WO2014200206A1 - Sensor strip for measuring blood glucose level, manufacturing method therefor, and monitoring device using same - Google Patents

Sensor strip for measuring blood glucose level, manufacturing method therefor, and monitoring device using same Download PDF

Info

Publication number
WO2014200206A1
WO2014200206A1 PCT/KR2014/004686 KR2014004686W WO2014200206A1 WO 2014200206 A1 WO2014200206 A1 WO 2014200206A1 KR 2014004686 W KR2014004686 W KR 2014004686W WO 2014200206 A1 WO2014200206 A1 WO 2014200206A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
sensor strip
electrode
structure layer
blood glucose
Prior art date
Application number
PCT/KR2014/004686
Other languages
French (fr)
Korean (ko)
Inventor
정상국
이정현
양지선
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Publication of WO2014200206A1 publication Critical patent/WO2014200206A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/14Devices for taking samples of blood ; Measuring characteristics of blood in vivo, e.g. gas concentration within the blood, pH-value of blood

Definitions

  • the present invention relates to a sensor strip for blood glucose measurement, and more particularly, to a sensor strip and a manufacturing method thereof and a monitoring device using the same that can increase the accuracy of blood glucose measurement.
  • Diabetes is a disease in which the human body does not produce enough insulin or respond properly to insulin.
  • Insulin is a hormone produced by the pancreas that allows cells to convert glucose into energy.
  • sugar can accumulate in the blood and adversely affect tissues such as the eye, kidneys, heart, and circulatory system.
  • a typical method of the self-glucometer is a method in which a small amount of blood is collected and reacted with glucose oxidase to measure blood glucose using electrochemical analysis.
  • the blood glucose meter may be composed of a sensor strip and a meter.
  • the sensor strip includes a chamber filled with blood and an electrode coated with an enzyme on the bottom surface, and when the blood is filled in the chamber of the sensor strip and connected to a meter, the sensor strip is configured to generate a current generated by the interaction between the enzyme and blood glucose.
  • the instrument can measure and calculate blood glucose levels.
  • the accuracy of the domestic self glucose meter is about 5% and the accuracy varies by 30 ⁇ 50%. In particular, when the blood sugar is low or the sample amount is large, the deviation is greater.
  • the size of the chamber filled with blood is not constant for each sensor strip to be manufactured, there is a problem that the sample amount varies for each sensor strip.
  • a material such as paper is used for mass production, which can reduce the uniformity of the sample amount in the sensor strip due to the characteristics such as relatively low smoothness and absorbency.
  • the sensor strip of the self-glucometer must be filled with blood in the chamber of the sensor strip every time it is used. Therefore, if the blood glucose measurement can be performed with a smaller amount of blood by making the chamber of the sensor strip smaller but maintaining the precision, the invasion size can be made smaller when the user pokes the skin to collect blood, and thus suffers. You will be able to mitigate.
  • One aspect of the present invention is to provide a sensor strip, a method for manufacturing the same, and a monitoring device capable of increasing the reliability of blood glucose measurement by manufacturing a volume of a chamber filled with blood with high precision.
  • one aspect of the present invention is to provide a sensor strip using a smaller amount of blood, a method of manufacturing the same and a monitoring device.
  • forming an electrode on the first substrate to form a first structural layer Forming a chambered insert in the second substrate; Applying a molding material on the second substrate; Curing the molding material; Removing the second substrate and the chamber-shaped insert from the cured molding material to form a second structural layer having a chamber formed on one side; Applying a reactant at a location corresponding to the chamber; And coupling the first structure layer and the second structure layer such that the reactant is positioned in the chamber.
  • Forming the chambered insert includes: forming a photoresist on the second substrate; Disposing a mask on which the shape of the chamber-shaped insert is patterned on the photoresist; Irradiating light onto the photoresist; Removing the mask; And developing the photoresist.
  • Forming the first structural layer includes disposing a mask on which the shape of the electrode is patterned on the first substrate; Depositing an electrode material on the first substrate; And removing the mask.
  • the forming of the first structure layer may include depositing an electrode material on one surface of the first substrate; Disposing a mask on which the shape of the electrode is patterned on the electrode material; Etching the electrode material exposed through the mask; And removing the mask.
  • At least one of the step of joining the layers may be performed by a micro-electro-mechanical systems (MEMS) process.
  • MEMS micro-electro-mechanical systems
  • the method for manufacturing a sensor strip for measuring blood glucose may further include forming at least one electrode on the chamber-type insert before applying the molding material.
  • the electrode formed on the chamber-type insert may be electrically connected to the electrode formed on the first substrate by the blood filled in the chamber.
  • the molding material may include, for example, polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the first structure layer in which the electrode is formed on one surface A second structure layer having a chamber formed on the surface thereof and coupled to the first structure layer such that the surface on which the chamber is formed faces one surface of the first structure layer; And a reactant applied to the chamber corresponding to the chamber.
  • the second structural layer may be integrally formed by molding the molding material.
  • the molding material may include polydimethylsiloxane (PDMS).
  • At least one of the first structure layer and the second structure layer may be manufactured by a micro-electro-mechanical systems (MEMS) process.
  • MEMS micro-electro-mechanical systems
  • a blood sugar monitoring device comprising a sensor strip and a meter
  • the sensor strip is configured to receive the blood on one side and the electrode extending from one side to the other side, the meter is in contact with the electrode And a terminal and configured to measure at least one of current and voltage in a circuit obtained by contact between the electrode and the terminal.
  • the sensor strip may include a first structure layer having an electrode formed on one surface thereof; A second structure layer having a chamber formed on the surface thereof and coupled to the first structure layer such that the surface on which the chamber is formed faces one surface of the first structure layer; And a reactant applied at a location corresponding to the chamber.
  • the volume of the chamber filled with blood may be manufactured with high precision to increase the reliability of blood glucose measurement.
  • the MEMS process can be used to reduce the volume of the chamber, thereby reducing the amount of blood used for blood glucose measurements. This allows the user to reduce the size of the invasion when he pokes the skin to collect blood, thereby reducing the pain.
  • FIG. 1 is an exploded perspective view showing a blood glucose measurement sensor strip according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a first structural layer of a blood glucose measurement sensor strip shown in FIG. 1 of the present invention.
  • FIG. 3 is a conceptual diagram illustrating a process of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view showing a blood glucose measurement sensor strip according to another embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • embodiments of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is an exploded perspective view showing a blood glucose measurement sensor strip according to an embodiment of the present invention
  • Figure 2 is a plan view showing a first structural layer of the blood sugar measurement sensor strip shown in Figure 1 of the present invention.
  • a blood glucose measurement sensor strip 100 includes a first structure layer 110, a second structure layer 120, and a reactant 130.
  • the first structure layer 110 may include an electrode 116 formed on one surface of the first substrate 112, and the second structure layer 120 may include a chamber formed on a surface facing the first structure layer 110. 123).
  • the reactant 130 is added at a position corresponding to the chamber 123, but may be applied to the first structural layer 110, but may be added in the chamber 123 of the second structural layer 120.
  • the reactant 130 may include an enzyme and a delivery material.
  • an enzyme such as glucose oxidase reacts with sugar components in the blood to separate electrons from sugar molecules.
  • a transfer material such as potassium ferricyanide transfers the electrons thus separated to the electrode.
  • the blood glucose measurement sensor strip 100 may be part of a blood sugar monitoring device (not shown), and the blood sugar monitoring device may include a sensor strip 100 and a meter (not shown).
  • the meter may have a terminal in contact with the electrode 116, and when blood is filled in the chamber portion of the sensor strip 100, at least one of current and voltage in the circuit obtained by the electrode 116, the terminal and the blood Blood glucose levels can be measured by measuring.
  • the first structural layer 110 includes an electrode 116 formed on the first substrate 112, which leads to a connection 117 configured to contact the terminal of the instrument. As the connecting portion 117 contacts the terminal of the meter and the electrode 116 is electrically connected by the blood filled in the chamber 123, a circuit is formed to sense the current generated by the electrons separated from the sugar in the blood. It becomes possible.
  • the formation of the electrode 116 in the first structure layer 110 includes not only a case in which one electrode is formed but also a case in which two or more electrodes are formed. That is, the electrode 116 formed on the first structure layer 110 may include a working electrode and a counter electrode. If necessary, a reference electrode or the like may be formed.
  • two electrodes 116 may be formed on both sides of the first substrate 112, so that a certain amount of blood must be filled in the chamber 123 so that the blood is electrically connected to both electrodes. Can be. Such a configuration may provide a function of checking whether the chamber 123 is filled with the required amount of blood.
  • the reactant 130 may be applied to the first structural layer 110, and may be applied at a position corresponding to the chamber 123 of the second structural layer 120. As described above, the reactant 130 may be directly applied to the chamber 123 of the second structure layer 120.
  • the chamber 123 is formed on the surface of the second structural layer 120 itself instead of being formed by stacking several layers.
  • the second structural layer 120 may be formed by molding using an insert corresponding to the shape of the chamber 123.
  • the insert means an object that is formed in a desired shape for casting of a molding material and is subsequently removed so that the shape of the inserter remains in a negative shape in the molding material.
  • the shape and volume of the chamber 123 is formed with higher precision than in the prior art in which the chamber 123 is formed by stacking several layers. To do it.
  • the formation of the chambered insert 121 ie chamber 123
  • the formation of the chambered insert 121 can be performed with very high precision.
  • the volume of the chamber 123 approaches the design dimension with high precision, the accuracy of blood glucose measurement is also very high.
  • using the MEMS process to form the insert in the order of hundreds to several tens of micrometers it is possible to further reduce the volume of the chamber 123, which is an advantage that the blood glucose measurement can be performed with less blood To provide.
  • FIG. 3 is a conceptual diagram illustrating a process of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention.
  • 3A to 3D show a process of manufacturing the second structural layer 120
  • FIGS. 3E to 3G show a process of manufacturing the first structural layer 110.
  • 3 (h) shows a state in which the first structural layer 110 and the second structural layer 120 are combined.
  • a photoresist 124 may be formed on one surface of the second substrate 122. Subsequently, as shown in FIG. 3B, the mask 128 having the pattern of the chamber-shaped insert 121 is patterned is disposed on the photoresist 124, the photoresist 124 is irradiated with light, and then the photoresist ( 124 can be developed. As described above, the process of laminating and developing the photoresist 124 may be performed using a MEMS process.
  • the portion of the photoresist 124 exposed to light is cured, and the remaining portions other than the portion are removed by the developer, leaving only the chamber-type insert 121.
  • the molding material 125 may be coated on the second substrate 122 on which the chamber-type insert 121 is formed.
  • a material capable of molding in a molten state and protecting and insulating the chamber 123 and the electrode 116 after curing may be used.
  • PDMS polydimethylsiloxane
  • the molding material 125 may be applied in a molten or semi-melt state to be in close contact with the outer edge of the chamber-type insert 121.
  • a chamber 123 is formed in the cured molding material 125 to form the second structural layer 120.
  • a plurality of chamber-like inserts 121 are formed on one substrate having a relatively large size, and the second cured molding material 125 is cut to plural second structural layers 120. It can also manufacture.
  • 3E to 3G illustrate a process of manufacturing the first structural layer 110.
  • the conductive material 115 may be deposited on one surface of the first substrate 112.
  • various deposition methods such as sputtering and PVD may be used in this process.
  • the conductive material 115 may use gold (Au) having high conductivity, but may also use other metals or other conductive materials.
  • the conductive material exposed through the mask 118 can be etched. That is, the mask 118 is formed so that portions other than the electrode 116 are exposed, and portions to be etched may be portions other than the electrode 116. As a result, the conductive material 115 remaining on the first substrate 112 after the etching process substantially forms the electrode 116.
  • various methods may be used to form the electrode 116 on the first substrate 112.
  • the first substrate is disposed. Depositing the conductive material 115 at 112 may allow the conductive material 115 remaining after removing the mask 118 to form the electrode 116.
  • the process of manufacturing the first structure layer 110 by forming the electrode 116 on the first substrate 112 may be performed using a MEMS process.
  • the reactant 130 may be applied to a portion corresponding to the chamber 123.
  • the reactant 130 may include an enzyme such as glucose oxidase and a transfer material such as potassium ferricyanide.
  • 3 illustrates an example in which the reactant 130 is applied to the first structural layer 110, but as described above, the reactant 130 is disposed in the chamber 123 of the second structural layer 120. An example is possible.
  • FIG 3 (h) shows a state in which the blood glucose measurement sensor strip 100 is completed by combining the first structure layer 110 and the second structure layer 120.
  • the first structure layer 110 and the second structure layer 120 may be coupled and aligned such that the reactant 130 is positioned in the chamber 123.
  • the chamber 123 is formed on the surface of the second structure layer 120 itself using the MEMS process, the size of the chamber 123 in each of the sensor strips 100 can be uniformed with a very high precision. This, in turn, gives the result of improving the precision of blood glucose measurements.
  • [Table 1] below shows the conventional blood glucose measurement performance of the blood glucose measurement sensor strip (marked as “MEMS” in [Table 1]) manufactured using the MEMS process according to an embodiment of the present invention ([Table Table 1 shows the value compared with the performance of "A product”.
  • the blood glucose measurement sensor strip according to the embodiment of the present invention used in [Table 1] was manufactured using a MEMS process, and gold (Au) was deposited to a thickness of 1000 ⁇ s by sputtering to form an electrode 116. Subsequently, a SU-8 material was deposited on a glass substrate to a thickness of 100 ⁇ m to form a chamber-type insert 121, and a PDMS material was molded thereon to prepare a second structural layer 120 having a chamber 123.
  • I pa is an anodic peak current
  • I pc is a cathodic peak current
  • E pa is an anodic peak potential
  • E pc is a cathodic peak potential.
  • Table 1 compares the cyclic voltage current test results for each of the blood glucose measurement sensor strips and the existing 30 products according to an embodiment of the present invention.
  • the I pa and I pc values of the MEMS sensor strip according to the embodiment of the present invention are improved by 14.7% and 29.3%, respectively, based on the dimensionless standard deviation value, and the E pa and E pc values are also improved. 51.9% and 56.2% improved results, respectively. This is a result obtained by maximizing the uniformity of the volume of the microchambers in the sensor strip through the production of the sensor strip standardized by ultra-precision microprocessing technology, and can greatly improve the reliability of blood glucose measurement.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention.
  • the method for manufacturing a blood glucose measurement sensor strip may include forming a first structure layer (S410). This process may include forming an electrode 115 on the first substrate 112 (S415).
  • Forming the first structure layer (S410) may be performed using a MEMS process.
  • forming the first structural layer (S410) may include disposing a mask 118 on the first substrate 112 having a pattern corresponding to the electrode 116 on the first substrate 112. Depositing the conductive material 115, and removing the mask 118.
  • the mask 118 may be patterned to have an open shape.
  • the method may include etching the exposed portion of the conductive material 115 through the mask 118, and removing the mask 118.
  • portions other than the shape of the electrode 116 may be patterned in the mask 118 in an open form.
  • the method for manufacturing a blood glucose measurement sensor strip may also include forming a second structure layer (S420).
  • the chamber-type insert 121 is formed on the second substrate 122 (S422), and the molding material 125 is coated on the second substrate 122 on which the chamber-type insert 121 is formed (S424).
  • the step S426 of curing the molding material 125 and the step S428 of removing the second substrate 122 and the molding material 125 may be included.
  • Forming the second structure layer (S420) may be performed using a MEMS process.
  • the photoresist 124 is formed on the second substrate 122, and the mask 128 is formed on the photoresist 124. And placing the photoresist 124 after irradiating light.
  • the mask transmits light other than the shape of the chamber-type insert 121, and when a negative type photoresist is used, the mask transmits the light through the shape of the chamber-type insert. will be.
  • the molding material 125 such as polydimethylsiloxane (PDMS) is applied onto the chamber-type insert 121, the molding material 125 may be molded along the chamber-type insert 121. After the molding material 125 is cured, the second substrate 122 and the molding material 125 are removed to complete the second structure layer 120.
  • PDMS polydimethylsiloxane
  • the method for manufacturing a blood glucose measurement sensor strip may also include applying the reactant 130 to a position corresponding to the chamber (S430). This process may be performed by applying the reactant 130 to a position corresponding to the chamber 123 in the first structure layer 110 after the step (S410) of forming the first structure layer 110 is completed, After forming the second structure layer 120 (S420), the reaction material 130 may be applied in the chamber 123.
  • the step of combining them with each other may be included.
  • the first structural layer 110 and the second structural layer 120 may have a structure for a plurality of sensor strips formed in one member, and the first structural layer 110 and the second structural layer After step 120 of combining 120, they may be cut into individual sensor strips.
  • a structure for a plurality of sensor strips is formed in one member, and the first structural layer 110 and the second structural layer 120 are formed. It is also possible to cut each of the first structural layer 110 and the second structural layer 120 individually after cutting them into individual components before joining the C).
  • the above-described method for manufacturing a blood glucose measurement sensor strip uses a MEMS process and forms a chamber 123 on the surface of the second structural layer 120 itself, thereby significantly reducing an error in the dimensions of the chamber 123 in manufacturing. have. Precisely manufacturing the chamber 123 to the designed dimension may greatly improve the accuracy of blood glucose measurement when using the sensor strip 100, as described above with reference to Table 1.
  • FIG. 5 is an exploded perspective view showing a blood glucose measurement sensor strip according to another embodiment of the present invention.
  • the blood glucose measurement sensor strip 100 includes a first structure layer 110, a second structure layer 120, and a reactant 130.
  • the second structural layer 120 may also include the electrode 126.
  • the size of the sensor strip 100 itself can be considerably miniaturized.
  • forming all the electrodes on the first structural layer 110 Space may be insufficient, so some of the electrodes are formed in the second structure layer 120.
  • the working electrode mainly used for blood glucose measurement may be formed in the first structure layer 110, and at least one of the counter electrode and the reference electrode may be formed in the second structure layer 120.
  • the molding material 125 may be applied in a molten or semi-melt state, and the electrode 126 may be located in the molding material 125, but a part of the chamber may be applied. It may be exposed to one surface of the (123). Accordingly, when the molding material 125 is cured, the blood filled in the chamber 123 electrically connects the electrode 116 of the first structural layer 110 and the electrode 126 of the second structural layer 120. The structure that forms the circuit will be completed.
  • the connecting portion 127 may also be formed on the electrode 126 of the second structural layer 120, and a measuring instrument (not shown) on which the sensor strip 100 is mounted may be formed on the electrode 116 of the first structural layer 110. It may be configured to contact both the connecting portion 117 and the connecting portion 127 of the electrode 126 of the second structural layer 120. For easier contact, the molding material 125 may not be applied to a portion of the connection portion 127 of the second structure layer 120.
  • the volume of the chamber 123 can be manufactured with high precision using the MEMS process, thereby greatly increasing the reliability of blood glucose measurement.
  • the MEMS process can be used to reduce the volume of the chamber 123 and to reduce the size of the entire sensor strip 100, thus reducing the amount of blood used for blood glucose measurement. This can reduce the size of the invasion when the user pokes the skin to collect blood, and can prevent the case where the amount of blood obtained after one poke is so small that it must be stabbed again.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Disclosed are a sensor strip for measuring a blood glucose level, a manufacturing method therefor, and a monitoring device using the same. The method for manufacturing a sensor strip, according to one aspect of the present invention, comprises the steps of: forming a first structure layer by forming an electrode on a first substrate; forming a chamber-shaped insert on a second substrate; applying a molding material on the second substrate; curing the molding material; removing the second substrate and the chamber-shaped insert from the cured molding material so as to form a second structure layer having a chamber formed at one side thereof; applying a reactive material to a position corresponding to the chamber; and coupling the first structure layer and the second structure layer such that the reactive material is positioned in the chamber, thereby forming the volume of the chamber filled with blood at high precision so as to increase the reliability of measurement of the blood glucose level.

Description

혈당측정용 센서 스트립과 그 제조방법 및 이를 이용하는 모니터링 장치 Blood glucose measurement sensor strip, manufacturing method and monitoring device using same
본 발명은 혈당측정용 센서 스트립에 관한 것으로서, 보다 상세하게는 혈당측정의 정밀도를 증가시킬 수 있는 센서 스트립과 그 제조방법 및 이를 이용하는 모니터링 장치에 관한 것이다.The present invention relates to a sensor strip for blood glucose measurement, and more particularly, to a sensor strip and a manufacturing method thereof and a monitoring device using the same that can increase the accuracy of blood glucose measurement.
당뇨병은 인체가 인슐린을 충분히 생산하지 못하거나 인슐린에 대해 올바로 반응하지 못하게 되는 질환이다. 인슐린은 췌장에서 생산하는 호르몬으로서 세포들이 당(glucose)을 에너지로 변환할 수 있게 하는데, 당뇨병 환자의 경우 당이 혈액에 축적되어 안구, 신장, 심장, 순환계 등의 조직에 악영향을 미칠 수 있다.Diabetes is a disease in which the human body does not produce enough insulin or respond properly to insulin. Insulin is a hormone produced by the pancreas that allows cells to convert glucose into energy. In diabetics, sugar can accumulate in the blood and adversely affect tissues such as the eye, kidneys, heart, and circulatory system.
당뇨병에 효과적으로 대처하기 위해 당뇨병 환자는 수시로 자신의 혈당 농도를 측정하여 어느 정도의 인슐린을 복용해야 할지 확인할 필요가 있다. 이를 위해 현재 다양한 기업에서 다양한 방법을 이용한 자가혈당측정기가 생산되고 있다. To deal effectively with diabetes, diabetics often need to measure their blood sugar levels to determine how much insulin they should take. To this end, various blood glucose meters using various methods have been produced by various companies.
자가혈당측정기의 대표적인 방식은 소량의 혈액을 채취하여 포도당 산화 효소와 반응시킨 후 전기화학적 분석을 이용하여 혈당을 측정하는 방식이다. 이 경우, 혈당측정기는 센서 스트립과 계측기로 구성될 수 있다.A typical method of the self-glucometer is a method in which a small amount of blood is collected and reacted with glucose oxidase to measure blood glucose using electrochemical analysis. In this case, the blood glucose meter may be composed of a sensor strip and a meter.
센서 스트립은 혈액이 충진되는 챔버와 바닥면에 효소가 도포된 전극을 포함하는데, 센서 스트립의 챔버에 혈액을 충진시킨 후 이를 계측기에 연결시키면, 상기 효소와 혈당의 상호작용으로 인해 발생되는 전류를 계측기가 측정하여 혈당 농도를 계산할 수 있다.The sensor strip includes a chamber filled with blood and an electrode coated with an enzyme on the bottom surface, and when the blood is filled in the chamber of the sensor strip and connected to a meter, the sensor strip is configured to generate a current generated by the interaction between the enzyme and blood glucose. The instrument can measure and calculate blood glucose levels.
삼성서울병원의 조사 결과에 따르면 국내 시판중인 자가혈당측정기의 정밀도는 5% 내외이고, 정확도는 30~50%의 편차를 보인다. 특히, 혈당이 낮거나 검체량이 적을 경우 편차가 더욱 크게 나타난다.According to a survey by Samsung Medical Center, the accuracy of the domestic self glucose meter is about 5% and the accuracy varies by 30 ~ 50%. In particular, when the blood sugar is low or the sample amount is large, the deviation is greater.
그러나 현재 전기화학 분석법을 위한 센서 스트립의 경우, 제조되는 센서 스트립마다 혈액이 충진되는 챔버의 크기가 일정하지 않아 검체량이 센서 스트립마다 달라지는 문제점이 있다. 또한, 대량생산을 위해 종이 등의 재료가 사용되는데, 이러한 재료는 상대적으로 낮은 평활도, 흡수성 등의 특성으로 의해 센서 스트립에서의 검체량의 균일도를 저하시킬 수 있다.However, in the case of the current sensor strip for electrochemical analysis, the size of the chamber filled with blood is not constant for each sensor strip to be manufactured, there is a problem that the sample amount varies for each sensor strip. In addition, a material such as paper is used for mass production, which can reduce the uniformity of the sample amount in the sensor strip due to the characteristics such as relatively low smoothness and absorbency.
한편, 자가혈당측정기의 센서 스트립은 사용할 때마다 센서 스트립의 챔버에 혈액을 충진시켜야 한다. 따라서 센서 스트립의 챔버를 작게 형성하되 정밀도를 유지시킴으로써 보다 적은 양의 혈액으로 혈당 측정을 수행할 수 있다면, 사용자가 혈액을 채취하기 위해 피부를 찌를 때 그 침습 크기를 작게 할 수 있고, 이에 따른 고통을 경감시킬 수 있을 것이다.On the other hand, the sensor strip of the self-glucometer must be filled with blood in the chamber of the sensor strip every time it is used. Therefore, if the blood glucose measurement can be performed with a smaller amount of blood by making the chamber of the sensor strip smaller but maintaining the precision, the invasion size can be made smaller when the user pokes the skin to collect blood, and thus suffers. You will be able to mitigate.
본 발명의 일측면은 혈액이 충진되는 챔버의 체적을 높은 정밀도로 제작하여 혈당측정의 신뢰도를 증가시킬 수 있는 센서 스트립과 그 제조방법 및 모니터링 장치를 제공하려는 것이다.One aspect of the present invention is to provide a sensor strip, a method for manufacturing the same, and a monitoring device capable of increasing the reliability of blood glucose measurement by manufacturing a volume of a chamber filled with blood with high precision.
또한, 본 발명의 일측면은 보다 적은 양의 혈액을 사용하는 센서 스트립과 그 제조방법 및 모니터링 장치를 제공하려는 것이다.In addition, one aspect of the present invention is to provide a sensor strip using a smaller amount of blood, a method of manufacturing the same and a monitoring device.
본 발명의 일측면에 따르면, 제1 기판에 전극을 형성하여 제1 구조층을 형성하는 단계; 제2 기판에 챔버형 인서트를 형성하는 단계; 제2 기판 위에 몰딩재료를 도포하는 단계; 몰딩재료를 경화시키는 단계; 경화된 몰딩재료로부터 제2 기판 및 챔버형 인서트를 제거하여 일측에 챔버가 형성되어 있는 제2 구조층을 형성하는 단계; 챔버에 대응하는 위치에 반응물질을 도포하는 단계; 및 챔버 내에 반응물질이 위치하도록 제1 구조층과 제2 구조층을 결합시키는 단계를 포함하는 혈당측정용 센서 스트립 제조방법이 제공된다.According to one aspect of the invention, forming an electrode on the first substrate to form a first structural layer; Forming a chambered insert in the second substrate; Applying a molding material on the second substrate; Curing the molding material; Removing the second substrate and the chamber-shaped insert from the cured molding material to form a second structural layer having a chamber formed on one side; Applying a reactant at a location corresponding to the chamber; And coupling the first structure layer and the second structure layer such that the reactant is positioned in the chamber.
챔버형 인서트를 형성하는 단계는, 제2 기판에 포토레지스트를 형성하는 단계; 챔버형 인서트의 형상이 패터닝되어 있는 마스크를 포토레지스트 상에 배치하는 단계; 포토레지스트에 광을 조사하는 단계; 마스크를 제거하는 단계; 및 포토레지스트를 현상하는 단계를 포함할 수 있다.Forming the chambered insert includes: forming a photoresist on the second substrate; Disposing a mask on which the shape of the chamber-shaped insert is patterned on the photoresist; Irradiating light onto the photoresist; Removing the mask; And developing the photoresist.
제1 구조층을 형성하는 단계는, 전극의 형상이 패터닝되어 있는 마스크를 제1 기판 상에 배치하는 단계; 제1 기판에 전극재료를 증착시키는 단계; 및 마스크를 제거하는 단계를 포함할 수 있다.Forming the first structural layer includes disposing a mask on which the shape of the electrode is patterned on the first substrate; Depositing an electrode material on the first substrate; And removing the mask.
또한, 제1 구조층을 형성하는 단계는, 제1 기판의 일면에 전극재료를 증착시키는 단계; 전극의 형상이 패터닝되어 있는 마스크를 전극재료 상에 배치하는 단계; 마스크를 통해 노출된 상기 전극재료를 식각하는 단계; 및 마스크를 제거하는 단계를 포함할 수도 있다.The forming of the first structure layer may include depositing an electrode material on one surface of the first substrate; Disposing a mask on which the shape of the electrode is patterned on the electrode material; Etching the electrode material exposed through the mask; And removing the mask.
상기 제1 구조층을 형성하는 단계, 챔버형 인서트를 형성하는 단계, 몰딩재료를 도포하는 단계, 제2 구조층을 형성하는 단계, 반응물질을 도포하는 단계, 및 제1 구조층과 제2 구조층을 결합시키는 단계 중 적어도 하나는 MEMS(micro-electro-mechanical systems) 공정에 의해 수행될 수 있다.Forming the first structural layer, forming a chamber-shaped insert, applying a molding material, forming a second structural layer, applying a reactant, and first and second structural layers At least one of the step of joining the layers may be performed by a micro-electro-mechanical systems (MEMS) process.
본 발명의 일실시예에서, 혈당 측정을 위한 센서 스트립 제조방법은, 몰딩재료를 도포하는 단계 이전에, 챔버형 인서트 상에 적어도 하나의 전극을 형성하는 단계를 더 포함할 수 있다. 이 경우, 챔버형 인서트 상에 형성되는 전극은 챔버에 충진되는 혈액에 의해 제1 기판에 형성된 전극과 전기적으로 연결될 수 있다.In one embodiment of the present invention, the method for manufacturing a sensor strip for measuring blood glucose may further include forming at least one electrode on the chamber-type insert before applying the molding material. In this case, the electrode formed on the chamber-type insert may be electrically connected to the electrode formed on the first substrate by the blood filled in the chamber.
몰딩재료는 예를 들어 PDMS(polydimethylsiloxane)을 포함할 수 있다.The molding material may include, for example, polydimethylsiloxane (PDMS).
본 발명의 다른 측면에 따르면, 일면에 전극이 형성되는 제1 구조층; 표면에 챔버가 형성되어 있으며 챔버가 형성된 표면이 제1 구조층의 일면과 대향하도록 제1 구조층에 결합되는 제2 구조층; 및 챔버에 대응하는 위치에 도포된 반응물질을 포함하는 혈당측정용 센서 스트립이 제공된다.According to another aspect of the invention, the first structure layer in which the electrode is formed on one surface; A second structure layer having a chamber formed on the surface thereof and coupled to the first structure layer such that the surface on which the chamber is formed faces one surface of the first structure layer; And a reactant applied to the chamber corresponding to the chamber.
