WO2013069560A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2013069560A1
WO2013069560A1 PCT/JP2012/078438 JP2012078438W WO2013069560A1 WO 2013069560 A1 WO2013069560 A1 WO 2013069560A1 JP 2012078438 W JP2012078438 W JP 2012078438W WO 2013069560 A1 WO2013069560 A1 WO 2013069560A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
signal line
transistor
potential
control
Prior art date
Application number
PCT/JP2012/078438
Other languages
English (en)
French (fr)
Inventor
将紀 小原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013069560A1 publication Critical patent/WO2013069560A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen

Definitions

  • the present invention relates to a display device, and more particularly to a display device including an electro-optical element driven by a current such as an organic EL display and a driving method thereof.
  • An organic EL (Electro Luminescence) display is known as a thin, high image quality, low power consumption display device.
  • a plurality of pixel circuits including an organic EL element which is a self-luminous display element driven by current, a driving transistor, and the like are arranged in a matrix.
  • Non-Patent Document 1 discloses the pixel circuit shown in FIG. 15 (hereinafter referred to as “first conventional pixel circuit”).
  • the first conventional pixel circuit includes P-channel transistors MP1 and MP2 and an organic EL element OLED.
  • the transistor MP1 When the potential of the select line becomes low level, the transistor MP1 is turned on, and the potential of the data line is written to the gate terminal of the transistor MP2. That is, the potential of the gate control node Vg, which is a connection point between the drain terminal of the transistor MP1 and the gate terminal of the transistor MP2, changes according to the potential of the data line.
  • the current flowing through the organic EL element OLED connected to the drain terminal of the transistor MP2 is controlled by the potential of the gate control node Vg. In this way, the light emission state of the organic EL element OLED is controlled.
  • Patent Document 1 discloses a pixel circuit (hereinafter referred to as “second conventional pixel circuit”) that compensates for variations in threshold voltage, as shown in FIG.
  • the second conventional pixel circuit includes P-channel transistors T31 to T36, a capacitor C31, and an organic EL element EL31.
  • the transistor T31 corresponds to a driving transistor.
  • the potential of the gate control node Vg which is a connection point between the gate terminal of the transistor T31 and other elements (transistors T33 and T34, capacitor C31) is initialized.
  • the transistors T34, T35, and T36 Is turned off, and the transistors T32 and T33 are turned on.
  • the transistor T31 driving transistor
  • the potential of the gate control node Vg becomes VDATAm ⁇ Vth.
  • Vth is a threshold voltage of the transistor T31.
  • the transistors T32, T33, and T34 are turned off.
  • the transistors T35 and T36 are turned on. Then, a current corresponding to the potential of the gate control node Vg given to the gate terminal of the transistor T31 is supplied to the organic EL element EL31 through the transistor T31, so that a light emitting operation is performed.
  • the current flowing through the organic EL element EL31 is determined by the voltage between the source and gate of the transistor T31 and the threshold voltage Vth of the transistor T31.
  • the voltage between the source and gate of the transistor T31 is determined by the potential (VDATAm ⁇ Vth) of the gate control node Vg and the power supply potential VDD during the data program operation.
  • the threshold voltage Vth of the transistor T31 is canceled out, and as a result, variations in the threshold voltage Vth are compensated.
  • the field through voltage ⁇ Vf is at the end of the scan line selection period. It is generally known to occur. Also, since the scan line has signal propagation delay characteristics due to its wiring resistance and wiring capacitance, it scans on the input end side (side to which the driver is connected) and output end side (opposite side of the input end side) It is generally known that signal waveforms are different. Specifically, the waveform of the scan signal on the output end side is duller than the waveform of the scan signal on the input end side.
  • the potential change of the scan line at the end of the scan line selection period differs between the input end side and the output end side.
  • the magnitude of the field through voltage ⁇ Vf differs between the input end side and the output end side of the scan line, so that the potential of the gate control node Vg becomes nonuniform in each pixel circuit. Therefore, the current supplied from the driving transistor to the organic EL element in each pixel circuit becomes non-uniform, resulting in luminance unevenness. Since the field-through voltage ⁇ Vf and the signal propagation delay characteristic are commonly generated in various organic EL displays or the like, such luminance unevenness is caused only in the pixel circuits according to Non-Patent Document 1 and Patent Documents 1 and 2. It can also occur in various other pixel circuits.
  • an object of the present invention is to provide a display device and a driving method thereof in which luminance unevenness due to waveform dullness is eliminated.
  • a first aspect of the present invention is an active matrix display device,
  • a display unit including a plurality of pixel circuits arranged in a row direction and a column direction; A plurality of video signal lines provided corresponding to the columns of the plurality of pixel circuits; A plurality of first control signal lines and a plurality of second control signal lines provided corresponding to the rows of the plurality of pixel circuits; A first power supply line and a second power supply line for supplying a power supply potential in common to the plurality of pixel circuits;
  • a video signal line driving circuit for driving the video signal line;
  • a first control signal line driving circuit which is disposed on one end side of the display unit and selectively drives the first control signal line;
  • a second control signal line drive circuit that is disposed on the one end side of the display unit and selectively drives the second control signal line;
  • the pixel circuit includes: An electro-optic element provided between the first power line and the second power line; A driving transistor that is provided in series with the electro-optical element between the first power
  • the second control signal line drive circuit includes the compensation transistor at or after the end of a period in which the first control signal line drive circuit supplies the first control signal line with a potential for turning on the control transistor.
  • the second control signal line is supplied with a potential for shutting off the signal.
  • the control transistor includes a first control transistor and a second control transistor,
  • the first control transistor and the compensation transistor are provided in parallel with each other between the control terminal of the driving transistor and a first conduction terminal of the driving transistor,
  • the second control transistor is provided between the video signal line and a second conduction terminal of the driving transistor.
  • the first control signal line immediately before the first control signal line corresponding to the pixel circuit is connected to the control terminal, the initialization signal line for supplying an initialization potential, and the driving transistor. It further includes an initialization transistor provided between the control terminal and the control terminal.
  • the pixel circuit includes: A predetermined control signal line is connected to a control terminal, and a power supply transistor provided between the first power supply line and the second conduction terminal of the driving transistor; A light emission control transistor provided between the first conduction terminal of the driving transistor and the electro-optic element, wherein the predetermined control signal line is connected to a control terminal; The predetermined control signal line is supplied with a potential for making each of the power supply transistor and the light emission control transistor conductive during a period in which the electro-optic element should emit light.
  • a plurality of third control signal lines connected in common to the pixel circuits arranged in the same row;
  • a third control signal line driving circuit for selectively driving the third control signal line;
  • the predetermined control signal line is the third control signal line.
  • a sixth aspect of the present invention is the fourth aspect of the present invention.
  • the predetermined signal line is the second control signal line.
  • the pixel circuit further includes a second capacitor provided between the first control signal line and a control terminal of the driving transistor.
  • control transistor and the compensation transistor are provided in parallel with each other between the video signal line and the control terminal of the driving transistor.
  • a display unit including a plurality of pixel circuits arranged in a row direction and a column direction, a plurality of video signal lines provided corresponding to a column of the plurality of pixel circuits, A plurality of first control signal lines and a plurality of second control signal lines provided corresponding to the rows of the plurality of pixel circuits; a first power supply line for supplying a power supply potential to the plurality of pixel circuits; A driving method for an active matrix display device comprising two power supply lines and a video signal line driving circuit for driving the video signal lines, A drive step of selectively driving each of the first control signal line and the second control signal line from one end side of the display unit;
  • the pixel circuit includes: An electro-optic element provided between the first power line and the second power line; A driving transistor that is provided in series with the electro-optical element between the first power line and the second power line, and controls a current flowing through the electro-optical element; A control transistor for controlling the potential of
  • the pixel circuit is provided with a control transistor and a compensation transistor having different conductivity types. Further, at or after the end of the period in which the control transistor is turned on for the first and second control signal lines, the potential of the second control signal line changes to a potential for turning off the compensation transistor. Since the potential is applied to the first and second control signal lines from the same side, the waveform dullness in the first and second control signal lines with respect to one end side of the display section becomes substantially equal to each other. For this reason, at the end of the period in which the control transistor is in the conductive state, it is caused by the potential variation caused by the potential change of the first control signal line and the potential change of the second control signal line generated at the control terminal of the drive transistor.
  • the sum of the potential variation is made uniform from one end of the display portion to the other end.
  • non-uniformity of the field through voltage depending on the position of the pixel circuit with respect to one end side of the display unit is suppressed.
  • nonuniformity of the driving current supplied from the driving transistor to the electro-optic element is suppressed, so that the luminance unevenness can be eliminated.
  • current can be supplied to the control terminal of the driving transistor not only by the control transistor but also by the compensation transistor.
  • the period for supplying current to the control terminal of the driving transistor can be made shorter than in the prior art.
  • the control transistor and the compensation transistor can be relatively small.
  • the driving transistor is diode-connected when the first control transistor and the compensation transistor are in a conductive state, it is possible to compensate for variations in threshold voltage of the driving transistor. it can. For this reason, variation in driving current supplied from the driving transistor to the electro-optical element is suppressed, so that luminance unevenness can be further eliminated.
  • the potential of the control terminal of the driving transistor can be initialized using the initialization transistor.
  • the issuance period of the electro-optic element can be controlled using the power supply transistor and the light emission control transistor.
  • the same effect as in the fourth aspect of the present invention can be obtained while reducing the frame area as compared with the fifth aspect of the present invention.
  • the potential of the control terminal of the driving transistor can be sufficiently held using the second capacitor.
  • the same effect as in the first aspect of the present invention can be obtained.
  • FIG. 1 is a block diagram illustrating an overall configuration of a display device according to a first embodiment of the present invention.
  • FIG. 3 is a circuit diagram illustrating a configuration of a pixel circuit in the first embodiment. 3 is a timing chart illustrating a driving method of the pixel circuit in the first embodiment. It is a figure which shows typically the scan signal and scan inversion signal in the said 1st Embodiment.
  • (A) is a diagram showing a scan signal on the input end side of the scan line Gi.
  • (B) is a diagram showing a scan signal on the output end side of the scan line Gi.
  • (C) is a diagram showing a scan inversion signal on the input end side of the scan inversion line GIi.
  • FIG. 3 is a circuit diagram in which parasitic capacitance is added to the pixel circuit shown in FIG. 2. It is a schematic diagram for demonstrating the layout area of TFT.
  • A is a schematic diagram showing a TFT in a conventional display device.
  • B is a schematic diagram showing a TFT realized in the same size as the conventional display device in the first embodiment.
  • C is a schematic diagram showing a TFT realized in a size smaller than the conventional display device in the first embodiment. It is a block diagram which shows the whole structure of the display apparatus which concerns on the 2nd Embodiment of this invention.
  • FIG. 10 is a timing chart showing a driving method of the pixel circuit in the second embodiment.
  • FIG. 9 is a circuit diagram in which parasitic capacitance is added to the pixel circuit shown in FIG. 8. It is a block diagram which shows the whole structure of the display apparatus which concerns on the 3rd Embodiment of this invention. It is a circuit diagram which shows the structure of the pixel circuit in the said 3rd Embodiment. 10 is a timing chart showing a driving method of the pixel circuit in the third embodiment.
  • FIG. 13 is a circuit diagram in which parasitic capacitance is added to the pixel circuit shown in FIG. 12. It is a circuit diagram which shows the structure of a 1st conventional pixel circuit. It is a circuit diagram which shows the structure of the 2nd conventional pixel circuit.
  • FIG. 1 is a block diagram showing the overall configuration of a display device according to the first embodiment of the present invention.
  • the display device according to this embodiment is an organic EL display including a display unit 1, a display control circuit 2, a source driver 3, a scan driver 4, a scan inversion driver 5, and an emission driver 6.
  • the display unit 1 includes (m ⁇ n) pixel circuits 10.
  • m and n are integers of 2 or more, i is an integer of 1 to n, and j is an integer of 1 to m.
  • a video signal line drive circuit is realized by the source driver 3
  • a first control signal line drive circuit is realized by the scan driver 4
  • a second control signal line drive circuit is realized by the scan inversion driver 5, and emission is performed.
  • a third control signal line driving circuit is realized by the driver 6.
  • the scan driver 4, the scan inversion driver 5, and the emission driver 6 are integrally formed with the display unit 1, for example, but the present invention is not limited to this.
  • the display unit 1 is provided with n scan lines Gi parallel to each other and m source lines Sj parallel to each other orthogonal to the scan lines Gi.
  • the (m ⁇ n) pixel circuits 10 are arranged in the row direction and the column direction. More specifically, (m ⁇ n) pixel circuits 10 are arranged in a matrix corresponding to the intersections of the scan lines Gi and the source lines Sj.
  • n scan inversion lines GIi and n emission lines Ei are provided in parallel with the n scan lines Gi.
  • a video signal line is realized by the source line Sj
  • a first control signal line is realized by the scan line Gi
  • a second control signal line is realized by the scan inversion line GIi
  • a third control is made by the emission line Ei.
  • a signal line is realized.
  • the m source lines Sj are connected to the source driver 3.
  • the n scan lines Gi are connected to the scan driver 4.
  • the n scan inversion lines GIi are connected to the scan inversion driver 5.
  • the n emission lines Ei are connected to the emission driver 6.
  • the display device is provided with a power line (not shown) common to the pixel circuits 10.
  • a power supply line (hereinafter referred to as “high level power supply line” for supplying a high level potential ELVDD for driving an organic EL element to be described later) and the organic EL element.
  • a power supply line for supplying a low level potential ELVSS (hereinafter referred to as “low level power supply line”, which is represented by the same symbol ELVSS as the low level potential).
