WO2013069327A1 - Heat transfer sheet - Google Patents

Heat transfer sheet Download PDF

Info

Publication number
WO2013069327A1
WO2013069327A1 PCT/JP2012/064302 JP2012064302W WO2013069327A1 WO 2013069327 A1 WO2013069327 A1 WO 2013069327A1 JP 2012064302 W JP2012064302 W JP 2012064302W WO 2013069327 A1 WO2013069327 A1 WO 2013069327A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
filler
conductive sheet
sheet
heat
Prior art date
Application number
PCT/JP2012/064302
Other languages
French (fr)
Japanese (ja)
Inventor
涼介 塩野
川口 康弘
Original Assignee
北川工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北川工業株式会社 filed Critical 北川工業株式会社
Publication of WO2013069327A1 publication Critical patent/WO2013069327A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat conductive sheet that is arranged and used so as to be in contact with a heat source in order to promote heat dissipation from a heat source such as an electronic component.
  • a heat conductive sheet obtained by mixing (filling) a heat conductive filler with an elastomer such as silicone or acrylic resin and molding the sheet into a sheet shape has been considered.
  • This type of heat conductive sheet is interposed between an electronic component that becomes a heat source, for example, and a component that becomes a heat radiating plate such as a heat sink or a housing panel (hereinafter simply referred to as a radiator) in an electric / electronic device. It is arranged to let you.
  • boron nitride is an expensive heat conductive filler, if it is used in a large amount, the manufacturing cost of the heat conductive sheet will increase. Therefore, it is desired to provide a heat conductive sheet having a low dielectric constant without using boron nitride at all or with a small amount of use.
  • boron nitride is not used or the amount of use is reduced in the low dielectric constant heat conductive sheet.
  • the present invention relates to a heat conductive sheet obtained by mixing a hollow filler having a bulk specific gravity of 0.1 to 1.0, which is a specific gravity including gas, and a heat conductive filler into a base material made of an elastomer and molding the mixture into a sheet shape. Because At least one of the heat conductive fillers contained most as the heat conductive filler is a heat conductive filler other than boron nitride.
  • the present invention is a heat treatment obtained by mixing a matrix filler made of elastomer with a hollow filler having a bulk specific gravity of 0.1 to 1.0, which is a specific gravity including gas, and a heat conductive filler, and molding the mixture into a sheet shape.
  • a conductive sheet, A heat conductive filler other than boron nitride is used as the heat conductive filler.
  • a hollow filler such as an organic balloon or a fly ash balloon is mixed with a base material made of an elastomer. Since the inside of the hollow filler is a gas, the relative dielectric constant is low, and the relative dielectric constant of the heat conductive sheet can be satisfactorily reduced even if boron nitride is not used or the amount of the boron filler is reduced. Therefore, in the present invention, at least one of the heat conductive fillers most contained as the heat conductive filler is a heat conductive filler other than boron nitride.
  • the inside of the hollow filler to be mixed is a gas
  • the relative dielectric constant is low
  • the relative dielectric constant of the heat conductive sheet can be satisfactorily reduced without using boron nitride.
  • gas has low thermal conductivity
  • the thermal conductivity of the thermal conductive sheet itself may be reduced by mixing a hollow filler having a bulk specific gravity of 0.1 to 1.0.
  • heat conductivity can be secured by mixing (using) 200 to 300 parts by weight of a heat conductive filler other than boron nitride with 100 parts by weight of the elastomer as the base material.
  • the thermal conductive sheet of the present invention can achieve both a low relative dielectric constant and a high thermal conductivity without using boron nitride.
  • the bulk specific gravity of the hollow filler is 1.0 or less, the dielectric constant can be lowered even when a heat conductive filler other than boron nitride is used.
  • the amount of air present in the heat conductive sheet can be reduced, so that the action as a heat insulating layer is suppressed and the heat conductivity of the heat conductive sheet is not lowered.
  • mixing with the elastomer, which is a base material can be easily performed. Further, since the hollow filler is homogeneously mixed in the obtained heat conductive sheet, there is no difference due to the physical properties of the sheet and the sheet becomes stable.
  • the mixing amount of the heat conductive filler with respect to 100 parts by weight of the elastomer as the base material is 200 parts by weight or more, it is possible to ensure a heat conductivity equal to or higher than that when boron nitride is used.
  • the amount is 300 parts by weight or less, mixing with the elastomer, which is a base material, becomes easy, and thus the formation of the heat conductive sheet can be completed in a short time.
  • the heat conductive filler is uniformly mixed in the obtained heat conductive sheet, there is no difference depending on the physical properties (particularly, thermal conductivity) of the sheet, and the sheet becomes stable.
  • the applicant of the present invention can reduce the relative dielectric constant of the heat conductive sheet satisfactorily by setting the amount of the hollow filler used to 5 to 80 parts by weight relative to 100 parts by weight of the elastomer, and depending on the sheet shape. We have also found that it becomes easy to mold.
  • the relative dielectric constant can be lowered even when a heat conductive filler other than boron nitride is used.
  • the amount is 80 parts by weight or less, mixing with the elastomer, which is a base material, becomes easy, so that the formation of the heat conductive sheet can be completed in a short time.
  • the hollow filler is homogeneously mixed in the obtained heat conductive sheet, there is no difference depending on the physical properties (particularly relative dielectric constant) of the sheet, and the sheet becomes stable.
  • the organic balloon when used as the hollow filler, the organic balloon has elasticity, so that the balloon is not easily broken during the material kneading, and the hardness of the heat conductive sheet is reduced and compression set is not easily generated. You can also Therefore, it has very good characteristics such as low hardness and hardly causing compression set.
  • the specific gravity is close to the specific gravity of the base material, so that it can be easily mixed with the base material.
  • the filler can be dispersed homogeneously. Therefore, the effect of the hollow filler, such as reducing the relative dielectric constant and ensuring the thermal conductivity, is easily expressed uniformly throughout the heat conductive sheet without being biased toward a part of the heat conductive sheet.
  • a fly ash balloon may be used as a hollow filler.
  • the specific gravity of the fly ash balloon is close to the specific gravity of the base material, it becomes easier to mix and the handleability as a filler is improved.
  • fly ash balloons have high strength, there is an effect that the balloons are not easily broken during material kneading.
  • fly ash balloons are hollow and spherical particles contained in a small amount in fly ash (fly ash) generated from a coal-fired power plant, and are also called “floating ash” and “cenosphere”.
  • the main components are silica and alumina.
  • Fly ash balloons are collected by mixing fly ash with water and collecting only those floating in the water.
  • the heat conductivity may be 0.8 W / (m ⁇ K) or more, and the relative dielectric constant at 100 MHz may be 4.0 or less. If the mixing amount of the heat conductive filler is adjusted so as to satisfy such characteristics, the heat conductive sheet of the present invention can transfer heat of a heat source such as an electronic component to a radiator very well, It exhibits remarkable characteristics such as being extremely difficult to cause noise.
  • the Asker C hardness may be 30 or less. If the mixing amount of the heat conductive filler or the like is adjusted so as to satisfy such characteristics, the heat conductive sheet of the present invention increases the adhesion to a heat source such as an electronic component. It exhibits significant properties that can be transmitted.
  • a heat conductive sheet was manufactured by the following manufacturing method. That is, the hollow filler and the heat conductive filler were uniformly dispersed in the liquid silicone by mixing and kneading the hollow filler and the heat conductive filler with the liquid silicone used as the base material elastomer.
  • Examples of the elastomer that is the base material include acrylic resins and the like in addition to the liquid silicone described above.
  • various methods such as extrusion, two-roll, kneader, Banbury mixer and the like can be applied as the mixing method. Of these, kneading using a mixer is desirable in terms of improving workability.
  • the liquid silicone in which the hollow filler and the heat conductive filler were mixed in this way was formed into a 0.5 mm sheet, and then vulcanized.
  • various methods such as a method of forming using a machine such as a coater, a calender roll, an extrusion, and a press can be applied.
  • a coater when molding using a coater, it is easy to produce a thin sheet (film), suitable for mass production because of good productivity, and easy to obtain sheet (film) thickness accuracy. desirable.
  • Liquid silicone base material: Two-part silicone elastomer (Toray Dow, viscosity 1000 mPa ⁇ s at 25 ° C.) -Thermal conductive filler A: Boron nitride (National Nitride Technologies, average particle size of about 6 ⁇ m) B: aluminum hydroxide (Nippon Light Metal Co., Ltd., average particle size of about 10 [mu] m) C: Magnesium hydroxide (manufactured by Kamishima Chemical Industry, average particle size of about 1 ⁇ m) D: Alumina (Nippon Light Metal, average particle size of about 12 ⁇ m) E: silicon carbide (produced by Showa Denko, the average particle size of about 8 [mu] m) Hollow filler a: Fly ash balloon (trade name “Phylite”: manufactured by Nihon Philite, particle size distribution 5 to 300 ⁇ m, bulk specific gravity 0.65 to 0.85) b:
  • Reference examples 1 to 3 were prepared using boron nitride as the heat conductive filler and fly ash balloon (trade name “Phylite”) as the hollow filler. From this, boron nitride, when mixed with 65 parts by weight of elastomer with respect to 100 parts by weight of the elastomer, deteriorated moldability due to the scale-like particle shape, and cannot be molded with 80 parts by weight. The thermal conductivity was 0.90, and the relative dielectric constant was 4.2.
  • Thermal conductivity ⁇ 0.8 W / (m ⁇ K) or more (numerical values required for general thermal conductive sheets) ⁇ : Less than 0.8 W / (m ⁇ K) Dielectric constant ⁇ : less than 4.0 (typically numerically desirable high frequency noise in suppressing) ⁇ : 4.0 or more Asker C hardness ⁇ : 30 or less ⁇ : More than 30
  • the evaluation is “ ⁇ ” when the mixing amount is 200 to 300 parts by weight, and “ ⁇ ” when the mixing amount is less than 200 parts by weight. confirmed.
  • the evaluation was “ ⁇ ” or “ ⁇ ” regardless of the type of the filler in the range of 5 to 80 parts by weight.
  • the preferred mixing amount of the hollow filler is largely related to its bulk density, and it has been confirmed that 30 parts by weight of a: fly ash balloon exhibits substantially the same effect as 8 parts by weight of b: organic balloon. It was.
  • the suitable mixing amount of the hollow filler has a positive correlation with the bulk density ratio.
  • the Asker C hardness exceeded 65 and 30, and it was found that the followability to the unevenness of the electronic component and the heat sink during mounting was poor.
  • the Asker C hardness is a good value of 30 or less, and the followability to the unevenness of the electronic component or the heat sink is excellent. It has been found that the heat of the source can be transferred very well to the heat sink.
  • this compound was mixed and kneaded by hand, in Examples 1-14 and 1-15, the hollow filler was not broken.
  • the mixing amount of the hollow filler is 5 parts by weight or less (Example 2-2)
  • the relative dielectric constant is 4.1, which is not lower than that close to 4, but exceeds 80 parts by weight (85 parts by weight: Comparative Example 2-1)
  • a heat conductive sheet could not be formed.
  • Example 3 When oxide (alumina) is used as a heat conductive filler
  • the heat conductive sheets of the examples were manufactured by specifying the composition as shown in the left column of Table 3 (Examples 3-1 to 3-10, Comparative Examples 3-1 to 3-6), and The sheet was molded in the same manner as in Example 1 to produce a heat conductive sheet under the same conditions, and the physical properties and evaluation thereof are shown in the right column of Table 3.
  • Reference Example 7 shows a heat conductive filler using only silicon carbide having a high relative dielectric constant of 9 or more and a fly ash balloon (trade name “Philite”) as a hollow filler.
  • the amount used is small (50 parts by weight (about 12% by volume)) (based on 100 parts by weight of the base material). Since it is not necessary to use boron nitride in an Example, the manufacturing cost of a heat conductive sheet can be reduced favorably. In addition, when only the hollow filler is mixed with the liquid elastomer base material, the hollow filler is lifted and it is difficult to mix. Can be manufactured easily.
  • the thermal conductive sheet of Example 4-1 does not use boron nitride or reduces the amount of usage to achieve both a low relative dielectric constant and a high thermal conductivity. It has extremely good characteristics that it is difficult to cause distortion.
  • the heat of the heat source such as an electronic component can be transmitted to the heat sink very well and stably for a long period of time, and the generation of high frequency noise is suppressed. Can do.
  • the present invention is not limited to the above embodiment, and can be implemented in various forms without departing from the gist of the present invention.
  • the elastomer in addition to liquid silicone, acrylic elastomer such as silicone gel and acrylic gel, and EPDM can also be applied.

