WO2013065228A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2013065228A1
WO2013065228A1 PCT/JP2012/006043 JP2012006043W WO2013065228A1 WO 2013065228 A1 WO2013065228 A1 WO 2013065228A1 JP 2012006043 W JP2012006043 W JP 2012006043W WO 2013065228 A1 WO2013065228 A1 WO 2013065228A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency
phase
output
voltage
Prior art date
Application number
PCT/JP2012/006043
Other languages
English (en)
French (fr)
Inventor
久 藤本
藤田 光悦
一男 黒木
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013065228A1 publication Critical patent/WO2013065228A1/ja
Priority to US14/247,802 priority Critical patent/US20140217964A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • This invention relates to the circuit structure of the power converter device which makes the direct current insulated from the three-phase alternating current power supply, and charges a storage battery.
  • FIG. 7 is a circuit block diagram of a three-phase AC input storage battery charging circuit using conventional technology
  • FIGS. 8 to 10 show configuration examples of various AC-DC conversion circuits.
  • the AC power source 1 is connected to the primary winding of the transformer 3 through the circuit breaker 2, and the secondary winding of the transformer 3 is connected to the AC input of the AC-DC conversion circuit 4.
  • the DC output of the circuit 4 is connected to the storage battery 5.
  • 8 to 10 show various circuit configuration examples of the AC-DC conversion circuit 4 in such a block configuration.
  • FIG. 8 shows a circuit configuration described in Patent Document 1, which includes a filter circuit including a reactor 7 and a capacitor 8 connected to the DC output side of the diode rectifier circuit 6.
  • a filter circuit including a reactor 7 and a capacitor 8 connected to the DC output side of the diode rectifier circuit 6.
  • FIG. 9 shows a circuit configuration disclosed in Patent Document 2, in which a thyristor rectifier circuit 9 is used instead of the diode rectifier circuit shown in FIG. Since the DC output voltage and current can be controlled by phase control of the thyristor, various methods such as uniform charging and floating charging can be realized as charging methods.
  • the constant current control is performed until the completion of the equal charge, and after the completion of the equal charge, the storage battery 5 is charged by the constant voltage control after switching to the floating charge.
  • FIG. 10 is a circuit configuration shown in Patent Document 3, and instead of the diode rectifier circuit 6 and the thyristor rectifier circuit 9, the reactor 10 is connected to the AC input of an IGBT bridge rectifier circuit 11 composed of six IGBTs connected in antiparallel with diodes.
  • This is a configuration example using a high power factor rectifier circuit in which a capacitor 8 is connected to a DC output.
  • the switching operation of the IGBT makes it possible to control the voltage and current of the DC output while increasing the AC input current with a high power factor. In this configuration, a voltage higher than the peak value of the AC input voltage can be obtained as the DC output voltage. Therefore, application to a device having a large DC output capacity is common.
  • an insulation transformer having a commercial frequency is used to insulate an AC input and a DC output
  • a method using a single-phase high-frequency transformer as disclosed in Japanese Patent Application Laid-Open No. 10-70838.
  • a single-phase high-frequency transformer is difficult to manufacture as a large core, There is a problem that it is difficult to realize a large-capacity charging device at a low price. Accordingly, an object of the present application is to provide a large-capacity charging device with isolated input and output at a small size and at a low price.
  • an AC-DC that rectifies an AC power source and converts it into DC in a power converter that creates a DC isolated from a three-phase AC power source and charges a storage battery.
  • a high-frequency three-phase alternating current including a conversion circuit and the direct current, the number of pulses of 3N (N is an integer of 1 or more) times the fundamental frequency in a half cycle of the phase voltage, the fundamental frequency being higher than the frequency of the alternating-current power supply DC-AC conversion circuit for converting to voltage, three-phase high-frequency transformer whose primary winding is connected to the output of the DC-AC conversion circuit, and rectification for rectifying the secondary winding voltage of the three-phase high-frequency transformer