제2 구조층은 몰딩재료의 성형에 의해 일체형으로 형성될 수 있다. 여기서, 몰딩재료는 PDMS(polydimethylsiloxane)을 포함할 수 있다.The second structural layer may be integrally formed by molding the molding material. Here, the molding material may include polydimethylsiloxane (PDMS).
제1 구조층 및 제2 구조층 중 적어도 하나는 MEMS(micro-electro-mechanical systems) 공정에 의해 제조될 수 있다.At least one of the first structure layer and the second structure layer may be manufactured by a micro-electro-mechanical systems (MEMS) process.
본 발명의 또 다른 측면에 따르면, 센서 스트립 및 계측기를 포함하는 혈당 모니터링 장치가 제공되는데, 센서 스트립은 일측에서 타측으로 전극이 연장되며 상기 일측에 혈액을 수용하도록 구성되고, 계측기는 전극과 접촉하는 터미널을 구비하며 전극과 터미널 간의 접촉에 의해 획득되는 회로에서 전류 및 전압 중 적어도 하나를 계측하도록 구성된다. 여기서, 센서 스트립은 일면에 전극이 형성되는 제1 구조층; 표면에 챔버가 형성되어 있으며 챔버가 형성된 표면이 제1 구조층의 일면과 대향하도록 제1 구조층에 결합되는 제2 구조층; 및 챔버에 대응하는 위치에 도포된 반응물질을 포함한다.According to another aspect of the present invention, there is provided a blood sugar monitoring device comprising a sensor strip and a meter, the sensor strip is configured to receive the blood on one side and the electrode extending from one side to the other side, the meter is in contact with the electrode And a terminal and configured to measure at least one of current and voltage in a circuit obtained by contact between the electrode and the terminal. Here, the sensor strip may include a first structure layer having an electrode formed on one surface thereof; A second structure layer having a chamber formed on the surface thereof and coupled to the first structure layer such that the surface on which the chamber is formed faces one surface of the first structure layer; And a reactant applied at a location corresponding to the chamber.
본 발명의 실시예에 따르면, 혈액이 충진되는 챔버의 체적을 높은 정밀도로 제작하여 혈당측정의 신뢰도를 증가시킬 수 있다.According to an embodiment of the present invention, the volume of the chamber filled with blood may be manufactured with high precision to increase the reliability of blood glucose measurement.
또한, MEMS 공정을 사용하여 챔버의 부피를 감소시킴으로써 혈당 측정에 사용되는 혈액의 양을 감소시킬 수 있다. 이로 인해 사용자는 혈액을 채취하기 위해 피부를 찌를 때 그 침습 크기를 작게 할 수 있고, 이에 따른 고통을 경감시킬 수 있다.In addition, the MEMS process can be used to reduce the volume of the chamber, thereby reducing the amount of blood used for blood glucose measurements. This allows the user to reduce the size of the invasion when he pokes the skin to collect blood, thereby reducing the pain.
도 1은 본 발명의 일실시예에 따른 혈당측정용 센서 스트립을 나타내는 분해 사시도이다.1 is an exploded perspective view showing a blood glucose measurement sensor strip according to an embodiment of the present invention.
도 2는 본 발명의 도 1에 도시된 혈당측정용 센서 스트립의 제1 구조층을 나타내는 평면도이다.FIG. 2 is a plan view illustrating a first structural layer of a blood glucose measurement sensor strip shown in FIG. 1 of the present invention.
도 3은 본 발명의 일실시예에 따른 혈당측정용 센서 스트립을 제조하는 과정을 나타내는 개념도이다.3 is a conceptual diagram illustrating a process of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 혈당측정용 센서 스트립을 제조하는 방법을 나타내는 순서도이다.4 is a flowchart illustrating a method of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 혈당측정용 센서 스트립을 나타내는 분해 사시도이다.5 is an exploded perspective view showing a blood glucose measurement sensor strip according to another embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 이하에서, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 혈당측정용 센서 스트립을 나타내는 분해 사시도이고, 도 2는 본 발명의 도 1에 도시된 혈당측정용 센서 스트립의 제1 구조층을 나타내는 평면도이다.1 is an exploded perspective view showing a blood glucose measurement sensor strip according to an embodiment of the present invention, Figure 2 is a plan view showing a first structural layer of the blood sugar measurement sensor strip shown in Figure 1 of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 혈당측정용 센서 스트립(100)은 크게 제1 구조층(110), 제2 구조층(120) 및 반응물질(130)을 포함한다.Referring to FIG. 1, a blood glucose measurement sensor strip 100 according to an embodiment of the present invention includes a first structure layer 110, a second structure layer 120, and a reactant 130.
제1 구조층(110)은 제1 기판(112)의 일면에 형성된 전극(116)을 포함할 수 있고, 제2 구조층(120)은 제1 구조층(110)을 향하는 표면에 형성된 챔버(123)를 포함할 수 있다. 반응물질(130)은 챔버(123)에 대응하는 위치에 추가되는데, 제1 구조층(110)에 도포될 수 있지만, 제2 구조층(120)의 챔버(123) 내에 추가하는 것도 가능하다.The first structure layer 110 may include an electrode 116 formed on one surface of the first substrate 112, and the second structure layer 120 may include a chamber formed on a surface facing the first structure layer 110. 123). The reactant 130 is added at a position corresponding to the chamber 123, but may be applied to the first structural layer 110, but may be added in the chamber 123 of the second structural layer 120.
반응물질(130)에는 효소와 전달물질이 포함될 수 있다. 혈당측정용 센서 스트립(100)의 챔버(123) 부분에 혈액이 충진되면, 글루코스 산화효소(glucose oxidase) 등의 효소는 혈액 내의 당 성분과 반응하면서 당 분자로부터 전자를 분리시킨다. 페리시안화 칼륨(potassium ferricyanide) 등의 전달물질은 이와 같이 분리된 전자를 전극으로 전달시킨다. 이로 인해 형성되는 전류의 변화를 측정함으로써, 투입된 혈액 중의 당 농도를 측정하는 것이 가능하다. The reactant 130 may include an enzyme and a delivery material. When blood is filled in the chamber 123 of the glucose strip sensor strip 100, an enzyme such as glucose oxidase reacts with sugar components in the blood to separate electrons from sugar molecules. A transfer material such as potassium ferricyanide transfers the electrons thus separated to the electrode. Thus, by measuring the change in the current formed, it is possible to measure the sugar concentration in the injected blood.
즉, 혈당측정용 센서 스트립(100)는 혈당 모니터링 장치(미도시)의 일부일 수 있는데, 혈당 모니터링 장치는 센서 스트립(100)과 계측기(미도시)를 포함할 수 있다. 계측기는 전극(116)과 접촉하는 터미널을 구비할 수 있으며, 센서 스트립(100)의 챔버 부위에 혈액이 충진되면, 전극(116), 터미널 및 혈액에 의해 획득되는 회로에서 전류 및 전압 중 적어도 하나를 계측하여 혈당 농도를 측정할 수 있다.That is, the blood glucose measurement sensor strip 100 may be part of a blood sugar monitoring device (not shown), and the blood sugar monitoring device may include a sensor strip 100 and a meter (not shown). The meter may have a terminal in contact with the electrode 116, and when blood is filled in the chamber portion of the sensor strip 100, at least one of current and voltage in the circuit obtained by the electrode 116, the terminal and the blood Blood glucose levels can be measured by measuring.
제1 구조층(110)은 제1 기판(112) 상에 형성된 전극(116)을 포함하고, 전극(116)은 계측기의 터미널에 접촉하도록 구성된 연결부(117)로 이어진다. 연결부(117)가 계측기의 터미널에 접촉하고 전극(116)이 챔버(123)에 충진된 혈액에 의해 전기적으로 연결됨에 따라 회로가 형성되어 혈액 내의 당으로부터 분리된 전자가 발생시키는 전류를 감지하는 것이 가능해진다.The first structural layer 110 includes an electrode 116 formed on the first substrate 112, which leads to a connection 117 configured to contact the terminal of the instrument. As the connecting portion 117 contacts the terminal of the meter and the electrode 116 is electrically connected by the blood filled in the chamber 123, a circuit is formed to sense the current generated by the electrons separated from the sugar in the blood. It becomes possible.
본 명세서에서 제1 구조층(110)에 전극(116)이 형성된다 함은 전극(116)이 하나의 전극이 형성되는 경우뿐만 아니라 둘 이상의 전극이 형성되는 경우를 내포한다. 즉, 제1 구조층(110)에 형성되는 전극(116)에는 작용전극과 상대전극이 포함될 수 있다. 필요에 따라 기준전극 등을 형성할 수도 있다.In the present specification, the formation of the electrode 116 in the first structure layer 110 includes not only a case in which one electrode is formed but also a case in which two or more electrodes are formed. That is, the electrode 116 formed on the first structure layer 110 may include a working electrode and a counter electrode. If necessary, a reference electrode or the like may be formed.
예를 들어, 두 개의 전극(116)이 제1 기판(112)의 양측에 형성되게 할 수 있고, 따라서 챔버(123)에 소정량의 혈액이 충진되어야만 혈액이 두 전극 모두와 전기적으로 연결되게 할 수 있다. 이러한 구성은 챔버(123)에 필요한 양의 혈액이 충진되었는지 여부를 확인하는 기능을 제공할 수 있다.For example, two electrodes 116 may be formed on both sides of the first substrate 112, so that a certain amount of blood must be filled in the chamber 123 so that the blood is electrically connected to both electrodes. Can be. Such a configuration may provide a function of checking whether the chamber 123 is filled with the required amount of blood.
제1 구조층(110)에는 반응물질(130)이 도포될 수 있으며, 제2 구조층(120)의 챔버(123)에 대응하는 위치에 도포될 수 있다. 전술한 바와 같이 반응물질(130)을 제2 구조층(120)의 챔버(123)에 직접 도포하는 것도 가능할 것이다.The reactant 130 may be applied to the first structural layer 110, and may be applied at a position corresponding to the chamber 123 of the second structural layer 120. As described above, the reactant 130 may be directly applied to the chamber 123 of the second structure layer 120.
본 발명의 일실시예에 따르면, 챔버(123)가 여러 개의 층의 적층에 의해 형성되는 대신, 제2 구조층(120) 자체의 표면에 형성된다. 예를 들어, 제2 구조층(120)은 챔버(123)의 형상에 상응하는 인서트를 사용하여 성형에 의해 형성할 수 있다. 여기서 인서트라 함은, 몰딩재료의 주물을 위해 원하는 형상으로 형성되며 추후에 제거되어 해당 인서터의 형상이 몰딩재료에 음각 형태로 남게 하는 물체를 의미한다.According to one embodiment of the present invention, the chamber 123 is formed on the surface of the second structural layer 120 itself instead of being formed by stacking several layers. For example, the second structural layer 120 may be formed by molding using an insert corresponding to the shape of the chamber 123. Here, the insert means an object that is formed in a desired shape for casting of a molding material and is subsequently removed so that the shape of the inserter remains in a negative shape in the molding material.
제2 구조층(120) 자체의 표면에 챔버(123)를 형성함으로써, 여러 층의 적층에 의해 챔버(123)를 형성하는 종래 기술에 비해 챔버(123)의 형상 및 부피를 보다 높은 정밀도로 형성할 수 있게 한다.By forming the chamber 123 on the surface of the second structural layer 120 itself, the shape and volume of the chamber 123 is formed with higher precision than in the prior art in which the chamber 123 is formed by stacking several layers. To do it.
특히, MEMS(micro-electro-mechanical systems) 공정을 사용함으로써, 챔버형 인서트(121) 즉 챔버(123)의 형성이 매우 높은 정밀도로 수행될 수 있다. 챔버(123)의 부피를 높은 정밀도로 설계 치수에 근접하게 함에 따라 혈당 측정의 정밀도 역시 매우 높아진다. 또한, MEMS 공정을 사용하여 수백 내지 수십 마이크로미터 단위의 치수로 상기 인서트를 형성하면, 챔버(123)의 부피를 보다 감소시킬 수 있고, 이는 보다 적은 양의 혈액으로 혈당측정을 수행할 수 있다는 장점을 제공한다.In particular, by using a micro-electro-mechanical systems (MEMS) process, the formation of the chambered insert 121, ie chamber 123, can be performed with very high precision. As the volume of the chamber 123 approaches the design dimension with high precision, the accuracy of blood glucose measurement is also very high. In addition, using the MEMS process to form the insert in the order of hundreds to several tens of micrometers, it is possible to further reduce the volume of the chamber 123, which is an advantage that the blood glucose measurement can be performed with less blood To provide.
이하 도 3을 참조하여 제1 구조층(110) 및 제2 구조층(120)이 제조되는 과정을 더 상세히 설명하기로 한다. Hereinafter, a process of manufacturing the first structure layer 110 and the second structure layer 120 will be described in more detail with reference to FIG. 3.
도 3은 본 발명의 일실시예에 따른 혈당측정용 센서 스트립을 제조하는 과정을 나타내는 개념도이다. 도 3의 (a) 내지 (d)는 제2 구조층(120)을 제조하는 과정을 도시하고, 도 3의 (e) 내지 (g)는 제1 구조층(110)을 제조하는 과정을 도시하며, 도 3의 (h)는 제1 구조층(110)과 제2 구조층(120)이 결합된 상태를 도시한다.3 is a conceptual diagram illustrating a process of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention. 3A to 3D show a process of manufacturing the second structural layer 120, and FIGS. 3E to 3G show a process of manufacturing the first structural layer 110. 3 (h) shows a state in which the first structural layer 110 and the second structural layer 120 are combined.
도 3의 (a)를 참조하면, 제2 기판(122)의 일면에 포토레지스트(124)를 형성할 수 있다. 이어서 도 3의 (b)에서와 같이 챔버형 인서트(121)의 형상이 패터닝되어 있는 마스크(128)를 포토레지스트(124) 위에 배치하고, 포토레지스트(124)에 광을 조사한 후, 포토레지스트(124)를 현상할 수 있다. 상기와 같이 포토레지스트(124)를 적층 및 현상하는 과정은 MEMS 공정을 사용하여 수행될 수 있다.Referring to FIG. 3A, a photoresist 124 may be formed on one surface of the second substrate 122. Subsequently, as shown in FIG. 3B, the mask 128 having the pattern of the chamber-shaped insert 121 is patterned is disposed on the photoresist 124, the photoresist 124 is irradiated with light, and then the photoresist ( 124 can be developed. As described above, the process of laminating and developing the photoresist 124 may be performed using a MEMS process.
해당 기술분야에서 통상의 지식을 가진 자에게 자명하듯이, 포지티브 타입의 포토레지스트가 사용되는 경우 마스크에서는 챔버형 인서트(121)의 형상 이외의 부분이 광을 투과시키고, 네거티브 타입의 포토레지스트가 사용되는 경우 마스크에서는 챔버형 인서트의 형상 부분이 광을 투과시킨다. 도 3의 (b)에는 네거티브 타입의 포토레지스트를 사용하는 경우가 도시되어 있으나, 본 발명이 이에 한정되는 것은 아니다. As will be apparent to those skilled in the art, when a positive type photoresist is used, a portion other than the shape of the chamber-type insert 121 transmits light in the mask, and a negative type photoresist is used. In the mask, the shaped part of the chamber insert transmits light. 3B illustrates a case of using a negative photoresist, but the present invention is not limited thereto.
도 3의 (b)에 도시된 예에서는, 포토레지스트(124) 중 광에 노출된 부분이 경화되며, 해당 부분 이외의 나머지 부분들은 현상액에 의해 제거되어 챔버형 인서트(121)만이 남게 된다.In the example shown in FIG. 3B, the portion of the photoresist 124 exposed to light is cured, and the remaining portions other than the portion are removed by the developer, leaving only the chamber-type insert 121.
도 3의 (c)를 참조하면, 챔버형 인서트(121)가 형성된 제2 기판(122) 위에 몰딩재료(125)를 도포할 수 있다. 몰딩재료(125)로는 용융 상태에서 성형이 가능하고 경화 후에는 챔버(123)와 전극(116)을 보호하고 절연시킬 수 있는 재료가 사용될 수 있으며, 예를 들어 PDMS(polydimethylsiloxane)가 사용될 수 있다. 몰딩재료(125)는 용융 혹은 반용융 상태로 도포되어 챔버형 인서트(121)의 외곽에 밀접히 접하도록 할 수 있다.Referring to FIG. 3C, the molding material 125 may be coated on the second substrate 122 on which the chamber-type insert 121 is formed. As the molding material 125, a material capable of molding in a molten state and protecting and insulating the chamber 123 and the electrode 116 after curing may be used. For example, polydimethylsiloxane (PDMS) may be used. The molding material 125 may be applied in a molten or semi-melt state to be in close contact with the outer edge of the chamber-type insert 121.
다음, 몰딩재료(125)가 경화된 후 제2 기판(122)과 챔버형 인서트(121)를 제거하면, 경화된 몰딩재료(125)에는 챔버(123)가 형성되어 제2 구조층(120)을 형성할 수 있다. 물론, 대량 생산을 위해, 상대적으로 큰 크기를 갖는 하나의 기판에 다수의 챔버형 인서트(121)를 형성하고, 추후 경화된 몰딩재료(125)를 절단하여 제2 구조층(120)을 다수 개 제조할 수도 있다.Next, when the second substrate 122 and the chamber-type insert 121 are removed after the molding material 125 is cured, a chamber 123 is formed in the cured molding material 125 to form the second structural layer 120. Can be formed. Of course, for mass production, a plurality of chamber-like inserts 121 are formed on one substrate having a relatively large size, and the second cured molding material 125 is cut to plural second structural layers 120. It can also manufacture.
도 3의 (e) 내지 (g)는 제1 구조층(110)을 제조하는 과정을 나타낸다. 도 3의 (e)를 참조하면, 제1 기판(112)의 일면에 도전성 재료(115)를 증착시킬 수 있다. 이 과정에는 스퍼터링, PVD 등 다양한 증착 방법이 사용될 수 있음은 물론이다. 도전성 재료(115)는 높은 전도율을 가지는 금(Au)을 사용할 수 있으나 다른 금속 또는 기타 도전성 재료를 사용할 수도 있다. 3E to 3G illustrate a process of manufacturing the first structural layer 110. Referring to FIG. 3E, the conductive material 115 may be deposited on one surface of the first substrate 112. Of course, various deposition methods such as sputtering and PVD may be used in this process. The conductive material 115 may use gold (Au) having high conductivity, but may also use other metals or other conductive materials.
도 3의 (f)를 참조하면, 전극(116)의 형상과 상응하는 형상이 패터닝되어 있는 마스크(118)를 도전성 재료(115) 위에 배치한 후, 마스크(118)를 통해 노출된 도전성 재료(115)를 식각할 수 있다. 즉, 마스크(118)는 전극(116) 이외의 부분이 노출되도록 형성되어 식각되는 부분들은 전극(116) 이외의 부분일 수 있다. 이로써 식각 공정 후에 제1 기판(112)에 남아 있는 도전성 재료(115)는 사실상 전극(116)을 이루게 된다. Referring to FIG. 3F, after the mask 118 having a pattern corresponding to the shape of the electrode 116 is disposed on the conductive material 115, the conductive material exposed through the mask 118 ( 115) can be etched. That is, the mask 118 is formed so that portions other than the electrode 116 are exposed, and portions to be etched may be portions other than the electrode 116. As a result, the conductive material 115 remaining on the first substrate 112 after the etching process substantially forms the electrode 116.
물론, 제1 기판(112)에 전극(116)을 형성하는 데에는 다양한 방법이 사용될 수 있다. 예를 들어, 도 3의 (f)에 도시된 예와는 달리, 전극(116)의 형상에 대응하는 부분이 개방된 마스크(118)를 제1 기판(112) 상에 배치한 후 제1 기판(112)에 도전성 재료(115)를 증착시키면, 마스크(118)를 제거한 후 남아 있는 도전성 재료(115)가 전극(116)을 이루게 할 수 있다.Of course, various methods may be used to form the electrode 116 on the first substrate 112. For example, unlike the example shown in FIG. 3F, after the mask 118 having the portion corresponding to the shape of the electrode 116 is opened is disposed on the first substrate 112, the first substrate is disposed. Depositing the conductive material 115 at 112 may allow the conductive material 115 remaining after removing the mask 118 to form the electrode 116.
상기와 같이 제1 기판(112)에 전극(116)을 형성하여 제1 구조층(110)을 제조하는 과정은 MEMS 공정을 사용하여 수행될 수 있다.As described above, the process of manufacturing the first structure layer 110 by forming the electrode 116 on the first substrate 112 may be performed using a MEMS process.