Abstract

This heat transfer sheet is obtained by mixing a hollow filler having a bulk specific gravity of 0.1-1.0 and a heat conductive filler into a base material that is composed of an elastomer and by molding the resulting mixture into a sheet form. At least one of the heat conductive fillers contained therein in the largest amount as the heat conductive filler is a heat conductive filler other than boron nitride.

Description

熱伝導シートHeat conduction sheet 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2011年11月11日に日本国特許庁に出願された日本国特許出願第2011-247834号に基づく優先権を主張するものであり、日本国特許出願第2011-247834号の全内容を参照により本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2011-247834 filed with the Japan Patent Office on November 11, 2011, and is based on Japanese Patent Application No. 2011-247834. The entire contents are incorporated herein by reference.
 本発明は、電子部品等の発熱源からの放熱を促すため、その発熱源に対して接触するように配置して使用される熱伝導シートに関する。 The present invention relates to a heat conductive sheet that is arranged and used so as to be in contact with a heat source in order to promote heat dissipation from a heat source such as an electronic component.
 従来より、シリコーンやアクリル樹脂等のエラストマに熱伝導フィラーを混合(充填)し、シート状に成形してなる熱伝導シートが考えられている。この種の熱伝導シートは、電気・電子装置の内部において、例えば発熱源となる電子部品と、ヒートシンクや筐体パネル等といった放熱板となる部品(以下、単に放熱器という)との間に介在させるように配置される。 Conventionally, a heat conductive sheet obtained by mixing (filling) a heat conductive filler with an elastomer such as silicone or acrylic resin and molding the sheet into a sheet shape has been considered. This type of heat conductive sheet is interposed between an electronic component that becomes a heat source, for example, and a component that becomes a heat radiating plate such as a heat sink or a housing panel (hereinafter simply referred to as a radiator) in an electric / electronic device. It is arranged to let you.
 このように熱伝導シートを配置した場合、電子部品等が発生する熱を放熱器側へ良好に逃がすことができる。このため、この種の熱伝導シートは、例えばCPUの長寿命化等のために不可欠な素材として注目を集めている。 When the heat conductive sheet is arranged in this way, the heat generated by the electronic components and the like can be released to the radiator side satisfactorily. For this reason, this type of heat conductive sheet is attracting attention as an indispensable material for, for example, extending the life of the CPU.
 一方、高周波特性を重視する回路基板用途では、次のような理由で、この種の熱伝導シートの比誘電率を低下させることが要請されている。すなわち、比誘電率の高い熱伝導シートを電子部品と放熱器との間に挟むと、一種のコンデンサが形成される。そして、熱伝導シートの比誘電率が高いほど、そのコンデンサの静電容量は大きくなり、場合によっては高周波ノイズを発生させる原因となるといった懸念がある。 On the other hand, in the circuit board applications that emphasize high-frequency characteristics, for the following reasons, been requested is possible to reduce the dielectric constant of such thermally conductive sheet. That is, when a heat conductive sheet having a high relative dielectric constant is sandwiched between an electronic component and a radiator, a kind of capacitor is formed. And the higher the relative dielectric constant of the heat conductive sheet, the greater the capacitance of the capacitor, which may cause high-frequency noise in some cases.
 そこで、熱伝導フィラーとして多量の窒化ホウ素を使用することにより、低誘電率の熱伝導シートを提供することが提案されている(例えば、特許文献1参照)。 Therefore, it has been proposed to provide a low dielectric constant heat conductive sheet by using a large amount of boron nitride as the heat conductive filler (see, for example, Patent Document 1).
特開平9-12982号公報Japanese Patent Laid-Open No. 9-12982
 窒化ホウ素は高価な熱伝導フィラーであるため、多量に使用すると熱伝導シートの製造コストが上昇してしまう。そのため、窒化ホウ素を全く使用せずに、若しくは少ない使用量で、低誘電率の熱伝導シートを提供可能とすることが望まれている。 Since boron nitride is an expensive heat conductive filler, if it is used in a large amount, the manufacturing cost of the heat conductive sheet will increase. Therefore, it is desired to provide a heat conductive sheet having a low dielectric constant without using boron nitride at all or with a small amount of use.
 低誘電率の熱伝導シートにおいて、窒化ホウ素を使用しない、またはその使用量を低減することが本発明の一側面である。 It is an aspect of the present invention that boron nitride is not used or the amount of use is reduced in the low dielectric constant heat conductive sheet.
 本発明は、エラストマからなる母剤に、気体を含めた比重である嵩比重が0.1~1.0の中空フィラーと熱伝導フィラーとを混合し、シート状に成形してなる熱伝導シートであって、
 上記熱伝導フィラーとして最も多く含まれる熱伝導フィラーうちの少なくとも1種類が、窒化ホウ素以外の熱伝導フィラーであることを特徴とする。
The present invention relates to a heat conductive sheet obtained by mixing a hollow filler having a bulk specific gravity of 0.1 to 1.0, which is a specific gravity including gas, and a heat conductive filler into a base material made of an elastomer and molding the mixture into a sheet shape. Because
At least one of the heat conductive fillers contained most as the heat conductive filler is a heat conductive filler other than boron nitride.
 また、本発明は、エラストマからなる母剤に、気体を含めた比重である嵩比重が0.1~1.0の中空フィラーと熱伝導フィラーとを混合し、シート状に成形してなる熱伝導シートであって、
 上記熱伝導フィラーとして窒化ホウ素以外の熱伝導フィラーが使用されていることを特徴とする。
In addition, the present invention is a heat treatment obtained by mixing a matrix filler made of elastomer with a hollow filler having a bulk specific gravity of 0.1 to 1.0, which is a specific gravity including gas, and a heat conductive filler, and molding the mixture into a sheet shape. A conductive sheet,
A heat conductive filler other than boron nitride is used as the heat conductive filler.
 このように構成された本発明の熱伝導シートでは、エラストマからなる母剤に、有機系バルーンまたはフライアッシュバルーンの如き中空フィラーが混合されている。中空フィラーの内部は気体であるので比誘電率が低く、窒化ホウ素を使用しなくても、またはその使用量を低減しても、熱伝導シートの比誘電率を良好に低下させることができる。そこで、本発明では、上記熱伝導フィラーとして最も多く含まれる熱伝導フィラーうちの少なくとも1種類を、窒化ホウ素以外の熱伝導フィラーとしている。 In the heat conductive sheet of the present invention configured as described above, a hollow filler such as an organic balloon or a fly ash balloon is mixed with a base material made of an elastomer. Since the inside of the hollow filler is a gas, the relative dielectric constant is low, and the relative dielectric constant of the heat conductive sheet can be satisfactorily reduced even if boron nitride is not used or the amount of the boron filler is reduced. Therefore, in the present invention, at least one of the heat conductive fillers most contained as the heat conductive filler is a heat conductive filler other than boron nitride.
 この場合も、混合される中空フィラーの内部は気体であるので比誘電率が低く、窒化ホウ素を使用しなくても、熱伝導シートの比誘電率を良好に低下させることができる。
 また、気体は熱伝導率が低いので、嵩比重が0.1~1.0の中空フィラーを混合することによって熱伝導シート自体の熱伝導率も低下することが懸念されたが、本願出願人は、母剤であるエラストマ100重量部に対して、窒化ホウ素以外の熱伝導フィラーを200~300重量部混合(使用)することで熱伝導率も確保できることを発見した。
Also in this case, since the inside of the hollow filler to be mixed is a gas, the relative dielectric constant is low, and the relative dielectric constant of the heat conductive sheet can be satisfactorily reduced without using boron nitride.
In addition, since gas has low thermal conductivity, there is a concern that the thermal conductivity of the thermal conductive sheet itself may be reduced by mixing a hollow filler having a bulk specific gravity of 0.1 to 1.0. Discovered that heat conductivity can be secured by mixing (using) 200 to 300 parts by weight of a heat conductive filler other than boron nitride with 100 parts by weight of the elastomer as the base material.
 従って、本発明の熱伝導シートは、窒化ホウ素を使用しなくても低い比誘電率と高い熱伝導率とを両立することができる。
 ここで中空フィラーの嵩比重が1.0以下であると、窒化ホウ素以外の熱伝導フィラーを用いた場合でも比誘電率を低くできる。
Therefore, the thermal conductive sheet of the present invention can achieve both a low relative dielectric constant and a high thermal conductivity without using boron nitride.
Here, when the bulk specific gravity of the hollow filler is 1.0 or less, the dielectric constant can be lowered even when a heat conductive filler other than boron nitride is used.
 一方、0.1以上であると、熱伝導シート内に存在する空気量を少なくできるので、断熱層としての作用が抑制され、熱伝導シートの熱伝導率を低下させることがない。また、母剤であるエラストマに対する混合が容易に可能となる。更に、得られる熱伝導シート内に中空フィラーが均質に混合されるため、該シートの物性の部位による差異がなくなり安定となる。 On the other hand, if it is 0.1 or more, the amount of air present in the heat conductive sheet can be reduced, so that the action as a heat insulating layer is suppressed and the heat conductivity of the heat conductive sheet is not lowered. Moreover, mixing with the elastomer, which is a base material, can be easily performed. Further, since the hollow filler is homogeneously mixed in the obtained heat conductive sheet, there is no difference due to the physical properties of the sheet and the sheet becomes stable.
 そして中空フィラーの嵩比重が0.1~1.0の範囲外であると、母剤中に対する中空フィラーの混合が困難となる。その結果、以下の2つの問題が顕在化する。すなわち、
(1)上記中空フィラーが母剤中に偏在してしまい、得られる熱伝導シートの各物性が安定的に発現しない。
(2)中空フィラーが偏在する部位において、該フィラーの外形状が熱伝導シート外部に現れてしまうため、電子部品等の発熱源や放熱板に対する密着性が低下して、熱伝導シートの性能が発揮できなくなる。
When the bulk specific gravity of the hollow filler is outside the range of 0.1 to 1.0, it becomes difficult to mix the hollow filler into the base material. As a result, the following two problems become apparent. That is,
(1) The said hollow filler is unevenly distributed in a base material, and each physical property of the heat conductive sheet obtained does not express stably.
(2) Since the outer shape of the filler appears outside the heat conductive sheet in the portion where the hollow filler is unevenly distributed, the adhesion to a heat source such as an electronic component or a heat radiating plate is reduced, and the performance of the heat conductive sheet is reduced. Cannot be demonstrated.
 また、母剤であるエラストマ100重量部に対する熱伝導フィラーの混合量が200重量部以上であると、窒化ホウ素を使用した場合と同等以上の熱伝導率を確保し得る。
 一方、300重量部以下であると、母剤であるエラストマに対する混合が容易となるため、熱伝導シートの成形を短時間で完了できる。また、得られる熱伝導シート内に熱伝導フィラーが均質に混合されるため、該シートの物性(特に熱伝導率等)の部位による差異がなくなり安定となる。
Further, when the mixing amount of the heat conductive filler with respect to 100 parts by weight of the elastomer as the base material is 200 parts by weight or more, it is possible to ensure a heat conductivity equal to or higher than that when boron nitride is used.
On the other hand, when the amount is 300 parts by weight or less, mixing with the elastomer, which is a base material, becomes easy, and thus the formation of the heat conductive sheet can be completed in a short time. In addition, since the heat conductive filler is uniformly mixed in the obtained heat conductive sheet, there is no difference depending on the physical properties (particularly, thermal conductivity) of the sheet, and the sheet becomes stable.
 併せて、本願出願人は、エラストマ100重量部に対して、上記中空フィラーの使用量を5~80重量部とすることで、熱伝導シートの比誘電率を良好に低下させ、かつシート形状により容易に成形できるようになることも発見した。 In addition, the applicant of the present invention can reduce the relative dielectric constant of the heat conductive sheet satisfactorily by setting the amount of the hollow filler used to 5 to 80 parts by weight relative to 100 parts by weight of the elastomer, and depending on the sheet shape. We have also found that it becomes easy to mold.
 この中空フィラーの使用量が5重量部以上であると、窒化ホウ素以外の熱伝導フィラーを用いた場合でも比誘電率を低くできる。
 一方、80重量部以下であると、母剤であるエラストマに対する混合が容易となるため、熱伝導シートの成形を短時間で完了できる。また、得られる熱伝導シート内に中空フィラーが均質に混合されるため、該シートの物性(特に比誘電率)の部位による差異がなくなり安定となる。
When the amount of the hollow filler used is 5 parts by weight or more, the relative dielectric constant can be lowered even when a heat conductive filler other than boron nitride is used.
On the other hand, when the amount is 80 parts by weight or less, mixing with the elastomer, which is a base material, becomes easy, so that the formation of the heat conductive sheet can be completed in a short time. Further, since the hollow filler is homogeneously mixed in the obtained heat conductive sheet, there is no difference depending on the physical properties (particularly relative dielectric constant) of the sheet, and the sheet becomes stable.
 ここで、中空フィラーとして有機系バルーンを使用した場合、該有機系バルーンは弾性を有するので、材料混練の際にバルーンが破壊され難く、熱伝導シートの硬度を低下させると共に圧縮永久歪みを生じ難くすることもできる。従って、低硬度で圧縮永久歪みを生じ難いといった極めて良好な特性を有する。 Here, when an organic balloon is used as the hollow filler, the organic balloon has elasticity, so that the balloon is not easily broken during the material kneading, and the hardness of the heat conductive sheet is reduced and compression set is not easily generated. You can also Therefore, it has very good characteristics such as low hardness and hardly causing compression set.
 また、中空フィラーとして、その嵩比重が0.1~1.0であるものを使用すると、その比重が母剤の比重に近いため、母剤に混合し易く、その結果、母剤中に中空フィラーを均質に分散させ得る。従って、比誘電率を低くすると共に、熱伝導率も確保するといった中空フィラーによる効果が、熱伝導シートの一部に偏って発現することなく、熱伝導シート全体で均質的に発現し易い。 Further, when a hollow filler having a bulk specific gravity of 0.1 to 1.0 is used, the specific gravity is close to the specific gravity of the base material, so that it can be easily mixed with the base material. The filler can be dispersed homogeneously. Therefore, the effect of the hollow filler, such as reducing the relative dielectric constant and ensuring the thermal conductivity, is easily expressed uniformly throughout the heat conductive sheet without being biased toward a part of the heat conductive sheet.
 更に、中空フィラーとしてフライアッシュバルーンを使用してもよい。この場合、フライアッシュバルーンの比重は母剤の比重に近いため、より混合しやすくなると共にフィラーとしての取り扱い性が良好になる。また、フライアッシュバルーンは、高強度であるため材料混練の際にバルーンが破壊され難いという効果も生じる。 Further, a fly ash balloon may be used as a hollow filler. In this case, since the specific gravity of the fly ash balloon is close to the specific gravity of the base material, it becomes easier to mix and the handleability as a filler is improved. In addition, since fly ash balloons have high strength, there is an effect that the balloons are not easily broken during material kneading.
 ここで、フライアッシュバルーンとは,石炭火力発電所から発生するフライアッシュ(飛灰)に少量含まれる中空・球形の粒子のことであり,「浮灰」,「セノスフェア」とも呼ばれる。主成分はシリカとアルミナである。フライアッシュバルーンは,フライアッシュを水に混ぜ,水に浮遊するものだけを集めることにより採取される。 Here, fly ash balloons are hollow and spherical particles contained in a small amount in fly ash (fly ash) generated from a coal-fired power plant, and are also called “floating ash” and “cenosphere”. The main components are silica and alumina. Fly ash balloons are collected by mixing fly ash with water and collecting only those floating in the water.
 また、本発明の熱伝導シートにおいて、その熱伝導率が0.8W/(m・K)以上であり、100MHzにおける比誘電率が4.0以下であってもよい。このような特性を満たすように上記熱伝導フィラーの混合量を調整すれば、本発明の熱伝導シートは、電子部品等の発熱源の熱を極めて良好に放熱器に伝達することができ、しかもノイズの原因とも極めてなり難いといった、顕著な特性を呈する。 In the heat conductive sheet of the present invention, the heat conductivity may be 0.8 W / (m · K) or more, and the relative dielectric constant at 100 MHz may be 4.0 or less. If the mixing amount of the heat conductive filler is adjusted so as to satisfy such characteristics, the heat conductive sheet of the present invention can transfer heat of a heat source such as an electronic component to a radiator very well, It exhibits remarkable characteristics such as being extremely difficult to cause noise.
