WO2013068167A1 - Batteriezelle, batterie und kraftfahrzeug - Google Patents

Batteriezelle, batterie und kraftfahrzeug Download PDF

Info

Publication number
WO2013068167A1
WO2013068167A1 PCT/EP2012/068514 EP2012068514W WO2013068167A1 WO 2013068167 A1 WO2013068167 A1 WO 2013068167A1 EP 2012068514 W EP2012068514 W EP 2012068514W WO 2013068167 A1 WO2013068167 A1 WO 2013068167A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
battery
cell housing
cells
folding
Prior art date
Application number
PCT/EP2012/068514
Other languages
English (en)
French (fr)
Inventor
Alexander Reitzle
Joachim Fetzer
Original Assignee
Robert Bosch Gmbh
Samsung Sdi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Samsung Sdi Co., Ltd. filed Critical Robert Bosch Gmbh
Priority to US14/353,411 priority Critical patent/US20140287297A1/en
Priority to JP2014540368A priority patent/JP2014532974A/ja
Priority to CN201280055071.0A priority patent/CN103975457B/zh
Publication of WO2013068167A1 publication Critical patent/WO2013068167A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/01Reducing damages in case of crash, e.g. by improving battery protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery cell with a
  • Battery cell housing a battery, a plurality of such
  • Lithium-ion secondary cell which brings a high energy or power density compared to older technologies, such as the lead-acid battery.
  • the new battery technologies were designed for use in
  • FIG. 1 shows how individual battery cells 10 by parallel or serial connection to battery modules 12 and then can be connected to batteries 14.
  • a battery module 12 or a battery 14 consist of at least two battery cells 10, the terms battery and battery module are often used interchangeably.
  • a battery module which comprises a multiplicity of battery cells whose first ends (comprising the battery poles) are gripped in a first cover with cap-shaped receptacles.
  • Cap-shaped receptacles are cell connectors integrated to electrically connect the poles of the battery cells. The second ends of the
  • Battery cells are taken in a second cover, wherein the second lid surrounds the ends gas-tight, so that it serves as a degassing system.
  • the second cover In the case of leakage of battery gases from the battery cells, for example, in case of overcharging or a defect, they are collected by the second cover and derived, for example, via a hose from the battery module or the vehicle.
  • WO 2010/1 1 1647 A2 also describes a battery module comprising a plurality of battery cells and a degassing system, wherein again that side of the battery cells, from which battery gas can flow, is coupled to the degassing system.
  • WO 2010/1 1 1647 A2 also describes a battery module comprising a plurality of battery cells and a degassing system, wherein again that side of the battery cells, from which battery gas can flow, is coupled to the degassing system.
  • both opposite sides of the degassing system can now be used with
  • cylindrical cells In the automotive application, three different cell types are used: cylindrical cells, prismatic cells and soft cells
  • a battery cell comprising a battery cell housing.
  • the battery cell housing has a structuring in the form of a folding structure. This convolution structure is generally composed of repetitive ones
  • Folding segments and may take the form of a microstructuring of the
  • Battery cell housing can be realized.
  • Such microstructures can for example be embossed or lasered into the battery cell housing.
  • the battery cell according to the first embodiment has the advantage that upon application of force, deformation begins at a predefined point and then propagates in a controlled manner on the battery cell housing.
  • deformation begins at a predefined point and then propagates in a controlled manner on the battery cell housing.
  • so-called flow joints are bent by force, whereby the bending front runs evenly through the structure to be bent.
  • the individual microstructures fold together defined at the flow joints, the geometry of the folded
  • Battery cell housing can be accurately predicted by such structures.
  • part of the kinetic energy to be absorbed in vehicle collisions is not caused solely by the chassis of the vehicle
  • Battery cell housing absorbed by the micromechanical structuring.
  • the cell thereby becomes useless in its function as an energy store, but the subsequent reactions (eg internal short circuit, opening of the cells, fire) of the cells are controllable. Accurate prediction of subsequent reactions is possible because of the mechanical behavior at
  • Deformation of the battery cells can be precisely controlled.
  • the safety of the battery cells compared to the current state of the art increases significantly, since the predictability of the mechanical deformation of the battery cells, the internal structure of the cells can be designed so that subsequent reactions that are associated with high risk can no longer take place. Furthermore, the microstructures have which be introduced into the battery cell housing, nor the advantage that they can increase the strength of the battery cell housing, whereby a possible deformation begins only at higher acting forces than in the cells used previously.
  • the straight connecting pieces are connected to each other via small rounded or kinked transition areas, which act under load as flow joints.
  • the peak-to-peak value is preferably less than or equal to 2.0 mm, the longitudinal extent of a folding segment is preferably less than or equal to 1.5 mm, this value depending on the number of desired folds.
  • the folding structure has a continuous corrugated structure with bends of less than 180 °.
  • the peak-to-peak value is preferably less than or equal to 2.0 mm, the longitudinal extent of one
  • Folding segment is preferably less than or equal to 1, 5 mm, this value depends on the number of desired convolutions.
  • the continuous corrugated in cross section structure may preferably be formed sinusoidal. Further preferably, the bend can also be equal to 180 °.
  • the folding structure has a twisted in cross-section structure with bends greater than 180 °.
  • Tip-to-peak value is preferably less than or equal to 2.0 mm
  • the longitudinal extent of a folding segment is preferably less than or equal to 1.5 mm, this value depending on the number of desired folds.
  • a further battery cell comprising a battery cell housing.
  • the battery cell housing has a structuring in the form of a
  • Sandwich construction comprising an intermediate layer and two outer layers.
  • the battery cell housing is not designed as a single layer, but with a plurality of metal layers, wherein the individual metal layers are connected to each other with a stabilizing structure.
  • the battery cell according to the second embodiment has the advantage that when pressure is applied to these structures, energy can be absorbed by deformation without damaging the interior of the battery cells. As a result, only the voids of the intermediate layer are crushed. By applying force, for example during a collision, the intermediate layer is deformed, which makes a contribution to the energy absorption.
  • the intermediate layer of the sandwich construction has a
  • the intermediate layer of the sandwich construction is made up of tubes arranged parallel to one another and connected to one another.
  • the tubes are arranged so that for a given space and a given tube diameter as many tubes find space. This means that the tubes are nested row by row, so one row is offset to the next by half the tube diameter in the row direction.
  • a further battery cell comprising a battery cell housing.
  • the battery cell housing has a structuring in the form of a
  • Such inversion structures consist for example of a hollow body, which can be deformed to absorb kinetic energy, and a stamp, which brings about this deformation. Upon deformation, the punch is pressed into the hollow body, whereupon the walls can evert and roll up.
  • the battery cell case is not designed single-layer, but rather by a variety of
  • the battery cell according to the third embodiment has the advantage that depending on the Umstülpradius the everted walls soft or hard structures can be generated, which require different amounts of energy for forming. Further preferred are the battery cells of the first, second or third
  • Embodiment of the invention Lithium-ion secondary cells.
  • Suitable materials for the battery cell housing are, for example, metals, in particular aluminum and steel. Furthermore, a battery is provided which comprises a multiplicity of battery cells according to the invention.
  • a motor vehicle comprising the battery according to the invention, wherein the battery is usually provided for feeding an electric drive system of the vehicle.
  • FIGS. 2 to 4 folding structures
  • Figures 5 to 7 an intermediate layer of a honeycomb structure
  • Figures 8 to 10 an intermediate layer of a tubular structure
  • FIG. 1 has already been discussed to explain the state of the art.
  • FIGS. 2, 3 and 4 show, in schematic representations, three different folding structures 18 according to the invention of a battery cell housing 16, which, for example, can be rotationally symmetrical, as shown.
  • the folding structures 18 shown in the middle region of the battery cell housing 16 are exaggerated for better recognizability, with the folding structure 18 unfolded by a force F being shown in the upper area of the battery cell housing 16.
  • the folding structures 18 can either cover only part of the battery cell housing 16 or the entire jacket surface of the battery cell housing 16, as shown. If a force F is now applied to the battery cell housing 16, then this folds
  • Battery cell housing 16 due to the folding structures 18 in a predefined manner together, whereby the destruction of the inner life of the battery cell is predictable.
  • FIG. 2 shows a folding structure 18, which has a corrugated structure with straight connecting pieces in cross section.
  • the peak-to-peak value h is preferably less than or equal to 2.0 mm, the longitudinal extent k of one
  • Folding segment is preferably less than or equal to 1, 5 mm, this value depends on the number of desired convolutions.
  • Folding structure 18 act the points P as flow joints, resulting after deformation folded structures with bending radii of about 180 °.
  • FIG. 3 shows a folding structure 18, which has a continuous corrugated structure in cross section.
  • the peak-to-peak value h is preferably less than or equal to 2.0 mm
  • the longitudinal extent k of a folding segment is preferably less than or equal to 1.5 mm, this value depending on the number of desired folds.
  • bending radii larger than 180 ° are formed.
  • FIG. 4 shows a folding structure 18, which has a convoluted corrugated structure in cross section.
  • the peak-to-peak value h is preferably less than or equal to 2.0 mm
  • the longitudinal extent k of a folding segment is preferably less than or equal to 1.5 mm, this value being dependent on the number of desired folds depends.
  • bending radii larger than 180 ° are formed.
  • FIG. 5 shows an intermediate layer 22 of a sandwich construction 20 in FIG.
  • FIG. 6 shows a sandwich construction 20 with an intermediate layer 22 and two cover layers 24, wherein the cover layers 24 are arranged so as to close the openings of the honeycombs.
  • this sandwich construction 20 serves as a material for the battery cell housing 16.
  • FIG. 7 likewise shows a sandwich construction 20 with an intermediate layer 22 and two cover layers 24, wherein the cover layers 24 run along the
  • Sandwich construction 20 with a force normal to the planar expansion of the sandwich construction 20 folds the intermediate layer 22 together and absorbs kinetic energy by deformation.
  • a force component arises which is normal to the applied force F and normal to the axes of the individual hexagons. This force component offers further possibilities for energy absorption.
  • FIG. 8 shows a further intermediate layer 22 of a sandwich construction 20. This is not honeycomb-shaped this time, but comprises a multiplicity of tubes. The tubes can be lined up in a straight line, as shown, and each adjacent row can be stretched by half
  • Tube diameter to be shifted in the longitudinal direction The single ones
  • Tubes may be interconnected for increased stability.
  • FIG. 11 shows an inversion structure 26 in the undeformed state.
  • This consists of a hollow body 28, for example a hollow cylinder with a rectangular cross-section and a matched punch 30, for example a pyramid with a rectangular base.
  • Battery cell housing 16 a part of a vehicle collision
  • FIG. 12 is an illustration of the inversion structure of FIG. 5a after deformation by a force F.
  • the punch 30 penetrates into the hollow body 28, the hollow body 28 breaks along its corners and is pressed against the
  • Umstülpradius r soft or hard structures can be generated, which require different amounts of energy for forming.

Abstract

Es wird eine Batteriezelle (10) beschrieben, deren Batteriezellengehäuse (16) eine Strukturierung in Form einer Faltungsstruktur (18) aufweist. Ferner wird eine Batteriezelle (10) beschrieben, deren Batteriezellengehäuse (16) eine Strukturierung in Form einer Sandwichkonstruktion (20) aufweist, welche eine Zwischenschicht (22) und zwei Deckschichten (24) umfasst. Des Weiteren wird eine Batteriezelle (10) beschrieben, deren Batteriezellengehäuse (16) eine Strukturierung in Form einer Inversionsstruktur (26) aufeist. Zudem wird eine Batterie umfassend eine Mehrzahl an Batteriezellen (10) und eine Kraftfahrzeug umfassend die Batterie beschrieben.

Description

Beschreibung Titel
Batteriezelle, Batterie und Kraftfahrzeug
Die vorliegende Erfindung betrifft eine Batteriezelle mit einem
Batteriezellengehäuse, eine Batterie, die eine Mehrzahl an derartigen
Batteriezellen umfasst und ein Kraftfahrzeug, das die Batterie umfasst.
Stand der Technik
Batterien finden als mobile Energiequelle für den Antrieb in Automobilen immer weitere Verbreitung, vor allem seit der Entwicklung der
Lithium-Ionen-Sekundärzelle, welche eine hohe Energie- bzw. Leistungsdichte im Vergleich zu älteren Technologien, wie beispielsweise dem Bleiakkumulator, mit sich bringt. Die neuen Batterietechnologien wurden für die Anwendung in
Elektronikgeräten, wie zum Beispiel Videokameras oder Mobiltelefonen, entwickelt, welche ganz andere Anforderungen an die Umweltbelastung stellen als Batterien, welche für den Automobilbereich entwickelt werden. Jedoch wird bei einem Thema für beide Anwendungsbereiche das gleiche Maß verwendet. So dürfen den Batterien bei Unfällen keine mechanischen Beschädigungen zugefügt werden, das Gehäuse bzw. beim Fahrzeug das Chassis muss alle Kräfte und Belastungen auffangen, um eine Beschädigung der Batteriezellen im Inneren zu vermeiden. Kommt es doch zu einer entsprechenden mechanischen Beschädigung der Batteriezellen, dann können die Folgereaktionen in der Regel nicht kontrolliert werden, da die Zellen für einen solchen Fall nicht ausgelegt sind. Vor allem beim Einsatz in Fahrzeugen muss der Energiespeicher aber höchsten Sicherheitsstandards genügen, um insbesondere im Falle einer Kollision keine Gefährdung darzustellen.
Einzelne Batteriezellen werden zu Batteriemodulen und diese wiederum zu Batterien zusammengefasst. Figur 1 zeigt wie einzelne Batteriezellen 10 durch parallele oder serielle Verschaltung zu Batteriemodulen 12 und dann zu Batterien 14 verschaltet werden können. Dabei bestehen per Definition ein Batteriemodul 12 bzw. eine Batterie 14 aus mindestens zwei Batteriezellen 10, wobei die Begriffe Batterie und Batteriemodul oft synonym verwendet werden.
Aus der EP 2 172 994 A1 ist ein Batteriemodul bekannt, das eine Vielzahl an Batteriezellen umfasst, deren erste Enden (umfassend die Batteriepole) in einem ersten Deckel mit kappenförmigen Aufnahmen gefasst sind. In den
kappenförmigen Aufnahmen sind Zellverbinder integriert, um die Pole der Batteriezellen elektrisch leitend zu verbinden. Die zweiten Enden der
Batteriezellen sind in einem zweiten Deckel gefasst, wobei der zweite Deckel die Enden gasdicht umschließt, so dass dieser als Entgasungssystem dient. Im Falle des Austritts von Batteriegasen aus den Batteriezellen, beispielsweise bei Überladung oder einem Defekt, werden diese von dem zweiten Deckel aufgefangen und beispielsweise über einen Schlauch aus dem Batteriemodul bzw. dem Fahrzeug abgeleitet.
Die WO 2010/1 1 1647 A2 beschreibt ebenfalls ein Batteriemodul, das eine Vielzahl an Batteriezellen und ein Entgasungssystem umfasst, wobei wieder jene Seite der Batteriezellen, aus welcher Batteriegas ausströmen kann, mit dem Entgasungssystem gekoppelt ist. Im Gegensatz zur EP 2 172 994 A1 können nun aber beide gegenüberliegenden Seiten des Entgasungssystems mit
Batteriezellen gekoppelt werden.
Bei einem Fahrzeugunfall muss aber nicht nur sichergestellt werden, dass austretende Batteriegase sicher aus dem Fahrzeug geleitet werden, es ist ferner erstrebenswert kritische Beschädigungen der Batteriezellen zu verhindern.
In der automobilen Anwendung kommen drei verschiedene Zelltypen zum Einsatz: zylindrische Zellen, prismatische Zellen und Zellen mit weichen
Gehäusen (Pouchzellen). Allen Zellen ist gemein, dass sie sich beim Einwirken von Kräften verformen können. Problematisch bei diesem Verformen ist jedoch, dass in der Regel nicht vorausgesagt werden kann, an welcher Stelle der Zelle die Verformung beginnt und wie sich die Verformung entlang des Gehäuses weiter ausbreitet. Im schlimmsten Fall beginnt diese Verformung an Stellen der Zelle, an der durch die Verformung der innere Aufbau der Zelle derart beschädigt oder zerstört wird, dass die nachfolgenden Reaktionen sehr heftig,
beispielsweise in Form einer Explosion, ausfallen können.
Offenbarung der Erfindung
Gemäß einer ersten Ausgestaltung der Erfindung wird eine Batteriezelle, die ein Batteriezellengehäuse umfasst, zur Verfügung gestellt. Kennzeichnend weist das Batteriezellengehäuse eine Strukturierung in Form einer Faltungsstruktur auf. Diese Faltungsstruktur besteht im Allgemeinen aus sich wiederholenden
Faltungssegmenten und kann in Form einer Mikrostrukturierung des
Batteriezellengehäuses realisiert werden. Solche Mikrostrukturierungen können beispielsweise in das Batteriezellengehäuse eingeprägt oder eingelasert sein.
Die erfindungsgemäße Batteriezelle gemäß der ersten Ausgestaltung hat den Vorteil, dass bei Krafteinwirkung eine Verformung an einer vordefinierten Stelle beginnt und sich dann auch kontrolliert am Batteriezellengehäuse fortpflanzt. Bei Faltungsstrukturen werden sogenannte Fließgelenke durch Krafteinfluss verbogen, wodurch die Biegefront gleichmäßig durch die zu verbiegende Struktur läuft. Durch Krafteinwirkung falten sich die einzelnen Mikrostrukturen definiert an den Fließgelenken zusammen, die Geometrie des zusammengefalteten
Batteriezellengehäuses kann mittels solcher Strukturen genau vorhergesagt werden. Zudem wird ein Teil der bei Fahrzeugkollisionen aufzunehmenden kinetischen Energie nicht alleine durch das Chassis des Fahrzeuges
aufgenommen, sondern wird auch durch den mechanischen Aufbau des
Batteriezellengehäuses durch die mikromechanische Strukturierung absorbiert. Die Zelle wird hierdurch zwar in ihrer Funktion als Energiespeicher unbrauchbar, die nachfolgenden Reaktionen (z. B. interner Kurzschluss, Öffnen der Zellen, Feuer) der Zellen sind jedoch kontrollierbar. Es ist eine genaue Vorhersage nachfolgender Reaktionen möglich, da das mechanische Verhalten bei
Verformung der Batteriezellen genau kontrolliert werden kann.
Dadurch steigt die Sicherheit der Batteriezellen gegenüber dem derzeitigen Stand der Technik deutlich an, da durch die Vorhersagbarkeit der mechanischen Verformung der Batteriezellen der innere Aufbau der Zellen so gestaltet werden kann, dass Folgereaktionen, welche mit einem hohen Risiko verbunden sind, nicht mehr stattfinden können. Des Weiteren haben die Mikrostrukturen, welche in das Batteriezellengehäuse eingebracht werden, noch den Vorteil, dass sie die Festigkeit des Batteriezellengehäuses erhöhen können, wodurch eine mögliche Verformung erst bei höheren einwirkenden Kräften beginnt als bei den bislang verwendeten Zellen.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung weist die
Faltungsstruktur eine im Querschnitt gewellte Struktur mit geraden
Verbindungsstücken auf. Die geraden Verbindungsstücke sind dabei über kleine gerundete oder geknickte Übergangsbereiche miteinander verbunden, welche bei Belastung als Fließgelenke wirken. Der Spitze-Spitze-Wert beträgt bevorzugt kleiner gleich 2,0 mm, die Längsausdehnung eines Faltungssegmentes beträgt bevorzugt kleiner gleich 1 ,5 mm, wobei dieser Wert von der Anzahl der gewünschten Faltungen abhängt.
Ferner bevorzugt weist die Faltungsstruktur eine im Querschnitt durchgehend gewellte Struktur mit Biegungen kleiner 180° auf. Der Spitze-Spitze-Wert beträgt bevorzugt kleiner gleich 2,0 mm, die Längsausdehnung eines
Faltungssegmentes beträgt bevorzugt kleiner gleich 1 ,5 mm, wobei dieser Wert von der Anzahl der gewünschten Faltungen abhängt. Die im Querschnitt durchgehend gewellte Struktur kann bevorzugt sinusförmig ausgebildet sein. Weiterhin bevorzugt kann die Biegung auch gleich 180° sein.
Des Weiteren bevorzugt weist die Faltungsstruktur eine im Querschnitt verschlungen gewellte Struktur mit Biegungen größer 180° auf. Der
Spitze-Spitze-Wert beträgt bevorzugt kleiner gleich 2,0 mm, die
Längsausdehnung eines Faltungssegmentes beträgt bevorzugt kleiner gleich 1 ,5 mm, wobei dieser Wert von der Anzahl der gewünschten Faltungen abhängt.
Gemäß einer zweiten Ausgestaltung der Erfindung wird eine weitere Batteriezelle umfassend ein Batteriezellengehäuse zur Verfügung gestellt. Kennzeichnend weist das Batteriezellengehäuse eine Strukturierung in Form einer
Sandwichkonstruktion, umfassend eine Zwischenschicht und zwei Deckschichten auf. Somit ist das Batteriezellengehäuse nicht einlagig ausgeführt, sondern mit mehreren Metalllagen, wobei die einzelnen Metalllagen mit einer stabilisierenden Struktur miteinander verbunden sind. Die erfindungsgemäße Batteriezelle gemäß der zweiten Ausgestaltung hat den Vorteil, dass bei Druck auf diese Strukturen durch Verformung Energie aufgenommen werden kann, ohne das Innere der Batteriezellen zu beschädigen. Hierdurch werden lediglich die Leerräume der Zwischenschicht zerdrückt. Durch Krafteinwirkung, beispielsweise bei einer Kollision, wird die Zwischenschicht deformiert, wodurch diese einen Beitrag zur Energieaufnahme leistet.
Bevorzugt weist die Zwischenschicht der Sandwichkonstruktion eine
Wabenstruktur auf. Diese Wabenstruktur bildet ähnlich einer Bienenwabe eine Vielzahl aneinandergereihter Sechsecke aus.
Ferner bevorzugt ist die Zwischenschicht der Sandwichkonstruktion aus lauter parallel zueinander angeordneten und miteinander verbundenen Röhren aufgebaut. Vorteilhaft sind die Röhren so angeordnet, dass bei vorgegebenem Raum und vorgegebenem Röhrendurchmesser möglichst viele Röhren Platz finden. Das bedeutet, dass die Röhren reihenweiße ineinander verschachtelt sind, also eine Reihe zur nächsten um den halben Röhrendurchmesser in Reihenrichtung versetzt angeordnet ist.
Gemäß einer dritten Ausgestaltung der Erfindung wird eine weitere Batteriezelle umfassend ein Batteriezellengehäuse zur Verfügung gestellt. Kennzeichnend weist das Batteriezellengehäuse eine Strukturierung in Form einer
Inversionsstruktur auf. Solche Inversionsstrukturen bestehen beispielsweise aus einem Hohlkörper, welcher zur Aufnahme kinetischer Energie verformt werden kann und einem Stempel, welcher diese Verformung herbeiführt. Bei Verformung wird der Stempel in den Hohlkörper gedrückt, woraufhin sich dessen Wände umstülpen und einrollen können. Somit ist das Batteriezellengehäuse nicht einlagig ausgeführt, sondern wird vielmehr durch eine Vielzahl an
aneinandergereihten Inversionsstrukturen gebildet.
Die erfindungsgemäße Batteriezelle gemäß der dritten Ausgestaltung hat den Vorteil, dass abhängig vom Umstülpradius der umgestülpten Wände weiche oder harte Strukturen erzeugt werden können, welche unterschiedlich viel Energie zum Umformen benötigen. Ferner bevorzugt sind die Batteriezellen der ersten, zweiten oder dritten
Ausgestaltung der Erfindung Lithium-Ionen-Sekundärzellen. Durch die
Verwendung der Lithium-Ionen-Technologie können besonders hohe
Energiespeicherdichten erzielt werden, was besonders im Bereich der
Elektromobilität zu weiteren Vorteilen führt.
Als Materialien für die Batteriezellengehäuse eignen sich beispielsweise Metalle, insbesondere Aluminium und Stahl. Des Weiteren wird eine Batterie zur Verfügung gestellt, welche eine Vielzahl an erfindungsgemäßen Batteriezellen umfasst.
Ferner wird ein Kraftfahrzeug umfassend die erfindungsgemäße Batterie zur Verfügung gestellt, wobei die Batterie in der Regel zur Speisung eines elektrischen Antriebssystems des Fahrzeuges vorgesehen ist.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben oder der Beschreibung zu entnehmen. Zeichnungen
Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen: Figur 1 eine Verschaltung von Batteriezellen (Stand der Technik),
Figuren 2 bis 4 Faltungsstrukturen,
Figuren 5 bis 7 eine Zwischenschicht aus einer Wabenstruktur und
Sandwichkonstruktionen,
Figuren 8 bis 10 eine Zwischenschicht aus einer Röhrenstruktur und
Sandwichkonstruktionen, und
Figuren 1 1 und 12 eine Inversionsstruktur. Auf Figur 1 wurde bereits zur Erläuterung des Standes der Technik eingegangen.
Die Figuren 2, 3 und 4 zeigen in schematischen Darstellungen drei verschiedene erfindungsgemäße Faltungsstrukturen 18 eines Batteriezellengehäuses 16, welches beispielsweise, wie abgebildet, rotationssymmetrisch sein kann. Die im mittleren Bereich des Batteriezellengehäuses 16 dargestellten Faltungsstrukturen 18 sind zur besseren Erkennbarkeit übertrieben dargestellt, wobei im oberen Bereich des Batteriezellengehäuses 16 die durch eine Kraft F aufgefaltete Faltungsstruktur 18 dargestellt ist. Die Faltungsstrukturen 18 können entweder, wie dargestellt, nur einen Teil des Batteriezellengehäuses 16 bedecken oder auch die gesamte Mantelfläche des Batteriezellengehäuses 16. Wird nun eine Kraft F auf das Batteriezellengehäuse 16 aufgebracht, so faltet sich das
Batteriezellengehäuse 16 aufgrund der Faltungsstrukturen 18 in vordefinierter Weise zusammen, wodurch die Zerstörung des Innenlebens der Batteriezelle vorhersehbar wird.
Figur 2 zeigt eine Faltungsstruktur 18, welche im Querschnitt eine gewellte Struktur mit geraden Verbindungsstücken aufweist. Der Spitze-Spitze-Wert h beträgt bevorzugt kleiner gleich 2,0 mm, die Längsausdehnung k eines
Faltungssegmentes beträgt bevorzugt kleiner gleich 1 ,5 mm, wobei dieser Wert von der Anzahl der gewünschten Faltungen abhängt. Beim Auffalten der
Faltungsstruktur 18 fungieren die Stellen P als Fließgelenke, es entstehen nach der Verformung gefaltete Strukturen mit Biegungsradien mit ca. 180°.
Figur 3 zeigt eine Faltungsstruktur 18, welche im Querschnitt eine durchgehend gewellte Struktur aufweist. Der Spitze-Spitze-Wert h beträgt bevorzugt kleiner gleich 2,0 mm, die Längsausdehnung k eines Faltungssegmentes beträgt bevorzugt kleiner gleich 1 ,5 mm, wobei dieser Wert von der Anzahl der gewünschten Faltungen abhängt. Bei der Faltung bilden sich Biegeradien größer 180°.
Figur 4 zeigt eine Faltungsstruktur 18, welche im Querschnitt eine verschlungen gewellte Struktur aufweist. Der Spitze-Spitze-Wert h beträgt bevorzugt kleiner gleich 2,0 mm, die Längsausdehnung k eines Faltungssegmentes beträgt bevorzugt kleiner gleich 1 ,5 mm, wobei dieser Wert von der Anzahl der gewünschten Faltungen abhängt. Bei der Faltung bilden sich Biegeradien größer 180°.
Figur 5 zeigt eine Zwischenschicht 22 einer Sandwichkonstruktion 20 in
Wabenform.
Figur 6 zeigt eine Sandwichkonstruktion 20 mit einer Zwischenschicht 22 und zwei Deckschichten 24, wobei die Deckschichten 24 so angeordnet sind, dass sie die Öffnungen der Waben verschließen. Erfindungsgemäß dient diese Sandwichkonstruktion 20 als Material für das Batteriezellengehäuse 16. Bei
Belastung der Sandwichkonstruktion 20 mit einer Kraft normal auf die flächige Ausdehnung der Sandwichkonstruktion 20 klappt die Zwischenschicht 22 ineinander zusammen und nimmt Energie durch Verformung auf, ohne dass das Innere der Batteriezelle beschädigt wird.
Figur 7 zeigt ebenfalls eine Sandwichkonstruktion 20 mit einer Zwischenschicht 22 und zwei Deckschichten 24, wobei die Deckschichten 24 entlang der
Mantelflächen der Waben angeordnet sind. Bei Belastung der
Sandwichkonstruktion 20 mit einer Kraft normal auf die flächige Ausdehnung der Sandwichkonstruktion 20 klappt die Zwischenschicht 22 ineinander zusammen und nimmt kinetische Energie durch Verformung auf. Zusätzlich entsteht eine Kraftkomponente, die normal zur eingebrachten Kraft F und normal auf die Achsen der einzelnen Sechsecke steht. Diese Kraftkomponente bietet weitere Möglichkeiten zur Energieaufnahme.
Figur 8 zeigt eine weitere Zwischenschicht 22 einer Sandwichkonstruktion 20. Diese ist diesmal nicht wabenförmig ausgebildet, sondern umfasst eine Vielzahl an Röhren. Die Röhren können, wie abgebildet, geradlinig aneinandergereiht sein und jede aufeinander angrenzende Reihe um den halben
Röhrendurchmesser in Reihenlängsrichtung verschoben sein. Die einzelnen
Röhren können zugunsten einer erhöhten Stabilität miteinander verbunden sein.
Bezüglich der Figuren 9 und 10 mit einer Zwischenschicht 22 aus einer Vielzahl an Röhren gelten analoge Überlegungen wie bezüglich Figur 3b und 3c. In Figur 1 1 ist eine Inversionsstruktur 26 im unverformten Zustand gezeigt. Diese besteht aus einem Hohlkörper 28, beispielsweise einem Hohlzylinder mit rechteckigem Querschnitt und einem darauf abgestimmten Stempel 30, zum Beispiel einer Pyramide mit rechteckiger Grundfläche. Durch Aufbringen einer Vielzahl solcher Strukturen auf das Batteriezellengehäuse 16 kann das
Batteriezellengehäuse 16 einen Teil der bei einer Fahrzeugkollision
abzuführenden kinetischen Energie aufnehmen.
Figur 12 ist eine Darstellung der Inversionsstruktur aus Figur 5a nach der Verformung durch eine Kraft F. Dringt der Stempel 30 in den Hohlkörper 28 ein, so reißt der Hohlkörper 28 entlang seiner Ecken ein und wird an den
abgeschrägten Stempelflächen umgebogen, wodurch sich die Wände des Hohlkörpers 28 mit dem Umstülpradius r einrollen. In Abhängigkeit vom
Umstülpradius r können weiche oder harte Strukturen erzeugt werden, die unterschiedlich viel Energie zum Umformen benötigen.

Claims

Ansprüche
1 . Batteriezelle (10) umfassend ein Batteriezellengehäuse (16), dadurch
gekennzeichnet, dass das Batteriezellengehäuse (16) eine Strukturierung in Form einer Faltungsstruktur (18) aufweist.
2. Batteriezelle (10) nach Anspruch 1 , wobei die Faltungsstruktur (18) im
Querschnitt eine gewellte Struktur mit geraden Verbindungsstücken aufweist.
3. Batteriezelle (10) nach Anspruch 1 , wobei die Faltungsstruktur (18) im
Querschnitt eine durchgehend gewellte Struktur mit Biegungen kleiner 180° aufweist.
4. Batteriezelle (10) nach Anspruch 1 , wobei die Faltungsstruktur (18) im
Querschnitt eine verschlungen gewellte Struktur mit Biegungen größer 180° aufweist.
5. Batteriezelle (10) umfassend ein Batteriezellengehäuse (16), dadurch
gekennzeichnet, dass das Batteriezellengehäuse (16) eine Strukturierung in Form einer Sandwichkonstruktion (20) aufweist, die eine Zwischenschicht (22) und zwei Deckschichten (24) umfasst.
6. Batteriezelle (10) nach Anspruch 5, wobei die Zwischenschicht (22) der Sandwichkonstruktion (20) eine Wabenstruktur aufweist.
7. Batteriezelle (10) nach Anspruch 5, wobei die Zwischenschicht (22) der Sandwichkonstruktion (20) aus parallel zueinander angeordneten und miteinander verbundenen Röhren aufgebaut ist.
8. Batteriezelle (10) umfassend ein Batteriezellengehäuse (16), dadurch gekennzeichnet, dass das Batteriezellengehäuse (16) eine Strukturierung in Form einer Inversionsstruktur (26) aufweist.
9. Batterie umfassend eine Mehrzahl an Batteriezellen (10) nach einem der
Ansprüche 1 bis 8.
10. Kraftfahrzeug umfassend eine Batterie nach Anspruch 9.
PCT/EP2012/068514 2011-11-10 2012-09-20 Batteriezelle, batterie und kraftfahrzeug WO2013068167A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/353,411 US20140287297A1 (en) 2011-11-10 2012-09-20 Battery Cell, Battery and Motor Vehicle
JP2014540368A JP2014532974A (ja) 2011-11-10 2012-09-20 バッテリセル、バッテリ、及び車両
CN201280055071.0A CN103975457B (zh) 2011-11-10 2012-09-20 电池电芯、电池和机动车

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011086050.9 2011-11-10
DE102011086050A DE102011086050A1 (de) 2011-11-10 2011-11-10 Batteriezelle, Batterie und Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2013068167A1 true WO2013068167A1 (de) 2013-05-16

Family

ID=46852035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068514 WO2013068167A1 (de) 2011-11-10 2012-09-20 Batteriezelle, batterie und kraftfahrzeug

Country Status (5)

Country Link
US (1) US20140287297A1 (de)
JP (1) JP2014532974A (de)
CN (1) CN103975457B (de)
DE (1) DE102011086050A1 (de)
WO (1) WO2013068167A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020114202A1 (de) 2020-05-27 2021-12-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Lastaufnahmegehäuse für eine zu schützende Komponente eines Kraftfahrzeugs

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013114317B4 (de) * 2013-12-18 2023-08-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterievorrichtung mit einem Batteriegehäuse für ein Kraftfahrzeug
US9868361B2 (en) * 2014-12-11 2018-01-16 Ford Global Technologies, Llc Battery impact absorbing system
DE102014226260A1 (de) * 2014-12-17 2016-06-23 Robert Bosch Gmbh Batteriezelle, Batteriemodul und Verwendung derselben
US9660234B2 (en) 2015-02-11 2017-05-23 Ford Global Technologies, Llc Battery enclosure with arc-shaped elongated impact absorbing ribs
US9931961B2 (en) 2015-02-11 2018-04-03 Ford Global Technologies, Llc Battery enclosure surrounded by internally reinforced cylindrical impact absorbing elements
US9656571B2 (en) 2015-02-11 2017-05-23 Ford Global Technologies, Llc Battery enclosure having T-shaped guides on the outer surface for stiffeners and impact absorbing elements
US9662997B2 (en) 2015-02-11 2017-05-30 Ford Global Technologies, Llc Method and apparatus for attaching a crushable carbon fiber reinforced polymer structure to the outer surface of a battery enclosure
US10439183B2 (en) 2015-02-11 2019-10-08 Ford Global Technologies, Llc Impact absorbing elements attached to the outer surface of a battery enclosure
CN107416025A (zh) * 2016-05-24 2017-12-01 深圳市沃特玛电池有限公司 一种电动汽车底盘结构
DE102016111230A1 (de) 2016-06-20 2017-12-21 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verformbare Schutzhülle zum Sichern mindestens einer Steuerungskomponente einer Batterie eines Fahrzeugs bei einem Aufprall
JP2018006240A (ja) * 2016-07-06 2018-01-11 藤森工業株式会社 電池外装体
JP2018006241A (ja) * 2016-07-06 2018-01-11 藤森工業株式会社 組電池および電池装置
JP2018006242A (ja) * 2016-07-06 2018-01-11 藤森工業株式会社 組電池
TWI721188B (zh) 2016-07-06 2021-03-11 日商藤森工業股份有限公司 電池外裝體、電池組及電池裝置
JP6749217B2 (ja) * 2016-11-04 2020-09-02 藤森工業株式会社 電池外装体および組電池
DE102017211372A1 (de) 2017-07-04 2019-01-10 Volkswagen Aktiengesellschaft Batterie sowie Fahrzeug mit einer solchen Batterie
DE102017116957B4 (de) * 2017-07-26 2023-07-06 Benteler Automobiltechnik Gmbh Batterieträgerprofil für einen Batterieträger
DE102017117127B4 (de) 2017-07-28 2023-02-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Aufnahme einer elektrischen Energiespeichervorrichtung für ein Kraftfahrzeug
CN108183181A (zh) * 2017-12-27 2018-06-19 天津中科先进技术研究院有限公司 一种电动汽车电池包的制作方法及电池包
DE102018206100A1 (de) * 2018-04-20 2019-10-24 Bayerische Motoren Werke Aktiengesellschaft Speicherzellenbaueinheit für ein Kraftfahrzeug mit einem elektrischen Antrieb
DE102018120268A1 (de) 2018-08-21 2020-02-27 Bmw Ag Batteriekasten mit Verstärkungselement
KR102652610B1 (ko) * 2020-11-03 2024-03-29 한양대학교 산학협력단 샌드위치 구조물 및 그 제조 방법
US20220407142A1 (en) * 2021-06-21 2022-12-22 Rivian Ip Holdings, Llc Cell module barrier sheets for thermal propagation resistance

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390017A (en) * 1965-10-22 1968-06-25 Nasa Usa Sealed electrochemical cell provided with a flexible casing
US3770502A (en) * 1972-08-11 1973-11-06 Yuasa Battery Co Ltd Sodium-sulfur storage battery
US4174014A (en) * 1975-12-29 1979-11-13 Bjorksten Johan A Shock absorbent electric vehicle and batteries
EP2172994A1 (de) 2008-10-01 2010-04-07 Johnson Controls Saft Advanced Power Solutions LLC Batteriemodul mit elektrochemischen Zellen mit integral geformten Endstücken
WO2010111647A2 (en) 2009-03-27 2010-09-30 Johnson Controls - Saft Advanced Power Solutions Llc A battery module having a sealed vent chamber
WO2010130747A1 (de) * 2009-05-14 2010-11-18 Auto-Kabel Managementgesellschaft Mbh Akkumulator mit gekühlten zellen und verfahren zur herstellung desselben
US20110014506A1 (en) * 2009-07-17 2011-01-20 Tesla Motors, Inc. Method and Apparatus for Maintaining Cell Wall Integrity Using a High Yield Strength Outer Sleeve
EP2348557A1 (de) * 2010-01-13 2011-07-27 Samsung SDI Co., Ltd. Sekundärbatterie

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349893A (en) * 1992-02-20 1994-09-27 Dunn Eric S Impact absorbing armor
US6051336A (en) * 1998-01-19 2000-04-18 Johnson Controls Technology Battery case for thin metal film cells
US6255015B1 (en) * 1998-08-23 2001-07-03 Ovonic Battery Company, Inc. Monoblock battery assembly
JP2009146692A (ja) * 2007-12-13 2009-07-02 Toyota Motor Corp 円筒型電池および組電池
JP2009146812A (ja) * 2007-12-17 2009-07-02 Nissan Motor Co Ltd 電池ケース及び組電池
DE102010062868A1 (de) * 2010-12-10 2012-06-14 Robert Bosch Gmbh Batterie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390017A (en) * 1965-10-22 1968-06-25 Nasa Usa Sealed electrochemical cell provided with a flexible casing
US3770502A (en) * 1972-08-11 1973-11-06 Yuasa Battery Co Ltd Sodium-sulfur storage battery
US4174014A (en) * 1975-12-29 1979-11-13 Bjorksten Johan A Shock absorbent electric vehicle and batteries
EP2172994A1 (de) 2008-10-01 2010-04-07 Johnson Controls Saft Advanced Power Solutions LLC Batteriemodul mit elektrochemischen Zellen mit integral geformten Endstücken
WO2010111647A2 (en) 2009-03-27 2010-09-30 Johnson Controls - Saft Advanced Power Solutions Llc A battery module having a sealed vent chamber
WO2010130747A1 (de) * 2009-05-14 2010-11-18 Auto-Kabel Managementgesellschaft Mbh Akkumulator mit gekühlten zellen und verfahren zur herstellung desselben
US20110014506A1 (en) * 2009-07-17 2011-01-20 Tesla Motors, Inc. Method and Apparatus for Maintaining Cell Wall Integrity Using a High Yield Strength Outer Sleeve
EP2348557A1 (de) * 2010-01-13 2011-07-27 Samsung SDI Co., Ltd. Sekundärbatterie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020114202A1 (de) 2020-05-27 2021-12-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Lastaufnahmegehäuse für eine zu schützende Komponente eines Kraftfahrzeugs

Also Published As

Publication number Publication date
US20140287297A1 (en) 2014-09-25
DE102011086050A1 (de) 2013-05-16
CN103975457A (zh) 2014-08-06
CN103975457B (zh) 2016-12-14
JP2014532974A (ja) 2014-12-08

Similar Documents

Publication Publication Date Title
WO2013068167A1 (de) Batteriezelle, batterie und kraftfahrzeug
EP2514002B1 (de) Kühl-/heizelement für einen akkumulator
DE102014216407A1 (de) Aufnahme für ein Batteriemodul und Batteriemodul aufweisend eine derartige Aufnahme
DE102007017024B3 (de) Batteriezelle und Verfahren zu ihrer Herstellung und Batterie
WO2011042121A1 (de) Batterieanordnung
WO2017178564A1 (de) Druckentlastungsvorrichtung für ein batteriegehäuse, batteriegehäuse mit der druckentlastungsvorrichtung, batterie sowie verfahren zur druckentlastung einer batterie
WO2020126354A1 (de) Verfahren zum herstellen eines hochvoltspeichers und ein hochvoltspeicher
DE102019211093A1 (de) Batterie für eine zumindest teilweise elektrisch betriebene/angetriebene Funktionsvorrichtung sowie Funktionsvorrichtung
DE10332093B4 (de) Verfahren zur Herstellung einer elektrochemischen Zelle sowie die elektrochemische Zelle
DE102014106204A1 (de) Batteriezelle sowie Batterie mit ein oder mehreren Batteriezellen
WO2011012201A1 (de) Batterie und verfahren zum herstellen einer batterie
DE102013208791B4 (de) Hybridfolie für einen Energietransformer mit Verfahren zur Herstellung
DE102019109472A1 (de) Batterie mit Halteeinrichtung sowie Kraftfahrzeug
DE102021115536A1 (de) Zelltrennelement zum Anordnen zwischen zwei Batteriezellen einer Batterie und Batterie
DE102017220724A1 (de) Energiespeicher für ein Kraftfahrzeug sowie entsprechendes Kraftfahrzeug
DE102009051315A1 (de) Batteriezelle mit Gasreservoir
WO2014040791A1 (de) Batteriezelle mit in gehäusedeckplatte integrierter berstscheibe
EP4044335A1 (de) Batteriezelle und verfahren zur herstellung einer batteriezelle
WO2023046389A1 (de) Druckspanneinrichtung für eine rahmenvorrichtung zum einspannen eines batteriezellenpakets, rahmenvorrichtung und batterie
DE102015008275A1 (de) Zellblock und elektrochemischer Energiespeicher
DE102016222643A1 (de) Baukastensystem umfassend ein einteilig ausgebildetes Gehäuse sowie einen einsetzbaren Rahmen
DE102021112307A1 (de) Dorn zum Wickeln eines Flachwickels einer Energiespeicherzelle, Energiespeicherzelle, Energiespeicherzellenmodul und Verfahren zur Herstellung einer Energiespeicherzelle
DE102010030993A1 (de) Batteriezelle, Verfahren zur Herstellung einer Batteriezelle und Kraftfahrzeug
DE102011106662A1 (de) Kühlkörper für einen Energiespeicher, insbesondere eine Hochvoltbatterie
AT519359B1 (de) Batteriemodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759482

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353411

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014540368

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12759482

Country of ref document: EP

Kind code of ref document: A1