WO2013062322A1 - Biosensor and method for manufacturing same - Google Patents

Biosensor and method for manufacturing same Download PDF

Info

Publication number
WO2013062322A1
WO2013062322A1 PCT/KR2012/008785 KR2012008785W WO2013062322A1 WO 2013062322 A1 WO2013062322 A1 WO 2013062322A1 KR 2012008785 W KR2012008785 W KR 2012008785W WO 2013062322 A1 WO2013062322 A1 WO 2013062322A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
biosensor
base substrate
signal transmission
plating
Prior art date
Application number
PCT/KR2012/008785
Other languages
French (fr)
Korean (ko)
Inventor
이진우
최재규
정해광
Original Assignee
주식회사 세라젬메디시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세라젬메디시스 filed Critical 주식회사 세라젬메디시스
Publication of WO2013062322A1 publication Critical patent/WO2013062322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material

Definitions

  • the present invention relates to a biosensor, and more particularly, to a biosensor and a method of manufacturing the same that can simplify the structure and manufacturing process.
  • Biosensor refers to a means of investigating the properties of a substance by using a function of a living organism. Since a biomaterial such as blood sugar or ketone is used as a detection device, it has excellent sensitivity and reaction specificity. Therefore, it is used in a wide range of fields such as clinical chemical analysis in the medical / medical field, process measurement in the bio industry, environmental measurement, and stability evaluation of chemicals. In particular, biosensors are widely used for various self tests such as blood sugar measurement, pregnancy diagnosis, urine test, and rapid disease diagnosis.
  • the most common electrochemical biosensor is mainly used for blood glucose measurement.
  • An electrochemical reaction occurs when a sample such as blood is introduced into the biosensor, and an electrical signal is generated and transmitted to a measuring instrument connected to or connected to the biosensor. That's the way.
  • the structure of a conventional biosensor is a structure in which a plurality of thin film layers are stacked as a structure in which a reactor plate is raised on a lower substrate, a sample introduction spacer is placed on a reactor substrate, an upper substrate is raised thereon, and a cover is placed on the top thereof. to be. Most of them are in the form of rod strips, in particular very small in size, requiring a fairly sophisticated process.
  • An object of the present invention is to provide a biosensor having a one-layer structure and a method of manufacturing the same.
  • Another object of the present invention is to provide a biosensor having a simple manufacturing process and a method of manufacturing the same.
  • Still another object of the present invention is to provide a biosensor having a low manufacturing cost and a method of manufacturing the same.
  • the present invention is a base substrate 10,
  • a working electrode 30 and a reference electrode 40 formed on the inner wall of the sample introduction path 20 and spaced apart from each other;
  • reaction reagent coated on the working electrode 30 and the reference electrode 40 A reaction reagent coated on the working electrode 30 and the reference electrode 40,
  • Signal transmission electrode 50 formed on one surface of the base substrate 10 to be electrically connected to each of the working electrode 30 and the reference electrode 40
  • biosensor characterized in that configured to include.
  • the signal transmission electrode 50 is composed of an operation signal transmission electrode 51 formed under the operation electrode 30 and a reference signal transmission electrode 52 formed under the reference electrode 40.
  • the signal transmission electrode 51 and the reference signal transmission electrode 52 may be spaced apart from each other.
  • the base substrate 10 may be formed of an insulating substrate.
  • the present invention is the process of forming two through holes 16, 17 in the base substrate 10,
  • Also provided is a method of manufacturing a biosensor which comprises applying a reaction reagent to the working electrode 30 and the reference electrode 40.
  • the first plating process may be a copper plating process
  • the second plating process may be performed by forming gold plating only on the working electrode 30, the reference electrode 40, and the signal transmission electrode 50. No gold plating is formed in the circumference.
  • the method may further include preparing a large insulating substrate, such as a PCB, as the base substrate 10.
  • the structure is simplified, the productivity is improved, and the manufacturing cost is reduced.
  • the present invention proposes a method of forming a sample introduction path and an electrode part in one layer instead of the conventional multi-layer stacked type, thereby improving the operability of the biosensor through the simple structure, improving the productivity of the biosensor, and generating a failure rate. There is an effect of reducing the.
  • FIG. 1 is a perspective view and an internal electrode structure diagram showing a biosensor according to the present invention.
  • Figure 2 is a flow chart showing a manufacturing method of a biosensor according to the present invention.
  • 3A and 3B are schematic diagrams sequentially showing before and after the insulating substrate is drilled.
  • Figure 4 is a schematic diagram of the electroless copper plating is formed on the drilled insulating substrate of FIG.
  • FIG. 5 is a schematic view in which patterning is performed on the copper-plated insulating substrate of FIG. 4.
  • FIG. 5 is a schematic view in which patterning is performed on the copper-plated insulating substrate of FIG. 4.
  • FIG. 6 is a schematic view illustrating a connection hole connecting the through holes in the state in which the patterning of FIG. 5 is performed.
  • FIG. 7 is a schematic view showing that secondary plating is performed in the state of FIG. 6.
  • FIG. 8 is a schematic diagram illustrating an internal electrode part of FIG. 7.
  • FIG. 9 is a schematic diagram showing that the biosensor according to the present invention is introduced into the outer housing 100.
  • FIG. 1 is a perspective view and an internal electrode structural diagram showing a biosensor according to the present invention.
  • the biosensor according to the present invention includes a base substrate 10 formed of an insulating substrate such as a printed circuit board (PCB) and a sample introduction path (Capillary) formed to penetrate the base substrate 10 ( 20 and a working electrode 30 and a reference electrode 40 which are formed on the inner wall of the sample introduction path 20 and are spaced apart from each other.
  • PCB printed circuit board
  • Capillary sample introduction path
  • a reaction reagent such as an enzyme immobilized in a method such as drying after coating on the working electrode 30 and the reference electrode 40, and the working electrode 30 and the reference electrode ( 40) is configured to include a signal transmission electrode 50 formed on one surface of the base substrate 10 to be electrically connected to each.
  • the signal transmitting electrode 50 transmits a reaction signal to a measuring instrument (not shown).
  • the reaction reagent applied on the working electrode 30 and the reference electrode 40 reacts with the introduced blood to generate a reaction signal.
  • the reaction signal is transmitted to the measuring device through the signal transmission electrode 50 connected to the working electrode 30 and the reference electrode 40, the measuring device may calculate a measurement result according to the level of the reaction signal.
  • FIG. 2 is a flowchart showing a method of manufacturing a biosensor according to the present invention.
  • a second step S200 which is a preparation process of the base substrate 10, which proceeds through a first step S100, which is a starting process, and two steps performed after the second step S200, are performed.
  • the third step S300 which is a through hole forming process
  • the fourth step S400 which is a first plating process performed after the third step S300, and the patterning that is performed after the fourth step S400.
  • the second step (S500) and the second through the sixth step (S600) and the sixth step (S600) after the sixth step (S600) and the sixth step (S600) A seventh step (S700), and a ninth step (S900), which is an end process performed after the eighth step (S800) and the eighth step (S800), which are the reaction reagent application processes performed after the seventh step, and the seventh step (S800). It is configured to include).
  • a second step (S200), which is a process of preparing the base substrate 10, is a process of preparing an insulating substrate or a PC substrate as the base substrate 10 as shown in FIG. 3A.
  • the upper surface 12 and the lower surface 14 of the base substrate 10 may be formed with a copper layer.
  • step S300 of forming two through holes through holes in the vertical direction are formed such that two holes spaced apart from each of the upper surface 12 and the lower surface 14 of the base substrate 10 are formed as shown in FIG. 3B.
  • (16, 17) is a process of forming, a method such as drilling is used.
  • the base substrate 10 having the two through holes 16 and 17 is formed by electroless plating. It is the process of copper plating which is primary plating on the copper surface.
  • the copper plating is a process for effectively performing gold plating, which is a secondary plating to be performed later, and when gold plating is performed without copper plating on the base substrate 10, the gold is insulated or copper surface of the base substrate 10, Since the plastic part in which the through hole is formed is not plated, gold plating is not formed.
  • FIG. 4 illustrates the hatching in both directions to show that the copper plating film is formed on the upper surface 12 and the lower surface 14 and the through holes 16 and 17 of the base substrate 10, before the copper plating film is formed.
  • the hatching on the upper surface 12 and the lower surface 14 of the base substrate 10 is illustrated in one direction.
  • the fifth step S500 which is a patterning process, is a process of performing patterning through exposure and etching processes on the first plated substrate through the fourth step S400 as shown in FIG. 5.
  • the upper surface 12 removes the metal parts of all parts except the working electrode parts, that is, the working electrode 30 and the reference electrode 40, to be formed in the through holes 16 and 17, The metal material of the remaining portions except for the working electrode part to be formed in the through holes 16 and 17 and the signal transmission electrode 50 connected to the working electrode part is removed.
  • the metal material is removed between the portion of the signal transmission electrode 50 connected to the lower portion of the working electrode 30 and the portion of the signal transmission electrode 50 connected to the lower portion of the reference electrode 40.
  • the sixth step (S600) is the connection through hole forming process in the direction parallel to the through-holes (16, 17) of the base substrate 10, the patterning is completed through the fifth step (S500) as shown in FIG. Forming the through-holes 18, it is a process of connecting the through-holes 16, 17 as one.
  • the working electrode 30 and the reference electrode 40 are positioned to be spaced apart from each other in the same through space, and have a through hole in which the working electrode 30 and the reference electrode 40 are formed.
  • the fields 16 and 17 and the connecting through hole 18 become the sample introduction path 20.
  • gold plating which is secondary plating
  • a method such as electroless plating
  • gold plating is formed only on a portion where copper plating is formed.
  • Gold plating is formed only on the electrode 40 and the signal transmission electrode 50, and gold plating is not formed around the connection through hole.
  • the working electrode 30 and the reference electrode 40 are spaced apart from each other as shown in FIG. 8, and the working electrode 30 and the reference electrode 40 are connected to the signal transmission electrode 50, respectively.
  • the signal transmission electrode 50 formed under the working electrode 30 and connected to the working electrode 30 is called an operation signal transmission electrode 51, and is formed under the reference electrode 40 to form the reference electrode 40.
  • the signal transfer electrode 50 connected to the reference signal is called a reference signal transfer electrode 52.
  • the operation signal transmission electrode 51 and the reference signal transmission electrode 52 are formed to be spaced apart from each other.
  • the eighth step (S800), which is the reaction reagent application process, is a process of applying and drying the reaction reagents to the working electrode 30 and the reference electrode 40 formed at both sides of the through holes 16 and 17.
  • the biosensor is completed.
  • the processes of the first step (S100) to the ninth step (S900) are performed in parallel on a large insulating substrate, such as a PC, and then the cutting process is performed.
  • FIG. 9 is a schematic diagram showing that the biosensor according to the present invention is introduced into the outer housing 100.
  • an outer housing 100 having a space in which the biosensor device can be inserted may be separately provided to improve appearance or usability of the product.
  • the outer housing 100 is a synthetic resin material such as plastic, it is preferable to easily change the shape or size by injection molding.
  • the present invention proposes a method of forming a sample introduction path and an electrode part in one layer instead of the conventional multi-layer stacked type, thereby improving the operability of the biosensor through the simple structure, improving the productivity of the biosensor, and generating a failure rate. There is an effect of reducing the.

Abstract

The present invention pertains to a biosensor comprising: a base substrate (10); a sample introduction path (20) formed to pass through the base substrate (10); an operating electrode (30) and a reference electrode (40) formed on the inside wall of the sample introduction path (20), spaced from each other; a reactive reagent coated on the operating electrode (30) and the reference electrode (40); and a signal transfer electrode (50) formed on one surface of the base substrate (10) to be electrically connected to the operating electrode (30) and the reference electrode (40). According to the present invention, when a biosensor is manufactured, only one layer is used, thereby simplifying the structure thereof, improving productivity, and reducing manufacturing costs.

Description

바이오센서 및 그 제조 방법Biosensor and its manufacturing method
본 발명은 바이오센서에 관한 것으로 특히 구조 및 제작공정을 단순화시킬 수 있는 바이오센서 및 그 제조 방법에 관한 것이다.The present invention relates to a biosensor, and more particularly, to a biosensor and a method of manufacturing the same that can simplify the structure and manufacturing process.
바이오센서(biosensor)는 생물이 가지고 있는 기능을 이용하여 물질의 성질 등을 조사하는 수단을 말하며, 혈당이나 케톤 등과 같은 생체물질을 탐지소자로 사용하므로 감도와 반응 특이성이 우수하다. 따라서 의료/의약 분야에서의 임상화학분석, 바이오산업의 공정계측, 환경계측, 화학물질의 안정성 평가 등 광범위한 분야에서 사용되고 있고 그 범위는 계속 확대되고 있다. 특히 바이오센서는 혈당 측정, 임신 진단, 소변 검사 등 다양한 자가 테스트 및 빠른 질병 진단에 많이 사용되고 있다.Biosensor refers to a means of investigating the properties of a substance by using a function of a living organism. Since a biomaterial such as blood sugar or ketone is used as a detection device, it has excellent sensitivity and reaction specificity. Therefore, it is used in a wide range of fields such as clinical chemical analysis in the medical / medical field, process measurement in the bio industry, environmental measurement, and stability evaluation of chemicals. In particular, biosensors are widely used for various self tests such as blood sugar measurement, pregnancy diagnosis, urine test, and rapid disease diagnosis.
가장 보편적인 전기화학적 바이오센서의 경우 혈당 측정에 주로 사용되고 있는데, 바이오센서에 혈액과 같은 시료를 도입했을 때 일어나는 전기화학 반응에 의해, 전기신호가 생성되어 바이오센서와 연결 혹은 체결된 측정기에 전달되는 방식이다.The most common electrochemical biosensor is mainly used for blood glucose measurement. An electrochemical reaction occurs when a sample such as blood is introduced into the biosensor, and an electrical signal is generated and transmitted to a measuring instrument connected to or connected to the biosensor. That's the way.
종래의 바이오센서의 구조를 보면 하부기판 위에 반응기판을 올리고, 반응기판 위에 시료도입을 위한 스페이서를 올리고, 그 위에 상부기판을 올리고, 맨 위에 커버를 올리는 구조로서, 다수의 박막계층을 적층하는 구조이다. 특히 대부분이 막대 스트립 형태로서 그 크기가 매우 작아 상당히 정교한 공정을 필요로 한다.The structure of a conventional biosensor is a structure in which a plurality of thin film layers are stacked as a structure in which a reactor plate is raised on a lower substrate, a sample introduction spacer is placed on a reactor substrate, an upper substrate is raised thereon, and a cover is placed on the top thereof. to be. Most of them are in the form of rod strips, in particular very small in size, requiring a fairly sophisticated process.
종래의 바이오센서는 그 구조 및 제작과정이 복잡하고 이에 따라 제조 비용이 많이 소요되는 문제점이 있다.Conventional biosensors have a problem in that their structure and manufacturing process are complicated, and thus manufacturing costs are high.
본 발명의 목적은 1 계층 구조를 갖는 바이오센서 및 그 제조 방법을 제공함에 있다.An object of the present invention is to provide a biosensor having a one-layer structure and a method of manufacturing the same.
본 발명의 다른 목적은 제조과정이 간단한 바이오센서 및 그 제조 방법을 제공함에 있다.Another object of the present invention is to provide a biosensor having a simple manufacturing process and a method of manufacturing the same.
본 발명의 또 다른 목적은 제조비용이 낮은 바이오센서 및 그 제조 방법을 제공함에 있다.Still another object of the present invention is to provide a biosensor having a low manufacturing cost and a method of manufacturing the same.
본 발명은 베이스 기판(10)과, The present invention is a base substrate 10,
상기 베이스 기판(10)을 관통하도록 형성된 시료도입로(20)와, A sample introduction path 20 formed to penetrate the base substrate 10;
상기 시료도입로(20)의 내측벽에 형성되며 서로 이격되는 작동전극(30) 및 기준전극(40)과, A working electrode 30 and a reference electrode 40 formed on the inner wall of the sample introduction path 20 and spaced apart from each other;
상기 작동전극(30)과 기준전극(40) 상에 도포된 반응시약과, A reaction reagent coated on the working electrode 30 and the reference electrode 40,
상기 작동전극(30)과 기준전극(40) 각각에 전기적으로 연결되도록 상기 베이스 기판(10)의 일면에 형성되는 신호전달전극(50) Signal transmission electrode 50 formed on one surface of the base substrate 10 to be electrically connected to each of the working electrode 30 and the reference electrode 40
을 포함하여 구성되는 것을 특징으로 하는 바이오센서를 제공한다.It provides a biosensor, characterized in that configured to include.
상기 신호전달전극(50)은 작동전극(30)의 하부에 형성되는 작동신호전달전극(51)과, 기준전극(40)의 하부에 형성되는 기준신호전달전극(52)으로 이루어지며, 상기 작동신호전달전극(51)과 기준신호전달전극(52)은 서로 이격될 수 있다.The signal transmission electrode 50 is composed of an operation signal transmission electrode 51 formed under the operation electrode 30 and a reference signal transmission electrode 52 formed under the reference electrode 40. The signal transmission electrode 51 and the reference signal transmission electrode 52 may be spaced apart from each other.
또한, 상기 베이스 기판(10)은 절연기판으로 형성될 수 있다.In addition, the base substrate 10 may be formed of an insulating substrate.
한편, 본 발명은 베이스 기판(10)에 2개의 관통공들(16, 17)이 형성되는 과정과, On the other hand, the present invention is the process of forming two through holes 16, 17 in the base substrate 10,
상기 관통공들(16, 17)이 형성된 베이스 기판(10)에 1차 도금을 진행하는 과정과, Performing primary plating on the base substrate 10 on which the through holes 16 and 17 are formed;
상기 1차 도금된 기판에 패터닝(Patterning)을 수행하는 과정과, Performing patterning on the first plated substrate;
상기 관통공들(16, 17) 사이를 하나로 연결하는 연결관통공(18)을 형성하여 관통공들(16, 17)과 연결관통공(18)이 시료도입로(20)가 되는 과정과, Forming a through-hole 18 to connect the through- holes 16 and 17 to one, so that the through- holes 16 and 17 and the through-hole 18 become the sample introduction path 20;
상기 베이스 기판(10)의 작동전극(30)과 기준전극(40) 및 신호전달전극(50)에 2차 도금이 진행되는 과정 및 A process of performing secondary plating on the working electrode 30, the reference electrode 40, and the signal transmission electrode 50 of the base substrate 10;
상기 작동전극(30)과 기준전극(40)에 반응시약을 도포하는 과정을 특징으로 하는 바이오센서의 제조 방법도 제공한다.Also provided is a method of manufacturing a biosensor, which comprises applying a reaction reagent to the working electrode 30 and the reference electrode 40.
상기 1차 도금을 진행하는 과정은 동도금을 진행하는 과정일 수 있고, 상기 2 차 도금 과정은 작동전극(30)과 기준전극(40) 및 신호전달전극(50)에만 금도금이 형성되고 연결관통공 둘레 부분에는 금도금이 형성되지 않는다.The first plating process may be a copper plating process, and the second plating process may be performed by forming gold plating only on the working electrode 30, the reference electrode 40, and the signal transmission electrode 50. No gold plating is formed in the circumference.
피씨비 원판과 같은 대형 절연기판을 베이스 기판(10)으로 준비하는 과정을 더 포함할 수 있다.The method may further include preparing a large insulating substrate, such as a PCB, as the base substrate 10.
본 발명에 의하면 바이오센서를 제조함에 있어서, 1개의 계층만을 이용함으로써 그 구조를 단순화하고 생산성을 향상시키며 제조비용을 절감하는 효과가 발생된다.According to the present invention, in manufacturing a biosensor, by using only one layer, the structure is simplified, the productivity is improved, and the manufacturing cost is reduced.
또한 본 발명에 따르면 기존의 다계층 적층형 방식이 아닌 1개 계층에 시료도입로 및 전극부를 형성하는 방식을 제안함으로써 간단한 구조를 통해 바이오센서의 동작성을 향상시키고 바이오센서의 생산성 향상 및 불량발생률 발생을 저감시키는 효과가 있다.In addition, the present invention proposes a method of forming a sample introduction path and an electrode part in one layer instead of the conventional multi-layer stacked type, thereby improving the operability of the biosensor through the simple structure, improving the productivity of the biosensor, and generating a failure rate. There is an effect of reducing the.
도 1은 본 발명인 바이오 센서를 나타내는 사시도 및 내부 전극 구조도.1 is a perspective view and an internal electrode structure diagram showing a biosensor according to the present invention.
도 2는 본 발명인 바이오 센서의 제조 방법을 나타내는 순서도.Figure 2 is a flow chart showing a manufacturing method of a biosensor according to the present invention.
도 3a와 도 3b는 절연기판이 드릴링 되기 전과 후를 차례로 나타내는 개략도.3A and 3B are schematic diagrams sequentially showing before and after the insulating substrate is drilled.
도 4는 도 3의 드릴링 된 절연기판에 무전해 동도금이 형성된 개략도.Figure 4 is a schematic diagram of the electroless copper plating is formed on the drilled insulating substrate of FIG.
도 5는 도 4의 동도금이 형성된 절연기판에 패터닝이 수행되는 개략도.FIG. 5 is a schematic view in which patterning is performed on the copper-plated insulating substrate of FIG. 4. FIG.
도 6은 도 5의 패터닝이 수행된 상태에서 관통공들 사이를 연결하는 연결공이 형성된 개략도.FIG. 6 is a schematic view illustrating a connection hole connecting the through holes in the state in which the patterning of FIG. 5 is performed. FIG.
도 7은 도 6의 상태에서 2차 도금이 수행된 것을 나타내는 개략도.FIG. 7 is a schematic view showing that secondary plating is performed in the state of FIG. 6. FIG.
도 8은 도 7의 내부 전극부를 나타내는 개략도.8 is a schematic diagram illustrating an internal electrode part of FIG. 7.
도 9는 본 발명인 바이오 센서가 외측 하우징(100)에 인입되는 것을 나타내는 개략도.9 is a schematic diagram showing that the biosensor according to the present invention is introduced into the outer housing 100.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명인 바이오 센서를 나타내는 사시도 및 내부 전극 구조도이다.1 is a perspective view and an internal electrode structural diagram showing a biosensor according to the present invention.
도 1에 도시된 바와 같이 본 발명인 바이오 센서는 피씨비(PCB: Printed Circuit Board) 등의 절연기판으로 형성된 베이스 기판(10)과, 상기 베이스 기판(10)을 관통하도록 형성된 시료도입로(Capillary)(20)와, 상기 시료도입로(20)의 내측벽에 형성되며 서로 이격되어 대향되는 작동전극(Working electrode)(30)과 기준전극(Reference electrode)(40)을 포함하여 형성된다.As shown in FIG. 1, the biosensor according to the present invention includes a base substrate 10 formed of an insulating substrate such as a printed circuit board (PCB) and a sample introduction path (Capillary) formed to penetrate the base substrate 10 ( 20 and a working electrode 30 and a reference electrode 40 which are formed on the inner wall of the sample introduction path 20 and are spaced apart from each other.
또한, 본 발명은 도 1에서 도시되진 않았으나 작동전극(30)과 기준전극(40) 상에 도포 후 건조 등의 방식으로 고정화된 효소와 같은 반응시약과, 상기 작동전극(30)과 기준전극(40) 각각에 전기적으로 연결되도록 상기 베이스 기판(10)의 일면에 형성되는 신호전달전극(50)을 포함하여 구성된다.In addition, although the present invention is not shown in FIG. 1, a reaction reagent such as an enzyme immobilized in a method such as drying after coating on the working electrode 30 and the reference electrode 40, and the working electrode 30 and the reference electrode ( 40) is configured to include a signal transmission electrode 50 formed on one surface of the base substrate 10 to be electrically connected to each.
상기 신호전달전극(50)은 측정기(미도시)에 반응신호를 전달한다.The signal transmitting electrode 50 transmits a reaction signal to a measuring instrument (not shown).
상기와 같은 구성을 갖는 본 발명의 작동을 설명하면 다음과 같다.Referring to the operation of the present invention having the configuration as described above are as follows.
시료도입로(20)에 혈액이 유입되면, 작동전극(30) 및 기준전극(40) 상에 도포된 반응시약이 유입된 혈액과 반응하여 반응신호를 생성한다. 상기 작동전극(30) 및 기준전극(40)에 연결된 신호전달전극(50)을 통해 반응신호가 측정기에 전달되면, 측정기는 이 반응신호의 레벨에 따라 측정 결과를 산출해낼 수 있다.When blood flows into the sample introduction path 20, the reaction reagent applied on the working electrode 30 and the reference electrode 40 reacts with the introduced blood to generate a reaction signal. When the reaction signal is transmitted to the measuring device through the signal transmission electrode 50 connected to the working electrode 30 and the reference electrode 40, the measuring device may calculate a measurement result according to the level of the reaction signal.
한편, 본 발명인 바이오 센서의 제조 방법을 설명하면 다음과 같다.On the other hand, the manufacturing method of the biosensor according to the present invention will be described.
도 2는 본 발명인 바이오 센서의 제조 방법을 나타내는 순서도이다.2 is a flowchart showing a method of manufacturing a biosensor according to the present invention.
본 발명은 도 2와 같이 시작 과정인 제 1 단계(S100)를 거쳐 진행되는 베이스 기판(10) 준비 과정인 제 2 단계(S200)와, 상기 제 2 단계(S200)를 거친 후에 진행되는 2개의 관통공 형성과정인 제 3 단계(S300)와, 제 3 단계(S300)를 거친 후에 진행되는 1차 도금 과정인 제 4 단계(S400)와, 상기 제 4 단계(S400)를 거친 후에 진행되는 패터닝 과정인 제 5 단계(S500)와, 상기 제 5 단계(S500)를 거친 후에 진행되는 연결관통공 형성 과정인 제 6 단계(S600)와, 제 6 단계(S600)를 거친 후에 진행되는 2 차 도금 과정인 제 7 단계(S700)와, 상기 제 7 과정을 거친 후에 진행되는 반응시약 도포 과정인 제 8 단계(S800) 및 제 8 단계(S800)를 거친 후에 진행되는 종료 과정인 제 9 단계(S900)를 포함하여 구성된다.In the present invention, as shown in FIG. 2, a second step S200, which is a preparation process of the base substrate 10, which proceeds through a first step S100, which is a starting process, and two steps performed after the second step S200, are performed. The third step S300, which is a through hole forming process, the fourth step S400, which is a first plating process performed after the third step S300, and the patterning that is performed after the fourth step S400. The second step (S500) and the second through the sixth step (S600) and the sixth step (S600) after the sixth step (S600) and the sixth step (S600) A seventh step (S700), and a ninth step (S900), which is an end process performed after the eighth step (S800) and the eighth step (S800), which are the reaction reagent application processes performed after the seventh step, and the seventh step (S800). It is configured to include).
상기 베이스 기판(10) 준비 과정인 제 2 단계(S200)는 도 3a와 같이 절연 기판이나 피씨비 원판을 베이스 기판(10)으로 준비하는 과정이다.A second step (S200), which is a process of preparing the base substrate 10, is a process of preparing an insulating substrate or a PC substrate as the base substrate 10 as shown in FIG. 3A.
베이스 기판(10)의 상면(12)과 하면(14)은 구리층이 형성되어 있을 수 있다.The upper surface 12 and the lower surface 14 of the base substrate 10 may be formed with a copper layer.
그리고 2개의 관통공 형성과정인 제 3 단계(S300)는 도 3b와 같이 베이스 기판(10)의 상면(12)과 하면(14) 각각에 이격된 2개의 구멍이 형성되도록 수직방향으로 관통공들(16, 17)이 형성되는 과정이며, 드릴링 등의 방법이 사용된다.In the third step S300 of forming two through holes, through holes in the vertical direction are formed such that two holes spaced apart from each of the upper surface 12 and the lower surface 14 of the base substrate 10 are formed as shown in FIG. 3B. (16, 17) is a process of forming, a method such as drilling is used.
상기 1차 도금 과정인 제 4 단계(S400)는 도 4와 같이 2개의 관통공들(16, 17)이 형성된 베이스 기판(10)에 무전해 도금 등의 방법으로 절연기판의 표면이나 피씨비 기판의 구리 표면 위에 1차 도금인 동도금을 진행하는 과정이다.In the fourth step S400, which is the first plating process, as shown in FIG. 4, the base substrate 10 having the two through holes 16 and 17 is formed by electroless plating. It is the process of copper plating which is primary plating on the copper surface.
상기 동도금은 추후 진행될 2차 도금인 금도금이 유효하게 진행되기 위한 처리과정으로 베이스 기판(10)에 동도금을 진행하지 않은 상태로 금도금을 진행하면금은 베이스 기판(10)의 절연 표면이나 구리 표면, 상기 관통공이 형성된 플라스틱 부분에 도금되지 않는 성질이 있어 금도금이 형성되지 않는다.The copper plating is a process for effectively performing gold plating, which is a secondary plating to be performed later, and when gold plating is performed without copper plating on the base substrate 10, the gold is insulated or copper surface of the base substrate 10, Since the plastic part in which the through hole is formed is not plated, gold plating is not formed.
따라서, 금도금이 용이하게 형성될 수 있는 동막을 형성하기 위해서 동도금이 선행된다.Therefore, copper plating is preceded to form a copper film in which gold plating can be easily formed.
도 4는 동도금막이 베이스 기판(10)의 상면(12)과 하면(14) 및 관통공들(16, 17)에 형성된 것을 나타내기 위해서 빗금을 양방향으로 도시하였고, 동도금막이 형성되기 전인 도 3의 베이스 기판(10) 상면(12)과 하면(14)에 빗금은 일방향으로 도시하였다.FIG. 4 illustrates the hatching in both directions to show that the copper plating film is formed on the upper surface 12 and the lower surface 14 and the through holes 16 and 17 of the base substrate 10, before the copper plating film is formed. The hatching on the upper surface 12 and the lower surface 14 of the base substrate 10 is illustrated in one direction.
패터닝 과정인 제 5 단계(S500)는 도 5와 같이 제 4 단계(S400)를 통하여 1차 도금된 기판에서 노광 및 에칭(Etching) 과정을 통해 패터닝(Patterning)을 수행하는 과정이다.The fifth step S500, which is a patterning process, is a process of performing patterning through exposure and etching processes on the first plated substrate through the fourth step S400 as shown in FIG. 5.
이 과정에서 상면(12)에는 상기 관통공들(16, 17)에 형성될 작동전극부, 즉 작동전극(30) 및 기준전극(40),을 제외한 전부분의 금속 물질을 제거하고, 하부에서는 관통공들(16, 17)에 형성될 작동전극부 및 상기 작동전극부와 연결되는 신호전달전극(50)을 제외한 나머지 부분의 금속물질을 제거한다.In this process, the upper surface 12 removes the metal parts of all parts except the working electrode parts, that is, the working electrode 30 and the reference electrode 40, to be formed in the through holes 16 and 17, The metal material of the remaining portions except for the working electrode part to be formed in the through holes 16 and 17 and the signal transmission electrode 50 connected to the working electrode part is removed.
상기 작동전극(30) 하부에 연결된 신호전달전극(50) 부분과 기준전극(40) 하부에 연결된 신호전달전극(50) 부분 사이에 금속물질이 제거된다.The metal material is removed between the portion of the signal transmission electrode 50 connected to the lower portion of the working electrode 30 and the portion of the signal transmission electrode 50 connected to the lower portion of the reference electrode 40.
한편, 상기 연결관통공 형성 과정인 제 6 단계(S600)는 도 6과 같이 제 5 단계(S500)를 통하여 패터닝이 완성된 베이스 기판(10)의 관통공들(16, 17)과 나란한 방향으로 연결관통공(18)을 형성하여, 관통공들(16, 17) 사이를 하나로 연결하는 과정이다.On the other hand, the sixth step (S600) is the connection through hole forming process in the direction parallel to the through-holes (16, 17) of the base substrate 10, the patterning is completed through the fifth step (S500) as shown in FIG. Forming the through-holes 18, it is a process of connecting the through- holes 16, 17 as one.
제 6 단계(S600)를 통하여 작동전극(30)과 기준전극(40)이 동일한 관통공간 내에서 서로 이격된 상태로 대향되어 위치되며, 작동전극(30)과 기준전극(40)이 형성된 관통공들(16, 17)과 연결관통공(18)은 시료도입로(20)가 된다.Through the sixth step S600, the working electrode 30 and the reference electrode 40 are positioned to be spaced apart from each other in the same through space, and have a through hole in which the working electrode 30 and the reference electrode 40 are formed. The fields 16 and 17 and the connecting through hole 18 become the sample introduction path 20.
한편, 상기 2 차 도금 과정인 제 7 단계(S700)는 무전해 도금 등의 방법으로 2차 도금인 금도금이 진행되며, 금도금은 동도금이 형성된 부분에만 도금이 형성되기 때문에 작동전극(30)과 기준전극(40) 및 신호전달전극(50)에만 금도금이 형성되고 연결관통공 둘레 부분에는 금도금이 형성되지 않는다.On the other hand, in the seventh step (S700) of the secondary plating process, gold plating, which is secondary plating, is performed by a method such as electroless plating, and gold plating is formed only on a portion where copper plating is formed. Gold plating is formed only on the electrode 40 and the signal transmission electrode 50, and gold plating is not formed around the connection through hole.
2차 도금 과정 후에도 도 8과 같이 작동전극(30)과 기준전극(40)이 서로 이격된 상태이며, 작동전극(30)과 기준전극(40)은 각각 신호전달전극(50)에 연결된다.After the second plating process, the working electrode 30 and the reference electrode 40 are spaced apart from each other as shown in FIG. 8, and the working electrode 30 and the reference electrode 40 are connected to the signal transmission electrode 50, respectively.
작동전극(30)의 하부에 형성되어 작동전극(30)과 연결되는 신호전달전극(50)을 작동신호전달전극(51)이라하고, 기준전극(40)의 하부에 형성되어 기준전극(40)과 연결되는 신호전달전극(50)을 기준신호전달전극(52)이라 한다.The signal transmission electrode 50 formed under the working electrode 30 and connected to the working electrode 30 is called an operation signal transmission electrode 51, and is formed under the reference electrode 40 to form the reference electrode 40. The signal transfer electrode 50 connected to the reference signal is called a reference signal transfer electrode 52.
작동신호전달전극(51)과 기준신호전달전극(52)은 서로 이격된 상태로 형성된다.The operation signal transmission electrode 51 and the reference signal transmission electrode 52 are formed to be spaced apart from each other.
상기 반응시약 도포 과정인 제 8 단계(S800)는 관통공들(16, 17) 중 양측에 형성된 작동전극(30)과 기준전극(40)에 반응시약을 도포하고 건조시키는 과정이다.The eighth step (S800), which is the reaction reagent application process, is a process of applying and drying the reaction reagents to the working electrode 30 and the reference electrode 40 formed at both sides of the through holes 16 and 17.
위와 같은 과정을 종료되면 바이오 센서가 완성된다.When the above process is completed, the biosensor is completed.
그리고 복수개의 바이오 센서 장치를 제작할 경우에는 피씨비 원판과 같은 대형 절연 기판에 상기 제 1 단계(S100) 내지 제 9 단계(S900)의 과정을 병렬적으로 진행한 후에 절단과정을 거친다.In the case of manufacturing a plurality of biosensor devices, the processes of the first step (S100) to the ninth step (S900) are performed in parallel on a large insulating substrate, such as a PC, and then the cutting process is performed.
도 9는 본 발명인 바이오 센서가 외측 하우징(100)에 인입되는 것을 나타내는 개략도이다.9 is a schematic diagram showing that the biosensor according to the present invention is introduced into the outer housing 100.
필요한 경우에는 도 9와 같이 내측에 상기 바이오 센서 장치가 인입될 수 있는 공간이 형성된 외측 하우징(100)을 별도로 마련하여 제품의 외관이나 사용성 등을 향상시킬 수도 있다.If necessary, as illustrated in FIG. 9, an outer housing 100 having a space in which the biosensor device can be inserted may be separately provided to improve appearance or usability of the product.
상기 외측 하우징(100)은 플라스틱과 같은 합성수지 재질로서 사출성형 등으로 형태나 사이즈 변경을 용이하게 하는 것이 바람직하다.The outer housing 100 is a synthetic resin material such as plastic, it is preferable to easily change the shape or size by injection molding.
상기와 같이 본 발명에 의하면 바이오센서를 제조함에 있어서, 1개의 계층만을 이용함으로써 그 구조를 단순화하고 생산성을 향상시키며 제조비용을 절감하는 효과가 발생된다.According to the present invention as described above, by using only one layer of the biosensor, the effect of simplifying the structure, improving the productivity and reducing the manufacturing cost is generated.
또한 본 발명에 따르면 기존의 다계층 적층형 방식이 아닌 1개 계층에 시료도입로 및 전극부를 형성하는 방식을 제안함으로써 간단한 구조를 통해 바이오센서의 동작성을 향상시키고 바이오센서의 생산성 향상 및 불량발생률 발생을 저감시키는 효과가 있다.In addition, the present invention proposes a method of forming a sample introduction path and an electrode part in one layer instead of the conventional multi-layer stacked type, thereby improving the operability of the biosensor through the simple structure, improving the productivity of the biosensor, and generating a failure rate. There is an effect of reducing the.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (7)

