WO2013065382A1 - 内燃機関の点火装置および点火方法 - Google Patents

内燃機関の点火装置および点火方法 Download PDF

Info

Publication number
WO2013065382A1
WO2013065382A1 PCT/JP2012/070686 JP2012070686W WO2013065382A1 WO 2013065382 A1 WO2013065382 A1 WO 2013065382A1 JP 2012070686 W JP2012070686 W JP 2012070686W WO 2013065382 A1 WO2013065382 A1 WO 2013065382A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
gas flow
combustion engine
internal combustion
resistance
Prior art date
Application number
PCT/JP2012/070686
Other languages
English (en)
French (fr)
Inventor
竜也 矢口
泰介 白石
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2013541660A priority Critical patent/JP5761367B2/ja
Priority to EP12845493.1A priority patent/EP2775135A4/en
Priority to CN201280049835.5A priority patent/CN103857901B/zh
Priority to US14/350,384 priority patent/US9581125B2/en
Publication of WO2013065382A1 publication Critical patent/WO2013065382A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays

Definitions

  • the present invention relates to an ignition device and an ignition method for an internal combustion engine that ignites an air-fuel mixture by repeatedly applying a voltage between electrodes of a spark plug to cause a plurality of discharges.
  • Patent Documents 1 and 2 disclose a technique for generating a plurality of discharges by applying a voltage repeatedly between electrodes of a spark plug in order to reliably ignite a fuel-air mixture in a combustion chamber. Yes.
  • Patent Document 1 for example, three side electrodes are arranged around the center electrode of the spark plug, and a voltage is applied in a pulsed manner to sequentially generate a spark discharge between the center electrode and each different side electrode. It is supposed to be generated.
  • the discharge is not generated between the side electrode once discharged and the next discharge is generated between the other side electrode. .
  • Patent Document 2 a plurality of pulse discharges, which are a streamer discharge or a glow discharge, are performed before the main discharge, which is an arc discharge, so as to increase the concentration of active species immediately before the arc discharge, that is, the main discharge.
  • active species are radicals (including excitation of ions and bound electrons), electrons, atoms, internal vibrations and translational movements of molecules, etc., and after being generated by discharge, they become stable over time. Due to the transition, its lifetime is relatively short.
  • a flow of an air-fuel mixture to be ignited that is, a gas flow.
  • a gas flow is generated in a cylinder by the vertical movement of the piston.
  • the combustion speed becomes lower and combustion becomes unstable.
  • a device for generating a gas flow such as tumble or swirl in the combustion chamber is provided in the intake passage, or a method of increasing the gas flow in the cylinder by adjusting the opening timing or opening of the intake valve is used. .
  • Patent Document 1 and Patent Document 2 do not take into consideration the influence of such gas flow.
  • Patent Document 1 there is a problem of uneven distribution such that discharge is likely to occur only between a specific side electrode under the influence of gas flow.
  • An object of the present invention is to provide an ignition device and an ignition method for igniting an air-fuel mixture more reliably and effectively in the presence of gas flow.
  • a voltage is repeatedly applied between the electrodes of the spark plug to cause a plurality of discharges to ignite the air-fuel mixture.
  • the nth discharge and the n ⁇ 1th discharge immediately before the discharge are performed in the presence of a gas flow velocity component in a direction perpendicular to the direction connecting the shortest distance between the electrodes.
  • the time interval between the discharges is set so that the discharge channel due to the nth discharge is extended along the gas flow direction as compared with the discharge channel due to the (n-1) th discharge.
  • the discharge channel refers to a path that emits light during discharge.
  • the active species generated by the (n-1) th discharge are gas flowed in the presence of a gas flow velocity component in a direction perpendicular to the direction connecting the shortest distance between the electrodes. While the resistance of the discharge path flowing downstream is lower than the resistance of the path connecting the shortest distance, the nth discharge is performed.
  • the discharge path is a path where a discharge is expected or scheduled, and is not substantially different from the above discharge channel. When a discharge actually occurs along the discharge path, this path is Discharge channel.
  • the active species when attention is paid to the active species that are caused to flow downstream by the gas flow, until the end of the lifetime, the active species exists downstream from the position where the discharge has occurred earlier. A decrease occurs. Therefore, if a voltage is applied between the electrodes again before the action of the active species disappears, a discharge can occur on the downstream side of the gas flow with respect to the position where the discharge occurred first.
  • the discharge channel at this time is typically not a straight line that connects the shortest distance between the electrodes, but a curved shape that swells downstream of the gas flow. Since the active species generated by the discharge channel having a curved shape as described above are caused to flow further downstream due to the influence of the gas flow, the next discharge using the active species can be further generated downstream. If the discharge is gradually generated on the downstream side by the application of the repetitive voltage, the discharge channel is gradually extended outward.
  • the next discharge becomes a linear path. Occur along.
  • the next voltage is applied while the resistance of the discharge path on the downstream side caused by the flow of the active species in the gas flow is lower than the resistance of the path connecting the shortest distance between the electrodes, Discharge occurs one after another along the flow direction, and the discharge channel is extended.
  • Such a long discharge channel increases the plasma volume and is advantageous for the formation of an initial flame.
  • the structure explanatory view of the internal-combustion engine provided with the ignition device concerning this invention Explanatory drawing of the principal part of a spark plug.
  • the wave form diagram which shows an example of the pulse-shaped voltage applied between electrodes.
  • the wave form diagram which shows the other example of the pulse voltage applied between electrodes.
  • the wave form diagram which shows the other example of the pulse voltage applied between electrodes.
  • the wave form diagram which shows the other example of the pulse voltage applied between electrodes.
  • Explanatory drawing which compares and shows the (a) 1st discharge channel and (b) 2nd discharge channel in presence of gas flow.
  • the characteristic view which shows the characteristic of resistance ratio (Rdc / Rg) with respect to a gas flow and a discharge space
  • the time chart which shows the temporal change of resistance ratio (Rdc / Rg) of an Example with a small discharge interval, and discharge channel length.
  • the time chart which shows the temporal change of the resistance ratio (Rdc / Rg) and discharge channel length of a comparative example with a large discharge interval.
  • Explanatory drawing which shows the state which the discharge channel has spread outside the electrode with a narrow width
  • Explanatory drawing which shows the state which the discharge channel has spread outside the electrode of the wider one.
  • the time chart of the comparative example which set the discharge interval large.
  • the characteristic view which shows an example of the aspect of a change of a discharge interval.
  • the characteristic view which shows the other example of the aspect of a change of a discharge interval.
  • the characteristic view which shows the further another example of the aspect of a change of a discharge
  • FIG. 1 shows an example of an internal combustion engine 1 equipped with an ignition device according to the present invention.
  • the internal combustion engine 1 is configured as a four-stroke cycle spark ignition gasoline engine, and a pair of intake valves 4 and a pair of exhaust valves 5 are disposed at the top of a cylinder 3 in which the piston 2 is accommodated.
  • a spark plug 6 is disposed in the center of the ceiling surface surrounded by the intake valve 4 and the exhaust valve 5.
  • An intake port 8 is connected to the combustion chamber 7 through the intake valve 4, and an exhaust port 9 is connected through the exhaust valve 5.
  • the intake port 8 is connected to an intake collector 10 on the upstream side, and a throttle valve 12 that is driven to open and close by an actuator 11 made of an electric motor is disposed at the inlet of the intake collector 10.
  • Each intake port 8 is provided with a fuel injection valve 13 for injecting fuel toward the intake valve 4 and actively generates a gas flow (for example, swirl or tumble) in the combustion chamber 7.
  • the gas flow control valve 14 is arranged.
  • the gas flow control valve 14 has an opening controlled by an actuator 15 made of an electric motor, and reinforces swirl and tumble of the combustion chamber 7 by biasing the intake air flow in the intake port 8.
  • the present invention is not limited to the internal combustion engine 1 as described above, but can be applied to various types of spark ignition internal combustion engines.
  • the present invention may be a direct injection internal combustion engine, and gas flow
  • the present invention is also applicable to an internal combustion engine that does not include a device that varies the gas flow, such as the control valve 14.
  • a gas flow is generated in the combustion chamber 7 by the vertical movement of the piston 2 or the inflow of intake air through the intake valve 4.
  • This gas flow is designed in advance to promote the flame propagation of the air-fuel mixture.
  • the gas flow control valve 14 is basically controlled so as to have a gas flow designed in advance according to the operating conditions. Become. Therefore, the strength of the gas flow is basically known.
  • the spark plug 6 is connected to a high voltage generating circuit 16 that can apply a voltage in a pulse form at relatively short intervals.
  • a unipolar high voltage generation circuit 16 having a rectangular waveform as shown in FIG. 3 is used.
  • the present invention is not limited to this, and may be a bipolar high-voltage generation circuit 16 that outputs a rectangular waveform as shown in FIG. 4, and further, a unipolar that outputs a triangular waveform as shown in FIG. It is also possible to use a high voltage generation circuit 16 of a type or a bipolar high voltage generation circuit 16 that outputs a triangular waveform as shown in FIG. For each waveform, a discharge interval T is defined as shown in each figure.
  • the spark plug 6 has a rod-shaped center electrode 21 extending along the center of the plug body 23 of the spark plug 6, and the center electrode 21 so as to face the center electrode 21. It has a general configuration including a side electrode 22 extending in an L shape.
  • a sufficiently high potential difference is applied between the electrodes 21 and 22 of the spark plug 6 by the high voltage generation circuit 16, dielectric breakdown occurs, and discharge occurs between the electrodes 21 and 22.
  • the discharge is repeatedly generated many times by repeatedly applying a high voltage in pulses. Due to such discharge, a light emission phenomenon is observed substantially along the discharge path. In the present invention, such a path that emits light during discharge is called a discharge channel.
  • a straight line segment connecting the surfaces of both the electrodes 21 and 22 along the center line of the center electrode 21 is the shortest distance lg between the two electrodes 21 and 22.
  • FIG. 7 shows a discharge channel (indicated by reference numeral 31) in the presence of gas flow, where the gas flow u exists in a direction perpendicular to the direction connecting the shortest distances lg of the electrodes 21 and 22. It shall be.
  • FIG. 7A shows a discharge channel by the first discharge. As shown in FIG. 4A, even if there is a strong gas flow u, the first discharge and thus the discharge channel are formed along the shortest distance lg between the two electrodes 21 and 22. This first discharge causes dielectric breakdown of the air-fuel mixture, but since this is an extremely short time, the influence of the gas flow on the formed discharge channel is negligibly small.
  • the discharge channel gradually expands downstream, and the length of the discharge channel is extended. To go.
  • Such a long-growing discharge channel contributes to the growth of the flame kernel as well as the shortening of the initial combustion period, so that a more reliable ignition is obtained in the presence of the gas flow u.
  • the length of the discharge channel indicates the amount of energy input to the air-fuel mixture by discharge. The longer the discharge channel, the greater the energy input to the air-fuel mixture.
  • FIG. 8 is a characteristic diagram showing the discharge interval (interval for applying a high voltage) T necessary for the discharge channel due to the second discharge to extend outside the discharge channel due to the first discharge. is there.
  • the gas flow velocity is u [m / s]
  • the shortest distance between the electrodes 21 and 22 is lg [m]
  • the resistance of the air-fuel mixture along this shortest distance lg is Let Rg [ ⁇ ], and let Rdc [ ⁇ ] be the resistance of the air-fuel mixture along the discharge path extended downstream due to the influence of the active species.
  • the lifetime of the active species is ⁇ [s].
  • the resistance Rdc of the air-fuel mixture along the discharge path extended downstream decreases with the generation of active species, it increases with the passage of time due to the lifetime of the active species, and further increases in the discharge path (discharge channel). It increases with increasing path length.
  • this resistance Rdc is evaluated as a ratio with the resistance Rg of the air-fuel mixture along the shortest distance lg, that is, a dimensionless resistance ratio (Rdc / Rg).
  • the discharge interval T [s] is treated as a ratio with the active species lifetime ⁇ [s], that is, a dimensionless ratio (T / ⁇ ).
  • the gas flow u [m / s] is also evaluated as a dimensionless parameter (u ⁇ / lg) in consideration of the effect of the shortest distance lg [m] and the effect of the active species lifetime ⁇ [s]. To do.
  • the resistance ratio (Rdc / Rg) with respect to the discharge interval (T / ⁇ ) is obtained for each dimensionless gas flow (u ⁇ / lg) as shown in FIG.
  • the resistance Rdc of the air-fuel mixture along the outer discharge path is more than the resistance Rg of the air-fuel mixture along the shortest distance lg. Is satisfied, that is, the resistance ratio (Rdc / Rg) is smaller than 1. Therefore, if the discharge interval (T / ⁇ ) is set for the gas flow (u ⁇ / lg) so that the resistance ratio (Rdc / Rg) is in a region smaller than 1 in FIG.
  • the channel is extended outside the shortest distance lg. When the discharge channel is extended in this way, the plasma volume increases, flame nuclei grow and the initial combustion period is shortened, and more reliable ignition is obtained in the presence of gas flow.
  • the resistances Rg and Rdc between the electrodes 21 and 22 defined here are the resistances of the air-fuel mixture immediately before the discharge.
  • the resistance at the time of the first discharge is the resistance immediately before the dielectric breakdown, and is generally 100 k ⁇ or more.
  • active species due to the previous discharge are unevenly distributed in the air-fuel mixture, and a spatial distribution of resistance values is generated in the combustion chamber 7.
  • the resistance of the air-fuel mixture during discharge changes due to the spatial distribution of the active species concentration. Since the strength of the gas flow in the vicinity of the spark plug 6 at the ignition timing is known, the discharge flowed downstream by the gas flow by grasping the concentration and resistivity of the active species generated by the discharge and the lifetime of the active species. It is possible to predict the resistance Rdc of the path.
  • the discharge interval T is set so that the resistance Rdc of the discharge path flowing downstream is smaller than the resistance Rg of the discharge path along the shortest distance lg during the n-th discharge, the gas flow u The discharge channel is gradually extended so as to extend downstream.
  • FIG. 10 shows changes in resistance ratio (Rdc / Rg) and discharge channel length over time when the discharge interval T is set in this way.
  • the resistance ratio (Rdc / Rg) is less than 1, and discharge occurs along the discharge path that has moved downstream due to the gas flow u. Therefore, the length of the discharge channel is gradually extended as shown by the broken line.
  • the resistance Rdc gradually increases as the number of discharges increases, coupled with the influence of diffusion of active species by the gas flow u. That is, the resistance ratio (Rdc / Rg) approaches 1 for each discharge.
  • the resistance ratio (Rdc / Rg) is less than 1 until the 37th discharge, and the extension of the discharge channel is seen until the 37th discharge. Thereby, the length of the discharge channel is finally extended to about 8 times the shortest distance lg between the electrodes 21 and 22. This greatly contributes to the expansion of the flame kernel and the shortening of the initial combustion period.
  • FIG. 10 is the figure by the simulation which calculated
  • the ratio (Rdc / Rg) is drawn to increase, in reality, the resistance ratio (Rdc / Rg) is again reduced by returning the length of the discharge channel to the initial state (shortest distance lg). It is considered that the discharge channel is gradually decreased again and the discharge channel is gradually increased again.
  • FIG. 11 shows characteristics in the comparative example in which the discharge interval T is set large and the resistance ratio (Rdc / Rg) does not become less than 1.
  • the resistance ratio (Rdc / Rg) is 1 or more, and the resistance Rg of the air-fuel mixture along the shortest distance lg is the resistance along the downstream discharge path. Since it is smaller than Rdc, discharge occurs along the shortest distance lg after the second time. Therefore, no extension of the discharge channel occurs.
  • the characteristic of the resistance ratio (Rdc / Rg) in FIG. 11 is also based on a simulation for determining the resistance ratio (Rdc / Rg) on the assumption that the discharge channel is extended to the end. Is different. Actually, it is considered that the resistance ratio (Rdc / Rg) is almost constant after the second time.
  • the time on the horizontal axis in FIG. 10 and the time on the horizontal axis in FIG. 11 are the same scale, and the discharge interval T in the example of FIG. 10 is set to 1/5 of the discharge interval T in the example of FIG. .
  • the discharge channel grows longer and the energy input to the air-fuel mixture increases. In practice, however, the ignitability is proportional to that. In addition, since the voltage of each time in the high voltage generation circuit 16 is limited, there is an appropriate lower limit in the discharge interval T.
  • FIG. 12 and FIG. 13 explain the formation of a discharge channel when the width of one electrode is relatively wider than the width of the other electrode as the spark plug 6.
  • the width of the tip 22 a at the tip of the side electrode 22 is relatively larger than the width of the tip of the center electrode 21.
  • the n-th discharge channel 31 swelled downstream of the gas flow u by appropriately setting the discharge interval T as described above has at least a width as shown in FIG. It is desirable that the electrode is formed so as to extend outward from the narrower electrode 21. Furthermore, as shown in FIG. 13, it is desirable that the n-th discharge channel is formed so as to extend outward from the wider electrode 22.
  • the discharge channel 31 is formed so as to swell outside the electrodes 21 and 22 as described above, the extinguishing action by the electrodes 21 and 22 having a relatively low temperature, that is, the cooling action on the flame nucleus is reduced, and the development of the flame nucleus This is advantageous.
  • the discharge interval T is relatively lengthened in the initial section of the discharge start, and the discharge interval T is relatively shortened in the section that has undergone multiple discharges.
  • the first discharge and thus the discharge channel are formed along the shortest distance lg between the two electrodes 21 and 22.
  • the resistance Rdc of the discharge path is low, and therefore the discharge channel is gradually extended downstream by the gas flow u even at a relatively long discharge interval T.
  • the resistance Rdc of the discharge path along the extended discharge channel becomes higher and becomes closer to the resistance Rg of the discharge path along the shortest distance lg.
  • the discharge interval T is set relatively large and the discharge interval T is kept constant.
  • the discharge channel is extended until the second discharge, but the third discharge The resistance ratio (Rdc / Rg) reaches 1 and discharge occurs along the shortest distance lg. Therefore, the extension action of the discharge channel is limited.
  • the discharge interval T is set to 1/7 shorter than that of FIG. 15, and a larger discharge channel is required until the resistance ratio (Rdc / Rg) reaches 1. The number of discharges is large.
  • the discharge interval T is changed with the number of discharges n. Specifically, the discharge from the first discharge to the second discharge is performed.
  • the initial discharge interval T is the same as that in the comparative example of FIG. 15, and the discharge interval T is gradually shortened from the third discharge to the fourth discharge.
  • the discharge interval T between and after that is set to a discharge interval T that is 1/7 of the initial discharge interval T (that is, the same discharge interval T as the comparative example of FIG. 16).
  • the extension action of the discharge channel can be sufficiently obtained as in the comparative example of FIG. Then, the number of discharges until the discharge channel is extended to the maximum is reduced as compared with the comparative example of FIG. 16, and consumption of the electrodes 21 and 22 due to repeated discharge is suppressed.
  • the number of discharges in the section until the discharge interval T becomes 1/7 of the initial value is reduced to about 1/4 compared to the comparative example of FIG.
  • FIG. 17 to FIG. 19 show an example.
  • the discharge interval T is decreased stepwise as time elapses or the number of discharges n increases.
  • the example of FIG. 18 is an example in which the discharge interval T is continuously reduced.
  • the cycle of continuously decreasing the discharge interval T, then maintaining it constant, further decreasing it continuously again, and maintaining it constant is repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