 更に、本発明の熱伝導シートにおいて、そのアスカーC硬度が、30以下であってよい。このような特性を満たすように上記熱伝導フィラー等の混合量を調整すれば、本発明の熱伝導シートは、電子部品等の発熱源に対する密着性が増すため、熱を極めて良好に放熱器に伝達することができる、顕著な特性を呈する。 Furthermore, in the heat conductive sheet of the present invention, the Asker C hardness may be 30 or less. If the mixing amount of the heat conductive filler or the like is adjusted so as to satisfy such characteristics, the heat conductive sheet of the present invention increases the adhesion to a heat source such as an electronic component. It exhibits significant properties that can be transmitted.
 次に、本発明の実施の形態を説明する。本実施の形態では、以下の製造方法により熱伝導シートを製造した。すなわち、母剤であるエラストマとして用いる液状シリコーンに、中空フィラーと熱伝導フィラーとを混合・混練することで、液状シリコーン内に中空フィラー及び熱伝導フィラーを均質に分散させた。 Next, an embodiment of the present invention will be described. In the present embodiment, a heat conductive sheet was manufactured by the following manufacturing method. That is, the hollow filler and the heat conductive filler were uniformly dispersed in the liquid silicone by mixing and kneading the hollow filler and the heat conductive filler with the liquid silicone used as the base material elastomer.
 上記母剤であるエラストマとしては、上述の液状シリコーンの他、アクリル樹脂等が挙げられる。
 また、上記混合の方法としては、真空脱泡ミキサー等の機械を用いて混練する方法の他、押し出し,2本ロール,ニーダ,バンバリーミキサー等の種々の方法を適用することができる。この内、ミキサーを使用して混練する場合、作業性が向上する点で望ましい。
Examples of the elastomer that is the base material include acrylic resins and the like in addition to the liquid silicone described above.
In addition to the kneading method using a machine such as a vacuum defoaming mixer, various methods such as extrusion, two-roll, kneader, Banbury mixer and the like can be applied as the mixing method. Of these, kneading using a mixer is desirable in terms of improving workability.
 続いて、このように中空フィラー及び熱伝導フィラーを混合した液状シリコーンを0.5mmのシート状に成形した後、加硫を施した。この成形の方法としては、コーター,カレンダロール,押し出し,プレス等の機械を用いて成形する方法等、種々の方法を適用することができる。この内、コーターを用いて成形する場合、薄いシート(フィルム)の作製が簡単にできる、生産性がよいため大量生産に向いている、シート(フィルム)の厚さ精度が出し易い、といった点で望ましい。 Subsequently, the liquid silicone in which the hollow filler and the heat conductive filler were mixed in this way was formed into a 0.5 mm sheet, and then vulcanized. As the forming method, various methods such as a method of forming using a machine such as a coater, a calender roll, an extrusion, and a press can be applied. Among these, when molding using a coater, it is easy to produce a thin sheet (film), suitable for mass production because of good productivity, and easy to obtain sheet (film) thickness accuracy. desirable.
 以下に各実験例1~4に使用した物質等を記載する。
・液状シリコーン(母剤):2液性シリコンエラストマー(東レ・ダウ製、25℃における粘度1000mPa・s)
・熱伝導フィラー
 A:窒化ホウ素(National Nitride Technologies製、平均粒径約6μm)
 B:水酸化アルミニウム(日本軽金属製、平均粒径約10μm)
 C:水酸化マグネシウム(神島化学工業製、平均粒径約1μm)
 D:アルミナ(日本軽金属製、平均粒径約12μm)
 E:炭化ケイ素(昭和電工製、平均粒径約8μm)
・中空フィラー
 a:フライアッシュバルーン(商品名「フィライト」:日本フィライト製、粒径分布5~300μm、嵩比重0.65~0.85)
 b:有機系バルーン(商品名「エクスパンセル EMC40(B)」:日本フィライト製、平均粒径約40μm,嵩比重0.13~0.18 )
 c:フライアッシュバルーン(セノスフェア(フライアッシュバルーンの一種):巴工業製、平均粒径約50μm、嵩比重0.8))
 d:中空フィラー[ガラスバルーン](ポッターズバロティーニ製、平均粒径約40μm,嵩比重0.2)
 e:中空フィラー[シラスバルーン](丸中白土製、平均粒径約40μm、嵩比重0.15~0.20)
 f:有機系バルーン(商品名「エクスパンセル」:日本フィライト製、平均粒径約40μm,嵩比重0.03~0.08)
 g:中空フィラー[シラスバルーン](シラックスウ製、平均粒径約40μm、嵩比重1.1)
(実験例1:熱伝導フィラーの混合量)
 次に、実施例の熱伝導シートを、表1の左側欄に示すように配合を特定して製造した。(実施例1-1~1-15、比較例1-1~1-4)
 更に、そのような配合で混練した液状シリコーンをシート状に成形し、130℃,10分,t=0.5mmの加硫条件で加硫を施して得られた熱伝導シートの物性及び評価を、表1の右側欄に示した。
It describes a material or the like used in respective Experimental Examples 1-4 below.
Liquid silicone (base material): Two-part silicone elastomer (Toray Dow, viscosity 1000 mPa · s at 25 ° C.)
-Thermal conductive filler A: Boron nitride (National Nitride Technologies, average particle size of about 6 μm)
B: aluminum hydroxide (Nippon Light Metal Co., Ltd., average particle size of about 10 [mu] m)
C: Magnesium hydroxide (manufactured by Kamishima Chemical Industry, average particle size of about 1 μm)
D: Alumina (Nippon Light Metal, average particle size of about 12μm)
E: silicon carbide (produced by Showa Denko, the average particle size of about 8 [mu] m)
Hollow filler a: Fly ash balloon (trade name “Phylite”: manufactured by Nihon Philite, particle size distribution 5 to 300 μm, bulk specific gravity 0.65 to 0.85)
b: Organic balloon (trade name “Expansel EMC40 (B)”: manufactured by Nippon Philite, average particle size of about 40 μm, bulk specific gravity of 0.13 to 0.18)
c: Fly ash balloon (Senosphere (a type of fly ash balloon): Sakai Kogyo, average particle size of about 50 μm, bulk specific gravity 0.8))
d: Hollow filler [glass balloon] (manufactured by Potters Barotini, average particle size of about 40 μm, bulk specific gravity of 0.2)
e: Hollow filler [Shirasu Balloon] (Marunaka clay, average particle size of about 40 μm, bulk specific gravity of 0.15 to 0.20)
f: Organic balloon (trade name “Expansel”: manufactured by Nippon Philite, average particle size of about 40 μm, bulk specific gravity of 0.03 to 0.08)
g: Hollow filler [Shirasu Balloon] (manufactured by Shirazuku, average particle size of about 40 μm, bulk specific gravity 1.1)
(Experimental example 1: amount of heat conductive filler mixed)
Next, the heat conductive sheet of the Example was manufactured by specifying the formulation as shown in the left column of Table 1. (Examples 1-1 to 1-15, Comparative Examples 1-1 to 1-4)
Furthermore, the physical properties and evaluation of the heat conductive sheet obtained by forming the liquid silicone kneaded with such a composition into a sheet shape and vulcanizing under a vulcanization condition of 130 ° C., 10 minutes, t = 0.5 mm. These are shown in the right column of Table 1.
 なお、以下の各表1~3及び5に記載される配合割合については、全て重量部表示である。 In addition, all the blending ratios described in Tables 1 to 3 and 5 below are parts by weight.
Figure JPOXMLDOC01-appb-T000001
 なお、熱伝導フィラーとして窒化ホウ素を、中空フィラーとしてフライアッシュバルーン(商品名「フィライト」)をそれぞれ使用したものを、参考例1~3として示した。ここから、窒化ホウ素は、エラストマ100重量部に対して65重量部を混合すると、その鱗片状という粒子形状故に成形性が悪化し、80重量部では成形できないことと、65重量部混合した場合に、熱伝導率は0.90、比誘電率は4.2と、非常に高い性能を発揮することが確認された。
Figure JPOXMLDOC01-appb-T000001
Reference examples 1 to 3 were prepared using boron nitride as the heat conductive filler and fly ash balloon (trade name “Phylite”) as the hollow filler. From this, boron nitride, when mixed with 65 parts by weight of elastomer with respect to 100 parts by weight of the elastomer, deteriorated moldability due to the scale-like particle shape, and cannot be molded with 80 parts by weight. The thermal conductivity was 0.90, and the relative dielectric constant was 4.2.
 評価については、「成形性」、「熱伝導率」、「比誘電率」及び「アスカーC硬度」の各結果を総合的に判断して、以下の各結果が全て「○」で「○」、一つでも「△」があれば「△」、一つでも「×」があれば「×」とした。 For the evaluation, the results of “formability”, “thermal conductivity”, “relative dielectric constant”, and “Asker C hardness” are comprehensively judged, and the following results are all “○” and “○”. If there is at least one “Δ”, it is “Δ”, and if there is at least one “×”, it is “x”.
 また、各結果の評価方法は、本発明の熱伝導シートとして「好適」なものを「○」、「適」なものを「△」、「不適」なものを「×」とした。具体的には以下の通り。
1.成形性
 ○:0.5mmのシート状物に好適に成形できる
 △:成形はできるが熱伝導フィラー、中空フィラーが部位によって不均質
 ×:成形が困難または不能
2.熱伝導率
 ○:0.8W/(m・K)以上(一般的な熱伝導シートに要求される数値)
 △:0.8W/(m・K)未満
3.比誘電率
 ○:4.0未満(一般的に高周波ノイズを抑制する上で望ましい数値)
 △:4.0以上
4.アスカーC硬度
 ○:30以下
 △:30を超える
In the evaluation method of each result, “good” for the heat conductive sheet of the present invention is “◯”, “appropriate” is “Δ”, and “unsuitable” is “x”. Specifically:
1. Formability ○: Can be suitably formed into a sheet of 0.5 mm. Δ: Can be formed, but heat conductive filler and hollow filler are heterogeneous depending on the site. X: Difficult or impossible to form. Thermal conductivity ○: 0.8 W / (m · K) or more (numerical values required for general thermal conductive sheets)
Δ: Less than 0.8 W / (m · K) Dielectric constant ○: less than 4.0 (typically numerically desirable high frequency noise in suppressing)
Δ: 4.0 or more Asker C hardness ○: 30 or less △: More than 30
 表1に示すように、熱伝導フィラーとして水酸化アルミニウム、水酸化マグネシウムを使用した場合、何れもその混合量が350重量部の時点で成形ができないことが確認された。 As shown in Table 1, it was confirmed that when aluminum hydroxide or magnesium hydroxide was used as the heat conductive filler, molding could not be performed when the mixed amount was 350 parts by weight.
 また、熱伝導フィラーとして水酸化アルミニウム、水酸化マグネシウムを使用した場合、その混合量が200~300重量部で評価は「○」、その混合量が200重量部未満で「△」となることが確認された。 Further, when aluminum hydroxide or magnesium hydroxide is used as the heat conductive filler, the evaluation is “◯” when the mixing amount is 200 to 300 parts by weight, and “△” when the mixing amount is less than 200 parts by weight. confirmed.
 中空フィラーについては、5~80重量部の範囲であれば、その種類に拘わらず評価は「○」、「△」であった。
 同時に、中空フィラーの好適な混合量は、その嵩密度に大きく関係し、a:フライアッシュバルーンにおける30重量部が、b:有機系バルーンにおける8重量部と略同等の作用を呈することが確認された。
For the hollow filler, the evaluation was “◯” or “Δ” regardless of the type of the filler in the range of 5 to 80 parts by weight.
At the same time, the preferred mixing amount of the hollow filler is largely related to its bulk density, and it has been confirmed that 30 parts by weight of a: fly ash balloon exhibits substantially the same effect as 8 parts by weight of b: organic balloon. It was.
 ここから、中空フィラーの好適な混合量は、その嵩密度の比率と正の相関関係を有していると推察される。
 また、実施例1-15では、アスカーC硬度が65と30を上回っており、実装時における電子部品やヒートシンクの凹凸に対する追従性に劣ることが分かった。これに対して、実施例1-1~1-14は、アスカーC硬度が何れも30以下の良好な値を呈し、電子部品やヒートシンクの凹凸に対する追従性も優れており、電子部品等の発熱源の熱を極めて良好にヒートシンクに伝達することができることが分かった。また、本配合は手で混合・混練したために、実施例1-14、1-15は中空フィラーが破壊されていなかったが量産時にミキサーを用いて混練すると、これが破壊され更に特性が悪くなることが懸念される。
(実験例2:中空フィラーの混合量)
 次に、実施例の熱伝導シートを、表2の左側欄に示すように配合を特定して製造し(実施例1-3、2-1~2-2、比較例2-1~2-3)、実験例1と同様にシート状に成形し、同条件で熱伝導シートを製造した、そしてその物性及び評価を、表2の右側欄に示した。
From this, it is surmised that the suitable mixing amount of the hollow filler has a positive correlation with the bulk density ratio.
Further, in Example 1-15, the Asker C hardness exceeded 65 and 30, and it was found that the followability to the unevenness of the electronic component and the heat sink during mounting was poor. In contrast, in Examples 1-1 to 1-14, the Asker C hardness is a good value of 30 or less, and the followability to the unevenness of the electronic component or the heat sink is excellent. It has been found that the heat of the source can be transferred very well to the heat sink. In addition, since this compound was mixed and kneaded by hand, in Examples 1-14 and 1-15, the hollow filler was not broken. However, when kneaded using a mixer during mass production, it was broken and the properties deteriorated. Is concerned.
(Experimental example 2: amount of hollow filler mixed)
Next, the heat conductive sheets of the examples were manufactured by specifying the composition as shown in the left column of Table 2 (Examples 1-3, 2-1 to 2-2, Comparative Examples 2-1 to 2- 3) In the same manner as in Experimental Example 1, it was molded into a sheet shape, and a heat conductive sheet was produced under the same conditions. The physical properties and evaluation thereof are shown in the right column of Table 2.
 なお、中空フィラーを使用していないものを参考例4~6として示した。 Incidentally, those not using the hollow filler are shown as Reference Examples 4 to 6.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、中空フィラーを混合していない参考例4~6では、100MHzにおける比誘電率がそれぞれ4.7、5.1、5.8と、高周波ノイズを抑制する上で望ましいと言われている4.0を大きく上回った。これに対して、中空フィラーを混合している各実施例2-1、2-2は、その比誘電率がそれぞれ3.1、4.1となった。これは中空フィラーに含まれる気体の比誘電率が低いことに起因している。また、気体は熱伝導率が低いので、熱伝導シート自体の熱伝導率の低下も懸念されたが、上記の実験例1、実験例2から明らかなように熱伝導率も確保できた。
Figure JPOXMLDOC01-appb-T000002
As shown in Table 2, in Reference Examples 4 to 6 in which no hollow filler is mixed, the relative dielectric constant at 100 MHz is 4.7, 5.1, and 5.8, respectively, which is desirable for suppressing high frequency noise. It was far above the 4.0 that was said. In contrast, each of Examples 2-1 and 2-2 in which a hollow filler was mixed had a relative dielectric constant of 3.1 and 4.1, respectively. This is due to the low dielectric constant of the gas contained in the hollow filler. Moreover, since gas has low thermal conductivity, there was a concern about a decrease in thermal conductivity of the thermal conductive sheet itself. However, as apparent from Experimental Examples 1 and 2, the thermal conductivity could be secured.
 また、中空フィラーの混合量が5重量部以下(実施例2-2)の場合には比誘電率が4.1と、4に近いものの下回らず、80重量部を超えると(85重量部:比較例2-1)熱伝導シートが成形できなかった。 Further, when the mixing amount of the hollow filler is 5 parts by weight or less (Example 2-2), the relative dielectric constant is 4.1, which is not lower than that close to 4, but exceeds 80 parts by weight (85 parts by weight: Comparative Example 2-1) A heat conductive sheet could not be formed.
 更に、嵩比重が0.1~1.0の範囲外の中空フィラーを使用する場合(比較例2-2、2-3)、何れも熱伝導シートが成形できなかった。また何れの比較例も、中空フィラーが熱伝導シートの上側(比較例2-2)または下側(比較例2-3)に偏在している様子が、外部からの目視で確認できた。
(実験例3:熱伝導フィラーとして酸化物(アルミナ)を使用した場合)
 次に、実施例の熱伝導シートを、表3の左側欄に示すように配合を特定して製造し(実施例3-1~3-10、比較例3-1~3-6)、実験例1と同様にシート状に成形し、同条件で熱伝導シートを製造した、そしてその物性及び評価を、表3の右側欄に示した。
Furthermore, when a hollow filler having a bulk specific gravity outside the range of 0.1 to 1.0 was used (Comparative Examples 2-2 and 2-3), no heat conductive sheet could be formed. In any of the comparative examples, it was confirmed from the outside that the hollow filler was unevenly distributed on the upper side (Comparative Example 2-2) or the lower side (Comparative Example 2-3) of the heat conductive sheet.
(Experimental example 3: When oxide (alumina) is used as a heat conductive filler)
Next, the heat conductive sheets of the examples were manufactured by specifying the composition as shown in the left column of Table 3 (Examples 3-1 to 3-10, Comparative Examples 3-1 to 3-6), and The sheet was molded in the same manner as in Example 1 to produce a heat conductive sheet under the same conditions, and the physical properties and evaluation thereof are shown in the right column of Table 3.
 なお、熱伝導フィラーとして、比誘電率が9以上と高い炭化ケイ素のみを、中空フィラーとしてフライアッシュバルーン(商品名「フィライト」)を使用したものを参考例7として示した。 Reference Example 7 shows a heat conductive filler using only silicon carbide having a high relative dielectric constant of 9 or more and a fly ash balloon (trade name “Philite”) as a hollow filler.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、アルミナまたは炭化ケイ素のみを熱伝導フィラーとして使用した参考例7、実施例3-1~3-6は、熱伝導フィラーとして水酸化物を使用した結果(実験例1における各実施例)に比較して、100MHzにおける比誘電率が高くなる傾向があった。しかし、それらのフィラーと比較的比誘電率の低い窒化ホウ素または水酸化アルミニウムとを混合して使用することで、実施例3-7~3-10に示すように比誘電率を良好に低下させることができた。
Figure JPOXMLDOC01-appb-T000003
As shown in Table 3, in Reference Example 7 and Examples 3-1 to 3-6 in which only alumina or silicon carbide was used as the heat conductive filler, the results of using hydroxide as the heat conductive filler (in Experimental Example 1) There was a tendency for the relative dielectric constant at 100 MHz to be higher than in each example. However, by using a mixture of these fillers and boron nitride or aluminum hydroxide having a relatively low relative dielectric constant, the relative dielectric constant can be satisfactorily lowered as shown in Examples 3-7 to 3-10. I was able to.
 また、一部窒化ホウ素を使用した実施例3-9、3-10でも、その使用量は(母剤100重量部に対して)50重量部(約12体積%)と少なくて済み、他の実施例では窒化ホウ素を使用しなくてもよいので、熱伝導シートの製造コストを良好に低減することができる。また、液状のエラストマ母剤に中空フィラーのみを混合する場合は、中空フィラーが浮き上がって混合し難くなるが、上記各実施例では、熱伝導フィラーによって中空フィラーが浮き上がるのを物理的に阻害することもでき、製造も容易になる。 In Examples 3-9 and 3-10 in which part of the boron nitride is used, the amount used is small (50 parts by weight (about 12% by volume)) (based on 100 parts by weight of the base material). Since it is not necessary to use boron nitride in an Example, the manufacturing cost of a heat conductive sheet can be reduced favorably. In addition, when only the hollow filler is mixed with the liquid elastomer base material, the hollow filler is lifted and it is difficult to mix. Can be manufactured easily.
 更に、次の表4に示すように、アルミナとマグネシアとは同様の比誘電率を有する。このため、表3の配合において、アルミナとマグネシアとを入れ替えても同様の結果が得られるものと推定される。 Furthermore, as shown in Table 4 below, alumina and magnesia have similar dielectric constants. For this reason, it is presumed that the same result can be obtained even if alumina and magnesia are interchanged in the composition of Table 3.
 更に、表1の配合において、水酸化アルミニウムと水酸化マグネシウムとを入れ替えた各実施例においても、比誘電率については同様の結果が得られている。これは、水酸化アルミニウムと水酸化マグネシウムとも同様の比誘電率を有する(表4参照)点から自明である。 Furthermore, in each of the examples in which aluminum hydroxide and magnesium hydroxide are interchanged in the formulation shown in Table 1, similar results are obtained for the relative dielectric constant. This is obvious from the point that aluminum hydroxide and magnesium hydroxide have the same relative dielectric constant (see Table 4).
Figure JPOXMLDOC01-appb-T000004
(実験例4:中空フィラーの種類による圧縮永久歪み特性)
 次に、中空フィラーとして実験例1と同様の有機系(樹脂)バルーンを使用した場合と、実施例1-14と同様のガラスバルーンを使用した場合とで、圧縮永久歪み特性の相違を調べる実験を行った。なお、この実験では、中空フィラーの混合量を揃えるため、次の表5に示す配合で上記方法により熱伝導シートをそれぞれ作成した。
Figure JPOXMLDOC01-appb-T000004
(Experimental Example 4: compression set due to the type of hollow filler)
Next, an experiment for investigating the difference in compression set characteristics between the case where the same organic (resin) balloon as in Experiment 1 was used as the hollow filler and the case where the glass balloon similar to that in Example 1-14 was used. Went. In addition, in this experiment, in order to make the mixing amount of a hollow filler uniform, the heat conductive sheet was created by the said method by the mixing | blending shown in following Table 5, respectively.
Figure JPOXMLDOC01-appb-T000005
 そして、作成された熱伝導シートから10mm角のサンプルを各3つ作成し、シックネスゲージにて厚さを測定し、圧縮板にて間隙量0.5mmに挟み込み、その後常温にて放置してサンプルの厚さの変化を測定した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000005
Then, three 10 mm square samples are prepared from the prepared heat conductive sheet, the thickness is measured with a thickness gauge, the gap is sandwiched with a compression plate at a gap of 0.5 mm, and the sample is then left at room temperature. The change in thickness was measured. Table 6 shows the measurement results.
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、中空フィラーとして樹脂バルーンを使用した場合、圧縮永久歪みが極めて残り難いことが分かった。これは、樹脂バルーンが弾性を有することに起因すると考えられ、前述のように熱伝導シートの硬度が低いのも同様の理由と考えられる。
Figure JPOXMLDOC01-appb-T000006
As shown in Table 6, it was found that when a resin balloon is used as the hollow filler, compression set hardly remains. This is considered to be due to the elasticity of the resin balloon, and the reason why the hardness of the heat conductive sheet is low as described above is also considered to be the same.
 従って、本実施例4-1の熱伝導シートは、窒化ホウ素の使用しない、または使用量を低減させて低い比誘電率と高い熱伝導率とを両立した上で、しかも、低硬度で圧縮永久歪みを生じ難いといった極めて良好な特性を有する。 Therefore, the thermal conductive sheet of Example 4-1 does not use boron nitride or reduces the amount of usage to achieve both a low relative dielectric constant and a high thermal conductivity. It has extremely good characteristics that it is difficult to cause distortion.
 よって、本実施例の熱伝導シートでは、電子部品等の発熱源の熱を極めて良好に、かつ、長期間安定して、ヒートシンクに伝達することができ、しかも、高周波ノイズの発生を抑制することができる。 Therefore, in the heat conductive sheet of the present embodiment, the heat of the heat source such as an electronic component can be transmitted to the heat sink very well and stably for a long period of time, and the generation of high frequency noise is suppressed. Can do.
 更に、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の形態で実施することができる。例えば、エラストマとしては、液状シリコーンの他、シリコーンゲル、アクリルゲル等のアクリル系のエラストマやEPDMも適用することができる。 Furthermore, the present invention is not limited to the above embodiment, and can be implemented in various forms without departing from the gist of the present invention. For example, as the elastomer, in addition to liquid silicone, acrylic elastomer such as silicone gel and acrylic gel, and EPDM can also be applied.
 また、有機系バルーンとしては、前述した日本フィラメント製のエクスパンセルの他、フェノールバルーンとしてユニオンカーバイド製のUCAR及びPHENOLIC MICROBALLOONS、エポキシバルーンとしてEMERSON&CUMING製のECCOSPHERES、尿素バルーンとしてEMERSON&CUMING製のECCOSPHERES VF-O、サランバルーンとしてDOW CHEMICAL製のSARAN MICROSPHERES、松本油脂製薬製のマツモトマイクロスフェア、ポリスチレンバルーンとしてARCO POLYMERS製のDYLITE EXPANDABLE POLYSTYRENE、BASF WYANDOTE製のEXPANDABLE POLYSTYRENE BEADS、架橋型スチレン-アクリル酸バルーンとして日本合成ゴム製のSX863(P)など、種々の市販品を使用することができる。 As organic balloons, in addition to the above-mentioned EXPANSELL made by Nihon Filament, UCAR and PHENOLIC MICROBALOLONS made by Union Carbide as phenolic balloons, ECCOSPHERES made by EMERSON & CUMING as epoxy balloons, and ECCOSPHERES VF-O made by EMERSON & CUMING as urea balloons. , SARAN MICROSPHERES made by DOW CHEMICAL as a Saran balloon, Matsumoto Microsphere made by Matsumoto Yushi Seiyaku, DYLITE EXPANDABLE POLYSTRENENE made by ARCO POLYMERS as a polystyrene balloon, EXPANDABLEPOLE made by BASF WYANDOTE EADS, crosslinked styrene - such as SX863 (P) of Japan Synthetic Rubber Ltd. as acrylic acid balloons, it is possible to use various commercial products.
 更に、実施例1-1~1-6、1-13、2-1、2-2、3-1、3-2、3-4,3-5、3-7、3-9のように、中空フィラーとしてフライアッシュバルーンの一例であるフィライトまたはセノスフェア等を使用した場合、その比重が0.8と母剤の液状シリコーンの比重に近いため、窒化ホウ素の使用量を低減させても低い比誘電率と高い熱伝導率とを両立することができるといった上記各実施例と同様の効果に加えて、母剤に混合し易いといった効果も生じる。 Further, as in Examples 1-1 to 1-6, 1-13, 2-1, 2-2, 3-1, 3-2, 3-4, 3-5, 3-7, 3-9 When filler, cenosphere, etc., which is an example of a fly ash balloon, is used as the hollow filler, the specific gravity is 0.8, which is close to the specific gravity of the liquid silicone as the base material. In addition to the same effects as those in the above embodiments in which both the dielectric constant and the high thermal conductivity can be achieved, there is also an effect that the base material is easily mixed.

Claims (5)

  1.  エラストマからなる母剤に嵩比重が0.1~1.0の中空フィラーと熱伝導フィラーとを混合し、シート状に成形してなる熱伝導シートであって、
     上記熱伝導フィラーとして最も多く含まれる熱伝導フィラーうちの少なくとも1種類が、窒化ホウ素以外の熱伝導フィラーであることを特徴とする熱伝導シート。
    A heat conductive sheet obtained by mixing a hollow filler having a bulk specific gravity of 0.1 to 1.0 and a heat conductive filler into a base material made of an elastomer, and molding the sheet into a sheet shape,
    A heat conductive sheet, wherein at least one of the heat conductive fillers most contained as the heat conductive filler is a heat conductive filler other than boron nitride.
  2.  エラストマからなる母剤に嵩比重が0.1~1.0の中空フィラーと熱伝導フィラーとを混合し、シート状に成形してなる熱伝導シートであって、
     上記熱伝導フィラーとして、窒化ホウ素以外の熱伝導フィラーが使用されていることを特徴とする熱伝導シート。
    A heat conductive sheet obtained by mixing a hollow filler having a bulk specific gravity of 0.1 to 1.0 and a heat conductive filler into a base material made of an elastomer, and molding the sheet into a sheet shape,
    A heat conductive sheet other than boron nitride is used as the heat conductive filler.
  3.  前記熱伝導フィラーの混合量は、前記エラストマ100重量部に対して、200~300重量部であることを特徴とする請求項2に記載の熱伝導シート。 The heat conductive sheet according to claim 2, wherein the mixing amount of the heat conductive filler is 200 to 300 parts by weight with respect to 100 parts by weight of the elastomer.
  4.  前記中空フィラーの混合量は、前記エラストマ100重量部に対して、5~80重量部であることを特徴とする請求項1~3の何れか一項に記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 3, wherein a mixing amount of the hollow filler is 5 to 80 parts by weight with respect to 100 parts by weight of the elastomer.
  5.  前記中空フィラーは、有機系バルーンまたはフライアッシュバルーンであることを特徴とする請求項1~4の何れか一項に記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 4, wherein the hollow filler is an organic balloon or a fly ash balloon.
PCT/JP2012/064302 2011-11-11 2012-06-01 Heat transfer sheet WO2013069327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011247834A JP2012119674A (en) 2010-11-11 2011-11-11 Thermally conductive sheet
JP2011-247834 2011-11-11