  • a filter circuit connected to the DC output of the rectifier circuit, and the output of the filter circuit is connected to a storage battery.
  • a reactor is connected in series with the three-phase high-frequency transformer in the first invention.
  • the number of pulses of 3N (N is an integer of 1 or more) times the fundamental frequency in the first or second invention is used for the DC amount and the pulse width modulation as the control signal.
  • a diode is connected between the output of the filter circuit and the storage battery in the first to third inventions.
  • a high-frequency three-phase transformer higher than the frequency of the AC power source is used as an insulating transformer for insulating the AC input and the DC output, and this transformer is used as a fundamental frequency of 3N (half frequency of the phase voltage). It is driven by a three-phase output DC-AC converter circuit (high frequency inverter) that contains a number of pulses that is a multiple of N.
  • a large-capacity charging device can be supplied in a small size and at a low price.
  • FIG. 1 is a circuit block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a detailed circuit diagram example of the DC-AC conversion circuit of FIG. 1.
  • 3 is an operation waveform example of the DC-AC conversion circuit of FIG. It is a circuit block diagram which shows the 2nd Example of this invention. It is explanatory drawing of the detail and commutation operation
  • FIG. 8 is a detailed circuit diagram example 1 of the AC-DC conversion circuit of FIG. 7.
  • FIG. 8 is a detailed circuit diagram example 2 of the AC-DC conversion circuit of FIG. 7.
  • FIG. 8 is a detailed circuit diagram example 3 of the AC-DC conversion circuit of FIG. 7;
  • the main points of the present invention are an AC-DC conversion circuit that rectifies an AC power source and converts it into DC in a power converter that creates a DC isolated from a three-phase AC power source and charges a storage battery, and converts the DC into a phase voltage.
  • a DC-AC converter circuit that includes 3N (N is an integer greater than or equal to 1) times the number of pulses of the fundamental frequency in a half cycle, and converts the fundamental wave frequency into a high-frequency three-phase AC voltage that is higher than the frequency of the AC power supply.
  • a three-phase high-frequency transformer connected to the output of the DC-AC converter circuit, a rectifier circuit for rectifying the secondary winding voltage of the three-phase high-frequency transformer, and a filter connected to the DC output of the rectifier circuit And connecting the output of the filter circuit to a storage battery.
  • FIG. 1 shows a first embodiment of the present invention.
  • the AC power supply 1 is the AC input of the AC-DC conversion circuit 4
  • the output of the AC-DC conversion circuit 4 is the DC input of the DC-AC conversion circuit 12
  • the output of the DC-AC conversion circuit 12 is the three-phase high-frequency transformer 13.
  • the secondary winding of the three-phase high-frequency transformer 13 is the AC input of the rectifier circuit 6,
  • the DC output of the rectifier circuit 6 is the input of the filter circuit 14, and the output of the filter circuit 14 is the storage battery 5.
  • Each is a connected configuration.
  • any of the conventional circuit configurations shown in FIGS. 8 to 10 can be applied as the AC-DC conversion circuit 4.
  • a detailed circuit of the DC-AC conversion circuit 12 is shown in FIG. 2, and an example of the operation waveform is shown in FIG.
  • the DC-AC converter circuit shown in FIG. 2 is a full-bridge inverter circuit composed of IGBTTT1 to T6 in which diodes are connected in reverse parallel.
  • a capacitor 8 is used for DC input and a high frequency is used for AC output (R, S, T).
  • the primary windings of the transformer are each connected.
  • the series connection point of IGBTTT1 and T2 is AC output R
  • the series connection point of IGBTTT3 and T4 is AC output S
  • the series connection point of IGBTTT5 and T6 is AC output T.
  • FIG. 3 is an operation waveform diagram when the DC input voltage (the voltage of the capacitor 8) is Ed.
  • the operation of the R-phase IGBTTT1, the operation of the S-phase IGBTTT3, and the line voltage between RS are shown.
  • the on / off signal of each IGBT is obtained by comparing the control signal for determining the pulse width with the carrier wave.