  • an initialization line (indicated by the same symbol Vini as the initialization potential) for supplying an initialization potential Vini for an initialization operation described later is provided.
  • the first power supply line is realized by the high level power supply line ELVDD
  • the second power supply line is realized by the low level power supply line ELVSS
  • the initialization signal line is realized by the initialization line Vini.
  • the display control circuit 2 outputs various control signals to the source driver 3, the scan driver 4, the scan inversion driver 5, and the emission driver 6. More specifically, the display control circuit 2 outputs the start pulse SP, the clock CLK, the display data DA, and the latch pulse LP to the source driver 3, outputs the start pulse YI1 and the clock YCK1 to the scan driver 4, and performs scan inversion.
  • a start pulse YI2 and a clock YCK2 are output to the driver 5, and a start pulse YI3 and a clock YCK3 are output to the emission driver 6.
  • the clocks YCK1 to YCK3 are typically the same clock.
  • the start pulses Y1 and Y2 are typically those in which the potentials are inverted.
  • the source driver 3 drives the source lines S1 to Sm. More specifically, the source driver 3 includes an m-bit shift register (not shown), a sampling circuit, a latch circuit, m D / A converters, and the like.
  • the shift register has m bistable circuits connected in cascade with each other, transfers the start pulse SP supplied to the first stage in synchronization with the clock CLK, and outputs a sampling pulse from each stage.
  • display data DA is supplied to the sampling circuit.
  • the sampling circuit stores the display data DA according to the sampling pulse.
  • the display control circuit 2 outputs a latch pulse LP to the latch circuit.
  • the latch circuit When receiving the latch pulse LP, the latch circuit holds the display data DA stored in the sampling circuit.
  • the D / A converter is provided corresponding to the source line Sj, converts the display data DA held in the latch circuit into an analog voltage, and supplies the obtained analog voltage to the source line Sj.
  • the scan driver 4 drives the scan lines G1 to Gn. More specifically, the scan driver 4 includes a shift register and a buffer (not shown). The shift register sequentially transfers the start pulse YI1 in synchronization with the clock YCK1. A scan signal that is an output from each stage of the shift register is supplied to a corresponding scan line Gi via a buffer. The m pixel circuits 10 connected to the scan line Gi are collectively selected by an active (low level in this embodiment) scan signal.
  • the side (one end side of the display unit 1) on which the scan driver 4 is disposed with respect to the display unit 1 is referred to as “input end side of the scan line Gi”, and the opposite side is referred to as “scan line.
  • the output end side of Gi Further, the input end side of the scan line Gi and the output end side of the scan line Gi may be referred to as “the input end side of the scan inversion line GIi” and “the output end side of the scan inversion line GIi”, respectively.
  • the scan inversion driver 5 drives the scan inversion lines GI1 to GIn.
  • the configuration and operation of the scan inversion driver 5 are basically the same as those of the scan driver 4. However, each scan inversion signal output from the scan inversion driver 5 is obtained by inverting the potential of each scan signal. As shown in FIG. 1, the scan inversion driver 5 is provided on the input end side of the scan line Gi.
  • the scan inversion driver 5 and the scan driver 4 may be realized as one drive circuit.
  • the emission driver 6 drives the emission lines E1 to En. More specifically, the emission driver 6 includes a shift register and a buffer (not shown). The shift register sequentially transfers the start pulse YI3 in synchronization with the clock YCK3. An emission signal which is an output from each stage of the shift register is supplied to a corresponding emission line Ei via a buffer. As shown in FIG. 1, the emission driver 6 is provided on the output end side of the scan line Gi. However, the present embodiment is not limited to this, and is provided on the input end side of the scan line Gi. May be. When the emission driver 6 is provided on the input end side of the scan line Gi, any two or all of the emission driver 6, the scan driver 4, and the scan inversion driver 5 are realized as one drive circuit. Also good.
  • FIG. 2 is a circuit diagram showing a configuration of the pixel circuit 10 in the present embodiment.
  • the pixel circuit 10 includes TFTs 11 to 17, capacitors 21 and 22, and an organic EL element 23.
  • the TFTs 11 to 16 are P-channel type, and the TFT 17 is N-channel type.
  • the TFT 11 functions as an initialization transistor.
  • the TFT 12 functions as a first control transistor.
  • the TFT 13 functions as a second control transistor.
  • the TFT 14 functions as a driving transistor.
  • the TFT 15 functions as a power supply transistor.
  • the TFT 16 functions as a light emission control transistor.
  • the TFT 17 functions as a compensation transistor.
  • the capacitor 21 functions as a first capacitor.
  • the capacitor 22 functions as a second capacitor.
  • the organic EL element 23 functions as an electro-optical element.
  • the control terminal corresponds to the gate terminal.
  • the pixel circuit 10 includes a scan line Gi (referred to as a “current scan line” for convenience in the description of the pixel circuit 10 in the present embodiment), a scan line Gi ⁇ immediately before the scan line Gi. 1 (referred to as “pre-scan line” for convenience in the description of the pixel circuit 10), connected to the scan inversion line GIi, the emission line Ei, the source line Sj, the high level power line ELVDD, the low level power line ELVSS, and the Vini line.
  • a scan line Gi referred to as a “current scan line” for convenience in the description of the pixel circuit 10 in the present embodiment
  • a scan line Gi ⁇ immediately before the scan line Gi. 1 referred to as “pre-scan line” for convenience in the description of the pixel circuit 10
  • one conduction terminal of the TFT 11, a gate terminal of the TFT 14, one conduction terminal of the TFT 12, one conduction terminal of the TFT 17, one end of the capacitor 21, and a capacitor A connection point with one end of 22 corresponds to the above-described “gate control node Vg”.
  • the potential of the gate control node Vg may also be represented by the symbol Vg.
  • a connection point between one conduction terminal of the TFT 13, one conduction terminal of the TFT 15, and a source terminal as the second conduction terminal of the TFT 14 is referred to as a “data / power supply node” for the sake of convenience, and is denoted by reference numeral Va.
  • the potential Va of the data / power supply node Va may also be represented by the symbol Va.
  • the TFT 11 has a gate terminal connected to the previous scan line Gi-1, and is provided between the initialization line Vini and the gate control node Vg.
  • the TFT 12 has its gate terminal connected to the current scan line Gi, and is provided between the drain terminal as the first conduction terminal of the TFT 14 and the gate control node Vg.
  • the TFT 13 has a gate terminal connected to the current scan line Gi, and is provided between the source line Si and the data / power supply node Va.
  • the gate control node Vg is connected to the gate terminal
  • the data / power supply node Va is connected to the source terminal
  • the anode of the organic EL element 23 is connected to the drain terminal via the TFT 16.
  • the TFT 15 has an emission line Ei connected to its gate terminal, and is provided between the high-level power supply line ELVDD and the data / power supply node Va.
  • the TFT 16 has an emission line Ei connected to its gate terminal, and is provided between the drain terminal of the TFT 14 and the anode of the organic EL element 23.
  • the TFT 17 has a scan inversion line GIi connected to the gate terminal thereof, and is provided in parallel with the TFT 12 between the drain terminal of the TFT 14 and the gate control node Vg.
  • the capacitor 21 is provided between the high level power supply line ELVDD and the gate control node Vg.
  • the capacitor 22 is provided between the current scan line Gi and the gate control node Vg.
  • the high level power line ELVDD is connected to the anode via the TFT 15, TFT 14, and TFT 16, and the low level power line ELVSS is connected to the cathode.
  • FIG. 3 is a timing chart showing a driving method of the pixel circuit 10 in the present embodiment.
  • the period from the time when the potential of an arbitrary scan line changes from the high level to the low level to the time when the potential of the scan line immediately after the scan line changes from the high level to the low level is one horizontal scan. It is called a period.
  • the potential of the scan line is sequentially changed to a low level every horizontal scanning period, and the potential of the scan inversion line is sequentially changed to a high level every horizontal scanning period.
  • the potential of the emission line sequentially changes to a high level every horizontal scanning period, and the period in which the emission line is at a high level lasts longer than one horizontal scanning period (two horizontal scanning periods in this embodiment).
  • the period of high level between consecutive emission lines overlaps by one horizontal scanning period (for example, times t1 to t3 in FIG. 3).
  • the potential of the previous scan line Gi-1 and the current scan line Gi is at a high level
  • the potential of the scan inversion line GIi is at a low level
  • the potential of the emission line Ei is at a low level
  • gate control The potential of the node Vg is a potential corresponding to the light emission state in the previous frame.
  • the TFTs 11 to 13 and 17 are turned off, the TFT 14 is turned on according to the potential of the gate control node Vg, and the TFTs 15 and 16 are turned on. Since the TFT 16 is in the on state, the organic EL element 23 is in a light emitting state according to the drive current supplied via the TFT 14.
  • the potential of the previous scan line Gi-1 changes to low level, and the potential of the emission line Ei changes to high level.
  • the TFT 11 changes to an on state, and the TFTs 15 and 16 change to an off state.
  • the organic EL element 23 enters a non-light emitting state, and the potential of the gate control node Vg is initialized to the initialization potential Vini.
  • the initialization potential Vini is, for example, a potential that can sufficiently maintain the TFT 14 in the on state.
  • time t2 the potential of the previous scan line Gi-1 changes to a high level, so that the TFT 11 changes to an off state.
  • the potential of the gate control node Vg is held by the capacitors 21 and 22. Note that time t2 and later-described time t3 may be set at the same timing.
  • Vg Vdata-Vth (1)
  • Vth is a threshold voltage of the TFT 14.
  • Times t3 to t4 are threshold compensation periods for compensating for variations in threshold voltage Vth.
  • the following equation (5) is derived from the equations (3) and (4).
  • I ⁇ / 2 / (ELVDD-Vdata- ⁇ Vf) 2 (5)
  • the term of the threshold voltage Vth disappears. For this reason, in the pixel circuit 10 in the present embodiment, variations in the threshold voltage Vth are compensated.
  • the drive current I is determined by the high level power supply potential ELVDD, the potential Vdata of the source line Sj, and the field through voltage ⁇ Vf.
  • FIG. 4 is a diagram schematically showing a scan signal and a scan inversion signal in the present embodiment. More specifically, FIG. 4A is a diagram showing a scan signal on the input end side of the scan line Gi, and FIG. 4B is a diagram showing a scan signal on the output end side of the scan line Gi. 4C is a diagram showing a scan inversion signal on the input end side of the scan inversion line GIi, and FIG. 4D is a diagram showing a scan inversion signal on the output end side of the scan inversion line GIi. . 4A to 4D, Vsh indicates the high level of each signal, and Vsl indicates the low level of each signal. In FIG. 4A to 4D, Vsh indicates the high level of each signal, and Vsl indicates the low level of each signal. In FIG. 4A to 4D, Vsh indicates the high level of each signal, and Vsl indicates the low level of each signal. In FIG. 4A to 4D, Vsh indicates the high level of each signal, and V
  • Vsla indicates the low level of the scan signal when the waveform is dull.
  • a thick broken line in FIG. 4B shows a scan signal on the input end side of the scan line Gi shown in FIG. 4A for comparison.
  • Vsha indicates the high level of the scan signal when the waveform is dull.
  • a thick broken line in FIG. 4D shows a scan inversion signal on the input end side of the scan inversion line GLi shown in FIG. 4C for comparison.
  • Each of the scan line Gi and the scan inversion line GIi has a signal propagation delay characteristic due to its wiring resistance and wiring capacitance. For this reason, the waveform of the scan signal (see FIG. 4A) that is a rectangular wave on the input end side of the scan line Gi becomes dull as it goes to the output end side (see FIG. 4B). For this reason, for example, when the selection period of each scan line Gi is relatively short, the low level of the scan signal on the output end side becomes Vsla higher than the low level Vsl of the scan signal on the input end side. That is, the amplitude of the scan signal on the output end side is smaller than the amplitude of the scan signal on the input end side of the scan line Gi.
  • the potential change of the scan line Gi at the end of the selection period becomes smaller as it is closer to the output end side of the scan line Gi.
  • the scan inversion signal (see FIG. 4C) that is a rectangular wave on the input end side of the scan inversion line GIi becomes dull as it goes toward the output end side (see FIG. 4D). ). Since the length of the selection period of each scan inversion line GIi is the same as the length of the selection period of each scan line Gi, the high level of the scan inversion signal on the output end side is the high level of the scan inversion signal on the input end side. Vsha is higher than Vsh.
  • the amplitude of the scan inversion signal on the output end side is smaller than the scan inversion signal on the input end side of the scan inversion line GIi. Therefore, the change in potential of the scan inversion line GIi at the end of the selection period becomes smaller as it is closer to the output end side of the scan inversion line GIi.
  • the potential change of both the scan line Gi and the scan inversion line GIi at the end of the selection period increases as it approaches the input end side, and decreases as it approaches the output end side.
  • FIG. 5 is a circuit diagram in which parasitic capacitance is added to the pixel circuit 10 shown in FIG. As shown in FIG. 5, it is assumed that parasitic capacitances C gd11 , C gd12 , C gd13 , C gd14 , C gs14 , C gd15 , and C gs17 are formed in the pixel circuit 10.
  • the capacitance values of the parasitic capacitances C gd11 , C gd12 , C gd13 , C gd14 , C gs14 , C gd15 , C gs17 are also denoted by C gd11 , C gd12 , C gd13 , C gd14 , C gs14 , C gs14 , Sometimes expressed as gd15 or C gs17 .
  • the capacitance values of the capacitors 21 and 22 are respectively expressed as C 21 and C 22 .
  • the parasitic capacitance C gd11 is formed between the previous scan line Gi-1 and the gate control node Vg.
  • the parasitic capacitance C gd12 is formed between the current scan line Gi and the gate control node Vg.
  • the parasitic capacitance C gd13 is formed between the current scan line Gi and the data / power supply node Va.
  • the parasitic capacitance C gd14 is formed between the gate control node Vg and the drain terminal of the TFT 14.
  • the parasitic capacitance C gs14 is formed between the gate control node Vg and the data / power supply node Va.
  • the parasitic capacitance C gd15 is formed between the emission line Ei and the data / power supply node Va.
  • the parasitic capacitance C gs17 is formed between the scan inversion line GIi and the gate control node Vg. In addition to these, parasitic capacitance may be formed, but the description thereof is omitted here.
  • Vgini Vini + (Vsh- Vsl ) ⁇ C gd11 / C tot1 (6)
  • C tot1 is a total capacitance value of the capacitor coupled to the gate control node Vg and the parasitic capacitance, and is given by the following equation (7).
  • C tot1 C 21 + C 22 + C gd11 + C gd12 + C gd14 + C gs14 + C gs17 (7)
  • Vgset Vdata-Vth (8)
  • Vgend Vgset + (Vsh-Vsl) ⁇ (C 22 + C gd12 ) / C tot1- (Vsh- Vsl ) ⁇ C gs17 / C tot1 ...
  • Expression (10) the potential fluctuation of the power supply node Va (represented by ⁇ Va), and the like. However, for the sake of convenience, the description is omitted here.
  • C tot2 in the equation (10) is a total capacitance value of the parasitic capacitance coupled to the data / power supply node Va, and is given by the following equation (11).
  • C tot2 C gd13 + C gs14 + C gd15 (11)
  • (Vsh ⁇ Vsl ) ⁇ (C 22 + C gd12 ) / C tot1 ” is the potential fluctuation due to the potential change of the scan line Gi
  • the potential fluctuation due to the potential change of the scan inversion line GIi is the potential fluctuation due to the potential change of the scan inversion line GIi. Reduced by minutes.
  • Vgend Vgset + (Vsh-Vsla) ⁇ (C 22 + C gd12 ) / C tot1- (Vsha-Vsl) ⁇ C gs17 / C tot1 ... (12) Since Vsh ⁇ Vsla> Vsh ⁇ Vsl and Vsha ⁇ Vsl> Vsh ⁇ Vsl, the closer to the output end side of the scan line Gi, the potential variation caused by the potential change of the scan line Gi and the scan inversion line It can be seen that both potential fluctuations due to GIi potential changes are reduced.
  • the sum of the potential fluctuation due to the potential change of the scan line Gi and the potential fluctuation due to the potential change of the scan inversion line GIi is made uniform from the input end side to the output end side of the scan line Gi.
  • the nonuniformity of the field through voltage ⁇ Vf is suppressed between the input end side and the output end side of the scan line Gi.
  • the pixel circuit 10 includes a TFT 17 (N channel) controlled by a scan inversion line GIi, which has a conductivity type different from that of the TFT 12 in parallel with the TFT 12 (P channel type) controlled by the scan line Gi. Type).
  • the potential of the scan inversion line GIi is obtained by inverting the potential of the scan line Gi.
  • a scan inversion driver 5 is provided on the side where the scan driver 4 is disposed with respect to the display unit 1, and the scan inversion line GIi is driven by the scan inversion driver 5. For this reason, the waveform bluntness of the scan signal and the scan inversion signal at each position with respect to the input end side of the scan line Gi becomes substantially equal.
  • the scan line Gi the sum of the potential fluctuation due to the potential change of the scan line Gi and the potential fluctuation due to the potential change of the scan inversion line GIi generated when the TFT 12 and TFT 17 change to the OFF state is the scan line Gi. It is made uniform from the input end side to the output end side. Thereby, the nonuniformity of the field through voltage ⁇ Vf depending on the position of the pixel circuit with respect to the input end side of the scan line Gi is suppressed. Therefore, the nonuniformity of the drive current I supplied from the TFT 14 to the organic EL element 23 is suppressed, so that the luminance unevenness can be eliminated.
  • the light emission period of the organic EL element 23 is controlled by the TFT 15 and the TFT 16 whose gate terminals are connected to the emission line Ei driven by the emission driver 6. For this reason, the organic EL element 23 is in a non-light emitting state from the start of the initialization operation where the potential of the gate control node Vg changes to the end of the data write operation (time t1 to t4). Thereby, it is possible to prevent the luminance change in the initialization operation and the data writing operation from being visually recognized. Therefore, display quality can be improved.
  • FIG. 6 is a schematic diagram for explaining the layout area of the TFT. More specifically, FIG. 6A is a schematic diagram illustrating a TFT in a conventional display device. FIG. 6B is a schematic diagram showing a TFT realized in the present embodiment with the same size as a conventional display device. FIG.
  • FIG. 6C is a schematic diagram showing a TFT realized in a size smaller than that of a conventional display device in this embodiment.
  • the TFT 12 and the TFT 17 are realized in the same size as the TFT (corresponding to the TFT 12) of the conventional display device shown in FIG. Increase.
  • the channel size of both the TFT 12 and the TFT 17 for example, the channel length L is the same as the conventional one and the channel width W is made smaller than the conventional one
  • the layout area can be reduced.
  • the threshold compensation operation is performed even when the channel sizes of both the TFT 12 and the TFT 17 are reduced. Can be done sufficiently. Such a discussion is also valid in second and third embodiments described later.
  • FIG. 7 is a block diagram showing the overall configuration of a display device (organic EL display) according to the second embodiment of the present invention.
  • the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the scan inversion driver 5 and the scan inversion line GIi are omitted and the emission driver 6 is connected to the input end of the scan line Gi in the display device according to the first embodiment. It is arranged on the side.
  • a first control signal line drive circuit is realized by the scan driver 4
  • a second control signal line drive circuit is realized by the emission driver 6
  • a first control signal line is realized by the scan line Gi
  • an emission line A second control signal line is realized by Ei.
  • the input end side of the scan line Gi and the output end side of the scan line Gi may be referred to as “the input end side of the emission line Ei” and “the output end side of the emission line Ei”, respectively.
  • FIG. 8 is a circuit diagram showing a configuration of the pixel circuit 10 in the present embodiment. Unlike the first embodiment, in the pixel circuit 10 in this embodiment, the gate terminal of the TFT 17 is connected to the emission line Ei. Other connection relationships are the same as those in the first embodiment.
  • FIG. 9 is a timing chart showing a driving method of the pixel circuit 10 in the present embodiment.
  • the time when the potential of the emission line Ei changes from the high level to the low level is the time when the potential of the scan line Gi changes from the high level to the low level (time t4).
  • time t4 the time point at which the potential of the emission line Ei changes from the high level to the low level
  • Operations other than the time t4 in the present embodiment are basically the same as those in the first embodiment, and will be omitted.
  • the drive current I corresponding to the potential of the gate control node Vg and the high-level power supply potential ELVDD is supplied to the organic EL element 23 via the TFTs 14 and 16, and the drive current
  • the organic EL element 23 emits light according to the amount of I current.
  • the drive current I is given by the above equation (5).
  • the emission signal in the present embodiment is supplied from the emission driver 6 provided on the input end side of the scan line Gi, the waveform blunting similar to the scan inversion signal in the first embodiment occurs. That is, the emission signal on the input end side of the emission line Ei has the same waveform as the scan inversion signal on the input end side of the scan inversion line GLi shown in FIG. 4C (however, the length of the selection period is different). The emission signal on the output end side of the emission line Ei has the same waveform as the scan inversion signal on the output end side of the scan inversion line GLi shown in FIG. 4D (however, the length of the selection period is different).
  • the selection period of the emission line Ei is longer than the selection period of the scan inversion line GIi in the first embodiment, the amplitude of the emission signal also decreases from the input end side to the output end side here (for example, it is assumed that the wiring resistance and wiring capacitance of the emission line Ei are larger than those of the scan inversion line GIi in the first embodiment).
  • FIG. 10 is a circuit diagram in which parasitic capacitance is added to the pixel circuit 10 shown in FIG.
  • the parasitic capacitance of the pixel circuit 10 formed in the present embodiment is the same as that in the first embodiment.
  • the potential of the data / power supply node Va also changes due to the potential change of the emission line Ei. Strictly speaking, the potential Vgend is different from that given by the above formula (14).
  • the description thereof is omitted here.
  • the scan inversion driver 5 is omitted, and the position where the emission driver 6 is provided is changed to the side where the scan driver 4 is disposed with respect to the display unit 1, whereby the first embodiment described above. The same effect can be achieved. Further, since it is not necessary to provide the scan inversion driver 5, the frame area can be reduced.
  • FIG. 11 is a block diagram showing an overall configuration of a display device (organic EL display) according to the third embodiment of the present invention.
  • the same elements as those of the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the display device according to the present embodiment is obtained by omitting the emission driver 6 and the emission line Ei from the display device according to the first embodiment.
  • a first control signal line drive circuit is realized by the scan driver 4
  • a second control signal line drive circuit is realized by the scan inversion driver 5
  • a first control signal line is realized by the scan line Gi
  • the scan A second control signal line is realized by the inversion line GIi.
  • FIG. 12 is a circuit diagram showing a configuration of the pixel circuit 10 in the present embodiment.
  • the pixel circuit 10 in this embodiment includes TFTs 31 to T33, a capacitor 41, and an organic EL element.
  • the TFT 31 is a P-channel type
  • the TFT 32 is an N-channel type.
  • This pixel circuit 10 has a configuration in which a TFT 32 and a capacitor 41 are added to the pixel circuit disclosed in Non-Patent Document 1.
  • the TFT 31 functions as a control transistor.
  • the TFT 32 functions as a compensation transistor.
  • the TFT 33 functions as a driving transistor.
  • the capacitor 41 functions as a first capacitor.
  • the organic EL element 42 functions as an electro-optical element.
  • a connection point between the gate terminal of the TFT 33, one conduction terminal of the TFT 31, one conduction terminal of the TFT 32, and one end of the capacitor 41 corresponds to the above-described “gate control node Vg”.
  • the TFT 31 has a gate terminal connected to the scan line Gi, and is provided between the source line Sj and the gate control node Vg.
  • the TFT 32 has a gate terminal connected to the scan inversion line GIi, and is provided in parallel with the TFT 31 between the source line Sj and the gate control node Vg.
  • the gate control node Vg is connected to the gate terminal, the high-level power supply line ELVDD is connected to the source terminal, and the anode of the organic EL element 23 is connected to the drain terminal.
  • the capacitor 41 is provided between the gate control node Vg and the high level power supply line ELVDD.
  • the cathode of the organic EL element 42 is connected to the low level power supply line ELVSS.
  • FIG. 13 is a timing chart showing a driving method of the pixel circuit 10 in the present embodiment.
  • the potential of the scan line Gi is at a high level
  • the potential of the scan inversion line GIi is at a low level
  • the potential of the gate control node Vg is a potential corresponding to light emission in the previous frame.
  • the TFTs 31 and 32 are turned off, and the TFT 33 is turned on according to the potential of the gate control node Vg.
  • the organic EL element 23 is in a light emitting state according to the drive current I supplied via the TFT 33.
  • the potential of the scan line Gi changes to a low level, and the potential of the scan inversion line GIi changes to a high level. For this reason, the TFTs 31 and 32 are turned on. As a result, the potential Vdata of the source line Sj is supplied to the gate control node Vg via the TFTs 31 and 32.
  • the potential of the gate control node Vg is given by the following equation (13).
  • Vg Vdata (13)
  • the driving current I at this time is given by the following equation (14) from the above equations (3), (4), and (13).
  • the drive current I ⁇ / 2 / (ELVDD-Vdata-Vth- ⁇ Vf) 2 (16)
  • the drive current I is determined by the high-level power supply potential ELVDD, the potential Vdata of the source line Sj, the threshold voltage Vth of the TFT 33, and the field through voltage ⁇ Vf.
  • FIG. 14 is a circuit diagram in which parasitic capacitance is added to the circuit shown in FIG. As shown in FIG. 14, it is assumed that parasitic capacitances C gd31 and C gs32 are formed in the pixel circuit 10.
  • the capacitance values of the parasitic capacitances C gd31 and C gs32 may also be represented by reference symbols C gd31 and C gs32 , respectively. Also, it represents the capacitance of the capacitor 41 at C 41.
  • the parasitic capacitance C gd31 is formed between the scan line Gi and the gate control node Vg.
  • the parasitic capacitance C gs32 is formed between the scan inversion line GIi and the gate control node Vg. In addition to these, parasitic capacitance may be formed, but the description thereof is omitted here.
  • Vgend Vdata + (Vsh- Vsl ) ⁇ C gd31 / C tot3- (Vsh- Vsl ) ⁇ C gs32 / C tot3 (17)
  • C tot3 is the total capacitance value of the capacitor coupled to the gate control node Vg and the parasitic capacitance, and is given by the following equation (18).
  • C tot3 C gd31 + C gs32 + C 41 (18)
  • Vgend expressed by the equation (17) is on the input end side of the scan line Gi
  • Vgend on the output end side is expressed by the following equation (18).
  • Vgend Vdata + (Vsh-Vsla) ⁇ C gd31 / C tot3- (Vsha-Vsl) ⁇ C gs32 / C tot3 (17) Since Vsh ⁇ Vsla> Vsh ⁇ Vsl and Vsha ⁇ Vsl> Vsh ⁇ Vsl, the closer to the output end side of the scan line Gi, the potential variation caused by the potential change of the scan line Gi and the scan inversion line It can be seen that both potential fluctuations due to GIi potential changes are reduced. Therefore, similarly to the first embodiment, the nonuniformity of the field through voltage ⁇ Vf is suppressed between the input end side and the output end side of the scan line Gi.
  • the same effects as those of the first embodiment can be achieved in a display device including a pixel circuit having a simpler configuration than those of the first and second embodiments.
  • the discussion of the channel sizes of the TFTs 12 and 17 in the first embodiment also holds true for the channel sizes of the TFTs 31 and 32 in the present embodiment.
  • the discussion concerned the threshold compensation period in the first embodiment but in this embodiment, the period during which the potential Vdata of the source line Sj is written to the gate control node Vg (time t1 to t2 in FIG. 13). ).
  • the high level and low level of the scan signal and the high level and low level of the scan inversion signal are described as being the same, but the present invention is not limited to this.
  • an organic EL element is exemplified as an electro-optical element.
  • the present invention is not limited to an organic EL element, and the same description is possible as long as the light emitting element controls the light emission amount according to the amount of current. .
  • the above-described embodiments can be variously modified and implemented without departing from the spirit of the present invention.
  • the present invention can be applied to a display device including an electro-optical element driven by a current such as an organic EL display and a driving method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 波形鈍りに起因する輝度ムラを解消した表示装置を提供する。 画素回路(10)は、Pチャネル型TFT(11~16)、Nチャネル型TFT(17)、コンデンサ(21,22)、および有機EL素子(23)を含む。TFT(12)を制御する現スキャンライン(Gi)およびTFT(17)を制御するスキャン反転ライン(GIi)には、スキャン信号およびスキャン反転信号がそれぞれ供給される。スキャン信号およびスキャン反転信号は、表示部に対して互いに同じ側から供給される。データ書き込み動作終了時に、現スキャンライン(Gi)の電位がハイレベルに変化し、スキャン反転ライン(GIi)の電位がローレベルに変化することにより、TFT(12,13,17)がオフ状態に変化する。このとき、ゲート制御ノード(Vg)に接続された寄生容量の影響により、フィールドスルー電圧(ΔVf)が生じる。

Description

表示装置およびその駆動方法
 本発明は表示装置に関し、より詳しくは、有機ELディスプレイ等の電流で駆動される電気光学素子を備えた表示装置およびその駆動方法に関する。
 薄型、高画質、低消費電力の表示装置として、有機EL(Electro Luminescence)ディスプレイが知られている。有機ELディスプレイには、電流で駆動される自発光型表示素子である有機EL素子および駆動用トランジスタ等を含む複数の画素回路がマトリクス状に配置されている。
 有機ELディスプレイの画素回路は、従来から各種知られている。非特許文献1には、図15に示す画素回路(以下「第1の従来の画素回路」という。)が開示されている。第1の従来の画素回路は、Pチャネル型トランジスタMP1,MP2、および有機EL素子OLEDにより構成されている。セレクトラインの電位がローレベルになると、トランジスタMP1がオン状態になり、データラインの電位がトランジスタMP2のゲート端子に書き込まれる。すなわち、トランジスタMP1のドレイン端子とトランジスタMP2のゲート端子との接続点であるゲート制御ノードVgの電位がデータラインの電位に応じて変化する。このゲート制御ノードVgの電位によってトランジスタMP2のドレイン端子に接続された有機EL素子OLEDを流れる電流が制御される。このようにして、有機EL素子OLEDの発光状態が制御される。
 ところで、駆動用トランジスタ(上記トランジスタMP1)の閾値電圧のばらつきにより、輝度ムラが生じることが従来から知られている。そこで、例えば特許文献1には、図16に示す、閾値電圧のばらつきを補償する画素回路(以下「第2の従来の画素回路」という。)が開示されている。第2の従来の画素回路は、Pチャネル型トランジスタT31~T36、コンデンサC31、および有機EL素子EL31により構成されている。第2の従来の画素回路では、トランジスタT31が駆動用トランジスタに相当する。以前スキャン信号scan[n-1]がローレベル、現在スキャン信号scan[n]がハイレベル、現在発行信号emi[n]がハイレベルである初期化動作時には、トランジスタT34がオン状態になり、トランジスタT31~T33,T35,T36がオフ状態になる。このため、トランジスタT31のゲート端子と他の素子(トランジスタT33,T34,コンデンサC31)との接続点であるゲート制御ノードVgの電位が初期化される。次に、以前スキャン信号scan[n-1]がハイレベル、現在スキャン信号scan[n]がローレベル、現在発行信号emi[n]がハイレベルであるデータプログラム動作時には、トランジスタT34,T35,T36がオフ状態になり、トランジスタT32,T33がオン状態になる。このとき、トランジスタT31(駆動用トランジスタ)がダイオード接続になり、ゲート制御ノードVgの電位がVDATAm-Vthになる。ここで、VthはトランジスタT31の閾値電圧である。そして、以前スキャン信号scan[n-1]がハイレベル、現在スキャン信号scan[n]がハイレベル、現在発行信号emi[n]がローレベルである発光動作時には、トランジスタT32,T33,T34がオフ状態になり、トランジスタT35,T36がオン状態になる。そして、トランジスタT31のゲート端子に与えられるゲート制御ノードVgの電位に応じた電流がトランジスタT31を介して有機EL素子EL31に供給されることにより、発光動作が行われる。
 有機EL素子EL31を流れる電流は、トランジスタT31のソース-ゲート間の電圧と、当該トランジスタT31の閾値電圧Vthとによって決定される。トランジスタT31のソース-ゲート間の電圧は、データプログラム動作時のゲート制御ノードVgの電位(VDATAm-Vth)と電源電位VDDとによって決定される。ここで、有機EL素子EL31を流れる電流の決定する電圧に着目すると、トランジスタT31の閾値電圧Vthが相殺されるので、結果として閾値電圧Vthのばらつきが補償される。
 その他、本願発明に関連した画素回路が、特許文献2等に開示されている。
日本の特開2005-31630号公報 日本の特開2005-292436号公報
R.M.A. Dawson et al.,"Design of an Improved Pixel for a Polysilicon Active-Matrix Organic LED Display" Symposium Digest for 1998 Society for Information Display Symposium, p.11-14, 1998
 ところで、上記ゲート制御ノードVgとスキャンライン(上記スキャン信号を伝送するための配線をいう。)との間等に形成される寄生容量の影響により、スキャンラインの選択期間終了時にフィールドスルー電圧ΔVfが生じることが一般に知られている。また、スキャンラインはその配線抵抗および配線容量により信号伝搬遅延特性を持つので、スキャンラインの入力端側(ドライバが接続されている側)と出力端側(入力端側の逆側)とでスキャン信号の波形が異なることが一般に知られている。具体的には、入力端側のスキャン信号の波形よりも出力端側のスキャン信号の波形が鈍る。このため、スキャンラインの選択期間終了時におけるスキャンラインの電位変化が入力端側と出力端側とで異なることになる。その結果、上記フィールドスルー電圧ΔVfの大きさがスキャンラインの入力端側と出力端側とで異なることになるので、各画素回路でゲート制御ノードVgの電位が不均一になる。それ故に、各画素回路で駆動用トランジスタから有機EL素子に供給される電流が不均一になるので、輝度ムラが生じる。上記フィールドスルー電圧ΔVfおよび信号伝搬遅延特性は種々の有機ELディスプレイ等に共通に生じるものであるので、このような輝度ムラは、上記非特許文献1および特許文献1,2に係る画素回路のみならず、その他種々の画素回路においても生じ得る。
 そこで、本発明は、波形鈍りに起因する輝度ムラを解消した表示装置およびその駆動方法を提供することを目的とする。
 本発明の第1の局面は、アクティブマトリクス型の表示装置であって、
 行方向および列方向に配置された複数の画素回路を含む表示部と、
 前記複数の画素回路の列に対応して設けられた複数の映像信号線と、
 前記複数の画素回路の行に対応して設けられた複数の第1制御信号線および複数の第2制御信号線と、
 前記複数の画素回路に共通して電源電位を供給する第1電源線および第2電源線と、
 前記映像信号線を駆動する映像信号線駆動回路と、
 前期表示部の一端側に配置され、前記第1制御信号線を選択的に駆動する第1制御信号線駆動回路と、
 前記表示部の前記一端側に配置され、前記第2制御信号線を選択的に駆動する第2制御信号線駆動回路とを備え、
 前記画素回路は、
  前記第1電源線と前記第2電源線との間に設けられた電気光学素子と、
  前記第1電源線と前記第2電源線との間に前記電気光学素子と直列に設けられ、前記電気光学素子に流れる電流を制御する駆動用トランジスタと、
  前記第1制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御する制御用トランジスタと、
  前記第2制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御し、前記制御用トランジスタと導電型が異なる補償用トランジスタと、
  前記第1電源線と前記駆動用トランジスタの制御端子との間に設けられた第1コンデンサとを含み、
 前記第2制御信号線駆動回路は、前記制御用トランジスタを導通状態にする電位を前記第1制御信号線駆動回路が前記第1制御信号線に与える期間の終了時またはその後に、前記補償用トランジスタを遮断状態にする電位を前記第2制御信号線に与えることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記制御用トランジスタは、第1制御用トランジスタおよび第2制御用トランジスタを含み、
 前記第1制御用トランジスタおよび前記補償用トランジスタは、前記駆動用トランジスタの前記制御端子と当該駆動用トランジスタの第1導通端子との間に互いに並列に設けられ、
 前記第2制御用トランジスタは、前記映像信号線と前記駆動用トランジスタの第2導通端子との間に設けられることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記画素回路は、当該画素回路に対応する第1制御信号線の直前の第1制御信号線が制御端子に接続され、初期化用の電位を供給する初期化信号線と前記駆動用トランジスタの前記制御端子との間に設けられた初期化用トランジスタをさらに含むことを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記画素回路は、
  所定の制御信号線が制御端子に接続され、前記第1電源線と前記駆動用トランジスタの前記第2導通端子との間に設けられた電源供給用トランジスタと、
  前記所定の制御信号線が制御端子に接続され、前記駆動用トランジスタの前記第1導通端子と前記電気光学素子との間に設けられた発光制御用トランジスタとをさらに含み、
 前記所定の制御信号線には、前記電気光学素子を発光させるべき期間に前記電源供給用トランジスタおよび前記発光制御用トランジスタのそれぞれを導通状態にする電位が与えられることを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 同じ行に配置された画素回路に共通して接続される複数の第3制御信号線と、
 前記第3制御信号線を選択的に駆動する第3制御信号線駆動回路とをさらに備え、
 前記所定の制御信号線は前記第3制御信号線であることを特徴とする。
 本発明の第6の局面は、本発明の第4の局面において、
 前記所定の信号線は前記第2制御信号線であることを特徴とする。
 本発明の第7の局面は、本発明の第2の局面において、
 前記画素回路は、前記第1制御信号線と前記駆動用トランジスタの制御端子との間に設けられた第2コンデンサをさらに含むことを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記制御用トランジスタおよび前記補償用トランジスタは、前記映像信号線と前記駆動用トランジスタの前記制御端子との間に互いに並列に設けられていることを特徴とする。
 本発明の第9の局面は、行方向および列方向に配置された複数の画素回路を含む表示部と、前記複数の画素回路の列に対応して設けられた複数の映像信号線と、前記複数の画素回路の行に対応して設けられた複数の第1制御信号線および複数の第2制御信号線と、前記複数の画素回路に共通して電源電位を供給する第1電源線および第2電源線と、前記映像信号線を駆動する映像信号線駆動回路とを備えるアクティブマトリクス型の表示装置の駆動方法であって、
 前記表示部の一端側から、前記第1制御信号線および前記第2制御信号線のそれぞれを選択的に駆動する駆動ステップを備え、
 前記画素回路は、
  記第1電源線と前記第2電源線との間に設けられた電気光学素子と、
  前記第1電源線と前記第2電源線との間に前記電気光学素子と直列に設けられ、前記電気光学素子に流れる電流を制御する駆動用トランジスタと、
  前記第1制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御する制御用トランジスタと、
  前記第2制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御し、前記制御用トランジスタと導電型が異なる補償用トランジスタと、
  前記第1電源線と前記駆動用トランジスタの制御端子との間に設けられた第1コンデンサとを含み、
 前記駆動ステップでは、前記制御用トランジスタを導通状態にする電位が前記第1制御信号線に与えられる期間の終了時またはその後に、前記補償用トランジスタを遮断状態にする電位が前記第2制御信号線に与えられることを特徴とする。
 本発明の第1の局面または第9の局面によれば、画素回路に互いに導電型が異なる制御用トランジスタおよび補償用トランジスタが設けられる。また、第1および第2制御信号線には制御用トランジスタを導通状態にする期間の終了時またはその後に、第2制御信号線の電位が補償用トランジスタを遮断状態にする電位に変化する。第1および第2制御信号線には互いに同じ側から電位が与えられるので、表示部の一端側を基準とした第1および第2制御信号線における波形鈍りが互いに略等しくなる。このため、制御用トランジスタが導通状態になる期間の終了時に駆動用トランジスタの制御端子に生じる、第1制御信号線の電位変化に起因する電位変動分と第2制御信号線の電位変化に起因する電位変動分との和が、表示部の一端から他端にかけて均一化される。これにより、表示部の一端側を基準とした画素回路の位置に依存する、フィールドスルー電圧の不均一性が抑制される。したがって、駆動用トランジスタが電気光学素子に供給する駆動電流の不均一性が抑制されるので、輝度ムラを解消することができる。また、本実施形態によれば、制御用トランジスタのみならず補償用トランジスタによっても、駆動用トランジスタの制御端子に向けて電流を供給することができる。これにより、駆動用トランジスタの制御端子に電流を供給するための期間を従来よりも短くできる。または、駆動用トランジスタの制御端子に電流を供給するための期間の長さを従来と同様とする場合には、制御用トランジスタおよび補償用トランジスタを相対的に小さくすることができる。
 本発明の第2の局面によれば、第1制御用トランジスタおよび補償用トランジスタが導通状態であるときに駆動用トランジスタがダイオード接続になるので、駆動用トランジスタの閾値電圧のばらつきを補償することができる。このため、駆動用トランジスタが電気光学素子に供給する駆動電流のばらつきが抑制されるので、輝度ムラをさらに解消することができる。
 本発明の第3の局面によれば、初期化用トランジスタを用いて、駆動用トランジスタの制御端子の電位を初期化することができる。
 本発明の第4の局面によれば、電源供給用トランジスタおよび発光制御用トランジスタを用いて、電気光学素子の発行期間を制御することができる。
 本発明の第5の局面によれば、複数の第3制御信号線および第3制御信号線駆動回路を用いた構成において、本発明の第4の局面と同様の効果が得られる。
 本発明の第6の局面によれば、本発明の第5の局面よりも額縁面積を縮小しつつ、本発明の第4の局面と同様の効果が得られる。
 本発明の第7の局面によれば、第2コンデンサを用いて、駆動用トランジスタの制御端子の電位を十分に保持することができる。
 本発明の第8の局面によれば、簡易な構成の画素回路を備える表示装置において、本発明の第1の局面と同様の効果が得られる。
本発明の第1の実施形態に係る表示装置の全体構成を示すブロック図である。 上記第1の実施形態における画素回路の構成を示す回路図である。 上記第1の実施形態における画素回路の駆動方法を示すタイミングチャートである。 上記第1の実施形態におけるスキャン信号およびスキャン反転信号を模式的に示す図である。(A)は、スキャンラインGiの入力端側のスキャン信号を示す図である。(B)は、スキャンラインGiの出力端側のスキャン信号を示す図である。(C)は、スキャン反転ラインGIiの入力端側のスキャン反転信号を示す図である。(D)は、スキャン反転ラインGIiの出力端側のスキャン反転信号を示す図である。 図2に示す画素回路に寄生容量を加えた回路図である。 TFTのレイアウト面積を説明するための模式図である。(A)は、従来の表示装置におけるTFTを示す模式図である。(B)は、上記第1の実施形態において、従来の表示装置と同様のサイズで実現したTFTを示す模式図である。(C)は、上記第1の実施形態において、従来の表示装置よりも小さいサイズで実現したTFTを示す模式図である。 本発明の第2の実施形態に係る表示装置の全体構成を示すブロック図である。 上記第2の実施形態における画素回路の構成を示す回路図である。 上記第2の実施形態における画素回路の駆動方法を示すタイミングチャートである。 図8に示す画素回路に寄生容量を加えた回路図である。 本発明の第3の実施形態に係る表示装置の全体構成を示すブロック図である。 上記第3の実施形態における画素回路の構成を示す回路図である。 上記第3の実施形態における画素回路の駆動方法を示すタイミングチャートである 図12に示す画素回路に寄生容量を加えた回路図である。 第1の従来の画素回路の構成を示す回路図である。 第2の従来の画素回路の構成を示す回路図である。
 以下、添付図面を参照しながら、本発明の第1~第3の実施形態について説明する。
 <1.第1の実施形態>
 <1.1 全体構成>
 図1は、本発明の第1の実施形態に係る表示装置の全体構成を示すブロック図である。本実施形態に係る表示装置は、図1に示すように、表示部1、表示制御回路2、ソースドライバ3、スキャンドライバ4、スキャン反転ドライバ5、およびエミッションドライバ6を備えた有機ELディスプレイである。表示部1には、(m×n)個の画素回路10が含まれている。以下では、mおよびnは2以上の整数、iは1以上n以下の整数、jは1以上m以下の整数であるとする。本実施形態では、ソースドライバ3により映像信号線駆動回路が実現され、スキャンドライバ4により第1制御信号線駆動回路が実現され、スキャン反転ドライバ5により第2制御信号線駆動回路が実現され、エミッションドライバ6により第3制御信号線駆動回路が実現されている。スキャンドライバ4と、スキャン反転ドライバ5と、エミッションドライバ6とは、例えば表示部1と一体的に形成されているが、本発明はこれに限定されるものではない。
 表示部1には、互いに平行なn本のスキャンラインGiおよびこれに直交する互いに平行なm本のソースラインSjが設けられている。(m×n)個の画素回路10は、行方向および列方向に並べて配置されている。より詳細には、(m×n)個の画素回路10は、スキャンラインGiとソースラインSjとの交差点に対応してマトリクス状に配置されている。また、n本のスキャンラインGiと平行に、n本のスキャン反転ラインGIiおよびn本のエミッションラインEiが設けられている。本実施形態では、ソースラインSjにより映像信号線が実現され、スキャンラインGiにより第1制御信号線が実現され、スキャン反転ラインGIiにより第2制御信号線が実現され、エミッションラインEiにより第3制御信号線が実現されている。m本のソースラインSjはソースドライバ3に接続されている。n本のスキャンラインGiはスキャンドライバ4に接続されている。n本のスキャン反転ラインGIiはスキャン反転ドライバ5に接続されている。n本のエミッションラインEiはエミッションドライバ6に接続されている。なお、表示装置には、各画素回路10に共通の図示しない電源ライン設けられている。より詳細には、後述の有機EL素子を駆動するためのハイレベル電位ELVDDを供給する電源ライン(以下「ハイレベル電源ライン」といい、ハイレベル電位と同じく符号ELVDDで表す。)および有機EL素子を駆動するためのローレベル電位ELVSSを供給する電源ライン(以下「ローレベル電源ライン」といい、ローレベル電位と同じく符号ELVSSで表す。)が設けられている。さらに、後述の初期化動作のための初期化電位Viniを供給する初期化ライン(初期化電位と同じく符号Viniで表す。)が設けられている。これらの電位は、図示しない電源回路から供給される。本実施形態では、ハイレベル電源ラインELVDDにより第1電源線が実現され、ローレベル電源ラインELVSSにより第2電源線が実現され、初期化ラインViniにより初期化信号線が実現されている。
 表示制御回路2は、ソースドライバ3、スキャンドライバ4、スキャン反転ドライバ5、およびエミッションドライバ6に各種制御信号を出力する。より詳細には、表示制御回路2は、ソースドライバ3にスタートパルスSP、クロックCLK、表示データDA、およびラッチパルスLPを出力し、スキャンドライバ4にスタートパルスYI1およびクロックYCK1を出力し、スキャン反転ドライバ5にスタートパルスYI2およびクロックYCK2を出力し、エミッションドライバ6にスタートパルスYI3およびクロックYCK3を出力する。なお、クロックYCK1~YCK3は典型的には同じクロックである。また、スタートパルスY1およびY2は典型的には互いに電位が反転したものである。
 ソースドライバ3は、ソースラインS1~Smを駆動する。より詳細には、ソースドライバ3は、図示しないmビットのシフトレジスタ、サンプリング回路、ラッチ回路、およびm個のD/Aコンバータ等を含んでいる。シフトレジスタは、互いに縦続接続されたm個の双安定回路を有し、初段に供給されたスタートパルスSPをクロックCLKに同期して転送し、各段からサンプリングパルスを出力する。サンプリングパルスの出力タイミングに合わせて、サンプリング回路には表示データDAが供給される。サンプリング回路は、サンプリングパルスに従って表示データDAを記憶する。サンプリング回路に1行分の表示データDAが記憶されると、表示制御回路2はラッチ回路に対してラッチパルスLPを出力する。ラッチ回路は、ラッチパルスLPを受け取ると、サンプリング回路に記憶された表示データDAを保持する。D/Aコンバータは、ソースラインSjに対応して設けられており、ラッチ回路に保持された表示データDAをアナログ電圧に変換し、得られたアナログ電圧をソースラインSjに供給する。
 スキャンドライバ4は、スキャンラインG1~Gnを駆動する。より詳細には、スキャンドライバ4は、図示しないシフトレジスタおよびバッファ等を含んでいる。シフトレジスタは、クロックYCK1に同期してスタートパルスYI1を順次転送する。シフトレジスタの各段からの出力であるスキャン信号は、バッファを経由して対応するスキャンラインGiに供給される。アクティブな(本実施形態ではローレベルの)スキャン信号により、スキャンラインGiに接続されたm個の画素回路10が一括して選択される。以下では、表示部1に対してスキャンドライバ4が配置されている側(表示部1の一端側)のことを「スキャンラインGiの入力端側」といい、その反対側のことを「スキャンラインGiの出力端側」という。また、スキャンラインGiの入力端側およびスキャンラインGiの出力端側のことをそれぞれ「スキャン反転ラインGIiの入力端側」および「スキャン反転ラインGIiの出力端側」ということがある。
 スキャン反転ドライバ5は、スキャン反転ラインGI1~GInを駆動する。スキャン反転ドライバ5の構成および動作はスキャンドライバ4と基本的に同様である。ただし、スキャン反転ドライバ5から出力される各スキャン反転信号は、各スキャン信号の電位を反転させたものである。図1に示すように、スキャン反転ドライバ5は、スキャンラインGiの入力端側に設けられている。なお、スキャン反転ドライバ5およびスキャンドライバ4は1つの駆動回路として実現されていても良い。
 エミッションドライバ6は、エミッションラインE1~Enを駆動する。より詳細には、エミッションドライバ6は、図示しないシフトレジスタおよびバッファ等を含んでいる。シフトレジスタは、クロックYCK3に同期してスタートパルスYI3を順次転送する。シフトレジスタの各段からの出力であるエミッション信号は、バッファを経由して対応するエミッションラインEiに供給される。図1に示すように、エミッションドライバ6は、スキャンラインGiの出力端側に設けられているが、本実施形態はこれに限定されるものではなく、スキャンラインGiの入力端側に設けられていても良い。エミッションドライバ6がスキャンラインGiの入力端側に設けられている場合、エミッションドライバ6と、スキャンドライバ4と、スキャン反転ドライバ5とのいずれか2つまたは全部が1つの駆動回路として実現されていても良い。
 <1.2 画素回路の構成>
 図2は、本実施形態における画素回路10の構成を示す回路図である。図2に示すように、画素回路10は、TFT11~17、コンデンサ21,22、および有機EL素子23を含んでいる。TFT11~16はPチャネル型であり、TFT17はNチャネル型である。本実施形態では、TFT11は初期化用トランジスタとして機能する。TFT12は第1制御用トランジスタとして機能する。TFT13は第2制御用トランジスタとして機能する。TFT14は駆動用トランジスタとして機能する。TFT15は電源供給用トランジスタとして機能する。TFT16は発光制御用トランジスタとして機能する。TFT17は補償用トランジスタとして機能する。コンデンサ21は第1コンデンサとして機能する。コンデンサ22は第2コンデンサとして機能する。有機EL素子23は電気光学素子として機能する。また、本実施形態および後述の第2,第3の実施形態では、制御端子はゲート端子に対応している。
 図2に示すように、画素回路10は、スキャンラインGi(本実施形態での画素回路10に注目した説明において便宜上「現スキャンライン」という。)、当該スキャンラインGiの直前のスキャンラインGi-1(画素回路10に注目した説明において便宜上「前スキャンライン」という。)、スキャン反転ラインGIi、エミッションラインEi、ソースラインSj、ハイレベル電源ラインELVDD、ローレベル電源ラインELVSS、およびViniラインに接続されている。本実施形態および後述の第2の実施形態では、TFT11の一方の導通端子と、TFT14のゲート端子と、TFT12の一方の導通端子と、TFT17の一方の導通端子と、コンデンサ21の一端と、コンデンサ22の一端との接続点が、上述の「ゲート制御ノードVg」に相当する。なお、符号Vgにより、ゲート制御ノードVgの電位のことをも表すことがある。さらに、TFT13の一方の導通端子とTFT15の一方の導通端子とTFT14の第2導通端子としてのソース端子との接続点のことを便宜上「データ・電源供給ノード」といい、符号Vaで表す。また、符号Vaにより、データ・電源供給ノードVaの電位のことをも表すことがある。
 TFT11は、そのゲート端子に前スキャンラインGi-1が接続され、初期化ラインViniとゲート制御ノードVgとの間に設けられている。TFT12は、そのゲート端子に現スキャンラインGiが接続され、TFT14の第1導通端子としてのドレイン端子とゲート制御ノードVgとの間に設けられている。TFT13は、そのゲート端子に現スキャンラインGiが接続され、ソースラインSiとデータ・電源供給ノードVaとの間に設けられている。TFT14については、ゲート制御ノードVgがゲート端子に接続され、データ・電源供給ノードVaがソース端子に接続され、TFT16を介して有機EL素子23のアノードがドレイン端子に接続されている。TFT15は、そのゲート端子にエミッションラインEiが接続され、ハイレベル電源ラインELVDDとデータ・電源供給ノードVaとの間に設けられている。TFT16は、そのゲート端子にエミッションラインEiが接続され、TFT14のドレイン端子と有機EL素子23のアノードとの間に設けられている。TFT17は、そのゲート端子にスキャン反転ラインGIiが接続され、TFT12と並列に、TFT14のドレイン端子とゲート制御ノードVgとの間に設けられている。コンデンサ21は、ハイレベル電源ラインELVDDとゲート制御ノードVgとの間に設けられている。コンデンサ22は、現スキャンラインGiとゲート制御ノードVgとの間に設けられている。有機EL素子23については、TFT15、TFT14、およびTFT16を介してハイレベル電源ラインELVDDがアノードに接続され、ローレベル電源ラインELVSSがカソードに接続されている。
 <1.3 駆動方法>
 図3は、本実施形態における画素回路10の駆動方法を示すタイミングチャートである。以下では、任意のスキャンラインの電位がハイレベルからローレベルに変化する時点から、当該スキャンラインの直後のスキャンラインの電位がハイレベルからローレベルに変化する時点までの期間のことを1水平走査期間という。図3に示すように、スキャンラインの電位は1水平走査期間毎に順次にローレベルに変化し、スキャン反転ラインの電位は1水平走査期間毎に順次にハイレベルに変化する。エミッションラインの電位は、1水平走査期間毎に順次にハイレベルに変化すると共に、ハイレベルとなっている期間が1水平走査期間よりも長い期間(本実施形態では2水平走査期間)続く。また、連続するエミッションライン間で、ハイレベルとなっている期間が1水平走査期間重複している(例えば図3中の時刻t1~t3)。
 時刻t1の直前では、前スキャンラインGi-1および現スキャンラインGiの電位はハイレベルであり、スキャン反転ラインGIiの電位はローレベルであり、エミッションラインEiの電位はローレベルであり、ゲート制御ノードVgの電位は前フレームでの発光状態に対応した電位になっている。このとき、TFT11~13,17はオフ状態になり、TFT14はゲート制御ノードVgの電位に応じてオン状態になり、TFT15,16はオン状態になっている。有機EL素子23は、TFT16がオン状態になっているので、TFT14を介して供給される駆動電流に応じて発光状態になっている。
 時刻t1において、前スキャンラインGi-1の電位はローレベルに変化し、エミッションラインEiの電位はハイレベルに変化する。このため、TFT11はオン状態に変化し、TFT15,16はオフ状態に変化する。これにより、有機EL素子23が非発光状態になり、また、ゲート制御ノードVgの電位が初期化電位Viniに初期化される。初期化電位Viniは、例えばTFT14が十分にオン状態を維持できる程度の電位である。
 時刻t2において、前スキャンラインGi-1の電位がハイレベルに変化することにより、TFT11がオフ状態に変化する。ゲート制御ノードVgの電位は、コンデンサ21,22により保持される。なお、時刻t2と後述の時刻t3とを互いに同じタイミングとしても良い。
 時刻t3において、現スキャンラインGiの電位はローレベルに変化し、スキャン反転ラインGIiの電位はハイレベルに変化する。このため、TFT12,13,17はオン状態に変化する。これにより、ソースラインSjの電位Vdataは、TFT13,14,12を介してゲート制御ノードVgに供給されると共に、TFT13,14,17を介してゲート制御ノードVgに供給される。このとき、TFT14がダイオード接続になるので、ゲート制御ノードVgの電位は次式(1)で与えられる。
 Vg=Vdata-Vth …(1)
 ここで、VthはTFT14の閾値電圧である。
 時刻t4において、現スキャンラインGiの電位がハイレベルに変化し、スキャン反転ラインGIiの電位がローレベルに変化することにより、TFT12,13,17がオフ状態に変化する。このとき、図3に示すように、ゲート制御ノードVgに接続された寄生容量の影響により、ゲート制御ノードVgにフィールドスルー電圧ΔVfが生じる(本実施形態では正方向)。したがって、ゲート制御ノードVgの電位は次式(2)のように変化する。
 Vg=Vdata-Vth+ΔVf …(2)
 なお、フィールドスルー電圧ΔVfについての詳しい説明は後述する。また、図3および後述の各タイミングチャートでは、フィールドスルー電圧ΔVfを説明の便宜上ΔVf>0として図示している。ただし、本実施形態および後述の各実施形態では、寄生容量の容量値等によってはΔVf=0またはΔVf<0となる場合もあることに留意されたい。時刻t3~t4は、閾値電圧Vthのばらつきを補償するための閾値補償期間である。
 時刻t5において、エミッションラインEiの電位はローレベルに変化する。このため、TFT15,16はオン状態に変化する。これにより、ゲート制御ノードVgの電位とハイレベル電源電位ELVDDに応じた駆動電流IがTFT14,16を介して有機EL素子23に供給され、駆動電流Iの電流量に応じて有機EL素子23が発光する。この発光は、次フレームの時刻t1まで継続される。駆動電流Iは、具体的には次式(3)で与えられる。
 I=(β/2)/(Vgs-Vth)2 …(3)
 ここで、βは定数、VgsはTFT14のソース-ゲート間電圧を示す。
 TFT14のソース-ゲート間電圧Vgsは、次式(4)で与えられる。
 Vgs=ELVDD-Vg
   =ELVDD-Vdata+Vth-ΔVf …(4)
 式(3)および式(4)から、次式(5)が導かれる。
 I=β/2/(ELVDD-Vdata-ΔVf)2 …(5)
 式(5)では、閾値電圧Vthの項がなくなっている。このため、本実施形態における画素回路10では、閾値電圧Vthのばらつきが補償される。このように、駆動電流Iは、ハイレベル電源電位ELVDD、ソースラインSjの電位Vdata、およびフィールドスルー電圧ΔVfによって決定される。
 <1.4 考察>
 本実施形態では、従来の表示装置において生じていたフィールドスルー電圧ΔVfの不均一性が抑制される。ここでは、まず、信号の波形鈍りについて説明した後、フィールドスルー電圧ΔVfの不均一性が抑制される理由を説明する。
 <1.4.1 波形鈍り>
 図4は、本実施形態におけるスキャン信号およびスキャン反転信号を模式的に示す図である。より詳細には、図4(A)は、スキャンラインGiの入力端側のスキャン信号を示す図であり、図4(B)は、スキャンラインGiの出力端側のスキャン信号を示す図であり、図4(C)は、スキャン反転ラインGIiの入力端側のスキャン反転信号を示す図であり、図4(D)は、スキャン反転ラインGIiの出力端側のスキャン反転信号を示す図である。図4(A)~図4(D)において、Vshは各信号のハイレベルを示し、Vslは各信号のローレベルを示す。図4(B)において、Vslaは波形が鈍ったときのスキャン信号のローレベルを示す。図4(B)における太い破線は、図4(A)に示すスキャンラインGiの入力端側のスキャン信号を比較のために示したものである。図4(D)において、Vshaは波形が鈍ったときのスキャン信号のハイレベルを示す。図4(D)における太い破線は、図4(C)に示すスキャン反転ラインGLiの入力端側のスキャン反転信号を比較のために示したものである。
 スキャンラインGiおよびスキャン反転ラインGIiのそれぞれは、その配線抵抗および配線容量により信号伝搬遅延特性を持つ。このため、スキャンラインGiの入力端側で矩形波になっているスキャン信号(図4(A)を参照)は、その出力端側に向かうにつれて波形が鈍る(図4(B)を参照)。このため、例えば各スキャンラインGiの選択期間が比較的短い場合には、出力端側のスキャン信号のローレベルは、入力端側のスキャン信号のローレベルVslよりも高いVslaになる。すなわち、スキャンラインGiの入力端側のスキャン信号の振幅よりも出力端側のスキャン信号の振幅が小さくなる。したがって、選択期間終了時のスキャンラインGiの電位変化はスキャンラインGiの出力端側に近いほど小さくなる。同様に、スキャン反転ラインGIiの入力端側で矩形波になっているスキャン反転信号(図4(C)を参照)は、その出力端側に向かうにつれて波形が鈍る(図4(D)を参照)。各スキャン反転ラインGIiの選択期間の長さは、各スキャンラインGiの選択期間の長さと同様であるので、出力端側のスキャン反転信号のハイレベルは、入力端側のスキャン反転信号のハイレベルVshよりも高いVshaになる。すなわち、スキャン反転ラインGIiの入力端側のスキャン反転信号よりも出力端側のスキャン反転信号の振幅が小さくなる。したがって、選択期間終了時のスキャン反転ラインGIiの電位変化はスキャン反転ラインGIiの出力端側に近いほど小さくなる。ここで、スキャンラインGiに着目すると、選択期間終了時のスキャンラインGiおよびスキャン反転ラインGIiの双方の電位変化は、その入力端側に近いほど大きくなり、その出力端側に近いほど小さくなる。
 <1.4.2 フィールドスルー電圧>
 図5は、図2に示す画素回路10に寄生容量を加えた回路図である。図5に示すように、画素回路10において、寄生容量Cgd11,Cgd12,Cgd13,Cgd14,Cgs14,Cgd15,Cgs17が形成されているものとする。以下では、寄生容量Cgd11,Cgd12,Cgd13,Cgd14,Cgs14,Cgd15,Cgs17の容量値のことをもそれぞれ符号Cgd11,Cgd12,Cgd13,Cgd14,Cgs14,Cgd15,Cgs17で表すことがある。また、コンデンサ21,22の容量値をそれぞれでC21,C22表す。寄生容量Cgd11は、前スキャンラインGi-1とゲート制御ノードVgとの間に形成されている。寄生容量Cgd12は、現スキャンラインGiとゲート制御ノードVgとの間に形成されている。寄生容量Cgd13は、現スキャンラインGiとデータ・電源供給ノードVaとの間に形成されている。寄生容量Cgd14は、ゲート制御ノードVgとTFT14のドレイン端子との間に形成されている。寄生容量Cgs14は、ゲート制御ノードVgとデータ・電源供給ノードVaとの間に形成されている。寄生容量Cgd15は、エミッションラインEiとデータ・電源供給ノードVaとの間に形成されている。寄生容量Cgs17は、スキャン反転ラインGIiとゲート制御ノードVgとの間に形成されている。なお、これら以外にも寄生容量が形成され得るが、ここではその説明を省略する。
 まず、初期化動作終了時(図3における時刻t2)のゲート制御ノードVgの電位(符号Vginiで表す)は次式(6)で与えられる。
 Vgini=Vini+(Vsh-Vsl)・Cgd11/Ctot1 …(6)
 ここで、Ctot1はゲート制御ノードVgに結合しているコンデンサおよび寄生容量の合計容量値であり、次式(7)で与えられる。
 Ctot1=C21+C22+Cgd11+Cgd12+Cgd14+Cgs14+Cgs17 …(7)
 次に、データ書き込み終了直前(図3における時刻t4の直前)のゲート制御ノードVgの電位(符号Vgsetで表す)は次式(8)で与えられる。
 Vgset=Vdata-Vth  …(8)
 次に、データ書き込み動作終了直後(図3における時刻t4の直後)のゲート制御ノードVgの電位(符号Vgendで表す)は次式(9)で与えられる。
 Vgend=Vgset+(Vsh-Vsl)・(C22+Cgd12)/Ctot1-(Vsh-Vsl)・Cgs17/Ctot1 …(9)
 なお、式(9)に示すVgendは、実際には、次式(10)で与えられるデータ書き込み動作終了時データ・電源供給ノードVaの電位変動(符号ΔVaで表す)等の影響を受けることになるが、ここでは便宜上その影響を省略して説明する。
 ΔVa=(Vsh-Vl)・Cgd13/Ctot2 …(10)
 式(10)におけるCtot2はデータ・電源供給ノードVaに結合している寄生容量の合計容量値であり、次式(11)で与えられる。
 Ctot2=Cgd13+Cgs14+Cgd15 …(11)
 式(9)における「((Vsh-Vsl)・(C22+Cgd12)/Ctot1-(Vsh-Vsl)・Cgs17/Ctot1」が本実施形態におけるフィールドスルー電圧ΔVfである。ここで、「(Vsh-Vsl)・(C22+Cgd12)/Ctot1」項はスキャンラインGiの電位変化に起因する電位変動分であり、「-(Vsh-Vsl)・Cgs17/Ctot1」項はスキャン反転ラインGIiの電位変化に起因する電位変動分である。このように、本実施形態では、スキャンラインGiの電位変化に起因する電位変動分がスキャン反転ラインGIiの電位変化に起因する電位変動分により低減される。
 次に、式(9)におけるスキャン信号およびスキャン反転信号の波形鈍りの影響について考える。上述のように、スキャンラインGiに着目すると、選択期間終了時のスキャンラインGiおよびスキャン反転ラインGIiの双方の電位変化は、その入力端側に近いほど大きくなり、その出力端側に近いほど小さくなる。ここで、式(9)で示されるVgendがスキャンラインGiの入力端側におけるものであるとすると、出力端側におけるVgendは次式(12)で示される。
 Vgend=Vgset+(Vsh-Vsla)・(C22+Cgd12)/Ctot1-(Vsha-Vsl)・Cgs17/Ctot1 …(12)
 Vsh-Vsla>Vsh-Vslであり、かつ、Vsha-Vsl>Vsh-Vslであるので、スキャンラインGiの出力端側に近づくほど、スキャンラインGiの電位変化に起因する電位変動分およびスキャン反転ラインGIiの電位変化に起因する電位変動分が共に小さくなることがわかる。すなわち、スキャンラインGiの電位変化に起因する電位変動分とスキャン反転ラインGIiの電位変化に起因する電位変動分との和が、スキャンラインGiの入力端側から出力端側にかけて均一化される。その結果、スキャンラインGiの入力端側と出力端側とでフィールドスルー電圧ΔVfの不均一性が抑制される。
 <1.6 効果>
 本実施形態によれば、画素回路10には、スキャンラインGiによって制御されるTFT12(Pチャネル型)と並列に、当該TFT12と導電型が異なる、スキャン反転ラインGIiによって制御されるTFT17(Nチャネル型)が設けられている。スキャン反転ラインGIiの電位はスキャンラインGiの電位を反転させたものである。表示部1に対してスキャンドライバ4が配置されている側にスキャン反転ドライバ5が設けられ、当該スキャン反転ドライバ5によりスキャン反転ラインGIiが駆動される。このため、スキャンラインGiの入力端側を基準とした各位置における、スキャン信号およびスキャン反転信号の波形鈍りが略等しくなる。このため、TFT12およびTFT17がオフ状態に変化するときに生じるスキャンラインGiの電位変化に起因する電位変動分とスキャン反転ラインGIiの電位変化に起因する電位変動分との和が、スキャンラインGiの入力端側から出力端側にかけて均一化される。これにより、スキャンラインGiの入力端側を基準とした画素回路の位置に依存する、フィールドスルー電圧ΔVfの不均一性が抑制される。したがって、TFT14が有機EL素子23に供給する駆動電流Iの不均一性が抑制されるので、輝度ムラを解消することができる。
 また、本実施形態によれば、エミッションドライバ6により駆動されるエミッションラインEiにゲート端子が接続されたTFT15およびTFT16により有機EL素子23の発光期間が制御される。このため、ゲート制御ノードVgの電位が変化する初期化動作開始時からデータ書き込み動作終了時までの間(時刻t1~t4)、有機EL素子23が非発光状態となる。これにより、初期化動作およびデータ書き込み動作での輝度変化が視認されることを防ぐことができる。したがって、表示品位を高めることができる。
 また、本実施形態では、閾値補償期間(図3の時刻t3~t4)において、TFT12のみならず、TFT17も閾値補償動作に寄与する。すなわち、TFT12およびTFT17の双方でゲート制御ノードVgに向けて電流を供給できる。このため、閾値補償期間を従来よりも短くできる。ただし、TFT17の追加分のレイアウト面積が増える。図6は、TFTのレイアウト面積を説明するための模式図である。より詳細には、図6(A)は、従来の表示装置におけるTFTを示す模式図である。図6(B)は、本実施形態において、従来の表示装置と同様のサイズで実現したTFTを示す模式図である。図6(C)は、本実施形態において、従来の表示装置よりも小さいサイズで実現したTFTを示す模式図である。図6(B)に示すようにTFT12およびTFT17を、図6(A)に示す従来の表示装置のTFT(TFT12に相当する)と同様のサイズで実現した場合、TFT17の追加分のレイアウト面積が増える。しかし、図6(C)に示すように、TFT12およびTFT17の双方のチャネルサイズを小さくする(例えばチャネル長Lは従来どおりとし、チャネル幅Wを従来よりも小さくする)ことにより、TFT17の追加分のレイアウト面積を削減できる。なお、本実施形態では上述のように閾値補償期間において、TFT12およびTFT17の双方でゲート制御ノードVgに向けて電流を供給できるので、TFT12およびTFT17の双方のチャネルサイズを小さくした場合でも閾値補償動作を十分に行うことができる。なお、このような議論は後述の第2,第3の実施形態でも成り立つ。
 <2.第2の実施形態>
 <2.1 全体構成>
 図7は、本発明の第2の実施形態に係る表示装置(有機ELディスプレイ)の全体構成を示すブロック図である。本実施形態の構成要素のうち上記第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。図7に示すように、本実施形態に係る表示装置は、上記第1の実施形態に係る表示装置において、スキャン反転ドライバ5およびスキャン反転ラインGIiを省き、エミッションドライバ6をスキャンラインGiの入力端側に配置したものである。本実施形態では、スキャンドライバ4により第1制御信号線駆動回路が実現され、エミッションドライバ6により第2制御信号線駆動回路が実現され、スキャンラインGiにより第1制御信号線が実現され、エミッションラインEiにより第2制御信号線が実現されている。また、本実施形態では、スキャンラインGiの入力端側およびスキャンラインGiの出力端側のことをそれぞれ「エミッションラインEiの入力端側」および「エミッションラインEiの出力端側」ということがある。
 <2.2 画素回路の構成>
 図8は、本実施形態における画素回路10の構成を示す回路図である。上記第1の実施形態と異なり、本実施形態における画素回路10では、TFT17のゲート端子がエミッションラインEiに接続されている。その他の接続関係については、上記第1の実施形態と同様である。
 <2.3 駆動方法>
 図9は、本実施形態における画素回路10の駆動方法を示すタイミングチャートである。上記第1の実施形態と異なり、本実施形態では、エミッションラインEiの電位がハイレベルからローレベルに変化する時点が、スキャンラインGiの電位がハイレベルからローレベルに変化する時点(時刻t4)と同じになっている。ただし、本発明はこれに限定されるものではなく、エミッションラインEiの電位がハイレベルからローレベルに変化する時点が上記第1の実施形態と同様に時刻t5であっても良い。本実施形態における時刻t4以外の動作は、上記第1の実施形態と基本的に同様であるので省略する。
 時刻t4において、現スキャンラインGiの電位がハイレベルに変化し、エミッションラインEiの電位がローレベルに変化することにより、TFT12,13,17がオフ状態に変化する。このとき、図9に示すように、ゲート制御ノードVgに接続された寄生容量の影響により、フィールドスルー電圧ΔVfが生じる。ゲート制御ノードVgの電位は上記式(2)で与えられる。またこのとき、TFT15,16はオン状態に変化するので、ゲート制御ノードVgの電位とハイレベル電源電位ELVDDに応じた駆動電流IがTFT14,16を介して有機EL素子23に供給され、駆動電流Iの電流量に応じて有機EL素子23が発光する。駆動電流Iは上記式(5)で与えられる。
 <2.4 考察>
 <2.4.1 波形鈍り>
 本実施形態におけるエミッション信号は、スキャンラインGiの入力端側に設けられたエミッションドライバ6から供給されるので、上記第1の実施形態におけるスキャン反転信号と同様の波形鈍りが生じる。すなわち、エミッションラインEiの入力端側のエミッション信号は、図4(C)に示すスキャン反転ラインGLiの入力端側のスキャン反転信号と同様の波形となり(ただし、選択期間の長さは異なる。)、エミッションラインEiの出力端側のエミッション信号は、図4(D)に示すスキャン反転ラインGLiの出力端側のスキャン反転信号と同様の波形となり(ただし、選択期間の長さは異なる。)。なお、エミッションラインEiの選択期間は上記第1の実施形態におけるスキャン反転ラインGIiの選択期間よりも長いものの、ここではエミッション信号についても入力端側から出力端側にかけて振幅が小さくなることとする(例えばエミッションラインEiの配線抵抗および配線容量が、上記第1の実施形態におけるスキャン反転ラインGIiのものよりも大きいとする。)。
 <2.4.2 フィールドスルー電圧>
 図10は、図8に示す画素回路10に寄生容量を加えた回路図である。本実施形態において形成される画素回路10に寄生容量は上記第1の実施形態と同様である。本実施形態では、データ書き込み動作終了時(図9における時刻t4)に、エミッションラインEiの電位変化によりデータ・電源供給ノードVaの電位も変化するので、データ書き込み動作終了直後のゲート制御ノードVgの電位Vgendは厳密には上記式(14)で与えられるものと異なる。ただし、このデータ・電源供給ノードVaの電位は本発明の本質に影響を与えるものではないので、ここではその説明を省略する。
 <2.5 効果>
 本実施形態によれば、スキャン反転ドライバ5を省くと共に、エミッションドライバ6を設ける位置を、表示部1に対してスキャンドライバ4が配置されている側に変更することにより、上記第1の実施形態と同様の効果を奏することができる。また、スキャン反転ドライバ5を設ける必要がないので、額縁面積を縮小することができる。
 <3.第3の実施形態>
 <3.1 全体構成>
 図11は、本発明の第3の実施形態に係る表示装置(有機ELディスプレイ)の全体構成を示すブロック図である。本実施形態の構成要素のうち上記第1の実施形態と同一の要素については、同一の参照符号を付して適宜説明を省略する。図11に示すように、本実施形態に係る表示装置は、上記第1の実施形態に係る表示装置において、エミッションドライバ6およびエミッションラインEiを省いたものである。本実施形態では、スキャンドライバ4により第1制御信号線駆動回路が実現され、スキャン反転ドライバ5により第2制御信号線駆動回路が実現され、スキャンラインGiにより第1制御信号線が実現され、スキャン反転ラインGIiにより第2制御信号線が実現されている。
 <3.2 画素回路の構成>
 図12は、本実施形態における画素回路10の構成を示す回路図である。図12に示すように、本実施形態における画素回路10は、TFT31~T33、コンデンサ41、有機EL素子42を含んでいる。TFT31はPチャネル型であり、TFT32はNチャネル型である。この画素回路10は、非特許文献1に開示された画素回路にTFT32およびコンデンサ41を加えた構成となっている。本実施形態では、TFT31は制御用トランジスタとして機能する。TFT32は補償用トランジスタとして機能する。TFT33は駆動用トランジスタとして機能する。コンデンサ41は第1コンデンサとして機能する。有機EL素子42は電気光学素子として機能する。
 本実施形態では、TFT33のゲート端子と、TFT31の一方の導通端子と、TFT32の一方の導通端子と、コンデンサ41の一端との接続点が、上述の「ゲート制御ノードVg」に相当する。TFT31は、そのゲート端子にスキャンラインGiが接続され、ソースラインSjとゲート制御ノードVgと間に設けられている。TFT32は、そのゲート端子にスキャン反転ラインGIiが接続され、TFT31と並列に、ソースラインSjとゲート制御ノードVgと間に設けられている。TFT33については、ゲート制御ノードVgがゲート端子に接続され、ハイレベル電源ラインELVDDがソース端子に接続され、有機EL素子23のアノードがドレイン端子に接続されている。コンデンサ41は、ゲート制御ノードVgとハイレベル電源ラインELVDDとの間に設けられている。有機EL素子42のカソードはローレベル電源ラインELVSSに接続されている。
 <3.3 駆動方法>
 図13は、本実施形態における画素回路10の駆動方法を示すタイミングチャートである。時刻t1の直前では、スキャンラインGiの電位はハイレベルであり、スキャン反転ラインGIiの電位はローレベルであり、ゲート制御ノードVgの電位は前フレームでの発光に対応した電位になっている。このとき、TFT31,32はオフ状態になり、TFT33はゲート制御ノードVgの電位に応じてオン状態になっている。有機EL素子23は、TFT33を介して供給される駆動電流Iに応じて発光状態になっている。
 時刻t1において、スキャンラインGiの電位はローレベルに変化し、スキャン反転ラインGIiの電位はハイレベルに変化する。このため、TFT31,32はオン状態に変化する。これにより、ソースラインSjの電位Vdataは、TFT31,32を介してゲート制御ノードVgに供給される。このとき、上記第1および第2の実施形態と異なり、ゲート制御ノードVgの電位は次式(13)で与えられる。
 Vg=Vdata …(13)
 また、このときの駆動電流Iは、上記式(3)、式(4)、および式(13)から、次式(14)で与えられる。
 I=(β/2)/(ELVDD-Vdata-Vth) …(14)
 なお、時刻t1ではフィールドスルー電圧ΔVfが生じていないので、式(14)ではΔVfの項が含まれていない。また、本実施形態では閾値補償動作が行われないので、上記式(5)と異なり、式(14)の右辺に閾値電圧Vthの項が含まれている。なお、本実施形態における閾値電圧Vthは、TFT33の閾値電圧のことをいう。
 時刻t2において、現スキャンラインGiの電位がハイレベルに変化し、スキャン反転ラインGIiの電位がローレベルに変化する。このため、TFT31,32はオフ状態に変化する。このとき、図13に示すように、ゲート制御ノードVgに接続された寄生容量の影響により、フィールドスルー電圧ΔVfが生じる。したがって、ゲート制御ノードVgの電位は次式(15)のように変化する。
 Vg=Vdata+ΔVf …(15)
 このゲート制御ノードVgの電位は、次フレームの時刻t1まで維持される。また、このとき、駆動電流Iは次式(16)のように変化する。
 I=β/2/(ELVDD-Vdata-Vth-ΔVf) …(16)
 このように、本実施形態では、駆動電流Iは、ハイレベル電源電位ELVDD、ソースラインSjの電位Vdata、TFT33の閾値電圧Vth、およびフィールドスルー電圧ΔVfによって決定される。
 <3.4 考察>
 スキャン信号およびスキャン反転信号の波形鈍りは上記第1の実施形態と同様であるので、ここではフィールドスルー電圧ΔVfのばらつきが低減される理由についてのみ説明する。図14は、図10に示す回路に寄生容量を加えた回路図である。図14に示すように、画素回路10において、寄生容量Cgd31,Cgs32が形成されているものとする。以下では、寄生容量Cgd31,Cgs32の容量値のことをもそれぞれ符号Cgd31,Cgs32で表すことがある。また、コンデンサ41の容量値をC41で表す。寄生容量Cgd31は、スキャンラインGiとゲート制御ノードVgとの間に形成されている。寄生容量Cgs32は、スキャン反転ラインGIiとゲート制御ノードVgとの間に形成されている。なお、これら以外にも寄生容量が形成され得るが、ここではその説明を省略する。
 データ書き込み動作開始時(図13における時刻t1)のゲート制御ノードVgの電位は上記式(15)で与えられるので、データ書き込み動作終了直後(図13における時刻t2の直後)のゲート制御ノードVgの電位(符号Vgendで表す)は次式(17)で与えられる。ただし、式(17)では、上述のスキャン信号およびスキャン反転信号の波形鈍りの影響は考慮していない。
 Vgend=Vdata+(Vsh-Vsl)・Cgd31/Ctot3-(Vsh-Vsl)・Cgs32/Ctot3 …(17)
 ここで、Ctot3はゲート制御ノードVgに結合しているコンデンサおよび寄生容量の合計容量値であり、次式(18)で与えられる。
 Ctot3=Cgd31+Cgs32+C41 …(18)
 式(17)における「(Vsh-Vsl)・Cgd31/Ctot3-(Vsh-Vsl)・Cgs32/Ctot3 」が本実施形態におけるフィールドスルー電圧ΔVfである。ここで、「(Vsh-Vsl)・Cgd31/Ctot3」項はスキャンラインGiの電位変化に起因する電位変動分であり、「-(Vsh-Vsl)・Cgs32/Ctot3」項はスキャン反転ラインGIiの電位変化に起因する電位変動分である。このように、本実施形態では、上記第1の実施形態と同様に、スキャンラインGiの電位変化に起因する電位変動分がスキャン反転ラインGIiの電位変化に起因する電位変動分により低減される。
 次に、スキャン信号の波形鈍りおよびスキャン反転信号の波形鈍りの影響について考える。ここで、式(17)で示されるVgendがスキャンラインGiの入力端側におけるものであるとすると、出力端側におけるVgendは次式(18)で示される。
 Vgend=Vdata+(Vsh-Vsla)・Cgd31/Ctot3-(Vsha-Vsl)・Cgs32/Ctot3 …(17)
 Vsh-Vsla>Vsh-Vslであり、かつ、Vsha-Vsl>Vsh-Vslであるので、スキャンラインGiの出力端側に近づくほど、スキャンラインGiの電位変化に起因する電位変動分およびスキャン反転ラインGIiの電位変化に起因する電位変動分が共に小さくなることがわかる。したがって、上記第1の実施形態と同様にスキャンラインGiの入力端側と出力端側とでフィールドスルー電圧ΔVfの不均一性が抑制される。
 <3.5 効果>