도 3의 (g)를 참조하면, 마스크(118)를 제거한 후 챔버(123)에 대응하는 부분에 반응물질(130)을 도포할 수 있다. 전술한 바와 같이, 반응물질(130)에는 글루코스 산화효소(glucose oxidase) 등의 효소 및 페리시안화 칼륨(potassium ferricyanide) 등의 전달물질이 포함될 수 있다. 도 3에는 반응물질(130)이 제1 구조층(110)에 도포되는 예가 도시되어 있으나, 전술한 바와 같이 반응물질(130)을 제2 구조층(120)의 챔버(123) 내에 배치하는 실시예도 가능하다.Referring to FIG. 3G, after removing the mask 118, the reactant 130 may be applied to a portion corresponding to the chamber 123. As described above, the reactant 130 may include an enzyme such as glucose oxidase and a transfer material such as potassium ferricyanide. 3 illustrates an example in which the reactant 130 is applied to the first structural layer 110, but as described above, the reactant 130 is disposed in the chamber 123 of the second structural layer 120. An example is possible.
도 3의 (h)는 제1 구조층(110)과 제2 구조층(120)을 결합시켜 혈당측정용 센서 스트립(100)을 완성한 상태를 도시한다. 제1 구조층(110)과 제2 구조층(120)은 반응물질(130)이 챔버(123) 내에 위치하도록 정렬되어 결합될 수 있다.3 (h) shows a state in which the blood glucose measurement sensor strip 100 is completed by combining the first structure layer 110 and the second structure layer 120. The first structure layer 110 and the second structure layer 120 may be coupled and aligned such that the reactant 130 is positioned in the chamber 123.
전술한 바와 같이 MEMS 공정을 사용하여 제2 구조층(120) 자체의 표면에 챔버(123)를 형성하면, 센서 스트립(100) 각각에서 챔버(123)의 크기를 매우 높은 정밀도로 균일화할 수 있으며, 이는 결국 혈당 측정의 정밀도를 향상시키는 결과를 제공한다. As described above, if the chamber 123 is formed on the surface of the second structure layer 120 itself using the MEMS process, the size of the chamber 123 in each of the sensor strips 100 can be uniformed with a very high precision. This, in turn, gives the result of improving the precision of blood glucose measurements.
아래의 [표 1]은 본 발명의 일실시예에 따라 MEMS 공정을 사용하여 제조한 혈당측정용 센서 스트립([표 1]에 "MEMS"로 표시)의 혈당측정 성능을 기존의 제품([표 1]에 "A 제품"으로 표시)의 성능과 비교한 값을 제시하는 표이다. [Table 1] below shows the conventional blood glucose measurement performance of the blood glucose measurement sensor strip (marked as "MEMS" in [Table 1]) manufactured using the MEMS process according to an embodiment of the present invention ([Table Table 1 shows the value compared with the performance of "A product".
표 1
A 제품(Ipa) A 제품(Ipc) MEMS(Ipa) MEMS(Ipc) A 제품(Epa) A 제품(Epc) MEMS(Epa) MEMS(Epc)
정규화 평균 0.87381 0.790556 0.90509 0.87381 0.770299 0.734177 0.83025 0.83539
정규화표준편차 0.101534 0.143629 0.08660 0.10153 0.157252 0.170171 0.07558 0.07451
개선율(%) 14.7 29.3 51.94 56.21
Table 1
A product (I pa ) A product (I pc ) MEMS (I pa ) MEMS (I pc ) A product (E pa ) A product (E pc ) MEMS (E pa ) MEMS (E pc )
Normalized mean 0.87381 0.790556 0.90509 0.87381 0.770299 0.734177 0.83025 0.83539
Normalized Standard Deviation 0.101534 0.143629 0.08660 0.10153 0.157252 0.170171 0.07558 0.07451
% Improvement 14.7 29.3 51.94 56.21
상기 [표 1]에 사용된 본 발명의 일실시예에 따른 혈당측정용 센서 스트립은 MEMS 공정을 사용하여 제조되었으며, 금(Au)을 스퍼터링에 의해 1000Å의 두께로 증착시켜 전극(116)을 형성하였고, SU-8 재료를 100μm의 두께로 유리 기판에 증착하여 챔버형 인서트(121)를 형성하였으며, 그 위에 PDMS 재료를 성형하여 챔버(123)를 가지는 제2 구조층(120)을 제조하였다. [표 1]에서, Ipa는 애노딕 피크 전류(anodic peak current), Ipc는 캐소딕 피크 전류(cathodic peak current), Epa는 애노딕 피크 전위, Epc는 캐소딕 피크 전위이다.The blood glucose measurement sensor strip according to the embodiment of the present invention used in [Table 1] was manufactured using a MEMS process, and gold (Au) was deposited to a thickness of 1000 μs by sputtering to form an electrode 116. Subsequently, a SU-8 material was deposited on a glass substrate to a thickness of 100 μm to form a chamber-type insert 121, and a PDMS material was molded thereon to prepare a second structural layer 120 having a chamber 123. In Table 1, I pa is an anodic peak current, I pc is a cathodic peak current, E pa is an anodic peak potential, E pc is a cathodic peak potential.
[표 1]은 본 발명의 일실시예에 따른 혈당측정용 센서 스트립과 기존의 제품 각각 30개에 대하여 순환 전압 전류 시험 결과를 비교한 것이다. 무 차원화된 표준편차 값을 기준으로 기존 제품에 대비하여 본 발명의 일실시예에 따른 MEMS 센서 스트립의 Ipa 및 Ipc 값이 각각 14.7% 및 29.3% 개선되었으며, Epa 및 Epc 값도 각각 51.9% 및 56.2% 향상된 결과를 확인할 수 있다. 이는 초정밀 미세공정 기술에 의해 표준화된 센서 스트립 제작을 통해 센서 스트립 내의 미소챔버의 체적에 대한 균일도를 극대화시킴으로써 얻어지는 결과이며, 혈당측정의 신뢰성을 크게 개선시킬 수 있다.Table 1 compares the cyclic voltage current test results for each of the blood glucose measurement sensor strips and the existing 30 products according to an embodiment of the present invention. The I pa and I pc values of the MEMS sensor strip according to the embodiment of the present invention are improved by 14.7% and 29.3%, respectively, based on the dimensionless standard deviation value, and the E pa and E pc values are also improved. 51.9% and 56.2% improved results, respectively. This is a result obtained by maximizing the uniformity of the volume of the microchambers in the sensor strip through the production of the sensor strip standardized by ultra-precision microprocessing technology, and can greatly improve the reliability of blood glucose measurement.
도 4는 본 발명의 일실시예에 따른 혈당측정용 센서 스트립을 제조하는 방법을 나타내는 순서도이다.4 is a flowchart illustrating a method of manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention.
도 4를 참조하면, 본 발명의 일실시예에 따른 혈당측정용 센서 스트립 제조방법은 제1 구조층을 형성하는 단계(S410)를 포함할 수 있다. 이 과정에는 제1 기판(112)에 전극(115)을 형성하는 단계(S415)가 포함될 수 있다.Referring to FIG. 4, the method for manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention may include forming a first structure layer (S410). This process may include forming an electrode 115 on the first substrate 112 (S415).
제1 구조층을 형성하는 단계(S410)는 MEMS 공정을 이용하여 수행될 수 있다. 예를 들어, 제1 구조층을 형성하는 단계(S410)는 전극(116)에 상응하는 형상이 패터닝되어 있는 마스크(118)를 제1 기판(112) 상에 배치하는 단계, 제1 기판(112)에 도전성 재료(115)를 증착시키는 단계, 그리고 마스크(118)를 제거하는 단계를 포함할 수 있다. 물론, 이 경우 마스크(118)에는 상기 전극(116)의 형상이 개방된 형태로 패터닝되어 있을 것이다.Forming the first structure layer (S410) may be performed using a MEMS process. For example, forming the first structural layer (S410) may include disposing a mask 118 on the first substrate 112 having a pattern corresponding to the electrode 116 on the first substrate 112. Depositing the conductive material 115, and removing the mask 118. Of course, in this case, the mask 118 may be patterned to have an open shape.
대안적으로는, 제1 기판(112)의 일면에 도전성 재료(115)를 증착시키는 단계, 전극(116)에 상응하는 형상이 패터닝되어 있는 마스크(118)를 도전성 재료(115) 상에 배치하는 단계, 도전성 재료(115) 중 마스크(118)를 통해 노출된 부분을 식각하는 단계, 그리고 마스크(118)를 제거하는 단계를 포함할 수 있다. 물론, 이 경우 마스크(118)에는 상기 전극(116)의 형상 이외의 부분이 개방된 형태로 패터닝되어 있을 것이다.Alternatively, depositing a conductive material 115 on one surface of the first substrate 112, disposing a mask 118 on which the shape corresponding to the electrode 116 is patterned on the conductive material 115. The method may include etching the exposed portion of the conductive material 115 through the mask 118, and removing the mask 118. Of course, in this case, portions other than the shape of the electrode 116 may be patterned in the mask 118 in an open form.
본 발명의 일실시예에 따른 혈당측정용 센서 스트립 제조방법은 또한 제2 구조층을 형성하는 단계(S420)를 포함할 수 있다. 여기에는 제2 기판(122)에 챔버형 인서트(121)를 형성하는 단계(S422), 챔버형 인서트(121)가 형성된 제2 기판(122) 위에 몰딩재료(125)를 도포하는 단계(S424), 몰딩재료(125)를 경화시키는 단계(S426) 및 제2 기판(122)과 몰딩재료(125)를 제거하는 단계(S428)가 포함될 수 있다. 제2 구조층을 형성하는 단계(S420)는 MEMS 공정을 이용하여 수행될 수 있다.The method for manufacturing a blood glucose measurement sensor strip according to an embodiment of the present invention may also include forming a second structure layer (S420). In this step, the chamber-type insert 121 is formed on the second substrate 122 (S422), and the molding material 125 is coated on the second substrate 122 on which the chamber-type insert 121 is formed (S424). The step S426 of curing the molding material 125 and the step S428 of removing the second substrate 122 and the molding material 125 may be included. Forming the second structure layer (S420) may be performed using a MEMS process.
전술한 바와 같이, 제2 기판에 챔버형 인서트(121)를 형성하는 단계(S422)는 제2 기판(122)에 포토레지스트(124)를 형성하고, 포토레지스트(124) 위에 마스크(128)를 배치하고, 광을 조사한 후 포토레지스트(124)를 현상하는 단계들을 포함할 수 있다. 포지티브 타입의 포토레지스트가 사용되는 경우 마스크는 챔버형 인서트(121)의 형상 이외의 부분이 광을 투과시키고, 네거티브 타입의 포토레지스트가 사용되는 경우 마스크는 챔버형 인서트의 형상 부분이 광을 투과시킬 것이다.As described above, in the step S422 of forming the chamber-type insert 121 on the second substrate, the photoresist 124 is formed on the second substrate 122, and the mask 128 is formed on the photoresist 124. And placing the photoresist 124 after irradiating light. When a positive type photoresist is used, the mask transmits light other than the shape of the chamber-type insert 121, and when a negative type photoresist is used, the mask transmits the light through the shape of the chamber-type insert. will be.
챔버형 인서트(121) 상으로 PDMS(polydimethylsiloxane) 등의 몰딩재료(125)를 도포하면, 몰딩재료(125)는 챔버형 인서트(121)를 따라 성형될 수 있다. 몰딩재료(125)가 경화한 후 제2 기판(122)과 몰딩재료(125)를 제거하면 제2 구조층(120)이 완성된다.When a molding material 125 such as polydimethylsiloxane (PDMS) is applied onto the chamber-type insert 121, the molding material 125 may be molded along the chamber-type insert 121. After the molding material 125 is cured, the second substrate 122 and the molding material 125 are removed to complete the second structure layer 120.
본 발명의 일실시예에 따른 혈당측정용 센서 스트립 제조방법은 또한 챔버에 대응하는 위치에 반응물질(130)을 도포하는 단계(S430)를 포함할 수 있다. 이 과정은 제1 구조층(110)을 형성하는 단계(S410)가 완료된 후 제1 구조층(110)에서 챔버(123)에 대응하는 위치에 반응물질(130)을 도포함으로써 수행될 수도 있고, 제2 구조층(120)을 형성하는 단계(S420)가 완료된 후 챔버(123) 내에 반응물질(130)을 도포함으로써 수행될 수도 있다.The method for manufacturing a blood glucose measurement sensor strip according to an exemplary embodiment of the present invention may also include applying the reactant 130 to a position corresponding to the chamber (S430). This process may be performed by applying the reactant 130 to a position corresponding to the chamber 123 in the first structure layer 110 after the step (S410) of forming the first structure layer 110 is completed, After forming the second structure layer 120 (S420), the reaction material 130 may be applied in the chamber 123.
제1 구조층(110)과 제2 구조층(120)이 완성된 후, 이들을 서로 결합시키는 단계(S440)가 포함될 수 있다. 대량 생산을 위해, 제1 구조층(110) 및 제2 구조층(120)은 다수의 센서 스트립을 위한 구조가 하나의 부재에 형성될 수 있고, 제1 구조층(110)과 제2 구조층(120)을 결합시키는 단계(S440) 이후에 이들을 개별 센서 스트립으로 절단할 수 있다. 물론, 제1 구조층(110) 및 제2 구조층(120)를 제조함에 있어서 다수의 센서 스트립을 위한 구조를 하나의 부재에 형성하고, 제1 구조층(110)와 제2 구조층(120)를 결합시키기 전에 이들을 개개의 부품으로 절단한 후 각각의 제1 구조층(110)와 제2 구조층(120)를 개별적으로 결합시키는 것도 가능하다.After the first structure layer 110 and the second structure layer 120 are completed, the step of combining them with each other (S440) may be included. For mass production, the first structural layer 110 and the second structural layer 120 may have a structure for a plurality of sensor strips formed in one member, and the first structural layer 110 and the second structural layer After step 120 of combining 120, they may be cut into individual sensor strips. Of course, in manufacturing the first structural layer 110 and the second structural layer 120, a structure for a plurality of sensor strips is formed in one member, and the first structural layer 110 and the second structural layer 120 are formed. It is also possible to cut each of the first structural layer 110 and the second structural layer 120 individually after cutting them into individual components before joining the C).
전술한 혈당측정용 센서 스트립 제조방법은 MEMS 공정을 이용하며 제2 구조층(120) 자체의 표면에 챔버(123)를 형성하므로 제조에 있어 챔버(123)의 치수에 대한 오차를 현저히 감소시킬 수 있다. 챔버(123)를 설계된 치수로 정밀하게 제조하는 것은, 앞서 [표 1]을 참조하여 설명한 바와 같이, 해당 센서 스트립(100)의 사용시 혈당 측정의 정밀도를 크게 향상시킬 수 있다.The above-described method for manufacturing a blood glucose measurement sensor strip uses a MEMS process and forms a chamber 123 on the surface of the second structural layer 120 itself, thereby significantly reducing an error in the dimensions of the chamber 123 in manufacturing. have. Precisely manufacturing the chamber 123 to the designed dimension may greatly improve the accuracy of blood glucose measurement when using the sensor strip 100, as described above with reference to Table 1.
도 5는 본 발명의 다른 실시예에 따른 혈당측정용 센서 스트립을 나타내는 분해 사시도이다. 5 is an exploded perspective view showing a blood glucose measurement sensor strip according to another embodiment of the present invention.
도 5를 참조하면, 본 발명의 다른 실시예에 따른 혈당측정용 센서 스트립(100)은 크게 제1 구조층(110), 제2 구조층(120) 및 반응물질(130)을 포함하되, 제1 구조층(110)이 전극(116)을 포함하는 것에 더하여 제 2 구조층(120)도 전극(126)을 포함할 수 있다.Referring to FIG. 5, the blood glucose measurement sensor strip 100 according to another embodiment of the present invention includes a first structure layer 110, a second structure layer 120, and a reactant 130. In addition to the first structural layer 110 including the electrode 116, the second structural layer 120 may also include the electrode 126.
MEMS 공정을 이용하여 센서 스트립(100)을 제조하는 경우, 센서 스트립(100) 자체의 크기를 상당히 소형화할 수 있는데, 다수의 전극을 형성하는 경우 전극들을 모두 제1 구조층(110)에 형성하기에 공간이 부족할 수 있으므로, 전극들 중 일부는 제2 구조층(120)에 형성하는 것이다. 예를 들어, 혈당 측정에 주로 사용되는 작용전극은 제1 구조층(110)에 형성할 수 있고, 상대전극 및 기준전극 중 하나 이상은 제2 구조층(120)에 형성할 수 있다.When manufacturing the sensor strip 100 by using the MEMS process, the size of the sensor strip 100 itself can be considerably miniaturized. In the case of forming a plurality of electrodes, forming all the electrodes on the first structural layer 110 Space may be insufficient, so some of the electrodes are formed in the second structure layer 120. For example, the working electrode mainly used for blood glucose measurement may be formed in the first structure layer 110, and at least one of the counter electrode and the reference electrode may be formed in the second structure layer 120.
이 경우, 제2 구조층(120)의 제조시 제2 기판(122)에 챔버형 인서트(121)를 형성한 후, 몰딩재료(125)를 도포하기 전에 챔버형 인서트 상에 적어도 하나의 전극(126)을 형성할 수 있다. 제2 구조층(120)의 전극(126)을 형성한 후 용융 또는 반용융 상태의 몰딩재료(125)를 도포할 수 있으며, 전극(126)이 몰딩재료(125) 내에 위치하되 그 일부는 챔버(123)의 일면에 노출되게 할 수 있다. 이에 따라 몰딩재료(125)가 경화하면, 챔버(123)에 충진되는 혈액은 제1 구조층(110)의 전극(116)과 제2 구조층(120)의 전극(126)을 전기적으로 연결하여 회로를 형성하는 구조가 완성될 것이다.In this case, after the chamber-type insert 121 is formed on the second substrate 122 in the manufacture of the second structural layer 120, at least one electrode (eg, on the chamber-shaped insert) before the molding material 125 is applied. 126). After forming the electrode 126 of the second structural layer 120, the molding material 125 may be applied in a molten or semi-melt state, and the electrode 126 may be located in the molding material 125, but a part of the chamber may be applied. It may be exposed to one surface of the (123). Accordingly, when the molding material 125 is cured, the blood filled in the chamber 123 electrically connects the electrode 116 of the first structural layer 110 and the electrode 126 of the second structural layer 120. The structure that forms the circuit will be completed.
제2 구조층(120)의 전극(126)에도 연결부(127)를 형성할 수 있는데, 센서 스트립(100)이 장착되는 계측기(미도시)는 제1 구조층(110)의 전극(116)의 연결부(117)와 제2 구조층(120)의 전극(126)의 연결부(127) 모두에 접촉하도록 구성될 수 있다. 보다 용이한 접촉을 위해 제2 구조층(120)의 연결부(127) 부위의 일부에는 몰딩재료(125)를 도포하지 않도록 할 수 있다.The connecting portion 127 may also be formed on the electrode 126 of the second structural layer 120, and a measuring instrument (not shown) on which the sensor strip 100 is mounted may be formed on the electrode 116 of the first structural layer 110. It may be configured to contact both the connecting portion 117 and the connecting portion 127 of the electrode 126 of the second structural layer 120. For easier contact, the molding material 125 may not be applied to a portion of the connection portion 127 of the second structure layer 120.
상기 설명한 본 발명의 일부 예시적 실시예에 따르면, MEMS 공정을 사용하여 챔버(123)의 체적을 높은 정밀도로 제작할 수 있으며, 이에 따라 혈당측정의 신뢰도를 크게 증가시킬 수 있다. 또한, MEMS 공정을 사용하여 챔버(123)의 부피를 감소시키고 센서 스트립(100) 전체의 크기를 감소시킬 수 있으며, 따라서 혈당 측정에 사용되는 혈액의 양을 감소시킬 수 있다. 이로 인해 사용자는 혈액을 채취하기 위해 피부를 찌를 때 그 침습 크기를 작게 할 수 있고, 한 번 찌른 후 얻어지는 혈액의 양이 너무 적어 다시 찔러야 하는 경우를 방지할 수 있다.According to some exemplary embodiments of the present invention described above, the volume of the chamber 123 can be manufactured with high precision using the MEMS process, thereby greatly increasing the reliability of blood glucose measurement. In addition, the MEMS process can be used to reduce the volume of the chamber 123 and to reduce the size of the entire sensor strip 100, thus reducing the amount of blood used for blood glucose measurement. This can reduce the size of the invasion when the user pokes the skin to collect blood, and can prevent the case where the amount of blood obtained after one poke is so small that it must be stabbed again.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.In the present invention as described above has been described by the specific embodiments, such as specific components and limited embodiments and drawings, but this is provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations are possible from these descriptions. Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .

Claims (13)

  1. 혈당 측정을 위한 센서 스트립을 제조하는 방법으로서,A method of manufacturing a sensor strip for measuring blood glucose,
    제1 기판에 전극을 형성하여 제1 구조층을 형성하는 단계;Forming an electrode on the first substrate to form a first structural layer;
    제2 기판에 챔버형 인서트를 형성하는 단계;Forming a chambered insert in the second substrate;
    상기 제2 기판 위에 몰딩재료를 도포하는 단계;Applying a molding material on the second substrate;
    상기 몰딩재료를 경화시키는 단계;Curing the molding material;
    상기 경화된 몰딩재료로부터 상기 제2 기판 및 상기 챔버형 인서트를 제거하여 일측에 챔버가 형성되어 있는 제2 구조층을 형성하는 단계;Removing the second substrate and the chamber-type insert from the cured molding material to form a second structural layer having a chamber formed on one side thereof;
    상기 챔버에 대응하는 위치에 반응물질을 도포하는 단계; 및Applying a reactant at a location corresponding to the chamber; And
    상기 챔버 내에 상기 반응물질이 위치하도록 상기 제1 구조층과 상기 제2 구조층을 결합시키는 단계를 포함하는 혈당측정용 센서 스트립 제조방법.And coupling the first structure layer and the second structure layer such that the reactant is positioned in the chamber.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 챔버형 인서트를 형성하는 단계는,Forming the chamber-shaped insert,
    상기 제2 기판에 포토레지스트를 형성하는 단계;Forming a photoresist on the second substrate;
    상기 챔버형 인서트의 형상이 패터닝되어 있는 마스크를 상기 포토레지스트 상에 배치하는 단계;Disposing a mask on which the shape of the chamber insert is patterned, on the photoresist;
    상기 포토레지스트에 광을 조사하는 단계;Irradiating light onto the photoresist;
    상기 마스크를 제거하는 단계; 및Removing the mask; And
    상기 포토레지스트를 현상하는 단계를 포함하는 것을 특징으로 하는 혈당측정용 센서 스트립 제조방법.A method for manufacturing a sensor strip for measuring blood glucose, comprising developing the photoresist.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제1 구조층을 형성하는 단계는,Forming the first structural layer,
    상기 전극의 형상이 패터닝되어 있는 마스크를 상기 제1 기판 상에 배치하는 단계;Disposing a mask on which the shape of the electrode is patterned, on the first substrate;
    상기 제1 기판에 도전성 재료를 증착시키는 단계; 및Depositing a conductive material on the first substrate; And
    상기 마스크를 제거하는 단계를 포함하는 것을 특징으로 하는 혈당측정용 센서 스트립 제조방법.A method for manufacturing a sensor strip for measuring glucose, comprising removing the mask.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제1 구조층을 형성하는 단계는,Forming the first structural layer,
    상기 제1 기판의 일면에 도전성 재료를 증착시키는 단계;Depositing a conductive material on one surface of the first substrate;
    상기 전극의 형상이 패터닝되어 있는 마스크를 상기 도전성 재료 상에 배치하는 단계;Disposing a mask on which the shape of the electrode is patterned on the conductive material;
    상기 마스크를 통해 노출된 상기 도전성 재료를 식각하는 단계; 및Etching the conductive material exposed through the mask; And
    상기 마스크를 제거하는 단계를 포함하는 것을 특징으로 하는 혈당측정용 센서 스트립 제조방법.A method for manufacturing a sensor strip for measuring glucose, comprising removing the mask.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제1 구조층을 형성하는 단계, 상기 챔버형 인서트를 형성하는 단계, 상기 몰딩재료를 도포하는 단계, 상기 제2 구조층을 형성하는 단계, 상기 반응물질을 도포하는 단계, 및 상기 제1 구조층과 상기 제2 구조층을 결합시키는 단계 중 적어도 하나는 MEMS(micro-electro-mechanical systems) 공정에 의해 수행되는 것을 특징으로 하는 혈당측정용 센서 스트립 제조방법.Forming the first structural layer, forming the chamber-shaped insert, applying the molding material, forming the second structural layer, applying the reactant, and the first structure At least one of the step of combining the layer and the second structure layer is a method for manufacturing a blood glucose measurement sensor strip, characterized in that carried out by a micro-electro-mechanical systems (MEMS) process.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 몰딩재료를 도포하는 단계 이전에,Before applying the molding material,
    상기 챔버형 인서트 상에 적어도 하나의 전극을 형성하는 단계를 더 포함하는 것을 특징으로 하는 혈당측정용 센서 스트립 제조방법.Forming at least one electrode on the chamber-type insert further comprises a method for manufacturing a blood glucose measurement sensor strip.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 챔버형 인서트 상에 형성되는 전극은 상기 챔버에 충진되는 혈액에 의해 상기 제1 기판에 형성된 전극과 전기적으로 연결되는 것을 특징으로 하는 혈당측정용 센서 스트립 제조방법.The electrode formed on the chamber-type insert is electrically connected to the electrode formed on the first substrate by the blood filled in the chamber, the method for manufacturing a blood glucose measurement sensor strip.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 몰딩재료는 PDMS(polydimethylsiloxane)을 포함하는 것을 특징으로 하는 혈당측정용 센서 스트립 제조방법.The molding material is a blood glucose measurement sensor strip manufacturing method comprising a polydimethylsiloxane (PDMS).
  9. 혈당 측정을 위한 센서 스트립으로서,Sensor strip for blood glucose measurement
    일면에 전극이 형성되는 제1 구조층;A first structural layer on which one electrode is formed;
    표면에 챔버가 형성되어 있으며, 상기 챔버가 형성된 표면이 상기 제1 구조층의 상기 일면과 대향하도록 상기 제1 구조층에 결합되는 제2 구조층; 및A second structure layer formed on a surface thereof, the second structure layer being coupled to the first structure layer such that the surface on which the chamber is formed faces the one surface of the first structure layer; And
    상기 챔버에 대응하는 위치에 도포된 반응물질을 포함하는 것을 특징으로 하는 혈당측정용 센서 스트립.And a reactant applied to a position corresponding to the chamber.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 제2 구조층은 몰딩재료의 성형에 의해 일체형으로 형성되는 것을 특징으로 하는 혈당측정용 센서 스트립.And the second structural layer is integrally formed by molding the molding material.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 몰딩재료는 PDMS(polydimethylsiloxane)을 포함하는 것을 특징으로 하는 혈당측정용 센서 스트립.The molding material is a glucose strip sensor strip characterized in that it comprises a PDMS (polydimethylsiloxane).
  12. 제 9 항에 있어서,The method of claim 9,
    상기 제1 구조층 및 상기 제2 구조층 중 적어도 하나는 MEMS(micro-electro-mechanical systems) 공정에 의해 제조되는 것을 특징으로 하는 혈당측정용 센서 스트립.At least one of the first structure layer and the second structure layer is a blood glucose measurement sensor strip, characterized in that manufactured by a micro-electro-mechanical systems (MEMS) process.
  13. 혈당 측정을 위한 모니터링 장치로서,As a monitoring device for measuring blood glucose,
    일측에서 타측으로 전극이 연장되며 상기 일측에 혈액을 수용하도록 구성된 센서 스트립; 및A sensor strip extending from one side to the other side and configured to receive blood on the one side; And
    상기 전극과 접촉하는 터미널을 구비하며 상기 전극과 상기 터미널 간의 접촉에 의해 획득되는 회로에서 전류 및 전압 중 적어도 하나를 계측하도록 구성된 계측기를 포함하되,A meter having a terminal in contact with the electrode and configured to measure at least one of a current and a voltage in a circuit obtained by contact between the electrode and the terminal,
    상기 센서 스트립은,The sensor strip,
    일면에 전극이 형성되는 제1 구조층;A first structural layer on which one electrode is formed;
    표면에 챔버가 형성되어 있으며, 상기 챔버가 형성된 표면이 상기 제1 구조층의 상기 일면과 대향하도록 상기 제1 구조층에 결합되는 제2 구조층; 및A second structure layer having a chamber formed on a surface thereof, the second structure layer being coupled to the first structure layer such that the surface on which the chamber is formed faces the one surface of the first structure layer; And
    상기 챔버에 대응하는 위치에 도포된 반응물질을 포함하는 것을 특징으로 하는 혈당 모니터링 장치.And a reactant applied to a position corresponding to the chamber.
PCT/KR2014/004686 2013-06-13 2014-05-27 Sensor strip for measuring blood glucose level, manufacturing method therefor, and monitoring device using same WO2014200206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0067914 2013-06-13
KR1020130067914A KR101447970B1 (en) 2013-06-13 2013-06-13 Sensor strip for blood glucose monitoring, method of manufacturing the sensor strip, and monitoring device using the same

Publications (1)

Publication Number Publication Date
WO2014200206A1 true WO2014200206A1 (en) 2014-12-18

Family

ID=51996788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004686 WO2014200206A1 (en) 2013-06-13 2014-05-27 Sensor strip for measuring blood glucose level, manufacturing method therefor, and monitoring device using same

Country Status (2)

Country Link
KR (1) KR101447970B1 (en)
WO (1) WO2014200206A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102097856B1 (en) 2017-12-18 2020-04-07 아이오틴 주식회사 Needle array for blood glucose sensor utilizing nanostructre and painless blood glucose sensor and, manufacturing method thereof
KR20190101203A (en) * 2018-02-22 2019-08-30 동우 화인켐 주식회사 Glucose sensor
KR102610724B1 (en) * 2018-04-30 2023-12-06 동우 화인켐 주식회사 Glucose sensor
KR20220163804A (en) 2021-06-03 2022-12-12 (주)다빛센스 Bio sensor strip, measuring instrument and controlling method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513279A (en) * 1999-11-04 2003-04-08 セラセンス、インク. Small volume in vitro analyte sensor and related methods
KR100730355B1 (en) * 2006-02-27 2007-06-19 한국표준과학연구원 Microfludic system with non-enzymatic sensor system by electroosmotic flow control
KR20110017120A (en) * 2009-08-13 2011-02-21 주식회사 에스디 Sensor strip with resistor representating sensor property
WO2012091728A1 (en) * 2010-12-31 2012-07-05 Lifescan, Inc. Systems and methods for high accuracy analyte measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513279A (en) * 1999-11-04 2003-04-08 セラセンス、インク. Small volume in vitro analyte sensor and related methods
KR100730355B1 (en) * 2006-02-27 2007-06-19 한국표준과학연구원 Microfludic system with non-enzymatic sensor system by electroosmotic flow control
KR20110017120A (en) * 2009-08-13 2011-02-21 주식회사 에스디 Sensor strip with resistor representating sensor property
WO2012091728A1 (en) * 2010-12-31 2012-07-05 Lifescan, Inc. Systems and methods for high accuracy analyte measurement

Also Published As

Publication number Publication date
KR101447970B1 (en) 2014-10-13

Similar Documents

Publication Publication Date Title
WO2010044525A1 (en) