动马达、 气动马达、 内燃机等现存的技术。 可 以直接连结旋转容器或是利用齿轮、 同步带、 驱动皮带等作动力传递。 基 本上, 现存的技术已能达到很好的效果。
液体 1输入方法可以是水泵 20、 自来水本身的水压、 虹吸管等利用地 心吸力由高位引流到低位的方法。 另外, 如用水泵 20输入的话, 水泵 20 的动力及旋转容器 4的动力是可以从同一个上述的旋转驱动器 19提供。 除 了前述的同步离心泵的例子外, 另一普遍适用的方法是利用直接 (如转轴是 对齐)或前述的齿轮、 同步带、 驱动皮带等非直接连接方式使动力从旋转驱 动器 19同时传递到水泵 20及旋转容器 4上。 这样的安排可以有效降低制 造及维修成本。
已经描述了本发明的各种示例。 这些示例不限制本发明的保护范围。

Claims

权利要求书
1、 一种旋转容器, 其特征在于, 包括
外壳, 所述外壳具有输入管放置口和输出口, 所述输入管放置口和所 述输出口位于所述外壳的相同端或相对端, 所述输出口与所述外壳的外围 边缘有一段距离, 以使所述旋转容器在转动时能储水, 所述输出口的最大 轴距比所述输入管放置口的最大轴距大;
外壳内置有搅拌片或滤芯, 所述搅拌片或滤芯与所述外壳绕所述转轴 同步旋转。
2、 根据权利要求 1所述的一种旋转容器, 其特征在于, 所述输入管放 置口与所述输出口位于所述外壳的同一端, 所述输出口与所述输入管放置 口合并成一个合并开口, 并从所述合并开口靠近外围边缘输出流体。
3、 根据权利要求 1-2所述的一种旋转容器, 其特征在于, 所述外壳的 外壁具有沿所述转轴成圆形对称的外形。
4、 根据权利要求 1-3所述的一种旋转容器, 其特征在于, 所述输出口 或所述合并开口被所述旋转容器的所述外壳延伸出来的输出口套管包围。
5、 根据权利要求 1-4所述的一种旋转容器, 其特征在于, 所述搅拌片 为片状; 或者所述搅拌片是弧形的。
6、 根据权利要求 1-4所述的一种旋转容器, 其特征在于, 所述搅拌片 为螺旋状的。
7、 根据权利要求 1-6所述的一种旋转容器, 其特征在于, 所述旋转容 器内还有回路隔板把所述旋转容器内的腔体分成输入腔和输出腔,
所述回路隔板上有回路口或构成有回路口, 并在接近所述转轴位置构 成一个中心开口, 所述中心开口的最大轴距少于所述输出口最大轴距以使在操作时流体 不会从所述输入腔经所述中心开口流到所述输出腔。
8、 根据权利要求 1-6所述的一种旋转容器, 其特征在于, 所述旋转容 器内置有输出导管或输出通道结构, 所述输出导管或输出通道结构的一端 开口是在所述旋转容器内, 近外围的位置; 而另一端则接上所述输出口。
9、 根据权利要求 7所述的一种旋转容器, 其特征在于, 所述输入腔被 输入导管或输入通道结构替代, 以使流体从所述输入管放置口经所述输入 导管或所述输入通道结构流到所述旋转容器内, 近外围的地方。
10、 根据权利要求 7所述的一种旋转容器, 其特征在于, 所述输出腔 被导管或所述通道结构替代, 以使流体从所述旋转容器内、 近外围的地方 经所述导管或所述通道结构流到所述输出口。
11、根据权利要求 1-6所述的一种旋转容器, 其特征在于, 所述内部结 构等同于权利要求 8-10所述的内部腔体结构的其中一种或多种叠加起来而 形成的多腔式结构, 其中多腔式结构的所述内部腔体结构为串联或并联使 用; 在并联的情况下, 所述输出腔或所述输出导管或所述输出通道结构都 会被导通起来, 并引流到所述输出口或所述合并开口的靠近边缘位置, 所 述输入腔或所述输入导管或所述输入通道结构都会被固定输入管或同步输 入管分流注入流体; 在串联的情况下, 除了最接近所述输出口的所述输出 腔或所述输出导管或所述输出通道结构是会直接经所述输出口排出流体 外, 其他的所述输出腔或所述输出导管或所述输出通道结构会被引流到邻 近一层的所述输入腔或所述输入导管或所述输入通道结构中。
12、 根据权利要求 1-11所述的一种旋转容器, 其特征在于, 所述旋转 容器内部的一端, 围绕转轴的位置设有小型搅拌片, 并且与位于所述转轴 的固定输入管形成离心泵的结构,
其中所述小型搅拌片是独立设置; 或是由所述搅拌片伸延出来。
13、 根据权利要求 1-12所述的一种旋转容器, 其特征在于, 在所述旋 转容器内置有挡片, 所述挡片上至少有一个杂质排出通道, 所述外壳与所 述挡片之间构成了杂质储存空间。
14、 根据权利要求 13所述的一种旋转容器, 其特征在于, 在所述搅拌 片是弧形或是螺旋形的情况下, 所述搅拌片在远离所述转轴的末端位置设 有杂质排出通道, 以使沉淀在所述搅拌片上的杂质能排到所述杂质储存空 间内。
15、根据权利要求 13-14所述的一种旋转容器, 其特征在于, 在所述杂 质储存空间内有加固结构, 把所述外壳及所述挡片或所述搅拌片的近外围 末端连结起来, 以增加所述旋转容器的结构强度。
16、根据权利要求 13-15所述的一种旋转容器, 其特征在于, 所述杂质 排出通道的近所述转轴的开口是大于近杂质储存空间的开口。
17、 根据权利要求 1-16所述的一种旋转容器, 其特征在于, 如所述回 路隔板连结所述外壳, 近外围边缘上置有重杂质导通孔, 以优化所述输入 腔及输出腔内的重杂质分布。
18、 根据权利要求 1-17所述的一种旋转容器, 其特征在于, 所述搅拌 片连结所述外壳, 近外围边缘上置有重杂质导通孔。