 本発明の点火装置は、点火プラグの電極間に高電圧発生回路により繰り返し高電圧を印加する。ガス流動が存在する燃焼室内においては、初回の放電により生じた活性種がガス流動によって下流側に流され、この部分の混合気の抵抗Rdcが一時的に低くなるので、電極間の最短距離lgに沿った混合気の抵抗Rgに対する抵抗比(Rdc/Rg)が1未満となるように短い放電間隔Tでもって高電圧の印加を行う。これにより、放電チャンネルは、徐々にガス流動の下流側に拡がっていき、放電チャンネルの長さが延長されていく。このような放電チャンネルの延長は、火炎核の拡大と初期燃焼期間の短縮とに寄与し、確実な点火が得られる。

Description

内燃機関の点火装置および点火方法
 この発明は、点火プラグの電極間に繰り返し電圧を印加して複数回の放電を生じさせ、混合気の点火を行う内燃機関の点火装置および点火方法に関する。
 燃料と空気との混合気を燃焼室内で確実に点火するために、点火プラグの電極間に繰り返し電圧を印加して複数回の放電を生じさせる技術が、例えば特許文献1,2に開示されている。
 特許文献1は、点火プラグの中心電極の周囲に例えば3個の側方電極を配置し、パルス状に電圧を印加することで、中心電極とそれぞれ異なる側方電極との間で順次火花放電を生じさせるようになっている。ここでは、電圧を印加する間隔をある程度大きくすることで、一旦放電が生じた側方電極との間では放電が生じずに別の側方電極との間で次の放電が生じるようにしている。
 特許文献2は、アーク放電となる主放電の前に、ストリーマ放電ないしグロー放電となる複数回のパルス放電を行い、アーク放電つまり主放電の直前の活性種濃度を高めるようにしている。
 なお、一般に、活性種は、ラジカル(イオンや束縛電子の励起を含む)、電子、原子、分子内部振動や並進運動、などであり、放電により生成された後、時間経過に伴って安定状態に遷移するため、その寿命は比較的短い。
 内燃機関の燃焼室内では、一般に、点火すべき混合気の流動つまりガス流動が存在する。例えば、ピストンが上下動する一般的な往復動型内燃機関では、ピストンの上下運動によって筒内にガス流動が発生する。特に、空燃比が高い希薄混合気やEGRシステムによる多量の還流排気ガスを含む混合気にあっては、燃焼速度が低下して燃焼が不安定化するため、これを補うように積極的にガス流動を生成することが一般に行われている。例えば、タンブルやスワールなどのガス流動を燃焼室内に生成するためのデバイスを吸気通路に設けたり、吸気弁の開時期や開度の調整によって筒内のガス流動を高める方法などが用いられている。
 このようなガス流動が点火プラグ近傍に存在すると、放電により生成された活性種や火炎核がガス流動によって下流へ流され、一般に、点火がより困難となる。特許文献1や特許文献2の技術は、このようなガス流動の影響について何ら考慮されていない。
 例えば、特許文献1のような方法では、ガス流動による影響を受けて、ある特定の側方電極との間でのみ放電が生じやすくなる、といった偏在性の問題が生じる。
 また特許文献2の技術では、ガス流動の存在下においては、主放電前に行ったパルス放電により生成された活性種がガス流動によって下流に流されるので、主放電を行った際に、主放電の周囲に活性種が多く存在せず、活性種による火炎伝播を促進する効果が低減してしまう。
 本発明は、ガス流動の存在下において、より確実かつ効果的に混合気への点火を行う点火装置および点火方法を提供することを目的としている。
特公昭61-27588号公報 特開2009-47149号公報
 本発明の内燃機関の点火装置および点火方法は、点火プラグの電極間に繰り返し電圧を印加して複数回の放電を生じさせ、混合気の点火を行う。
 そして、本発明の一つの態様では、上記電極間の最短距離を結ぶ方向に対して直交する方向にガス流動の速度成分が存在する下で、n回目の放電とその直前のn-1回目の放電との間の時間間隔を、n回目の放電による放電チャンネルがn-1回目の放電による放電チャンネルに比較して上記ガス流動方向に沿って延長されたものとなるように設定する。ここで、放電チャンネルとは、放電時に発光している経路を指す。
 また、本発明の異なる態様では、上記電極間の最短距離を結ぶ方向に対して直交する方向にガス流動の速度成分が存在する下で、n-1回目の放電により生じた活性種がガス流動で下流に流されてなる放電経路の抵抗が、上記最短距離を結ぶ経路の抵抗よりも低い間に、n回目の放電を行う。なお、ここでの放電経路とは、放電が予想ないし予定される経路であって、上記の放電チャンネルとは実質的に大差がなく、放電経路に沿って実際に放電が生じると、この経路が放電チャンネルとなる。
 よく知られているように、電極間の電位差があるレベルに達すると、電極間に存在するガスに絶縁破壊が生じ、放電が起こる。電極間で放電が生じると、混合気のガスと電子との衝突によって、ラジカルなどの活性種が生成され、局部的に抵抗が低下する。この活性種には寿命があり、比較的短時間でその作用が消滅する。特に、ガス流動の存在下では、生成された活性種がガス流動によって下流側に流されるので、電極間の抵抗とりわけ最短距離を結ぶ経路の抵抗は、比較的速やかに再び増加する。
 ここで、ガス流動により下流側に流される活性種に着目すると、その寿命が尽きるまでは、先に放電が生じた位置よりも下流側に活性種が存在することから、この部分での抵抗の低下が生じる。従って、活性種の作用が消滅する前に再び電極間に電圧を印加すると、先に放電が生じた位置よりもガス流動の下流側で放電が生じ得る。このときの放電チャンネルは、典型的には、電極間の最短距離を結ぶ直線ではなく、ガス流動の下流側に膨らんだ湾曲形状となる。このように湾曲形状となる放電チャンネルによって生成された活性種は、ガス流動の影響によってさらに下流側に流されていくので、この活性種を利用した次の放電はさらに下流側に生じ得る。繰り返し電圧の印加により、このように徐々に下流側で放電が生じていけば、放電チャンネルが徐々に外側に延長されていく形となる。
 しかし、湾曲形状に膨らんだ放電経路の長さは、直線的な放電経路よりも経路長が長くなるので、例えば時間経過などにより活性種の作用が弱くなると、次の放電が直線的な経路に沿って生じる。つまり、活性種がガス流動で下流に流されたことで生じる下流側の放電経路の抵抗が、電極間の最短距離を結ぶ経路の抵抗よりも低い間に次の電圧の印加を行えば、ガス流動の方向に沿って次々と下流側で放電が生じ、放電チャンネルが延長されていく。このように長い放電チャンネルは、プラズマ体積を増大させ、初期火炎の形成の上で有利となる。
 従って、本発明によれば、燃焼室内のガス流動の存在下で、繰り返し電圧の印加によって徐々に外側に延長されていく長い放電チャンネルが安定的に形成され、より確実な点火が可能となる。
この発明に係る点火装置を備えた内燃機関の構成説明図。 点火プラグの要部の説明図。 電極間に印加されるパルス状の電圧の一例を示す波形図。 電極間に印加されるパルス状の電圧の他の例を示す波形図。 電極間に印加されるパルス状の電圧の他の例を示す波形図。 電極間に印加されるパルス状の電圧の他の例を示す波形図。 ガス流動の存在下での(a)1回目の放電チャンネルと(b)2回目の放電チャンネルとを対比して示す説明図。 ガス流動と放電間隔とに対する抵抗比(Rdc/Rg)の特性を示す特性図。 図8の各パラメータの説明図。 放電間隔が小さい実施例の抵抗比(Rdc/Rg)および放電チャンネル長さの時間的な変化を示すタイムチャート。 放電間隔が大きい比較例の抵抗比(Rdc/Rg)および放電チャンネル長さの時間的な変化を示すタイムチャート。 放電チャンネルが、幅が狭い方の電極よりも外側に拡がっている状態を示す説明図。 放電チャンネルが、幅が広い方の電極よりも外側に拡がっている状態を示す説明図。 放電間隔を放電回数に伴って変化させた実施例を示す図10と同様のタイムチャート。 放電間隔を大きく設定した比較例のタイムチャート。 放電間隔を小さく設定した比較例のタイムチャート。 放電間隔の変化の態様の一例を示す特性図。 放電間隔の変化の態様の他の例を示す特性図。 放電間隔の変化の態様のさらに他の例を示す特性図。
 以下、この発明の好ましい一実施例を図面に基づいて詳細に説明する。
 図1は、この発明に係る点火装置を備えた内燃機関1の一例を示している。この内燃機関1は、4ストロークサイクルの火花点火式ガソリン機関として構成されたものであって、ピストン2が収容されたシリンダ3の頂部に、例えば一対の吸気弁4および一対の排気弁5が配置され、かつこれらの吸気弁4および排気弁5に囲まれた天井面中心部に点火プラグ6が配置されている。燃焼室7には、上記吸気弁4を介して吸気ポート8が接続され、かつ上記排気弁5を介して排気ポート9が接続されている。吸気ポート8は、その上流側において吸気コレクタ10に接続されており、この吸気コレクタ10の入口部には、電動モータからなるアクチュエータ11によって開閉駆動されるスロットル弁12が配置されている。
 また、各吸気ポート8には、吸気弁4へ向かって燃料を噴射する燃料噴射弁13が配置されているとともに、燃焼室7内に積極的にガス流動(例えばスワールもしくはタンブル)を生成するためのガス流動制御弁14が配置されている。このガス流動制御弁14は、電動モータからなるアクチュエータ15によって開度が制御されるものであり、吸気ポート8内の吸気流を片寄らせることで燃焼室7のスワールやタンブルを強化する。
 なお、この発明は、上記のような内燃機関1に限定されず、種々の形式の火花点火式内燃機関に適用可能であり、例えば、筒内噴射式内燃機関であってもよく、またガス流動制御弁14のようなガス流動を可変するデバイスを具備しない内燃機関にも適用可能である。
 上記燃焼室7には、ピストン2の上下動や吸気弁4を通した吸気の流入などによってガス流動が生成されるが、このガス流動は、混合気の火炎伝播を促進するために予め設計された強度を有し、ガス流動制御弁14のようなデバイスを具備する場合でも、基本的に運転条件に応じて予め設計されたガス流動となるようにガス流動制御弁14が制御されることになる。従って、ガス流動の強度は基本的に既知である。
 上記点火プラグ6には、比較的短い間隔でパルス状に電圧を印加することができる高電圧発生回路16が接続されている。一つの例では、図3に示すような矩形波形となるユニポーラ型の高電圧発生回路16が用いられる。本発明は、これに限定されず、図4に示すような矩形波形を出力するバイポーラ型の高電圧発生回路16であってもよく、さらには、図5に示すような三角波形を出力するユニポーラ型の高電圧発生回路16や、図6に示すような三角波形を出力するバイポーラ型の高電圧発生回路16を用いることもできる。なお、各々の波形について、各図に示すように放電間隔Tが定義される。
 また、点火プラグ6は、この実施例では、図2に示すように、点火プラグ6の栓体23の中心に沿って延びた棒状をなす中心電極21と、この中心電極21と対向するようにL字形に延びた側方電極22と、を備えた一般的な構成となっている。このような点火プラグ6の電極21,22の間に上記高電圧発生回路16によって十分に高い電位差を与えると、絶縁破壊が生じ、電極21,22間で放電が起こる。特に、高電圧をパルス状に繰り返し印加することによって、放電が多数回繰り返し発生する。このような放電により、その放電経路にほぼ沿って発光現象が見られるが、本発明では、このように放電時に発光している経路を放電チャンネルと呼ぶ。なお、上記の電極21,22の構成では、中心電極21の中心線に沿って両電極21,22の表面を結ぶ直線線分が2つの電極21,22の最短距離lgとなる。
 図7は、ガス流動の存在下での放電チャンネル(符号31で示す)を示しており、ここでは、電極21,22の最短距離lgを結ぶ方向に対して直交する方向にガス流動uが存在するものとする。図7の(a)は、1回目の放電による放電チャンネルを示している。この図(a)に示すように、強いガス流動uがあったとしても、初回の放電ひいては放電チャンネルは、2つの電極21,22の最短距離lgに沿って形成される。なお、この1回目の放電は混合気の絶縁破壊を引き起こすが、これは極短い時間であるので、形成される放電チャンネルへのガス流動の影響は無視できる程度に小さい。
 このように放電が起きると、その放電チャンネルに沿って活性種が生成され、混合気中の抵抗が低下する。しかし、このように抵抗低下を生じる活性種は、ガス流動uの存在下では、ガス流動によって下流側に流される。従って、比較的短い期間ではあるが、2つの電極21,22の最短距離lgに沿った混合気の抵抗よりも、最短距離lgから下流側に存在する活性種に沿った混合気の抵抗の方が小さくなる期間が存在する。そのため、この期間の間に、2回目の高電圧の印加を行うと、図7の(b)に示すように、相対的に抵抗が低い経路に沿って放電が生じるため、最短距離lgではなく下流側に膨らんだ曲線状の放電チャンネルが形成される。つまり、最短距離lgよりも長い経路長を有する放電チャンネルが形成される。
 この2回目の放電により生じる活性種も、やはりガス流動uの影響を受けて下流側に移動するので、同様に、図7(b)の放電チャンネルよりもさらに下流側での混合気の抵抗が、2つの電極21,22の最短距離lgに沿った混合気の抵抗よりも一時的に低くなる。従って、この間に次の3回目の高電圧印加を行えば、図7(b)の放電チャンネルよりもさらに下流側に3回目の放電チャンネルが形成される。
 このように、ガス流動uの存在下において活性種の寿命を考慮した十分に短い間隔で高電圧を印加すれば、放電チャンネルが徐々に下流側に拡がっていき、放電チャンネルの長さが延長されていく。このように長く成長した放電チャンネルは、火炎核の成長ならびに初期燃焼期間の短縮に寄与し、従って、ガス流動uの存在下においてより確実な点火が得られる。なお、放電チャンネルの長さは、放電により混合気に投入されるエネルギの大きさを示しているとも言え、放電チャンネルが長いほど混合気に投入されるエネルギが大となる。
 図8は、2回目の放電による放電チャンネルが1回目の放電による放電チャンネルよりも外側へ延長されるために必要な放電間隔(高電圧の印加の間隔)Tについて整理して示した特性図である。ここでは、図9に示すように、ガス流動の速度をu[m/s]とし、電極21,22間の最短距離をlg[m]とし、この最短距離lgに沿った混合気の抵抗をRg[Ω]とし、活性種の影響により下流側に延長された放電経路に沿った混合気の抵抗をRdc[Ω]とする。また、活性種の寿命をτ[s]とする。
 下流側に延長された放電経路に沿った混合気の抵抗Rdcは、活性種の生成に伴って低下する一方、活性種の寿命により時間経過に伴って増加し、さらに放電経路(放電チャンネル)の経路長が長くなることに伴って増加する。図8では、この抵抗Rdcを、最短距離lgに沿った混合気の抵抗Rgとの比、つまり無次元の抵抗比(Rdc/Rg)として評価する。また、放電間隔T[s]については、同様に、活性種の寿命τ[s]との比、つまり無次元の比(T/τ)として取り扱う。そして、ガス流動u[m/s]についても、最短距離lg[m]の大小による影響ならびに活性種の寿命τ[s]による影響を考慮して、無次元のパラメータ(uτ/lg)として評価する。
 このように整理すると、図8に示すように、無次元化したガス流動(uτ/lg)毎に、放電間隔(T/τ)に対する抵抗比(Rdc/Rg)の値が得られる。ここで、2回目の放電による放電チャンネルが最短距離lgよりも外側に延長されるためには、外側の放電経路に沿った混合気の抵抗Rdcが最短距離lgに沿った混合気の抵抗Rgよりも小さいこと、つまり抵抗比(Rdc/Rg)が1よりも小さいこと、を充足すればよい。従って、図8において抵抗比(Rdc/Rg)が1よりも小さい領域にあるようにガス流動(uτ/lg)に対して放電間隔(T/τ)を設定すれば、2回目の放電による放電チャンネルが最短距離lgよりも外側に延長される。このように放電チャンネルが延長されると、プラズマ体積が増大し、火炎核の成長ならびに初期燃焼期間の短縮が図れ、ガス流動の存在下においてより確実な点火が得られる。
 ここで定義される電極21,22間の抵抗Rg,Rdcは、放電直前の混合気の抵抗である。特に、1回目の放電の際の抵抗は、絶縁破壊直前の抵抗であり、一般に、100kΩないしそれ以上の大きさのものとなる。2回目およびそれ以降の放電の際には、混合気の中に、それ以前の放電による活性種が偏在し、燃焼室7の中で抵抗値の空間分布が発生している。この活性種濃度の空間分布によって、放電の際の混合気の抵抗が変化する。点火時期における点火プラグ6近傍のガス流動の強度は既知であるから、放電により生じる活性種の濃度とその抵抗率ならびに活性種の寿命を把握することで、ガス流動により下流側に流された放電経路の抵抗Rdcを予測することが可能である。
 また、3回目以降の放電についても、同様となる。つまり、n回目の放電の際に、下流側に流された放電経路の抵抗Rdcが最短距離lgに沿った放電経路の抵抗Rgよりも小さくなるように放電間隔Tを設定すれば、ガス流動uの下流側に拡がるように徐々に放電チャンネルが延長されていく。
 図10は、このように放電間隔Tを設定した場合の抵抗比(Rdc/Rg)と放電チャンネルの長さの時間経過に伴う変化を示している。この例では、2回目以降の放電の際に、抵抗比(Rdc/Rg)が1未満となり、ガス流動uにより下流側に移動した放電経路に沿って放電が起こる。そのため、放電チャンネルの長さは破線で示すように徐々に延長されていく。一方、このように放電経路が外側に延長される結果、ガス流動uによる活性種の拡散の影響と相俟って、放電回数の増加に伴い抵抗Rdcが徐々に増大していく。つまり、放電のたびに抵抗比(Rdc/Rg)が1に近づいていく。図示例では、37回目の放電までは抵抗比(Rdc/Rg)が1未満であり、この37回目まで放電チャンネルの延長が見られる。これにより、放電チャンネルの長さは、最終的に、電極21,22間の最短距離lgの約8倍にまで延長される。これは、火炎核の拡大と初期燃焼期間の短縮とに大きく寄与する。
 38回目の放電の際には、最短距離lgに沿った混合気の抵抗Rgの方が下流側に迂回した放電経路の抵抗Rdcよりも小さくなるので、最短距離lgに沿って放電が生じる。従って、この段階で、放電チャンネルの延長が終了する。なお、この図10は、理解を容易にするために、放電チャンネルが最後まで延長されていくものと仮定して抵抗比(Rdc/Rg)を求めたシミュレーションによる図であり、38回目以降も抵抗比(Rdc/Rg)が増大していくように描かれているが、実際には、放電チャンネルの長さが初期状態(最短距離lg)に戻ることで、抵抗比(Rdc/Rg)は再び小さくなり、また放電チャンネルも再び徐々に増加していくものと考えられる。
 図11は、放電間隔Tが大きく設定されて抵抗比(Rdc/Rg)が1未満とならない比較例の場合の特性を示している。この比較例では、2回目以降の放電の際に、抵抗比(Rdc/Rg)が1以上であり、最短距離lgに沿った混合気の抵抗Rgの方が下流側の放電経路に沿った抵抗Rdcよりも小さいので、2回目以降も最短距離lgに沿って放電が起こる。従って、放電チャンネルの延長は生じない。なお、この図11の抵抗比(Rdc/Rg)の特性も、やはり放電チャンネルが最後まで延長されていくものと仮定して抵抗比(Rdc/Rg)を求めたシミュレーションによるものであり、実際とは異なる。実際には、2回目以降、ほぼ一定の抵抗比(Rdc/Rg)となると考えられる。
 図10の横軸の時間と図11の横軸の時間とは同一のスケールであり、図10の例の放電間隔Tは、図11の例の放電間隔Tの1/5に設定されている。
 なお、理論的には放電間隔Tを小さくしていくほど放電チャンネルが長く成長し、混合気に投入されるエネルギが大となることになるが、実際には、着火性がそれに応じて比例的に向上するわけではなく、また高電圧発生回路16における各回の電圧が制限されてくるので、放電間隔Tには適当な下限が存在する。
 次に、図12および図13は、点火プラグ6として、一方の電極の幅が他方の電極の幅よりも相対的に広い場合の放電チャンネルの形成について説明するものであり、図示例では、側方電極22先端のチップ22aの幅が、中心電極21の先端の幅に比べて相対的に大きなものとなっている。このような点火プラグ6を用いる場合、上述したように放電間隔Tを適宜に設定することでガス流動uの下流側に膨らんでいくn回目の放電チャンネル31が、図12のように、少なくとも幅が狭い方の電極21よりも外側へ拡がって形成されることが望ましい。さらには、図13のように、n回目の放電チャンネルが、幅が広い方の電極22よりも外側へ拡がって形成されることが望ましい。このように電極21,22よりも外側に膨らんで放電チャンネル31が形成されると、相対的に温度が低い電極21,22による消炎作用つまり火炎核に対する冷却作用が低減し、火炎核の発達の上で有利となる。
 なお、放電チャンネルをガス流動を利用して延長させようとする本発明のコンセプトは、点火プラグや電極の形状ないし構成に拘わらず、広く適用することが可能である。
 次に、図14に基づいて、放電間隔Tを一定とせずに、放電開始初期の区間では相対的に放電間隔Tを長くし、複数回の放電を経た区間では相対的に放電間隔Tを短くするようにした実施例について説明する。
 前述したように、ガス流動uの存在下であっても、初回の放電ひいては放電チャンネルは、2つの電極21,22の最短距離lgに沿って形成される。このように放電チャンネルが短い状況では、放電経路の抵抗Rdcが低く、従って比較的長い放電間隔Tであっても、ガス流動uにより徐々に放電チャンネルが下流側へ延長されていく。しかし、放電チャンネルが長くなると、延長された放電チャンネルに沿った放電経路の抵抗Rdcが高くなり、最短距離lgに沿った放電経路の抵抗Rgに近くなる。
 図15の比較例は、放電間隔Tを比較的大きく設定し、かつこの放電間隔Tを一定に維持したものであり、2回目の放電までは放電チャンネルが延長されていくが、3回目の放電で抵抗比(Rdc/Rg)が1に達してしまい、最短距離lgに沿って放電が生じる。従って、放電チャンネルの延長作用は限られたものとなる。
 一方、図16の比較例は、図15のものに比較して放電間隔Tを1/7に短く設定したものであり、抵抗比(Rdc/Rg)が1に達するまでに、より大きな放電チャンネルの延長が得られるが、放電回数が多い。
 図14の実施例は、このような点を考慮して、放電間隔Tを放電回数nに伴って変化させるようにしたものであり、具体的には、1回目の放電から2回目の放電の間の初期の放電間隔Tは、図15の比較例と同一であり、3回目の放電、4回目の放電と徐々に放電間隔Tを短くしていき、15回目の放電から16回目の放電の間の放電間隔Tおよびそれ以降は、初期の放電間隔Tの1/7(つまり図16の比較例と同一の放電間隔T)の放電間隔Tとなるようにしている。
 このように放電間隔Tを変化させることで、図16の比較例と同様に、放電チャンネルの延長作用が十分に得られる。そして、放電チャンネルが最大に延長されるまでの放電回数が図16の比較例に比べて少なくなり、繰り返しの放電による電極21,22の消耗が抑制される。例えば、図示例では、放電間隔Tが初期の1/7となるまでの区間における放電回数が、図16の比較例に比べて1/4程度に削減される。
 初回の放電からの放電回数nの増加もしくは時間経過に伴って、放電間隔Tをどのような態様で短くしていくか、については、種々の態様が可能である。
 図17~図19は、その一例を示しており、図17の例では、時間経過もしくは放電回数nの増加に対し、放電間隔Tをステップ的に減少させていく。図18の例は、放電間隔Tを連続的に減少させていく例である。図19の例では、放電間隔Tを連続的に減少させていき、その後、一定に保ち、さらに再び連続的に減少させた後、一定に保つ、というサイクルを繰り返すようにしたものである。

Claims (10)

  1.  点火プラグの電極間に繰り返し電圧を印加して複数回の放電を生じさせ、混合気の点火を行う内燃機関の点火装置において、
     上記電極間の最短距離を結ぶ方向に対して直交するガス流動の存在下で、n回目の放電とその直前のn-1回目の放電との間の時間間隔を、n回目の放電による放電チャンネルがn-1回目の放電による放電チャンネルに比較して上記ガス流動方向に沿って延長されたものとなるように設定する内燃機関の点火装置。
  2.  2回目の放電と1回目の放電との間の時間間隔を、2回目の放電による放電チャンネルが1回目の放電による放電チャンネルに比較して上記ガス流動方向に沿って延長されたものとなるように設定する請求項1に記載の内燃機関の点火装置。
  3.  点火プラグの電極間に繰り返し電圧を印加して複数回の放電を生じさせ、混合気の点火を行う内燃機関の点火装置において、
     上記電極間の最短距離を結ぶ方向に対して直交するガス流動の存在下で、n-1回目の放電により生じた活性種がガス流動で下流に流されてなる放電経路の抵抗が、上記最短距離を結ぶ経路の抵抗よりも低い間に、n回目の放電を行う内燃機関の点火装置。
  4.  1回目の放電により生じた活性種がガス流動で下流に流されてなる放電経路の抵抗が、上記最短距離を結ぶ経路の抵抗よりも低い間に、2回目の放電を行う請求項3に記載の内燃機関の点火装置。
  5.  上記点火プラグの電極は、相対的に幅が狭い一方の電極と相対的に幅が広い他方の電極とを有し、n回目の放電による放電チャンネルが、少なくとも幅が狭い方の電極よりも外側へ拡がって形成される請求項1~4のいずれかに記載の内燃機関の点火装置。
  6.  n回目の放電による放電チャンネルが、幅が広い方の電極よりも外側へ拡がって形成される請求項5に記載の内燃機関の点火装置。
  7.  点火プラグの電極間に繰り返し電圧を印加して複数回の放電を生じさせ、混合気の点火を行う内燃機関の点火方法において、
     上記電極間の最短距離を結ぶ方向に対して直交するガス流動の存在下で、n回目の放電とその直前のn-1回目の放電との間の時間間隔を、n回目の放電による放電チャンネルがn-1回目の放電による放電チャンネルに比較して上記ガス流動方向に沿って延長されたものとなるように設定する内燃機関の点火方法。
  8.  点火プラグの電極間に繰り返し電圧を印加して複数回の放電を生じさせ、混合気の点火を行う内燃機関の点火方法において、
     上記電極間の最短距離を結ぶ方向に対して直交するガス流動の存在下で、n-1回目の放電により生じた活性種がガス流動で下流に流されてなる放電経路の抵抗が、上記最短距離を結ぶ経路の抵抗よりも低い間に、n回目の放電を行う内燃機関の点火方法。
  9.  上記nの値が相対的に小さい区間に比較して、上記nの値が相対的に大きな区間では、n-1回目の放電とn回目の放電との間の時間間隔が相対的に短く与えられる請求項1~6のいずれかに記載の内燃機関の点火装置。
  10.  上記nの値が相対的に小さい区間に比較して、上記nの値が相対的に大きな区間では、n-1回目の放電とn回目の放電との間の時間間隔を相対的に短くする請求項7または8に記載の内燃機関の点火方法。
PCT/JP2012/070686 2011-10-31 2012-08-14 内燃機関の点火装置および点火方法 WO2013065382A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013541660A JP5761367B2 (ja) 2011-10-31 2012-08-14 内燃機関の点火装置および点火方法
EP12845493.1A EP2775135A4 (en) 2011-10-31 2012-08-14 IGNITION DEVICE AND IGNITION PROCESS FOR A COMBUSTION ENGINE
CN201280049835.5A CN103857901B (zh) 2011-10-31 2012-08-14 内燃机的点火装置及点火方法
US14/350,384 US9581125B2 (en) 2011-10-31 2012-08-14 Internal-combustion engine ignition device and ignition method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-238637 2011-10-31
JP2011238637 2011-10-31
JP2012-021421 2012-02-03
JP2012021421 2012-02-03

Publications (1)

Publication Number Publication Date
WO2013065382A1 true WO2013065382A1 (ja) 2013-05-10

Family

ID=48191741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070686 WO2013065382A1 (ja) 2011-10-31 2012-08-14 内燃機関の点火装置および点火方法

Country Status (5)

Country Link
US (1) US9581125B2 (ja)
EP (1) EP2775135A4 (ja)
JP (1) JP5761367B2 (ja)
CN (1) CN103857901B (ja)
WO (1) WO2013065382A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092129B2 (en) * 2016-08-17 2021-08-17 Mitsubishi Electric Corporation Barrier-discharge-type ignition apparatus
JP6709151B2 (ja) * 2016-12-15 2020-06-10 株式会社デンソー 点火制御システム及び点火制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127588A (ja) 1984-07-17 1986-02-07 日本電気株式会社 ウインド制御方式
JPH03281982A (ja) * 1990-03-29 1991-12-12 Aisin Seiki Co Ltd 内燃機関の点火装置
JP2008303841A (ja) * 2007-06-08 2008-12-18 Toyota Motor Corp 内燃機関及び内燃機関の制御装置
JP2009047149A (ja) 2007-08-19 2009-03-05 Hama Corporation:Kk 複合放電方法および複合放電装置
JP2009287521A (ja) * 2008-05-30 2009-12-10 Denso Corp 内燃機関の点火制御装置及び点火制御システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113935A (en) 1977-03-15 1978-10-04 Ngk Spark Plug Co Ltd Ignition device of internal combustion engine
JPS63268978A (ja) * 1987-04-24 1988-11-07 Mazda Motor Corp エンジンの点火装置
DE69703484T2 (de) * 1997-06-02 2001-03-15 Federal Mogul Ignition Spa Vielfachfunkenzündsystem für eine Brennkraftmaschine
JP2002530571A (ja) * 1998-11-12 2002-09-17 インテリクラフト・リミテツド 内燃機関の空気−燃料混合気点火方法
JP3743607B2 (ja) * 1999-12-02 2006-02-08 株式会社デンソー 内燃機関の制御装置
US7404396B2 (en) * 2006-02-08 2008-07-29 Denso Corporation Multiple discharge ignition control apparatus and method for internal combustion engines
CN102762846B (zh) 2010-01-08 2016-05-11 丰田自动车株式会社 内燃机点火控制系统
US8078384B2 (en) * 2010-06-25 2011-12-13 Ford Global Technologies, Llc Engine control using spark restrike/multi-strike
EP2930348A4 (en) * 2012-12-05 2016-07-13 Toyota Motor Co Ltd INTERNAL COMBUSTION ENGINE CONTROL DEVICE
WO2014115269A1 (ja) * 2013-01-23 2014-07-31 トヨタ自動車株式会社 内燃機関の点火制御装置
JP5802229B2 (ja) * 2013-03-12 2015-10-28 本田技研工業株式会社 内燃機関の点火制御装置
DE102013004728A1 (de) * 2013-03-19 2014-09-25 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie Verbrennungskraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127588A (ja) 1984-07-17 1986-02-07 日本電気株式会社 ウインド制御方式
JPH03281982A (ja) * 1990-03-29 1991-12-12 Aisin Seiki Co Ltd 内燃機関の点火装置
JP2008303841A (ja) * 2007-06-08 2008-12-18 Toyota Motor Corp 内燃機関及び内燃機関の制御装置
JP2009047149A (ja) 2007-08-19 2009-03-05 Hama Corporation:Kk 複合放電方法および複合放電装置
JP2009287521A (ja) * 2008-05-30 2009-12-10 Denso Corp 内燃機関の点火制御装置及び点火制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2775135A4

Also Published As

Publication number Publication date
US20140238347A1 (en) 2014-08-28
US9581125B2 (en) 2017-02-28
JP5761367B2 (ja) 2015-08-12
CN103857901A (zh) 2014-06-11
JPWO2013065382A1 (ja) 2015-04-02
CN103857901B (zh) 2016-05-04
EP2775135A1 (en) 2014-09-10
EP2775135A4 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6563443B2 (ja) スパーク電流を変化させる方法及び時変スパーク電流点火システム
US9291142B2 (en) Ignition control device for internal combustion engine
RU2615741C1 (ru) Контроллер двигателя
CN106089510B (zh) 一种非平衡等离子体助燃激励器及控制方法
JP6377198B1 (ja) 内燃機関の制御装置及び制御方法
JP5761367B2 (ja) 内燃機関の点火装置および点火方法
Grzeszik Impact of turbulent in-cylinder air motion and local mixture formation on inflammation in lean engine operation: Is multiple point ignition a solution?
US9322376B2 (en) Control device for internal combustion engine
EP4194672A1 (en) Ignition system
JP4453024B2 (ja) 筒内噴射式内燃機関
US20140299087A1 (en) Spark plug for internal combustion engines and mounting structure for the spark plug
Abe et al. Study of ignition system for demand voltage reduction
US8884504B2 (en) Spark plug for internal combustion engines and mounting structure for the spark plug
KR101444126B1 (ko) 다공 금속 전극형 유전체 장벽 방전 점화 플러그
JP5705043B2 (ja) 内燃機関用点火装置
EP3619471A1 (en) Auto-driven plasma actuator for transition from deflagration to detonation combustion regime and method
JP3843217B2 (ja) 内燃機関用点火装置および燃料室内に充填された燃料への点火方法
JP6070143B2 (ja) 内燃機関の点火装置および点火方法
JP6235400B2 (ja) 燃料噴射弁
Yu et al. Electrical waveform measurement of spark energy and its effect on lean burn SI engine combustion
JP6443367B2 (ja) 内燃機関の点火装置
Hall et al. Railplug ignition operating characteristics and performance: a review
JP2011094604A (ja) 内燃機関の制御装置及び内燃機関
Moriyoshi et al. A Study of Ignition Method for Gas Heat Pump Engine Using Low Temperature Plasma
JP2014088778A (ja) 内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280049835.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541660

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14350384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012845493

Country of ref document: EP