WO2013071509A1 - 异构网络中增强同步的方法和装置 - Google Patents

异构网络中增强同步的方法和装置 Download PDF

Info

Publication number
WO2013071509A1
WO2013071509A1 PCT/CN2011/082393 CN2011082393W WO2013071509A1 WO 2013071509 A1 WO2013071509 A1 WO 2013071509A1 CN 2011082393 W CN2011082393 W CN 2011082393W WO 2013071509 A1 WO2013071509 A1 WO 2013071509A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
subframe
transmission
auxiliary
auxiliary synchronization
Prior art date
Application number
PCT/CN2011/082393
Other languages
English (en)
French (fr)
Inventor
张翼
张元涛
李宏超
王轶
周华
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014541500A priority Critical patent/JP2014533902A/ja
Priority to KR1020147013788A priority patent/KR20140094565A/ko
Priority to PCT/CN2011/082393 priority patent/WO2013071509A1/zh
Priority to EP11875607.1A priority patent/EP2782306A4/en
Priority to CN201180074307.0A priority patent/CN103891231A/zh
Publication of WO2013071509A1 publication Critical patent/WO2013071509A1/zh
Priority to US14/279,454 priority patent/US20140247808A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/20Performing reselection for specific purposes for optimising the interference level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for enhancing synchronization in a heterogeneous network. Background technique
  • the Long Term Evolution (LTE) of 3GPP follows the traditional homogeneous network, which consists of a hexagonal cellular system.
  • the Next Generation Wireless Communication System Advanced Long Term Evolution (LTE-Advanced) introduces a heterogeneous network (Heterogeneous Network).
  • the LTE-A system is composed of a Macro Cell, a Femto Cell, a Pico Cell, a Remote Radio Head (RRH), and a Relay.
  • RRH Remote Radio Head
  • a large offset value is used in cell selection during cell selection. It ensures that more Macro cell users are served by the Pico cell, and the system capacity is increased by multiplexing time-frequency resources by different cells.
  • users in the Cell Range Expansion (CRE) area of the Pico cell are subject to large interference, which requires enhanced interference coordination techniques to ensure reliable transmission of users in the CRE area.
  • An Almost Blank Subframe (ABS) scheme can be used to reduce the interference of the Macro cell to Pico cell information transmission.
  • Figure 1 shows an example.
  • the Macro cell is vacant 1, 3, 5, 7, 9 subframes, and the Pico cell preferentially schedules edge users to transmit in the vacant subframe corresponding to the Macro cell, and the other subframes dispatch the center user to transmit.
  • the Pico cell can transmit reliably. It guarantees the reuse of cell center users and increases system capacity compared to traditional homogeneous networks.
  • the subframe in which the Pico cell PBCH/PSS/SSS is located corresponds to the ABS subframe of the Macro cell, and is not the 0, 5 subframe of the Macro cell;
  • the Pico cell PBCH/PSS The resource where the /SSS is located corresponds to the Non-ABS of the Macro cell, and the resources corresponding to the Macro cell do not transmit information through the puncturing method.
  • the inventors have found that another synchronization method has been proposed.
  • the user of the Pico cell CRE area first detects the synchronization channel of the Macro cell, which can access the Macro cell.
  • the macro cell then sends system information to the user in the CRE area of the Pico cell, for example: system bandwidth information transmitted in the PBCH, system frame number information, PHICH duration and occupied resource information, using antenna port number information, cyclic prefix type information, Cell identification information, etc.
  • the CRE area user accessing the Macro cell switches to the Pico cell.
  • the user of the CRE area can obtain partial synchronization information without detecting PBCH/PSS/SSS.
  • This method can be applied to FDD systems and TDD systems, but the symbol and subframe synchronization problems remain unresolved.
  • An object of the embodiments of the present invention is to provide a method and apparatus for enhancing synchronization in a heterogeneous network, so as to obtain synchronization of users in a CRE area of a Pico cell by combining a high layer signaling indication and an auxiliary synchronization signal.
  • a method for enhancing synchronization in a heterogeneous network includes: The base station of the micro cell sends an auxiliary synchronization signal, the transmission period of the auxiliary synchronization signal is 10 ms or 5 ms, and the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame;
  • the base station notifies the user equipment of the cell range extension (CRE) area to detect the auxiliary synchronization signal, so that when the user equipment accesses the micro area, the symbol synchronization and frame synchronization are performed according to the auxiliary synchronization signal.
  • CRE cell range extension
  • a method for enhancing synchronization in a heterogeneous network includes:
  • the user equipment switches to the micro cell according to the information about the micro cell sent by the macro cell;
  • the user equipment detects the auxiliary synchronization signal sent by the micro cell according to the notification message sent by the micro cell, the transmission period of the auxiliary synchronization signal is 10 ms or 5 ms, and the auxiliary synchronization signal is located at the 0th of each transmission frame. Subframes and/or 5th subframes;
  • the user equipment performs symbol synchronization and frame synchronization according to the auxiliary synchronization signal sent by the micro cell.
  • a base station is further provided, where the base station includes: a sending unit that sends an auxiliary synchronization signal, a transmission period of the auxiliary synchronization signal is 10 ms or 5 ms, and the auxiliary The synchronization signal is located at the 0th subframe and/or the 5th subframe of each transmission frame;
  • a notification unit configured to notify the user equipment of the cell range extension (CRE) area to detect the auxiliary synchronization signal, so that the user equipment performs symbol synchronization and frame synchronization according to the auxiliary synchronization signal when accessing the micro area.
  • CRE cell range extension
  • a user equipment is further provided, where the user equipment includes:
  • a switching unit that switches to the micro cell according to the information about the micro cell sent by the macro cell; and a detecting unit that detects the auxiliary synchronization signal sent by the micro cell according to the notification message sent by the micro cell, the auxiliary synchronization signal
  • the transmission period is 10ms or 5ms, and the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame;
  • a synchronization unit that performs symbol synchronization and frame synchronization according to the auxiliary synchronization signal transmitted by the micro cell.
  • a computer readable program wherein, when the program is executed in a base station, the program causes a computer to perform enhanced synchronization in a heterogeneous network performed by the base station in the base station in the base station Methods.
  • a storage medium storing a computer readable program is also provided and wherein the computer readable program causes the computer to perform a method of enhancing synchronization in a heterogeneous network executed by the foregoing base station in a base station.
  • a computer readable program wherein, when the program is executed in a user equipment, the program causes the computer to execute a heterogeneous network executed by the foregoing terminal device in the user equipment A method of enhancing synchronization.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform enhanced synchronization in a heterogeneous network executed by the terminal device in the user equipment method.
  • the beneficial effects of the embodiments of the present invention are as follows: the user in the CRE area of the Pico cell is synchronized by the combination of the high-level signaling indication and the auxiliary synchronization signal, and the compatibility is ensured and the system performance is satisfied with a small time-frequency resource overhead. Claim.
  • Figure 1 is a schematic diagram of an ABS scheme
  • FIG. 2 is a schematic diagram of a synchronization channel transmission location of an LTE system
  • Figure 3 is a schematic diagram of a Macro-Pico scene
  • FIG. 4 is a flowchart of a method for enhancing synchronization in a heterogeneous network according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a transmission position in which an auxiliary synchronization signal has a transmission period of 10 ms in an FDD system
  • FIG. 6 is a diagram showing an example of a transmission period of an auxiliary synchronization signal in an FDD system of 5 ms
  • FIG. 7 is a transmission of an auxiliary synchronization signal in an FDD system.
  • FIG. 8 is a schematic diagram showing another example of a transmission period of the auxiliary synchronization signal common to the FDD system and the TDD system of 5 ms;
  • FIG. 9 is a flowchart of a method for enhancing synchronization in a heterogeneous network according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a user equipment according to an embodiment of the present invention. detailed description
  • the embodiments of the present invention are described by using a Macro-Pico heterogeneous network scenario in an LTE system as an example, but it can be understood that the embodiments of the present invention are It is not limited to the above heterogeneous network scenarios.
  • the subframe and symbol synchronization of the supplementary carrier can also adopt a scheme similar to the present invention.
  • the supplementary carrier does not have a CRS signal, it is more urgent to adopt a scheme similar to the present invention to solve the problem of subframe and symbol synchronization.
  • Figure 2 is a schematic diagram of the location of the synchronization channel (PSS/SSS) and broadcast channel (PBCH) of the current LTE system.
  • PSS/SSS synchronization channel
  • PBCH broadcast channel
  • the detection synchronization channel can implement the following functions: (1) Realizing time and frequency synchronization of the system, wherein time synchronization includes symbol synchronization and frame synchronization; (2) obtaining system cyclic prefix length; (3) Obtain the physical cell identifier (Cell-ID) of the system.
  • PSS detection the UE can acquire (1) symbol synchronization of the system; (2) a specific cell ID in the Cell-ID group of the cell; (3) estimate the channel, and provide coherent detection for the SSS.
  • SSS detection the UE can acquire (1) system subframe level synchronization; (2) the type of cell cyclic prefix; (3) the cell Cell-ID group number.
  • the Detection Broadcast Channel can acquire some system information, including: (1) downlink system bandwidth; (2) system frame number; (3) PHICH Duration and resources; (4) Number of antenna ports.
  • the physical location of the PSS/SSS/PDCH in the FDD/TDD system is shown in Figure 2.
  • PBCH/PSS/SSS occupy the center 6 resource blocks of the system; in the time domain, the transmission period of the PBCH is 10ms, occupying the 7-10th OFDM symbols of the 0th subframe of each transmission frame, each The PBCH data blocks are repeatedly transmitted 4 times to ensure reliable transmission of system information.
  • the transmission period of PSS/SSS is 5ms. It realizes the reliable transmission of the synchronization channel through two-stage structure, and ensures that the acquisition synchronization time meets the system requirements.
  • the primary synchronization channel PSS occupies the 0th and 5th subframes of each transmission frame.
  • the secondary synchronization channel SSS occupies the 5th OFDM symbol of the 0th, 5th subframe of each transmission frame; for the TDD system, the primary synchronization channel PSS occupies the 1st subframe of each transmission frame (special The second OFDM symbol of the subframe, the secondary synchronization channel SSS occupies the 13th OFDM symbol of the 0th subframe of each transmission frame.
  • the GP Guard part
  • the UpPTS uplink pilot time slot
  • the DwPTS Downlink pilot time slot
  • FIG 3 is a schematic diagram of the Macro-Pico scenario. As shown in Figure 3, users in the CRE area of the Pico cell are subject to large interference from the Macro cell. Therefore, it is urgent to enhance the interference coordination technology to ensure reliable transmission of CRE users.
  • Example 1 The method and apparatus for enhancing synchronization in a heterogeneous network according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • Example 1 The method and apparatus for enhancing synchronization in a heterogeneous network according to an embodiment of the present invention will be described below with reference to the accompanying drawings.
  • Embodiments of the present invention provide a method for enhancing synchronization in a heterogeneous network.
  • Figure 4 is a flow chart of the method. Referring to Figure 4, the method includes:
  • Step 401 The base station of the micro cell sends an auxiliary synchronization signal, the transmission period of the auxiliary synchronization signal is 10 ms or 5 ms, and the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame.
  • Step 402 The base station notifies the user equipment of the cell range extension (CRE) area to detect the auxiliary synchronization signal, so that the user equipment performs symbol synchronization and frame according to the auxiliary synchronization signal when accessing the micro area. Synchronize.
  • CRE cell range extension
  • the user equipment when the user equipment is powered on in the CRE area of the Pico cell, it detects the PSS/SSS of the LTE, acquires synchronization with the Macro cell, thereby establishing a downlink connection with the Macro cell, and the Macro cell associates the Pico cell.
  • Information (including system messages and synchronization related information) is notified to the user equipment through high layer signaling, here
  • the related information includes: system bandwidth information transmitted in the PBCH, system frame number information, PHICH duration and occupied resource information, use antenna port number information, cyclic prefix type information, cell indication information, and the like.
  • the Macro cell notifies the user equipment to switch to the Pico cell and forwards the corresponding user information to the eNb of the Pico cell.
