WO2013069121A1 - Continuous casting device for steel - Google Patents

Continuous casting device for steel Download PDF

Info

Publication number
WO2013069121A1
WO2013069121A1 PCT/JP2011/075868 JP2011075868W WO2013069121A1 WO 2013069121 A1 WO2013069121 A1 WO 2013069121A1 JP 2011075868 W JP2011075868 W JP 2011075868W WO 2013069121 A1 WO2013069121 A1 WO 2013069121A1
Authority
WO
WIPO (PCT)
Prior art keywords
long side
mold
side walls
curved
electromagnetic
Prior art date
Application number
PCT/JP2011/075868
Other languages
French (fr)
Japanese (ja)
Inventor
藤 健彦
中島 潤二
保雄 丸木
伯公 山崎
敬二 恒成
健司 梅津
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to PL11875560T priority Critical patent/PL2754513T3/en
Priority to EP11875560.2A priority patent/EP2754513B1/en
Priority to BR112014005417-7A priority patent/BR112014005417B1/en
Priority to US14/237,757 priority patent/US20140190655A1/en
Priority to PCT/JP2011/075868 priority patent/WO2013069121A1/en
Priority to ES11875560.2T priority patent/ES2695045T3/en
Priority to CN201180073324.2A priority patent/CN103781572B/en
Priority to KR1020147005878A priority patent/KR20140053279A/en
Priority to CA2844450A priority patent/CA2844450C/en
Publication of WO2013069121A1 publication Critical patent/WO2013069121A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Definitions

  • the present invention relates to a steel continuous casting apparatus that supplies molten steel into a mold to produce a slab.
  • the molten steel in this mold is electromagnetically stirred using an electromagnetic stirring device having an electromagnetic coil installed near the upper part of the mold. Has been done.
  • an electromagnetic stirring device is arranged along a pair of long side walls forming a mold. And when molten steel is discharged in a casting_mold
  • the immersion nozzle is immersed in the mold, the region between the long side wall and the immersion nozzle is narrower than the other regions. For this reason, in the area
  • the above-described electromagnetic stirring device is used, and instead of the parallel mold having a flat furnace inner surface, surfaces 104 and 105 facing the immersion nozzle 103 in the long side walls 101 and 102 as shown in FIG.
  • the cooling water flow path (not shown) for cooling the long side walls 101 and 102 is disposed between the long side walls 101 and 102 and the electromagnetic stirrers 106 and 107.
  • the stainless steel back plates 108 and 109 are provided.
  • the surfaces 104 and 105 facing the immersion nozzle 103 in the long side walls 101 and 102 are curved to protrude toward the electromagnetic stirrers 106 and 107, respectively.
  • the shortest horizontal distance between the side walls 101 and 102 is longer than that of the conventional parallel mold, and accordingly, the flow paths of the swirl flows 110 and 111 can be secured widely, so that the molten steel flows easily.
  • the central portions of the long side walls 101 and 102 made of copper are shaved so that the surfaces 104 and 105 facing the immersion nozzle 103 in the long side walls 101 and 102 are curved in a concave shape. Therefore, the thickness of the long side walls 101 and 102 is extremely thin at the curved surfaces 104 and 105.
  • the electromagnetic field generated by the electromagnetic stirring devices 106 and 107 is an alternating magnetic field, the magnetic field attenuates in the conductor.
  • the attenuation of the magnetic field is smaller than in the other linear portions, so that the electromagnetic force is increased, and the region between the curved surfaces 104 and 105 and the immersion nozzle 103 is increased.
  • the flow rate of the stirring flow is faster than other areas.
  • the flow rates of the stirring flows 110 and 111 are partially non-uniform, and flow turbulence and stagnation occur in the regions 112 and 113 downstream of the stirring flows 110 and 111 in the long side walls 101 and 102.
  • There is a problem that objects, bubbles, and the like are easily captured by the solidified shell. Therefore, the improvement of the quality of steel as expected was not obtained.
  • the inclusions were solidified shells of the long side walls 101 and 102 simply by forming the curved surfaces 104 and 105 to facilitate the flow of the stirring flows 110 and 111 as described above. It was found that it was not possible to suppress the trapping. That is, if the horizontal distance between the curved surfaces 104 and 105 and the immersion nozzle 103 is increased, the trapping of bubbles can be suppressed. However, the curved surfaces 104 and 105 also have a strong electromagnetic force and are curved.
  • the present invention has been made in view of the above points, and in a continuous casting apparatus for steel having an electromagnetic stirring device, the flow rate of the molten steel at the upper part in the mold is made uniform even in a deformed mold. It aims at improving the quality of the cast slab cast by making the horizontal distance between the concave curved surface inside and the immersion nozzle appropriate.
  • a continuous casting apparatus for steel includes a mold for casting molten steel having a pair of long side walls and a pair of short side walls; and an immersion nozzle for discharging the molten steel into the mold And an electromagnetic stirrer disposed along each outer side surface of each long side wall and stirring the upper part of the molten steel in the mold, and facing at least the immersion nozzle of each long side wall Curved portions that are convexly curved toward the electromagnetic stirrer when viewed in a plan view are formed, and the long side walls have a uniform thickness including the curved portions; The bottom end of the electromagnetic stirrer when the shortest horizontal distance between the apex that is the deepest depression when viewed in plan and the outer peripheral surface of the immersion nozzle is viewed along the vertical direction To a position 50 mm higher than the upper end of the electromagnetic stirrer Oite is 30mm or more and 80mm or less.
  • the electromagnetic brake device further includes an electromagnetic brake device disposed below each of the electromagnetic stirring devices; when the electromagnetic brake device is viewed in a plan view, a mold along each of the long side walls A DC magnetic field having a uniform magnetic flux density distribution in the width direction is applied in the mold thickness direction along each short side wall; Moreover, in the aspect of said (1), when the said shortest horizontal distance is seen along a perpendicular direction, in the range from the lower end part of the said electromagnetic stirring apparatus to a position 50 mm higher than the upper end part of the said electromagnetic stirring apparatus More preferably, it is 50 mm or more and 75 mm or less.
  • each long side wall has a curved part which curved at the position which opposes the said immersion nozzle at least toward the said electromagnetic stirring apparatus side, and each long side Since the wall is configured to have a uniform thickness including the curved portion, the electromagnetic force generated by the electromagnetic stirring device is uniform in both the curved portion and the other portions.
  • the flow rate of the stirring flow can be made uniform. That is, when the long side walls are viewed in plan, the intensity distribution of the electromagnetic force is the same in the curved portion and the portions other than the curved portion. To prevent the electromagnetic force from increasing. Therefore, it is possible to suppress the occurrence of the turbulent flow and the stagnation region as in the conventional case, and it is possible to suppress the bubbles and the like from being easily trapped by the solidified shell.
  • the shortest horizontal distance between the top of the curved portion and the immersion nozzle is the upper end of the electromagnetic stirring device from the position of the lower end of the electromagnetic stirring device when viewed in the height direction of the continuous casting device. Since it was set to 30 mm or more and 80 mm or less in a range up to a position 50 mm higher than that, a smooth and uniform flow of molten steel can be ensured even in the region between the top of the curved portion and the immersion nozzle.
  • the shortest horizontal distance between the top of the curved portion and the immersion nozzle is less than 30 mm, it becomes difficult for molten steel to flow in the curved region, and bubbles or the like in the molten steel become solidified shells. It becomes easy to be captured.
  • the shortest horizontal distance is more than 80 mm, it is difficult to ensure a uniform flow of the molten steel in the curved region, and in the region where the molten steel has a low flow rate, inclusions in the molten steel are easily captured by the solidified shell.
  • the shortest horizontal distance between the top of the curved portion and the immersion nozzle is set to 30 mm or more and 80 mm or less based on such knowledge, the curved region between the top of the curved portion and the immersion nozzle is set. Therefore, it is possible to secure a smooth and uniform flow of the stirring flow of the molten steel, and to prevent the bubbles in the molten steel from being trapped by the solidified shell.
  • the range in the height direction in which the shortest horizontal distance between the top of the curved portion and the immersion nozzle is set to 30 mm to 80 mm is 50 mm from the lower end portion of the electromagnetic stirring device to the upper end portion of the electromagnetic stirring device.
  • the range is up to a high position. This is because the portion where the molten steel is directly stirred by the electromagnetic force generated by the electromagnetic stirring device corresponds to the upper end portion from the lower end portion of the electromagnetic stirring device, but in the actual operation, the upper end of the electromagnetic stirring device. This is because the meniscus surface may be positioned higher than the portion. In general, when the meniscus surface is located at a position higher than the upper end portion of the electromagnetic stirring device, the height is approximately 50 mm higher than the upper end portion of the electromagnetic stirring device.
  • the range in the height direction in which the shortest horizontal distance between the top of the curved portion and the immersion nozzle is set to 30 mm or more and 80 mm or less is 50 mm from the lower end portion of the electromagnetic stirring device to the upper end portion of the electromagnetic stirring device. It is going to the high position.
  • the uniform thickness of the long side wall means that the change in the degree of penetration of the electromagnetic field into the molten steel due to the variation in thickness, excluding the parts where bolt holes and cooling water grooves are formed, is an allowable error.
  • the thickness is less than 10%.
  • the magnetic field strength in the mold fluctuates with the magnitude of the loss, but the fluctuation of the long side wall is such that this fluctuation is less than 10% when viewed in the horizontal direction along the wall surface of the long side wall.
  • the thickness is uniform.
  • the range of the height direction of the uniform thickness which a long side wall has is from the lower end part of an electromagnetic stirring apparatus to the position 50 mm higher than the upper end part of an electromagnetic stirring apparatus from the effect of an electromagnetic stirring apparatus. Any range is acceptable.
  • a supplementary explanation will be given for the “uniform thickness of the long side wall”. When the long side wall arranged along the vertical direction is viewed in plan, the relative relationship between the thickness of the curved portion and the thickness of the adjacent portion other than the curved portion is particularly important.
  • each long side wall has a uniform thickness including each curved portion”, but the thickness of the curved portion is t1, and the portion other than the curved portion.
  • a so-called electromagnetic brake device may be used in combination with an electromagnetic stirring device. That is, a DC magnetic field that is disposed below the electromagnetic stirrer and has a uniform magnetic flux density distribution in the mold width direction along the long side wall of the mold is applied in the mold thickness direction along the short side wall of the mold. You may further provide the electromagnetic brake device to provide. In this case, the bubbles and inclusions in the molten steel discharged from the immersion nozzle are promoted to float, and the bubbles and inclusions float in the molten steel, which remains in the cast slab and causes quality deterioration. You can suppress things. Therefore, the quality of the slab can be further improved.
  • the electromagnetic brake device when the magnetic flux density distribution in the mold width direction along the long side wall is viewed in plan view, the electromagnetic brake device It means that the variation in magnetic flux density within the length dimension of the coil portion is within ⁇ 30% of the average.
  • bubbles and the like contained in a cast slab can be reduced, and the quality can be improved.
  • FIG. 2 is a longitudinal sectional view when the continuous casting apparatus is viewed in the AA section of FIG. 1.
  • FIG. 2 is a longitudinal sectional view of the continuous casting apparatus when viewed in the section BB of FIG. It is a perspective view of the long side wall of the continuous casting apparatus.
  • FIG. 4 is a view corresponding to FIG. 3, which is a longitudinal sectional view for showing a size around a mold of the continuous casting apparatus. It is a figure which shows the modification of the same continuous casting apparatus, Comprising: It is a longitudinal cross-sectional view corresponded in FIG. 2 in the case of having a curved part of another shape. It is a plane schematic diagram for showing the schematic structure of the mold vicinity part of the conventional continuous casting apparatus.
  • FIG. 1 is an explanatory view schematically showing a configuration in the vicinity of a mold of a continuous casting apparatus 1 for steel according to the present embodiment
  • FIG. 2 schematically shows a front cross section. It is explanatory drawing and FIG. 3 is explanatory drawing which showed the cross section of the side surface similarly.
  • the continuous casting apparatus 1 has a substantially rectangular mold 2 in a plan view, for example.
  • the mold 2 has a pair of long side walls 3a and 3b and a pair of short side walls 4a and 4b.
  • the long side walls 3a and 3b and the short side walls 4a and 4b are all made of a copper plate, and on the outside thereof, a non-magnetic austenitic stainless steel that reinforces the long side walls 3a and 3b and the short side walls 4a and 4b.
  • Made back plates 5a, 5b, 6a, 6b are arranged.
  • the back plate 5a is arranged outside the long side wall 3a
  • the back plate 5b is arranged outside the long side wall 3b
  • the back plate 6a is arranged outside the short side wall 4a
  • the short side wall A back plate 6b is disposed outside 4b.
  • Electromagnetic stirrers 7a and 7b each having an electromagnetic coil are disposed outside the back plates 5a and 5b.
  • electromagnetic brake device 8a, 8b is arrange
  • the length (casting thickness) when the short side walls 4a and 4b are viewed in plan is, for example, about 50 mm to 300 mm. This length is determined by the required slab width. For thin slabs, it is about 50 mm to 80 mm. For medium thickness slabs, it is about 80 mm to 150 mm. If there is, it is about 150 mm to 300 mm.
  • the horizontal direction along the long side walls 3a and 3b (X direction in FIGS. 1 to 3) is referred to as the mold width direction, and the horizontal direction along the short side walls 4a and 4b (in FIGS. 1 and 3). (Y direction) is called mold thickness direction.
  • Curved portions 11a and 11b that are convexly curved toward the electromagnetic stirrers 7a and 7b are formed at the center of each inner surface when the long side walls 3a and 3b are viewed in plan.
  • Each bending part 11a, 11b is formed in the position which opposes the immersion nozzle 21 provided in the casting_mold
  • the thickness distribution along the extending direction of the long side walls 3a and 3b does not change between the curved portions 11a and 11b and the linear portions adjacent to both sides, and the thickness distribution along the horizontal direction. And has a uniform thickness.
  • the curved portions 11a and 11b are formed on the long side walls 3a and 3b, for example, by press molding or the like. More specifically, the curved portion 11 a includes an inner side surface 11 a 1 that is curved so that an inner wall surface of the long side wall 3 a is separated from the immersion nozzle 21, and an outer wall surface of the long side wall 3 a is separated from the immersion nozzle 21. And an outer surface 11a2 that is curved. Similarly, the curved portion 11 b is curved so that the inner wall surface 11 b 1 curved so that the inner wall surface of the long side wall 3 b is separated from the immersion nozzle 21 and the outer wall surface of the long side wall 3 b are separated from the immersion nozzle 21. The outer surface 11b2 is formed.
  • the outer side surfaces of the long side walls 3a and 3b have the above-mentioned outer sides forming the curved portions 11a and 11b.
  • the side surfaces 11a2 and 11b2 are convexly curved toward the electromagnetic stirring devices 7a and 7b.
  • the thickness of the curved portions 11a, 11b is t1
  • the central inner side surfaces of the back plates 5a and 5b have electromagnetic stirring devices 7a and 7b so as to match the curved shapes formed by the outer side surfaces 11a2 and 11b2 of the curved portions 11a and 11b of the long side walls 3a and 3b. It has a portion that is curved convexly toward the side.
  • the outer surfaces of the back plates 5a and 5b, that is, the surfaces facing the electromagnetic stirrers 7a and 7b are formed flat (planar).
  • this type of back plate has a cooling water channel for cooling the long side wall made of copper formed therein, but in order to form this channel in the back plates 5a and 5b, for example, By forming a groove-like channel on the surface (inner side surface) of the back plate 5a, 5b on the side in contact with the long side walls 3a, 3b, it is possible to easily form the cooling water channel. That is, the back plates 5a and 5b having the groove-shaped flow paths formed on the inner side surfaces are assembled so that the inner side surfaces are in close contact with the outer side surfaces of the long side walls 3a and 3b. The flow path can be easily formed.
  • the curved portions 11a and 11b are formed to face the immersion nozzle 21 downward from the upper end positions of the long side walls 3a and 3b, for example, as shown in FIGS.
  • the lower end positions of the curved portions 11 a and 11 b may be the same height as the lower end position of the immersion nozzle 21, or may be formed below the lower end position of the immersion nozzle 21.
  • curved regions 9a and 9b are formed in spaces (gap) between the curved portions 11a and 11b and the immersion nozzle 21, respectively.
  • the curved portions 11a and 11b have shapes in which the curved portions gradually disappear as they go to the lower ends thereof (that is, shapes in which the recessed portions forming the curved portions 11a and 11b gradually become shallower and disappear). There is no.
  • the boundary line between the curved portion 11a and the other flat portion is the long side wall at the lower end portion of the curved portion 11a.
  • 3a is a straight line parallel to the length direction of 3a (horizontal straight line SL along the X direction in FIG. 4), and is a straight line parallel to the height direction of the long side wall 3a at both side edges of the curved portion 11a. (A straight line VL in the extending direction along the Z direction in FIG. 4).
  • the shortest horizontal distance L has a tapered shape in which the depth of the concave portion gradually decreases toward the lower ends of the curved portions 11a and 11b and disappears, the length varies depending on the height direction.
  • the shortest horizontal distance L is 30 mm to 80 mm in the range from the position of each lower end of the electromagnetic stirring devices 7a and 7b to a position 50 mm higher than the upper end of the electromagnetic stirring devices 7a and 7b. It is set to be.
  • the shortest horizontal distance L is preferably 30 mm to 80 mm as defined herein, but more preferably 50 mm or more and 75 mm or less.
  • the shortest horizontal distance L between the curved top portions of the curved portions 11 a and 11 b and the peripheral surface of the immersion nozzle 21 is determined from the position of the lower end portions of the electromagnetic stirring devices 7 a and 7 b. In the range H up to a position 50 mm higher than the upper end portions of the electromagnetic stirring devices 7a and 7b, it is set to be 30 mm to 80 mm. The length of h in FIG. 5 is 50 mm.
  • the depth D of the depressions forming the curved portions 11a and 11b in order to ensure 30 mm to 80 mm as the shortest horizontal distance L between the curved top portions of the curved portions 11a and 11b and the peripheral surface of the immersion nozzle 21 is the long side
  • the electromagnetic stirrers 7a and 7b are considered to be weak when the electromagnetic stirrers 7a and 7b are moved away from the molten steel in consideration of the strength of the back plates 5a and 5b.
  • the depth D of the dent can be appropriately set in consideration of the point of suppressing the thickness of the dent.
  • the lower limit of the depth D of the recess is 5 mm or more, preferably 10 mm or more. That is, the depth D is preferably 5 mm or more and 50 mm or less, and more preferably 10 mm or more and 40 mm or less.
  • the lower part of the immersion nozzle 21 is immersed in the molten steel M in the mold 2 at the time of casting.
  • hatching of the molten steel M is omitted in order to clearly show the structure in the continuous casting apparatus 1.
  • two discharge holes 22 for discharging molten steel into the mold 2 obliquely downward are formed. These discharge holes 22 are formed at positions facing the short side walls 4 a and 4 b of the mold 2.
  • the discharge flow 23 discharged from each discharge hole 22 includes bubbles of Ar gas blown for nozzle cleaning, and other inclusions such as alumina and slag. These bubbles and inclusions float up to the vicinity of the meniscus 24.
  • a molten powder 25 having a molten oxide is supplied by a supply mechanism (not shown).
  • a solidified shell 26 is formed on the inner surface of the mold 2 by cooling and solidifying the molten steel M.
  • the electromagnetic stirring devices 7a and 7b each have an electromagnetic coil, receive an AC power supplied from a power source (not shown), generate an electromagnetic force, and apply a thrust to the molten steel M in the upper part of the mold 2. . And the molten steel M which received this thrust generate
  • the electromagnetic brake devices 8a and 8b which are arranged below the electromagnetic stirring devices 7a and 7b and are constituted by electromagnets or the like, are used for the mold 2 with respect to the discharge flow 23 of the molten steel M immediately after being discharged from the discharge holes 22.
  • a DC magnetic field having a substantially uniform magnetic flux density distribution in the mold width direction (X direction in FIGS. 1 and 2) along the long side walls 3a and 3b is applied to the short side walls 4a and 4b of the mold 2. It can be applied in the mold thickness direction (Y direction in FIGS. 1 and 2) along.
  • the DC magnetic field and the discharge flow 23 of the molten steel M discharged from each discharge hole 22 generate an induced current in the mold width direction (X direction in FIGS.
  • the continuous casting apparatus 1 is configured as described above. Next, the continuous casting method of the molten steel M using this continuous casting apparatus 1 is demonstrated.
  • molten steel M is discharged from the discharge holes 22 of the immersion nozzle 21 into the mold 2 while Ar gas is blown into the immersion nozzle 21.
  • Molten steel M is discharged obliquely downward, and a discharge flow 23 is formed from each discharge hole 22 toward the short side walls 4 a and 4 b of the mold 2.
  • These discharge flows 23 contain Ar gas bubbles and other inclusions, which float in the molten steel M in the mold 2 and eventually rise by buoyancy due to the specific gravity difference between them and the molten steel M.
  • the electromagnetic brake devices 8a and 8b may be operated.
  • these electromagnetic brake devices 8a and 8b are used, a counter flow opposite to the flow of the discharge flow 23 is formed in the molten steel M.
  • bubbles and other inclusions in the discharge flow 23 can be prevented from penetrating deeply into the molten steel M, and diffusion to the periphery of the immersion nozzle 21 can be suppressed. And then rises to the vicinity of the meniscus 24 in the counterflow.
  • the electromagnetic stirrers 7a and 7b are also operated simultaneously with the operation of the electromagnetic brake devices 8a and 8b, so that the stir flow is generated in the molten steel M near the meniscus 24 in the mold 2 by the electromagnetic agitation as described above. Is formed. Then, the Ar gas bubbles, etc., which have risen up to the vicinity of the meniscus 24 in the above-described countercurrent flow, are swirled by this stirring flow, and are not trapped by the solidified shell 26 of the mold 2, for example, melted with molten oxide. It is taken in and removed by the powder 25.
  • curved regions 9a and 9b are formed between the curved portions 11a and 11b and the immersion nozzle 21, respectively.
  • the magnetic flux density is about the same in both (1) molten steel M flowing in the curved regions 9a and 9b and (2) molten steel M flowing linearly at positions other than the curved regions 9a and 9b.
  • the back plates 5a and 5b are portions corresponding to the curved portions 11a and 11b.
  • the magnetic flux density is uneven.
  • the electromagnetic field of electromagnetic stirring is generally an alternating magnetic field, it is attenuated in the conductor, and the attenuation is more severe as the electrical conductivity is higher.
  • this type of back plate 5a, 5b is made of nonmagnetic austenitic stainless steel, its electrical conductivity is much smaller than that of copper long side walls 3a, 3b. Therefore, even if the thickness of the back plates 5a and 5b is partially reduced, there is almost no influence, and a uniform magnetic flux density can be obtained even in the molten steel M flowing in the curved regions 9a and 9b.
  • the inventors actually measured the magnetic flux density with a gauss meter and found it, the following was found. That is, when viewed along the height direction of the continuous casting apparatus 1, from the curved top portion of the curved portion 11a having the central position of the electromagnetic stirrer 7a and the recess depth D of 30 mm to the immersion nozzle 21 side.
  • the magnetic flux density was measured using a gauss meter at a point 10 mm away, the fluctuation was only 10% or less compared to the magnetic flux density of the linear portion other than the curved portion 11a of the long side wall 3a. was confirmed.
  • the magnetic flux density at the same height of the continuous casting apparatus 1 is measured at a plurality of locations and compared, the measured value at the point corresponding to the curved portion 11a and the flat portions on both sides of the curved portion 11a. It was confirmed that there was no difference of about 10% with the measured value at.
  • a curved part having a dent depth D of 30 mm is formed by cutting the long side wall by a curved concave surface as in the prior art, and the thickness of the curved part is reduced, It was also confirmed that the magnetic flux density was about 40% higher than the magnetic flux density of the linear portion of the long side wall. That is, like the structure of the prior art shown in FIG.
  • the outer side surface of the long side wall is kept flat, only the inner side surface is formed with a curved concave surface similar to the above embodiment, and the magnetic flux density is measured. Similar evaluations were made. As a result, it was confirmed that the measured value at the point corresponding to the curved portion was about 40% higher than the measured value at the flat portions on both sides of the curved portion. Therefore, it can confirm also from the point which the effect of this embodiment takes.
  • the shortest horizontal distance L between the curved top part of the curved parts 11a and 11b and the immersion nozzle 21 will be from the lower end part of the electromagnetic stirring apparatuses 7a and 7b.
  • a range H up to a position 50 mm higher than the upper end portions of 7 a and 7 b it is set to be 30 mm to 80 mm.
  • the flow rate of the stirring flow that flows through the curved regions 9a and 9b can be made uniform, and a smooth and uniform flow of the molten steel M can be ensured. Can be stirred. Therefore, it is possible to suppress trapping of bubbles and the like by the solidified shell 26 from this point.
  • the electromagnetic brake devices 8a and 8b are also used, the floating of inclusions such as bubbles in the molten steel M is promoted, and the diffusion to the surroundings is further suppressed. It is possible to prevent bubbles and the like from being trapped by the solidified shell 26.
  • the shape of the bending portions 11a and 11b is as shown in FIGS. 2 and 4, and the boundary of the flat portion between the bending portion 11a and the periphery thereof as it goes to the lower end is that of the bending portion 11a.
  • the lower end portion is in a straight line shape (straight line SL along the X direction in 4 of FIGS. 2 and 4) parallel to the length direction of the long side wall 3a, and the long side wall 3a at both side portions of the curved portion 11a.
  • the shape was a straight line parallel to the height direction (straight line VL along the Z direction in FIGS. 2 and 4).
  • other shapes may be adopted as the shapes of the curved portions 11a and 11b. For example, as shown in FIG.
  • the boundary line between the curved portion and the other flat portion becomes the lowermost end as it goes to the lower end. It may be a so-called inverted bell-shaped curved portion 11c that converges and disappears at one point. That is, as shown in FIG. 6, a curved portion 11c having a semi-elliptical boundary line that tapers downward when the long side wall 3a is viewed from the opposite side may be employed.
  • the upper end positions of the electromagnetic stirring devices 7a and 7b having a height of 200 mm and a thrust of 100 mm Fe are the same height as the meniscus position.
  • the electromagnetic brake devices 8a and 8b arranged so as to exhibit the maximum magnetic flux density at a depth of 500 mm downward from the meniscus 24 were used. Further, casting was performed by inserting the immersion nozzle 21 having a maximum outer diameter of 190 mm and an inner diameter of 100 mm along the vertical direction from the meniscus 24 to the molten steel immersion portion which is located at a depth of 400 mm downward.
  • the continuous casting machine 1 of this example has a vertical portion with a bending radius of 7.5 m and 2.5 m. Using this continuous casting machine 1, low-carbon aluminum killed steel was cast at a casting speed of 2 m / min.
  • the discharge holes 22 of the immersion nozzle 21 are two holes with a hole diameter of 70 mm, facing the inner surface of the short side walls 4a and 4b of the space in the mold 2 and having a discharge angle ⁇ (see FIG. 2) of 30 degrees downward.
  • a nozzle was used as the immersion nozzle 21.
  • the long side walls 3a and 3b have a constant thickness of 30 mm, and a mold in which a normal long side copper plate is parallel and a central portion of the long side copper plate are press-molded, and the depth D of the meniscus 24 is set to 0, 5, 10 , 20, 30, 40, 50, and 55 mm, and the back plates 5a and 5b were cut. That is, when manufacturing the long side walls 3a and 3b, a rectangular copper plate having a uniform thickness of 30 mm is prepared, and press molding is performed on the central portion of the upper side of the copper plate. Seven types of long side walls 3a and 3b having a depth D of 0, 5, 10, 20, 30, 40, 50, and 55 mm at the vertical position were manufactured.
  • the hollow depth D being 0 mm means a mold having a long side wall without a hollow.
  • seven types of back plates 5a, 5b having different shapes (curved depths) of the curved concave portions so as to match the shapes (curved depth) of the curved portions 11a, 11b of these seven types of long side walls 3a, 3b. was made.
  • the thickness of each of the back plates 5a and 5b is 80 mm, the portion where the curved concave portion is formed is thinner than this.
  • the curved portions 11a and 11b in the long side walls 3a and 3b are formed with lengths of 400 mm on both sides from the mold width center in the casting width direction, and as shown in FIG.
  • the curved portions 11a (11b ) And the other flat portion is a straight line parallel to the length direction of the long side wall 3a (X direction in FIG. 2) at the lower end portion of the curved portion 11a (11b), and both sides of the curved portion 11a.
  • the portion has a rectangular shape that is a straight line parallel to the height direction of the long side wall 3a (the Z direction in FIG. 2).
  • the long side walls 3a and 3b having such curved portions 11a and 11b were used as a part of the mold.
  • the bubbles and inclusion defects in the slab were evaluated by the index of the number of bubbles and inclusions having a diameter of 100 ⁇ m or more counted by observing the portion from the slab surface layer of the slab to a depth of 50 mm.
  • the index of the number of Ar gas bubbles in Table 1 is that the distance L (see FIG. 5) between the curved portions 11a and 11b and the immersion nozzle 21 is 25 mm, and the dent depth D is 0 mm, that is, the curved portions 11a and 11b.
  • the number of Ar gas bubbles in the case where the long side walls 3a and 3b are not formed is set to 1, and the ratio of the number of Ar gas bubbles in each condition is shown.
  • the distance L between the curved portions 11a and 11b and the immersion nozzle 21 is 25 mm and the depth D is 0 mm, that is, the curved portions 11a and 11b are connected to the long side wall 3a.
  • the number of inclusions when not forming in 3b is 1, and the ratio of the number of inclusions in each condition is shown.
  • the distance L between the curved part and immersion nozzle in Table 1 has shown the dimension in the lower end position of the electromagnetic stirring apparatuses 7a and 7b.
  • the hollow depth D has shown the dimension in the height position with the meniscus 24 as above-mentioned.
  • the electromagnetic brake devices 8a and 8b are not operated, and only the electromagnetic stirring devices 7a and 7b are operated.
  • Table 2 shows the results of operating the electromagnetic brake devices 8a and 8b under the same conditions as in Example 1 and using them together with the electromagnetic stirring devices 7a and 7b.
  • the present invention is useful when a molten steel is supplied into a mold to produce a slab.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

This continuous casting device for steel is provided with: a mold for molten steel casting, which is provided with a pair of long side walls and a pair of short side walls; a submerged nozzle that discharges molten steel within this mold; and electromagnetic stirring devices, which are disposed along the outside surfaces of each of the long side walls and which stir the upper part of the molten steel that is within the mold. In a plane view of the long side walls, curved parts that are curved convexly toward the electromagnetic stirring devices are formed at least in positions facing the nozzle, and the long side walls have a uniform thickness, inclusive of the curved parts. When the inside surface of a curved part is viewed in a plane view, the shortest horizontal distance between the apex, which is the deepest recessed position, and the outer peripheral surface of the submerged nozzle is 30 - 80 mm in a range from the lower end part of the electromagnetic stirring devices up to a position 50 mm higher than the upper end part of the electromagnetic stirring devices when viewed along the perpendicular direction.

Description

鋼の連続鋳造装置Steel continuous casting equipment
 本発明は、鋳型内に溶鋼を供給して鋳片を製造する鋼の連続鋳造装置に関する。 The present invention relates to a steel continuous casting apparatus that supplies molten steel into a mold to produce a slab.
 鋼の連続鋳造において、鋳片の表面性状を改善するために、従来から、鋳型の上部近傍に設置された電磁コイルを有する電磁攪拌装置を用いて、この鋳型内の溶鋼を電磁攪拌することが行われている。 In continuous casting of steel, in order to improve the surface properties of the slab, conventionally, the molten steel in this mold is electromagnetically stirred using an electromagnetic stirring device having an electromagnetic coil installed near the upper part of the mold. Has been done.
 この電磁攪拌では、例えば鋳型をなす一対の長辺壁に沿って電磁攪拌装置が配置される。そして、浸漬ノズルから鋳型内に溶鋼が吐出されると、電磁攪拌装置に電流を供給して、鋳型内の溶鋼の上部分に対して推力が付与される。この推力によって溶鋼が水平面内で攪拌されて、この溶鋼の旋回流が形成される。この旋回流によって、鋳型内上部のメニスカス近傍の介在物、気泡等が、鋳型内の側面に形成された凝固シェルに捕捉されてしまうのを抑制している。 In this electromagnetic stirring, for example, an electromagnetic stirring device is arranged along a pair of long side walls forming a mold. And when molten steel is discharged in a casting_mold | template from an immersion nozzle, an electric current is supplied to an electromagnetic stirring apparatus and a thrust is provided with respect to the upper part of the molten steel in a casting_mold | template. With this thrust, the molten steel is stirred in a horizontal plane, and a swirling flow of the molten steel is formed. This swirling flow prevents inclusions, bubbles, etc. near the meniscus in the upper part of the mold from being trapped by the solidified shell formed on the side surface in the mold.
 しかしながら、鋳型内に浸漬ノズルが浸漬されているため、長辺壁と浸漬ノズルとの間の領域がその他の領域よりも狭くなっている。このため、長辺壁と浸漬ノズルとの間の領域では、それ以外の領域に比べると、溶鋼が流れ難くなる。
 また、鋳型内の浸漬ノズルの周囲には介在物等が付着して堆積し易い。このように堆積した付着物は、その厚みが数10mmに達する場合もある。このため、長辺壁と浸漬ノズルとの間の領域が他の部位よりも狭くなる。そうすると、前記した旋回流の流路が部分的に狭くなり、長辺壁と浸漬ノズルとの間の領域においては、溶鋼が流れ難くなる。
However, since the immersion nozzle is immersed in the mold, the region between the long side wall and the immersion nozzle is narrower than the other regions. For this reason, in the area | region between a long side wall and an immersion nozzle, compared with the area | region other than that, molten steel becomes difficult to flow.
In addition, inclusions and the like are easily deposited around the immersion nozzle in the mold. The deposits thus deposited may reach a thickness of several tens of millimeters. For this reason, the area | region between a long side wall and an immersion nozzle becomes narrower than another site | part. If it does so, the above-mentioned flow path of a swirl flow will become partially narrow, and it will become difficult to flow molten steel in the field between a long side wall and an immersion nozzle.
 そこで、前記した電磁攪拌装置を用いると共に、炉内側面が平らな平行型の鋳型に代えて、図7に示したような、長辺壁101、102における浸漬ノズル103と対向する面104、105が、各々電磁攪拌装置106、107側に向かって凸に湾曲した、いわゆる異形鋳型を用いることが提案されている(特許文献1)。なお、同図7において長辺壁101、102と電磁攪拌装置106、107との間に配置されているのは、長辺壁101、102を冷却する冷却水の流路(図示せず)が設けられたステンレス鋼製のバックプレート108、109である。 Accordingly, the above-described electromagnetic stirring device is used, and instead of the parallel mold having a flat furnace inner surface, surfaces 104 and 105 facing the immersion nozzle 103 in the long side walls 101 and 102 as shown in FIG. However, it has been proposed to use so-called deformed molds that are convexly curved toward the electromagnetic stirrers 106 and 107, respectively (Patent Document 1). In FIG. 7, the cooling water flow path (not shown) for cooling the long side walls 101 and 102 is disposed between the long side walls 101 and 102 and the electromagnetic stirrers 106 and 107. The stainless steel back plates 108 and 109 are provided.
 上記異形鋳型によれば、長辺壁101、102における浸漬ノズル103と対向する面104、105が、各々、電磁攪拌装置106、107側に凸に湾曲しているので、浸漬ノズル103と、長辺壁101、102との間の最短水平距離が、従来の平行鋳型よりも長くなり、その分、旋回流110、111の流路を広く確保することができ、溶鋼が流れやすくなっている。 According to the deformed mold, the surfaces 104 and 105 facing the immersion nozzle 103 in the long side walls 101 and 102 are curved to protrude toward the electromagnetic stirrers 106 and 107, respectively. The shortest horizontal distance between the side walls 101 and 102 is longer than that of the conventional parallel mold, and accordingly, the flow paths of the swirl flows 110 and 111 can be secured widely, so that the molten steel flows easily.
日本国特開2008-183597号公報Japanese Laid-Open Patent Publication No. 2008-183597
 しかしながら、前記した従来技術では、長辺壁101、102における浸漬ノズル103と対向する面104、105を凹状に湾曲させるために、銅製の長辺壁101、102の中央部を削っている。そのため、長辺壁101、102の厚みが、湾曲した面104、105の部分で、極端に薄くなっている。一般に電磁攪拌装置106、107による電磁場は、交流磁場であるから、導体内で磁場が減衰する。従って、これら湾曲した面104、105の部分では、直線状の他の部分よりも磁場の減衰が小さいため、電磁力が強くなり、湾曲した面104、105と浸漬ノズル103との間の領域の撹拌流の流速が、他の領域よりも速くなる。その結果、撹拌流110、111の流速が部分的に不均一となり、長辺壁101、102における撹拌流110、111の下流側の領域112、113で流れの乱れや停滞域が発生し、介在物、気泡等が凝固シェルに捕捉されやすくなるという問題があった。そのため、期待したほどの鋼の品質の向上が得られなかった。 However, in the above-described prior art, the central portions of the long side walls 101 and 102 made of copper are shaved so that the surfaces 104 and 105 facing the immersion nozzle 103 in the long side walls 101 and 102 are curved in a concave shape. Therefore, the thickness of the long side walls 101 and 102 is extremely thin at the curved surfaces 104 and 105. Generally, since the electromagnetic field generated by the electromagnetic stirring devices 106 and 107 is an alternating magnetic field, the magnetic field attenuates in the conductor. Therefore, in these curved surfaces 104 and 105, the attenuation of the magnetic field is smaller than in the other linear portions, so that the electromagnetic force is increased, and the region between the curved surfaces 104 and 105 and the immersion nozzle 103 is increased. The flow rate of the stirring flow is faster than other areas. As a result, the flow rates of the stirring flows 110 and 111 are partially non-uniform, and flow turbulence and stagnation occur in the regions 112 and 113 downstream of the stirring flows 110 and 111 in the long side walls 101 and 102. There is a problem that objects, bubbles, and the like are easily captured by the solidified shell. Therefore, the improvement of the quality of steel as expected was not obtained.
 さらに本発明者らが調べたところ、前記したように単に湾曲した面104、105を形成して撹拌流110、111を流れやすくしただけでは、介在物が、長辺壁101、102の凝固シェルに捕捉されるのを抑制できないことが分かった。すなわち、湾曲した面104、105と浸漬ノズル103との間の水平距離を長くすれば、気泡の捕捉は抑制できるものの、湾曲した面104、105の部分では、やはり電磁力が強くなり、湾曲した面104、105と浸漬ノズル103との間の領域を流れる撹拌流の流速が、他の領域を流れる攪拌流の流速よりも速くなるため、撹拌流110、111の下流側の領域112、113で流れの乱れや停滞域が発生し、介在物が凝固シェルに捕捉されやすくなるという問題が解決しないことが判明した。 Furthermore, as a result of investigations by the present inventors, it was found that the inclusions were solidified shells of the long side walls 101 and 102 simply by forming the curved surfaces 104 and 105 to facilitate the flow of the stirring flows 110 and 111 as described above. It was found that it was not possible to suppress the trapping. That is, if the horizontal distance between the curved surfaces 104 and 105 and the immersion nozzle 103 is increased, the trapping of bubbles can be suppressed. However, the curved surfaces 104 and 105 also have a strong electromagnetic force and are curved. Since the flow rate of the stirring flow that flows through the region between the surfaces 104 and 105 and the immersion nozzle 103 is faster than the flow rate of the stirring flow that flows through the other regions, the region 112 and 113 downstream of the stirring flow 110 and 111 It has been found that the problem of turbulence and stagnation in the flow and the inclusion being easily trapped by the solidified shell cannot be solved.
 本発明は、かかる点に鑑みてなされたものであり、電磁攪拌装置を有する鋼の連続鋳造装置において、異形鋳型であっても、鋳型内の上部の溶鋼の流速を均一なものとし、さらに鋳型内の凹状に湾曲した面と浸漬ノズルとの間の水平距離を適切なものとすることで、鋳造される鋳片の品質を向上させることを目的としている。 The present invention has been made in view of the above points, and in a continuous casting apparatus for steel having an electromagnetic stirring device, the flow rate of the molten steel at the upper part in the mold is made uniform even in a deformed mold. It aims at improving the quality of the cast slab cast by making the horizontal distance between the concave curved surface inside and the immersion nozzle appropriate.
 前記の目的を達成するため、本発明は、以下の手段を採用した。
(1)すなわち、本発明の一態様に係る鋼の連続鋳造装置は、一対の長辺壁及び一対の短辺壁を備えた溶鋼鋳造用の鋳型と;この鋳型内に溶鋼を吐出する浸漬ノズルと;前記各長辺壁の各外側面に沿って配置され、前記鋳型内にある前記溶鋼の上部を攪拌する電磁攪拌装置と;を備え、前記各長辺壁の、少なくとも前記浸漬ノズルに対向する位置に、平面視した場合に前記電磁攪拌装置に向かって凸に湾曲した湾曲部が形成され、かつ前記各長辺壁は前記各湾曲部を含めて一様な厚みを有し;前記湾曲部の内側面を平面視した場合に最も深く窪んだ位置である頂部と前記浸漬ノズルの外周面との間の最短水平距離が、鉛直方向に沿って見た場合の、前記電磁攪拌装置の下端部から前記電磁攪拌装置の上端部よりも50mm高い位置までの範囲において、30mm以上かつ80mm以下である。
In order to achieve the above object, the present invention employs the following means.
(1) That is, a continuous casting apparatus for steel according to an aspect of the present invention includes a mold for casting molten steel having a pair of long side walls and a pair of short side walls; and an immersion nozzle for discharging the molten steel into the mold And an electromagnetic stirrer disposed along each outer side surface of each long side wall and stirring the upper part of the molten steel in the mold, and facing at least the immersion nozzle of each long side wall Curved portions that are convexly curved toward the electromagnetic stirrer when viewed in a plan view are formed, and the long side walls have a uniform thickness including the curved portions; The bottom end of the electromagnetic stirrer when the shortest horizontal distance between the apex that is the deepest depression when viewed in plan and the outer peripheral surface of the immersion nozzle is viewed along the vertical direction To a position 50 mm higher than the upper end of the electromagnetic stirrer Oite is 30mm or more and 80mm or less.
(2)上記(1)の態様において、前記各電磁攪拌装置の下方に配置された電磁ブレーキ装置をさらに備え;この電磁ブレーキ装置が、平面視した場合に、前記各長辺壁に沿った鋳型幅方向に一様な磁束密度分布を有する直流磁界を、前記各短辺壁に沿った鋳型厚み方向に付与する;構成を採用してもよい。
 また、上記(1)の態様において、前記最短水平距離が、鉛直方向に沿って見た場合の、前記電磁攪拌装置の下端部から前記電磁攪拌装置の上端部よりも50mm高い位置までの範囲において、50mm以上かつ75mm以下であることがより好ましい。
(2) In the above aspect (1), the electromagnetic brake device further includes an electromagnetic brake device disposed below each of the electromagnetic stirring devices; when the electromagnetic brake device is viewed in a plan view, a mold along each of the long side walls A DC magnetic field having a uniform magnetic flux density distribution in the width direction is applied in the mold thickness direction along each short side wall;
Moreover, in the aspect of said (1), when the said shortest horizontal distance is seen along a perpendicular direction, in the range from the lower end part of the said electromagnetic stirring apparatus to a position 50 mm higher than the upper end part of the said electromagnetic stirring apparatus More preferably, it is 50 mm or more and 75 mm or less.
 上記(1)に記載の態様によれば、各長辺壁は、少なくとも前記浸漬ノズルに対向する位置に、前記電磁攪拌装置側に向かって凸に湾曲した湾曲部を有し、かつ各長辺壁はこの湾曲部を含めて一様な厚みを持って構成されているので、電磁攪拌装置により発生される電磁力は、湾曲部及びそれ以外の部分において共に一様なものとなり、その結果、撹拌流の流速を均一なものとすることができる。すなわち、各長辺壁を平面視した場合における前記電磁力の強度分布が、湾曲部及びこの湾曲部以外の部分とで同じとなるので、従来のような、湾曲部に相当する箇所で部分的に電磁力が強まることを防げる。
 したがって、従来のような流れの乱れや停滞域の発生を抑えることが可能であり、気泡等が凝固シェルに捕捉されやすくなることを抑制できる。
According to the aspect as described in said (1), each long side wall has a curved part which curved at the position which opposes the said immersion nozzle at least toward the said electromagnetic stirring apparatus side, and each long side Since the wall is configured to have a uniform thickness including the curved portion, the electromagnetic force generated by the electromagnetic stirring device is uniform in both the curved portion and the other portions. The flow rate of the stirring flow can be made uniform. That is, when the long side walls are viewed in plan, the intensity distribution of the electromagnetic force is the same in the curved portion and the portions other than the curved portion. To prevent the electromagnetic force from increasing.
Therefore, it is possible to suppress the occurrence of the turbulent flow and the stagnation region as in the conventional case, and it is possible to suppress the bubbles and the like from being easily trapped by the solidified shell.
 また、湾曲部の頂部と浸漬ノズルとの間の最短水平距離は、この連続鋳造装置の高さ方向で見た場合に、前記電磁攪拌装置の下端部の位置から、前記電磁攪拌装置の上端部よりも50mm高い位置までの範囲において、30mm以上かつ80mm以下に設定したので、湾曲部の頂部と浸漬ノズルとの間の領域においても、溶鋼の円滑でかつ均一な流れを確保することができる。 Further, the shortest horizontal distance between the top of the curved portion and the immersion nozzle is the upper end of the electromagnetic stirring device from the position of the lower end of the electromagnetic stirring device when viewed in the height direction of the continuous casting device. Since it was set to 30 mm or more and 80 mm or less in a range up to a position 50 mm higher than that, a smooth and uniform flow of molten steel can be ensured even in the region between the top of the curved portion and the immersion nozzle.
 すなわち、本発明者らが新たに得た知見では、湾曲部の頂部及び浸漬ノズル間の最短水平距離が30mm未満であると、湾曲領域において溶鋼が流れ難くなり、溶鋼中の気泡等が凝固シェルに捕捉され易くなる。一方、前記最短水平距離が80mm超であると、湾曲領域において溶鋼の均一な流れを確保し難くなり、溶鋼の流速が遅い領域では、溶鋼中の介在物が凝固シェルに捕捉され易くなる。 That is, according to the knowledge newly obtained by the present inventors, when the shortest horizontal distance between the top of the curved portion and the immersion nozzle is less than 30 mm, it becomes difficult for molten steel to flow in the curved region, and bubbles or the like in the molten steel become solidified shells. It becomes easy to be captured. On the other hand, when the shortest horizontal distance is more than 80 mm, it is difficult to ensure a uniform flow of the molten steel in the curved region, and in the region where the molten steel has a low flow rate, inclusions in the molten steel are easily captured by the solidified shell.
 本発明では、このような知見に基づいて、湾曲部の頂部と浸漬ノズルとの間の最短水平距離を30mm以上かつ80mm以下に設定したので、湾曲部の頂部と浸漬ノズルとの間の湾曲領域において、溶鋼の撹拌流の円滑でかつ均一な流れを確保して、溶鋼中の気泡が凝固シェルに捕捉されることを抑制できる。 In the present invention, since the shortest horizontal distance between the top of the curved portion and the immersion nozzle is set to 30 mm or more and 80 mm or less based on such knowledge, the curved region between the top of the curved portion and the immersion nozzle is set. Therefore, it is possible to secure a smooth and uniform flow of the stirring flow of the molten steel, and to prevent the bubbles in the molten steel from being trapped by the solidified shell.
 また、そのように湾曲部の頂部と浸漬ノズルとの間の最短水平距離を30mm~80mmに設定する高さ方向の範囲は、電磁攪拌装置の下端部から、電磁攪拌装置の上端部よりも50mm高い位置までの範囲までとしている。これは、電磁攪拌装置が発生させる電磁力によって溶鋼の直接撹拌される部分が、電磁攪拌装置の下端部から上端部に対応する部分であるが、実際の操業時においては、電磁攪拌装置の上端部よりも高い位置にメニスカス面が位置することがあるためである。また、一般的に、電磁攪拌装置の上端部よりも高い位置にメニスカス面が位置する場合、その高さは、概ね電磁攪拌装置の上端部よりも50mm高い位置までである。したがって、湾曲部の頂部と浸漬ノズルとの間の最短水平距離を、30mm以上かつ80mm以下に設定する高さ方向の範囲は、電磁攪拌装置の下端部から、電磁攪拌装置の上端部よりも50mm高い位置までとしている。 Further, the range in the height direction in which the shortest horizontal distance between the top of the curved portion and the immersion nozzle is set to 30 mm to 80 mm is 50 mm from the lower end portion of the electromagnetic stirring device to the upper end portion of the electromagnetic stirring device. The range is up to a high position. This is because the portion where the molten steel is directly stirred by the electromagnetic force generated by the electromagnetic stirring device corresponds to the upper end portion from the lower end portion of the electromagnetic stirring device, but in the actual operation, the upper end of the electromagnetic stirring device. This is because the meniscus surface may be positioned higher than the portion. In general, when the meniscus surface is located at a position higher than the upper end portion of the electromagnetic stirring device, the height is approximately 50 mm higher than the upper end portion of the electromagnetic stirring device. Therefore, the range in the height direction in which the shortest horizontal distance between the top of the curved portion and the immersion nozzle is set to 30 mm or more and 80 mm or less is 50 mm from the lower end portion of the electromagnetic stirring device to the upper end portion of the electromagnetic stirring device. It is going to the high position.
 なお、長辺壁が持つ一様な厚みとは、ボルト穴や冷却水溝等が形成されている部分を除き、厚みの変動による溶鋼内への電磁場の浸透度合いの変化が、許容範囲の誤差となる10%未満厚みのことを言う。これについて説明すると、長辺壁の外側から所定の磁束密度を持つ磁場を鋳型内に向かって与えた場合、鋳型の内部に誘起される磁場強度が、長辺壁の厚みの大小に応じて損失を生じる。すなわち、長辺壁の厚みが変わると、鋳型内への磁場の浸透深さが変化する。長辺壁が厚くなると磁場が浸透しにくくなる。よって、前記損失の大きさに伴って鋳型内の磁場強度が変動するが、この変動が長辺壁の壁面に沿った水平方向で見た場合に10%未満となるように、長辺壁の厚みが一様になっている。
 また、長辺壁が持つ一様な厚みの高さ方向の範囲は、電磁撹拌装置の作用効果からして、電磁攪拌装置の下端部から、電磁攪拌装置の上端部よりも50mm高い位置までの範囲であればよい。
 なお、「長辺壁が持つ一様な厚み」についてさらに補足説明する。鉛直方向に沿って配置された長辺壁を平面視した場合に、湾曲部の部分における厚みと、この湾曲部以外の隣接部分における厚みとの相対関係が特に重要となる。すなわち、上記(1)における「各長辺壁は前記各湾曲部を含めて一様な厚みを有し」の意味であるが、湾曲部の部分における厚みをt1とし、この湾曲部以外の部分における厚みをt2とした場合に、t1がt2の±10%以内である(0.9×t2≦t1≦1.1×t2である)ことを意味する。なお、t1=t2であることが最も好ましい。
Note that the uniform thickness of the long side wall means that the change in the degree of penetration of the electromagnetic field into the molten steel due to the variation in thickness, excluding the parts where bolt holes and cooling water grooves are formed, is an allowable error. The thickness is less than 10%. To explain this, when a magnetic field having a predetermined magnetic flux density is applied from the outside of the long side wall toward the inside of the mold, the magnetic field strength induced inside the mold is lost depending on the thickness of the long side wall. Produce. That is, when the thickness of the long side wall changes, the penetration depth of the magnetic field into the mold changes. When the long side wall is thick, the magnetic field is less likely to penetrate. Therefore, the magnetic field strength in the mold fluctuates with the magnitude of the loss, but the fluctuation of the long side wall is such that this fluctuation is less than 10% when viewed in the horizontal direction along the wall surface of the long side wall. The thickness is uniform.
Moreover, the range of the height direction of the uniform thickness which a long side wall has is from the lower end part of an electromagnetic stirring apparatus to the position 50 mm higher than the upper end part of an electromagnetic stirring apparatus from the effect of an electromagnetic stirring apparatus. Any range is acceptable.
In addition, a supplementary explanation will be given for the “uniform thickness of the long side wall”. When the long side wall arranged along the vertical direction is viewed in plan, the relative relationship between the thickness of the curved portion and the thickness of the adjacent portion other than the curved portion is particularly important. That is, in the above (1), it means “each long side wall has a uniform thickness including each curved portion”, but the thickness of the curved portion is t1, and the portion other than the curved portion. T1 is within ± 10% of t2 (0.9 × t2 ≦ t1 ≦ 1.1 × t2). It is most preferable that t1 = t2.
 また、上記(2)に記載したように、この鋼の連続鋳造装置において、いわゆる電磁ブレーキ装置を電磁攪拌装置と併用してもよい。すなわち、前記電磁攪拌装置の下方に配置され、前記鋳型の長辺壁に沿った鋳型幅方向に一様な磁束密度分布を有する直流磁界を、前記鋳型の短辺壁に沿った鋳型厚み方向に付与する電磁ブレーキ装置をさらに備えていてもよい。
 この場合、浸漬ノズルから吐出される溶鋼中の気泡、介在物の浮上を促進させ、溶鋼内に気泡や介在物が浮遊して、これが鋳造される鋳片内に残留して品質の低下を招く事を抑えることができる。よって、さらに鋳片の品質を向上させることができる。
 なお、上記(2)における「一様な磁束密度」について補足説明すると、鋳型を平面視した上で長辺壁に沿った鋳型幅方向での磁束密度分布を見た場合に、電磁ブレーキ装置のコイル部分の長さ寸法内における磁束密度のばらつきが、その平均に対して±30%以内であることを意味する。
Further, as described in (2) above, in this steel continuous casting apparatus, a so-called electromagnetic brake device may be used in combination with an electromagnetic stirring device. That is, a DC magnetic field that is disposed below the electromagnetic stirrer and has a uniform magnetic flux density distribution in the mold width direction along the long side wall of the mold is applied in the mold thickness direction along the short side wall of the mold. You may further provide the electromagnetic brake device to provide.
In this case, the bubbles and inclusions in the molten steel discharged from the immersion nozzle are promoted to float, and the bubbles and inclusions float in the molten steel, which remains in the cast slab and causes quality deterioration. You can suppress things. Therefore, the quality of the slab can be further improved.
In addition, to explain the “uniform magnetic flux density” in (2) above, when the magnetic flux density distribution in the mold width direction along the long side wall is viewed in plan view, the electromagnetic brake device It means that the variation in magnetic flux density within the length dimension of the coil portion is within ± 30% of the average.
 以上説明のように、本発明によれば、鋳造される鋳片に含まれる気泡等を減少させて、その品質を向上させることができる。 As described above, according to the present invention, bubbles and the like contained in a cast slab can be reduced, and the quality can be improved.
本発明の一実施の形態にかかる連続鋳造装置の、鋳型近傍部分の概略構成を示す平面模式図である。It is a plane schematic diagram which shows schematic structure of the casting_mold | template vicinity part of the continuous casting apparatus concerning one embodiment of this invention. 同連続鋳造装置を、図1のA-A断面で見た場合の縦断面図である。FIG. 2 is a longitudinal sectional view when the continuous casting apparatus is viewed in the AA section of FIG. 1. 同連続鋳造装置を、図1のB-B断面で見た場合の縦断面図である。FIG. 2 is a longitudinal sectional view of the continuous casting apparatus when viewed in the section BB of FIG. 同連続鋳造装置の長辺壁の斜視図である。It is a perspective view of the long side wall of the continuous casting apparatus. 図3に相当する図であって、この連続鋳造装置の鋳型周りのサイズを示すための縦断面図である。FIG. 4 is a view corresponding to FIG. 3, which is a longitudinal sectional view for showing a size around a mold of the continuous casting apparatus. 同連続鋳造装置の変形例を示す図であって、他の形状の湾曲部を有する場合の、図2に相当する縦断面図である。It is a figure which shows the modification of the same continuous casting apparatus, Comprising: It is a longitudinal cross-sectional view corresponded in FIG. 2 in the case of having a curved part of another shape. 従来の連続鋳造装置の、鋳型近傍部分の概略構成を示すための平面模式図である。It is a plane schematic diagram for showing the schematic structure of the mold vicinity part of the conventional continuous casting apparatus.
 以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる鋼の連続鋳造装置1の鋳型近傍の構成を、平面視で模式的に示した説明図であり、図2は、同じく正面の断面を模式的に示した説明図であり、図3は、同じく側面の断面を模式的に示した説明図である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is an explanatory view schematically showing a configuration in the vicinity of a mold of a continuous casting apparatus 1 for steel according to the present embodiment, and FIG. 2 schematically shows a front cross section. It is explanatory drawing and FIG. 3 is explanatory drawing which showed the cross section of the side surface similarly.
 連続鋳造装置1は、図1に示すように、例えば、平面視で略長方形の鋳型2を有している。鋳型2は、一対の長辺壁3a、3bと、一対の短辺壁4a、4bとを有している。長辺壁3a、3b、短辺壁4a、4bはいずれも銅板によって構成され、それらの外側には、長辺壁3a、3b、短辺壁4a、4bを補強する非磁性体のオーステナイト系ステンレス製のバックプレート5a、5b、6a、6bが配置されている。すなわち、長辺壁3aの外側にはバックプレート5aが配置され、長辺壁3bの外側にはバックプレート5bが配置され、短辺壁4aの外側にはバックプレート6aが配置され、短辺壁4bの外側にはバックプレート6bが配置されている。
 そしてバックプレート5a、5bの外側には、それぞれ電磁コイルを有する電磁撹拌装置7a、7bが配置されている。そして、電磁撹拌装置7a、7bの真下には、電磁ブレーキ装置8a、8bが配置されている。すなわち、バックプレート5aの外側には電磁撹拌装置7a及び電磁ブレーキ装置8aが配置され、なおかつ電磁ブレーキ装置8aが電磁撹拌装置7aの真下に配置されている。また、バックプレート5bの外側には電磁撹拌装置7b及び電磁ブレーキ装置8bが配置され、なおかつ電磁ブレーキ装置8bが電磁撹拌装置7bの真下に配置されている。
As shown in FIG. 1, the continuous casting apparatus 1 has a substantially rectangular mold 2 in a plan view, for example. The mold 2 has a pair of long side walls 3a and 3b and a pair of short side walls 4a and 4b. The long side walls 3a and 3b and the short side walls 4a and 4b are all made of a copper plate, and on the outside thereof, a non-magnetic austenitic stainless steel that reinforces the long side walls 3a and 3b and the short side walls 4a and 4b. Made back plates 5a, 5b, 6a, 6b are arranged. That is, the back plate 5a is arranged outside the long side wall 3a, the back plate 5b is arranged outside the long side wall 3b, the back plate 6a is arranged outside the short side wall 4a, and the short side wall A back plate 6b is disposed outside 4b.
Electromagnetic stirrers 7a and 7b each having an electromagnetic coil are disposed outside the back plates 5a and 5b. And electromagnetic brake device 8a, 8b is arrange | positioned directly under electromagnetic stirring apparatus 7a, 7b. That is, the electromagnetic stirring device 7a and the electromagnetic brake device 8a are disposed outside the back plate 5a, and the electromagnetic brake device 8a is disposed directly below the electromagnetic stirring device 7a. Further, an electromagnetic stirring device 7b and an electromagnetic brake device 8b are disposed outside the back plate 5b, and the electromagnetic brake device 8b is disposed directly below the electromagnetic stirring device 7b.
 本実施の形態において、短辺壁4a、4bを平面視した場合の長さ(鋳造厚み)は、例えば50mm~300mm程度である。この長さは、要求される鋳片幅によって決定され、薄幅鋳片であれば50mm~80mm程度であり、中厚幅鋳片であれば80mm~150mm程度であり、通常幅の鋳片であれば150mm~300mm程度である。なお、長辺壁3a、3bに沿った水平方向(図1~図3中のX方向)を鋳型幅方向といい、短辺壁4a、4bに沿った水平方向(図1、図3中のY方向)を鋳型厚み方向という。 In the present embodiment, the length (casting thickness) when the short side walls 4a and 4b are viewed in plan is, for example, about 50 mm to 300 mm. This length is determined by the required slab width. For thin slabs, it is about 50 mm to 80 mm. For medium thickness slabs, it is about 80 mm to 150 mm. If there is, it is about 150 mm to 300 mm. The horizontal direction along the long side walls 3a and 3b (X direction in FIGS. 1 to 3) is referred to as the mold width direction, and the horizontal direction along the short side walls 4a and 4b (in FIGS. 1 and 3). (Y direction) is called mold thickness direction.
 長辺壁3a、3bを平面視した場合の各内側面の中央部には、電磁撹拌装置7a、7b側に向かって凸に湾曲した湾曲部11a、11bが形成されている。各湾曲部11a、11bは、後述する鋳型2内に設けられた浸漬ノズル21に対向する位置に形成されている。長辺壁3a、3bを平面視した場合におけるそれらの延在方向に沿った厚み分布は、湾曲部11a、11bの部分が、その両隣の直線状の部分と変わることがなく、水平方向に沿って一様な厚みを有するように成型されている。具体的には、たとえばプレス成型等によって、長辺壁3a、3bに、湾曲部11a、11bが形成されている。
 さらに詳細に言うと、湾曲部11aは、長辺壁3aの内壁面が前記浸漬ノズル21より離間するよう湾曲した内側面11a1と、長辺壁3aの外壁面が前記浸漬ノズル21より離間するように湾曲した外側面11a2とにより形成されている。同様に、湾曲部11bは、長辺壁3bの内壁面が前記浸漬ノズル21より離間するように湾曲した内側面11b1と、長辺壁3bの外壁面が前記浸漬ノズル21より離間するように湾曲した外側面11b2とにより形成されている。
Curved portions 11a and 11b that are convexly curved toward the electromagnetic stirrers 7a and 7b are formed at the center of each inner surface when the long side walls 3a and 3b are viewed in plan. Each bending part 11a, 11b is formed in the position which opposes the immersion nozzle 21 provided in the casting_mold | template 2 mentioned later. When the long side walls 3a and 3b are viewed in plan, the thickness distribution along the extending direction of the long side walls 3a and 3b does not change between the curved portions 11a and 11b and the linear portions adjacent to both sides, and the thickness distribution along the horizontal direction. And has a uniform thickness. Specifically, the curved portions 11a and 11b are formed on the long side walls 3a and 3b, for example, by press molding or the like.
More specifically, the curved portion 11 a includes an inner side surface 11 a 1 that is curved so that an inner wall surface of the long side wall 3 a is separated from the immersion nozzle 21, and an outer wall surface of the long side wall 3 a is separated from the immersion nozzle 21. And an outer surface 11a2 that is curved. Similarly, the curved portion 11 b is curved so that the inner wall surface 11 b 1 curved so that the inner wall surface of the long side wall 3 b is separated from the immersion nozzle 21 and the outer wall surface of the long side wall 3 b are separated from the immersion nozzle 21. The outer surface 11b2 is formed.
 長辺壁3a、3bが湾曲部11a、11bを含む全ての位置で一様な厚みを持っているため、長辺壁3a、3bの各外側面は、湾曲部11a、11bをなす上記の外側面11a2、11b2において、電磁撹拌装置7a、7b側に向かって凸に湾曲している。
 なお、長辺壁3a、3bが持つ一様な厚みについてさらに補足説明すると、これら長辺壁3a、3bを平面視した場合において、湾曲部11a、11bにおける厚みをt1とし、この湾曲部11a、11b以外の両隣部分における厚みをt2とした場合に、t1がt2の±10%以内である(0.9×t2≦t1≦1.1×t2である)ことを意味する。なお、t1=t2であることが最も好ましい。
 バックプレート5a、5bには、長辺壁3a、3bの各湾曲部11a、11bの各外側面11a2、11b2がなす湾曲形状と適合するように、その中央内側面が、電磁撹拌装置7a、7b側に向かって凸に湾曲した形状の部分を有している。ただし、バックプレート5a、5bにおける外側面、すなわち電磁撹拌装置7a、7b側を向いた面は、平坦(平面)に成型されている。
Since the long side walls 3a and 3b have a uniform thickness at all positions including the curved portions 11a and 11b, the outer side surfaces of the long side walls 3a and 3b have the above-mentioned outer sides forming the curved portions 11a and 11b. The side surfaces 11a2 and 11b2 are convexly curved toward the electromagnetic stirring devices 7a and 7b.
In addition, to further explain the uniform thickness of the long side walls 3a, 3b, when the long side walls 3a, 3b are viewed in plan, the thickness of the curved portions 11a, 11b is t1, and the curved portions 11a, 11b, This means that t1 is within ± 10% of t2 (0.9 × t2 ≦ t1 ≦ 1.1 × t2), where t2 is the thickness of both adjacent portions other than 11b. It is most preferable that t1 = t2.
The central inner side surfaces of the back plates 5a and 5b have electromagnetic stirring devices 7a and 7b so as to match the curved shapes formed by the outer side surfaces 11a2 and 11b2 of the curved portions 11a and 11b of the long side walls 3a and 3b. It has a portion that is curved convexly toward the side. However, the outer surfaces of the back plates 5a and 5b, that is, the surfaces facing the electromagnetic stirrers 7a and 7b are formed flat (planar).
 なお通常、この種のバックプレートには、銅製の長辺壁を冷却するための冷却水流路がその内部に形成されているが、この流路をバックプレート5a、5bに形成するには、たとえばバックプレート5a、5bにおける長辺壁3a、3bと接する側の表面(内側面)に、溝状の流路を形成することで、容易に冷却水流路を形成することが可能である。すなわち、溝状の流路が内側面に形成されたバックプレート5a、5bを、それらの内側面が長辺壁3a、3bの外側面と密着するように重ね合わせて組み付けることで、溝状の流路を容易に形成することができる。 Normally, this type of back plate has a cooling water channel for cooling the long side wall made of copper formed therein, but in order to form this channel in the back plates 5a and 5b, for example, By forming a groove-like channel on the surface (inner side surface) of the back plate 5a, 5b on the side in contact with the long side walls 3a, 3b, it is possible to easily form the cooling water channel. That is, the back plates 5a and 5b having the groove-shaped flow paths formed on the inner side surfaces are assembled so that the inner side surfaces are in close contact with the outer side surfaces of the long side walls 3a and 3b. The flow path can be easily formed.
 各湾曲部11a、11bは、たとえば図2及び図3に示すように、長辺壁3a、3bの各上端位置から下方に向かって、浸漬ノズル21に対向して形成される。湾曲部11a、11bの各下端位置は、浸漬ノズル21の下端位置と同じ高さでもよく、または、浸漬ノズル21の下端位置より下方になるように形成されていてもよい。湾曲部11a、11bと浸漬ノズル21との間の空間(隙間)には、図1に示すように、各々、湾曲領域9a、9bが形成される。 The curved portions 11a and 11b are formed to face the immersion nozzle 21 downward from the upper end positions of the long side walls 3a and 3b, for example, as shown in FIGS. The lower end positions of the curved portions 11 a and 11 b may be the same height as the lower end position of the immersion nozzle 21, or may be formed below the lower end position of the immersion nozzle 21. As shown in FIG. 1, curved regions 9a and 9b are formed in spaces (gap) between the curved portions 11a and 11b and the immersion nozzle 21, respectively.
 湾曲部11a、11bは、それらの下端に行くにつれて次第に湾曲した部分が消失していく形状(すなわち、湾曲部11a、11bを形成する窪んだ部分が徐々に浅くなって消失していく形状)をなしている。本実施の形態では、図4にも示したように、たとえば長辺壁3aの内側面において、湾曲部11aとそれ以外の平坦部分との境界線は、湾曲部11aの下端部分では長辺壁3aの長さ方向と平行な直線状(図4中のX方向に沿った水平な直線SL)であり、湾曲部11aの両側縁部分では、長辺壁3aの高さ方向と平行な直線状(図4中のZ方向に沿った延長方向の直線VL)をなしている。 The curved portions 11a and 11b have shapes in which the curved portions gradually disappear as they go to the lower ends thereof (that is, shapes in which the recessed portions forming the curved portions 11a and 11b gradually become shallower and disappear). There is no. In the present embodiment, as shown in FIG. 4, for example, on the inner surface of the long side wall 3a, the boundary line between the curved portion 11a and the other flat portion is the long side wall at the lower end portion of the curved portion 11a. 3a is a straight line parallel to the length direction of 3a (horizontal straight line SL along the X direction in FIG. 4), and is a straight line parallel to the height direction of the long side wall 3a at both side edges of the curved portion 11a. (A straight line VL in the extending direction along the Z direction in FIG. 4).
 図5に示すように、湾曲部11a、11bを、それらの板厚方向に沿った断面で見た場合、それらの湾曲頂部(最も深く窪んだ箇所)と浸漬ノズル21の周面との間の最短水平距離Lは、湾曲部11a、11bの下端に向かうにつれて次第に窪んだ部分の深さが浅くなって消失していくテーパ形状であるため、高さ方向によってその長さが異なっている。本実施の形態では、電磁攪拌装置7a、7bの各下端部の位置から、この電磁攪拌装置7a、7bの上端部よりも50mm高い位置までの範囲において、前記最短水平距離Lが30mm~80mmとなるように設定されている。なお、この最短水平距離Lとしては、ここで規定している30mm~80mmが好ましいが、50mm以上かつ75mm以下であることがより好ましい。 As shown in FIG. 5, when the curved portions 11 a and 11 b are viewed in a cross section along the plate thickness direction, between the curved top portions (the deepest recessed portions) and the peripheral surface of the immersion nozzle 21. Since the shortest horizontal distance L has a tapered shape in which the depth of the concave portion gradually decreases toward the lower ends of the curved portions 11a and 11b and disappears, the length varies depending on the height direction. In the present embodiment, the shortest horizontal distance L is 30 mm to 80 mm in the range from the position of each lower end of the electromagnetic stirring devices 7a and 7b to a position 50 mm higher than the upper end of the electromagnetic stirring devices 7a and 7b. It is set to be. The shortest horizontal distance L is preferably 30 mm to 80 mm as defined herein, but more preferably 50 mm or more and 75 mm or less.
 すなわち、これを図5に即して説明すると、湾曲部11a、11bの湾曲頂部と浸漬ノズル21の周面との間の最短水平距離Lは、電磁攪拌装置7a、7bの下端部の位置から、電磁攪拌装置7a、7bの上端部よりも50mm高い位置までの範囲Hにおいて、30mm~80mmとなるように設定されている。図5中のhの長さは、50mmである。 That is, this will be described with reference to FIG. 5. The shortest horizontal distance L between the curved top portions of the curved portions 11 a and 11 b and the peripheral surface of the immersion nozzle 21 is determined from the position of the lower end portions of the electromagnetic stirring devices 7 a and 7 b. In the range H up to a position 50 mm higher than the upper end portions of the electromagnetic stirring devices 7a and 7b, it is set to be 30 mm to 80 mm. The length of h in FIG. 5 is 50 mm.
 湾曲部11a、11bの湾曲頂部と浸漬ノズル21の周面との間の最短水平距離Lとして30mm~80mmを確保するための、湾曲部11a、11bを形成する窪みの深さDは、長辺壁3a、3bの厚さにもよるが、バックプレート5a、5bの強度を考慮し、また電磁攪拌装置7a、7bが、溶鋼から位置的に遠ざかると電磁力そのものが弱くなってしまうため、全体の厚みを抑える点を考慮して、窪みの深さDを適宜、設定できる。窪みの深さDの上限としては、50mm以下、好ましくは40mm以下が例示できる。一方、窪みの深さDの下限としては、5mm以上、好ましくは10mm以上が例示できる。すなわち、深さDは、5mm以上かつ50mm以下であることが好ましく、10mm以上かつ40mm以下であることがより好ましい。 The depth D of the depressions forming the curved portions 11a and 11b in order to ensure 30 mm to 80 mm as the shortest horizontal distance L between the curved top portions of the curved portions 11a and 11b and the peripheral surface of the immersion nozzle 21 is the long side Although depending on the thickness of the walls 3a and 3b, the electromagnetic stirrers 7a and 7b are considered to be weak when the electromagnetic stirrers 7a and 7b are moved away from the molten steel in consideration of the strength of the back plates 5a and 5b. The depth D of the dent can be appropriately set in consideration of the point of suppressing the thickness of the dent. As an upper limit of the depth D of a hollow, 50 mm or less, Preferably 40 mm or less can be illustrated. On the other hand, the lower limit of the depth D of the recess is 5 mm or more, preferably 10 mm or more. That is, the depth D is preferably 5 mm or more and 50 mm or less, and more preferably 10 mm or more and 40 mm or less.
 前記した浸漬ノズル21は、図3に示したように、鋳造時においては、その下部が鋳型2内の溶鋼Mに浸漬する。なお、同図3では、連続鋳造装置1内の構造を明瞭に示すために、溶鋼Mのハッチングを省略している。浸漬ノズル21の側面の下端近傍には、鋳型2内へ斜め下向きに溶鋼を吐出する吐出孔22が2箇所形成されている。これら吐出孔22は、鋳型2の短辺壁4a、4bのそれぞれに対向する位置に形成されている。各吐出孔22から吐出される吐出流23には、ノズル洗浄のために吹き込まれたArガスの気泡や、その他アルミナやスラグ系等の介在物などが含まれている。これら気泡や介在物は、メニスカス24近傍まで浮上する。なお、メニスカス24上には、溶融酸化物を有する溶融パウダー25が図示されない供給機構により供給されている。 As shown in FIG. 3, the lower part of the immersion nozzle 21 is immersed in the molten steel M in the mold 2 at the time of casting. In FIG. 3, hatching of the molten steel M is omitted in order to clearly show the structure in the continuous casting apparatus 1. Near the lower end of the side surface of the immersion nozzle 21, two discharge holes 22 for discharging molten steel into the mold 2 obliquely downward are formed. These discharge holes 22 are formed at positions facing the short side walls 4 a and 4 b of the mold 2. The discharge flow 23 discharged from each discharge hole 22 includes bubbles of Ar gas blown for nozzle cleaning, and other inclusions such as alumina and slag. These bubbles and inclusions float up to the vicinity of the meniscus 24. On the meniscus 24, a molten powder 25 having a molten oxide is supplied by a supply mechanism (not shown).
 鋳型2の内側面には、図3に示すように、溶鋼Mが冷却されて凝固した凝固シェル26が形成される。 As shown in FIG. 3, a solidified shell 26 is formed on the inner surface of the mold 2 by cooling and solidifying the molten steel M.
 電磁撹拌装置7a、7bは、それぞれ、電磁コイルを有し、図示されない電源より供給される交流電力を受けて電磁力を発生し、鋳型2内の上部にある溶鋼Mに対して推力を付与する。そして、この推力を受けた溶鋼Mは、鋳型2内で浸漬ノズル21の周囲を水平に旋回して溶鋼Mを撹拌する撹拌流を発生させる。この攪拌流によって、鋳型2内上部のメニスカス24近傍の介在物、気泡等が、鋳型2内の側面に形成された凝固シェル26により捕捉されてしまうのを抑制している。 The electromagnetic stirring devices 7a and 7b each have an electromagnetic coil, receive an AC power supplied from a power source (not shown), generate an electromagnetic force, and apply a thrust to the molten steel M in the upper part of the mold 2. . And the molten steel M which received this thrust generate | occur | produces the stirring flow which swirls around the immersion nozzle 21 horizontally in the casting_mold | template 2, and stirs the molten steel M. FIG. By this stirring flow, inclusions, bubbles, etc. near the meniscus 24 in the upper part of the mold 2 are suppressed from being trapped by the solidified shell 26 formed on the side surface in the mold 2.
 電磁攪拌装置7a、7bそれぞれの下方に配置された、電磁石などによって構成される電磁ブレーキ装置8a、8bは、各吐出孔22から吐出された直後の溶鋼Mの吐出流23に対して、鋳型2の長辺壁3a、3bに沿った鋳型幅方向(図1、図2中のX方向)に亘ってほぼ一様な磁束密度分布を有する直流磁界を、鋳型2の短辺壁4a、4bに沿った鋳型厚み方向(図1、図2中のY方向)に付与することができる。この直流磁界と各吐出孔22から吐出された溶鋼Mの吐出流23とによって、鋳型幅方向(図1、図2中のX方向)に向かう誘導電流が発生し、この誘導電流と前記直流磁界によって、吐出流23の近傍に、この吐出流23と逆向きに向かう対向流が形成される。この対向流によって、吐出流23中の気泡や介在部が、溶鋼M内に深く侵入することを抑制でき、また、これら気泡や介在部の浮上を促進させ、凝固シェル26に捕捉されることを抑えることができる。
 なお、上記「一様な磁束密度」について補足説明すると、鋳型2を平面視した上で長辺壁3a、3bに沿った鋳型幅方向での磁束密度分布を見た場合に、電磁ブレーキ装置8a、8bのコイル部分の長さ寸法内における磁束密度のばらつきが、その平均に対して±30%以内であることを意味する。
The electromagnetic brake devices 8a and 8b, which are arranged below the electromagnetic stirring devices 7a and 7b and are constituted by electromagnets or the like, are used for the mold 2 with respect to the discharge flow 23 of the molten steel M immediately after being discharged from the discharge holes 22. A DC magnetic field having a substantially uniform magnetic flux density distribution in the mold width direction (X direction in FIGS. 1 and 2) along the long side walls 3a and 3b is applied to the short side walls 4a and 4b of the mold 2. It can be applied in the mold thickness direction (Y direction in FIGS. 1 and 2) along. The DC magnetic field and the discharge flow 23 of the molten steel M discharged from each discharge hole 22 generate an induced current in the mold width direction (X direction in FIGS. 1 and 2), and this induced current and the DC magnetic field As a result, an opposing flow directed in the opposite direction to the discharge flow 23 is formed in the vicinity of the discharge flow 23. By this counterflow, it is possible to prevent bubbles and intervening portions in the discharge flow 23 from entering deeply into the molten steel M, and to promote the rising of these bubbles and intervening portions and be captured by the solidified shell 26. Can be suppressed.
The “uniform magnetic flux density” will be supplementarily explained. When the magnetic flux density distribution in the mold width direction along the long side walls 3a and 3b is seen after the mold 2 is viewed in plan, the electromagnetic brake device 8a. , 8b, the variation in magnetic flux density within the length of the coil portion is within ± 30% of the average.
 本実施の形態にかかる連続鋳造装置1は、以上のように構成されている。次に、この連続鋳造装置1を用いた、溶鋼Mの連続鋳造方法について説明する。 The continuous casting apparatus 1 according to the present embodiment is configured as described above. Next, the continuous casting method of the molten steel M using this continuous casting apparatus 1 is demonstrated.
 先ず、浸漬ノズル21内にArガスを吹き込みながら、浸漬ノズル21の各吐出孔22から鋳型2内に溶鋼Mを吐出する。溶鋼Mは斜め下方に向かって吐出され、各吐出孔22から鋳型2の短辺壁4a、4bに向かって吐出流23が形成される。これら吐出流23にはArガスの気泡やその他の介在物が含まれており、これらが鋳型2内の溶鋼M中に浮遊し、やがて、それらと溶鋼Mとの比重差による浮力によって上昇する。 First, molten steel M is discharged from the discharge holes 22 of the immersion nozzle 21 into the mold 2 while Ar gas is blown into the immersion nozzle 21. Molten steel M is discharged obliquely downward, and a discharge flow 23 is formed from each discharge hole 22 toward the short side walls 4 a and 4 b of the mold 2. These discharge flows 23 contain Ar gas bubbles and other inclusions, which float in the molten steel M in the mold 2 and eventually rise by buoyancy due to the specific gravity difference between them and the molten steel M.
 そして、浸漬ノズル21から溶鋼Mを吐出すると同時に、電磁ブレーキ装置8a、8bを作動させても良い。これら電磁ブレーキ装置8a、8bを用いる場合は、溶鋼M内に、吐出流23の流れと逆向きの対向流が形成される。その結果、前記したように、吐出流23内の気泡やその他の介在物が、溶鋼M内に深く侵入することを抑制でき、また浸漬ノズル21の周囲への拡散が抑えられ、浸漬ノズル21近傍から、前記対向流に乗って、メニスカス24近傍まで浮上する。 And at the same time as the molten steel M is discharged from the immersion nozzle 21, the electromagnetic brake devices 8a and 8b may be operated. When these electromagnetic brake devices 8a and 8b are used, a counter flow opposite to the flow of the discharge flow 23 is formed in the molten steel M. As a result, as described above, bubbles and other inclusions in the discharge flow 23 can be prevented from penetrating deeply into the molten steel M, and diffusion to the periphery of the immersion nozzle 21 can be suppressed. And then rises to the vicinity of the meniscus 24 in the counterflow.
 そして、電磁ブレーキ装置8a、8bの作動と同時に、電磁攪拌装置7a、7bも作動させることで、前記したような、電磁力による電磁攪拌により、鋳型2内のメニスカス24近傍の溶鋼Mに攪拌流が形成される。そして、前記した対向流に乗ってメニスカス24近傍まで浮上した、Arガスの気泡等は、この攪拌流によって旋回し、鋳型2の凝固シェル26に捕捉されることなく、例えば溶融酸化物を有する溶融パウダー25に取り込まれて除去される。 Then, the electromagnetic stirrers 7a and 7b are also operated simultaneously with the operation of the electromagnetic brake devices 8a and 8b, so that the stir flow is generated in the molten steel M near the meniscus 24 in the mold 2 by the electromagnetic agitation as described above. Is formed. Then, the Ar gas bubbles, etc., which have risen up to the vicinity of the meniscus 24 in the above-described countercurrent flow, are swirled by this stirring flow, and are not trapped by the solidified shell 26 of the mold 2, for example, melted with molten oxide. It is taken in and removed by the powder 25.
 鋳型2の長辺壁3a、3bの各上部中央位置に湾曲部11a、11bが形成されているので、これら湾曲部11a、11bと浸漬ノズル21との間に、湾曲領域9a、9bが形成される。この時、長辺壁3a、3bは、この湾曲部11a、11bも含めて、一様な厚みを有しているので、前記した電磁攪拌装置7a、7bにより溶鋼Mに付与される電磁力の磁束密度が、(1)湾曲領域9a、9b内を流れる溶鋼Mにおいても、(2)湾曲領域9a、9b以外の位置で直線的に流れる溶鋼Mにおいても、互いに同程度となる。したがって、溶鋼Mの流れ方向に沿って均一な流速の攪拌流を形成することができるので、長辺壁3a、3bにおける撹拌流の下流側の領域(図7を用いて説明した従来技術における前記領域112、113)で流れの乱れや停滞域が発生することを抑えることができる。したがって、これら停滞域の発生に起因する、気泡等の凝固シェルへの捕捉を抑制することが可能になっている。 Since the curved portions 11a and 11b are formed at the upper center positions of the long side walls 3a and 3b of the mold 2, curved regions 9a and 9b are formed between the curved portions 11a and 11b and the immersion nozzle 21, respectively. The At this time, since the long side walls 3a and 3b have a uniform thickness including the curved portions 11a and 11b, the electromagnetic force applied to the molten steel M by the electromagnetic stirring devices 7a and 7b described above. The magnetic flux density is about the same in both (1) molten steel M flowing in the curved regions 9a and 9b and (2) molten steel M flowing linearly at positions other than the curved regions 9a and 9b. Accordingly, since a stirring flow having a uniform flow rate can be formed along the flow direction of the molten steel M, the region on the downstream side of the stirring flow in the long side walls 3a and 3b (the above-described conventional technology described with reference to FIG. 7). It is possible to suppress the occurrence of turbulence and stagnation in the regions 112 and 113). Therefore, it is possible to suppress trapping of bubbles and the like in the solidified shell due to the occurrence of these stagnant areas.
 なお、長辺壁3a、3bが、湾曲部11a、11bも含めてその各位置で一様な厚みを有しているが、バックプレート5a、5bは、湾曲部11a、11bに対応する部分での厚みが薄くなっており、その分、磁束密度の不均一さが発生する。しかしながら、一般に電磁攪拌の電磁場は交流磁場であるため、導体内で減衰し、特に電気伝導度が高いほど減衰が激しい。そして、この種のバックプレート5a、5bは、非磁性体のオーステナイト系ステンレス製であるため、その電気伝導度は、銅製の長辺壁3a、3bよりもはるかに小さい。したがって、バックプレート5a、5bの厚みが部分的に薄くなっていてもその影響は殆どなく、湾曲領域9a、9b内を流れる溶鋼Mにおいても、均一な磁束密度が得られる。 Although the long side walls 3a and 3b have a uniform thickness at each position including the curved portions 11a and 11b, the back plates 5a and 5b are portions corresponding to the curved portions 11a and 11b. As a result, the magnetic flux density is uneven. However, since the electromagnetic field of electromagnetic stirring is generally an alternating magnetic field, it is attenuated in the conductor, and the attenuation is more severe as the electrical conductivity is higher. Since this type of back plate 5a, 5b is made of nonmagnetic austenitic stainless steel, its electrical conductivity is much smaller than that of copper long side walls 3a, 3b. Therefore, even if the thickness of the back plates 5a and 5b is partially reduced, there is almost no influence, and a uniform magnetic flux density can be obtained even in the molten steel M flowing in the curved regions 9a and 9b.
 実際に本発明者らがガウスメータで磁束密度を測定して調べたところ、以下のことが判った。すなわち、連続鋳造装置1の高さ方向に沿って見た場合、電磁攪拌装置7aの高さ中心位置でかつ、窪み深さDが30mmである湾曲部11aの湾曲頂部から、浸漬ノズル21側に向かって10mm寄った地点で、ガウスメータを用いて磁束密度を測定したところ、長辺壁3aの湾曲部11a以外の直線状の部分の磁束密度と比較しても、10%以下の変動しかない事が確認できた。すなわち、連続鋳造装置1の同一高さにおける磁束密度を複数箇所で測定してこれらを比較したところ、湾曲部11aに対応する上記地点における測定値と、湾曲部11aの両脇にある平坦な部分における測定値とでは、10%程度の差しか無いことが確認された。
 参考のために言うと、窪み深さDが30mmの湾曲部を、従来技術にあるように、湾曲凹面だけ長辺壁を削って形成し、この湾曲部の厚さが薄くなった場合には、長辺壁の直線状の部分の磁束密度よりも40%程度、その磁束密度が高くなっていることも確認できた。すなわち、図7で示した従来技術の構造と同様に、長辺壁の外側面は平坦なままとし、内側面のみに、上記実施例と同様の湾曲凹面を形成し、磁束密度を計測して同様の評価を行った。その結果、湾曲部に対応する上記地点における測定値が、湾曲部の両脇にある平坦な部分における測定値よりも40%程度高くなっていることが確認された。したがって、本実施形態の効果がかかる点からも確認できる。
When the inventors actually measured the magnetic flux density with a gauss meter and found it, the following was found. That is, when viewed along the height direction of the continuous casting apparatus 1, from the curved top portion of the curved portion 11a having the central position of the electromagnetic stirrer 7a and the recess depth D of 30 mm to the immersion nozzle 21 side. When the magnetic flux density was measured using a gauss meter at a point 10 mm away, the fluctuation was only 10% or less compared to the magnetic flux density of the linear portion other than the curved portion 11a of the long side wall 3a. Was confirmed. That is, when the magnetic flux density at the same height of the continuous casting apparatus 1 is measured at a plurality of locations and compared, the measured value at the point corresponding to the curved portion 11a and the flat portions on both sides of the curved portion 11a. It was confirmed that there was no difference of about 10% with the measured value at.
For reference, when a curved part having a dent depth D of 30 mm is formed by cutting the long side wall by a curved concave surface as in the prior art, and the thickness of the curved part is reduced, It was also confirmed that the magnetic flux density was about 40% higher than the magnetic flux density of the linear portion of the long side wall. That is, like the structure of the prior art shown in FIG. 7, the outer side surface of the long side wall is kept flat, only the inner side surface is formed with a curved concave surface similar to the above embodiment, and the magnetic flux density is measured. Similar evaluations were made. As a result, it was confirmed that the measured value at the point corresponding to the curved portion was about 40% higher than the measured value at the flat portions on both sides of the curved portion. Therefore, it can confirm also from the point which the effect of this embodiment takes.
 図5を用いて説明すると、本実施の形態では、湾曲部11a、11bの湾曲頂部と浸漬ノズル21との間の最短水平距離Lが、電磁攪拌装置7a、7bの下端部から、電磁攪拌装置7a、7bの上端部よりも50mm高い位置までの範囲Hにおいて、30mm~80mmとなるように設定されている。この構成によれば、湾曲領域9a、9bを流れる攪拌流の流速を均一にすることができ、溶鋼Mの円滑でかつ均一な流れを確保することができるので、鋳型2内で溶鋼Mを十分に攪拌することが可能になっている。したがって、気泡等が凝固シェル26で捕捉されることを、かかる点からも抑制できる。 If it demonstrates using FIG. 5, in this Embodiment, the shortest horizontal distance L between the curved top part of the curved parts 11a and 11b and the immersion nozzle 21 will be from the lower end part of the electromagnetic stirring apparatuses 7a and 7b. In a range H up to a position 50 mm higher than the upper end portions of 7 a and 7 b, it is set to be 30 mm to 80 mm. According to this configuration, the flow rate of the stirring flow that flows through the curved regions 9a and 9b can be made uniform, and a smooth and uniform flow of the molten steel M can be ensured. Can be stirred. Therefore, it is possible to suppress trapping of bubbles and the like by the solidified shell 26 from this point.
 さらに、本実施の形態では、電磁ブレーキ装置8a、8bも併用しているので、溶鋼M中の気泡等の介在物の浮上が促進されるともに、周囲への拡散が抑えられており、より一層、気泡等が凝固シェル26で捕捉をされることを抑制できる。 Further, in the present embodiment, since the electromagnetic brake devices 8a and 8b are also used, the floating of inclusions such as bubbles in the molten steel M is promoted, and the diffusion to the surroundings is further suppressed. It is possible to prevent bubbles and the like from being trapped by the solidified shell 26.
 なお、本実施の形態では、湾曲部11a、11bの形状が、図2、図4に示したような、下端に行くにつれて湾曲部11aとその周囲との平坦部分の境界が、湾曲部11aの下端部分では長辺壁3aの長さ方向と平行な直線状(図2、図4の4中のX方向に沿った直線SL)であり、また湾曲部11aの両側部分では、長辺壁3aの高さ方向と平行な直線状(図2、図4中のZ方向に沿った直線VL)となる形状であった。しかしながら、湾曲部11a、11bの形状としては他の形状を採用してもよく、例えば図6に示したような、下端に行くにつれて湾曲部とそれ以外の平坦部分との境界線が、最下端の一点で収束して消失するような、いわゆる逆釣鐘形状の湾曲部11cとしてもよい。すなわち、図6に示すような、長辺壁3aを対向視した場合に下方に向かって先細りとなる半楕円形状の境界線を持つ湾曲部11cを採用しても良い。 In the present embodiment, the shape of the bending portions 11a and 11b is as shown in FIGS. 2 and 4, and the boundary of the flat portion between the bending portion 11a and the periphery thereof as it goes to the lower end is that of the bending portion 11a. The lower end portion is in a straight line shape (straight line SL along the X direction in 4 of FIGS. 2 and 4) parallel to the length direction of the long side wall 3a, and the long side wall 3a at both side portions of the curved portion 11a. The shape was a straight line parallel to the height direction (straight line VL along the Z direction in FIGS. 2 and 4). However, other shapes may be adopted as the shapes of the curved portions 11a and 11b. For example, as shown in FIG. 6, the boundary line between the curved portion and the other flat portion becomes the lowermost end as it goes to the lower end. It may be a so-called inverted bell-shaped curved portion 11c that converges and disappears at one point. That is, as shown in FIG. 6, a curved portion 11c having a semi-elliptical boundary line that tapers downward when the long side wall 3a is viewed from the opposite side may be employed.
 以下、本発明の実施例に係る鋼の連続鋳造装置を用いた場合における、溶鋼に含まれるArガス気泡、および介在物を除去する効果について説明する。本実施例を行うに際し、鋼の連続鋳造装置として、先に図1~図3に示した連続鋳造装置1を用いた。 Hereinafter, the effect of removing Ar gas bubbles and inclusions contained in the molten steel when the continuous casting apparatus for steel according to the embodiment of the present invention is used will be described. In carrying out this example, the continuous casting apparatus 1 previously shown in FIGS. 1 to 3 was used as a continuous casting apparatus for steel.
 幅が1200mm、高さが900mm、厚みが250mmの鋳型2内におけるメニスカス24の形成位置に、高さが200mm、推力が100mmFeの電磁攪拌装置7a、7bの各上端位置がメニスカス位置と同じ高さになるようにセットし、メニスカス24から下方に向かって500mm深さ位置で最大磁束密度を発揮するように配置した電磁ブレーキ装置8a、8bを使用した。また、メニスカス24から下方に向かって400mm深さ位置となる溶鋼浸漬部まで、最大外径190mm、内径100mmの浸漬ノズル21を鉛直方向に沿って挿入して鋳造を行った。 At the formation position of the meniscus 24 in the mold 2 having a width of 1200 mm, a height of 900 mm, and a thickness of 250 mm, the upper end positions of the electromagnetic stirring devices 7a and 7b having a height of 200 mm and a thrust of 100 mm Fe are the same height as the meniscus position. The electromagnetic brake devices 8a and 8b arranged so as to exhibit the maximum magnetic flux density at a depth of 500 mm downward from the meniscus 24 were used. Further, casting was performed by inserting the immersion nozzle 21 having a maximum outer diameter of 190 mm and an inner diameter of 100 mm along the vertical direction from the meniscus 24 to the molten steel immersion portion which is located at a depth of 400 mm downward.
 本実施例の連続鋳造機1は、曲げ半径7.5m、2.5mの垂直部を有している。この連続鋳造機1を用いて、低炭アルミキルド鋼を鋳造速度2m/分で鋳造した。浸漬ノズル21の吐出孔22は、鋳型2内の空間の短辺壁4a、4bの内側面に対向してかつ吐出角度θ(図2参照)が下向き30度である、孔径が70mmの2孔ノズルを浸漬ノズル21として用いた。 The continuous casting machine 1 of this example has a vertical portion with a bending radius of 7.5 m and 2.5 m. Using this continuous casting machine 1, low-carbon aluminum killed steel was cast at a casting speed of 2 m / min. The discharge holes 22 of the immersion nozzle 21 are two holes with a hole diameter of 70 mm, facing the inner surface of the short side walls 4a and 4b of the space in the mold 2 and having a discharge angle θ (see FIG. 2) of 30 degrees downward. A nozzle was used as the immersion nozzle 21.
 長辺壁3a、3bの厚みは30mm一定とし、通常の長辺銅板が平行な鋳型と、長辺銅板中央部分をプレス成型し、メニスカス24の位置における窪み深さDを、0、5、10、20、30、40、50、55mmとして、バックプレート5a、5bを削り込んだものとした。すなわち、長辺壁3a、3bを製作するに際しては、一様に30mmの厚みを有する長方形の銅板を用意し、この銅板の上辺中央部に対してプレス成形を行い、これにより、メニスカス24の高さ位置における窪み深さDがそれぞれ0、5、10、20、30、40、50、55mmである7種類の長辺壁3a、3bを製作した。なお、窪み深さDが0mmというのは、窪みがない長辺壁を有する鋳型を意味している。
 一方、これら7種の長辺壁3a、3bの湾曲部11a、11bの形状(湾曲深さ)に合致するように、湾曲凹部の形状(湾曲深さ)が異なる7種のバックプレート5a、5bを製作した。なお、各バックプレート5a、5bの厚みは80mmとしたが、湾曲凹部が形成された部分ではこれよりも薄くなっている。
 長辺壁3a、3bにおける湾曲部11a、11bは、鋳造幅方向の鋳型幅中心から両側に400mmずつの長さで形成し、図2に示したような、下端に行くにつれて湾曲部11a(11b)とそれ以外の平坦部分との境界が、湾曲部11a(11b)の下端部分では長辺壁3aの長さ方向(図2のX方向)と平行な直線状であり、湾曲部11aの両側部分では、長辺壁3aの高さ方向(図2のZ方向)と平行な直線状となる矩形形状とした。このような湾曲部11a、11bを持つ長辺壁3a、3bを、鋳型の一部として用いた。
The long side walls 3a and 3b have a constant thickness of 30 mm, and a mold in which a normal long side copper plate is parallel and a central portion of the long side copper plate are press-molded, and the depth D of the meniscus 24 is set to 0, 5, 10 , 20, 30, 40, 50, and 55 mm, and the back plates 5a and 5b were cut. That is, when manufacturing the long side walls 3a and 3b, a rectangular copper plate having a uniform thickness of 30 mm is prepared, and press molding is performed on the central portion of the upper side of the copper plate. Seven types of long side walls 3a and 3b having a depth D of 0, 5, 10, 20, 30, 40, 50, and 55 mm at the vertical position were manufactured. In addition, the hollow depth D being 0 mm means a mold having a long side wall without a hollow.
On the other hand, seven types of back plates 5a, 5b having different shapes (curved depths) of the curved concave portions so as to match the shapes (curved depth) of the curved portions 11a, 11b of these seven types of long side walls 3a, 3b. Was made. Although the thickness of each of the back plates 5a and 5b is 80 mm, the portion where the curved concave portion is formed is thinner than this.
The curved portions 11a and 11b in the long side walls 3a and 3b are formed with lengths of 400 mm on both sides from the mold width center in the casting width direction, and as shown in FIG. 2, the curved portions 11a (11b ) And the other flat portion is a straight line parallel to the length direction of the long side wall 3a (X direction in FIG. 2) at the lower end portion of the curved portion 11a (11b), and both sides of the curved portion 11a. The portion has a rectangular shape that is a straight line parallel to the height direction of the long side wall 3a (the Z direction in FIG. 2). The long side walls 3a and 3b having such curved portions 11a and 11b were used as a part of the mold.
 鋳片の気泡、介在物欠陥は、鋳片の鋳片表層から50mmの深さまでの部分を観察してカウントした100μm以上の直径を有する気泡及び介在物個数の指数で評価した。表1中のArガス気泡個数指標は、湾曲部11a、11bと浸漬ノズル21との間の距離L(図5参照)が25mmでかつ、窪み深さDが0mm、すなわち湾曲部11a、11bを長辺壁3a、3bに形成しない場合のArガス気泡の個数を1とし、これに対する、各条件におけるArガス気泡の個数の比率を示している。
 また、介在物個数指標についても、同様に、湾曲部11a、11bと浸漬ノズル21との間の距離Lが25mmでかつ、窪み深さDが0mm、すなわち湾曲部11a、11bを長辺壁3a、3bに形成しない場合の介在物の個数を1とし、これに対する、各条件における介在物の個数の比率を示している。なお、表1中の湾曲部と浸漬ノズル間の距離Lは、電磁攪拌装置7a、7bの下端位置での寸法を示している。また、窪み深さDは、上記の通り、メニスカス24がある高さ位置での寸法を示している。
The bubbles and inclusion defects in the slab were evaluated by the index of the number of bubbles and inclusions having a diameter of 100 μm or more counted by observing the portion from the slab surface layer of the slab to a depth of 50 mm. The index of the number of Ar gas bubbles in Table 1 is that the distance L (see FIG. 5) between the curved portions 11a and 11b and the immersion nozzle 21 is 25 mm, and the dent depth D is 0 mm, that is, the curved portions 11a and 11b. The number of Ar gas bubbles in the case where the long side walls 3a and 3b are not formed is set to 1, and the ratio of the number of Ar gas bubbles in each condition is shown.
Similarly, for the inclusion number index, the distance L between the curved portions 11a and 11b and the immersion nozzle 21 is 25 mm and the depth D is 0 mm, that is, the curved portions 11a and 11b are connected to the long side wall 3a. The number of inclusions when not forming in 3b is 1, and the ratio of the number of inclusions in each condition is shown. In addition, the distance L between the curved part and immersion nozzle in Table 1 has shown the dimension in the lower end position of the electromagnetic stirring apparatuses 7a and 7b. Moreover, the hollow depth D has shown the dimension in the height position with the meniscus 24 as above-mentioned.
 なお、本発明例の効果を確認するため、まず電磁ブレーキ装置8a、8bは作動させずに、電磁攪拌装置7a、7bのみを作動させた結果を表1に示した。 In addition, in order to confirm the effect of the example of the present invention, first, the electromagnetic brake devices 8a and 8b are not operated, and only the electromagnetic stirring devices 7a and 7b are operated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果によれば、距離Lが25mmである場合には、窪み深さDを5mmにして湾曲部11a、11bを形成しても、窪み深さDが0mmの場合と変わらず、Arガス気泡個数指標と介在物個数指標は共に1のままであり、Arガス気泡と介在物の個数を減少させることができないことが判った。
 ただ、距離Lが30mmでは、たとえ窪み深さDが5mmと浅いものであっても、Arガス気泡個数指標が0.6に低減している。
 また、距離Lが80mmでは、Arガス気泡個数指標は0.2と低いレベルにあり、しかも介在物個数指標も1.3と低いレベルにあるが、距離Lが85mmになると、介在物個数指標が2.0と飛躍的に増大することが分かった。
According to the results shown in Table 1, when the distance L is 25 mm, even when the depression depth D is 5 mm and the curved portions 11a and 11b are formed, the depression depth D is not different from the case of 0 mm. Both the Ar gas bubble number index and the inclusion number index remain 1, indicating that the number of Ar gas bubbles and inclusions cannot be reduced.
However, when the distance L is 30 mm, the Ar gas bubble number index is reduced to 0.6 even if the depth D is as shallow as 5 mm.
When the distance L is 80 mm, the Ar gas bubble number index is at a low level of 0.2, and the inclusion number index is also at a low level of 1.3, but when the distance L is 85 mm, the inclusion number index is Was found to increase dramatically to 2.0.
 次に、実施例1と同一条件で、電磁ブレーキ装置8a、8bを作動させて、電磁攪拌装置7a、7bと併用した結果を表2に示した。 Next, Table 2 shows the results of operating the electromagnetic brake devices 8a and 8b under the same conditions as in Example 1 and using them together with the electromagnetic stirring devices 7a and 7b.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果によれば、電磁ブレーキ8a、8bを作動させない場合と同様の傾向がみられた。すなわち、距離Lが25mmである場合には、窪み深さDを5mmにして湾曲部11a、11bを形成しても、Arガス気泡個数指標と介在物個数指標は共に1であり、窪み深さDが0mmの場合と変わらないため、Arガス気泡と介在物の個数を減少させることができない。
 一方、距離Lが30mmでは、窪み深さDが5mmであっても、Arガス気泡個数指標が0.5に半減している。
 そして、距離Lが80mmでは、Arガス気泡個数指標が0.1であり、表1に示した0.2よりもさらに低減している。したがって、電磁ブレーキ装置8a、8bを併用した場合には、Arガス気泡の除去に効果があることが確認できた。ただし、距離Lが85mmになると、Arガス気泡の除去効果は依然として高いものの、介在物個数指標が1.8と飛躍的に増大することが分かった。
According to the results shown in Table 2, the same tendency as when the electromagnetic brakes 8a and 8b were not operated was observed. That is, when the distance L is 25 mm, both the Ar gas bubble number index and the inclusion number index are 1, even if the curved portions 11a and 11b are formed with the recess depth D being 5 mm, and the recess depth is 1. Since D is not different from 0 mm, the number of Ar gas bubbles and inclusions cannot be reduced.
On the other hand, when the distance L is 30 mm, the Ar gas bubble number index is halved to 0.5 even if the recess depth D is 5 mm.
When the distance L is 80 mm, the Ar gas bubble number index is 0.1, which is further reduced from 0.2 shown in Table 1. Therefore, when the electromagnetic brake devices 8a and 8b were used in combination, it was confirmed that there was an effect in removing Ar gas bubbles. However, when the distance L was 85 mm, the effect of removing Ar gas bubbles was still high, but the inclusion number index increased dramatically to 1.8.
 本発明は、鋳型内に溶鋼を供給して鋳片を製造する際に有用である。 The present invention is useful when a molten steel is supplied into a mold to produce a slab.
  1  連続鋳造装置
  2  鋳型
  3a、3b 長辺壁
  4a、4b 短辺壁
  5a、5b、6a、6b バックプレート
  7a、7b 電磁攪拌装置
  8a、8b 電磁ブレーキ装置
  9a、9b 湾曲領域
 11a、11b、11c 湾曲部
 21  浸漬ノズル
 22  吐出孔
 23  吐出流
 24  メニスカス
 25  溶融パウダー
 26  凝固シェル
  M  溶鋼
DESCRIPTION OF SYMBOLS 1 Continuous casting apparatus 2 Mold 3a, 3b Long side wall 4a, 4b Short side wall 5a, 5b, 6a, 6b Back plate 7a, 7b Electromagnetic stirrer 8a, 8b Electromagnetic brake apparatus 9a, 9b Curved area 11a, 11b, 11c Curve Part 21 Immersion nozzle 22 Discharge hole 23 Discharge flow 24 Meniscus 25 Molten powder 26 Solidified shell M Molten steel

Claims (2)

  1.  一対の長辺壁及び一対の短辺壁を備えた溶鋼鋳造用の鋳型と;
     この鋳型内に溶鋼を吐出する浸漬ノズルと;
     前記各長辺壁の各外側面に沿って配置され、前記鋳型内にある前記溶鋼の上部を攪拌する電磁攪拌装置と;
    を備え、
     前記各長辺壁の、少なくとも前記浸漬ノズルに対向する位置に、平面視した場合に前記電磁攪拌装置に向かって凸に湾曲した湾曲部が形成され、かつ前記各長辺壁は前記各湾曲部を含めて一様な厚みを有し;
     前記湾曲部の内側面を平面視した場合に最も深く窪んだ位置である頂部と前記浸漬ノズルの外周面との間の最短水平距離が、鉛直方向に沿って見た場合の、前記電磁攪拌装置の下端部から前記電磁攪拌装置の上端部よりも50mm高い位置までの範囲において、30mm以上かつ80mm以下である;
    ことを特徴とする、鋼の連続鋳造装置。
    A mold for casting molten steel having a pair of long side walls and a pair of short side walls;
    An immersion nozzle for discharging molten steel into the mold;
    An electromagnetic stirrer disposed along each outer side surface of each long side wall and stirring the upper part of the molten steel in the mold;
    With
    In each of the long side walls, at least a position facing the immersion nozzle, a curved portion that is convexly curved toward the electromagnetic stirring device when viewed in plan is formed, and each of the long side walls is each of the curved portions. Having a uniform thickness including
    The electromagnetic stirrer when the shortest horizontal distance between the top portion which is the deepest recessed portion when viewed from the inside surface of the curved portion and the outer peripheral surface of the immersion nozzle is viewed along the vertical direction. In a range from the lower end of the upper end of the electromagnetic stirrer to a position 50 mm higher than the upper end of the electromagnetic stirrer;
    A continuous casting apparatus for steel.
  2.  前記各電磁攪拌装置の下方に配置された電磁ブレーキ装置をさらに備え;
     この電磁ブレーキ装置が、平面視した場合に、前記各長辺壁に沿った鋳型幅方向に一様な磁束密度分布を有する直流磁界を、前記各短辺壁に沿った鋳型厚み方向に付与する;
    ことを特徴とする、請求項1に記載の鋼の連続鋳造装置。
    An electromagnetic brake device disposed below each of the electromagnetic stirring devices;
    When viewed in plan, the electromagnetic brake device applies a DC magnetic field having a uniform magnetic flux density distribution in the mold width direction along the long side walls in the mold thickness direction along the short side walls. ;
    The continuous casting apparatus for steel according to claim 1, wherein:
PCT/JP2011/075868 2011-11-09 2011-11-09 Continuous casting device for steel WO2013069121A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL11875560T PL2754513T3 (en) 2011-11-09 2011-11-09 Continuous casting device for steel
EP11875560.2A EP2754513B1 (en) 2011-11-09 2011-11-09 Continuous casting device for steel
BR112014005417-7A BR112014005417B1 (en) 2011-11-09 2011-11-09 Continuous Casting Machine for Steel
US14/237,757 US20140190655A1 (en) 2011-11-09 2011-11-09 Continuous casting apparatus for steel
PCT/JP2011/075868 WO2013069121A1 (en) 2011-11-09 2011-11-09 Continuous casting device for steel
ES11875560.2T ES2695045T3 (en) 2011-11-09 2011-11-09 Continuous casting machine for steel
CN201180073324.2A CN103781572B (en) 2011-11-09 2011-11-09 The continuous casting apparatus of steel
KR1020147005878A KR20140053279A (en) 2011-11-09 2011-11-09 Continuous casting device for steel
CA2844450A CA2844450C (en) 2011-11-09 2011-11-09 Continuous casting apparatus for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075868 WO2013069121A1 (en) 2011-11-09 2011-11-09 Continuous casting device for steel

Publications (1)

Publication Number Publication Date
WO2013069121A1 true WO2013069121A1 (en) 2013-05-16

Family

ID=48288713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075868 WO2013069121A1 (en) 2011-11-09 2011-11-09 Continuous casting device for steel

Country Status (9)

Country Link
US (1) US20140190655A1 (en)
EP (1) EP2754513B1 (en)
KR (1) KR20140053279A (en)
CN (1) CN103781572B (en)
BR (1) BR112014005417B1 (en)
CA (1) CA2844450C (en)
ES (1) ES2695045T3 (en)
PL (1) PL2754513T3 (en)
WO (1) WO2013069121A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213946A (en) * 2014-05-09 2015-12-03 新日鐵住金株式会社 Continuous casting method and device of bloom
JP2016007631A (en) * 2014-06-25 2016-01-18 新日鐵住金株式会社 Steel continuous casting equipment
WO2016159284A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Continuous casting method for steel
US10207318B2 (en) 2014-11-20 2019-02-19 Abb Schweiz Ag Electromagnetic brake system and method of controlling molten metal flow in a metal-making process
US11358213B2 (en) * 2018-06-07 2022-06-14 Nippon Steel Corporation Device for controlling flow in mold and method for controlling flow in mold in thin-slab casting
US11400513B2 (en) 2018-06-07 2022-08-02 Nippon Steel Corporation Continuous casting facility and continuous casting method used for thin slab casting for steel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108500228B (en) * 2017-02-27 2020-09-25 宝山钢铁股份有限公司 Flow field control method for slab continuous casting crystallizer
KR102265880B1 (en) * 2017-03-03 2021-06-15 닛테츠 스테인레스 가부시키가이샤 Continuous casting method and continuous casting apparatus
BR112020013272A2 (en) * 2018-02-26 2020-12-01 Nippon Steel Corporation molding installation
JP7151247B2 (en) * 2018-07-27 2022-10-12 日本製鉄株式会社 Flow controller for thin slab continuous casting and thin slab continuous casting method
CN111676381B (en) * 2020-06-22 2022-04-08 江苏江南铁合金有限公司 Process for stirring alloy liquid
CN113001848B (en) * 2021-02-24 2022-09-09 桂林恒保健康防护有限公司 Preparation method of medical gloves with uniform thickness
CN115194107B (en) * 2022-07-13 2023-05-16 沈阳工程学院 Multi-stage independent adjustable composite magnetic field device and method for controlling metal liquid flow

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512484A (en) * 1994-04-01 1997-12-16 アクタス インダストリーズ,インコーポレイティド Metal continuous casting mold
JPH10193067A (en) * 1996-12-27 1998-07-28 Nkk Corp Method for continuously casting steel
JP2010110765A (en) * 2008-11-04 2010-05-20 Nippon Steel Corp Continuous casting apparatus for steel
JP2011224635A (en) * 2010-04-22 2011-11-10 Nippon Steel Corp Continuous casting apparatus of steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4512386A (en) * 1982-11-12 1985-04-23 Swiss Aluminium Ltd. Adjustable mold for electromagnetic casting
IT1262073B (en) * 1993-02-16 1996-06-19 Danieli Off Mecc LINGOTTIERA FOR CONTINUOUS CASTING OF THIN SLABS
DE4403050C1 (en) * 1994-01-28 1995-09-28 Mannesmann Ag Continuous casting mold for guiding strands
WO1997043063A1 (en) * 1996-05-13 1997-11-20 Km Europa Metal Ag Liquid-cooled mould
DE19710791C2 (en) * 1997-03-17 2000-01-20 Schloemann Siemag Ag Optimized forms of the continuous casting mold and the immersion nozzle for casting steel slabs
DE19741131C2 (en) * 1997-09-15 2001-06-28 Sms Demag Ag Continuous casting mold
SE523881C2 (en) * 2001-09-27 2004-05-25 Abb Ab Device and method of continuous casting
PT1468760E (en) * 2003-04-16 2005-10-31 Concast Ag TUBULAR INJECTION FOR CONTINUOUS LEAKING

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09512484A (en) * 1994-04-01 1997-12-16 アクタス インダストリーズ,インコーポレイティド Metal continuous casting mold
JPH10193067A (en) * 1996-12-27 1998-07-28 Nkk Corp Method for continuously casting steel
JP2010110765A (en) * 2008-11-04 2010-05-20 Nippon Steel Corp Continuous casting apparatus for steel
JP2011224635A (en) * 2010-04-22 2011-11-10 Nippon Steel Corp Continuous casting apparatus of steel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2754513A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213946A (en) * 2014-05-09 2015-12-03 新日鐵住金株式会社 Continuous casting method and device of bloom
JP2016007631A (en) * 2014-06-25 2016-01-18 新日鐵住金株式会社 Steel continuous casting equipment
US10207318B2 (en) 2014-11-20 2019-02-19 Abb Schweiz Ag Electromagnetic brake system and method of controlling molten metal flow in a metal-making process
WO2016159284A1 (en) * 2015-03-31 2016-10-06 新日鐵住金株式会社 Continuous casting method for steel
JPWO2016159284A1 (en) * 2015-03-31 2017-09-14 新日鐵住金株式会社 Steel continuous casting method
US11358213B2 (en) * 2018-06-07 2022-06-14 Nippon Steel Corporation Device for controlling flow in mold and method for controlling flow in mold in thin-slab casting
US11400513B2 (en) 2018-06-07 2022-08-02 Nippon Steel Corporation Continuous casting facility and continuous casting method used for thin slab casting for steel

Also Published As

Publication number Publication date
EP2754513A4 (en) 2015-06-24
CA2844450C (en) 2017-08-15
EP2754513B1 (en) 2018-10-10
CN103781572B (en) 2016-09-07
CN103781572A (en) 2014-05-07
EP2754513A1 (en) 2014-07-16
CA2844450A1 (en) 2013-05-16
BR112014005417B1 (en) 2019-07-02
PL2754513T3 (en) 2019-03-29
BR112014005417A2 (en) 2017-04-04
ES2695045T3 (en) 2018-12-28
US20140190655A1 (en) 2014-07-10
KR20140053279A (en) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2013069121A1 (en) Continuous casting device for steel
JP5321528B2 (en) Equipment for continuous casting of steel
JP4505530B2 (en) Equipment for continuous casting of steel
US10512970B2 (en) Method for continuously casting steel
JP5014934B2 (en) Steel continuous casting method
JP5073531B2 (en) Slab continuous casting apparatus and method for continuous casting
JP2008183597A (en) Continuous casting method of steel, and method for manufacturing steel plate
EP2092998B1 (en) Molten metal continuous casting method
JPWO2013069121A1 (en) Steel continuous casting equipment
JP6484856B2 (en) Continuous casting mold
JP2010110766A (en) Continuous casting apparatus for steel and continuous casting method for steel
JP5549346B2 (en) Steel continuous casting apparatus and continuous casting method
JP7200722B2 (en) In-mold flow control method in curved continuous casting equipment
JP2024021371A (en) Slab continuous casting method and slab continuous casting apparatus
JP5440933B2 (en) Immersion nozzle and continuous casting method using the same
JP2009066619A (en) Method and apparatus for continuously casting steel
KR20190122799A (en) Continuous casting method and continuous casting device
JP2008221243A (en) Continuously casting method and apparatus for steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013542758

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2844450

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14237757

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011875560

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147005878

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014005417

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014005417

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140307