WO2013071718A1 - 一种控制信道的传输方法及装置 - Google Patents

一种控制信道的传输方法及装置 Download PDF

Info

Publication number
WO2013071718A1
WO2013071718A1 PCT/CN2012/072124 CN2012072124W WO2013071718A1 WO 2013071718 A1 WO2013071718 A1 WO 2013071718A1 CN 2012072124 W CN2012072124 W CN 2012072124W WO 2013071718 A1 WO2013071718 A1 WO 2013071718A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
physical downlink
channel
downlink control
transmission
Prior art date
Application number
PCT/CN2012/072124
Other languages
English (en)
French (fr)
Inventor
关艳峰
陈宪明
左志松
李永
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013071718A1 publication Critical patent/WO2013071718A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for transmitting a control channel. Background technique
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • ICI Inter-Cell Interference
  • LTE has also standardized a number of technologies, for example, Inter-Cell Interfernce Cancellation (ICIC).
  • the downlink ICIC technology implements the downlink interference pre-alert function based on the relative Narrowband TX Power (RTC) limitation of the eNodeB, but the method can only be used for the Physical Downlink Shared Channel (PDSCH).
  • RTC Narrowband TX Power
  • PDCCH Physical Downlink Control Channel
  • CCE Control Channel Element
  • Padding causes the PDCCH channel to be in a fully loaded state under the same-frequency network, and the interference from the neighboring cell is large, thereby reducing the reception performance of the PDCCH.
  • information such as scheduling information of the downlink shared channel is carried by the PDCCH. If the receiving performance of the PDCCH is reduced, the performance of the entire network is seriously degraded.
  • the PDCCH is used for the Downlink Control Information (DCI) of the User Equipment (UE), and includes the uplink scheduling information, the downlink scheduling information, the power control information, and the public information, and supports multiple DCI formats.
  • DCI generation process includes: Information ratio It is finally mapped to the Resource Element Group (REG) by means of cyclic redundancy check, coding, sub-block interleaving, rate matching, scrambling and modulation.
  • REG Resource Element Group
  • the LTE system has four types of aggregation level transmission PDCCHs, and the four levels are 1, 2, 4, and 8 CCEs. Obviously, the higher the level, the more resources are required to transmit one PDDCH, and the coverage may be more Robust, but less efficient.
  • the eNB performs equal power allocation on the PDCCH of each UE, that is, the Physical Control Format Indication Channel (PCFICH) and the (Physical HARQ Indication Channel, PHICH)
  • PCFICH Physical Control Format Indication Channel
  • PHICH Physical HARQ Indication Channel
  • the remaining power is equally divided into the CCEs or REGs occupied by the PDCCH, and the appropriate DCI format and aggregation level are selected according to the length of the DCI information of the UE and the channel conditions.
  • the problem of this method is that the same frequency cannot be solved.
  • the problem of interference is that the same frequency cannot be solved. The problem of interference.
  • the transmission power of the PDCCH is adjusted according to the feedback of the received signal to noise ratio of the UE, but the contradiction between the overall interference strength between the cells and the overall coverage level cannot be solved, because the power is increased, and the coverage of the UE is enhanced, but the interference is increased. ; Reduce power, reduce interference, but limited coverage.
  • the technical problem to be solved by the present invention is to provide a transmission method of a control channel, which can increase the coverage distance of the control channel.
  • a control channel transmission method of the present invention includes: the base station indicates to the terminal whether the physical downlink control channel of the terminal uses continuous transmission, and when continuous transmission is used, in consecutive multiple subframes Transmitting, by the medium, multiple physical downlink control channels to the terminal, and performing, by using the multiple physical downlink control channels, a resource allocation for the terminal.
  • the method includes: the base station corresponding to the physical downlink sharing of multiple physical downlink control channels sent in the consecutive multiple subframes channel.
  • the base station completes the time between the terminal and the terminal through the one physical downlink shared channel. data transmission.
  • the method further includes: sending, by the base station, one physical downlink shared channel corresponding to the multiple physical downlink control channels in a last one of the consecutive multiple subframes.
  • the sending, by the base station, the multiple physical downlink control channels to the terminal in the consecutive multiple subframes includes: sending, by the base station, the physical to the terminal on the resources with the same logical number of the consecutive multiple subframes Downlink control channel.
  • the sending, by the base station, the multiple physical downlink control channels to the terminal in the consecutive multiple subframes includes: determining, by the base station, the physical downlink control channel according to the subframe number of the consecutive multiple subframes The logical number of the resource.
  • the method further includes: the base station transmitting, by using the same aggregation level, the physical downlink control channel to the terminal in the consecutive multiple subframes.
  • the method further includes: the base station notifying the terminal whether the physical downlink control channel is used for continuous transmission, acquiring channel state information with the terminal, and determining, according to the channel state information, whether the physical downlink control channel is ⁇ Use continuous transmission.
  • the method further includes: when the terminal is in an initial access state, after determining that the physical downlink control channel of the terminal uses continuous transmission, the base station indicates the physical downlink control channel to the terminal by using an initial access response message. Use continuous transmission.
  • the method further includes: determining, by the base station, whether the physical downlink control channel of the terminal uses continuous transmission according to channel state information of the terminal when the terminal is in a non-initial access state.
  • the method further includes: the terminal jointly decoding the physical downlink control channel received in consecutive multiple subframes.
  • the method further includes: after performing joint decoding, the terminal decodes the physical downlink shared channel indicated by the control information according to control information obtained by joint decoding.
  • a transmission device for a control channel comprising: a transmission mode determining unit, a transmission indicating unit, and a channel transmission unit, where:
  • the transmission mode determining unit is configured to: determine whether the physical downlink control channel of the terminal uses continuous transmission;
  • the transmission indication unit is configured to: indicate to the terminal whether the physical downlink control channel of the terminal uses continuous transmission;
  • the channel transmission unit is configured to: when continuous transmission is used, send multiple physical downlink control channels to the terminal in consecutive multiple subframes, and complete a resource for the terminal by using the multiple physical downlink control channels. distribution.