19、 根据权利要求 1-18所述的一种旋转容器, 其特征在于, 所述加固 物料把所述杂质储存空间的一部份隔离于其余部份, 则包围所述被隔离部 份的加固物料贴近外壳的边缘上置有重杂质导通孔。
20、 根据权利要求 1-19所述的一种旋转容器, 其特征在于, 所述旋转 容器的外壳近外围具有可开关的排污孔。
21、 根据权利要求 1-19所述的一种旋转容器, 其特征在于, 所述旋转 容器内, 近外围有一导管把近外围的重杂质引流到较接近所述转轴的排污 孔排出。
22、根据权利要求 20-21所述的一种旋转容器, 其特征在于, 所述排污 孔的开关是手动的, 或是装有弹性活门, 所述弹性活门是利用所述旋转容 器的转速、 电磁力及所述旋转容器的输入腔内的水位位置来控制活门的开 关。
23、 根据权利要求 22所述的一种旋转容器, 其特征在于, 所述弹性活 门是杠杆式的, 又或是活塞式的构造而成。
24、 根据权利要求 1-23所述的一种旋转容器, 其特征在于, 在其所述 转轴位置有一同步输入管, 其结构是带孔的管, 以使流体透过不同的孔分 流注入不同的位置或优化流体注入不同腔体的量, 所述同步输入管是与所 述旋转容器同步转动。
25、 一种同步离心泵结构, 其特征在于, 其结构是圆形对称管内装有 搅拌片, 所述圆形对称管的一端有一圆形覆盖, 所述圆形覆盖中央有一孔 以作输入流体之用, 所述圆形对称管、 所述圆形覆盖及所述内里的搅拌片 是同步转动的。
26、 一种流体过滤装置, 其特征在于, 包括如权利要求 1-24中任何一 项所述的旋转容器, 还包括
固定所述旋转容器的外壳或支撑结构;
固定在所述外壳或支撑结构的固定输入管;
驱动所述旋转容器转动的旋转驱动器。
27、 一种流体过滤装置, 其特征在于, 包括如权利要求 1-24中任何一 项所述的旋转容器, 还包括
固定所述旋转容器的外壳或支撑结构;
根据权利要求 25建构而成的所述同步离心泵, 以作流体输入用途; 驱动所述旋转容器转动的旋转驱动器。
28、根据权利要求 26-27所述的一种流体过滤装置, 其特征在于, 所述 旋转容器带有所述弹性活门, 所述流体过滤装置还包括重杂质容器, 以盛 载从所述旋转容器排出的重杂质。
29、根据权利要求 26-28所述的一种流体过滤装置, 其特征在于, 还包 括盛载液态轻杂质的容器, 以盛载从所述旋转容器的所述输出口或所述合 并开口排出的液态轻杂质, 所述液态轻杂质比净化后流体轻。
30、根据权利要求 26-29所述的一种流体过滤装置, 其特征在于, 所述 旋转容器的一端是透明物料所造的, 并在该透明的一端装有光感元件或带 光源的反射式光感元件以探测所述重杂质集结的情况而作出排出重杂质的 决定。
31、根据权利要求 26-29所述的一种流体过滤装置, 其特征在于, 所述 旋转容器的两端是透明物料所造的, 并在该透明的两端分别装上光感元件 及光源, 以探测所述重杂质集结的情况而作出排出重杂质的决定。
32、一种自动净化养殖系统,其特征在于,包括至少一个权利要求 30-31 所述的过滤装置, 并与至少一个藻类养殖槽及至少一个水产养殖槽一起操 作, 所述过滤装置从所述藻类养殖槽输入并输出到所述水产养殖槽, 所述 藻类养殖槽与水产养殖槽之间有水回流通道以使水产养殖槽的水能回流到 藻类养殖槽。
33、 根据权利要求 32所述的自动净化养殖系统, 其特征在于, 所述藻 类养殖槽附近有电灯增加所述藻类养殖槽的光照度。
34、根据权利要求 32-33所述的自动净化养殖系统, 其特征在于, 所述 藻类养殖槽内设置二氧化碳增加装置。
35、根据权利要求 32-34所述的自动净化养殖系统, 其特征在于, 所述 水产养殖槽是设置在较所述藻类养殖槽低的位置, 并以电水泵把所述水产 养殖槽内的水, 经所述水回流通道抽回藻类养殖槽, 以维持所述水产养殖 槽内的水不会满溢。
36、根据权利要求 32-35所述的自动净化养殖系统, 其特征在于, 设置 有光感元件, 用于测量进入所述过滤装置的水或直接测量所述藻类养殖槽 内的水的透光度。
37、根据权利要求 32-36所述的自动净化养殖系统, 其特征在于, 所述 水产养殖槽或所述藻类养殖槽设置有生物净化器, 以调整所述自动净化养 殖系统内的氨及亚硝酸盐的水平。
38、 一种逆渗透过滤系统, 其特征在于, 包括如权利要求 1-24中任何 一项带有所述滤芯的旋转容器, 所述滤芯包含逆渗透薄膜。
39、 一种用于开关离心式分离器排污孔的弹性活门装置, 其特征在于, 有一个能提供压力的机制, 使所述活门的开关可以因所述分离器的转速改 变或排污孔附近的流体压力改变而得到实现。
40、 根据权利要求 39所述的弹性活门装置, 其特征在于, 所述弹性活 门装置是杠杆式的, 又或是活塞式的构造而成。
PCT/CN2012/084693 2011-11-18 2012-11-15 旋转容器、使用该旋转容器的流体过滤装置及系统 WO2013071877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103687854A CN103120865A (zh) 2011-11-18 2011-11-18 旋转容器、使用该旋转容器的流体过滤装置及系统
CN201110368785.4 2011-11-18