  • the eNb of the Pico cell sends an Auxiliary Synchronization Signal (ASS) on its transmission frame and notifies the user equipment in its CRE area to detect the auxiliary synchronization signal.
  • the user equipment in the CRE area of the Pico cell switches to the Pico cell, and acquires symbol synchronization and frame synchronization by detecting the auxiliary synchronization signal sent by the eNb of the Pico cell. If necessary, the eNb of the Pico cell retransmits the previous related information to the user equipment in the CRE area through high layer signaling.
  • the method for the base station notifying the user equipment of the CRE area to detect the auxiliary synchronization signal is not limited.
  • the base station may trigger the user equipment to detect the auxiliary synchronization signal by using special high-level signaling, or may be implicitly
  • the user equipment of the CRE area notifies the user equipment of the CRE area to detect the auxiliary synchronization signal in a manner that the notification is implicit in the signaling of the user equipment in the CRE area.
  • the synchronization function can be realized by the single-stage synchronization channel (auxiliary synchronization signal), and the hierarchical structure (PSS and SSS) is no longer required for synchronization.
  • auxiliary synchronization signal the single-stage synchronization channel
  • PSS and SSS the hierarchical structure
  • the function of the auxiliary synchronization signal is simplified. It only implements symbol synchronization and frame synchronization, and is no longer responsible for the Cell-ID related detection work.
  • the transmission period of the auxiliary synchronization signal may be the same as the transmission period of the PBCH, that is, 10 ms, or may be the same as the transmission period of the PSS/SSS, that is, 5 ms.
  • the specific location of the secondary synchronization signal may be located at the 0th subframe and/or the 5th subframe of each transmission frame.
  • the auxiliary synchronization signal is located in the 0th subframe of each transmission frame. And/or the fifth subframe, which does not conflict with the physical downlink control channel (PDCCH), the cell-specific reference signal (CRS), the physical broadcast channel (PBCH), the primary synchronization signal (PSS), and the secondary synchronization signal (SSS).
  • PDCCH physical downlink control channel
  • CRS cell-specific reference signal
  • PBCH physical broadcast channel
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • OFDM alternating frequency division multiplexing
  • the possible transmission position of the auxiliary synchronization signal is: in frequency, the same as the PSS/SSS/PBCH, still the center 6 resource blocks; in the time domain The 12th or 13th OFDM symbol of the 0th subframe of each transmission frame, or the transmission frame The ninth, tenth, twelfth, or thirteenth OFDM symbol of the fifth subframe.
  • the user equipment can perform symbol synchronization and frame synchronization according to the transmission position of the auxiliary synchronization signal.
  • the auxiliary synchronization signal is transmitted at the above location, which avoids collision with the OFDM symbol occupied by the CRS, and reduces the impact of the CRS of the Macro cell on the Pico cell synchronization channel.
  • the auxiliary synchronization signal is transmitted on the 0th subframe or the 5th subframe of each transmission frame, which can reduce the influence of the core cell except the 0th subframe and the 5th subframe of the 5th subframe, and reduce the scheduling influences.
  • DM-RS De Modulation Reference Signal
  • the secondary synchronization signal conflicts with the central 6RB DM-RS, which affects the performance of the DM-RS or the secondary synchronization signal; if CRS is used for demodulation, then the above limitation does not exist. For example, if DM-RS is used for demodulation, the ping operation of the auxiliary synchronization signal will seriously affect the synchronization performance. If the DM-RS is punctured, the user should be notified that the DM-RS of the center 6 RB in the frequency domain is not transmitted. Cannot be used for channel estimation.
  • the TDD system since the TDD system transmits the SSS on the 0th subframe of each transmission frame and the 13th OFDM symbol of the 5th subframe, a unified synchronization solution considering the TDD system and the FDD system is considered.
  • the auxiliary synchronization signal cannot be transmitted on the 0th subframe of each transmission frame or the 13th OFDM symbol of the 5th subframe. Therefore, in this case, the auxiliary synchronization signal can be selected in the first frame of each transmission frame.
  • the 12th OFDM symbol of 0 subframes is transmitted, or transmitted on the ninth or 10 or 12 OFDM symbols of the 5th subframe of each transmission frame.
  • the transmission period of the auxiliary synchronization signal is 5 ms.
  • the synchronization is implemented by the two-stage structure of the primary synchronization signal (PSS) and the secondary synchronization signal (SSS), and the auxiliary synchronization of the embodiment of the present invention is different.
  • the signal uses only a single channel for symbol level synchronization and frame level synchronization.
  • two methods have been proposed to implement symbol synchronization and frame synchronization, which will be separately described below.
  • FIG. 6 is a schematic diagram showing an example of a transmission period of the auxiliary synchronization signal of 5 ms.
  • the possible transmission position of the auxiliary synchronization signal is: in frequency, the same as PSS/SSS/PBCH, still Center 6 resource blocks; the 12th or 13th OFDM symbol of the 0th subframe of each transmission frame in the time domain, and the ninth or 10th of the 5th subframe of each transmission frame or The 12th or 13th OFDM symbol, wherein the sequence number of the OFDM symbol used by the auxiliary synchronization signal in the 0th subframe is different from the sequence number of the OFDM symbol used in the 5th subframe.
  • the transmission period of the auxiliary synchronization signal is 5 ms, and the auxiliary synchronization signal is in each transmission frame.
  • the 0th subframe and the 5th subframe are transmitted on different OFDM symbol numbers.
  • the user equipment can directly perform symbol synchronization according to the transmission sequence of the auxiliary synchronization signal, and according to the relative position of the auxiliary synchronization signal and the synchronization signal of the LTE system. Perform frame synchronization.
  • the auxiliary synchronization signal is transmitted on the 13th OFDM symbol of the 0th subframe of each transmission frame and the 12th OFDM symbol of the 5th subframe, at this time, when performing symbol synchronization
  • the symbol synchronization can be directly performed according to the transmission sequence of the auxiliary synchronization signal of the foregoing subframe.
  • the transmission sequence of the auxiliary synchronization signal is not limited.
  • the relative positions of the synchronization signals (PSS or SSS) with the LTE system are also different.
  • the position of the auxiliary synchronization signal on the 0th subframe is different from the PSS by 6 OFDM symbols
  • the position of the auxiliary synchronization signal on the 5th subframe is different from the PSS by 5 OFDM symbols, and the frame can be framed according to the different relative positions. Synchronize.
  • the last OFDM symbol of the 0th subframe and the 5th subframe (the 13th OFDM symbol, see FIG. 2) is used for performing SSS transmission, so the synchronization between the FDD system and the TDD system is common.
  • the scheme is: transmitting the 12th OFDM symbol of the 0th subframe of each transmission frame, and 9 or 10 or 12 OFDM symbols of the 5th subframe and using a different OFDM symbol number in the 0th subframe Auxiliary sync signal.
  • Fig. 7 and Fig. 8 are diagrams showing another example of the transmission period of the auxiliary synchronizing signal being 5 ms.
  • the possible transmission positions of the auxiliary synchronizing signal are: in frequency, with PSS/ The SSS/PBCH is the same, and is still the center 6 resource blocks; in the time domain, the 0th subframe of each transmission frame and the 12th OFDM symbol or the 13th OFDM symbol of the 5th subframe.
  • the auxiliary synchronization signal is transmitted on the same OFDM symbol number of the 0th subframe and the 5th subframe of each transmission frame.
  • the user equipment performs symbol synchronization according to the transmission sequence of the auxiliary synchronization signal.
  • Frame synchronization is performed according to the auxiliary synchronization signal in different transmission sequences of the 0th subframe and the 5th subframe.
  • the auxiliary synchronization signal is transmitted on the 13th OFDM symbol of the 0th subframe of each transmission frame and the 13th OFDM symbol of the 5th subframe, or refer to FIG. 8, the auxiliary synchronization The signal is transmitted on the 12th OFDM symbol of the 0th subframe of each transmission frame and the 12th OFDM symbol of the 5th subframe.
  • the user equipment only needs to use different transmission sequences of the auxiliary synchronization signals in the 0th subframe and the 5th subframe, and frame synchronization can be realized by blind correlation detection of transmission sequences of different auxiliary synchronization signals.
  • the transmission sequence that is, the sequence having a small correlation with the PSS sequence of the LTE system in the 5th subframe is used as the transmission sequence of the 5th subframe.
  • the second method is that the 0th subframe and the 5th subframe of each transmission frame use a fixed transmission sequence, and preferably, the transmission sequence of the auxiliary synchronization signal used in the 0th subframe and the 5th subframe
  • the transmission sequence of the auxiliary synchronization signal used is selected from the PSS sequence of the LTE system.
  • the last OFDM symbol of the 0th subframe and the 5th subframe (the 13th OFDM symbol, see FIG. 2) is used for performing SSS transmission, so the synchronization between the FDD system and the TDD system is common.
  • the scheme is: transmitting the auxiliary synchronization signal only on the 0th subframe of each transmission frame of the auxiliary synchronization signal and the 12th OFDM symbol of the 5th subframe. As shown in Figure 8.
  • the following effects can be achieved: (1) ensuring that performance requirements are met, including ensuring synchronization acquisition time and system coverage; (2) small time-frequency resource overhead, Pico cell in auxiliary synchronization signal
  • the auxiliary synchronization signal is transmitted on the corresponding resource, and the macro cell does not transmit information on the resource corresponding to the Pico cell auxiliary synchronization channel.
  • the embodiment uses less time-frequency resource overhead to reduce system capacity loss; (3) ensuring compatibility, The supplementary synchronization channel of the added Pico cell does not affect the synchronization of the Rel.8/9/10 users of the Pico cell, and does not affect the synchronization of the users of the Macro cell; (4) In some synchronization schemes, the FDD system and the TDD system can be universally used. .
  • the interference coordination in the heterogeneous network scenario of the Macro-Pico is taken as an example.
  • the primary carrier needs to be used to assist the primary carrier to send data.
  • Sub-frame and symbol synchronization of the carrier may also be performed by a method similar to that provided by the embodiment of the present invention. The principle of solving the technical problem is similar to the embodiment of the present invention, and details are not described herein again.
  • the method for enhancing synchronization in the heterogeneous network scenario is described from the base station side of the Pico cell.
  • the following describes the method for enhancing synchronization in the heterogeneous network scenario from the user equipment side in Embodiment 2. Among them, the same contents as in Embodiment 1 are incorporated in Embodiment 2.
  • Example 2 The embodiment of the invention also provides a method for enhancing synchronization in a heterogeneous network.
  • Figure 9 is a flow chart of the method. Referring to Figure 9, the method includes:
  • Step 901 The user equipment switches to the micro cell according to the information about the micro cell sent by the macro cell.
  • Step 902 The user equipment detects the auxiliary synchronization signal sent by the micro cell according to the notification message sent by the micro cell, where the auxiliary device The transmission period of the synchronization signal is 10ms or 5ms, and the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame;
  • Step 903 The user equipment performs symbol synchronization and frame synchronization according to the auxiliary synchronization signal sent by the micro cell.
  • the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame, and is not related to a physical downlink control channel (PDCCH), a cell-specific reference signal (CRS), or a physical broadcast.
  • PDCCH physical downlink control channel
  • CRS cell-specific reference signal
  • PBCH Physical Downlink Control Channel
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 10 ms, the auxiliary synchronization signal is located at the 12th or 13th OFDM symbol of the 0th subframe of each transmission frame, or 5th of each transmission frame. The ninth or tenth or twelfth or thirteenth OFDM symbol of the subframe. In this way, the user equipment can perform symbol synchronization and frame synchronization according to the transmission position of the auxiliary synchronization signal.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 10 ms, the auxiliary synchronization signal is located in the 12th OFDM symbol of the 0th subframe of each transmission frame, or the ninth of the 5th subframe of each transmission frame or The 10th or 12th OFDM symbol. In this way, it can be applied to both FDD systems and TDD systems.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located at the 12th or 13th OFDM symbol of the 0th subframe of each transmission frame, and the number of each transmission frame a ninth or tenth or twelfth or thirteenth OFDM symbol of five subframes, wherein a sequence number of the OFDM symbol used by the auxiliary synchronization signal in the 0th subframe is used in the fifth subframe The sequence numbers of the OFDM symbols are different.
  • the user equipment can perform symbol synchronization according to the transmission sequence of the auxiliary synchronization signal, and perform frame synchronization according to the relative position of the auxiliary synchronization signal and the synchronization signal of the LTE system.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located in the 12th OFDM symbol of the 0th subframe of each transmission frame, and the ninth of the 5th subframe of each transmission frame or a 10th or 12th OFDM symbol, wherein the OFDM used by the auxiliary synchronization signal in the 0th subframe
  • the sequence number of the symbol is different from the sequence number of the OFDM symbol used in the fifth subframe. In this way, it can be applied to both the FDD system and the TDD system.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located at the 0th subframe of each transmission frame and the 12th or 13th OFDM symbol of the 5th subframe. In this way, the user equipment can perform symbol synchronization according to the transmission sequence of the auxiliary synchronization signal, and perform frame synchronization according to the auxiliary synchronization signal in different transmission sequences of the 0th subframe and the 5th subframe of each transmission frame.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located at the 0th subframe of each transmission frame and the 12th OFDM symbol of the 5th subframe. In this way, it can be applied to both FDD systems and TDD systems.
  • the user equipment may also use a fixed transmission sequence as a transmission sequence of the auxiliary synchronization signals of the 0th subframe and the 5th subframe of each transmission frame of the auxiliary synchronization signal, respectively, and
  • the transmission sequence of the secondary synchronization signal used in the 0th subframe is different from the transmission sequence of the secondary synchronization signal used in the 5th subframe.
  • the transmission sequence of the auxiliary synchronization signal used in the 0th subframe and the transmission sequence of the auxiliary synchronization signal used in the 5th subframe are selected from the PSS sequence of the LTE system.
  • the transmission sequence of the secondary synchronization signal of the 5th subframe is used as a transmission sequence of the auxiliary synchronization signal of the 0th subframe of each transmission frame of the auxiliary synchronization signal.
  • the base station sends an auxiliary synchronization signal on a specific OFDM symbol of a specific subframe to assist the user equipment to perform symbol synchronization and frame synchronization. Therefore, the following effects can be achieved: (1) ensuring that performance requirements are met, including ensuring synchronization acquisition time and system coverage; (2) smaller time-frequency resource overhead, and Pico cell transmitting on resources corresponding to the secondary synchronization channel.
  • the auxiliary synchronization signal, the Macro cell does not transmit information on the resources corresponding to the Pico cell auxiliary synchronization channel, so this embodiment uses less time-frequency resource overhead to reduce the system.
  • the supplementary secondary synchronization channel of the Pico cell does not affect the synchronization of the Rel.8/9/10 users of the Pico cell, and does not affect the synchronization of the users of the Macro cell; (4) In some In the synchronization scheme, the FDD system and the TDD system can be used universally.
  • An embodiment of the present invention further provides a base station, as described in Embodiment 3 below. Since the principle of solving the problem in the base station is similar to the method for enhancing synchronization in the heterogeneous network in Embodiment 1, the implementation of the base station can refer to the implementation of the method, and the repeated description is not repeated.
  • the embodiment of the invention further provides a base station of a micro cell in a heterogeneous network.
  • FIG. 10 is a schematic diagram of the composition of the base station. Referring to FIG. 10, the base station includes:
  • a sending unit 1001 which sends an auxiliary synchronization signal, and the transmission period of the auxiliary synchronization signal is 10 ms or
  • the notification unit 1001 notifies the user equipment of the cell range extension (CRE) area to detect the auxiliary synchronization signal, So that the user equipment performs symbol synchronization and frame synchronization according to the auxiliary synchronization signal when accessing the micro cell.
  • CRE cell range extension
  • the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame, and is not related to a physical downlink control channel (PDCCH), a cell-specific reference signal (CRS), or a physical broadcast.
  • PDCCH physical downlink control channel
  • CRS cell-specific reference signal
  • PBCH Physical Downlink Control Channel
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 10 ms, the auxiliary synchronization signal is located at the 12th or 13th OFDM symbol of the 0th subframe of each transmission frame, or each transmission frame The ninth or tenth or twelfth or thirteenth OFDM symbol of the fifth subframe of the fifth subframe, so that the user equipment performs symbol synchronization and frame synchronization according to the transmission position of the auxiliary synchronization signal.
  • the auxiliary synchronization signal is located in the 12th OFDM symbol of the 0th subframe of each transmission frame, or the ninth or 10th or 12th OFDM symbol of the 5th subframe of each transmission frame, So as to be suitable for both FDD systems and TDD systems.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located at the 12th or 13th OFDM symbol of the 0th subframe of each transmission frame, and each transmission a ninth or tenth or twelfth or thirteenth OFDM symbol of a fifth subframe of the frame, wherein a sequence number of the OFDM symbol used by the auxiliary synchronization signal in the 0th subframe is in the 5 subframes used
  • the sequence numbers of the OFDM symbols are different, so that the user equipment performs symbol synchronization according to the transmission sequence of the auxiliary synchronization signal, and performs frame synchronization according to the relative position of the auxiliary synchronization signal and the synchronization signal of the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the auxiliary synchronization signal is located in the 12th OFDM symbol of the 0th subframe of each transmission frame, and the ninth or 10th or 12th OFDM symbol of the 5th subframe of each transmission frame, So as to be suitable for both FDD systems and TDD systems.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located at the 0th subframe of the transmission frame and the 12th or 13th OFDM symbol of the 5th subframe. So that the user equipment performs symbol synchronization according to the transmission sequence of the auxiliary synchronization signal, and performs frame synchronization according to the auxiliary synchronization signal in different transmission sequences of the 0th subframe and the 5th subframe of each transmission frame.
  • the auxiliary synchronization signal is located in the 0th subframe of each transmission frame and the 12th OFDM symbol of the 5th subframe, so as to be applicable to both the FDD system and the TDD system.
  • the base station of the embodiment sends the auxiliary synchronization signal, and the user equipment detects the auxiliary synchronization signal to obtain symbol synchronization and frame synchronization, thereby avoiding interference of the macro cell to the user equipment.
  • An embodiment of the present invention further provides a user equipment, as described in Embodiment 4 below.
  • the method for solving the problem in the user equipment is similar to the method for enhancing the synchronization in the heterogeneous network in the foregoing embodiment 2. Therefore, the implementation of the user equipment can refer to the implementation of the method, and the repeated description is not repeated.
  • FIG. 11 is a schematic diagram of the composition of the user equipment.
  • the user equipment includes:
  • the switching unit 1101 is configured to switch to the micro cell according to the information about the micro cell sent by the macro cell.
  • the detecting unit 1102 is configured to detect the auxiliary synchronization signal sent by the micro cell according to the notification message sent by the micro cell.
  • the transmission period of the synchronization signal is 10ms or 5ms, and the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame;
  • the synchronization unit 1103 performs symbol synchronization and frame synchronization based on the auxiliary synchronization signal transmitted by the micro cell.
  • the auxiliary synchronization signal is located in the 0th subframe and/or the 5th subframe of each transmission frame, and is not related to a physical downlink control channel (PDCCH), a cell-specific reference signal (CRS), or a physical broadcast.
  • PDCCH physical downlink control channel
  • CRS cell-specific reference signal
  • PBCH primary synchronization signal
  • SSS secondary synchronization signal
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 10 ms, the auxiliary synchronization signal The number is located at the 12th or 13th OFDM symbol of the 0th subframe of each transmission frame, or the ninth or 10th or 12th or 13th OFDM symbol of the 5th subframe of each transmission frame .
  • the synchronization unit 1103 performs symbol synchronization and frame synchronization according to the transmission position of the auxiliary synchronization signal.
  • the auxiliary synchronization signal is located in the 12th OFDM symbol of the 0th subframe of each transmission frame, or the ninth or 10th of the 5th subframe of each transmission frame or
  • the 12th OFDM symbol is suitable for both FDD systems and TDD systems.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located at the 12th or 13th OFDM symbol of the 0th subframe of each transmission frame, and each transmission a ninth or tenth or twelfth or thirteenth OFDM symbol of a fifth subframe of the frame, wherein a sequence number of the OFDM symbol used by the auxiliary synchronization signal in the 0th subframe is in the The sequence numbers of the OFDM symbols used in the five subframes are different.
  • the synchronization unit 1103 performs symbol synchronization according to the transmission sequence of the auxiliary synchronization signal, and performs frame synchronization based on the relative position of the auxiliary synchronization signal and the synchronization signal of the LTE system.
  • the auxiliary synchronization signal is located in the twelfth OFDM symbol of the 0th subframe of each transmission frame, and the ninth or tenth of the fifth subframe of each transmission frame or The 12th OFDM symbol is suitable for both FDD systems and TDD systems.
  • the auxiliary synchronization signal when the transmission period of the auxiliary synchronization signal is 5 ms, the auxiliary synchronization signal is located at the 0th subframe of the transmission frame and the 12th or 13th OFDM symbol of the 5th subframe. .
  • the synchronization unit 1103 performs symbol synchronization according to the transmission sequence of the auxiliary synchronization signal, and performs symbol synchronization according to the auxiliary synchronization signal in different transmission sequences of the 0th subframe and the 5th subframe of each transmission frame. Synchronize with the frame.
  • the auxiliary synchronization signal is located in the 0th subframe of each transmission frame and the 12th OFDM symbol of the 5th subframe, so as to be applicable to both the FDD system and the TDD system.
  • the synchronization unit 1103 uses a PSS sequence in the LTE system as a transmission sequence of the secondary synchronization signal of the 0th subframe of each transmission frame of the auxiliary synchronization signal, and is used in the LTE system.
  • a synchronization channel sequence having a small PSS sequence correlation is used as a transmission sequence of the auxiliary synchronization signal of the 5th subframe of each transmission frame of the auxiliary synchronization signal.
  • the synchronization unit 1103 uses a fixed synchronization channel sequence as a transmission sequence of the auxiliary synchronization signals of the 0th subframe and the 5th subframe of each transmission frame of the auxiliary synchronization signal, respectively.
  • the transmission sequence of the auxiliary synchronization signal used in the 0th subframe is different from that in the 5th
  • the transmission sequence of the secondary synchronization signal used by the subframes are selected from the PSS sequence of the LTE system.
  • the user equipment in the embodiment of the present invention obtains subframe synchronization and symbol synchronization by detecting the secondary synchronization signal sent by the base station of the micro cell, thereby avoiding interference of the Macro cell to the synchronization channel of the user equipment.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes the computer to perform the method of enhancing synchronization in the heterogeneous network described in Embodiment 1 in the base station.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a method of enhancing synchronization in the heterogeneous network described in Embodiment 1 in a base station.
  • the embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a user equipment, the program causes the computer to perform enhanced synchronization in the heterogeneous network described in Embodiment 2 in the user equipment. method.
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes the computer to perform the method of enhancing synchronization in the heterogeneous network described in Embodiment 2 in the user equipment.
  • the above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • Logic components such as field programmable logic components, microprocessors, processors used in computers, and the like.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种异构网络中增强同步的方法和装置,所述方法包括:微小区的基站发送辅助同步信号,所述辅助同步信号的传送周期为10ms或5ms,并且,所述辅助同步信号位于每个传输帧的第0个子帧和/或第5个子帧;所述基站通知小区范围扩展(CRE)区域的用户设备检测所述辅助同步信号,以便所述用户设备在接入到所述微小区时,根据所述辅助同步信号进行符号同步和帧同步。本发明通过高层信令指示和辅助同步信号相结合的方法使Pico小区CRE区域的用户获得同步,以较小的时频资源开销既保证了兼容性,又满足了系统性能要求。

Description

异构网络中增强同歩的方法和装置 技术领域
本发明涉及通信领域, 尤其涉及一种异构网络中增强同步的方法和装置。 背景技术
3GPP (Third Generation Partnership Project, 第三代合作伙伴计划) 的长期演进 方案 (Long Term Evolution, LTE) 沿用了传统的同构网络, 它由六角形蜂窝系统组 成。 为了进一步提高系统的容量, 下一代无线通信系统高级长期演进方案 (LTE- Advanced) 引入了异构网络 (Heterogeneous Network )。 LTE-A系统由宏小区 (Macro Cell)、毫微微蜂窝(Femto Cell)、微微蜂窝(Pico Cell)、远端无线头(RRH)、 中继器 (Relay) 组成。 它通过部署新的无线节点不仅提高了系统的容量, 而且为特 殊区域的用户提供更好的服务, 优化了系统性能。 为了进一步提高小区的复用增益, 在小区选择的过程中,大的偏移值在小区选择时被使用。它保证较多的 Macro小区用 户被 Pico小区服务, 通过不同小区复用时频资源提高系统容量。 另一方面, 在 Pico 小区的小区范围扩展(CRE, Cell Range Expansion) 区域的用户受到较大的干扰, 这 需要增强干扰协调技术来保证 CRE区域用户的可靠传输。
几乎空子帧(Almost Blank Subframe, ABS )方案可以用来减少 Macro小区对 Pico 小区信息传输的干扰, 图 1给出一个例子。其中 Macro小区空置 1, 3, 5, 7, 9子帧, Pico小区在对应 Macro小区空置的子帧中优先调度边缘用户进行传输, 其它子帧调 度中心用户进行传输。通过上述技术, Pico小区的用户能够可靠传输。它保证了小区 中心用户的复用, 相对传统的同构网络提高了系统容量。 但是在 ABS 中, CRS ( Cell-specific reference signal , 小区专用参考信号) /PBCH ( Physical Broadcast Channel, 物理广播信道) I PSS (primary synchronization signal, 主同步信号) /SSS ( secondary synchronization signal, 辅同步信号) /CSI-RS ( Channel state information reference signal, 信道状态信息参考信号) /SIB 1 ( system information block 1 , 小区广 播系统信息块类型 1 ) /Paging (寻呼)信息仍然需要传输,它会对 Pico小区造成干扰。 当不使用增强干扰协调技术或仅仅使用 ABS技术时, Macro小区和 Pico小区的同步 信道相互重叠,它们会造成相互干扰。因此 Pico小区 CRE区域用户的同步存在问题, 需要提出一种增强的干扰协调方法和装置来实现可靠同步和系统信息的可靠传输。 目前, 为了解决 PBCH/PSS/SSS 的干扰问题, 对于 FDD (Frequency Division Duplexing, 频分双工) 系统, 子帧平移方案被提出来。 它的主要想法是, 通过子帧 平移错开 Macro小区和 Pico小区的 PBCH/PSS/SSS, 在 Pico小区 PBCH/PSS/SSS对 应的资源上, Macro小区不传输数据信息, 减少对 Pico小区 PBCH/PSS/SSS的干扰。 它可以通过如下两种方式实现: (1 ) Pico小区 PBCH/PSS/SSS所在子帧对应 Macro 小区的 ABS子帧, 且不为 Macro小区的 0, 5子帧; (2) Pico小区 PBCH/PSS/SSS 所在资源对应 Macro小区的 Non-ABS, 并且将 Macro小区对应的资源通过打孔方式 不传输信息。 尽管这两种方式能够解决 FDD系统的同步信道的干扰问题, 但是由于 TDD (Time Division Duplexing, 时分双工) 系统需要保持系统的同步, 子帧平移的 方法不能被使用。而对于标准而言,一种对于 FDD系统和 TDD系统通用的方法更为 简洁, 能够减少标准化工作量, 因此更有吸引力。
发明人在实现本发明的过程中发现, 目前, 另外一种同步方法被提出来, 在这种 方法中, Pico小区 CRE区域用户首先检测出 Macro小区的同步信道, 它能接入到 Macro小区。 Macro小区再向 Pico小区 CRE区域的用户发送系统信息, 比如: PBCH 中传输的系统带宽信息, 系统帧号信息, PHICH 的持续时间和占据的资源信息, 使 用天线端口数目信息, 循环前缀类型信息, 小区标示信息等。 然后, 接入到 Macro 小区的 CRE 区域用户切换到 Pico 小区中。 在切换后, CRE 区域的用户不必检测 PBCH/PSS/SSS就能获取部分同步信息。这种方法能够适用于 FDD系统和 TDD系统, 但是符号和子帧同步问题仍然没有得到解决。
应该注意, 上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容
本发明实施例的目的在于提供一种异构网络中增强同步的方法和装置,以通过高 层信令指示和辅助同步信号相结合方法使 Pico小区 CRE区域的用户获得同步。
根据本发明实施例的一个方面, 提供了一种异构网络中增强同步的方法, 其中, 所述方法包括: 微小区的基站发送辅助同步信号,所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧;
所述基站通知小区范围扩展(CRE)区域的用户设备检测所述辅助同步信号, 以 便所述用户设备在接入到所述微小区时,根据所述辅助同步信号进行符号同步和帧同 步。
根据本发明实施例的一个方面,还提供了一种异构网络中增强同步的方法,其中, 所述方法包括:
用户设备根据宏小区发送的微小区的相关信息切换到所述微小区;
用户设备根据所述微小区发送的通知消息检测所述微小区发送的辅助同步信号, 所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每个传 输帧的第 0个子帧和 /或第 5个子帧;
用户设备根据所述微小区发送的辅助同步信号进行符号同步和帧同步。
根据本发明实施例的一个方面, 还提供了一种基站, 其中, 所述基站包括: 发送单元,其发送辅助同步信号,所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧;
通知单元,其通知小区范围扩展(CRE)区域的用户设备检测所述辅助同步信号, 以便所述用户设备在接入到所述微小区时,根据所述辅助同步信号进行符号同步和帧 同步。
根据本发明实施例的一个方面, 还提供了一种用户设备, 其中, 所述用户设备包 括:
切换单元, 其根据宏小区发送的微小区的相关信息切换到所述微小区; 检测单元,其根据所述微小区发送的通知消息检测所述微小区发送的辅助同步信 号, 所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每 个传输帧的第 0个子帧和 /或第 5个子帧;
同步单元, 其根据所述微小区发送的辅助同步信号进行符号同步和帧同步。 根据本发明实施例的一个方面, 还提供了一种计算机可读程序, 其中, 当在基站 中执行该程序时,该程序使得计算机在所述基站中执行前述基站执行的异构网络中增 强同步的方法。
根据本发明实施例的一个方面, 还提供了一种存储有计算机可读程序的存储介 质,其中, 该计算机可读程序使得计算机在基站中执行前述基站执行的异构网络中增 强同步的方法。
根据本发明实施例的一个方面, 还提供了一种计算机可读程序, 其中, 当在用户 设备中执行该程序时,该程序使得计算机在所述用户设备中执行前述终端设备执行的 异构网络中增强同步的方法。
根据本发明实施例的一个方面, 还提供了一种存储有计算机可读程序的存储介 质,其中, 该计算机可读程序使得计算机在用户设备中执行前述终端设备执行的异构 网络中增强同步的方法。
本发明实施例的有益效果在于:通过高层信令指示和辅助同步信号相结合方法使 Pico小区 CRE区域的用户获得同步, 以较小的时频资源开销既保证了兼容性, 又满 足了系统性能要求。
参照后文的说明和附图,详细公开了本发明的特定实施方式, 指明了本发明的原 理可以被采用的方式。应该理解, 本发明的实施方式在范围上并不因而受到限制。在 所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更多 个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中的 特征。
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘 制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附图 中对应部分可能被放大或縮小。在本发明的一个附图或一种实施方式中描述的元素和 特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在 附图中,类似的标号表示几个附图中对应的部件, 并可用于指示多于一种实施方式中 使用的对应部件。 在附图中:
图 1是 ABS方案示意图;
图 2是 LTE系统的同步信道传输位置示意图; 图 3是 Macro-Pico场景示意图;
图 4是本发明实施例的异构网络中增强同步的方法流程图;
图 5是 FDD系统中辅助同步信号的传送周期为 10ms的传输位置示意图; 图 6是 FDD系统中辅助同步信号的传送周期为 5ms的一个例子的示意图; 图 7是 FDD系统中辅助同步信号的传输周期为 5ms的另外一个例子的示意图; 图 8为 FDD系统和 TDD系统通用的辅助同步信号的传输周期为 5ms的另外一 个例子的示意图;
图 9为本发明另一实施例的异构网络中增强同步的方法流程图;
图 10为本发明实施例的基站的组成示意图;
图 11为本发明实施例的用户设备的组成示意图。 具体实施方式
参照附图, 通过下面的说明书, 本发明实施例的前述以及其它特征将变得明显。 这些实施方式只是示例性的, 不是对本发明的限制。为了使本领域的技术人员能够容 易地理解本发明的原理和实施方式, 本发明的实施方式以 LTE系统中的 Macro-Pico 异构网络场景为例进行说明,但可以理解,本发明实施例并不限于上述异构网络场景, 对于其他异构网络场景, 例如 Macro-Femto场景同样适用。 另外, 在基于载波聚合的 干扰协调方案中, 辅助载波的子帧和符号同步也可采用类似本发明的方案。 特别的, 当辅助载波没有 CRS信号时, 更迫切的需要采用类似本发明的方案来解决其子帧和 符号同步的问题。
图 2为目前 LTE系统的同步信道 (PSS/SSS) 和广播信道 (PBCH) 的位置示意 图。
目前, 在 LTE系统中, 检测同步信道 (PSS/SSS) 能够实现如下功能: (1 ) 实现 系统的时间、 频率同步, 其中时间同步包括符号同步和帧同步; (2)获得系统循环前 缀长度; (3) 获得系统的物理小区标示 (Cell-ID)。 其中, 通过 PSS检测, 用户端能 够获取 (1 ) 系统的符号同步; (2) 小区的 Cell-ID组内具体的小区 ID; (3) 估计信 道, 为 SSS提供相干检测。 其中, 通过 SSS检测, 用户端能够获取 (1 ) 系统子帧级 同步; (2) 小区循环前缀的类型; (3) 小区 Cell-ID 组号。 检测广播信道 (PBCH) 能够获取一些系统信息, 其中包括: (1 )下行系统带宽; (2)系统帧号; (3) PHICH 的持续时间和所占资源; (4) 天线端口数目。
其中, PSS/SSS/PDCH在 FDD/TDD系统中的物理位置如图 2所示。 在频率上 PBCH/PSS/SSS都占据系统的中心 6个资源块;在时域上, PBCH的传送周期为 10ms, 占据每个传输帧的第 0个子帧的第 7-10个 OFDM符号,每个 PBCH数据块重复传输 4次, 保证系统信息的可靠传输。 PSS/SSS的传送周期为 5ms, 它通过两级结构实现 同步信道的可靠传输, 保证获取同步的时间满足系统要求, 对于 FDD系统, 主同步 信道 PSS占据每个传输帧的第 0, 5个子帧的第 6个 OFDM符号, 辅同步信道 SSS 占据每个传输帧的第 0, 5个子帧的第 5个 OFDM符号; 对于 TDD系统, 主同步信 道 PSS占据每个传输帧的第 1个子帧 (特殊子帧) 的第 2个 OFDM符号, 辅同步信 道 SSS占据每个传输帧的第 0个子帧的第 13个 OFDM符号。
在图 2中的 TDD系统中, 还包括 GP (Guard part, 保护间隔)和 UpPTS (uplink pilot time slot,上行导频时隙),对应 UpPTS,还存在 DwPTS (Downlink pilot time slot, 下行导频时隙)
图 3为 Macro-Pico场景示意图, 如图 3所示, Pico小区的 CRE区域的用户由于 受到 Macro小区的较大干扰, 迫切需要增强干扰协调技术来保证 CRE用户的可靠传 输。
下面通过附图对本发明实施例的异构网络中增强同步的方法和装置进行说明。 实施例 1
本发明实施例提供了一种异构网络中增强同步的方法。 图 4为该方法的流程图, 请参照图 4, 该方法包括:
步骤 401 : 微小区的基站发送辅助同步信号, 所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子 帧;
步骤 402: 所述基站通知小区范围扩展 (CRE) 区域的用户设备检测所述辅助同 步信号, 以便所述用户设备在接入到所述微小区时,根据所述辅助同步信号进行符号 同步和帧同步。
在本实施例中,当用户设备在 Pico小区的 CRE区域开机,它检测 LTE的 PSS/SSS, 获取与 Macro小区的同步,借此与 Macro小区建立下行链路连接, Macro小区将 Pico 小区的相关信息(包括系统消息和同步相关信息)通过高层信令通知用户设备, 这里 的相关信息包括: PBCH 中传输的系统带宽信息, 系统帧号信息, PHICH 的持续时 间和占据的资源信息,使用天线端口数目信息,循环前缀类型信息,小区标示信息等。 然后, Macro小区通知用户设备切换到 Pico小区, 并将对应的用户信息转发到 Pico 小区的 eNb。 Pico 小区的 eNb会在其传输帧上发送辅助同步信号 (ASS, Auxiliary Synchronization Signal), 并通知其 CRE区域的用户设备检测该辅助同步信号。 Pico 小区 CRE区域的用户设备切换到 Pico小区, 通过检测 Pico小区的 eNb发送的辅助 同步信号获取符号同步和帧同步。 如果需要, Pico小区的 eNb通过高层信令对 CRE 区域的用户设备重发前面的相关信息。
在本实施例中, 并不限制基站通知 CRE区域的用户设备检测辅助同步信号的方 法, 例如, 基站可以专门的高层信令触发用户设备检测该辅助同步信号, 也可以通过 隐含(在发送给 CRE区域的用户设备的信令中隐含该通知)的方式通知 CRE区域的 用户设备检测该辅助同步信号。
在本实施例中, 通过单级同步信道(辅助同步信号)能够实现同步功能, 不再需 要分级结构(PSS和 SSS)实现同步。相对于 LTE系统的同步信道, 辅助同步信号的 功能有所简化, 它仅仅实现符号同步和帧同步, 不再负责 Cell-ID相关的检测工作。
在本实施例中, 辅助同步信号的传送周期可以与 PBCH 的传送周期相同, 即为 10ms, 也可以与 PSS/SSS的传送周期相同, 即为 5ms。 并且, 辅助同步信号的具体 位置可以是位于每个传输帧的第 0个子帧和 /或第 5个子帧。 由此, 可以保证同步获 取的时间、系统的覆盖范围, 使用较少的时频资源开销减少系统容量损失, 并保证系 统兼容性,在某些实施例中,还能提供一种对于 FDD系统和 TDD系统通用的同步方 案。
在一个实施例中, 为了保证不影响所述基站原有信号的传输, 也不被所述基站原 有信号的传输所干扰, 优选的, 该辅助同步信号位于每个传输帧的第 0个子帧和 /或 第 5个子帧中, 不与物理下行控制信道 (PDCCH)、 小区专用参考信号 (CRS)、 物 理广播信道 (PBCH)、 主同步信号 (PSS) 以及辅同步信号 (SSS ) 冲突的正交频分 复用 (OFDM) 符号上。
在一个实施例中, 当辅助同步信号的传送周期为 10ms时, 该辅助同步信号可能 的传输位置为: 在频率上, 与 PSS/SSS/PBCH相同, 仍为中心 6个资源块; 在时间域 上为每个传输帧的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧的 第 5个子帧的第 9个、 第 10个、 第 12个、 或第 13个 OFDM符号。 由此, 用户设备 可以根据所述辅助同步信号的传输位置进行符号同步和帧同步。
如图 5所示,在以上位置上传输辅助同步信号,可以避免与 CRS所占用的 OFDM 符号冲突, 减少 Macro小区的 CRS对 Pico小区同步信道的影响。 将辅助同步信号放 置在每个传输帧的第 0个子帧或第 5个子帧上传输,能减少 Macro小区除第 0个子帧 和第 5个子帧的中心 6个资源块的影响, 降低对调度的影响。 另外, 如果需要使用 DM-RS (De Modulation Reference Signal, 解调参考信号) 解调, 需要在每个传输帧 的第 5个子帧的第 9个或第 10个 OFDM符号上传输辅助同步信号,否则辅助同步信 号与中心 6RB的 DM-RS相冲突, 这样会影响 DM-RS或者辅助同步信号的性能; 如 果使用 CRS进行解调, 则不存在上述限制。例如, 如果使用 DM-RS解调, 对辅助同 步信号进行打孔处理, 会严重影响同步性能; 如果对 DM-RS进行打孔, 需要通知用 户频率域上中心 6RB的 DM-RS不进行传输, 不能用来进行信道估计。
另外, 如图 2所示, 由于 TDD系统在每个传输帧的第 0个子帧和第 5个子帧的 第 13个 OFDM符号上传输 SSS, 因此, 当考虑 TDD系统和 FDD系统统一的同步解 决方案时,则不能在每个传输帧的第 0个子帧或第 5个子帧的第 13个 OFDM符号上 传输辅助同步信号, 因此, 这种情况下, 辅助同步信号可选择在每个传输帧的第 0 个子帧的第 12个 OFDM符号上传输, 或者在每个传输帧的第 5个子帧的第 9个或 10个或 12个 OFDM符号上传输。
在另外一个实施例中, 辅助同步信号的传送周期为 5ms, 此时, 与 LTE系统通 过主同步信号 (PSS)、 辅同步信号 (SSS )两级结构实现同步不同, 本发明实施例的 辅助同步信号仅使用单一信道实现符号级同步和帧级同步。在本实施例中,提出了两 种方法来实现符号同步和帧同步, 以下分别进行说明。
图 6为辅助同步信号的传送周期为 5ms的一个例子的示意图, 请参照图 6, 在该 例子中, 辅助同步信号可能的传输位置为: 在频率上, 与 PSS/SSS/PBCH相同, 仍为 中心 6个资源块;在时间域上为每个传输帧的第 0个子帧的第 12个或第 13个 OFDM 符号, 以及每个传输帧的第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM 符号, 其中, 所述辅助同步信号在第 0个子帧使用的 OFDM符号的序号与在第 5个 子帧使用的 OFDM符号的序号不同。
在本实施例中, 辅助同步信号的传送周期为 5ms, 辅助同步信号在每个传输帧的 第 0个子帧和第 5个子帧的不同的 OFDM符号序号上传输, 此时, 用户设备可以直 接根据辅助同步信号的传输序列进行符号同步, 并根据辅助同步信号与 LTE系统的 同步信号的相对位置进行帧同步。
例如,请参照图 6,该辅助同步信号在每个传输帧的第 0个子帧的第 13个 OFDM 符号和第 5个子帧的第 12个 OFDM符号上传输, 则此时, 在进行符号同步时, 可以 直接根据上述子帧的辅助同步信号的传输序列进行符号同步,本实施例对辅助同步信 号的传输序列不做限制。 在进行帧同步时, 由于该辅助同步信号在每个传输帧的第 0 个子帧和第 5个子帧的符号的位置不同, 因此与 LTE系统的同步信号 (PSS或 SSS) 的相对位置也不同, 例如该辅助同步信号在第 0 个子帧上的位置与 PSS 相差 6个 OFDM符号, 该辅助同步信号在第 5个子帧上的位置与 PSS相差 5个 OFDM符号, 根据该不同的相对位置可以进行帧同步。
优选的, 在 TDD系统中, 第 0个子帧和第 5个子帧的最后一个 OFDM符号(第 13个 OFDM符号, 详见图 2) 用于进行 SSS的传输, 因此 FDD系统和 TDD系统通 用的同步方案为: 在每个传输帧的第 0子帧的第 12个 OFDM符号, 和第 5子帧的 9 或 10或 12个 OFDM符号且与在第 0个子帧使用不同的 OFDM符号序号上传输该辅 助同步信号。
图 7和图 8为辅助同步信号的传送周期为 5ms的另外一个例子的示意图, 请参 照图 7 和图 8, 在该例子中, 辅助同步信号可能的传输位置为: 在频率上, 与 PSS/SSS/PBCH相同, 仍为中心 6个资源块; 在时间域上为每个传输帧的第 0个子帧 和第 5个子帧的第 12个 OFDM符号或第 13个 OFDM符号。
在本实施例中, 辅助同步信号在每个传输帧的第 0个子帧和第 5个子帧的相同 OFDM 符号序号上传输, 此时, 用户设备根据所述辅助同步信号的传输序列进行符 号同步,根据所述辅助同步信号在所述第 0个子帧和所述第 5个子帧的不同的传输序 列进行帧同步。
例如,请参照图 7,该辅助同步信号在每个传输帧的第 0个子帧的第 13个 OFDM 符号和第 5个子帧的第 13个 OFDM符号上传输, 或者请参照图 8, 该辅助同步信号 在每个传输帧的第 0个子帧第 12个 OFDM符号和第 5个子帧的第 12个 OFDM符号 上传输。则此时,用户设备只需要在第 0个子帧和第 5个子帧使用不同的辅助同步信 号的传输序列, 通过不同的辅助同步信号的传输序列的盲相关检测即可实现帧同步。 在本实施例中,所使用的不同的辅助同步信号的传输序列可以有两种方法。第一 种方法是, 在每个传输帧的第 0个子帧使用 LTE系统的 PSS序列, 例如使用 U=25或 29或 34的序列作为第 0个子帧的辅助同步信号的传输序列; 而在第 5个子帧使用与 U=25, 29, 34产生的三个序列均有较好互相关性的 u值, 比如 u=19, 使用这个 U值 产生的序列作为第 5个子帧的辅助同步信号的传输序列, 也即在第 5个子帧使用与 LTE系统的 PSS序列相关性小的序列作为第 5个子帧的传输序列。 第二种方法是, 每个传输帧的第 0个子帧和第 5个子帧使用固定的传输序列,优选的,所述第 0个子 帧使用的辅助同步信号的传输序列和所述第 5 个子帧使用的辅助同步信号的传输序 列从 LTE系统的 PSS序列中选取。例如, 第 0个子帧固定使用 U=29产生的辅助同步 信号的传输序列; 第 5个子帧固定使用 u=34产生的辅助同步信号的传输序列。
优选的, 在 TDD系统中, 第 0个子帧和第 5个子帧的最后一个 OFDM符号(第 13个 OFDM符号, 详见图 2) 用于进行 SSS的传输, 因此 FDD系统和 TDD系统通 用的同步方案为: 只在辅助同步信号的每个传输帧的第 0个子帧和第 5个子帧的第 12个 OFDM符号上传输该辅助同步信号。 如图 8所示。
通过本实施例的方法, 可以达到如下的效果: (1 )保证满足性能要求, 包括保证 同步获取的时间、 系统的覆盖范围; (2)较小的时频资源开销, Pico小区在辅助同步 信号对应的资源上传送辅助同步信号, Macro小区在对应 Pico小区辅助同步信道的 资源上不传送信息,因此本实施例使用较少的时频资源开销减少了系统容量损失; (3) 保证兼容性, 增加的 Pico小区的辅助同步信道既不影响 Pico小区的 Rel.8/9/10用户 的同步,又不影响 Macro小区用户的同步;(4)在一些同步方案中, FDD系统和 TDD 系统可以通用。
本实施例以 Macro-Pico 的异构网络场景中的干扰协调为例进行了说明, 在基于 载波聚合的增强小区间干扰协调方案中,需要通过辅载波协助主载波发送数据,此时, 对于辅助载波的子帧和符号同步, 也可以采用类似本发明实施例提供的方法进行。 由 于解决该技术问题的原理与本发明实施例类似, 在此不再赘述。
在实施例 1中, 从 Pico小区的基站侧阐述了该异构网络场景中增强同步的方法, 以下通过实施例 2 从用户设备侧对该异构网络场景中增强同步的方法进行说明。 其 中, 与实施例 1相同的内容被合并于实施例 2。
实施例 2 本发明实施例还提供了一种异构网络中增强同步的方法。 图 9 为该方法的流程 图, 请参照图 9, 该方法包括:
步骤 901 : 用户设备根据宏小区发送的微小区的相关信息切换到所述微小区; 步骤 902: 用户设备根据所述微小区发送的通知消息检测所述微小区发送的辅助 同步信号, 所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号 位于每个传输帧的第 0个子帧和 /或第 5个子帧;
步骤 903: 用户设备根据所述微小区发送的辅助同步信号进行符号同步和帧同 少。
在本实施例中, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子 帧中, 不与物理下行控制信道 (PDCCH)、 小区专用参考信号 (CRS )、 物理广播信 道(PBCH)、主同步信号(PSS)以及辅同步信号(SSS)冲突的正交频分复用(OFDM) 符号上。
在一个实施例中, 当辅助同步信号的传送周期为 10ms时, 该辅助同步信号位于 每个传输帧的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧的第 5 个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号。如此, 用户设备即可根 据所述辅助同步信号的传输位置进行符号同步和帧同步。
优选的, 当辅助同步信号的传送周期为 10ms时, 该辅助同步信号位于每个传输 帧的第 0个子帧的第 12个 OFDM符号,或者每个传输帧的第 5个子帧的第 9个或第 10个或第 12个 OFDM符号。 如此, 既可以适用于 FDD系统, 又可以适用于 TDD 系统。
在另外一个实施例中, 当辅助同步信号的传送周期为 5ms 时, 该辅助同步信号 位于每个传输帧的第 0个子帧的第 12个或第 13个 OFDM符号, 以及每个传输帧的 第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号, 其中, 该辅助同步 信号在所述第 0个子帧使用的 OFDM符号的序号与在所述第 5个子帧使用的 OFDM 符号的序号不同。如此,用户设备即可根据所述辅助同步信号的传输序列进行符号同 步, 根据所述辅助同步信号与 LTE系统的同步信号的相对位置进行帧同步。
优选的, 当辅助同步信号的传送周期为 5ms 时, 该辅助同步信号位于每个传输 帧的第 0个子帧的第 12个 OFDM符号, 以及每个传输帧的第 5个子帧的第 9个或第 10个或第 12个 OFDM符号,其中,该辅助同步信号在所述第 0个子帧使用的 OFDM 符号的序号与在所述第 5个子帧使用的 OFDM符号的序号不同。 如此, 既可以适用 于 FDD系统, 又可以适用于 TDD系统。
在另外一个实施例中, 当辅助同步信号的传送周期为 5ms 时, 该辅助同步信号 位于每个传输帧的第 0个子帧和第 5个子帧的第 12个或第 13个 OFDM符号。如此, 用户设备即可根据所述辅助同步信号的传输序列进行符号同步,根据所述辅助同步信 号在每个传输帧的第 0个子帧和第 5个子帧的不同的传输序列进行帧同步。
优选的, 当辅助同步信号的传送周期为 5ms 时, 该辅助同步信号位于每个传输 帧的第 0个子帧和第 5个子帧的第 12个 OFDM符号。 如此, 既可以适用于 FDD系 统, 又可以适用于 TDD系统。
在该实施例的一个实施方式中, 用户设备可以使用 LTE系统的 PSS序列作为每 个传输帧的第 0个子帧的辅助同步信号的传输序列, 例如使用 U=25或 29或 34的序 列作为第 0个子帧的辅助同步信号的传输序列; 使用与 U=25, 29, 34产生的三个序 列均有较好互相关性的 u值, 比如 u=19, 使用这个 u值产生的序列作为第 5个子帧 的辅助同步信号的传输序列, 也即, 该用户设备使用与 LTE系统中的 PSS序列相关 性小的同步信号序列作为辅助同步信号的每个传输帧的第 5 个子帧的辅助同步信号 的传输序列。
在该实施例的另外一个实施方式中,用户设备也可以分别使用固定的传输序列作 为辅助同步信号的每个传输帧的第 0个子帧和第 5个子帧的辅助同步信号的传输序 列,且在所述第 0个子帧使用的辅助同步信号的传输序列不同于在所述第 5个子帧使 用的辅助同步信号的传输序列。优选的,所述第 0个子帧使用的辅助同步信号的传输 序列和所述第 5个子帧使用的辅助同步信号的传输序列从 LTE系统的 PSS序列中选 取。 例如, 使用 U=29产生的传输序列作为该辅助同步信号的每个传输帧的第 0个子 帧的辅助同步信号的传输序列; 使用 u=34产生的传输序列作为辅助同步信号的每个 传输帧的第 5个子帧的辅助同步信号的传输序列。
通过本实施例的方法,基站在特定子帧的特定 OFDM符号上发送辅助同步信号, 协助用户设备进行符号同步和帧同步。 由此可以达到如下的效果: (1 )保证满足性能 要求, 包括保证同步获取的时间、 系统的覆盖范围; (2) 较小的时频资源开销, Pico 小区在辅助同步信道对应的资源上传送辅助同步信号, Macro小区在对应 Pico小区 辅助同步信道的资源上不传送信息,因此本实施例使用较少的时频资源开销减少了系 统容量损失; (3) 保证兼容性, 增加的 Pico小区的辅助同步信道既不影响 Pico小区 的 Rel.8/9/10用户的同步,又不影响 Macro小区用户的同步; (4)在一些同步方案中, FDD系统和 TDD系统可以通用。
本发明实施例还提供了一种基站, 如下面的实施例 3所述。 由于该基站解决问题 的原理与上述实施例 1的异构网络中增强同步的方法相似,因此该基站的实施可以参 见方法的实施, 重复之处不再赘述。
实施例 3
本发明实施例还提供了一种异构网络中微小区的基站。 图 10是该基站的组成示 意图, 请参照图 10, 该基站包括:
发送单元 1001, 其发送辅助同步信号, 所述辅助同步信号的传送周期为 10ms或
5ms, 并且, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧; 通知单元 1001, 其通知小区范围扩展 (CRE) 区域的用户设备检测所述辅助同 步信号, 以便所述用户设备在接入到所述微小区时,根据所述辅助同步信号进行符号 同步和帧同步。
在本实施例中, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子 帧中, 不与物理下行控制信道 (PDCCH)、 小区专用参考信号 (CRS )、 物理广播信 道(PBCH)、主同步信号(PSS)以及辅同步信号(SSS)冲突的正交频分复用(OFDM) 符号上。
在一个实施例中, 当所述辅助同步信号的传送周期为 10ms时, 所述辅助同步信 号位于每个传输帧的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧 的第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号, 以便所述用户设 备根据所述辅助同步信号的传输位置进行符号同步和帧同步。优选的,所述辅助同步 信号位于每个传输帧的第 0个子帧的第 12个 OFDM符号,或者每个传输帧的第 5个 子帧的第 9个或第 10个或第 12个 OFDM符号, 以便既适用于 FDD系统又适用于 TDD系统。
在另外一个实施例中, 当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同 步信号位于每个传输帧的第 0个子帧的第 12个或第 13个 OFDM符号, 以及每个传 输帧的第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号, 其中, 所述 辅助同步信号在所述第 0个子帧使用的 OFDM符号的序号与在所述第 5个子帧使用 的 OFDM符号的序号不同, 以便所述用户设备根据所述辅助同步信号的传输序列进 行符号同步, 根据所述辅助同步信号与长期演进 (LTE) 系统的同步信号的相对位置 进行帧同步。 优选的, 所述辅助同步信号位于每个传输帧的第 0 个子帧的第 12个 OFDM符号, 以及每个传输帧的第 5个子帧的第 9个或第 10个或第 12个 OFDM符 号, 以便既适用于 FDD系统又适用于 TDD系统。
在另外一个实施例中, 当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同 步信号位于每个传输帧的第 0个子帧和第 5个子帧的第 12个或第 13个 OFDM符号, 以便所述用户设备根据所述辅助同步信号的传输序列进行符号同步,根据所述辅助同 步信号在每个传输帧的第 0个子帧和第 5个子帧的不同的传输序列进行帧同步。优选 的, 所述辅助同步信号位于每个传输帧的第 0个子帧和第 5个子帧的第 12个 OFDM 符号, 以便既适用于 FDD系统又适用于 TDD系统。
通过本实施例的基站发送辅助同步信号,用户设备检测该辅助同步信号, 以获得 符号同步和帧同步, 避免了 Macro小区对该用户设备的干扰。
本发明实施例还提供了一种用户设备, 如下面的实施例 4所述。 由于该用户设备 解决问题的原理与上述实施例 2的异构网络中增强同步的方法相似,因此该用户设备 的实施可以参见方法的实施, 重复之处不再赘述。
实施例 4
本发明实施例还提供了一种用户设备。 图 11为该用户设备的组成示意图, 请参 照图 11, 该用户设备包括:
切换单元 1101, 其根据宏小区发送的微小区的相关信息切换到所述微小区; 检测单元 1102, 其根据所述微小区发送的通知消息检测所述微小区发送的辅助 同步信号, 所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号 位于每个传输帧的第 0个子帧和 /或第 5个子帧;
同步单元 1103, 其根据所述微小区发送的辅助同步信号进行符号同步和帧同步。 在本实施例中, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子 帧中, 不与物理下行控制信道 (PDCCH)、 小区专用参考信号 (CRS )、 物理广播信 道(PBCH)、主同步信号(PSS)以及辅同步信号(SSS)冲突的正交频分复用(OFDM) 符号上。
在一个实施例中, 当所述辅助同步信号的传送周期为 10ms时, 所述辅助同步信 号位于每个传输帧的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧 的第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号。此时, 所述同步 单元 1103根据所述辅助同步信号的传输位置进行符号同步和帧同步。 优选的, 在本 实施例中, 所述辅助同步信号位于每个传输帧的第 0个子帧的第 12个 OFDM符号, 或者每个传输帧的第 5个子帧的第 9个或第 10个或第 12个 OFDM符号, 以便既适 用于 FDD系统又适用于 TDD系统。
在另外一个实施例中, 当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同 步信号位于每个传输帧的第 0个子帧的第 12个或第 13个 OFDM符号, 以及每个传 输帧的第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号, 其中, 所述 辅助同步信号在所述第 0个子帧使用的 OFDM符号的序号与在所述第 5个子帧使用 的 OFDM符号的序号不同。此时, 所述同步单元 1103根据所述辅助同步信号的传输 序列进行符号同步, 根据所述辅助同步信号与 LTE系统的同步信号的相对位置进行 帧同步。优选的, 在本实施例中, 所述辅助同步信号位于每个传输帧的第 0个子帧的 第 12个 OFDM符号, 以及每个传输帧的第 5个子帧的第 9个或第 10个或第 12个 OFDM符号, 以便既适用于 FDD系统又适用于 TDD系统。
在另外一个实施例中, 当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同 步信号位于每个传输帧的第 0个子帧和第 5个子帧的第 12个或第 13个 OFDM符号。 此时, 所述同步单元 1103根据所述辅助同步信号的传输序列进行符号同步, 根据所 述辅助同步信号在每个传输帧的第 0个子帧和第 5个子帧的不同的传输序列进行符号 同步和帧同步。 优选的, 在本实施例中, 所述辅助同步信号位于每个传输帧的第 0 个子帧和第 5个子帧的第 12个 OFDM符号, 以便既适用于 FDD系统又适用于 TDD 系统。
在该实施例的一个实施方式中,所述同步单元 1103使用 LTE系统中的 PSS序列 作为辅助同步信号的每个传输帧的第 0 个子帧的辅助同步信号的传输序列, 使用与 LTE系统中的 PSS序列相关性小的同步信道序列作为辅助同步信号的每个传输帧的 第 5个子帧的辅助同步信号的传输序列。
在该实施例的另外一个实施方式中, 所述同步单元 1103分别使用固定的同步信 道序列作为辅助同步信号的每个传输帧的第 0个子帧和第 5个子帧的辅助同步信号的 传输序列, 且在所述第 0 个子帧使用的辅助同步信号的传输序列不同于在所述第 5 个子帧使用的辅助同步信号的传输序列。优选的,所述第 0个子帧使用的辅助同步信 号的传输序列和所述第 5个子帧使用的辅助同步信号的传输序列从 LTE系统的 PSS 序列中选取。
通过本发明实施例的用户设备,通过检测微小区的基站发送的辅助同步信号, 以 获取子帧同步和符号同步, 避免了 Macro小区对用户设备的同步信道的干扰。
本发明实施例还提供了一种计算机可读程序, 其中, 当在基站中执行该程序时, 该程序使得计算机在所述基站中执行实施例 1所述的异构网络中增强同步的方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中, 该计算机 可读程序使得计算机在基站中执行实施例 1所述的异构网络中增强同步的方法。
本发明实施例还提供了一种计算机可读程序,其中, 当在用户设备中执行该程序 时,该程序使得计算机在所述用户设备中执行实施例 2所述的异构网络中增强同步的 方法。
本发明实施例还提供了一种存储有计算机可读程序的存储介质,其中, 该计算机 可读程序使得计算机在用户设备中执行实施例 2所述的异构网络中增强同步的方法。
本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。逻辑 部件例如现场可编程逻辑部件、微处理器、计算机中使用的处理器等。本发明还涉及 用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器等。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚, 这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。

Claims

权 利 要 求 书
1、 一种异构网络中增强同步的方法, 其中, 所述方法包括:
微小区的基站发送辅助同步信号,所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧;
所述基站通知小区范围扩展(CRE)区域的用户设备检测所述辅助同步信号, 以 便所述用户设备在接入到所述微小区时,根据所述辅助同步信号进行符号同步和帧同 少。
2、 根据权利要求 1所述的方法, 其中,
所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧中, 不与物理 下行控制信道 (PDCCH)、 小区专用参考信号 (CRS )、 物理广播信道 (PBCH)、 主 同步信号 (PSS) 以及辅同步信号 (SSS) 冲突的正交频分复用 (OFDM) 符号上。
3、 根据权利要求 2所述的方法, 其中,
当所述辅助同步信号的传送周期为 10ms时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧的第 5个子帧的第 9个、 或第 10个、 或第 12个或第 13个 OFDM符号, 以便所述用户设备根据所述辅 助同步信号的传输位置进行符号同步和帧同步。
4、 根据权利要求 2所述的方法, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 以及每个传输帧的第 5个子帧的第 9个、 或第 10个、 或第 12个或第 13个 OFDM符号, 其中, 所述辅助同步信号在所 述第 0个子帧使用的 OFDM符号的序号与在所述第 5个子帧使用的 OFDM符号的序 号不同, 以便所述用户设备根据所述辅助同步信号的传输序列进行符号同步,根据所 述辅助同步信号与长期演进 (LTE) 系统的同步信号的相对位置进行帧同步。
5、 根据权利要求 2所述的方法, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧和第 5个子帧的第 12个或第 13个 OFDM符号, 以便所述用户设备根 据所述辅助同步信号的传输序列进行符号同步,根据所述辅助同步信号在每个传输帧 的第 0个子帧和第 5个子帧的不同的传输序列进行帧同步。
6、 根据权利要求 5所述的方法, 其中,
当所述辅助同步信号位于每个传输帧的第 0 个子帧和第 5 个子帧的第 12 个 OFDM符号时, 所述方法适用于频分双工 (FDD) 系统和时分双工 (TDD) 系统。
7、 一种异构网络中增强同步的方法, 其中, 所述方法包括:
用户设备根据宏小区发送的微小区的相关信息切换到所述微小区;
用户设备根据所述微小区发送的通知消息检测所述微小区发送的辅助同步信号, 所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每个传 输帧的第 0个子帧和 /或第 5个子帧;
用户设备根据所述微小区发送的辅助同步信号进行符号同步和帧同步。
8、 根据权利要求 7所述的方法, 其中,
所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧中, 不与物理 下行控制信道 (PDCCH)、 小区专用参考信号 (CRS )、 物理广播信道 (PBCH)、 主 同步信号 (PSS) 以及辅同步信号 (SSS) 冲突的正交频分复用 (OFDM) 符号上。
9、 根据权利要求 8所述的方法, 其中,
当所述辅助同步信号的传送周期为 10ms时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧的第 5个子帧的第 9个、 或第 10个、 或第 12个或第 13个 OFDM符号;
其中, 所述用户设备根据所述辅助同步信号的传输位置进行符号同步和帧同步。
10、 根据权利要求 8所述的方法, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 以及每个传输帧的第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号, 其中, 所述辅助同步信号在所述第 0个子帧使用的 OFDM符号的序号与在所述第 5个子帧使用的 OFDM符号的序号不 同;
其中,所述用户设备根据所述辅助同步信号的传输序列进行符号同步,根据所述 辅助同步信号与 LTE系统的同步信号的相对位置进行帧同步。
11、 根据权利要求 8所述的方法, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧和第 5个子帧的第 12个或第 13个 OFDM符号; 其中,所述用户设备根据所述辅助同步信号的传输序列进行符号同步,根据所述 辅助同步信号在每个传输帧的第 0个子帧和第 5个子帧的不同的传输序列进行帧同 少。
12、 根据权利要求 11所述的方法, 其中, 所述用户设备使用 LTE系统中的 PSS 序列作为辅助同步信号的每个传输帧的第 0个子帧的辅助同步信号的传输序列,使用 与 LTE系统中的 PSS序列相关性小的同步信道序列作为辅助同步信号的每个传输帧 的第 5个子帧的辅助同步信号的传输序列。
13、 根据权利要求 11所述的方法, 其中, 所述用户设备分别使用固定的同步信 道序列作为辅助同步信号的每个传输帧的第 0个子帧和第 5个子帧的辅助同步信号的 传输序列, 且在所述第 0 个子帧使用的辅助同步信号的传输序列不同于在所述第 5 个子帧使用的辅助同步信号的传输序列。
14、 根据权利要求 13所述的方法, 其中, 所述第 0个子帧使用的辅助同步信号 的传输序列和所述第 5个子帧使用的辅助同步信号的传输序列从 LTE系统的 PSS序 列中选取。
15、 一种异构网络中微小区的基站, 其中, 所述基站包括:
发送单元,其发送辅助同步信号,所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧;
通知单元,其通知小区范围扩展(CRE)区域的用户设备检测所述辅助同步信号, 以便所述用户设备在接入到所述微小区时,根据所述辅助同步信号进行符号同步和帧 同步。
16、 根据权利要求 15所述的基站, 其中,
所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧中, 不与物理 下行控制信道 (PDCCH)、 小区专用参考信号 (CRS )、 物理广播信道 (PBCH)、 主 同步信号 (PSS) 以及辅同步信号 (SSS) 冲突的正交频分复用 (OFDM) 符号上。
17、 根据权利要求 16所述的基站, 其中,
当所述辅助同步信号的传送周期为 10ms时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧的第 5个子帧的第 9个、 或第 10个、 或第 12个或第 13个 OFDM符号, 以便所述用户设备根据所述辅 助同步信号的传输位置进行符号同步和帧同步。
18、 根据权利要求 16所述的基站, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 以及每个传输帧的第 5个子帧的第 9个、 或第 10个、 或第 12个或第 13个 OFDM符号, 其中, 所述辅助同步信号在所 述第 0个子帧使用的 OFDM符号的序号与在所述第 5个子帧使用的 OFDM符号的序 号不同, 以便所述用户设备根据所述辅助同步信号的传输序列进行符号同步,根据所 述辅助同步信号与长期演进 (LTE) 系统的同步信号的相对位置进行帧同步。
19、 根据权利要求 16所述的基站, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧和第 5个子帧的第 12个或第 13个 OFDM符号, 以便所述用户设备根 据所述辅助同步信号的传输序列进行符号同步,根据所述辅助同步信号在每个传输帧 的第 0个子帧和第 5个子帧的不同的传输序列进行帧同步。
20、 根据权利要求 19所述的基站, 其中,
当所述辅助同步信号位于每个传输帧的第 0 个子帧和第 5 个子帧的第 12 个 OFDM符号时, 所述基站适用于频分双工 (FDD) 系统和时分双工 (TDD) 系统。
21、 一种用户设备, 其中, 所述用户设备包括:
切换单元, 其根据宏小区发送的微小区的相关信息切换到所述微小区; 检测单元,其根据所述微小区发送的通知消息检测所述微小区发送的辅助同步信 号, 所述辅助同步信号的传送周期为 10ms或 5ms, 并且, 所述辅助同步信号位于每 个传输帧的第 0个子帧和 /或第 5个子帧;
同步单元, 其根据所述微小区发送的辅助同步信号进行符号同步和帧同步。
22、 根据权利要求 21所述的用户设备, 其中,
所述辅助同步信号位于每个传输帧的第 0个子帧和 /或第 5个子帧中, 不与物理 下行控制信道 (PDCCH)、 小区专用参考信号 (CRS )、 物理广播信道 (PBCH)、 主 同步信号 (PSS) 以及辅同步信号 (SSS) 冲突的正交频分复用 (OFDM) 符号上。
23、 根据权利要求 22所述的用户设备, 其中,
当所述辅助同步信号的传送周期为 10ms时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 或者每个传输帧的第 5个子帧的第 9个、 或第 10个、 或第 12个或第 13个 OFDM符号; 所述同步单元根据所述辅助同步信号的传输位置进行符号同步和帧同步。
24、 根据权利要求 22所述的用户设备, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧的第 12个或第 13个 OFDM符号, 以及每个传输帧的第 5个子帧的第 9个或第 10个或第 12个或第 13个 OFDM符号, 其中, 所述辅助同步信号在所述第 0个子帧使用的 OFDM符号的序号与在所述第 5个子帧使用的 OFDM符号的序号不 同;
所述同步单元根据所述辅助同步信号的传输序列进行符号同步,根据所述辅助同 步信号与 LTE系统的同步信号的相对位置进行帧同步。
25、 根据权利要求 22所述的用户设备, 其中,
当所述辅助同步信号的传送周期为 5ms 时, 所述辅助同步信号位于每个传输帧 的第 0个子帧和第 5个子帧的第 12个或第 13个 OFDM符号;
所述同步单元根据所述辅助同步信号的传输序列进行符号同步,根据所述辅助同 步信号在每个传输帧的第 0个子帧和第 5个子帧的不同的传输序列进行帧同步。
26、 根据权利要求 25所述的用户设备, 其中, 所述同步单元使用 LTE系统中的
PSS序列作为辅助同步信号的每个传输帧的第 0个子帧的辅助同步信号的传输序列, 使用与 LTE系统中的 PSS序列相关性小的同步信道序列作为辅助同步信号的每个传 输帧的第 5个子帧的辅助同步信号的传输序列。
27、 根据权利要求 25所述的用户设备, 其中, 所述同步单元分别使用固定的同 步信道序列作为辅助同步信号的每个传输帧的第 0个子帧和第 5个子帧的辅助同步信 号的传输序列,且在所述第 0个子帧使用的辅助同步信号的传输序列不同于在所述第 5个子帧使用的辅助同步信号的传输序列。
28、 根据权利要求 27所述的用户设备, 其中, 所述同步单元从 LTE系统的 PSS 序列中选取所述第 0个子帧使用的辅助同步信号的传输序列和所述第 5个子帧使用的 辅助同步信号的传输序列。
29、 一种计算机可读程序, 其中, 当在基站中执行该程序时, 该程序使得计算机 在所述基站中执行权利要求 1-6任一项所述的异构网络中增强同步的方法。
30、一种存储有计算机可读程序的存储介质, 其中, 该计算机可读程序使得计算 机在基站中执行权利要求 1-6任一项所述的异构网络中增强同步的方法。
31、 一种计算机可读程序, 其中, 当在用户设备中执行该程序时, 该程序使得计 算机在所述用户设备中执行权利要求 7-14任一项所述的异构网络中增强同步的方法。
32、一种存储有计算机可读程序的存储介质, 其中, 该计算机可读程序使得计算 机在用户设备中执行权利要求 7-14任一项所述的异构网络中增强同步的方法。
PCT/CN2011/082393 2011-11-18 2011-11-18 异构网络中增强同步的方法和装置 WO2013071509A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014541500A JP2014533902A (ja) 2011-11-18 2011-11-18 異種ネットワークにおける同期の強化方法及び強化装置
KR1020147013788A KR20140094565A (ko) 2011-11-18 2011-11-18 이종 네트워크에서 동기화를 향상시키기 위한 방법 및 장치
PCT/CN2011/082393 WO2013071509A1 (zh) 2011-11-18 2011-11-18 异构网络中增强同步的方法和装置
EP11875607.1A EP2782306A4 (en) 2011-11-18 2011-11-18 METHOD AND DEVICE FOR IMPROVING SYNCHRONIZATION IN A HETEROGENIC NETWORK
CN201180074307.0A CN103891231A (zh) 2011-11-18 2011-11-18 异构网络中增强同步的方法和装置
US14/279,454 US20140247808A1 (en) 2011-11-18 2014-05-16 Method and apparatus for enhancing synchronization in a heterogeneous network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082393 WO2013071509A1 (zh) 2011-11-18 2011-11-18 异构网络中增强同步的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/279,454 Continuation US20140247808A1 (en) 2011-11-18 2014-05-16 Method and apparatus for enhancing synchronization in a heterogeneous network