  • the channel transmission unit is configured to: allocate a plurality of physical downlink control channels sent in the consecutive multiple subframes to one physical downlink shared channel, and perform one time with the terminal through the one physical downlink shared channel. data transmission.
  • the channel transmission unit is further configured to: send, in a last one of the consecutive plurality of subframes, one physical downlink shared channel corresponding to the multiple physical downlink control channels.
  • the channel transmission unit is configured to: send a physical downlink control channel to the terminal on a resource with the same logical number of the consecutive multiple subframes.
  • the transmission mode determining unit is configured to: obtain channel state information with the terminal, and determine, according to the channel state information, whether the physical downlink control channel uses continuous transmission.
  • a terminal includes: a control channel decoding unit, where:
  • the control channel decoding unit is configured to: jointly decode a plurality of physical downlink control channels received in consecutive multiple subframes.
  • a shared channel decoding unit is further included, wherein:
  • the shared channel decoding unit is configured to: decode, according to the control information obtained by the control channel decoding unit jointly decoding, the physical downlink shared channel indicated by the control information.
  • the transmission method of the control channel in the embodiment of the present invention can enable the UE to obtain the time selective gain and the coding combining gain by using the continuous transmission mode, and improve the flexibility of the PDCCH resource occupation and improve the resource utilization efficiency. Thereby, the coverage distance of the PDCCH is improved, thereby improving the reception performance of the PDCCH.
  • 1 is a flowchart of a method for transmitting a control channel in the present invention
  • 2 is a schematic diagram of a discontinuous transmission of a PDCCH
  • FIG. 3 is a schematic diagram of continuous transmission of a PDCCH according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of continuous transmission of a PDCCH according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a continuous transmission of a PDCCH according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of continuous transmission of a PDCCH according to Embodiment 4 of the present invention.
  • FIG. 7 is a structural diagram of a transmission device of a control channel in the present invention.
  • Figure 8 is a block diagram of a terminal in the present invention. Preferred embodiment of the invention
  • the base station acquires channel state information between the base station and the terminal, and the base station determines, according to the channel state information, whether the PDCCH uses continuous transmission, and when the continuous transmission is used, the base station is continuously continuous.
  • the base station determines, according to the channel state information, whether the PDCCH uses continuous transmission, and when the continuous transmission is used, the base station is continuously continuous.
  • multiple consecutive PDCCHs are sent to the terminal to complete a resource allocation for the terminal.
  • the continuous transmission not only maintains the coding gain but also increases the time-selective gain; the difference from the PDCCH supporting the HARQ scheme is that the PDCCH supporting the fixed HARQ cannot obtain the combined decoding gain.
  • Continuous transmission in this embodiment may also be referred to as Bundling transmission.
  • the transmission method of the control channel in this embodiment includes:
  • Step 101 The base station indicates to the terminal whether the physical downlink control channel of the terminal uses continuous transmission.
  • the base station determines whether the physical downlink control channel uses continuous transmission according to the acquired channel state information between the terminal and the terminal.
  • the base station in the TDD mode determines whether the PDCCH enables continuous transmission according to the channel state information fed back by the UE or the channel reciprocity.
  • the channel reciprocity refers to the base station obtaining the downlink channel state information according to the uplink channel state information; the base station in the FDD mode according to the UE feedback.
  • the channel state information determines whether the PDCCH enables continuous transmission. If the base station determines that the terminal uses continuous transmission when the terminal is initially accessing, the base station may notify the terminal by transmitting an initial access response message.
  • the base station determines the transmission mode of the PDCCH according to the channel state information. For example, the base station may obtain the channel state information by sending a Sounding signal by the terminal.
  • the transmission mode refers to whether continuous transmission is supported to enhance coverage.
  • the number of consecutive PDCCHs may be fixed or configured.
  • three consecutive PDCCHs are fixedly transmitted, and the configuration is configured with 1 to 2 bits, and 2 bits correspond to 1 2 3 and 4 PDCCHs.
  • three consecutive PDCCHs are transmitted
  • Step 102 The base station sends multiple physical downlink control channels to the terminal in consecutive multiple subframes when the continuous transmission is used, and completes resource allocation for the terminal through multiple physical downlink control channels.
  • the base station allocates multiple physical downlink control channels transmitted in consecutive multiple subframes to one physical downlink shared channel, thereby completing a resource allocation for the terminal.
  • the base station transmits the physical downlink shared channel in the last of the plurality of consecutive subframes.
  • the base station performs data transmission between the terminal and the terminal through one physical downlink shared channel corresponding to the plurality of physical downlink control channels.
  • consecutive PDCCHs are transmitted on resources with the same logical number of multiple subframes, that is, resources with the same CCE logical number;
  • the consecutive PDCCHs use the same aggregation level, so that the number of searches of the terminal in the decoding of the PDCCH is constant, and the number of times is determined by the aggregation level and possible positions.
  • Multiple consecutive PDCCHs may be derived from the same HARQ version, or different HARQ versions, and the HARQ version determines the channel-encoded data of the PDCCH.
  • the terminal performs joint decoding on the continuously received PDCCH to obtain control information, thereby acquiring a combined decoding gain of the PDCCH. After performing joint decoding, the terminal decodes the physical downlink shared channel indicated by the control information according to the control information obtained by the joint decoding.
  • Example 1
  • Figure 2 shows a common transmission method of the PDCCH in the mobile communication network, that is, each PDSCH is indicated by one PDCCH in the same subframe, and the terminal first detects the PDCCH, and determines the related information of the received PDSCH according to the control information in the PDCCH.
  • the PDSCH has an aggregation level of 4, which occupies 4 CCEs.
  • the scheme used by the base station can only use a larger aggregation level, for example, using 8 CCEs to improve the detection success rate.
  • FIG. 3 is a schematic diagram of a continuous transmission of a PDCCH in the present embodiment.
  • the base station transmits three PDCCHs in three consecutive subframes, and the three PDCCHs It can be a different HARQ version of the same information, and the terminal performs combined decoding after receiving 3 PDCCHs, thereby greatly improving the decoding success rate and ensuring the robustness of the PDSCH transmission.
  • the base station transmits the PDCCH on the CCEs with the same logical sequence number to ensure that the UE can determine the location of the CCEs in different subframes by using the RNTI of the UE, and all three PDCCHs use the same aggregation level.
  • the aggregation levels of the three PDCCHs in FIG. 3 are all 4, so that the PDCCHs in different subframes are located in the same search space, and the UE only needs to detect the same number of detections as when the PDCCH is discontinuously transmitted, and the PDCCH can be detected. .
  • the terminal needs to know that the PDCCH is continuously transmitted by the base station, which requires negotiation between the terminal and the base station. If the base station determines that the terminal enables continuous transmission when the terminal is initially accessing, the base station can notify the terminal by transmitting an initial access response message.
  • the base station transmits 4 PDCCHs in consecutive 4 subframes, and the 4 PDCCHs may be different HARQ versions of the same information, and the terminal receives 4
  • the PDCCH is combined and decoded, which greatly improves the decoding success rate and ensures the robustness of the PDSCH transmission.
  • the base station transmits the PDCCH on the CCEs with the same logical sequence number to ensure that the UE can determine the location of the CCEs in different subframes by using the RNTI of the UE, and the four PDCCHs use the same aggregation level.
  • the four PDCCHs in Figure 4 have an aggregation level of 8, so as to ensure that they are in different subframes.
  • the PDCCH is located in the same search space, and the UE only needs to detect the same number of detections as when the PDCCH is discontinuously transmitted, and the PDCCH can be detected.
  • FIG. 5 is an example 3 when the PDCCH is continuously transmitted in the embodiment
  • the difference from the continuous transmission in Figs. 3 and 4 is that the base station can set different consecutive transmission times for different terminals.
  • Both terminal 1 and terminal 2 are terminals located at the edge of the network, and the channel quality is not good, but the channel quality of terminal 1 is better than that of terminal 2, so terminal 1 does not need to use an excessive aggregation level on the one hand, for example, using aggregation.
  • Level 4 does not use 8
  • terminal 2 does not require too many consecutive transmissions, for example, 3 consecutive transmissions instead of 4
  • terminal 2 requires the highest aggregation level, for example, using aggregation level 8
  • the maximum number of consecutive transmissions is performed, for example, 4 consecutive transmissions.
  • the terminal 1 uses a total of 12 CCEs in 3 subframes, which achieves the aggregation level 12 to a certain extent, increases the aggregation level, and utilizes the combining gain and the different subframes. Time selective gain.
  • the aggregation level 1 is transmitted continuously 3 times to achieve the transmission of the equivalent aggregation level 3
  • the continuous transmission level 3 of the aggregation level 2 can achieve the transmission of the equivalent aggregation level 6, and the equivalent aggregation level 3 or 6 can be If the requirements are met, avoid using aggregation levels 4 and 8, which can also improve resource utilization efficiency.
  • Example 4 6 is an example 4 in the case of continuous transmission of a PDCCH in the present embodiment
  • the difference from the continuous transmission in FIG. 4 is that the adjustment of the PDCCH transmission scheme is implemented.
  • the base station adjusts the transmission mode of the PDCCH according to the channel state information sent by the terminal.
  • the base station performs four PDSCH transmissions for a terminal with poor channel quality, and the base station transmits four PDCCHs in four consecutive subframes, and four PDCCHs use the same aggregation level 8, thereby improving The detection success rate of the PDCCH.
  • the PDCCH continuous transmission scheme may be terminated, and the PDCCH discontinuous transmission may be used.
  • the base station in the present embodiment may be a device such as a macro base station, a home base station, or a relay station, or may be a communication terminal, a notebook computer, a handheld computer or the like.
  • the UE is configured to receive the data signal of the transmitting end, and the receiving end may be a terminal device such as a mobile phone, a notebook computer, a handheld computer, or a control device such as a base station or a relay station.
  • the embodiment further provides a transmission device for a control channel, including: a transmission mode determining unit, a transmission indicating unit, and a channel transmission unit, where:
  • a transmission mode determining unit configured to determine whether the physical downlink control channel of the terminal uses continuous transmission
  • a transmission indication unit configured to indicate to the terminal whether the physical downlink control channel of the terminal uses continuous transmission
  • the channel transmission unit is configured to send multiple physical downlink control channels to the terminal in consecutive multiple subframes during continuous transmission, and complete resource allocation for the terminal through multiple physical downlink control channels.
  • the channel transmission unit is configured to: the plurality of physical downlink control channels sent in the consecutive multiple subframes correspond to one physical downlink shared channel, and perform data transmission between the terminal and the terminal through one physical downlink shared channel.
  • the channel transmission unit is further configured to send, in a last one of the consecutive multiple subframes, one physical downlink shared channel corresponding to the multiple physical downlink control channels.
  • the terminal sends a physical downlink control channel.
  • the transmission mode determining unit is specifically configured to acquire channel state information between the terminal and the terminal, and determine, according to the channel state information, whether the physical downlink control channel uses continuous transmission.
  • the embodiment further provides a terminal, including: a control channel decoding unit and a shared channel decoding unit, where:
  • control channel decoding unit configured to jointly decode the plurality of physical downlink control channels received in consecutive multiple subframes.
  • a shared channel decoding unit configured to decode the physical downlink shared channel indicated by the control information according to the control information obtained by jointly decoding the control channel decoding unit.
  • a method for transmitting a control channel enables a UE to obtain a time selective gain and a coding combining gain by using a continuous transmission manner, and improves flexibility of PDCCH resource occupation, thereby improving resource utilization efficiency, thereby improving The coverage distance of the PDCCH, thereby improving the reception performance of the PDCCH.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种控制信道的传输方法及装置。该方法包括:基站向终端指示所述终端的物理下行控制信道是否采用连续传输,在采用连续传输时,在连续的多个子帧中向所述终端发送多个物理下行控制信道,通过所述多个物理下行控制信道为所述终端完成一次资源分配。本发明的控制信道的传输方法通过采用连续传输的方式,能够使得UE获得时间选择性增益和编码合并增益,并且提高物理下行控制信道(PDCCH)资源占用的灵活度,提高资源利用效率,从而提高PDCCH的覆盖距离,从而提升PDCCH的接收性能。

Description

一种控制信道的传输方法及装置
技术领域
本发明涉及通信领域, 尤其涉及一种控制信道的传输方法及装置。 背景技术
随着无线通信技术的快速发展, 有限的频谱资源逐渐成为制约无线通信 发展的主要因素, 但正是有限的频谱资源激发了新技术的出现。 在无线通信 系统中容量和覆盖是两个重要的性能指标, 为了增加容量, 多釆用同频方式 组网, 但同频方式组网又增加了小区间干扰, 从而导致覆盖性能下降。
在长期演进(Long Term Evolution, LTE ) 系统中, 下行釆用了正交频分 复用多址接入 ( Orthogonal Frequency Division Multiplexing Access , OFDMA ) 技术, 能够显著降低小区内的干扰, 但由于多釆用同频方式组网, 小区间干 扰(Inter-Cell Interference, ICI )增加明显。 为了降低 ICI, LTE也标准化了 艮多技术, 例如, 下行小区间干 4尤消除 ( Inter-Cell Interfernce Cancellation, ICIC )。 下行 ICIC技术基于 eNodeB相对窄带发射功率( Relative Narrowband TX Power, RNTP )限制的方法实现下行干扰预先提醒功能, 但该方法只能用 于物理下行业务信道(Physical Downlink Shared Channel, PDSCH ) 。
目前, 通过实验网络测试和仿真可以发现, 物理下行控制信道(Physical Downlink Control Channel , PDCCH )的容量和覆盖都存在问题, 因为 PDCCH 信道对剩余的控制信道单元 (Control Channel Element , CCE ) 实行填充 ( Padding ) , 造成在同频组网下 PDCCH信道总处在满载状态, 而且受到相 邻小区的干扰很大, 从而降低了 PDCCH的接收性能。 而上, 下行共享信道 的调度信息等信息均通过 PDCCH承载,如果 PDCCH的接收性能降低,那么 整网的性能将严重降低。
PDCCH用于承载终端( User Equipment, UE )的下行控制信息( Downlink Control Information, DCI ) , 具体包括上行调度信息、 下行调度信息、 功率控 制信息和公共信息等, 并支持多种 DCI格式。 DCI的生成过程包括: 信息比 特通过循环冗余校验、 编码、 子块交织、 速率匹配、 加扰和调制等步骤, 最 后映射到物理资源粒子组(Resource Element Group, REG )上。
为了提高 PDCCH的效率, LTE系统定了四种聚合等级传输 PDCCH, 四 种等级分别为 1 , 2, 4和 8个 CCE, 显然, 等级越高, 传输一个 PDDCH所 需资源越多,覆盖可能越稳健,但效率越低。 目前, 为了算法方便, 在 OFDM 的多载波系统中,对于下行控制信道的功率, eNB对各 UE的 PDCCH进行等 功率分配, 即除去(Physical Control Format Indication Channel, PCFICH )和 ( Physical HARQ Indication Channel, PHICH ) 占用的功率外, 剩余功率等分 给 PDCCH占用的各个 CCE或 REG,而根据 UE的 DCI信息的长度和信道条 件选择合适的 DCI格式和聚合等级, 这种方法的问题在于不能解决同频干扰 的问题。 另外也有根据 UE的接收信噪比的反馈来调节 PDCCH的发送功率, 但仍然无法解决小区间的总体干扰强度和总体覆盖水平之间的矛盾, 因为增 加功率, 可使 UE覆盖增强, 但干扰增加; 降低功率, 干扰降低, 但覆盖受 限。
因此,在已有的技术中,还没有在存在小区间干扰的情况下,改善 PDCCH 信道的覆盖^巨离的方法。
发明内容
本发明要解决的技术问题是提供一种控制信道的传输方法 , 能够提升控 制信道的覆盖距离。
为解决上述技术问题, 本发明的一种控制信道的传输方法, 包括: 基站向终端指示所述终端的物理下行控制信道是否釆用连续传输, 在釆 用连续传输时,在连续的多个子帧中向所述终端发送多个物理下行控制信道, 通过所述多个物理下行控制信道为所述终端完成一次资源分配。
优选地, 所述通过所述多个物理下行控制信道为所述终端完成一次资源 分配, 包括: 所述基站将所述连续的多个子帧中发送的多个物理下行控制信 道对应一个物理下行共享信道。
优选地, 所述基站通过所述一个物理下行共享信道完成一次与终端间的 数据传输。
优选地, 还包括: 所述基站在所述连续的多个子帧中的最后一个子帧中 发送所述多个物理下行控制信道对应的一个物理下行共享信道。
优选地, 所述在连续的多个子帧中向所述终端发送多个物理下行控制信 道, 包括: 所述基站在所述连续的多个子帧的逻辑编号相同的资源上向所述 终端发送物理下行控制信道。
优选地, 所述在连续的多个子帧中向所述终端发送多个物理下行控制信 道, 包括: 所述基站根据所述连续的多个子帧的子帧序号决定所述物理下行 控制信道所占用资源的逻辑编号。
优选地, 还包括: 所述基站在所述连续的多个子帧中釆用相同的聚合等 级向所述终端发送物理下行控制信道。
优选地, 还包括: 所述基站向所述终端指示物理下行控制信道是否釆用 连续传输前, 获取与所述终端之间的信道状态信息, 根据所述信道状态信息 确定物理下行控制信道是否釆用连续传输。
优选地, 还包括: 所述基站在所述终端处于初始接入状态时, 在确定所 述终端的物理下行控制信道釆用连续传输后, 通过初始接入响应消息向终端 指示物理下行控制信道釆用连续传输。
优选地, 还包括: 所述基站在所述终端处于非初始接入状态时, 根据所 述终端的信道状态信息确定所述终端的物理下行控制信道是否釆用连续传 输。
优选地, 还包括: 所述终端对在连续的多个子帧中接收到的物理下行控 制信道进行联合解码。
优选地, 还包括: 所述终端在进行联合解码后, 根据联合解码获得的控 制信息, 对所述控制信息指示的物理下行共享信道进行解码。
一种控制信道的传输装置, 包括: 传输方式确定单元、 传输指示单元和 信道传输单元, 其中:
所述传输方式确定单元设置为: 确定终端的物理下行控制信道是否釆用 连续传输; 所述传输指示单元设置为: 向终端指示所述终端的物理下行控制信道是 否釆用连续传输;
所述信道传输单元设置为: 在釆用连续传输时, 在连续的多个子帧中向 所述终端发送多个物理下行控制信道, 通过所述多个物理下行控制信道为所 述终端完成一次资源分配。
优选地, 所述信道传输单元是设置为: 将所述连续的多个子帧中发送的 多个物理下行控制信道对应一个物理下行共享信道, 通过所述一个物理下行 共享信道完成一次与终端间的数据传输。
优选地, 所述信道传输单元还设置为: 在所述连续的多个子帧中的最后 一个子帧中发送所述多个物理下行控制信道对应的一个物理下行共享信道。
优选地, 所述信道传输单元是设置为: 在所述连续的多个子帧的逻辑编 号相同的资源上向所述终端发送物理下行控制信道。
优选地, 所述传输方式确定单元是设置为: 获取与所述终端之间的信道 状态信息,根据所述信道状态信息确定物理下行控制信道是否釆用连续传输。
一种终端, 包括: 控制信道解码单元, 其中:
所述控制信道解码单元设置为: 对在连续的多个子帧中接收到的多个物 理下行控制信道进行联合解码。
优选地, 还包括共享信道解码单元, 其中:
所述共享信道解码单元设置为: 根据所述控制信道解码单元联合解码获 得的控制信息, 对所述控制信息指示的物理下行共享信道进行解码。
综上所述, 本发明实施例的控制信道的传输方法通过釆用连续传输的方 式, 能够使得 UE获得时间选择性增益和编码合并增益, 并且提高 PDCCH资 源占用的灵活度, 提高资源利用效率, 从而提高 PDCCH的覆盖距离, 从而 提升 PDCCH的接收性能。 附图概述
图 1为本发明中的控制信道的传输方法的流程图; 图 2为 PDCCH的非连续传输时的示意图;
图 3为本发明中实施例 1的 PDCCH的连续传输时的示意图;
图 4为本发明中实施例 2的 PDCCH的连续传输时的示意图;
图 5为本发明中实施例 3的 PDCCH的连续传输时的示意图;
图 6为本发明中实施例 4的 PDCCH的连续传输时的示意图;
图 7为本发明中的控制信道的传输装置的架构图;
图 8为本发明中的终端的架构图。 本发明的较佳实施方式
本实施方式的控制信道的传输方法中, 基站获取基站至终端之间的信道 状态信息, 基站根据信道状态信息为终端确定 PDCCH是否釆用连续传输, 在釆用连续传输时, 基站在连续的多个子帧中向终端发送多个连续的 PDCCH, 为终端完成一次资源分配。
如果原本 PDCCH的聚合等级为 1、 2、 4或 8, 在连续传输三个 TTI的情 况下, 等价于增加为 3、 6、 12或 24这四种聚合等级; 与仅在一个 TTI中发 送 PDCCH相比, 连续传输不仅保持了编码增益, 还增加了时间选择性增益; 与支持 HARQ方案的 PDCCH的差别在于, 支持固定 HARQ的 PDCCH无法 获得合并解码增益。 本实施方式中连续传输也可以称为 Bundling (捆绑)传 输。
如图 1所示, 本实施方式的控制信道的传输方法, 包括:
步骤 101 : 基站向终端指示终端的物理下行控制信道是否釆用连续传输; 基站是根据所获取的与终端之间的信道状态信息, 确定物理下行控制信 道是否釆用连续传输。
TDD方式的基站根据 UE反馈的信道状态信息或利用信道互易性来决定 PDCCH是否启用连续传输,信道互易性指基站根据上行信道状态信息来得到 下行信道状态信息; FDD 方式的基站根据 UE反馈的信道状态信息来决定 PDCCH是否启用连续传输。 如果基站是在终端处在初始接入时确定终端釆用连续传输, 基站可以通 过发送初始接入响应消息来通知终端。
在终端处于非初始接入状态时, 基站根据信道状态信息来确定 PDCCH 的传输模式,例如,基站可以通过终端发送 Sounding信号得到信道状态信息。 传输模式是指是否支持连续传输, 来增强覆盖。
连续传输的多个 PDCCH的数目可以固定或配置制定, 例如, 固定时, 固定发送三个连续的 PDCCH, 配置制定时釆用 1~2比特配置, 2比特对应支 持 1 2 3和 4个 PDCCH; 优选地发送三个连续的 PDCCH
步骤 102: 基站在釆用连续传输时, 在连续的多个子帧中向终端发送多 个物理下行控制信道,通过多个物理下行控制信道为终端完成一次资源分配。
釆用连续传输时, 基站将连续的多个子帧中发送的多个物理下行控制信 道对应一个物理下行共享信道, 从而为终端完成一次资源分配。 基站在连续 的多个子帧中的最后一个子帧中发送物理下行共享信道。 基站是通过多个物 理下行控制信道对应的一个物理下行共享信道完成一次与终端间的数据传 输。
釆用连续传输时, 连续的 PDCCH将在多个子帧的逻辑编号相同的资源 上发送, 即 CCE逻辑编号相同的资源; 或者,
根据多个子帧的子帧序号决定终端的 PDCCH占用 CCE的逻辑编号, 例 如, UE在子帧 k中的 PDCCH位置与 Yk有关,而 Yk则与子帧 k-1对应的 有关。 mod , = 39827 , D = 65537 , Υ_λ = «RNTI≠ 0 , W 1为 11£的无线网 络 i|m时标 i只 ( Radio network temporary Identifier, RNTI )
釆用连续传输时, 连续的 PDCCH釆用相同的聚合等级, 以使终端在 PDCCH的解码中的搜索次数不变, 次数决定于聚合等级和可能位置。
多个连续的 PDCCH可以来源于同一个 HARQ版本, 或者不同的 HARQ 版本, HARQ版本决定了对 PDCCH进行信道编码后的数据。
终端是对连续接收到的 PDCCH进行联合解码得到控制信息, 从而获取 PDCCH的合并解码增益。终端在进行联合解码后,根据联合解码获得的控制 信息, 对控制信息指示的物理下行共享信道进行解码。 实施例 1 :
图 2所示为移动通信网络中 PDCCH的常用传输方法, 即: 每个 PDSCH 通过同子帧中的一个 PDCCH指示,终端首先检测得到 PDCCH,根据 PDCCH 中的控制信息确定接收 PDSCH的相关信息。 图 2中所示为 PDSCH的聚合等 级为 4, 即占用 4个 CCE。
在上述的现有方法中, 对于一些信道质量不好的终端, 基站釆用的方案 只能是使用更大的聚合等级, 例如, 使用 8个 CCE, 来提高检测成功率。
图 3为本实施方式中 PDCCH的连续传输时的示意图, 图 3中为了实现 对一个信道质量差的终端进行一次 PDSCH传输,基站在连续的 3个子帧中发 送了三个 PDCCH,这 3个 PDCCH可以是同样信息的不同 HARQ版本,终端 在收到 3个 PDCCH后进行合并解码, 从而大大提高了解码成功率, 保证了 PDSCH传输的稳健性。
基站在逻辑序号相同的 CCE上传输 PDCCH, 来确保 UE能够通过 UE 的 RNTI即可确定不同子帧中的 CCE的位置, 且三个 PDCCH都釆用相同的 聚合等级。
例如, 图 3中的 3个 PDCCH的聚合等级均为 4,从而保证不同子帧中的 PDCCH位于同样的搜索空间, UE也只需要检测与 PDCCH非连续传输时同 样的检测次数即可检测到 PDCCH。
需要说明: 终端需要知道基站釆用的是 PDCCH连续传输, 这需要终端 与基站之间进行协商。 如果基站是在终端处在初始接入时确定终端启用连续 传输, 基站可以通过发送初始接入响应消息来通知终端。
实施例 2:
图 4为本实施方式中 PDCCH的连续传输时的示例 2;
在 PDCCH连续传输的方案中,对于 PDCCH连续传输的次数或数目需要 确定, 包括以下几种方案:
(一)可以是确定的数目, 例如, 优选的为 3次, 只要基站为某个终端 使用了 PDCCH连续传输方案, 就固定地连续传输 3次。 图 3中所示为固定 连续传输 3次。 (二)可以由基站进行配置, 例如用 1~2比特配置。 以 2比特为例对应 四种连续传输次数 1、 2、 3和 4。
图 4中为了实现对一个信道质量很差的终端进行一次 PDSCH传输,基站 在连续的 4个子帧中发送了 4个 PDCCH, 这 4个 PDCCH可以是同样信息的 不同 HARQ版本, 终端在收到 4个 PDCCH后进行合并解码, 从而大大提高 了解码成功率, 保证了 PDSCH传输的稳健性。
基站在逻辑序号相同的 CCE上传输 PDCCH, 来确保 UE能够通过 UE 的 RNTI即可确定不同子帧中的 CCE的位置, 且 4个 PDCCH都釆用相同的 聚合等级。
例如, 图 4中的 4个 PDCCH的聚合等级均为 8,从而保证不同子帧中的
PDCCH位于同样的搜索空间, UE也只需要检测与 PDCCH非连续传输时同 样的检测次数即可检测到 PDCCH。
实施例 3:
图 5为本实施方式中 PDCCH的连续传输时的示例 3;
本实施例中, 与图 3和图 4中连续传输的差别在于: 基站可以为不同终 端设定不同的连续传输次数。
终端 1与终端 2均是位于网络边缘的终端, 信道质量都不好, 但终端 1 的信道质量比终端 2好, 所以终端 1 一方面不需要釆用过高的聚合等级, 例 如, 釆用聚合等级 4而不釆用 8, 另一方面不需要过多的连续传输次数, 例 如, 连续发送 3次而不是 4; 而终端 2—方面需要釆用最高的聚合等级, 例 如,釆用聚合等级 8, 另一方面进行最大次数的连续传输, 例如, 连续发送 4。
从上述实例中可以看出,终端 1在 3个子帧中共使用了 12个 CCE,在一 定程度上实现了聚合等级 12的作用, 增加了聚合等级, 同时利用了合并增益 和不同子帧中具有的时间选择性增益。 类似地, 如果聚合等级 1进行连续传 输 3次可以实现等价聚合等级 3的传输, 对聚合等级 2进行连续传输 3次可 以实现等价聚合等级 6的传输,在等价聚合等级 3或 6可满足要求的情况下, 避免使用聚合等级 4和 8, 也可以提升资源使用效率。
实施例 4: 图 6为本实施方式中 PDCCH的连续传输时的示例 4;
在本实施例中, 与图 4中连续传输的差别在于: 实现了 PDCCH传输方 案的调整, 在终端处于非初始接入状态时, 基站根据终端发送的信道状态信 息来调整 PDCCH的传输模式。
图 6中, 基站为了实现对一个信道质量很差的终端进行一次 PDSCH传 输, 基站在连续的 4个子帧中发送了 4个 PDCCH, 且 4个 PDCCH都釆用相 同的聚合等级 8, 从而提高了 PDCCH的检测成功率。 但当该 UE的信道条件 变好后, 为了提高资源使用效率, 可以终止 PDCCH连续传输方案, 而釆用 PDCCH非连续传输。
本实施方式中的基站以是宏基站、 家庭基站、 中继站等设备, 也可以是 通信终端、 笔记本电脑、 手持电脑等。 类似地, UE用于接收发送端的数据信 号, 接收端可以是手机、 笔记本电脑、 手持电脑等终端设备, 也可以是基站, 中继站等控制设备。
图 7所示, 本实施方式还提供了一种控制信道的传输装置, 包括: 传输 方式确定单元、 传输指示单元和信道传输单元, 其中:
传输方式确定单元, 用于确定终端的物理下行控制信道是否釆用连续传 输;
传输指示单元, 用于向终端指示终端的物理下行控制信道是否釆用连续 传输;
信道传输单元, 用于在釆用连续传输时, 在连续的多个子帧中向终端发 送多个物理下行控制信道, 通过多个物理下行控制信道为终端完成一次资源 分配。
信道传输单元, 具体用于将连续的多个子帧中发送的多个物理下行控制 信道对应一个物理下行共享信道, 通过一个物理下行共享信道完成一次与终 端间的数据传输。
信道传输单元, 还用于在连续的多个子帧中的最后一个子帧中发送多个 物理下行控制信道对应的一个物理下行共享信道。
信道传输单元, 具体用于在连续的多个子帧的逻辑编号相同的资源上向 终端发送物理下行控制信道。
传输方式确定单元, 具体用于获取与终端之间的信道状态信息, 根据信 道状态信息确定物理下行控制信道是否釆用连续传输。
图 8所示, 本实施方式还提供了一种终端, 包括: 控制信道解码单元和 共享信道解码单元, 其中:
控制信道解码单元, 用于对在连续的多个子帧中接收到的多个物理下行 控制信道进行联合解码。
共享信道解码单元, 用于根据控制信道解码单元联合解码获得的控制信 息, 对控制信息指示的物理下行共享信道进行解码。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范围之内。
工业实用性 本发明实施例的控制信道的传输方法通过釆用连续传输的方式, 能够使 得 UE获得时间选择性增益和编码合并增益,并且提高 PDCCH资源占用的灵 活度, 提高资源利用效率, 从而提高 PDCCH的覆盖距离, 从而提升 PDCCH 的接收性能。

Claims

权 利 要 求 书
1、 一种控制信道的传输方法, 包括:
基站向终端指示所述终端的物理下行控制信道是否釆用连续传输, 在釆 用连续传输时,在连续的多个子帧中向所述终端发送多个物理下行控制信道, 通过所述多个物理下行控制信道为所述终端完成一次资源分配。
2、 如权利要求 1所述的方法,其中, 所述通过所述多个物理下行控制 信道为所述终端完成一次资源分配, 包括:
所述基站将所述连续的多个子帧中发送的多个物理下行控制信道对应一 个物理下行共享信道。
3、 如权利要求 2所述的方法,其中, 所述基站通过所述一个物理下行 共享信道完成一次与终端间的数据传输。
4、 如权利要求 2所述的方法, 其中, 还包括:
所述基站在所述连续的多个子帧中的最后一个子帧中发送所述多个物理 下行控制信道对应的一个物理下行共享信道。
5、 如权利要求 1所述的方法,其中, 所述在连续的多个子帧中向所述 终端发送多个物理下行控制信道, 包括: 送物理下行控制信道。
6、 如权利要求 1所述的方法,其中, 所述在连续的多个子帧中向所述 终端发送多个物理下行控制信道, 包括:
所述基站根据所述连续的多个子帧的子帧序号决定所述物理下行控制信 道所占用资源的逻辑编号。
7、 如权利要求 1所述的方法, 其中, 还包括:
所述基站在所述连续的多个子帧中釆用相同的聚合等级向所述终端发送 物理下行控制信道。
8、 如权利要求 1所述的方法, 其中, 还包括: 所述基站向所述终端指示物理下行控制信道是否釆用连续传输前, 获取 与所述终端之间的信道状态信息, 根据所述信道状态信息确定物理下行控制 信道是否釆用连续传输。
9、 如权利要求 8所述的方法, 其中, 还包括:
所述基站在所述终端处于初始接入状态时, 在确定所述终端的物理下行 控制信道釆用连续传输后, 通过初始接入响应消息向终端指示物理下行控制 信道釆用连续传输。
10、 如权利要求 8所述的方法, 其中, 还包括:
所述基站在所述终端处于非初始接入状态时, 根据所述终端的信道状态 信息确定所述终端的物理下行控制信道是否釆用连续传输。
11、 如权利要求 2所述的方法, 其中, 还包括:
所述终端对在连续的多个子帧中接收到的物理下行控制信道进行联合解 码。
12、 如权利要求 11所述的方法, 其中, 还包括:
所述终端在进行联合解码后, 根据联合解码获得的控制信息, 对所述控 制信息指示的物理下行共享信道进行解码。
13、 一种控制信道的传输装置, 包括: 传输方式确定单元、传输指示单 元和信道传输单元, 其中:
所述传输方式确定单元设置为: 确定终端的物理下行控制信道是否釆用 连续传输;
所述传输指示单元设置为: 向终端指示所述终端的物理下行控制信道是 否釆用连续传输;
所述信道传输单元设置为: 在釆用连续传输时, 在连续的多个子帧中向 所述终端发送多个物理下行控制信道, 通过所述多个物理下行控制信道为所 述终端完成一次资源分配。
14、 如权利要求 13所述的装置, 其中,
所述信道传输单元是设置为: 将所述连续的多个子帧中发送的多个物理 下行控制信道对应一个物理下行共享信道, 通过所述一个物理下行共享信道 完成一次与终端间的数据传输。
15、 如权利要求 13所述的装置, 其中,
所述信道传输单元还设置为: 在所述连续的多个子帧中的最后一个子帧 中发送所述多个物理下行控制信道对应的一个物理下行共享信道。
16、 如权利要求 13所述的装置, 其中,
所述信道传输单元是设置为: 在所述连续的多个子帧的逻辑编号相同的 资源上向所述终端发送物理下行控制信道。
17、 如权利要求 13所述的装置, 其中,
所述传输方式确定单元是设置为:获取与所述终端之间的信道状态信息, 根据所述信道状态信息确定物理下行控制信道是否釆用连续传输。
18、 一种终端, 包括: 控制信道解码单元,
所述控制信道解码单元设置为: 对在连续的多个子帧中接收到的多个物 理下行控制信道进行联合解码。
19、 如权利要求 18所述的终端, 其中, 还包括共享信道解码单元, 其 中:
所述共享信道解码单元设置为: 根据所述控制信道解码单元联合解码获 得的控制信息, 对所述控制信息指示的物理下行共享信道进行解码。
PCT/CN2012/072124 2011-11-18 2012-03-09 一种控制信道的传输方法及装置 WO2013071718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110369532.9 2011-11-18
CN201110369532.9A CN102447529B (zh) 2011-11-18 2011-11-18 一种控制信道的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2013071718A1 true WO2013071718A1 (zh) 2013-05-23

Family

ID=46009649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072124 WO2013071718A1 (zh) 2011-11-18 2012-03-09 一种控制信道的传输方法及装置

Country Status (2)

Country Link
CN (1) CN102447529B (zh)
WO (1) WO2013071718A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761395A (zh) * 2012-07-06 2012-10-31 中兴通讯股份有限公司 下行子帧的发送、接收方法及装置
EP3091806B1 (en) 2014-01-29 2018-07-18 Huawei Technologies Co., Ltd. Method for indicating cell coverage enhancement mode and base station
JP6403805B2 (ja) * 2014-06-06 2018-10-10 ノキア ソリューションズ アンド ネットワークス オサケユキチュア ページングメッセージカバレージエンハンスメントのための制御チャンネル送信
EP3626009B1 (en) * 2017-06-15 2024-01-10 Huawei Technologies Co., Ltd. Method and devices for multiple transmit receive point cooperation for reliable communication
CN109391355B (zh) 2017-08-11 2020-10-23 华为技术有限公司 无线通信的方法、芯片和系统
CN113473627B (zh) * 2021-07-13 2023-04-07 上海中兴易联通讯股份有限公司 一种用于nr系统资源复用的方法和实现资源复用的nr系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527929A (zh) * 2008-03-05 2009-09-09 中兴通讯股份有限公司 控制信道设计方法
CN101917367A (zh) * 2010-09-06 2010-12-15 北京交通大学 LTE-Advanced的异构网络中下行控制信道的小区间干扰协调的方法
WO2011002243A2 (ko) * 2009-07-02 2011-01-06 엘지전자 주식회사 중계기의 신호 송수신 방법 및 그 방법을 이용하는 중계기
WO2011032102A1 (en) * 2009-09-14 2011-03-17 Qualcomm Incorporated Cross-subframe control channel design

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527929A (zh) * 2008-03-05 2009-09-09 中兴通讯股份有限公司 控制信道设计方法
WO2011002243A2 (ko) * 2009-07-02 2011-01-06 엘지전자 주식회사 중계기의 신호 송수신 방법 및 그 방법을 이용하는 중계기
WO2011032102A1 (en) * 2009-09-14 2011-03-17 Qualcomm Incorporated Cross-subframe control channel design
CN101917367A (zh) * 2010-09-06 2010-12-15 北京交通大学 LTE-Advanced的异构网络中下行控制信道的小区间干扰协调的方法

Also Published As

Publication number Publication date
CN102447529B (zh) 2017-09-26
CN102447529A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
JP6680958B1 (ja) 狭帯域通信のための狭帯域時分割複信フレーム構造
TWI687082B (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
TWI710242B (zh) 用於無線通訊的方法、裝置及電腦可讀取媒體
WO2017195721A1 (ja) ユーザ端末及び無線通信方法
KR20190004347A (ko) 리소스 스케줄링 방법 및 장치
TWI542184B (zh) An up and down configuration of the instructions, determine the method and the base station, the terminal
JP7201433B2 (ja) 端末、無線通信方法、基地局及びシステム
KR20130000405A (ko) 무선 네트워크에서 강화된 커버리지를 통해 제어 정보를 송신하기 위한 방법 및 장치
WO2018193593A1 (ja) 受信装置及び無線通信方法
WO2018058485A1 (zh) 下行控制信息监听、发送、接收方法及装置
WO2014007699A1 (en) Interference control in hetnet:s
WO2013071718A1 (zh) 一种控制信道的传输方法及装置
WO2020063275A1 (zh) 一种信息指示方法及装置
WO2018173237A1 (ja) ユーザ端末及び無線通信方法
JP7140129B2 (ja) 無線通信装置、無線通信方法およびコンピュータプログラム
JP2020536435A (ja) 新無線(nr)多入力多出力(mimo)のための単一パケット符号化チャネル状態情報(csi)設計
JP2023537347A (ja) 制御情報送受信のための装置及び方法
CN109076583A (zh) 终端装置、基站装置以及通信方法
WO2018163431A1 (ja) ユーザ端末及び無線通信方法
CN109076520A (zh) 终端装置、基站装置、通信方法以及集成电路
WO2018056337A1 (ja) ユーザ端末及び無線通信方法
TW201907669A (zh) 在用於對資訊位元進行編碼的代碼類型之間的選擇
WO2018235297A1 (ja) ユーザ端末及び無線通信方法
CN111164942B (zh) 比特到符号的映射方法和通信装置
WO2013139259A1 (zh) 正交频分多址接入系统中的编码传输方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12849121

Country of ref document: EP

Kind code of ref document: A1