Publications (1)

Publication Number Publication Date
WO2013071877A1 true WO2013071877A1 (zh) 2013-05-23

Family

ID=48428984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084693 WO2013071877A1 (zh) 2011-11-18 2012-11-15 旋转容器、使用该旋转容器的流体过滤装置及系统

Country Status (3)

Country Link
US (1) US20130133250A1 (zh)
CN (1) CN103120865A (zh)
WO (1) WO2013071877A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235540A (zh) * 2016-03-29 2017-10-10 哈尔滨市多相水处理技术有限公司 组合式涡街小孔眼网格反应设备
CN109479785A (zh) * 2018-12-21 2019-03-19 宜宾学院 一种绿色环保的网箱设备
CN111537507A (zh) * 2020-05-19 2020-08-14 广州市水电建设工程有限公司 一种便捷式水质检测装置
CN112588110A (zh) * 2020-12-16 2021-04-02 鼎泰(湖北)生化科技设备制造有限公司 一种全自动石墨消解仪用尾气处理装置
CN113384953A (zh) * 2021-07-08 2021-09-14 安徽国能亿盛环保科技有限公司 一种废水过滤装置的水垢清除机构及其实施方法
CN114922821A (zh) * 2022-06-09 2022-08-19 浙江理工大学 一种防卡堵屏蔽泵及其控制方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030878B2 (en) 2013-08-21 2018-07-24 Honeywell International Inc. User interaction with building controller device using a remote server and a duplex connection
CN103897746B (zh) * 2014-03-13 2015-09-02 张家港市天源机械制造有限公司 生物质气化炉中的高温除尘装置
US9783431B2 (en) * 2014-05-28 2017-10-10 Katz Water Tech, Llc Apparatus and method to remove contaminates from a fluid
US20160174476A1 (en) * 2014-12-17 2016-06-23 Marsh Allen Algae growth using peristaltic pump
WO2016123077A1 (en) * 2015-01-26 2016-08-04 Sea Volute, Llc Algae scrubber with directed water flow
US20180280880A1 (en) * 2015-04-30 2018-10-04 Tsia Yong LIM Device for Salvaging RO Water Filter Waste Water
JP6583882B2 (ja) * 2015-08-05 2019-10-02 国立大学法人名古屋大学 魚類の生産方法および稚魚の成長促進方法および魚類の成長促進剤
EP3274099A4 (en) * 2015-08-14 2018-12-05 Sherman, Karl, L. Continuous flow centrifuge with application of water desalination and purification
GB2541743B (en) * 2015-08-28 2019-05-22 Chelsea Tech Group Ltd Ballast water monitoring device
US10272396B2 (en) * 2015-10-23 2019-04-30 Katz Water Tech, Llc System apparatus and method suitable for reducing the contaminate concentration of effluent before discharge
CN106052561B (zh) * 2016-08-05 2019-07-09 京东方科技集团股份有限公司 位置传感器以及包括其的运送装置和利用其进行位置修正的方法
CN106390570B (zh) * 2016-11-23 2018-11-27 扬州顺达重工设备有限公司 一种高炉冲渣水过滤器
CN106362463B (zh) * 2016-11-23 2018-11-06 嘉兴尚云自动化设备有限公司 一种冲渣水过滤器
CN106438565B (zh) * 2016-12-08 2018-02-02 广东技术师范学院 一种防尘控热装置及其方法
CN106689019A (zh) * 2016-12-19 2017-05-24 苏州格池小绵羊水族用品有限公司 一种鱼缸循环过滤分离系统
WO2019022660A1 (en) * 2017-07-26 2019-01-31 Fin Fish Aquaculture Pte. Ltd. AQUACULTURE SYSTEM AND METHOD FOR BREEDING AQUATIC CREATURES
US10864482B2 (en) 2017-08-24 2020-12-15 Katz Water Tech, Llc Apparatus system and method to separate brine from water
US11034605B2 (en) 2018-03-29 2021-06-15 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
CN107926817B (zh) * 2017-11-01 2023-01-10 江苏大自然玻璃有限公司 一种带有过滤装置的鱼缸
CN112601601B (zh) 2018-07-12 2023-05-16 离心解决方案有限责任公司 离心反渗透系统
KR102145591B1 (ko) * 2018-11-26 2020-08-18 (주)씨에스이엔엘 다기능 공기 청정기