 本実施形態によれば、上記第1および第2の実施形態よりも簡易な構成の画素回路を備える表示装置において、上記第1の実施形態と同様の効果を奏することができる。なお、上述のように、上記第1の実施形態におけるTFT12,17のチャネルサイズの議論は、本実施形態におけるTFT31,32のチャネルサイズについても成り立つ。ただし、当該議論は、上記第1の実施形態では閾値補償期間に関するものであったが、本実施形態ではソースラインSjの電位Vdataがゲート制御ノードVgに書き込まれる期間(図13における時刻t1~t2)に関するものである。
 <4.その他>
 上記各実施形態では、スキャン信号のハイレベルおよびローレベルとスキャン反転信号のハイレベルとローレベルがそれぞれ同一であるとして説明したが、本発明はこれに限定されるものではない。また、上記各実施形態では、電気光学素子として有機EL素子を例示したが、有機EL素子に限らず、電流量に応じて発光量が制御される発光素子であれば同様の説明が可能である。その他、本発明の趣旨を逸脱しない範囲で上記各実施形態を種々変形して実施することができる。
 以上により、本発明によれば、波形鈍りに起因する輝度ムラを解消した表示装置およびその駆動方法を提供することができる。
 本発明は、有機ELディスプレイ等の電流で駆動される電気光学素子を備えた表示装置およびその駆動方法に適用することができる。
1…表示部
2…表示制御回路
3…ソースドライバ(映像信号線駆動回路)
4…スキャンドライバ(第1制御信号線駆動回路)
5…スキャン反転ドライバ(第2制御信号線駆動回路)
6…エミッションドライバ(第2,第3制御信号線駆動回路)
10…画素回路
11~17,31~33…TFT(トランジスタ)
21,22,41…コンデンサ
23,42…有機EL素子(電気光学素子)
Sj…ソースライン(映像信号線)
Gi…スキャンライン(第1制御信号線)
Gli…スキャン反転ライン(第2制御信号線)
Ei…エミッションライン(第2,第3制御信号線)
ELVDD…ハイレベル電源ライン(第1電源線)
ELVSS…ローレベル電源ライン(第2電源線)
Vini…初期化ライン(初期化信号線)
Vg…ゲート制御ノード
Va…データ・電源供給ノード

Claims (9)

  1.  アクティブマトリクス型の表示装置であって、
     行方向および列方向に配置された複数の画素回路を含む表示部と、
     前記複数の画素回路の列に対応して設けられた複数の映像信号線と、
     前記複数の画素回路の行に対応して設けられた複数の第1制御信号線および複数の第2制御信号線と、
     前記複数の画素回路に共通して電源電位を供給する第1電源線および第2電源線と、
     前記映像信号線を駆動する映像信号線駆動回路と、
     前期表示部の一端側に配置され、前記第1制御信号線を選択的に駆動する第1制御信号線駆動回路と、
     前記表示部の前記一端側に配置され、前記第2制御信号線を選択的に駆動する第2制御信号線駆動回路とを備え、
     前記画素回路は、
      前記第1電源線と前記第2電源線との間に設けられた電気光学素子と、
      前記第1電源線と前記第2電源線との間に前記電気光学素子と直列に設けられ、前記電気光学素子に流れる電流を制御する駆動用トランジスタと、
      前記第1制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御する制御用トランジスタと、
      前記第2制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御し、前記制御用トランジスタと導電型が異なる補償用トランジスタと、
      前記第1電源線と前記駆動用トランジスタの制御端子との間に設けられた第1コンデンサとを含み、
     前記第2制御信号線駆動回路は、前記制御用トランジスタを導通状態にする電位を前記第1制御信号線駆動回路が前記第1制御信号線に与える期間の終了時またはその後に、前記補償用トランジスタを遮断状態にする電位を前記第2制御信号線に与えることを特徴とする、表示装置。
  2.  前記制御用トランジスタは、第1制御用トランジスタおよび第2制御用トランジスタを含み、
     前記第1制御用トランジスタおよび前記補償用トランジスタは、前記駆動用トランジスタの前記制御端子と当該駆動用トランジスタの第1導通端子との間に互いに並列に設けられ、
     前記第2制御用トランジスタは、前記映像信号線と前記駆動用トランジスタの第2導通端子との間に設けられることを特徴とする、請求項1に記載の表示装置。
  3.  前記画素回路は、当該画素回路に対応する第1制御信号線の直前の第1制御信号線が制御端子に接続され、初期化用の電位を供給する初期化信号線と前記駆動用トランジスタの前記制御端子との間に設けられた初期化用トランジスタをさらに含むことを特徴とする、請求項2に記載の表示装置。
  4.  前記画素回路は、
      所定の制御信号線が制御端子に接続され、前記第1電源線と前記駆動用トランジスタの前記第2導通端子との間に設けられた電源供給用トランジスタと、
      前記所定の制御信号線が制御端子に接続され、前記駆動用トランジスタの前記第1導通端子と前記電気光学素子との間に設けられた発光制御用トランジスタとをさらに含み、
     前記所定の制御信号線には、前記電気光学素子を発光させるべき期間に前記電源供給用トランジスタおよび前記発光制御用トランジスタのそれぞれを導通状態にする電位が与えられることを特徴とする、請求項2に記載の表示装置。
  5.  同じ行に配置された画素回路に共通して接続される複数の第3制御信号線と、
     前記第3制御信号線を選択的に駆動する第3制御信号線駆動回路とをさらに備え、
     前記所定の制御信号線は前記第3制御信号線であることを特徴とする、請求項4に記載の表示装置。
  6.  前記所定の信号線は前記第2制御信号線であることを特徴とする、請求項4に記載の表示装置。
  7.  前記画素回路は、前記第1制御信号線と前記駆動用トランジスタの制御端子との間に設けられた第2コンデンサをさらに含むことを特徴とする、請求項2に記載の表示装置。
  8.  前記制御用トランジスタおよび前記補償用トランジスタは、前記映像信号線と前記駆動用トランジスタの前記制御端子との間に互いに並列に設けられていることを特徴とする、請求項1に記載の表示装置。
  9.  行方向および列方向に配置された複数の画素回路を含む表示部と、前記複数の画素回路の列に対応して設けられた複数の映像信号線と、前記複数の画素回路の行に対応して設けられた複数の第1制御信号線および複数の第2制御信号線と、前記複数の画素回路に共通して電源電位を供給する第1電源線および第2電源線と、前記映像信号線を駆動する映像信号線駆動回路とを備えるアクティブマトリクス型の表示装置の駆動方法であって、
     前記表示部の一端側から、前記第1制御信号線および前記第2制御信号線のそれぞれを選択的に駆動する駆動ステップを備え、
     前記画素回路は、
      記第1電源線と前記第2電源線との間に設けられた電気光学素子と、
      前記第1電源線と前記第2電源線との間に前記電気光学素子と直列に設けられ、前記電気光学素子に流れる電流を制御する駆動用トランジスタと、
      前記第1制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御する制御用トランジスタと、
      前記第2制御信号線が制御端子に接続され、前記駆動用トランジスタの制御端子の電位を当該画素回路に対応する映像信号線の電位に応じて制御し、前記制御用トランジスタと導電型が異なる補償用トランジスタと、
      前記第1電源線と前記駆動用トランジスタの制御端子との間に設けられた第1コンデンサとを含み、
     前記駆動ステップでは、前記制御用トランジスタを導通状態にする電位が前記第1制御信号線に与えられる期間の終了時またはその後に、前記補償用トランジスタを遮断状態にする電位が前記第2制御信号線に与えられることを特徴とする、駆動方法。
PCT/JP2012/078438 2011-11-10 2012-11-02 表示装置およびその駆動方法 WO2013069560A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011246125 2011-11-10
JP2011-246125 2011-11-10

Publications (1)

Publication Number Publication Date
WO2013069560A1 true WO2013069560A1 (ja) 2013-05-16

Family

ID=48289936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078438 WO2013069560A1 (ja) 2011-11-10 2012-11-02 表示装置およびその駆動方法

Country Status (1)

Country Link
WO (1) WO2013069560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581240B (zh) * 2014-12-30 2017-05-01 A pixel circuit and a driving method thereof and an active matrix organic light emitting display device
CN109686304A (zh) * 2019-02-20 2019-04-26 深圳市华星光电半导体显示技术有限公司 一种显示面板及其驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031630A (ja) * 2003-07-07 2005-02-03 Samsung Sdi Co Ltd 有機電界発光表示装置の画素回路及びその駆動方法
JP2005520192A (ja) * 2002-03-13 2005-07-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネセンス表示装置
JP2005292436A (ja) * 2004-03-31 2005-10-20 Nec Corp 電気回路、その駆動方法、表示装置の画素回路、表示装置及びその駆動方法
JP2006184866A (ja) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd 画素,および画素を用いた発光表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520192A (ja) * 2002-03-13 2005-07-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネセンス表示装置
JP2005031630A (ja) * 2003-07-07 2005-02-03 Samsung Sdi Co Ltd 有機電界発光表示装置の画素回路及びその駆動方法
JP2005292436A (ja) * 2004-03-31 2005-10-20 Nec Corp 電気回路、その駆動方法、表示装置の画素回路、表示装置及びその駆動方法
JP2006184866A (ja) * 2004-12-24 2006-07-13 Samsung Sdi Co Ltd 画素,および画素を用いた発光表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581240B (zh) * 2014-12-30 2017-05-01 A pixel circuit and a driving method thereof and an active matrix organic light emitting display device
US10354596B2 (en) 2014-12-30 2019-07-16 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Pixel circuit and drive method therefor, and active matrix organic light-emitting display
CN109686304A (zh) * 2019-02-20 2019-04-26 深圳市华星光电半导体显示技术有限公司 一种显示面板及其驱动方法
CN109686304B (zh) * 2019-02-20 2020-09-01 深圳市华星光电半导体显示技术有限公司 一种显示面板及其驱动方法

Similar Documents

Publication Publication Date Title
CN113129818B (zh) 电致发光显示装置
KR101341797B1 (ko) 유기 발광 다이오드 표시장치 및 그 구동 방법
WO2017115713A1 (ja) 画素回路ならびに表示装置およびその駆動方法
EP2595140A1 (en) Display device and method for driving same
JP5823477B2 (ja) 有機発光ダイオード表示装置
KR101360768B1 (ko) 유기 발광 다이오드 표시장치 및 그 구동 방법
KR102626519B1 (ko) 유기발광소자표시장치
US20110096059A1 (en) Display device and method of driving the same
JP5680218B2 (ja) 表示装置およびその駆動方法
CN111837173B (zh) 显示装置以及其驱动方法
EP2200010B1 (en) Current-driven display
JP2015025978A (ja) 駆動回路、表示装置、及び駆動方法
KR101360767B1 (ko) 유기 발광 다이오드 표시장치 및 그 구동 방법
JP5726325B2 (ja) 表示装置およびその駆動方法
KR20140023158A (ko) 유기 발광 다이오드 표시장치 및 그 구동 방법
US8810488B2 (en) Display device and method for driving the same
US20110304593A1 (en) Pixel driving circuit, pixel driving method and light emitting display device
JP2007108380A (ja) 表示装置および表示装置の駆動方法
US12118941B2 (en) Display device
KR20200057530A (ko) 표시 장치
CN111383593B (zh) 用于有机发光二极管显示器的像素和oled显示器
JP5034208B2 (ja) 表示装置および表示装置の駆動方法
US9361826B2 (en) Display device and drive method therefor
KR101666589B1 (ko) 유기 발광 다이오드 표시장치와 그의 구동방법
WO2013069560A1 (ja) 表示装置およびその駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP