WO2013064008A1 - 一种单相四柱铁心结构的电力变压器的补偿绕组体系 - Google Patents

一种单相四柱铁心结构的电力变压器的补偿绕组体系 Download PDF

Info

Publication number
WO2013064008A1
WO2013064008A1 PCT/CN2012/082798 CN2012082798W WO2013064008A1 WO 2013064008 A1 WO2013064008 A1 WO 2013064008A1 CN 2012082798 W CN2012082798 W CN 2012082798W WO 2013064008 A1 WO2013064008 A1 WO 2013064008A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
compensation winding
wound
compensation
iron yoke
Prior art date
Application number
PCT/CN2012/082798
Other languages
English (en)
French (fr)
Inventor
韩晓东
孟丽坤
王风伟
孙占库
徐徐
Original Assignee
中国西电电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国西电电气股份有限公司 filed Critical 中国西电电气股份有限公司
Publication of WO2013064008A1 publication Critical patent/WO2013064008A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/38Auxiliary core members; Auxiliary coils or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers

Definitions

  • the invention relates to a power transformer, in particular to a compensation winding system of a single-phase four-column core structure power transformer.
  • the single-phase power transformer can adopt the outlet mode of the high-voltage head end and the neutral point end respectively on the iron core, so as to minimize the size and weight of the power transformer in the longitudinal direction and reduce the material consumption rate.
  • this method of outlet will cause a windowing current in the core of the power transformer.
  • the windowing current will excite the core and generate additional magnetic flux (the additional magnetic flux), which increases the load loss of the power transformer. If measures can be taken to suppress the influence of the window current and the core is prevented from being additionally excited, the load loss of the power transformer will not be affected.
  • the invention provides a compensation winding system of a power transformer of a single-phase four-column core structure, which suppresses the influence of the window current of the power transformer.
  • the technical solution adopted by the present invention is: a device for suppressing the influence of a window through-window current, comprising a left compensation winding and a right compensation winding wound on the left and right side columns, and a left compensation winding and a right wound on the iron yoke Compensating the winding, the outlet end of the left compensation winding wound on the left side column is connected to the outlet end of the left compensation winding wound on the iron yoke, and the outlet end of the right compensation winding wound on the right side column Connected to the outlet end of the right compensation winding wound on the iron yoke.
  • the left compensation winding and the right wound on the left and right side columns are configured by: winding the entire wire into a winding having a number of turns;
  • the left compensation winding and the right compensation winding wound on the left and right side legs and the left compensation winding and the right compensation winding wound on the iron yoke are configured as follows: a plurality of shorter wires are connected to the outer side of the core to form a winding with a number of turns;
  • the left compensation winding and the right compensation winding wound on the left and right side legs and the left compensation winding and the right compensation winding wound on the iron yoke are configured as follows:
  • the tooling mold is wound by a whole wire to form a winding with a total number of turns, which is cast and formed directly on the core during assembly;
  • the left compensation winding and the right compensation winding wound on the left and right side legs and the left compensation winding and the right compensation winding wound on the iron yoke are configured as follows: A plurality of shorter wires are respectively wound into two parts on the mold, cast and molded, and a part is placed on the inner side of the core in advance. After the core is stacked, the other part is inserted, and the pre-cast joint is connected to the belt. Number of windings;
  • the left compensation winding and the right compensation winding on the two side legs are disposed between the side pillar core and the side pillar enclosure, and the side pillar enclosure is disposed around the side pillar core.
  • the left compensation winding and the right compensation winding on the iron yoke are disposed between the upper iron yoke and the core clamp, and the core clamp is disposed around the upper iron yoke.
  • the compensation winding system of the power transformer of the single-phase four-column core structure of the invention has at least the following advantages: After the power is applied to the single-phase power transformer on both sides of the core, a window-through current is generated inside the power transformer, in order to suppress the window-through current.
  • a window-through current is generated inside the power transformer, in order to suppress the window-through current.
  • Figure 1 is an overall layout of the compensation winding system of the present invention.
  • Figure 2 is a schematic view showing the structure of a compensation winding which is formed by winding a whole wire or after being wound on a mold;
  • Figure 3 is a schematic view showing the structure of a compensation winding formed by winding a plurality of shorter wires or by separately casting the wires into two parts and then casting them, and then connecting them through pre-cast connectors;
  • Figure 4 is an overall layout of the compensation system for a larger capacity power transformer.
  • the compensation winding system of the power transformer of the single-phase four-column core structure comprises the left compensation winding 3 and the right compensation winding 4 of the left and right side columns and the left compensation winding 10 on the iron yoke.
  • the right compensation winding 11 has a total of four, and the four compensation windings are combined in two, specifically: the outlet end of the left compensation winding 3 on both side of the side column is connected to the outlet end of the left compensation winding 10 on the iron yoke to form a group The outlet end of the right compensation winding 4 of the side pillars on both sides is connected with the outlet end of the right compensation winding 11 on the iron yoke to form another group, and after correct wiring is verified by the corresponding label, the influence of the windowing current in the transformer can be suppressed.
  • the corresponding label verification correct wiring means that the exit end of the left compensation winding 3 of the side pillars on both sides must Connected to the outlet end of the left compensation winding 10 on the iron yoke, the outlet end of the right compensation winding 4 of the side legs must be connected to the outlet end of the right compensation winding 11 on the iron yoke.
  • the above four After the compensation winding wiring is completed, the magnetic flux between the compensation winding on the left side of the side column and the compensation winding on the left side of the iron yoke and the compensation winding on the right side of the side column and the compensation winding on the right side of the iron yoke can be respectively detected. Flux to determine if the connection is correct.
  • the left compensation winding 3 and the right compensation winding 4 on the side pillars are disposed between the side pillar core 5 and the side pillar enclosure 12, and the side pillar enclosure 12 is disposed around the side pillar core 5.
  • the side column screen 12 is reserved for compensating for the winding and fastening of the winding;
  • the left compensation winding 10 and the right compensation winding 11 on the iron yoke are disposed between the upper iron yoke 14 and the core clamp 15,
  • the core clamp member 15 is disposed around the upper iron yoke 14.
  • the above-mentioned left compensation windings 3, 10 and the right compensation windings 4, 11 can be made by the following four methods: 1) winding the entire wire into a number of turns Winding; 2) A plurality of shorter wires are connected to the outer side of the core to form a winding with a number of turns; 3) a whole wire is wound around the tooling die to form a whole winding with a number of turns, cast molding, directly assembled in the assembly 4) The plurality of shorter wires are divided into two parts and wound on the mold respectively, and casted, and a part is placed on the inner side of the core in advance. After the core is stacked, the other part is inserted, and the pre-casting is performed.
  • the connector is connected to a winding with a number of turns group.
  • the left compensation winding 3 and the right compensation winding 4 of the left and right side columns are respectively wound on the corresponding side columns, and the side column surrounding screen 12 is reserved for the left compensation winding 3 and the right compensation winding 4 of the left and right side columns;
  • the left compensation winding 10 and the right compensation winding 11 on the iron yoke are wound around the upper iron yoke 14, respectively, and the core clamp member 15 is a winding position for the left compensation winding 10 and the right compensation winding 11 on the iron yoke.
  • the label shown in FIG. 1 is connected, corresponding to the upper iron yoke 14, and the power supply shown in FIG. 1 is applied to the high voltage winding 1 and the low voltage winding 2, and the window shown in FIG. 1 is generated in the middle core frame 2.
  • Current 6, according to Faraday's law of electromagnetic induction, the main magnetic flux 7 generated by the high voltage winding 1 and the low voltage winding 2, the additional magnetic flux 8 generated by the windowing current 6 and the compensation windings 3, 4, 10, 11
  • the induced magnetic flux 9, the induced magnetic flux 9 and the additional magnetic flux 8 are always opposite in the direction of the core 5, effectively achieving the purpose of suppressing the additional magnetic flux 8 generated by the windowing current 6.
  • the invention can greatly reduce the influence of the windowing current on the load loss caused by the transformer
  • the compensation winding can be pre-wound at a specified position, or can be placed on the iron core after being cast by a tooling mold, and the operation cylinder is convenient;
  • the leads of the compensation winding are connected outside the iron yoke, away from the high field strength region and the large current region, thereby avoiding the influence of possible partial discharge and stray loss on the transformer;
  • a compensation system can be set at the upper and lower ends of the core at the same time.
  • the two sets of compensation systems are connected in parallel, which reduces the current in each compensation system, which can greatly reduce the overall size of the compensation system and reduce the size.
  • the distance from the winding to the main winding is compensated, which improves the safety and reliability of the overall power transformer.
  • the overall layout of the winding system for the larger capacity power transformer is similar to the layout of the present invention, and therefore will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

一种单相四柱铁心结构的电力变压器的补偿绕组体系,包括缠绕在左右两侧旁柱上的左补偿绕组(3)和右补偿绕组(4)以及缠绕在铁轭上的左补偿绕组(10)和右补偿绕组(11),其中缠绕在左侧旁柱上的左补偿绕组(3)的出口端与缠绕在铁轭上的左补偿绕组(10)的出口端相连,缠绕在右侧旁柱上的右补偿绕组(4)的出口端与缠绕在铁轭上的右补偿绕组(11)的出口端相连。采用该补偿绕组体系,根据法拉第电磁感应定律,铁心中会产生由绕组产生的主磁通、由穿窗电流产生的附加磁通和由补偿绕组产生的感应磁通,其中感应磁通与附加磁通在铁心中方向一直相反,从而有效抑制了穿窗电流产生的附加磁通。

Description

一种单相四柱铁心结构的电力变压器的补偿绕组体系
技术领域
本发明涉及一种电力变压器, 特别是一种单相四柱铁心结构电力变压器的 补偿绕组体系。
背景技术
随着我国电力事业的高速发展, 电力变压器的电压等级和容量日益提高, 电 力变压器的运输尺寸也相应加大。 为满足运输界限要求, 单相电力变压器可采 用高压首端与中性点端分别在铁心两侧出线的出线方式, 这样可以最大限度的 减小电力变压器长度方向尺寸和重量、 降低材料消耗率。 但采用这种出线方式 会使电力变压器铁心框中存在穿窗电流, 穿窗电流会使铁心励磁, 产生额外的 磁通(筒称附加磁通), 使电力变压器的负载损耗增加。 若能采取措施抑制穿窗 电流的影响, 避免铁心被额外励磁, 则电力变压器的负载损耗将不受影响。
鉴于以上问题,实有必要提供一种单相四柱铁心结构的电力变压器的补偿绕 组体系以解决以上技术问题。
发明内容
本发明提供了一种单相四柱铁心结构的电力变压器的补偿绕组体系, 抑制 电力变压器穿窗电流产生的影响。
本发明所采用的技术方案是: 一种抑制变压器穿窗电流的影响的装置, 包 括缠绕在左右两侧旁柱上的左补偿绕组和右补偿绕组以及缠绕在铁轭上的左补 偿绕组和右补偿绕组, 所述缠绕在左侧旁柱上的左补偿绕组的出口端与缠绕在 铁轭上的左补偿绕组的出口端相连, 所述缠绕在右侧旁柱上的右补偿绕组的出 口端与缠绕在铁轭上的右补偿绕组的出口端相连。
作为本发明的优选实施例, 所述缠绕在左右两侧旁柱上的左补偿绕组和右 补偿绕组以及缠绕在铁轭上的左补偿绕组和右补偿绕组中任一个绕组的构成方 式为: 由整根导线绕制成带匝数的绕组;
作为本发明的优选实施例, 所述缠绕在左右两侧旁柱上的左补偿绕组和右 补偿绕组以及缠绕在铁轭上的左补偿绕组和右补偿绕组中任一个绕组的构成方 式为: 由多根较短导线在铁心外侧连接成带匝数的绕组;
作为本发明的优选实施例, 所述缠绕在左右两侧旁柱上的左补偿绕组和右 补偿绕组以及缠绕在铁轭上的左补偿绕组和右补偿绕组中任一个绕组的构成方 式为: 在工装模具上由整根导线绕制成整体带匝数的绕组, 浇注成型, 在装配 时直接套装在铁心上;
作为本发明的优选实施例, 所述缠绕在左右两侧旁柱上的左补偿绕组和右 补偿绕组以及缠绕在铁轭上的左补偿绕组和右补偿绕组中任一个绕组的构成方 式为: 由多根较短导线分为两部分分别绕制在模具上, 浇注成型, 将一部分预 先放于铁心内侧, 待铁心叠装完成后, 另一部分与其对插, 通过预浇注的连接 头连为带匝数的绕组;
作为本发明的优选实施例, 所述两侧旁柱上的左补偿绕组和右补偿绕组设 置于旁柱铁心与旁柱围屏之间, 所述旁柱围屏围设在旁柱铁心周围。
作为本发明的优选实施例, 所述铁轭上的左补偿绕组和右补偿绕组设置于 上铁轭与铁心夹件之间, 所述铁心夹件围设在上铁轭周围。
本发明单相四柱铁心结构的电力变压器的补偿绕组体系至少具有以下优 点: 向绕组出头在铁心两侧的单相电力变压器施加电源后, 电力变压器内部会 产生穿窗电流, 为抑制该穿窗电流的影响, 采用本发明补偿绕组体系后, 根据 法拉第电磁感应定律, 铁心中会产生由绕组产生的主磁通、 由穿窗电流产生的 附加磁通和由补偿绕组产生的感应磁通, 感应磁通与附加磁通在铁心中方向一 直相反, 有效达到了抑制穿窗电流产生的附加磁通的目的。
附图说明
图 1是本发明补偿绕组体系的整体布置图。
图 2是由整根导线绕制而成或在模具上绕制完成后浇注成型的补偿绕组结 构示意图;
图 3 是由多根较短导线绕制而成或将导线分为两部分绕制完成后分别浇注 成型, 然后通过预浇注的连接头连接而成的补偿绕组结构示意图;
图 4是更大容量电力变压器补偿绕组体系的整体布置图。
其中, 1、 高压绕组; 2、 低压绕组; 3、 左侧旁柱上的补偿绕组; 4、 右侧 旁柱上的补偿绕组; 5、 铁心; 6、 穿窗电流; 7、 铁心中的主磁通; 8、 穿窗电 流产生的附加磁通; 9、 补偿绕组的感应磁通; 10、 铁轭上左侧补偿绕组; 11、 铁轭上右侧补偿绕组; 12、 旁柱围屏; 13、 连接头; 14、 上铁轭; 15、 铁心夹 件; ①左侧铁心框; ②中间铁心框; ③右侧铁心框
具体实施方式
下面结合附图对本发明单相四柱铁心结构的电力变压器的补偿绕组体系做 详细描述:
请参阅图 1至图 4所示, 本发明单相四柱铁心结构的电力变压器的补偿绕 组体系包括左右两侧旁柱的左补偿绕组 3和右补偿绕组 4和铁轭上的左补偿绕 组 10和右补偿绕组 11 , 共四个, 该四个补偿绕组两两组合, 具体为: 两侧旁柱 的左补偿绕组 3的出口端与铁轭上的左补偿绕组 10的出口端相连, 形成一组, 两侧旁柱的右补偿绕组 4的出口端与铁轭上的右补偿绕组 11的出口端相连, 形 成另一组, 通过相应的标号检定正确接线后, 可以抑制变压器中穿窗电流的影 响, 所述相应的标号检定正确接线是指两侧旁柱的左补偿绕组 3 的出口端必须 与铁轭上的左补偿绕组 10的出口端相连, 两侧旁柱的右补偿绕组 4的出口端必 须与铁轭上的右补偿绕组 11的出口端相连, 在实际操作过程中, 将上述四个补 偿绕组接线完成之后, 可以通过分别检测旁柱左侧的补偿绕组和铁轭左侧的补 偿绕组之间的磁通以及旁柱右侧的补偿绕组和铁轭右侧的补偿绕组之间的磁 通, 以确定连接关系是否正确。
上述方案中, 所述的两侧旁柱上的左补偿绕组 3和右补偿绕组 4设置于旁 柱铁心 5与旁柱围屏 12之间, 所述旁柱围屏 12围设在旁柱铁心 5周围, 旁柱 围屏 12预留位置以便补偿绕组的绕制和紧固; 所述的铁轭上的左补偿绕组 10 和右补偿绕组 11设置于上铁轭 14与铁心夹件 15之间, 所述铁心夹件 15围设 在上铁轭 14周围, 上述的左补偿绕组 3、 10和右补偿绕组 4、 11可由以下 4种 方式制作而成: 1 ) 由整根导线绕制成带匝数的绕组; 2 ) 由多根较短导线在铁 心外侧连接成带匝数的绕组; 3 )在工装模具上由整根导线绕制成整体带匝数的 绕组, 浇注成型, 在装配时直接套装在铁心上; 4 ) 由多根较短导线分为两部分 分别绕制在模具上, 浇注成型, 将一部分预先放于铁心内侧, 待铁心叠装完成 后, 另一部分与其对插, 通过预浇注的连接头连为带匝数的绕组。 左右两侧旁 柱的左补偿绕组 3和右补偿绕组 4分别缠绕在相应的旁柱上, 旁柱围屏 12为左 右两侧旁柱的左补偿绕组 3和右补偿绕组 4预留绕制位置; 铁轭上的左补偿绕 组 10和右补偿绕组 11分别缠绕在上铁轭 14上, 铁心夹件 15为铁轭上的左补 偿绕组 10和右补偿绕组 11预留绕制位置。
补偿绕组设置完成后按图 1所示标号——对应在上铁轭 14上方连接, 向高 压绕组 1和低压绕组 2施加图 1所示电源, 中间铁心框②中会产生图 1所示穿 窗电流 6, 根据法拉第电磁感应定律,铁心 5中会产生由高压绕组 1和低压绕组 2产生的主磁通 7、 由穿窗电流 6产生的附加磁通 8和由补偿绕组 3、 4、 10、 11 产生的感应磁通 9, 感应磁通 9与附加磁通 8在铁心 5中方向一直相反, 有效达 到了抑制穿窗电流 6产生的附加磁通 8的目的。
本发明的优点是:
1、 本发明可以大大降低穿窗电流对变压器造成的负载损耗增加的影响;
2、 本发明中补偿绕组既可以在指定位置预先绕制, 也可以通过工装模具浇 注成型后套装在铁心上, 操作筒单方便;
3、 本发明中补偿绕组的引线在铁轭外侧进行连接, 远离高场强区和大电流 区, 避免了可能对变压器产生的局部放电和杂散损耗增加的影响;
4、对于更大容量的电力变压器,可同时在铁心上下两端各设一套补偿系统, 两套补偿系统并联, 降低了各个补偿系统中的电流, 可大大降低补偿系统的整 体尺寸, 缩小了补偿绕组到主绕组的距离, 提高了整体电力变压器的安全可靠 性。
请参阅图 4 所示, 为更大容量的电力变压器补偿绕组体系的整体布置图, 与本发明布置图相似, 故, 在此不再赘述。
以上所述仅为本发明的一种实施方式, 不是全部或唯一的实施方式, 本领 域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的 变换, 均为本发明的权利要求所涵盖。

Claims

权 利 要 求 书
1. 一种单相四柱铁心结构的电力变压器的补偿绕组体系, 其特征在于: 包 括缠绕在左右两侧旁柱上的左补偿绕组(3)和右补偿绕組(4) 以及缠绕在铁 轭上的左补偿绕组(10)和右补偿绕组(11), 所述缠绕在左侧旁柱上的左补偿 绕组( 3 ) 的出口端与缠绕在铁轭上的左补偿绕组( 10 ) 的出口端相连, 所述缠 绕在右侧旁柱上的右补偿绕組( 4 )的出口端与缠绕在铁轭上的右补偿绕组( 11 ) 的出口端相连。
2. 如权利要求 1所述的单相四柱铁心结构的电力变压器的补偿绕组体系, 其特征在于: 所述缠绕在左右两侧旁柱上的左补偿绕组(3)和右补偿绕组(4) 以及缠绕在铁轭上的左补偿绕组(10) 和右补偿绕组(11) 中任一个绕组的构 成方式为: 由整根导线绕制成带匝数的绕組。
3.如权利要求 1所述的单相四柱铁心结构的电力变压器的补偿绕组体系,其 特征在于: 所述缠绕在左右两侧旁柱上的左补偿绕组(3)和右补後绕组(4) 以及缠绕在铁轭上的左补偿绕组(10) 和右补偿绕组(11) 中任一个绕组的构 成方式为: 由多根较短导线在铁心外側连接成带匝数的绕组。
4. 如权利要求 1所述的单相四柱铁心结构的电力变压器的补偿绕组体系, 其特征在于: 所述缠绕在左右两侧旁柱上的左补偿绕組(3)和右补偿绕组(4) 以及镇绕在铁轭上的左补偿绕组(10) 和右补偿绕組(11) 中任一个绕組的构 成方式为: 在工装模具上由整根导线绕制成整体带匝数的绕组, 浇注成型, 在 装配时直接套装在铁心上。
5. 如权利要求 1所述的单相四柱铁心结构的电力变压器的补偿绕组体系, 其特征在于: 所述缠绕在左右两侧旁柱上的左补偿绕組(3)和右补偿绕组(4) 以及缠绕在铁轭上的左补偿绕组(10) 和右补偿绕组(11) 中任一个绕组的构 成方式为: 由多根较短导线分为两部分分别绕制在模具上, 浇注成型, 将一部 分预先放于铁心内侧, 待铁心叠装完成后, 另一部分与其对插, 通过预浇注的 连接头连为带匝数的绕组。
6. 如权利要求 1-5 中任一项所述的单相四柱铁心结构的电力变压器的补偿 绕组体系, 其特征在于: 所述两侧旁柱上的左补偿绕组(3)和右补偿绕组(4) 设置于旁柱铁心 (5)与旁柱围屏(12)之间, 所述旁柱围屏(12) 围设在旁柱 铁心 (5)周围。
7. 如权利要求 1-5 中任一项所述的单相四柱铁心结构的电力变压器的补偿 绕组体系, 其特征在于: 所述铁轭上的左补偿绕組( 10)和右补偿绕组( 11 ) 设置于上铁轭( 14 )与铁心夹件 ( 15 )之间 , 所述铁心夹件( 15 ) 围设在上铁 轭(14)周围。
PCT/CN2012/082798 2011-10-25 2012-10-11 一种单相四柱铁心结构的电力变压器的补偿绕组体系 WO2013064008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103273134A CN102364637A (zh) 2011-10-25 2011-10-25 一种单相四柱铁心结构的电力变压器的补偿绕组体系
CN201110327313.4 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013064008A1 true WO2013064008A1 (zh) 2013-05-10

Family

ID=45691199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082798 WO2013064008A1 (zh) 2011-10-25 2012-10-11 一种单相四柱铁心结构的电力变压器的补偿绕组体系

Country Status (2)

Country Link
CN (1) CN102364637A (zh)
WO (1) WO2013064008A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569383A (zh) * 2021-06-28 2021-10-29 南方电网科学研究院有限责任公司 单相四柱变压器的仿真模型创建方法、系统、介质及设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364637A (zh) * 2011-10-25 2012-02-29 中国西电电气股份有限公司 一种单相四柱铁心结构的电力变压器的补偿绕组体系
WO2014191023A1 (de) * 2013-05-28 2014-12-04 Siemens Aktiengesellschaft Vorrichtung zur verringerung eines magnetischen gleichfluss-anteils im kern eines transformators
CN103337334A (zh) * 2013-06-20 2013-10-02 山东电力设备有限公司 一种应用于双主柱并联变压器的消磁平衡结构
CN103337342A (zh) * 2013-06-20 2013-10-02 山东电力设备有限公司 一种应用在三主柱并联变压器上的消磁线圈结构
CN106653334A (zh) * 2015-10-30 2017-05-10 特变电工衡阳变压器有限公司 单相变压器
CN106205975A (zh) * 2016-06-23 2016-12-07 山东达驰电气有限公司 一种变压器平衡线圈结构
CN114078624A (zh) 2020-08-17 2022-02-22 台达电子工业股份有限公司 磁性部件及其适用的电源模块
BR112023005418A2 (pt) * 2020-10-26 2023-05-09 Siemens Energy Global Gmbh & Co Kg Estrutura de compensação para reduzir corrente circulante em janela de transformador e transformador que compreende estrutura de compensação

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235446A (ja) * 1991-05-20 1995-09-05 Risho Kogyo Co Ltd 零相変流器内蔵接地コンデンサ
JPH09289125A (ja) * 1996-04-24 1997-11-04 Toshiba Corp 内鉄形単巻単相変圧器
CN2327058Y (zh) * 1998-04-24 1999-06-30 常铁军 调磁通变压器
CN1790215A (zh) * 2004-12-15 2006-06-21 魏明 补偿铁芯内主磁通量稳定输出量的铁芯线圈电器
CN102364637A (zh) * 2011-10-25 2012-02-29 中国西电电气股份有限公司 一种单相四柱铁心结构的电力变压器的补偿绕组体系

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2070945U (zh) * 1990-07-20 1991-02-06 彭小玲 高频磁共振稳压变压器
JPH0489125A (ja) * 1990-07-30 1992-03-23 Kawasaki Steel Corp 湿式連続処理装置における金属ストリップ保護装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235446A (ja) * 1991-05-20 1995-09-05 Risho Kogyo Co Ltd 零相変流器内蔵接地コンデンサ
JPH09289125A (ja) * 1996-04-24 1997-11-04 Toshiba Corp 内鉄形単巻単相変圧器
CN2327058Y (zh) * 1998-04-24 1999-06-30 常铁军 调磁通变压器
CN1790215A (zh) * 2004-12-15 2006-06-21 魏明 补偿铁芯内主磁通量稳定输出量的铁芯线圈电器
CN102364637A (zh) * 2011-10-25 2012-02-29 中国西电电气股份有限公司 一种单相四柱铁心结构的电力变压器的补偿绕组体系

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569383A (zh) * 2021-06-28 2021-10-29 南方电网科学研究院有限责任公司 单相四柱变压器的仿真模型创建方法、系统、介质及设备
CN113569383B (zh) * 2021-06-28 2024-01-16 南方电网科学研究院有限责任公司 单相四柱变压器的仿真模型创建方法、系统、介质及设备

Also Published As

Publication number Publication date
CN102364637A (zh) 2012-02-29

Similar Documents

Publication Publication Date Title
WO2013064008A1 (zh) 一种单相四柱铁心结构的电力变压器的补偿绕组体系
JP6963045B2 (ja) 非接触給電システム
KR101719326B1 (ko) 임피던스 본드 권선 권취 방법 및 그 임피던스 본드
US10666108B2 (en) Stator, method for manufacturing stator, and motor
JP2017517871A (ja) 巻鉄芯車両用主変圧器
CN105428040A (zh) 一种铁芯式分裂电抗器
EP2884503B1 (en) Power induction device and method for implementing shunting measurement through inductive winding
CN203377069U (zh) 一种卷铁芯变压器的绕组
CN107430927B (zh) 变压器以及用于改装变压器的方法
KR20140139616A (ko) 변압기 코일을 제조하기 위한 방법, 몰드 및 시스템
KR20150095819A (ko) 변압기 고전압 코일 조립체
CN207602369U (zh) 一种三相一体空心电抗器的共轭结构
CA2758282C (en) Power transformer with amorphous core
CN104124036B (zh) 磁耦合电抗器
KR101517741B1 (ko) 변압기용 가압 프레임 구조
CN205789480U (zh) 一种新型组合式互感器
CN203103109U (zh) 整体式组合互感器
CN206991925U (zh) 一种新型电感器
JP6236853B2 (ja) 中空筒型リアクトル装置、中空筒型コンバータ装置、および中空筒型電源装置
CN209912652U (zh) 一种uui新型集成电感器
CN102005294A (zh) 一种小型电流互感器
JPWO2010098029A1 (ja) 変圧器および変圧器の組み立て方法
CN105374521B (zh) 一种ei型变压器
CN203706778U (zh) 电抗器内拉杆
CN214336520U (zh) 一种三相立体叠铁芯及其夹持装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.09.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12845715

Country of ref document: EP

Kind code of ref document: A1