Publications (1)

Publication Number Publication Date
WO2013069327A1 true WO2013069327A1 (en) 2013-05-16

Family

ID=48306962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064302 WO2013069327A1 (en) 2011-11-11 2012-06-01 Heat transfer sheet

Country Status (2)

Country Link
JP (1) JP2012119674A (en)
WO (1) WO2013069327A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088742A1 (en) * 2014-12-02 2016-06-09 北川工業株式会社 Thermally conductive sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353245B2 (en) 2014-08-18 2016-05-31 3M Innovative Properties Company Thermally conductive clay
JP2018073912A (en) * 2016-10-26 2018-05-10 デクセリアルズ株式会社 Heat conduction sheet, method of manufacturing same, and semiconductor device
JP2020029524A (en) * 2018-08-23 2020-02-27 信越化学工業株式会社 Thermoconductive silicone composition and thermoconductive silicone cured product
JP7148965B2 (en) * 2018-11-08 2022-10-06 北川工業株式会社 COMPOSITION FOR LOW-DIELECTRIC HEAT CONDUCTIVE MATERIAL AND LOW-DIELECTRIC HEAT CONDUCTIVE MATERIAL
JP6987941B1 (en) * 2020-09-11 2022-01-05 デクセリアルズ株式会社 Method for manufacturing a heat conductive sheet and a heat conductive sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134666A (en) * 2000-10-30 2002-05-10 Achilles Corp Heat radiation resin sheet
JP2004137308A (en) * 2002-10-15 2004-05-13 Shin Etsu Chem Co Ltd Silicone heat insulating sheet
JP2008283125A (en) * 2007-05-14 2008-11-20 Naigai Technos:Kk Composite material and composite body
WO2009110389A1 (en) * 2008-03-07 2009-09-11 旭有機材工業株式会社 Heat-curable resin composition, fiber-reinforced molding material and molded article
JP2011127062A (en) * 2009-12-21 2011-06-30 Toray Ind Inc Thermoplastic resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134666A (en) * 2000-10-30 2002-05-10 Achilles Corp Heat radiation resin sheet
JP2004137308A (en) * 2002-10-15 2004-05-13 Shin Etsu Chem Co Ltd Silicone heat insulating sheet
JP2008283125A (en) * 2007-05-14 2008-11-20 Naigai Technos:Kk Composite material and composite body
WO2009110389A1 (en) * 2008-03-07 2009-09-11 旭有機材工業株式会社 Heat-curable resin composition, fiber-reinforced molding material and molded article
JP2011127062A (en) * 2009-12-21 2011-06-30 Toray Ind Inc Thermoplastic resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088742A1 (en) * 2014-12-02 2016-06-09 北川工業株式会社 Thermally conductive sheet

Also Published As

Publication number Publication date
JP2012119674A (en) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2013069327A1 (en) Heat transfer sheet
CN103333494B (en) A kind of Thermal-conductive insulation silicone rubber thermal interface material and preparation method thereof
CN110945647B (en) Heat conducting fin
WO2012070289A1 (en) Thermal conductive sheet and power module
JP2015029076A (en) Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member
JP2003060134A (en) Heat conductive sheet
TW201831074A (en) High-dielectric-loss composites for electromagnetic interference (emi) applications
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
KR20150090079A (en) Heat-conducting foam sheet for electronic instruments and heat-conducting laminate for electronic instruments
WO2018101445A1 (en) Thermally conductive sheet
WO2020153377A1 (en) Thermally-conductive resin sheet
US20190288247A1 (en) Semi-finished product for contacting components
KR102534715B1 (en) Organic-inorganic complexed filler, composite comprising thereof, and method for manufacturing organic-inorganic complexed filler
JP6125282B2 (en) Boron nitride composite powder and thermosetting resin composition using the same
US10779450B2 (en) Thermally conductive composition
JP2002164481A (en) Heat conductive sheet
JP2017034219A (en) Heat radiating material comprising mixed graphite
WO2021065899A1 (en) Thermally conductive resin sheet
JP2014189701A (en) High thermal conductive resin cured product, high thermal conductive semi-cured resin film and high thermal conductive resin composition
KR102293582B1 (en) Method for manufacturing heat dissipation sheet
JP2011084657A (en) Thermosetting resin composition
KR101898234B1 (en) Resin composition, article prepared by using the same and method of preparing the same
JP2013095761A (en) Curable composition and cured product
KR101874959B1 (en) Heat radiated grapheme sheet and manufacturing method thereof
WO2022054478A1 (en) Thermally conductive sheet and production method for thermally conductive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848181

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12848181

Country of ref document: EP

Kind code of ref document: A1