Publications (1)

Publication Number Publication Date
WO2013071509A1 true WO2013071509A1 (zh) 2013-05-23

Family

ID=48428945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082393 WO2013071509A1 (zh) 2011-11-18 2011-11-18 异构网络中增强同步的方法和装置

Country Status (6)

Country Link
US (1) US20140247808A1 (zh)
EP (1) EP2782306A4 (zh)
JP (1) JP2014533902A (zh)
KR (1) KR20140094565A (zh)
CN (1) CN103891231A (zh)
WO (1) WO2013071509A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2496383A (en) * 2011-11-07 2013-05-15 Nec Corp Extension carriers having synchronisation signals with configurable locations
US9609675B2 (en) * 2012-01-16 2017-03-28 Lg Electronics Inc. Method and apparatus for monitoring control channel
US9629050B2 (en) * 2012-02-03 2017-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Method, apparatus and computer program for cell identification
WO2013133682A1 (ko) * 2012-03-09 2013-09-12 엘지전자 주식회사 참조 신호 설정 방법 및 장치
US9544794B2 (en) 2012-03-18 2017-01-10 Lg Electronics Inc. Method and apparatus for transmitting neighbor-cell measurement command in wireless communication system
WO2014069952A1 (ko) * 2012-11-04 2014-05-08 엘지전자 주식회사 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
JP5738338B2 (ja) * 2013-03-29 2015-06-24 株式会社Nttドコモ 無線通信システムおよび無線基地局装置
KR102226461B1 (ko) * 2014-04-30 2021-03-11 삼성전자 주식회사 무선 통신 시스템에서 이종간 듀플랙스 운영 방법 및 장치
WO2016015315A1 (zh) * 2014-07-31 2016-02-04 宇龙计算机通信科技(深圳)有限公司 时频同步维持的方法、时频同步维持的系统和终端
KR102282590B1 (ko) 2014-12-03 2021-07-29 삼성전자 주식회사 비면허 대역에서 동작하는 이동통신 시스템에서의 채널 감지 방법 및 장치
CN111818631B (zh) 2016-01-26 2021-12-03 华为技术有限公司 识别同步信息的方法、通信方法和装置、可读存储介质
ES2778435T3 (es) * 2016-03-11 2020-08-10 Huawei Tech Co Ltd Método y aparato para medir el índice de calidad de canal
WO2017171365A2 (ko) * 2016-03-31 2017-10-05 엘지전자(주) 6ghz 이하 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
US10194410B2 (en) * 2017-02-16 2019-01-29 Qualcomm Incorporated Synchronization signal blocks
US10476623B2 (en) 2017-04-03 2019-11-12 Qualcomm Incorporated Techniques and apparatuses for tertiary synchronization signal design for new radio
CN108989005B (zh) * 2017-06-02 2024-05-14 华为技术有限公司 一种指示信息的传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325447A (zh) * 2007-06-14 2008-12-17 中兴通讯股份有限公司 同步信号发送方法
CN101499989A (zh) * 2008-02-01 2009-08-05 大唐移动通信设备有限公司 一种时分双工系统中检测循环前缀长度的方法
CN101527595A (zh) * 2008-03-07 2009-09-09 中兴通讯股份有限公司 一种时分双工系统的帧结构及同步信号的发送方法
CN102149100A (zh) * 2011-04-25 2011-08-10 东南大学 移动通信系统分层异构网络中的强化干扰协调方法
WO2011130447A1 (en) * 2010-04-13 2011-10-20 Qualcomm Incorporated Resource partitioning information for enhanced interference coordination

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331387B2 (ja) * 2008-06-06 2013-10-30 アイシン・エーアイ株式会社 変速機及び変速機の制御方法
US9867203B2 (en) * 2008-07-11 2018-01-09 Qualcomm Incorporated Synchronous TDM-based communication in dominant interference scenarios
JP2010171592A (ja) * 2009-01-21 2010-08-05 Seiko Instruments Inc 情報処理装置、無線端末、情報処理プログラム、及び無線端末プログラム
CN101998607B (zh) * 2009-08-31 2013-07-31 中国移动通信集团公司 上行时隙引入下行传输辅同步信号的方法、系统及装置
KR101152848B1 (ko) * 2010-08-19 2012-06-12 주식회사 라온테크놀러지 디지털 무선 인터컴 시스템 및 그 구동방법
US8693506B2 (en) * 2010-11-02 2014-04-08 Alcatel Lucent Transparent clock adaptor for a network device
US9332516B2 (en) * 2011-08-11 2016-05-03 Blackberry Limited Method and system for signaling in a heterogeneous network
WO2013025039A2 (ko) * 2011-08-15 2013-02-21 엘지전자 주식회사 무선통신시스템에서 동기 신호를 송수신하는 방법 및 장치
US9450695B2 (en) * 2012-11-02 2016-09-20 Blackberry Limited Wireless communication in heterogeneous networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325447A (zh) * 2007-06-14 2008-12-17 中兴通讯股份有限公司 同步信号发送方法
CN101499989A (zh) * 2008-02-01 2009-08-05 大唐移动通信设备有限公司 一种时分双工系统中检测循环前缀长度的方法
CN101527595A (zh) * 2008-03-07 2009-09-09 中兴通讯股份有限公司 一种时分双工系统的帧结构及同步信号的发送方法
WO2011130447A1 (en) * 2010-04-13 2011-10-20 Qualcomm Incorporated Resource partitioning information for enhanced interference coordination
CN102149100A (zh) * 2011-04-25 2011-08-10 东南大学 移动通信系统分层异构网络中的强化干扰协调方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2782306A4 *

Also Published As

Publication number Publication date
US20140247808A1 (en) 2014-09-04
KR20140094565A (ko) 2014-07-30
CN103891231A (zh) 2014-06-25
EP2782306A1 (en) 2014-09-24
JP2014533902A (ja) 2014-12-15
EP2782306A4 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2013071509A1 (zh) 异构网络中增强同步的方法和装置
JP6679769B2 (ja) 拡張コンポーネントキャリアのための動的アップリンク/ダウンリンクフレーム構造
KR102282754B1 (ko) 데이터 전송 방법, 무선 네트워크 장치, 및 통신 시스템
US11337245B2 (en) TDD reconfiguration with consideration of DTX/DRX
CN108566265B (zh) 动态tdd上行链路/下行链路配置方法
US9781692B2 (en) Base station and method for primary and secondary synchronization signal transmission in new carriers
TW202021397A (zh) 無線通訊方法與無線通訊裝置
JP6363074B2 (ja) 省エネルギーのための強化された新規キャリアタイプで通信すること
US20170238301A1 (en) Communication system
KR102204922B1 (ko) 셀룰러 시스템에 임베드된 디바이스 투 디바이스 통신 시스템에 대한 송신 및 수신 타이밍
TW201838372A (zh) 用於窄頻通訊的窄頻分時雙工訊框結構
JP2019533374A (ja) 上りリンク信号を送信する方法及び装置
CN110771238A (zh) 为用户设备配置用于传送调度请求的重叠的pucch资源的系统和方法
WO2015042858A1 (zh) 通信的方法、用户设备和基站
JP2017537511A (ja) 無線通信システムにおけるd2d信号送受信方法及びそのための装置
EP3032862A1 (en) Information sending and receiving method and device
WO2013127371A1 (zh) 信息传输方法、基站和用户设备
CN103828396A (zh) 基于dm rs的下行链路lte物理层
WO2012006931A1 (zh) 一种csi-rs的发送方法、检测方法及其装置
CN109479299A (zh) V2x消息发送方法、装置及系统
US20230292391A1 (en) Communication system and communication terminal
WO2016180122A1 (zh) 一种利用非授权载波发送信号的方法和装置
KR20160051788A (ko) 무선 통신 시스템에서 상향링크 송신 자원을 관리하는 방법 및 이를 위한 장치
WO2015069054A1 (ko) 무선 통신 시스템에서 하향링크 신호 송수신 방법 및 이를 위한 장치
KR102260926B1 (ko) 분산된 디바이스 투 디바이스 동기화를 위한 타이밍 소스 선택 및 선택해제에 대한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011875607

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014541500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013788

Country of ref document: KR

Kind code of ref document: A