WO2013065400A1 - ノックセンサの故障診断装置及び故障診断方法 - Google Patents

ノックセンサの故障診断装置及び故障診断方法 Download PDF

Info

Publication number
WO2013065400A1
WO2013065400A1 PCT/JP2012/072863 JP2012072863W WO2013065400A1 WO 2013065400 A1 WO2013065400 A1 WO 2013065400A1 JP 2012072863 W JP2012072863 W JP 2012072863W WO 2013065400 A1 WO2013065400 A1 WO 2013065400A1
Authority
WO
WIPO (PCT)
Prior art keywords
knock sensor
knocking
satisfied
diagnosis
condition
Prior art date
Application number
PCT/JP2012/072863
Other languages
English (en)
French (fr)
Inventor
洋介 坂寄
聡史 関根
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2013541667A priority Critical patent/JP5985499B2/ja
Priority to US14/355,336 priority patent/US9163577B2/en
Publication of WO2013065400A1 publication Critical patent/WO2013065400A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop

Definitions

  • the present invention relates to a failure diagnosis of a knock sensor that detects vibration of an internal combustion engine.
  • the device described in Patent Document 1 detects vibration caused by the intake / exhaust valve seating with a knock sensor, and the magnitude of a specific frequency component of the detected signal is less than a predetermined value. At some point, it is diagnosed that the knock sensor has failed because vibration due to seating is not detected.
  • the present invention when the magnitude of the knocking vibration frequency component extracted from the output signal of the knock sensor exceeds the first threshold value, it is determined that knocking has occurred, while the predetermined amount at which knocking cannot occur is determined.
  • the diagnosis condition is satisfied, the diagnosis condition is satisfied, and the magnitude of the knocking vibration frequency component extracted from the output signal of the knock sensor exceeds the second threshold value.
  • the knock sensor is diagnosed as malfunctioning.
  • the present invention when the magnitude of the knocking vibration frequency component extracted from the output signal of the knock sensor exceeds the second threshold value under predetermined diagnostic conditions where knocking cannot occur, Since the sensor has diagnosed the failure, it is possible to detect an abnormality / failure in which the output of the knock sensor becomes excessively large. Further, in the failure diagnosis processing using the second threshold value, it is possible to divert almost the same control processing as the normal knocking detection processing using the first threshold value, and the failure can be detected by a very simple control logic. Diagnosis can be performed.
  • the timing chart which shows the change of each characteristic value at the time of applying the failure diagnosis control of the said 1st Example.
  • the block diagram of the hybrid vehicle which concerns on 4th Example of this invention.
  • FIG. 1 is a configuration diagram showing a system configuration of a port injection type spark ignition type gasoline engine to which the present invention is applied.
  • the internal combustion engine 10 includes a cylinder block 11 provided with a plurality of cylinders (bore) 11 ⁇ / b> A, and a cylinder head 12 fixed to the upper side of the cylinder block 11.
  • a cylinder 11A of one cylinder is illustrated, and actually, a plurality of cylinders 11A are arranged in parallel in the cylinder row direction.
  • a piston 15 is slidably disposed in each cylinder 11A, and a combustion chamber 13 is formed above each piston 15 between the lower surface of the pent roof type cylinder head 12.
  • An intake port 17 is connected to each combustion chamber 13 via an intake valve 16, and an exhaust port 19 is connected via an exhaust valve 18. Further, ignition is performed to spark-ignite an air-fuel mixture at the center of the top of the combustion chamber 13.
  • a plug 20 is provided.
  • the intake passage 21 connected to the intake port 17 of each cylinder is provided with an electronically controlled throttle valve 23 for adjusting the intake air amount (intake air amount) upstream of the intake collector 22, and the intake port of each cylinder.
  • a fuel injection valve 24 for injecting fuel toward 17 is provided.
  • the configuration is not limited to such a port injection type, but may be a direct injection type configuration in which fuel is directly injected into the combustion chamber.
  • an air flow meter 25 for detecting the amount of intake air and an air filter 26 for collecting foreign matter in the intake air are provided on the upstream side of the throttle valve 23, an air flow meter 25 for detecting the amount of intake air and an air filter 26 for collecting foreign matter in the intake air are provided.
  • a catalyst 31 such as a three-way catalyst is interposed in the exhaust passage 30 to which the exhaust port 19 of each cylinder is connected / collected, and an oxygen concentration sensor or the like that detects the air-fuel ratio of the exhaust is provided upstream of the catalyst 31.
  • the air-fuel ratio sensor 32 is provided. Based on the detection signal of the air-fuel ratio sensor 32, air-fuel ratio feedback control is performed to increase or decrease the fuel injection amount so as to maintain the air-fuel ratio of the exhaust gas at the target air-fuel ratio (theoretical air-fuel ratio).
  • the piston 15 of each cylinder is connected to a crankshaft 34 via a connecting rod 33, and a crank angle sensor 35 for detecting the crank angle of the crankshaft 34 is provided in the cylinder block 11. Further, a knock sensor 36 for detecting vibration of the internal combustion engine is attached to the cylinder block 11.
  • a water temperature sensor 37 for detecting the cooling water temperature in the water jacket 38, and an accelerator opening APO of the accelerator pedal operated by the driver are detected.
  • an accelerator opening sensor 39 and an ignition switch 40 for starting and stopping the internal combustion engine are provided.
  • An ECU (engine control unit) 41 as a control means includes a microcomputer having a function of storing and executing various control processes. Based on input signals from the various sensors and switches described above, a throttle valve 23, a control signal is output to the spark plug 20, the fuel injection valve 24, etc., and the operation is controlled.
  • the ECU 41 performs knocking when the signal strength (magnitude) of the knocking vibration frequency component (for example, 5 to 12 kHz) extracted from the output signal of the knock sensor 36 exceeds the first threshold value SL1 set in advance. It is determined that it has occurred. More specifically, in order to accurately distinguish and detect stationary vibration and knocking of the internal combustion engine, the stationary component is calculated from the past value of the knocking vibration frequency component, and from the latest extracted knocking vibration frequency component. The dynamic component of the knocking vibration frequency component is calculated by subtracting the steady component, and it is determined that knocking has occurred when the magnitude of this dynamic component exceeds the threshold value SL1 (set according to the engine speed).
  • the signal strength (magnitude) of the knocking vibration frequency component for example, 5 to 12 kHz
  • a method for determining the occurrence of knocking by comparing the magnitude of the knocking vibration frequency component with the threshold value a method for comparing the magnitude of the knocking vibration frequency component itself with the threshold value, and the knocking vibration frequency component as described above.
  • a method of comparing the magnitude of the dynamic component with a threshold value can be considered, but any method may be used in the present invention.
  • FIG. 2 is a flowchart showing a flow of a failure diagnosis process of the knock sensor 36 according to the present embodiment.
  • This routine is stored in the ECU 41 and is repeatedly executed every predetermined period (for example, 10 ms).
  • step S11 it is determined whether or not a predetermined diagnostic condition that prevents knocking is satisfied.
  • a predetermined diagnostic condition that prevents knocking In this example, it is determined whether fuel is being cut for all cylinders and whether a predetermined time period B, specifically one cycle, has elapsed since the start of fuel cut.
  • step S12 based on the detection signal of the knock sensor 36, it is determined whether knock determination is being performed, that is, whether the occurrence of knocking is detected. Specifically, the signal intensity (magnitude) of the knocking vibration frequency of 5 to 12 kHz extracted from the output signal of the knock sensor 36 is sharply increased, and the magnitude of the above-described dynamic component is preset.
  • the threshold value SL2 of 2 is exceeded, the occurrence of knocking is detected, and the process proceeds to step S13.
  • the second threshold value SL2 is set to the same value as the first threshold value SL1 used for the knock determination during the normal operation in order to simplify the control.
  • the first threshold value SL1 may be set to a value that is larger or smaller than the second threshold value SL2 in accordance with the diagnostic conditions and the like.
  • step S13 the frequency of knock determination is calculated. Specifically, the number of times that the magnitude of the knocking vibration frequency component exceeds the second threshold SL2 within the preset unit period A, that is, the number of times of knock determination is counted.
  • the unit period A is 1 second in the example of FIG. 3, but is not limited thereto, and may be another time or period (for example, a predetermined crank angle).
  • step S14 it is determined whether or not the frequency of the knock determination (the number of knock determinations in the unit period A) exceeds a preset first predetermined number sN1.
  • the first predetermined number of times sN1 is eight as shown in FIG. 3, but may be another integer number.
  • step S15 it is determined whether or not the state in which the knock determination frequency in step S14 exceeds the first predetermined number of times sN1 has continuously occurred more than the second predetermined number of times sN2.
  • the process proceeds from step S15 to step S16, and the knock sensor 36 is determined to be faulty.
  • the driver is notified of the failure of the knock sensor 36 by a warning light or voice, and ignition timing control using the detection signal of the knock sensor 36 is performed.
  • the control processing such as is switched to an appropriate fail-safe mode.
  • FIG. 3 is a timing chart showing changes in each characteristic value when the control of this embodiment is applied.
  • the diagnosis permission of the knock sensor 36 is turned on, and the routine of FIG. Proceeding to S12, failure diagnosis of knock sensor 36 is performed.
  • the knock sensor 36 is diagnosed as having a failure at a time point t6 that has occurred a predetermined number of times (five times in this example).
  • the knock frequency is continuously determined five times or more and the second predetermined number of times sN2 or more.
  • the specific example is more specific. Specifically, when the state in which the frequency of knock determination exceeding the second threshold SL2 exceeds the first predetermined number of times sN1 continuously occurs for the second predetermined number of times sN2 or more, the knock sensor 36 is in failure. I have a diagnosis. Therefore, it is possible to detect an abnormality / failure in which the output of the knock sensor 36 becomes excessively large. Further, in the failure diagnosis process using the second threshold value SL2, it is possible to use almost the same control process as the normal knocking detection process using the first threshold value SL1, and an extremely simple control logic. This makes it possible to perform fault diagnosis.
  • FIG. 5 and FIGS. 7 to 9 are flowcharts showing the flow of processing of failure diagnosis of the knock sensor 36 according to the second to sixth embodiments.
  • the following steps S11A to S11E are performed as a determination process for the diagnosis condition in which knocking cannot occur, instead of step S11 of the first embodiment. This is different from the first embodiment.
  • Other configurations are the same as those in the first embodiment, and redundant description is omitted.
  • step S11A as a diagnostic condition in which knocking cannot occur, it is determined in step S11A whether or not the ignition timing is retarded from a predetermined knock limit ignition timing.
  • the knock limit ignition timing can be obtained, for example, with reference to a preset control map using engine speed and engine load as parameters.
  • the process proceeds to step S12 and subsequent steps, and the ignition timing is greater than the knock limit ignition timing. If it is not on the retard side, the routine is terminated assuming that the diagnosis condition that knocking cannot occur is not satisfied.
  • step S11B it is determined whether or not the idling operation is being performed in step S11B as a diagnostic condition in which knocking cannot occur. More specifically, when the accelerator opening is almost fully closed and the engine rotational speed is almost idle rotational speed, a diagnostic condition is established in which the engine is idling, that is, knocking cannot occur. The process proceeds to step S12 and the subsequent steps. If the idling operation is not being performed, it is determined that a diagnostic condition that does not allow knocking is not established, and the routine is terminated.
  • FIG. 6 is an overall configuration diagram of a hybrid vehicle to which the fourth embodiment of the present invention is applied.
  • This hybrid vehicle is a so-called one-motor two-clutch parallel hybrid vehicle, and an internal combustion engine 51 and a motor / generator 52 that are used together as a vehicle drive source are connected in series via a first clutch 53.
  • a second clutch 55 is interposed between the motor / generator 52 and the automatic transmission 54, and the automatic transmission 54 is connected to drive wheels 57 via a differential gear 56.
  • the internal combustion engine 51 can be automatically stopped and traveled only by the motor / generator 52.
  • the internal combustion engine can be operated under the condition that the ignition switch 40 is "ON" in order to improve fuel efficiency. 51 is automatically stopped.
  • the vehicle to which the fourth embodiment is applied is not limited to the hybrid vehicle described above, and only the internal combustion engine 51 can be used as long as it can implement idle stop control that automatically stops the internal combustion engine 51 during idle operation.
  • the vehicle may be a vehicle drive source.
  • step S11C as a diagnostic condition in which knocking cannot occur, in step S11C, idling is stopped, more specifically, the ignition switch 40 is ON, and Then, it is determined whether the internal combustion engine 51 is automatically stopped. If it is determined that idling is stopped, it is determined that a diagnosis condition in which knocking cannot occur is established, and the process proceeds to step S12 and subsequent steps. On the other hand, when the idling stop is not being performed and the diagnosis condition in which knocking cannot occur is not satisfied, this routine is terminated.
  • step S11D it is determined in step S11D as to whether or not the ignition switch 40 is OFF and the rotational speed is 0 or more as a diagnostic condition in which knocking cannot occur.
  • the crankshaft 34 rotates inertially after the internal combustion engine is actually stopped after the stop process of the internal combustion engine is started by the driver's “OFF” operation of the ignition switch 40. It is determined whether it is during. The determination of the rotation stop of the internal combustion engine is performed based on the detection signal of the crank angle sensor 35 described above. If it is between the time when the ignition switch 40 is turned off and the rotation of the internal combustion engine is stopped, it is determined that a diagnosis condition in which knocking cannot occur is established, and the process proceeds to step S12.
  • the knock sensor 36 is installed at a position close to the specific cylinder in the cylinder block 11 so as to detect the vibration of the specific cylinder.
  • step S11E as a diagnostic condition in which knocking cannot occur, it is a timing at which this specific cylinder is not combusted. Specifically, any one of the intake stroke, the first half of the compression stroke, the second half of the expansion stroke, and the exhaust stroke Is determined. If the specific cylinder is in any one of the intake stroke, the first half of the compression stroke, the second half of the expansion stroke, and the exhaust stroke, it is determined that a diagnostic condition that prevents knocking is satisfied, and the process proceeds to step S12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 簡素な制御で、ノックセンサの出力が過度に大きくなる形態の故障を検出可能とすることを目的とする。内燃機関の振動を検出するノックセンサを備える。ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第1の閾値を超えた場合に、ノッキングが発生していると判定する。ノッキングが発生し得ない所定の診断条件が成立しているかを判定し(S11)、診断条件が成立している場合、ノッキング振動周波数成分の大きさが第2の閾値を超えるノック判定中であるかを判定し、このノック判定の頻度が第1の所定回数sN1を超える状態が、連続して連続して第2の所定回数sN2以上である場合に、ノックセンサが故障していると診断する(S12~S16)。

Description

ノックセンサの故障診断装置及び故障診断方法
 本発明は、内燃機関の振動を検出するノックセンサの故障診断に関する。
 従来のノックセンサの故障診断装置として、特許文献1に記載のものでは、吸・排気弁の着座による振動をノックセンサで検出し、検出した信号の特定の周波数成分の大きさが所定値未満であるときに、着座による振動が検出されていないとして、ノックセンサの故障と診断している。
特開2010-265757号公報
 しかしながら、このような従来の装置では、着座による振動が検出されない場合に故障と判定しているために、ノックセンサの出力が実際の振動に相当する大きさよりも大きくなる形態の故障を検出することはできない。
 そこで本発明では、ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第1の閾値を超えた場合に、ノッキングが発生していると判定する一方、ノッキングが発生し得ない所定の診断条件が成立しているか否かを判定し、この診断条件が成立しており、かつ、ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第2の閾値を超えた場合に、ノックセンサが故障していると診断することを特徴としている。
 このような本発明によれば、ノッキングが発生し得ない所定の診断条件下で、ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第2の閾値を超えた場合に、ノックセンサが故障と診断しているために、ノックセンサの出力が過度に大きくなる形態の異常・故障を検出することが可能となる。また、第2の閾値を用いた故障診断処理では、第1の閾値を用いた通常のノッキングの発生の検知処理とほぼ同様の制御処理を流用することが可能となり、極めて簡素な制御ロジックによって故障診断を実施することが可能となる。
本発明の第1実施例に係る内燃機関の構成図。 上記第1実施例のノックセンサの故障診断制御の流れを示すフローチャート。 上記第1実施例の故障診断制御を適用した場合の各特性値の変化を示すタイミングチャート。 本発明の第2実施例に係るノックセンサの故障診断制御の流れを示すフローチャート。 本発明の第3実施例に係るノックセンサの故障診断制御の流れを示すフローチャート。 本発明の第4実施例に係るハイブリッド車両の構成図。 上記第4実施例に係るノックセンサの故障診断制御の流れを示すフローチャート。 本発明の第5実施例に係るノックセンサの故障診断制御の流れを示すフローチャート。 本発明の第6実施例に係るノックセンサの故障診断制御の流れを示すフローチャート。
 以下、本発明の好ましい実施例を図面を参照して説明する。先ず、図1~図3を参照して、本発明の第1実施例について説明する。図1は、本発明が適用されるポート噴射方式の火花点火式ガソリン機関のシステム構成を示す構成図である。内燃機関10は、複数のシリンダ(ボア)11Aが設けられたシリンダブロック11と、このシリンダブロック11の上側に固定されるシリンダヘッド12とを有している。なお、この図1では、一つの気筒のシリンダ11Aのみを描いており、実際には複数のシリンダ11Aが気筒列方向に並設されている。
 各シリンダ11Aにはピストン15が摺動可能に配設されており、各ピストン15の上方には、ペントルーフ型のシリンダヘッド12の下面との間に燃焼室13が形成されている。各燃焼室13には吸気弁16を介して吸気ポート17が接続するとともに、排気弁18を介して排気ポート19が接続し、更に、燃焼室13内の頂部中央に混合気を火花点火する点火プラグ20が配設されている。
 各気筒の吸気ポート17に接続する吸気通路21には、吸気コレクタ22の上流側に、吸気量(吸入空気量)を調整する電子制御式のスロットル弁23が設けられるとともに、各気筒の吸気ポート17へ向けて燃料を噴射する燃料噴射弁24が設けられている。なお、このようなポート噴射型の構成に限らず、燃焼室内に直接燃料を噴射する筒内直接噴射式の構成であっても良い。また、スロットル弁23の上流側には、吸気量を検出するエアフロメータ25と、吸気中の異物を捕集するエアフィルタ26と、が設けられている。
 各気筒の排気ポート19が接続・集合する排気通路30には、三元触媒等の触媒31が介装されるとともに、この触媒31の上流側に、排気の空燃比を検出する酸素濃度センサ等の空燃比センサ32が設けられる。この空燃比センサ32の検出信号に基づいて、排気の空燃比を目標空燃比(理論空燃比)に維持するように燃料噴射量を増減する空燃比フィードバック制御が行われる。
 各気筒のピストン15はコネクティングロッド33を介してクランクシャフト34と連結されており、このクランクシャフト34のクランク角を検出するクランク角センサ35がシリンダブロック11に設けられている。また、シリンダブロック11には、内燃機関の振動を検知するノックセンサ36が取り付けられている。
 機関運転状態を検出する各種センサ・スイッチ類として、上述したセンサ類の他に、ウォータジャケット38内の冷却水温を検出する水温センサ37、運転者により操作されるアクセルペダルのアクセル開度APOを検出するアクセル開度センサ39、及び内燃機関の起動及び停止用のイグニッションスイッチ40等が設けられている。運転者により操作されるイグニッションスイッチ40が「ON」のときに、内燃機関の起動要求が出力され、イグニッションスイッチ40が「OFF」のとき、内燃機関の停止要求が出力される。
 制御手段としてのECU(エンジン・コントロール・ユニット)41は、各種制御処理を記憶及び実行する機能を有するマイクロコンピュータを備えるもので、上述した各種センサ・スイッチ類からの入力信号に基づいて、スロットル弁23、点火プラグ20、燃料噴射弁24等へ制御信号を出力して、その動作を制御する。
 このECU41は、ノックセンサ36の出力信号から抽出されるノッキング振動周波数成分(例えば、5~12kHz)の信号強度(大きさ)が、予め設定された第1の閾値SL1を超える場合に、ノッキングが発生していると判定する。より具体的には、内燃機関の定常的な振動とノッキングとを正確に区別して検出するため、ノッキング振動周波数成分の過去の値から定常成分を算出し、最新の抽出されたノッキング振動周波数成分から定常成分を減じてノッキング振動周波数成分の動的成分を算出し、この動的成分の大きさが閾値SL1(機関回転数に応じて設定)を超える場合にノッキングが発生していると判断する。なお、ノッキング振動周波数成分の大きさを閾値と比較してノッキングの発生を判定する方法としては、ノッキング振動周波数成分そのものの大きさを閾値と比較する方法と、上記したようにノッキング振動周波数成分の動的成分の大きさを閾値と比較する方法とが考えられるが、本発明では何れの方法であっても良い。このようにノッキングの発生を検知した場合、このノッキングの発生を抑制もしくは解消するように、点火時期の遅角制御などが行われる。
 図2は、本実施例に係るノックセンサ36の故障診断処理の流れを示すフローチャートである。本ルーチンは、上記のECU41に記憶され、所定期間(例えば、10ms)毎に繰り返し実行される。
 ステップS11では、ノッキングが発生し得ない所定の診断条件が成立するか否かを判定する。この例では、全気筒燃料カット中で、かつ、燃料カットの開始から所定期間トB、具体的には1サイクルが経過したかを判定する。
 ステップS12では、ノックセンサ36の検出信号に基づいて、ノック判定中であるか、つまりノッキングの発生を検出したかを判定する。具体的には、ノックセンサ36の出力信号から抽出される5~12kHzのノッキング振動周波数の信号強度(大きさ)が急峻に大きくなって、上記した動的成分の大きさが予め設定される第2の閾値SL2を超えた場合に、ノッキングの発生を検知して、ステップS13へ進む。この第2の閾値SL2は、この実施例では、制御の簡素化のため、通常運転時のノック判定に用いられる上記の第1の閾値SL1と同じ値とされている。但し、診断精度向上のために、診断条件等に応じて第1の閾値SL1を第2の閾値SL2よりも大きな値もしくは小さな値としても良い。
 ステップS13では、ノック判定の頻度を算出する。具体的には、予め設定した単位期間トA内に、上記ノッキング振動周波数成分の大きさが上記第2の閾値SL2を超えた回数、つまりノック判定の回数をカウントする。単位期間トAは、図3の例では1秒であるが、これに限らず、他の時間もしくは期間(例えば、所定クランク角度)としても良い。
 ステップS14では、このノック判定の頻度(単位期間トA内のノック判定回数)が、予め設定された第1の所定回数sN1を超えたか否かを判定する。第1の所定回数sN1は、この例では図3に示すように8回であるが、他の整数回であっても良い。
 ステップS15では、上記ステップS14におけるノック判定の頻度が第1の所定回数sN1を超える状態が、連続して第2の所定回数sN2以上に発生したかを判定する。ノック判定の頻度が第1の所定回数sN1を超える状態が、連続して第2の所定回数sN2以上に発生した場合に、ステップS15からステップS16へ進み、ノックセンサ36を故障と判定する。このようにノックセンサ36の故障と判定された場合には、警告灯や音声によりノックセンサ36が故障である旨を運転者に報知するとともに、このノックセンサ36の検出信号を用いた点火時期制御等の制御処理を適宜なフェールセーフモードに切り替える。
 図3は、このような本実施例の制御を適用した場合の各特性値の変化を示すタイミングチャートである。全気筒燃料カットの開始時点t1,t4から所定期間トB(この例では1サイクル)が経過した時点t2,t5で、ノックセンサ36の診断許可がONとなり、図2のルーチンでステップS11からステップS12へ進んで、ノックセンサ36の故障診断が実施される。この故障診断中には、上述したように、単位期間トA内のノック判定回数(ノック頻度)が第1の所定回数sN1(この例では8回)を超える状態が、連続して第2の所定回数(この例では5回)以上発生した時点t6で、ノックセンサ36の故障と診断される。
 なお、図3の例では、ノック頻度の判定の2回目と3回目の間が不連続のようにみえるが、全気筒燃料カットが一時的にOFFとなる時刻t3から時刻t4までの期間痾を除いた故障診断許可条件の下では、ノック頻度の判定が5回以上連続して第2の所定回数sN2以上となっている。
 このように本実施例では、ノッキングが発生し得ない所定の診断条件下で、ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第2の閾値SL2を超えた場合、より具体的には、第2の閾値SL2を超えるノック判定の頻度が第1の所定回数sN1を超える状態が、連続して第2の所定回数sN2以上発生した場合に、ノックセンサ36が故障であると診断している。従って、ノックセンサ36の出力が過度に大きくなる形態の異常・故障を検出することが可能となる。また、第2の閾値SL2を用いた故障診断処理では、第1の閾値SL1を用いた通常のノッキングの発生の検知処理とほぼ同様の制御処理を流用することが可能となり、極めて簡素な制御ロジックによって故障診断を実施することが可能となる。
 図4、図5及び図7~図9は、第2~第6実施例に係るノックセンサ36の故障診断の処理の流れを示すフローチャートである。これらの第2~第6実施例では、ノッキングが発生し得ない診断条件の判定処理として、上記第1実施例のステップS11に代えて、下記のステップS11A~S11Eが行われる点で、上記第1実施例と異なっている。なお、他の構成については上記の第1実施例と同様であり、重複する説明を省略する。
 図4に示す第2実施例では、ノッキングが発生し得ない診断条件として、ステップS11Aにおいて、点火時期が所定のノック限界点火時期よりも遅角側にあるか否かを判定する。ノック限界点火時期は、例えば、機関回転速度と機関負荷とをパラメータとする予め設定された制御マップを参照して求めることができる。点火時期がノック限界点火時期よりも遅角側にある場合には、ノッキングが発生し得ない診断条件が成立していると判断して、ステップS12以降へ進み、点火時期がノック限界点火時期よりも遅角側にない場合には、ノッキングが発生し得ない診断条件が成立していないとして、本ルーチンを終了する。
 図5に示す第3実施例では、ノッキングが発生し得ない診断条件として、ステップS11Bにおいて、アイドル運転中であるか否かを判定する。より具体的には、アクセル開度がほぼ全閉で、かつ、機関回転速度がほぼアイドル回転速度である場合に、アイドル運転中である、つまりノッキングが発生し得ない診断条件が成立していると判断して、ステップS12以降へ進み、アイドル運転中でない場合、ノッキングが発生し得ない診断条件が成立していないと判断して、本ルーチンを終了する。
 図6は、本発明の第4実施例が適用されるハイブリッド車両の全体構成図である。このハイブリッド車両は、いわゆる1モータ2クラッチのパラレルハイブリッド車両であって、車両駆動源として併用される内燃機関51とモータ/ジェネレータ52とが第1クラッチ53を介して直列に接続されている。モータ/ジェネレータ52と自動変速機54との間には第2クラッチ55が介装されており、自動変速機54はデファレンシャルギヤ56を介して駆動輪57に接続されている。
 このようなハイブリッド車両では、内燃機関51の起動・停止用のイグニッションスイッチ40(図1参照)がONである場合、つまり運転者により操作されるイグニッションスイッチ40から内燃機関51の起動要求が出力されている場合にも、内燃機関51を自動停止し、モータ/ジェネレータ52のみによる走行が可能であり、例えばアイドルストップ時には、燃費向上のために、イグニッションスイッチ40が「ON」の状況下で内燃機関51を自動停止する。なお、この第4実施例が適用される車両としては、上記のハイブリッド車両に限らず、アイドル運転時に内燃機関51を自動停止するアイドルストップ制御を実現可能なものであれば、内燃機関51のみを車両駆動源とする車両であっても良い。
 この第4実施例では、図7に示すように、ノッキングが発生し得ない診断条件として、ステップS11Cにおいて、アイドリングストップ中であるか、より具体的には、イグニッションスイッチ40がONであり、かつ、内燃機関51が自動停止されているかを判定する。アイドリングストップ中であると判定されれば、ノッキングが発生し得ない診断条件が成立するとして、ステップS12以降ヘ進む。一方、アイドリングストップ中で無く、ノッキングが発生し得ない診断条件が成立していない場合には、本ルーチンを終了する。
 図8に示す第5実施例では、ノッキングが発生し得ない診断条件として、ステップS11Dにおいて、イグニッションスイッチ40がOFFで、かつ、回転速度が0以上であるかを判定する。具体的には、運転者によるイグニッションスイッチ40の「OFF」操作により内燃機関の停止処理が開始されてから、実際に内燃機関の回転が停止するまでの間、つまりクランクシャフト34が惰性で回転している間であるか否かを判定する。内燃機関の回転停止の判定は、上述したクランク角センサ35の検出信号等に基づいて行われる。イグニッションスイッチ40がOFFされてから内燃機関の回転が停止するまでの間であれば、ノッキングが発生し得ない診断条件が成立していると判定して、ステップS12へ進む。
 図9に示す第6実施例では、ノックセンサ36が特定気筒の振動を検出するように、例えばシリンダブロック11における特定気筒に近接する位置に設置されている。そしてステップS11Eでは、ノッキングが発生し得ない診断条件として、この特定気筒が燃焼が行われていないタイミングであるか、具体的には、吸気行程、圧縮行程前半、膨張行程後半、排気行程の何れかであるかが判定される。特定気筒が吸気行程、圧縮行程前半、膨張行程後半、排気行程の何れかである場合には、ノッキングが発生し得ない診断条件が成立すると判定して、ステップS12へ進む。
 なお、これらの第1~第5実施例で示したような、ノッキングが発生し得ない診断条件の幾つかを適宜に組み合わせて用いることも可能であり、この場合、故障診断が実施される機会・頻度を増加することができる。

Claims (12)

  1.  内燃機関の振動を検出するノックセンサと、
     前記ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第1の閾値を超えた場合に、ノッキングが発生していると判定する制御手段と、を備え、
     前記制御手段は、ノッキングが発生し得ない所定の診断条件が成立しているか否かを判定し、前記診断条件が成立しており、かつ、前記ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第2の閾値を超えた場合に、前記ノックセンサが故障していると診断するノックセンサの故障診断装置。
  2.  前記制御手段は、燃料カットが行われているときに、前記診断条件が成立していると判定する請求項1に記載のノックセンサの故障診断装置。
  3.  前記制御手段は、燃料カット開始後に所定期間経過してから燃料カットが終了するまでの間、前記診断条件が成立していると判定する請求項2に記載のノックセンサの故障診断装置。
  4.  前記第1の閾値と前記第2の閾値とを同じ値とする請求項1~3の何れかに記載のノックセンサの故障診断装置。
  5.  前記制御手段は、前記診断条件が成立しているときに、予め設定した単位期間内にノッキング振動周波数成分の大きさが前記第2の閾値を超えた回数をカウントし、カウントした回数が第1の所定回数を超えた場合に、前記ノックセンサが故障していると診断する請求項1~4の何れかに記載のノックセンサの故障診断装置。
  6.  前記制御手段は、前記カウントした回数が前記第1の所定回数を超える状態が連続して第2の所定回数発生した場合に、前記ノックセンサが故障していると診断する請求項5に記載のノックセンサの故障診断装置。
  7.  前記制御手段は、点火プラグの点火時期が所定のノック限界点火時期より遅角側にあるとき、前記診断条件が成立していると判定する請求項1~6の何れかに記載のノックセンサの故障診断装置。
  8.  前記制御手段は、アイドル運転中であるとき、前記診断条件が成立していると判定する請求項1~7の何れかに記載のノックセンサの故障診断装置。
  9.  前記内燃機関がハイブリッド車両またはアイドルストップ制御を行う車両に搭載されるものであり、
     前記制御手段は、イグニッションスイッチがONであり、かつ、内燃機関の運転が停止されているとき、前記診断条件が成立していると判定する請求項1~8の何れかに記載のノックセンサの故障診断装置。
  10.  前記制御手段は、イグニッションスイッチがOFFされてから内燃機関の回転が停止するまでの間、前記診断条件が成立していると判定する請求項1~9の何れかに記載のノックセンサの故障診断装置。
  11.  前記ノックセンサは特定気筒の振動を検出するものであり、
     前記制御手段は、前記特定気筒が吸気行程、圧縮行程前半、膨張行程後半、排気行程の何れかであるとき、前記診断条件が成立していると判定する請求項1~10の何れかに記載のノックセンサの故障診断装置。
  12.  内燃機関の振動を検出するノックセンサを備えるノックセンサの故障診断装置において、
     前記ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第1の閾値を超えた場合に、ノッキングが発生していると判定する一方、
     ノッキングが発生し得ない所定の診断条件が成立しているか否かを判定し、前記診断条件が成立しており、かつ、前記ノックセンサの出力信号から抽出されるノッキング振動周波数成分の大きさが第2の閾値を超えた場合に、前記ノックセンサが故障していると診断するノックセンサの故障診断方法。
PCT/JP2012/072863 2011-11-01 2012-09-07 ノックセンサの故障診断装置及び故障診断方法 WO2013065400A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013541667A JP5985499B2 (ja) 2011-11-01 2012-09-07 ノックセンサの故障診断装置及び故障診断方法
US14/355,336 US9163577B2 (en) 2011-11-01 2012-09-07 Malfunction diagnosis device and malfunction diagnosis method for knock sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011239902 2011-11-01
JP2011-239902 2011-11-01

Publications (1)

Publication Number Publication Date
WO2013065400A1 true WO2013065400A1 (ja) 2013-05-10

Family

ID=48191759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072863 WO2013065400A1 (ja) 2011-11-01 2012-09-07 ノックセンサの故障診断装置及び故障診断方法

Country Status (3)

Country Link
US (1) US9163577B2 (ja)
JP (1) JP5985499B2 (ja)
WO (1) WO2013065400A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9903778B2 (en) * 2015-02-09 2018-02-27 General Electric Company Methods and systems to derive knock sensor conditions
US9915217B2 (en) * 2015-03-05 2018-03-13 General Electric Company Methods and systems to derive health of mating cylinder using knock sensors
KR101798521B1 (ko) * 2016-04-28 2017-11-16 현대자동차주식회사 차량용 생체신호 센서 고장 진단 방법 및 장치
US10371079B2 (en) * 2016-09-09 2019-08-06 Ford Global Technologies, Llc Method and system for knock sensor rationality check
GB2568953A (en) * 2017-12-04 2019-06-05 Delphi Tech Ip Ltd Method of determining the functionality of an accelerometer associated with a fuel injector
CN114609956B (zh) * 2022-05-12 2022-08-30 山东北溟科技有限公司 一种基于多级中断的声信标激活方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146924A (ja) * 2003-11-12 2005-06-09 Toyota Motor Corp 内燃機関のノッキング判定装置
JP2009209865A (ja) * 2008-03-06 2009-09-17 Denso Corp ノック検出系異常診断置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410674B2 (ja) 2004-04-22 2010-02-03 トヨタ自動車株式会社 内燃機関のノッキング判定装置およびその装置を含む点火制御システム
JP4986894B2 (ja) 2008-03-10 2012-07-25 株式会社デンソー ノック検出系異常診断置
JP2010265757A (ja) 2009-05-12 2010-11-25 Hitachi Automotive Systems Ltd ノックセンサの故障判定装置
JP5386399B2 (ja) * 2010-02-24 2014-01-15 株式会社日本自動車部品総合研究所 内燃機関のノッキング検出装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146924A (ja) * 2003-11-12 2005-06-09 Toyota Motor Corp 内燃機関のノッキング判定装置
JP2009209865A (ja) * 2008-03-06 2009-09-17 Denso Corp ノック検出系異常診断置

Also Published As

Publication number Publication date
US9163577B2 (en) 2015-10-20
US20140288762A1 (en) 2014-09-25
JPWO2013065400A1 (ja) 2015-04-02
JP5985499B2 (ja) 2016-09-06

Similar Documents

Publication Publication Date Title
US8826891B2 (en) Control apparatus for internal combustion engine
CN108049978B (zh) 在具有跳过点火控制情况下的发动机诊断
JP5985499B2 (ja) ノックセンサの故障診断装置及び故障診断方法
JP5565471B2 (ja) 内燃機関の制御装置
JP2008013041A (ja) 内燃機関の停止制御装置
JP2011196195A (ja) 内燃機関の回転変動異常検出装置
JP2005207336A (ja) 可変バルブ装置の異常診断装置
US20120255531A1 (en) Inter-cylinder air/fuel ratio imbalance abnormality detection apparatus and inter-cylinder air/fuel ratio imbalance abnormality detection method for multicylinder internal combustion engine
JP2010106785A (ja) 排出ガス還流システムの異常診断装置
JP6251143B2 (ja) 火花点火エンジンの制御装置
JP4911364B2 (ja) 内燃機関の制御装置
US20150204255A1 (en) Vehicle control apparatus and vehicle control method
JP5305043B2 (ja) エンジンの燃焼状態検出装置
JP6458453B2 (ja) 内燃機関の制御装置
JP2008025512A (ja) 内燃機関の回転角センサ診断装置
JP5874694B2 (ja) 内燃機関の診断装置
JP2013130092A (ja) 内燃機関の始動時気筒判別方法
US9181844B2 (en) Diagnostic system and method for an oxygen sensor positioned downstream from a catalytic converter
JP2010216322A (ja) 内燃機関の始動時気筒判別方法
JP2007107458A (ja) 内燃機関の制御装置
JP4788277B2 (ja) 自動車用内燃機関の制御装置
JP5537510B2 (ja) 内燃機関の気筒判定装置
JP2004263648A (ja) エンジン診断方法
US20170370317A1 (en) Abnormality diagnosis device for pm sensor
JP2013181486A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541667

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14355336

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12845511

Country of ref document: EP

Kind code of ref document: A1