  1. 베이스 기판(10)과, The base substrate 10,
    상기 베이스 기판(10)을 관통하도록 형성된 시료도입로(20)와, A sample introduction path 20 formed to penetrate the base substrate 10;
    상기 시료도입로(20)의 내측벽에 형성되며 서로 이격되는 작동전극(30) 및 기준전극(40)과, A working electrode 30 and a reference electrode 40 formed on the inner wall of the sample introduction path 20 and spaced apart from each other;
    상기 작동전극(30)과 기준전극(40) 상에 도포된 반응시약과, A reaction reagent coated on the working electrode 30 and the reference electrode 40,
    상기 작동전극(30)과 기준전극(40) 각각에 전기적으로 연결되도록 상기 베이스 기판(10)의 일면에 형성되는 신호전달전극(50)Signal transmission electrode 50 formed on one surface of the base substrate 10 to be electrically connected to each of the working electrode 30 and the reference electrode 40
    을 포함하여 구성되는 것을 특징으로 하는 바이오센서.Biosensor, characterized in that comprising a.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 신호전달전극(50)은 작동전극(30)의 하부에 형성되는 작동신호전달전극(51)과, 기준전극(40)의 하부에 형성되는 기준신호전달전극(52)으로 이루어지며, 상기 작동신호전달전극(51)과 기준신호전달전극(52)은 서로 이격되는 것을 특징으로 하는 바이오센서.The signal transmission electrode 50 is composed of an operation signal transmission electrode 51 formed under the operation electrode 30 and a reference signal transmission electrode 52 formed under the reference electrode 40. Biosensor, characterized in that the signal transmission electrode 51 and the reference signal transmission electrode 52 are spaced apart from each other.
  3. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    상기 베이스 기판(10)은 절연기판으로 형성된 것을 특징으로 하는 바이오센서.The base substrate 10 is a biosensor, characterized in that formed of an insulating substrate.
  4. 베이스 기판(10)에 2개의 관통공들(16, 17)이 형성되는 과정과, Forming two through holes 16 and 17 in the base substrate 10, and
    상기 관통공들(16, 17)이 형성된 베이스 기판(10)에 1차 도금을 진행하는 과정과, Performing primary plating on the base substrate 10 on which the through holes 16 and 17 are formed;
    상기 1차 도금된 기판에 패터닝(Patterning)을 수행하는 과정과, Performing patterning on the first plated substrate;
    상기 관통공들(16, 17) 사이를 하나로 연결하는 연결관통공(18)을 형성하여 관통공들(16, 17)과 연결관통공(18)이 시료도입로(20)가 되는 과정과, Forming a through-hole 18 to connect the through-holes 16 and 17 to one, so that the through-holes 16 and 17 and the through-hole 18 become the sample introduction path 20;
    상기 베이스 기판(10)의 작동전극(30)과 기준전극(40) 및 신호전달전극(50)에 2차 도금이 진행되는 과정 및 A process of performing secondary plating on the working electrode 30, the reference electrode 40, and the signal transmission electrode 50 of the base substrate 10;
    상기 작동전극(30)과 기준전극(40)에 반응시약을 도포하는 과정을 특징으로 하는 바이오센서의 제조 방법.The method of manufacturing a biosensor, characterized in that the reaction reagent is applied to the working electrode 30 and the reference electrode 40.
  5. 청구항 4에 있어서, The method according to claim 4,
    상기 1차 도금을 진행하는 과정은 동도금을 진행하는 과정인 것을 특징으로 하는 바이오센서의 제조 방법.The process of performing the primary plating is a method of manufacturing a biosensor, characterized in that the process of copper plating.
  6. 청구항 5에 있어서, The method according to claim 5,
    상기 2 차 도금 과정은 작동전극(30)과 기준전극(40) 및 신호전달전극(50)에만 금도금이 형성되고 연결관통공 둘레 부분에는 금도금이 형성되지 않는 것을 특징으로 하는 바이오센서의 제조 방법.In the secondary plating process, gold plating is formed only on the working electrode (30), the reference electrode (40), and the signal transmission electrode (50), and the gold plating is not formed around the connection through hole.
  7. 청구항 4 내지 6 중 어느 하나의 항에 있어서, The method according to any one of claims 4 to 6,
    대형 절연 기판을 베이스 기판(10)으로 준비하는 과정을 더 포함하는 것을 특징으로 하는 바이오센서의 제조 방법.The method of manufacturing a biosensor, further comprising the step of preparing a large insulating substrate as a base substrate (10).
PCT/KR2012/008785 2011-10-25 2012-10-24 Biosensor and method for manufacturing same WO2013062322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0109078 2011-10-25
KR1020110109078A KR101298772B1 (en) 2011-10-25 2011-10-25 Biosensor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2013062322A1 true WO2013062322A1 (en) 2013-05-02