GB2586592A (en) * 2019-08-21 2021-03-03 Xeros Ltd New filter, filter unit, treatment apparatus, method and use
CN110367278B (zh) * 2019-08-27 2024-02-02 广州泰道安医疗科技有限公司 一种用于生产稳定的次氯酸溶液的设备
CN110422921A (zh) * 2019-09-04 2019-11-08 山东和正环保工程有限公司 一种厌氧系统ph缓冲装置
CN111513564B (zh) * 2020-06-10 2021-08-24 安徽理工大学 一种净水降氯的家用电热水壶
CN111804016A (zh) * 2020-08-20 2020-10-23 杭州海科杭环科技有限公司 一种具备自清洗功能的垃圾废水处理装置
NO346990B1 (en) * 2021-02-01 2023-03-27 Combipro As Bi-directional filter
CN112997952B (zh) * 2021-03-25 2022-11-04 王泽宇 一种高密度水产养殖装置以及一种高密度水产养殖方式
WO2023046602A1 (en) * 2021-09-21 2023-03-30 Fresh Works Ltd Filter unit with valve
CN113800601B (zh) * 2021-09-30 2023-04-14 华能平凉发电有限责任公司 一种管式超滤膜废水净化装置
CN114793591B (zh) * 2022-05-24 2023-06-09 新疆农业科学院农业机械化研究所 一种农业用水肥药一体化自动喷药机
CN115090164B (zh) * 2022-07-05 2023-05-02 苏州市立医院 一种血液检测用搅拌装置
CN116272379B (zh) * 2023-03-29 2023-10-20 泰州南潇新材料科技有限公司 一种具有分级过滤功能的纳滤膜元件
CN116177758A (zh) * 2023-04-18 2023-05-30 厦门理工学院 用于治理水体富营养化的微生物菌剂自动喷洒装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1108964A (zh) * 1993-11-19 1995-09-27 布里斯托尔-迈尔斯斯奎布公司 液体分离装置与方法
US5501803A (en) * 1991-03-25 1996-03-26 Gosta Wahlin Havsteknik Ab Method and apparatus for separating particles from a base liquid
CN2286242Y (zh) * 1997-04-01 1998-07-15 李百鹤 油井泵下活性水搅拌器
US20020020679A1 (en) * 2000-04-11 2002-02-21 Glen Jorgensen Sealed centrifugal clarifier
CN101058048A (zh) * 2007-01-24 2007-10-24 彭世英 电动污水处理机
CN202526953U (zh) * 2011-11-18 2012-11-14 博研国际有限公司 旋转容器、使用该旋转容器的流体过滤装置及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3669879A (en) * 1969-12-15 1972-06-13 Dresser Ind Fluid separation apparatus and method
US8187459B2 (en) * 2007-03-27 2012-05-29 Mycelx Technologies Corporation Visual bilgewater quality indicator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501803A (en) * 1991-03-25 1996-03-26 Gosta Wahlin Havsteknik Ab Method and apparatus for separating particles from a base liquid
CN1108964A (zh) * 1993-11-19 1995-09-27 布里斯托尔-迈尔斯斯奎布公司 液体分离装置与方法
CN2286242Y (zh) * 1997-04-01 1998-07-15 李百鹤 油井泵下活性水搅拌器
US20020020679A1 (en) * 2000-04-11 2002-02-21 Glen Jorgensen Sealed centrifugal clarifier
CN101058048A (zh) * 2007-01-24 2007-10-24 彭世英 电动污水处理机
CN202526953U (zh) * 2011-11-18 2012-11-14 博研国际有限公司 旋转容器、使用该旋转容器的流体过滤装置及系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107235540A (zh) * 2016-03-29 2017-10-10 哈尔滨市多相水处理技术有限公司 组合式涡街小孔眼网格反应设备
CN109479785A (zh) * 2018-12-21 2019-03-19 宜宾学院 一种绿色环保的网箱设备
CN109479785B (zh) * 2018-12-21 2023-09-19 宜宾学院 一种绿色环保的网箱设备
CN111537507A (zh) * 2020-05-19 2020-08-14 广州市水电建设工程有限公司 一种便捷式水质检测装置
CN111537507B (zh) * 2020-05-19 2022-11-11 广州市水电建设工程有限公司 一种便捷式水质检测装置
CN112588110A (zh) * 2020-12-16 2021-04-02 鼎泰(湖北)生化科技设备制造有限公司 一种全自动石墨消解仪用尾气处理装置
CN113384953A (zh) * 2021-07-08 2021-09-14 安徽国能亿盛环保科技有限公司 一种废水过滤装置的水垢清除机构及其实施方法
CN114922821A (zh) * 2022-06-09 2022-08-19 浙江理工大学 一种防卡堵屏蔽泵及其控制方法
CN114922821B (zh) * 2022-06-09 2024-01-05 浙江理工大学 一种防卡堵屏蔽泵及其控制方法

Also Published As

Publication number Publication date
CN103120865A (zh) 2013-05-29
US20130133250A1 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
WO2013071877A1 (zh) 旋转容器、使用该旋转容器的流体过滤装置及系统
CN101700472B (zh) 旋转式膜分离装置及其应用
CN202526953U (zh) 旋转容器、使用该旋转容器的流体过滤装置及系统
KR101728529B1 (ko) 하수 처리 장치
CN103202263A (zh) 高密度养殖水污分离过滤增氧系统
CN102259971B (zh) 高通量低能耗在线自清洗柔性膜-生物反应器
CN105403524B (zh) 一种在线低能耗野外原位营养盐检测仪及检测方法
CN201586483U (zh) 一种新型旋转式膜分离装置
KR20170021543A (ko) 경량 여재식 다단 습지여상
CN110577341A (zh) 一种农村养殖场废水处理装置
CN110467253A (zh) 势能生物污水净化器
CN103341285B (zh) 一种平流沉淀/浸没式超滤一体化水处理装置
CN210620371U (zh) 势能生物污水净化器
CN101337142A (zh) 连续自动括刷反冲洗净水器
KR20030092206A (ko) 드럼필터 및 와류형여과기를 이용한 하폐수 재이용 처리장치
CN104787915A (zh) 一种双级旋转净化装置
CN108996663A (zh) 用于动态调节污水处理策略的污水处理设备
CN208200688U (zh) 一种生活废水一体化设备
CN210559963U (zh) 一种高效节能的污水处理系统
CN208087411U (zh) 一种污水净化处理设备
CN207159021U (zh) 一种高效污水处理装置
CN201062223Y (zh) 污水净化装置
CN213771671U (zh) 一种立式超滤净水机
CN218184755U (zh) 一种鱼缸用的新型净化系统
CN116514341B (zh) 一种聚氨酯胶水生产废水的处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850705

Country of ref document: EP

Kind code of ref document: A1