WO2013065624A1 - ガスタービンシステム - Google Patents

ガスタービンシステム Download PDF

Info

Publication number
WO2013065624A1
WO2013065624A1 PCT/JP2012/077849 JP2012077849W WO2013065624A1 WO 2013065624 A1 WO2013065624 A1 WO 2013065624A1 JP 2012077849 W JP2012077849 W JP 2012077849W WO 2013065624 A1 WO2013065624 A1 WO 2013065624A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustor
pure water
gas turbine
water
Prior art date
Application number
PCT/JP2012/077849
Other languages
English (en)
French (fr)
Inventor
堀川敦史
餝雅英
柏原宏行
北嶋潤一
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to AU2012333652A priority Critical patent/AU2012333652B2/en
Priority to RU2014119542/06A priority patent/RU2014119542A/ru
Priority to CA2854079A priority patent/CA2854079C/en
Priority to EP12846297.5A priority patent/EP2775120B1/en
Priority to US14/355,774 priority patent/US10041417B2/en
Publication of WO2013065624A1 publication Critical patent/WO2013065624A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/008Combustion methods wherein flame cooling techniques other than fuel or air staging or fume recirculation are used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2203/00Flame cooling methods otherwise than by staging or recirculation
    • F23C2203/30Injection of tempering fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • the present invention relates to a gas turbine system for reducing NOx by injecting water or steam into a combustor.
  • Patent Documents 1 and 2 since steam is injected into the combustor by the pressure injection method, it is necessary to inject steam at a high pressure in order to supply the combustor with a uniform concentration. Ancillary facilities such as a power source are required. As a result, the thermal efficiency of the entire gas turbine system is deteriorated.
  • This invention was made in view of the said subject, and it aims at providing the gas turbine system which can simplify the incidental equipment which supplies water or water vapor
  • a gas turbine system includes a combustor having a fuel injection nozzle for injecting gaseous fuel and injection water, a reservoir tank for storing the injection water supplied to the combustor, The fuel pressure increasing means for increasing the pressure of the gaseous fuel supplied to the combustor, the fuel supply passage for guiding the pressurized gaseous fuel to the combustor, the reservoir tank and the fuel supply passage are communicated, and the pressure is increased.
  • a pressure guiding passage for pressurizing the jet water with the gaseous fuel.
  • the pressurized water is used to pressurize the jet water, so that a device for pressurizing the jet water and ancillary equipment such as its power are not required, and the entire system is simplified while Low NOx efficiency can be realized.
  • the combustor is preferably of a premix type that premixes the gaseous fuel and the jet water.
  • the injection pressure of the injection water is suppressed by using the premixing type that atomizes the injection water by the flow of the gaseous fuel, instead of the pressure injection type that supplies high pressure to atomize the injection water. And pressurization with gaseous fuel is facilitated. As a result, simplification of incidental facilities and high efficiency and low NOx are easily realized.
  • the gaseous fuel is preferably hydrogen gas. Since hydrogen has a low energy density per unit volume, in order to supply the same amount of heat as natural gas, it is necessary to supply three to four times the volume of gas, and the flow rate through the nozzle is also 3-4. Doubled. According to this configuration, the jet water is atomized by a fast flow of hydrogen, and premixing of a large amount of hydrogen gas and the jet water is promoted. As a result, it is possible to efficiently suppress the flame temperature with a small amount of jet water, and a highly efficient low NOx can be realized.
  • the pure water production apparatus for producing the jet water composed of pure water. If the pure water production apparatus is simultaneously operated during operation of the gas turbine engine, the power consumption increases. According to this configuration, since pure water can be stored in the storage tank, for example, the pure water production device is operated at night when power consumption is low, and the pure water for one day is stored, and the gas turbine It is also possible not to operate the pure water production apparatus while the engine is operating. As a result, power consumption is suppressed and consumption of pure water is also saved. As a result, highly efficient low NOx can be realized.
  • a gas compression device can be used as the fuel boosting means.
  • the fuel booster may include a liquid fuel compression device that boosts the liquid fuel and an evaporator that generates the gaseous fuel from the boosted liquid fuel.
  • FIG. 1 is a schematic configuration diagram illustrating a gas turbine system according to a first embodiment of the present invention. It is a longitudinal cross-sectional view of the combustor of the gas turbine engine in the gas turbine system. It is a longitudinal cross-sectional view of the fuel injection nozzle of the combustor.
  • (A) is a longitudinal cross-sectional view which shows the fuel injection nozzle of a different mixing system
  • (b) is a front view.
  • (A) is a longitudinal cross-sectional view which shows the fuel injection nozzle of a further different mixing system
  • (b) is a front view.
  • A) is a longitudinal cross-sectional view which shows the fuel injection nozzle of a further different mixing system
  • (b) is a front view.
  • FIG. 1 is a schematic configuration diagram of a gas turbine system according to a first embodiment of the present invention.
  • a gas turbine engine GT includes a compressor 1, a combustor 2, and a turbine 3 as main components, and a generator PU is connected to the gas turbine engine GT.
  • the combustor 2 has a fuel injection nozzle 4, and a fuel supply passage 6 and an injection water introduction passage 8 are connected to the fuel injection nozzle valve 4.
  • the fuel supply passage 6 is a passage for supplying hydrogen gas H, which is gaseous fuel, to the combustor 2
  • the jet water introduction passage 8 is a passage for supplying pure water W, which is jet water, to the combustor 2.
  • the pure water W is supplied to lower the flame temperature in the combustor 2 and to achieve low NOx.
  • Compressed air A supplied from the compressor 1 and hydrogen gas H supplied from the fuel injection nozzle 4 are combusted in the combustor 2, and the high-temperature and high-pressure combustion gas G generated thereby is supplied to the turbine 3, This turbine 3 is driven.
  • the compressor 1 is driven by a turbine 3 via a rotating shaft 9, and this turbine 3 drives a load such as a generator PU.
  • the fuel supply passage 6 is provided with a gas compression device 10 which is a fuel boosting means for boosting the hydrogen gas H.
  • the gas compression device 10 generates a high-pressure hydrogen gas H by increasing the pressure of the low-pressure hydrogen gas, and the increased hydrogen gas H is supplied to the combustor 2 through the fuel injection nozzle 4.
  • the jet water introduction passage 8 is provided with a storage water tank 12 and a pure water production apparatus 14.
  • the pure water production apparatus 14 produces pure water W from tap water by a known method using an ion exchange resin, a reverse osmosis membrane or the like, and the pure water W generated by the pure water production apparatus 14 is stored in the storage tank 12. Stored.
  • the fuel supply passage 6 and the storage water tank 12 communicate with each other through the pressure guiding passage 16, and the pure water W in the storage water tank 12 is pressurized by the hydrogen gas H whose pressure has been increased by the gas compressor 10, and the fuel injection nozzle 4. To be supplied to the combustor 2. That is, the fuel injection nozzle 4 supplies the hydrogen gas H and pure water W to the combustor 2.
  • the combustor 2 is a premix type in which hydrogen gas H and pure water W are mixed in the fuel injection nozzle 4 and then injected into the combustor 2.
  • the fuel injection nozzle 4 is an internal mixing method in which the pure water W is atomized by the flow (airflow) of the hydrogen gas H, and the hydrogen gas H and the pure water W are premixed in the fuel injection nozzle 4. Thereafter, the fuel is injected into the combustion chamber 24 of the combustor 2.
  • the fuel injection nozzle 4 has an annular injection water passage 26 through which pure water W flows, and an annular gaseous fuel passage 28 is formed so as to surround the outside of the injection water passage 26. Yes.
  • the downstream end of the gaseous fuel passage 28 communicates with the mixing passage 30, and pure water W is injected into the mixing passage 30 from the radially outward injection portion 32 provided at the downstream end portion of the injection water passage 26. It is premixed while being atomized by the flow of gas H.
  • the mixing passage 30 is composed of a throttle portion 30a including a plurality of axial passages arranged at equal intervals in the circumferential direction, which constitutes the upstream portion, and an annular portion 30b constituting the downstream portion.
  • the injection part 32 faces each axial passage of the throttle part 30a.
  • the pure water W is injected into the flow of the hydrogen gas H at a high speed in the throttle portion 30a, whereby the fine water W is atomized, and the mixture of the hydrogen gas H and the pure water W in the annular portion 30b.
  • the circumferential concentration distribution of is uniformized.
  • the downstream end of the annular portion 30 b communicates with a plurality of spray holes 34 formed at equal intervals in the circumferential direction of the fuel injection nozzle 4, and mixing of the hydrogen gas H and pure water W premixed in the mixing passage 30. Gas is injected into the combustion chamber 24 from the spray holes 34.
  • the number of spray holes 34 is, for example, 8 to 12.
  • the pure water production apparatus 14 shown in FIG. 1 is operated with external night electricity to produce pure water W for one day and store it in the storage tank 12. .
  • the gas turbine engine GT is operated in the daytime to generate power.
  • the pure water production apparatus 14 is not operated, and only the gas compression apparatus 10 is operated by external power.
  • Most of the high-pressure hydrogen gas H boosted by the gas compression device 10 is supplied to the fuel injection nozzle 4 through the fuel supply passage 6, and a part thereof is guided to the storage tank 12 through the pressure guide passage 16.
  • the pure water W stored in the storage tank 12 at night is pressurized by the high-pressure hydrogen gas H guided to the storage tank 12 through the pressure guiding passage 16 and is supplied to the fuel injection nozzle 4 through the injection water introduction passage 8. Supplied.
  • the fuel injection nozzle 4 premixes the supplied high-pressure hydrogen gas H and pure water W and injects them into the combustor 2.
  • the hydrogen gas H injected into the combustor 2 is combusted in the combustor 2 together with the compressed air A supplied from the compressor 1.
  • the verification test of the gas turbine system of this embodiment was performed.
  • the gas turbine system used as a comparative example is provided with a water pressurizing device such as a high pressure pump in place of the reservoir tank 12 and the pressure guiding passage 16 of the above embodiment, and the fuel injection nozzle 4A is not an internal mixing system.
  • the pressure injection type shown in FIG. 4 is used. In this pressure injection type, pure water W is pressurized by a water pressurizing device (not shown) and supplied to the fuel injection nozzle 4 ⁇ / b> A from a plurality of spray holes 46 other than the plurality of spray holes 44 of the hydrogen gas H. It is injected into the combustion chamber 24 and mixed with the hydrogen gas H in the combustion chamber 24.
  • FIG. 5 is a graph showing the generation amount of NOx with respect to the injection amount of pure water W
  • FIG. 6 is a graph showing the injection pressure of pure water W.
  • the amount of NOx generated decreases significantly compared to the gas turbine system of the comparative example, and injection of pure water. The amount is less than half in the vicinity of 100 kg / hr.
  • the injection pressure of pure water does not increase so much, and the injection amount of pure water is around 100 kg / hr. Then, it is 1/3 or less of the gas turbine system of a comparative example.
  • the hydrogen gas H has excellent flame-holding properties, while the combustion temperature is higher than that of natural gas, so the amount of NOx generated is large, and the combustion speed is high, so that a flame is formed near the fuel injection nozzle 4. .
  • the pressure injection type combustor of FIG. 4 it is difficult to effectively mix pure water W into the flame, and it is difficult to suppress the amount of NOx generated.
  • the hydrogen gas H and the atomized pure water W are sufficiently mixed in advance, so that the fuel is injected from the fuel injection nozzle 4 into the combustion chamber 24 at a high pressure. There is no need. Moreover, since the density of the hydrogen gas H is low, in order to supply the same amount of heat as that of natural gas, it is necessary to supply 3 to 4 times as much gas as the volume ratio. As a result, the fuel injection nozzle shown in FIG. The flow rate through 4 is also 3-4 times. Therefore, in the mixing passage 30 of the fuel injection nozzle 4, the pure water W is effectively atomized by the fast flow of the hydrogen gas H, and premixing of a large amount of the hydrogen gas H and the pure water W is promoted.
  • the pressurized water gas G is used to pressurize the pure water W in the storage water tank 12, so that an apparatus for pressurizing the pure water W and its power source Ancillary facilities are not required, and the entire system including the gas turbine engine GT is simplified, and low NOx can be realized with high efficiency.
  • the combustor 2 is a premixed type in which the hydrogen gas H and the pure water W are mixed in advance, so that the injection pressure of the pure water W is suppressed as compared with the pressure injection type combustion.
  • pressurization with the hydrogen gas H through the pressure guiding passage 16 is facilitated.
  • simplification of incidental facilities and high efficiency and low NOx are easily realized.
  • the amount of pure water W used is small, pure water is produced by the pure water production apparatus 14 shown in FIG. 12 can be stored. As a result, it is not necessary to operate the pure water production apparatus 14 while the gas turbine engine GT is in operation, power consumption during the daytime is suppressed, and pure water is continuously injected at a high pressure while the gas turbine engine GT is in operation. Compared to a pressure injection type combustor, the amount of pure water W used is saved, and highly efficient low NOx reduction can be realized.
  • FIG. 7 shows a schematic configuration diagram of a gas turbine system according to a second embodiment of the present invention.
  • the pressure of liquid hydrogen is increased by the liquid hydrogen compression device 40, which is a fuel pressure increase means, and then the pressure is increased by the evaporator 42.
  • the second embodiment is different from the first embodiment in that the hydrogen gas H is generated, and other configurations are the same as those in the first embodiment. In the second embodiment, the same effects as in the first embodiment are obtained.
  • the structure of the fuel injection nozzle 4 in each of the above embodiments is not limited to the internal mixing method shown in FIG. 3, and may be, for example, that of the mixing method shown in FIGS.
  • FIG. 8A and 8B show an external mixing type fuel spray nozzle 4B. While the fuel spray nozzle 4 of the internal mixing system in FIG. 3 mixes gaseous fuel such as hydrogen gas H and jet water (pure water W) in the mixing passage 30 inside the nozzle, FIG. And (b) the external mixing type fuel spray nozzle 4B, after the gaseous fuel H and the jet water W merge at the outside of the nozzle, specifically, at the spray hole 34B, the fuel is injected from the spray hole 34B to the outside. , Mixed outside.
  • a plurality of spray holes 34B are arranged on a double circumference concentric with the axis C of the fuel spray nozzle 4B.
  • FIGS. 9A and 9B show a Y-jet fuel spray nozzle 4C.
  • the fuel spray nozzle 4 of the internal mixing system in FIG. 3 sprays the spray water W in the radial direction from the radially outward injection portion 32 provided at the downstream end portion of the jet water passage 26, thereby injecting the gaseous fuel H and the fuel. While the water W is mixed, the Y-jet fuel spray nozzle 4C shown in FIGS. 9A and 9B is arranged at the downstream end of the annular gaseous fuel passage 28C and radially inward as it goes downstream. It has the inclined injection part 32C.
  • a plurality of the injection units 32C are arranged side by side in the circumferential direction, and by injecting the gaseous fuel H from the injection unit 32C in an oblique direction, the injection unit 32C is mixed with the injection water W flowing in from the central injection water passage 26C. Spraying from the spray hole 34C.
  • a plurality of spray holes 34C are arranged on a triple circumference concentric with the axis C of the fuel spray nozzle 4C.
  • FIGS. 10 (a) and 10 (b) show a fuel spray nozzle 4D of a liquid film atomization method.
  • This fuel spray nozzle 4D is provided with an annular inner gas fuel passage 28Di and an outer gas fuel passage 28Do on the inner diameter side and the outer diameter side of the annular injection water passage 26D, respectively, and these inner and outer gas fuel passages 28Di, 28Do
  • the swirlers 50 and 52 are respectively provided in the downstream part.
  • the gaseous fuel H flowing through the inner and outer gaseous fuel passages 28Di and 28Do is mixed with the jet water W made of a thin annular film while being swirled by the swirlers 50 and 52, so that the fuel fuel H flows outside the fuel spray nozzle 4D. An atomized mixture is obtained.

Abstract

 水素ガス(H)および純水(W)を噴射する燃料噴射ノズル(4)を有する燃焼器(2)と、燃焼器(2)に供給する純水(W)を貯留する貯留水槽(12)と、燃焼器(2)に供給する水素ガス(H)を昇圧するガス圧縮装置(10)と、昇圧された水素ガス(H)を燃焼器(2)に導く燃料供給通路(6)と、貯留水槽(12)と燃料供給通路(6)とを連通して、昇圧された水素ガス(H)によって純水(W)を加圧する導圧通路(16)とを備えている。

Description

ガスタービンシステム 関連出願
 この出願は、2011年11月2日出願の特願2011-240818の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 本発明は、水または水蒸気を燃焼器内に噴射して、低NOx化を図るガスタービンシステムに関するものである。
 近年、ガスタービンエンジンにおいては、低NOx化および高効率化が課題となっている。低NOx化には、燃焼器内への水または水蒸気の噴射が一般的に行われている(例えば、特許文献1および特許文献2)。
特開2001-041454号公報 特開2004-278875号公報
 しかしながら、上記特許文献1および2では、蒸気を圧力噴射方式で燃焼器に噴射するので、均一な濃度で燃焼器内に供給するために蒸気を高圧で噴射する必要があり、昇圧装置およびその駆動動力源のような付帯設備が必要になる。その結果、ガスタービンシステム全体の熱効率が悪くなる。
 本発明は、前記課題に鑑みてなされたもので、水または水蒸気を供給する付帯設備を簡素化し、高効率に低NOx化を図ることができるガスタービンシステムを提供することを目的としている。
 上記目的を達成するために、本発明にかかるガスタービンシステムは、気体燃料および噴射水を噴射する燃料噴射ノズルを有する燃焼器と、前記燃焼器に供給する前記噴射水を貯留する貯留水槽と、前記燃焼器に供給する気体燃料を昇圧する燃料昇圧手段と、昇圧された前記気体燃料を前記燃焼器に導く燃料供給通路と、前記貯留水槽と前記燃料供給通路とを連通して、昇圧された前記気体燃料によって前記噴射水を加圧する導圧通路とを備えている。
 この構成によれば、昇圧された気体燃料を用いて、噴射水を加圧するので、噴射水を加圧するための装置およびその動力のような付帯設備が不要となり、システム全体を簡素化しながら、高効率に低NOx化を実現できる。
 本発明において、前記燃焼器は、前記気体燃料と前記噴射水とを予混合する予混合型であることが好ましい。この構成によれば、噴射水を微粒化するために高圧で供給する圧力噴射型ではなく、気体燃料の流れで噴射水を微粒化する予混合型を用いることにより、噴射水の噴射圧を抑えることができ、気体燃料での加圧が容易になる。その結果、付帯設備の簡素化および高効率な低NOx化が実現し易くなる。
 予混合型の場合、前記気体燃料は水素ガスであることが好ましい。水素は単位体積当たりのエネルギー密度が低いので、天然ガスと同じ熱量を供給するためには、体積比で3~4倍の量のガスを供給する必要があり、ノズルを通る流速も3~4倍となる。この構成によれば、水素の速い流れで噴射水が微粒化され、大量の水素ガスと噴射水との予混合が促進される。その結果、少ない噴射水で効率的に火炎温度を抑制することが可能となり、高効率な低NOx化を実現できる。
 本発明において、さらに、純水からなる前記噴射水を製造する純水製造装置を備えることが好ましい。ガスタービンエンジンの稼動中に純水製造装置を同時に運転すると、電力消費が大きくなる。この構成によれば、貯留水槽に純水を貯めておくことができるから、例えば、電力消費の少ない夜間に純水製造装置を運転して、1日分の純水を貯めておき、ガスタービンエンジンの稼動中は純水製造装置を運転しないようにすることもできる。これにより、電力消費が抑制されるうえに、純水の消費量も節約され、その結果、高効率な低NOx化を実現できる。
 本発明において、前記燃料昇圧手段として、ガス圧縮装置を用いることができる。また、前記燃料昇圧手段は、液体燃料を昇圧する液体燃料圧縮装置と、昇圧された前記液体燃料から前記気体燃料を生成する蒸発器とを有していてもよい。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
本発明の第1実施形態に係るガスタービンシステムを示す概略構成図である。 同ガスタービンシステムにおけるガスタービンエンジンの燃焼器の縦断面図である。 同燃焼器の燃料噴射ノズルの縦断面図である。 比較例の燃焼器の燃料噴射ノズルの縦断面図である。 同ガスタービンエンジンと従来型のガスタービンエンジンのNOxの発生量を示すグラフである。 同ガスタービンエンジンと従来型のガスタービンエンジンの噴射水の噴射圧を示すグラフである。 本発明の第2実施形態に係るガスタービンシステムを示す概略構成図である。 (a)は、異なる混合方式の燃料噴射ノズルを示す縦断面図で、(b)は正面図である。 (a)は、さらに異なる混合方式の燃料噴射ノズルを示す縦断面図で、(b)は正面図である。 (a)は、さらに異なる混合方式の燃料噴射ノズルを示す縦断面図で、(b)は正面図である。
 以下、本発明の好ましい実施形態について図面を参照しながら詳細に説明する。
 図1は本発明の第1実施形態のガスタービンシステムの概略構成図を示す。同図において、ガスタービンエンジンGTは、圧縮機1と、燃焼器2と、タービン3とを主な構成要素とし、このガスタービンエンジンGTに発電機PUが連結されている。燃焼器2は燃料噴射ノズル4を有し、この燃料噴射ノズル弁4に燃料供給通路6と噴射水導入通路8とが接続されている。燃料供給通路6は、燃焼器2に気体燃料である水素ガスHを供給する通路で、噴射水導入通路8は、燃焼器2に噴射水である純水Wを供給する通路である。純水Wは、燃焼器2内の火炎温度を下げて低NOxを図るために供給される。
 圧縮機1から供給された圧縮空気Aと、燃料噴射ノズル4から供給される水素ガスHとを燃焼器2で燃焼させ、これにより発生する高温高圧の燃焼ガスGをタービン3に供給して、このタービン3を駆動する。圧縮機1は回転軸9を介してタービン3により駆動され、このタービン3は発電機PUのような負荷を駆動する。
 燃料供給通路6には、水素ガスHを昇圧する燃料昇圧手段であるガス圧縮装置10が設けられている。ガス圧縮装置10は、低圧の水素ガスを昇圧して高圧の水素ガスHを生成し、この昇圧された水素ガスHが燃料噴射ノズル4を介して燃焼器2に供給される。
 噴射水導入通路8には、貯留水槽12および純水製造装置14が設けられている。純水製造装置14は、イオン交換樹脂や逆浸透膜等を用いた公知の方法で、水道水から純水Wを製造し、純水製造装置14により生成された純水Wが貯留水槽12に貯留される。燃料供給通路6と貯留水槽12は導圧通路16を介して連通しており、ガス圧縮装置10により昇圧された水素ガスHによって貯留水槽12内の純水Wが加圧され、燃料噴射ノズル4を介して燃焼器2に供給される。つまり、燃料噴射ノズル4は水素ガスHおよび純水Wを燃焼器2に供給する。
 図2に示すように、燃焼器2は、水素ガスHと純水Wを燃料噴射ノズル4内で混合してから燃焼器2内に噴射する予混合型である。具体的には、燃料噴射ノズル4は、水素ガスHの流れ(気流)により純水Wを微粒子化する内部混合方式であり、燃料噴射ノズル4において水素ガスHと純水Wが予混合された後、燃焼器2の燃焼室24内に噴射される。
 図3に示すように、燃料噴射ノズル4は、内部に純水Wが流れる環状の噴射水通路26が形成され、この噴射水通路26の外側を囲むようにして環状の気体燃料通路28が形成されている。気体燃料通路28の下流端は混合通路30に連通しており、噴射水通路26の下流端部に設けられた径方向外側を向く噴射部32から純水Wが混合通路30に噴射され、水素ガスHの流れによって微粒子化されながら予混合される。
 混合通路30は、上流部を構成する、周方向に等間隔に配置された複数の軸方向通路からなる絞り部30aと、下流部を構成する環状部30bとからなる。前記噴射部32は絞り部30aの各軸方向通路に臨んでいる。絞り部30a内で高速となった水素ガスHの流れに純水Wが噴射されることで、純水Wの微粒子化が促進され、環状部30bで水素ガスHと純水Wとの混合気の周方向濃度分布が均一化される。環状部30bの下流端は、燃料噴射ノズル4の周方向に等間隔に形成された複数の噴霧孔34に連通しており、混合通路30で予混合された水素ガスHと純水Wの混合気が噴霧孔34から燃焼室24内に噴射される。噴霧孔34の数は、例えば8~12個である。
 上記構成のガスタービンシステムの運用の一例について説明する。
 まず、ガスタービンエンジンGTの稼動しない夜間に、図1に示す純水製造装置14を外部の夜間電力で運転して、1日分の純水Wを製造して貯留水槽12に貯留しておく。
 つづいて、昼間にガスタービンエンジンGTを稼動して発電を行う。このとき、純水製造装置14は運転せず、ガス圧縮装置10のみが外部電力により運転する。ガス圧縮装置10により昇圧された高圧水素ガスHの大部分は燃料供給通路6を介して燃料噴射ノズル4に供給され、一部分は導圧通路16を通って貯留水槽12に導かれる。夜間に貯留水槽12に貯留された純水Wは、導圧通路16を介して貯留水槽12に導かれた高圧水素ガスHによって加圧され、噴射水導入通路8を介して燃料噴射ノズル4に供給される。燃料噴射ノズル4は、供給された高圧水素ガスHと純水Wを予混合して燃焼器2に噴射する。燃焼器2に噴射された水素ガスHは、圧縮機1から供給された圧縮空気Aとともに燃焼器2で燃焼される。
 本実施形態のガスタービンシステムの検証試験を行った。比較例として用いたガスタービンシステムは、上記実施形態の貯留水槽12、導圧通路16に代えて、高圧ポンプのような水加圧装置を設け、さらに、燃料噴射ノズル4Aは内部混合方式ではなく、図4に示す圧力噴射型を用いている。この圧力噴射型では、純水Wが水加圧装置(図示せず)により昇圧されて燃料噴射ノズル4Aに供給され、水素ガスHの複数の噴霧孔44とは別の複数の噴霧孔46から燃焼室24に噴射され、燃焼室24内で水素ガスHと混ざる。
 図5は純水Wの噴射量に対するNOxの発生量を示すグラフで、図6は純水Wの噴射圧を示すグラフである。図5に示すように、本実施形態のガスタービンシステムでは、純水の噴射量が増加するに従い、比較例のガスタービンシステムに比べて大きくNOxの発生量が減少していき、純水の噴射量が100kg/hr近傍では半分以下になっている。
 さらに、図6に示すように、本実施形態のガスタービンシステムでは、純水の噴射量が増加しても、純水の噴射圧はそれほど増加せず、純水の噴射量が100kg/hr近傍では、比較例のガスタービンシステムの3分の1以下になっている。
 特に、水素ガスHは優れた保炎性を有する一方で、天然ガスに比べて燃焼温度が高いためNOx発生量が大きく、さらに燃焼速度が大きいため燃料噴射ノズル4の近傍で火炎が形成される。このため、図4の圧力噴射型の燃焼器では、火炎に純水Wを効果的に混入させるのが難しく、NOx発生量を抑えるのが難しい。しかも、純水Wを燃焼室24内で微粒子化するために大きな圧力で噴射する必要がある。これに対し、図3の予混合型の燃焼器2では、水素ガスHと微粒化された純水Wが予め十分混合されることから、燃料噴射ノズル4から高圧で燃焼室24内に噴射する必要がない。しかも、水素ガスHは密度が低いので、天然ガスと同じ熱量を供給するためには、体積比で3~4倍の量のガスを供給する必要があり、その結果、図3の燃料噴射ノズル4を通る流速も3~4倍となる。したがって、燃料噴射ノズル4の混合通路30において、水素ガスHの速い流れで純水Wが効果的に微粒化され、大量の水素ガスHと純水Wとの予混合が促進される。
 上記構成において、図1に示すように、昇圧された水素ガスGを用いて、貯留水槽12内の純水Wを加圧するので、純水Wを加圧するための装置およびその動力源のような付帯設備が不要となり、ガスタービンエンジンGTを含むシステム全体を簡素化しながら、高効率に低NOx化を実現できる。
 また、図3に示すように、燃焼器2は、水素ガスHと純水Wとを予め混合する予混合型であるので、圧力噴射型の燃焼に比べて純水Wの噴射圧を抑えることができ、導圧通路16を介した水素ガスHによる加圧が容易になる。その結果、付帯設備の簡素化および高効率な低NOx化が実現し易くなる。
 さらに、水素ガスHは天然ガスよりも流量が多くなるので、水素ガスHの速い流れによって純水Wとの予混合が促進されるから、少ない純水Wの量で効率的に火炎温度を下げて低NOx化を実現できる。
 このように、純水Wの使用量が少なくて済むから、電力消費の少ない夜間に、図1に示す純水製造装置14で純水を製造して、1日分の純水Wを貯留水槽12に貯めておくことが可能となる。その結果、ガスタービンエンジンGTの稼動中に純水製造装置14を運転する必要がなくなり、昼間の電力消費が抑制されるうえに、ガスタービンエンジンGTの稼動中に高圧で純水を噴射し続ける圧力噴射型の燃焼器に比べて純水Wの使用量が節約され、高効率な低NOx化を実現できる。
 図7は本発明の第2実施形態のガスタービンシステムの概略構成図を示す。第2実施形態では、第1実施形態のガス圧縮装置10で低圧水素ガスを昇圧するのに代えて、液体水素を燃料昇圧手段である液体水素圧縮装置40で昇圧した後、蒸発器42で高圧水素ガスHを生成する点で、第1実施形態と異なっており、その他の構成は第1実施形態と同じである。第2実施形態においても、上記第1実施形態と同様の効果を奏する。
 上記各実施形態における燃料噴射ノズル4の構造は、図3に示した内部混合方式に限定されず、例えば、図8~10の混合方式のものとすることもできる。
 図8(a)および(b)は、外部混合方式の燃料噴霧ノズル4Bを示す。図3の内部混合方式の燃料噴霧ノズル4がノズルの内部の混合通路30で水素ガスHのような気体燃料と噴射水(純水W)を混合しているのに対し、図8(a)および(b)の外部混合方式の燃料噴霧ノズル4Bは、ノズルの外部、具体的には、噴霧孔34Bにおいて気体燃料Hと噴射水Wを合流させたのち、噴霧孔34Bから外部に噴射して、外部で混合させている。噴霧孔34Bは、燃料噴霧ノズル4Bの軸心Cと同心の二重の円周上に複数配置されている。
 図9(a)および(b)は、Yジェット方式の燃料噴霧ノズル4Cを示す。図3の内部混合方式の燃料噴霧ノズル4が、噴射水通路26の下流端部に設けられた径方向外側を向く噴射部32から径方向に噴射水Wを噴霧することで気体燃料Hと噴射水Wを混合しているのに対し、図9(a)および(b)のYジェット方式の燃料噴霧ノズル4Cは、環状の気体燃料通路28Cの下流端に、下流に進むにつれて径方向内側に傾斜した噴射部32Cを有する。噴射部32Cは、周方向に複数並んで配置されており、この噴射部32Cから斜め方向に気体燃料Hを噴射することで、中央部の噴射水通路26Cから流入する噴射水Wと混合させて、噴霧孔34Cから噴霧している。噴霧孔34Cは、燃料噴霧ノズル4Cの軸心Cと同心の三重の円周上に複数配置されている。
 図10(a)および(b)は、液膜微粒化方式の燃料噴霧ノズル4Dを示す。この燃料噴霧ノズル4Dは、環状の噴射水通路26Dの内径側と外径側にそれぞれ環状の内側気体燃料通路28Diおよび外側気体燃料通路28Doが設けられ、これら内側および外側気体燃料通路28Di、28Doの下流部にスワーラ50,52がそれぞれ設けられている。内側および外側気体燃料通路28Di、28Doを流れる気体燃料Hが、スワーラ50,52によって旋回が付与された状態で、薄い環状膜からなる噴射水Wと混合させることにより、燃料噴霧ノズル4Dの外部で微粒化された混合気が得られる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。
1 圧縮機
2 燃焼器
3 タービン
4 燃料噴射ノズル
6 燃料供給通路
10 ガス圧縮装置(燃料昇圧手段)
12 貯留水槽
14 純水製造装置
16 導圧通路
40 液体水素圧縮装置(燃料昇圧手段)
42 蒸発器(燃料昇圧手段)
GT ガスタービンエンジン
H 水素ガス(気体燃料)
W 純水(噴射水)

Claims (6)

  1.  気体燃料および噴射水を噴射する燃料噴射ノズルを有する燃焼器と、
     前記燃焼器に供給する前記噴射水を貯留する貯留水槽と、
     前記燃焼器に供給する気体燃料を昇圧する燃料昇圧手段と、
     昇圧された前記気体燃料を前記燃焼器に導く燃料供給通路と、
     前記貯留水槽と前記燃料供給通路とを連通して、昇圧された前記気体燃料によって前記噴射水を加圧する導圧通路と、
     を備えたガスタービンシステム。
  2.  請求項1において、前記燃焼器は、前記気体燃料と前記噴射水とを予混合する予混合型であるガスタービンシステム。
  3.  請求項2において、前記気体燃料は水素ガスであるガスタービンシステム。
  4.  請求項1において、さらに、純水からなる前記噴射水を製造する純水製造装置を備えたガスタービンシステム。
  5.  請求項1において、前記燃料昇圧手段は、ガス圧縮装置であるガスタービンシステム。
  6.  請求項1において、前記燃料昇圧手段は、液体燃料を昇圧する液体燃料圧縮装置と、昇圧された前記液体燃料から前記気体燃料を生成する蒸発器とを有しているガスタービンシステム。
PCT/JP2012/077849 2011-11-02 2012-10-29 ガスタービンシステム WO2013065624A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2012333652A AU2012333652B2 (en) 2011-11-02 2012-10-29 Gas turbine system
RU2014119542/06A RU2014119542A (ru) 2011-11-02 2012-10-29 Газотурбинная система
CA2854079A CA2854079C (en) 2011-11-02 2012-10-29 Gas turbine system
EP12846297.5A EP2775120B1 (en) 2011-11-02 2012-10-29 Gas turbine system
US14/355,774 US10041417B2 (en) 2011-11-02 2012-10-29 Gas turbine system with injection water pressurization passage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-240818 2011-11-02
JP2011240818A JP5816522B2 (ja) 2011-11-02 2011-11-02 ガスタービンシステム

Publications (1)

Publication Number Publication Date
WO2013065624A1 true WO2013065624A1 (ja) 2013-05-10

Family

ID=48191971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077849 WO2013065624A1 (ja) 2011-11-02 2012-10-29 ガスタービンシステム

Country Status (7)

Country Link
US (1) US10041417B2 (ja)
EP (1) EP2775120B1 (ja)
JP (1) JP5816522B2 (ja)
AU (1) AU2012333652B2 (ja)
CA (1) CA2854079C (ja)
RU (1) RU2014119542A (ja)
WO (1) WO2013065624A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692709B2 (en) 2021-03-11 2023-07-04 General Electric Company Gas turbine fuel mixer comprising a plurality of mini tubes for generating a fuel-air mixture

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327826B2 (ja) * 2013-10-11 2018-05-23 川崎重工業株式会社 ガスタービンの燃料噴射装置
US20160348911A1 (en) * 2013-12-12 2016-12-01 Siemens Energy, Inc. W501 d5/d5a df42 combustion system
JP6177187B2 (ja) * 2014-04-30 2017-08-09 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン、制御装置及び制御方法
CN106574775B (zh) * 2014-08-14 2019-10-18 西门子公司 具有双孔口雾化器的多功能燃料喷嘴
JP6417167B2 (ja) * 2014-09-29 2018-10-31 川崎重工業株式会社 ガスタービン
WO2017015775A1 (zh) * 2015-07-24 2017-02-02 陈俊廷 以水作为辅助动力的内燃机引擎
KR101835421B1 (ko) * 2015-12-31 2018-03-08 한국항공우주연구원 습식 압축용 환형 분사 장치
US20170254264A1 (en) * 2016-03-03 2017-09-07 Technische Universität Berlin Swirl-stabilised burner having an inertisation front and related methods
JP6722491B2 (ja) * 2016-04-01 2020-07-15 川崎重工業株式会社 ガスタービンの燃焼器
DE102018126496A1 (de) * 2018-10-24 2020-04-30 HK Innovation UG (haftungsbeschränkt) Vorrichtung und Verfahren zum Antreiben eines Fahrzeugs, Flugzeugs, Schiffs oder dergleichen sowie Fahrzeug, Flugzeug, Schiff oder dergleichen, welches eine derartige Vorrichtung aufweist und/oder mit einem solchen Verfahren betreibbar ist
US11286884B2 (en) * 2018-12-12 2022-03-29 General Electric Company Combustion section and fuel injector assembly for a heat engine
US11952940B2 (en) * 2019-05-30 2024-04-09 Siemens Energy Global GmbH & Co. KG Gas turbine water injection for emissions reduction
WO2021234795A1 (ja) * 2020-05-18 2021-11-25 国立大学法人東北大学 ガスタービン
US11306661B1 (en) 2020-12-04 2022-04-19 General Electric Company Methods and apparatus to operate a gas turbine engine with hydrogen gas
US20220333783A1 (en) * 2021-03-07 2022-10-20 CPS-Holding Limited Hydrogen-Fueled Combustor for Gas Turbines

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176504A (ja) * 1996-12-13 1998-06-30 Asea Brown Boveri Ag 発電所装置運転時の周波数の維持方法
US5816041A (en) * 1995-05-31 1998-10-06 Dresser Industries, Inc. Premix fuel nozzle
US5974780A (en) * 1993-02-03 1999-11-02 Santos; Rolando R. Method for reducing the production of NOX in a gas turbine
JP2001012257A (ja) * 1999-06-25 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン燃焼器の燃料・蒸気供給装置
JP2001041454A (ja) 1999-07-27 2001-02-13 Ishikawajima Harima Heavy Ind Co Ltd 非発兼用燃料噴射ノズル
JP2001207861A (ja) * 2000-01-20 2001-08-03 Ishikawajima Harima Heavy Ind Co Ltd ハイドレートスラリ燃料による発電方法及びその装置
JP2004278875A (ja) 2003-03-14 2004-10-07 Hitachi Ltd ガスタービン燃焼器と燃料ノズル及びガスタービン燃焼器の燃料噴射方法
JP2007321601A (ja) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The ガスハイドレートを利用したガス複合発電システム及び方法
US20100314878A1 (en) * 2009-06-16 2010-12-16 Dewitt Monte Douglas Direct Generation of Steam Motive Flow by Water-Cooled Hydrogen/Oxygen Combustion

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736745A (en) * 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
US5323604A (en) * 1992-11-16 1994-06-28 General Electric Company Triple annular combustor for gas turbine engine
JP3696544B2 (ja) * 2001-01-23 2005-09-21 本田技研工業株式会社 コージェネレーション装置
US6962057B2 (en) * 2002-08-27 2005-11-08 Honda Giken Kogyo Kaisha Gas turbine power generation system
US7028485B1 (en) * 2002-10-02 2006-04-18 Mee Industries, Inc. Surge prevention for compressor inlet air fogging
US7497666B2 (en) * 2004-09-21 2009-03-03 George Washington University Pressure exchange ejector
WO2008108058A1 (ja) 2007-03-08 2008-09-12 Kawasaki Plant Systems Kabushiki Kaisha ガスタービン発電システムおよびその運転制御方法
JP2008248875A (ja) 2007-03-08 2008-10-16 Kawasaki Plant Systems Ltd ガスタービン発電システムおよびその運転制御方法
US8459037B2 (en) 2008-06-04 2013-06-11 Fuecotech, Inc. Method and system for feeding a gas-turbine engine with liquid fuel
EP2299178B1 (en) 2009-09-17 2015-11-04 Alstom Technology Ltd A method and gas turbine combustion system for safely mixing H2-rich fuels with air

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974780A (en) * 1993-02-03 1999-11-02 Santos; Rolando R. Method for reducing the production of NOX in a gas turbine
US5816041A (en) * 1995-05-31 1998-10-06 Dresser Industries, Inc. Premix fuel nozzle
JPH10176504A (ja) * 1996-12-13 1998-06-30 Asea Brown Boveri Ag 発電所装置運転時の周波数の維持方法
JP2001012257A (ja) * 1999-06-25 2001-01-16 Ishikawajima Harima Heavy Ind Co Ltd ガスタービン燃焼器の燃料・蒸気供給装置
JP2001041454A (ja) 1999-07-27 2001-02-13 Ishikawajima Harima Heavy Ind Co Ltd 非発兼用燃料噴射ノズル
JP2001207861A (ja) * 2000-01-20 2001-08-03 Ishikawajima Harima Heavy Ind Co Ltd ハイドレートスラリ燃料による発電方法及びその装置
JP2004278875A (ja) 2003-03-14 2004-10-07 Hitachi Ltd ガスタービン燃焼器と燃料ノズル及びガスタービン燃焼器の燃料噴射方法
JP2007321601A (ja) * 2006-05-30 2007-12-13 Chugoku Electric Power Co Inc:The ガスハイドレートを利用したガス複合発電システム及び方法
US20100314878A1 (en) * 2009-06-16 2010-12-16 Dewitt Monte Douglas Direct Generation of Steam Motive Flow by Water-Cooled Hydrogen/Oxygen Combustion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2775120A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692709B2 (en) 2021-03-11 2023-07-04 General Electric Company Gas turbine fuel mixer comprising a plurality of mini tubes for generating a fuel-air mixture

Also Published As

Publication number Publication date
CA2854079A1 (en) 2013-05-10
CA2854079C (en) 2016-08-16
US10041417B2 (en) 2018-08-07
JP5816522B2 (ja) 2015-11-18
AU2012333652A1 (en) 2014-06-19
EP2775120A1 (en) 2014-09-10
JP2013096324A (ja) 2013-05-20
US20140283498A1 (en) 2014-09-25
EP2775120B1 (en) 2017-11-29
EP2775120A4 (en) 2015-04-29
AU2012333652B2 (en) 2015-11-05
RU2014119542A (ru) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5816522B2 (ja) ガスタービンシステム
US10072848B2 (en) Fuel injector with premix pilot nozzle
US9964043B2 (en) Premixing nozzle with integral liquid evaporator
CN103423772B (zh) 带有被动供给燃料的预混合鼓风回路的液体筒
US10731862B2 (en) Systems and methods for a multi-fuel premixing nozzle with integral liquid injectors/evaporators
US20100192579A1 (en) Apparatus for Fuel Injection in a Turbine Engine
JP2004101175A (ja) 流体注入装置および注入方法
JP6327826B2 (ja) ガスタービンの燃料噴射装置
US20140007581A1 (en) Fuel flexible fuel injector
JP2006071275A (ja) ガスタービンエンジンの排出を低減する方法および装置
JP2014119250A (ja) 遅延希噴射事前混合作用のためのシステムおよび方法
US9212609B2 (en) Combination air assist and pilot gaseous fuel circuit
JP2013177990A (ja) ガスタービン燃焼器
EP2585763A2 (en) Secondary water injection for diffusion combustion systems
US20130298569A1 (en) Gas turbine and method for operating said gas turbine
WO2015053003A1 (ja) ガスタービンの燃料噴射装置
JP4977522B2 (ja) ガスタービン燃焼器
JP2009085456A (ja) ガスタービン燃焼器
WO2018173122A1 (ja) ガスタービン燃焼器
JP2016186387A (ja) ガスタービン燃焼器およびガスタービン
US20130205799A1 (en) Outer Fuel Nozzle Inlet Flow Conditioner Interface to End Cap
JP2011190785A (ja) ガスタービン燃焼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2854079

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14355774

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012846297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012846297

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014119542

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012333652

Country of ref document: AU

Date of ref document: 20121029

Kind code of ref document: A