  • a positive / negative AC voltage can be obtained as the AC output.
  • the R-phase IGBT on / off waveform and the S-phase IGBT on / off waveform are obtained by shifting the phase by 120 degrees.
  • the on / off waveform of the T-phase IGBT is obtained by shifting the waveform of the S-phase IGBT by 120 degrees, but is omitted here.
  • IGBTTT1 When IGBTTT1 is turned on (IGBTT2 is turned off), the DC voltage Ed is outputted to the AC output R, and when IGBTTT3 is turned off (IGBTT4 is turned on), the zero voltage is outputted to the output S.
  • the line voltage between RS is shown in the figure.
  • the AC voltage waveform includes 12 pulses in a 120-degree period in a half cycle.
  • the ST voltage and the TR voltage also have waveforms having a phase difference of 120 degrees.
  • the number of pulses included in the half cycle of the voltage of each phase is a multiple of three.
  • the number of pulses of the phase voltage is nine, and the number of pulses of the line voltage in the 120-degree period is twelve.
  • the frequency of this pulse is determined by the frequency of the carrier wave.
  • the fundamental frequency is limited by the switching characteristics of the switching element, but when the current IGBT is used, a frequency of several kHz or less is practical.
  • the embodiment in the embodiment, the case where a DC signal is used as the control signal has been described.
  • the embodiment can be realized using a sine wave or a trapezoidal wave.
  • a DC signal is used, there is an advantage that the filter circuit 14 for smoothing after smoothing the secondary winding voltage of the high-frequency transformer can be reduced in size.
  • FIG. 4 shows a second embodiment of the present invention.
  • a reactor 15 is connected between the DC-AC converter circuit 12 and the three-phase high-frequency transformer 13.
  • the size of the magnetic body (core) is reduced as the frequency is increased, and the number of turns of the winding wound around the magnetic body is reduced, so that the leakage inductance is reduced. For this reason, the reverse recovery current of the diode of the rectifier circuit 6 connected to the secondary winding of the high-frequency transformer is increased, which causes a problem of increased loss.
  • FIG. 5 shows the commutation operation of the rectifier circuit.
  • the rectifier circuit 6 is a diode bridge rectifier circuit composed of diodes D1 to D6.
  • the current I1 flows through the path of the diode D1, the reactor 7, the capacitor 8, and the diode D4, and increases.
  • the pulse voltage becomes zero
  • the current of the reactor 7 returns through the path of the diode D4 ⁇ the diode D3 to become the current I2, and decreases.
  • the diode D3 that has been conducted so far is reversely recovered, and then becomes the current path of I1.
  • the current gradient -di / dt when reversely recovering the diode D3 is a value obtained by dividing the voltage between RS by the leakage inductance. Therefore, when the leakage inductance of the high-frequency transformer is small, by connecting the reactor 15 in series, -di / dt can be reduced, and loss and reverse voltage during reverse recovery can be suppressed.
  • the reactor since the reactor should just be inserted in series with the transformer, the same effect will be acquired if it connects in series with a primary winding or a secondary winding.
  • FIG. 6 shows a third embodiment of the present invention.
  • a diode 16 is connected between the filter 14 and the storage battery.
  • a pulse having a very small width is only intermittently input to the AC input of the rectifying circuit 6.
  • the diode 16 is not provided, the reverse voltage remains applied to the diode of the rectifier circuit 6 and the charge of the storage battery is discharged by the reverse leakage current.
  • a diode 16 having a small reverse leakage current is connected between the filter 14 and the storage battery.
  • an example in which a three-phase AC input voltage is converted into a three-phase high-frequency voltage using an AC-DC converter circuit and a DC-AC converter circuit is shown.
  • an AC-AC direct conversion type such as a matrix converter may be used. It can also be realized using a circuit.
  • the present invention can be applied to a conversion device that generates a DC isolated from an AC power supply, it can be applied to a charging device, a plating power supply, a sash coloring power supply, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

商用周波数の変圧器や単相高周波変圧器を用いた充電装置では、大容量の充電装置を小型、低価格で実現することが難しい。 交流電源(1)を整流して直流に変換する交流-直流変換回路(4)と、前記直流を、半周期に基本波周波数の3N(Nは1以上の整数)倍の数のパルスを含み、基本波周波数が前記交流電源(1)の周波数より高い高周波三相交流電圧に変換する直流-交流変換回路(12)と、一次巻線が前記直流-交流変換回路(12)の出力に接続される三相高周波変圧器(13)と、前記三相高周波変圧器(13)の二次巻線電圧を整流する整流回路(6)と、前記整流回路(6)の直流出力に接続されるフィルタ回路(14)と、を有し、前記フィルタ回路(14)の出力を蓄電池(5)に接続する。

Description

電力変換装置
 本発明は、三相交流電源から絶縁された直流を作り、蓄電池を充電する電力変換装置の回路構成に関する。
 図7に、従来の技術を用いた三相交流入力の蓄電池充電回路の回路ブロック図を、図8~図10に各種交流-直流変換回路の構成例を示す。
 図7に示すように、交流電源1は遮断器2を介して変圧器3の一次巻線に、変圧器3の二次巻線は交流-直流変換回路4の交流入力に、交流-直流変換回路4の直流出力は蓄電池5に接続される。このようなブロック構成における交流-直流変換回路4の各種回路構成例を図8~図10に示す。
 図8は特許文献1に記載された回路構成で、ダイオード整流回路6の直流出力側に接続されたリアクトル7とコンデンサ8からなるフィルタ回路で構成される。蓄電池の充電電圧が規定値に達すると図7に示す遮断器2を開放とする。
 図9は、特許文献2に示された回路構成で、図8のダイオード整流回路の代わりにサイリスタ整流回路9を用いた構成である。サイリスタの位相制御により直流出力電圧や電流を制御できるため、充電の方式として、均等充電、浮動充電など多種の方式を実現できる。均等充電完了時点までは定電流制御で、均等充電完了後は浮動充電に切替わり定電圧制御で、蓄電池5を充電する。
 図10は、特許文献3に示された回路構成で、ダイオード整流回路6やサイリスタ整流回路9の代わりに、ダイオードを逆並列接続したIGBT6個からなるIGBTブリッジ整流回路11の交流入力にリアクトル10を、直流出力にコンデンサ8を接続した高力率整流回路を用いた構成例である。IGBTのスイッチング動作により、交流入力電流を高力率化しつつ、直流出力の電圧や電流を制御できる。この構成では、直流出力電圧としては交流入力電圧のピーク値より高い電圧が得られる。従って、直流出力容量の大きな装置への適用が一般的である。
特開平2-241331号公報 特開昭56-157228号公報 特開平9-19160号公報
 上述のように、交流入力と直流出力を絶縁するために、商用周波数の絶縁変圧器を用いると、装置が大型で、質量が大きくなる問題がある。この解決のために、特許文献の特開平10-70838号公報に示されるような単相高周波変圧器を用いる方式もあるが、単相高周波変圧器は、コアとして大型のものが製造しにくく、大容量の充電装置を低価格で実現しにくいという課題がある。従って、本願の課題は、入出力が絶縁された大容量の充電装置を小型、低価格で提供することである。
 上述の課題を解決するために、第1の発明においては、三相交流電源から絶縁された直流を作り、蓄電池を充電する電力変換装置において、交流電源を整流して直流に変換する交流-直流変換回路と、前記直流を、相電圧の半周期に基本波周波数の3N(Nは1以上の整数)倍の数のパルスを含み、基本波周波数が前記交流電源の周波数より高い高周波三相交流電圧に変換する直流-交流変換回路と、一次巻線が前記直流-交流変換回路の出力に接続される三相高周波変圧器と、前記三相高周波変圧器の二次巻線電圧を整流する整流回路と、前記整流回路の直流出力に接続されるフィルタ回路と、を有し、前記フィルタ回路の出力を蓄電池に接続する。
 第2の発明においては、第1の発明における前記三相高周波変圧器と直列にリアクトルを接続する。
 第3の発明においては、前記第1又は第2の発明における前記基本波周波数の3N(Nは1以上の整数)倍の数のパルスは、制御信号としての直流量とパルス幅変調のための搬送波から形成する。
 第4の発明においては、前記第1~第3の発明における前記フィルタ回路の出力と前記蓄電池との間にダイオードを接続する。
 本発明では、交流入力と直流出力を絶縁するための絶縁変圧器として、交流電源の周波数より高い高周波三相変圧器を使用し、この変圧器を相電圧の半周期に基本波周波数の3N(Nは1以上の整数)倍の数のパルスを含んだ三相出力の直流-交流変換回路(高周波インバータ)で駆動している。この結果、大容量の充電装置を小型、低価格で供給可能となる。
本発明の第1の実施例を示す回路ブロック図である。 図1の直流-交流変換回路の詳細回路図例である。 図2の直流-交流変換回路の動作波形例である。 本発明の第2の実施例を示す回路ブロック図である。 図4の整流回路の詳細と転流動作の説明図である。 本発明の第3の実施例を示す回路ブロック図である。 従来の充電回路のブロック図である。 図7の交流-直流変換回路の詳細回路図例1である。 図7の交流-直流変換回路の詳細回路図例2である。 図7の交流-直流変換回路の詳細回路図例3である。
 本発明の要点は、三相交流電源から絶縁された直流を作り、蓄電池を充電する電力変換装置において、交流電源を整流して直流に変換する交流-直流変換回路と、前記直流を、相電圧の半周期に基本波周波数の3N(Nは1以上の整数)倍の数のパルスを含み、基本波周波数が前記交流電源の周波数より高い高周波三相交流電圧に変換する直流-交流変換回路と、前記直流-交流変換回路の出力に接続される三相高周波変圧器と、前記三相高周波変圧器の二次巻線電圧を整流する整流回路と、前記整流回路の直流出力に接続されるフィルタ回路と、を有し、前記フィルタ回路の出力を蓄電池に接続する点である。
 図1に、本発明の第1の実施例を示す。交流電源1は交流-直流変換回路4の交流入力に、交流-直流変換回路4の出力は直流-交流変換回路12の直流入力に、直流-交流変換回路12の出力は三相高周波変圧器13の一次巻線に、三相高周波変圧器13の二次巻線は整流回路6の交流入力に、整流回路6の直流出力はフィルタ回路14の入力に、フィルタ回路14の出力は蓄電池5に、各々接続された構成である。
 このような構成において、交流-直流変換回路4としては、図8~図10に示した従来の回路構成のいずれでも適用可能である。直流-交流変換回路12の詳細回路を図2に、その動作波形例を図3に、各々示す。図2に示す直流-交流変換回路は、ダイオードを逆並列接続したIGBTT1~T6で構成されるフルブリッジインバータ回路で、直流入力にはコンデンサ8が、交流出力(R,S,T)には高周波変圧器の一次巻線が、各々接続される。IGBTT1とT2の直列接続点が交流出力R、IGBTT3とT4の直列接続点が交流出力S、IGBTT5とT6の直列接続点が交流出力Tである。
 図3は、直流入力電圧(コンデンサ8の電圧)をEdとした時の動作波形図である。R相IGBTT1の動作、S相IGBTT3の動作、R-S間の線間電圧を示す。
各IGBTのオンオフ信号は、パルス幅を決めるための制御信号と搬送波を比較して得られる。ここで、交流出力の基本波の半周期毎に比較条件を変更することにより、交流出力として正負対象の交流電圧が得られる。R相IGBTのオンオフ波形とS相IGBTのオンオフ波形は120度位相をずらして得られる。T相IGBTのオンオフ波形はS相IGBTの波形を120度ずらして得られるが、ここでは省略している。