Family

ID=48168074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008785 WO2013062322A1 (en) 2011-10-25 2012-10-24 Biosensor and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101298772B1 (en)
WO (1) WO2013062322A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220116633A (en) * 2021-02-15 2022-08-23 주식회사 더도니 Biosensor strip, manufacturing method thereof, and blood collection measuring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352094A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Electrochemical analysis element
KR100700713B1 (en) * 2006-02-27 2007-03-28 한국표준과학연구원 A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis
US20080063566A1 (en) * 2004-09-03 2008-03-13 Mitsubishi Chemical Corporation Sensor Unit and Reaction Field Cell Unit and Analyzer
US20090071824A1 (en) * 2004-10-14 2009-03-19 Hibbs Andrew D Integrated Sensing Array for Producing a BioFingerprint of an Analyte
JP2010119864A (en) * 2010-02-03 2010-06-03 National Institute Of Advanced Industrial Science & Technology Method of manufacturing biosensor integrated with puncture device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352094A (en) * 1998-06-11 1999-12-24 Matsushita Electric Ind Co Ltd Electrochemical analysis element
US20080063566A1 (en) * 2004-09-03 2008-03-13 Mitsubishi Chemical Corporation Sensor Unit and Reaction Field Cell Unit and Analyzer
US20090071824A1 (en) * 2004-10-14 2009-03-19 Hibbs Andrew D Integrated Sensing Array for Producing a BioFingerprint of an Analyte
KR100700713B1 (en) * 2006-02-27 2007-03-28 한국표준과학연구원 A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis
JP2010119864A (en) * 2010-02-03 2010-06-03 National Institute Of Advanced Industrial Science & Technology Method of manufacturing biosensor integrated with puncture device

Also Published As

Publication number Publication date
KR20130044817A (en) 2013-05-03
KR101298772B1 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2012047055A2 (en) Biosensor with three-dimensional structure and manufacturing method thereof
WO2013065994A1 (en) Multi-reaction biosensor
WO2016167626A1 (en) Biometric information measuring sensor, biometric information measuring system, and method of measuring biometric information using the sensor
US9290756B2 (en) Apparatus and methods for high throughput network electrophysiology and cellular analysis
WO2010041875A2 (en) Ultra high speed and high sensitivity base sequence analysis system and analysis method for same
WO2010008137A2 (en) Device for measuring proteins using biosensor
WO2012015184A2 (en) Pcb tact switch
WO2011112062A2 (en) Sensor strip device for measuring protein in the blood
WO2009120049A2 (en) Multichannel strip for a biosensor
WO2013062322A1 (en) Biosensor and method for manufacturing same
WO2013042877A2 (en) Biosensor and measurement apparatus for same
WO2014046318A1 (en) Sample recognition method and biosensor using same
US20040149578A1 (en) Method for manufacturing electrochemical sensor and structure thereof
US20070023283A1 (en) Method for manufacturing electrochemical sensor and structure thereof
WO2011002152A2 (en) Sensor used together with a detector to measure biomaterial, and apparatus using same
WO2014200206A1 (en) Sensor strip for measuring blood glucose level, manufacturing method therefor, and monitoring device using same
KR102527686B1 (en) Device for mornitering ion concentration and method for preparing thereof
WO2022173267A1 (en) Strip for biosensor, method for manufacturing same, and blood collecting and measuring device using same
WO2010005172A1 (en) Bio-sensor
WO2010140772A2 (en) Apparatus for measuring biomaterial and method for manufacturing same
WO2011027979A2 (en) Biosensor capable of automatically recognizing codes and code recognition method using the same
WO2018052176A1 (en) Multi-unit for performing biochemical test and immune response test, and test method using same
KR101265568B1 (en) Bio sensing device
WO2013147351A1 (en) Biosensor
WO2013051890A2 (en) Method for manufacturing multiple-diagnosis membrane sensor by using screen printing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844224

Country of ref document: EP

Kind code of ref document: A1