 このような構成における動作を、以下に説明する。搬送波(キャリア)の周波数が、基本波周波数に対して、18倍の周波数の時の波形である。IGBTT1がオン(IGBTT2はオフ)すると交流出力Rには直流電圧Edが、IGBTT3がオフ(IGBTT4はオン)すると出力Sには零電圧が、各々出力され、R-S間の線間電圧は図示のように、半周期の中の120度期間に12個のパルスが含まれた交流電圧波形となる。S-T間電圧、T-R間電圧も同様に120度位相差を持った波形となる。120度の位相差を設けた各線間電圧の波形を均等にするために、各相の電圧の半周期に含まれるパルス数は3の倍数とする。図3の波形例では、相電圧のパルス数は9個で、線間電圧の120度期間のパルス数は12個である。このパルスの周波数は、搬送波の周波数で決定される。基本波周波数は、スイッチング素子のスイッチング特性により制約されるが、現状のIGBTを使用した場合、数kHz以下が実用的である。
また、実施例では、制御信号として直流信号を用いた場合を示したが、正弦波や台形波を用いても実現可能である。直流信号を用いた場合には、高周波変圧器二次巻線電圧を整流後、平滑するためのフィルタ回路14を小型化できるメリットがある。
 図4に、本発明の第2の実施例を示す。第1の実施例との違いは、直流-交流変換回路12と三相高周波変圧器13との間にリアクトル15が接続されている点である。
高周波変圧器では、高周波化に応じて磁性体(コア)の大きさが小さくなり、また磁性体に巻く巻線の巻回数が減少するため、漏れインダクタンスが減少する。このため、高周波変圧器の二次巻線に接続される整流回路6のダイオードの逆回復電流が大きくなり、損失が増加する課題が発生する。
 図5に整流回路の転流動作を示す。整流回路6はダイオードD1~D6で構成されたダイオードブリッジ整流回路である。例えば、交流入力R-S間にパルス電圧が入力されると、ダイオードD1→リアクトル7→コンデンサ8→ダイオードD4の経路で電流I1が流れ、増加する。次にパルス電圧が零になると、リアクトル7の電流は、ダイオードD4→ダイオードD3の経路で還流し電流I2となり、減少する。次に、R-S間にパルス電圧が入力されると、まず今まで導通していたダイオードD3を逆回復させ、その後I1の電流経路となる。ここで、ダイオードD3を逆回復させる時の電流傾斜-di/dtはR-S間の電圧を漏れインダクタンスで除算した値となる。従って、高周波変圧器の漏れインダクタンスが小さい場合、直列にリアクトル15を接続することにより、-di/dtを小さくすることができ、逆回復時の損失と跳ね上がり電圧を抑制することができる。
ここで、リアクトルは変圧器と直列に挿入されておれば良いので、一次巻線と直列又は二次巻線と直列に接続すれば、同じ効果が得られる。
 図6に、本発明の第3の実施例を示す。第2の実施例との違いは、フィルタ14と蓄電池との間にダイオード16が接続されている点である。蓄電池5の充電を完了して、浮動充電状態になると、整流回路6の交流入力には微小幅のパルスが断続的にしか入力されない状態となる。このため、ダイオード16がない場合には、整流回路6のダイオードには、逆電圧が印加されたままの状態となり、逆漏れ電流で蓄電池の電荷が放電されることになる。これを防止するために、逆漏れ電流の小さなダイオード16をフィルタ14と蓄電池との間に接続する。
 尚、実施例では、三相交流入力電圧を交流-直流変換回路と直流-交流変換回路を用いて三相高周波電圧に変換する例を示したが、マトリクスコンバータなどの交流-交流直接変換形の回路を用いても実現可能である。
 本発明は、交流電源から絶縁した直流を作り出す変換装置へ適用できるので、充電装置、メッキ用電源、サッシ着色用電源などへの適用が可能である。
1・・・交流電源     2・・・遮断器     3・・・変圧器
4・・・交流-直流変換回路     5・・・蓄電池
6・・・ダイオード整流回路     7、10、15・・・リアクトル
8・・・コンデンサ     9・・・サイリスタ整流回路
11・・・IGBTブリッジ整流回路     12・・・直流-交流変換回路
13・・・三相高周波変圧器     14・・・フィルタ
T1~T6・・・IGBT     D1~D6、16・・・ダイオード

Claims (4)

  1.  三相交流電源から絶縁された直流を作り、蓄電池を充電する電力変換装置において、交流電源を整流して直流に変換する交流-直流変換回路と、前記直流を、相電圧の半周期に基本波周波数の3N(Nは1以上の整数)倍の数のパルスを含み、基本波周波数が前記交流電源の周波数より高い高周波三相交流電圧に変換する直流-交流変換回路と、一次巻線が前記直流-交流変換回路の出力に接続される三相高周波変圧器と、前記三相高周波変圧器の二次巻線電圧を整流する整流回路と、前記整流回路の直流出力に接続されるフィルタ回路と、を有し、前記フィルタ回路の出力を蓄電池に接続することを特徴とする電力変換装置。
  2.  前記三相高周波変圧器と直列にリアクトルを接続することを特徴とする請求項1に記載の電力変換装置。
  3.  前記基本波周波数の3N(Nは1以上の整数)倍の数のパルスは、制御信号としての直流量とパルス幅変調のための搬送波から形成することを特徴とする請求項1又は2に記載の電力変換装置。
  4.  前記フィルタ回路の出力と前記蓄電池との間にダイオードを接続することを特徴とする請求項1~3のいずれか1項に記載の電力変換装置。
PCT/JP2012/006043 2011-10-31 2012-09-24 電力変換装置 WO2013065228A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/247,802 US20140217964A1 (en) 2011-10-31 2014-04-08 Power conversion equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-238900 2011-10-31
JP2011238900A JP5776496B2 (ja) 2011-10-31 2011-10-31 電力変換装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/247,802 Continuation-In-Part US20140217964A1 (en) 2011-10-31 2014-04-08 Power conversion equipment

Publications (1)

Publication Number Publication Date
WO2013065228A1 true WO2013065228A1 (ja) 2013-05-10

Family

ID=48191611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006043 WO2013065228A1 (ja) 2011-10-31 2012-09-24 電力変換装置

Country Status (3)

Country Link
US (1) US20140217964A1 (ja)
JP (1) JP5776496B2 (ja)
WO (1) WO2013065228A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127885A1 (zh) * 2020-12-18 2022-06-23 南京泉峰科技有限公司 充电系统和充电器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379575B2 (en) * 2014-03-07 2016-06-28 Nissan North America, Inc. Battery charger noise reduction by frequency switching
US10947636B2 (en) * 2017-03-21 2021-03-16 Rockwell Automation Technologies, Inc. Adjustable AC/DC conversion topology to regulate an isolated DC load with low AC ripple
US11233475B2 (en) * 2020-05-14 2022-01-25 Rockwell Automation Technologies, Inc. DC bus precharge system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241663A (ja) * 1988-07-29 1990-02-09 Hitachi Ltd 可変直流電源装置
JPH11243685A (ja) * 1995-01-30 1999-09-07 Advanced Energ Ind Inc 敏感性dcシステムに電力を与える方法および装置
JP2002064947A (ja) * 2000-08-18 2002-02-28 Japan Storage Battery Co Ltd 無停電直流電源装置
JP2004147484A (ja) * 2002-08-30 2004-05-20 Lecip Corp 充電装置及びそのプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1357427A (en) * 1971-07-23 1974-06-19 Westinghouse Brake & Signal Inverters
US3979662A (en) * 1975-05-05 1976-09-07 Eaton Corporation Paralleling of inverters for low harmonics
JPH07111918B2 (ja) * 1987-07-28 1995-11-29 三菱電機株式会社 マイクロ波放電光源装置
EP0409226A3 (en) * 1989-07-21 1993-01-13 Hitachi, Ltd. Power supply control system
SE465343B (sv) * 1989-11-20 1991-08-26 Olof Magnus Lalander Anordning foer transformering av hoega elektriska effekter fraan en likspaenningsnivaa till en annan likspaenningsnivaa
US6600292B2 (en) * 1995-08-24 2003-07-29 Ellen James Power controller utilizing power factor correction
US6664762B2 (en) * 2001-08-21 2003-12-16 Power Designers, Llc High voltage battery charger
US6819070B2 (en) * 2003-02-12 2004-11-16 Rockwell Automation Technologies, Inc. Method and apparatus for controlling reflected voltage using a motor controller
FI114760B (fi) * 2003-04-11 2004-12-15 Vacon Oyj Taajuusmuuttajan verkkosillan ohjaus
US7138773B2 (en) * 2003-06-24 2006-11-21 General Electric Company Multiple inverters for motors
JP2008527966A (ja) * 2005-01-19 2008-07-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電源システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241663A (ja) * 1988-07-29 1990-02-09 Hitachi Ltd 可変直流電源装置
JPH11243685A (ja) * 1995-01-30 1999-09-07 Advanced Energ Ind Inc 敏感性dcシステムに電力を与える方法および装置
JP2002064947A (ja) * 2000-08-18 2002-02-28 Japan Storage Battery Co Ltd 無停電直流電源装置
JP2004147484A (ja) * 2002-08-30 2004-05-20 Lecip Corp 充電装置及びそのプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127885A1 (zh) * 2020-12-18 2022-06-23 南京泉峰科技有限公司 充电系统和充电器

Also Published As

Publication number Publication date
JP2013099075A (ja) 2013-05-20
US20140217964A1 (en) 2014-08-07
JP5776496B2 (ja) 2015-09-09

Similar Documents

Publication Publication Date Title
Qin et al. Solid-state transformer architecture using AC–AC dual-active-bridge converter
US20150180350A1 (en) Resonant bidirectional converter, uninterruptible power supply apparatus, and control method
US9007796B2 (en) Power conversion with current sensing coupled through saturating element
US8824179B2 (en) Soft-switching high voltage power converter
KR20110110783A (ko) 단상과 3상 동작을 위한 컨버터, dc 전압원 및 배터리충전기
Rodriguez et al. A new SST topology comprising boost three-level AC/DC converters for applications in electric power distribution systems
Niapour et al. Extremely sparse parallel AC-link universal power converters
JP5776496B2 (ja) 電力変換装置
Krismer et al. Novel isolated bidirectional integrated dual three-phase active bridge (D3AB) PFC rectifier
US7679940B2 (en) Three-phase voltage source inverter system
Mishima et al. A Single-Stage High-Frequency-Link Modular Three-Phase $ LLC $ AC–DC Converter
Samanta et al. Analysis and design of current-fed (L)(C)(LC) converter for inductive wireless power transfer (IWPT)
CN108649815A (zh) 采用直流侧双无源谐波抑制方法的36脉波整流器
JP7121971B2 (ja) 三相ac-dcコンバータ
JP2013110786A (ja) 電源装置
Suzuki et al. Isolated Ac/Dc Converter Using Soft Switching Technique
JP2010220382A (ja) 電力変換装置
EP2893628A2 (en) Interleaved 12-pulse rectifier
CN207184352U (zh) 一种交流‑直流变换电路
Basu et al. A three-phase ac/ac power electronic transformer-based PWM ac drive with lossless commutation of leakage energy
Takahashi et al. Power decoupling method for isolated DC to single-phase AC converter using matrix converter
Almardy et al. A comparison of three-phase high-frequency transformer isolated LCC and LCL-type DC-DC resonant converter topologies
Garcia-Rodriguez et al. A new SST topology comprising boost three-level AC/DC converters for applications in electric power distribution systems
CN113708468A (zh) 充电系统
Almardy et al. Three-phase series-parallel LCC-type DC-DC converter with capacitive output filter including the effect of HF transformer magnetizing inductance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846443

Country of ref document: EP

Kind code of ref document: A1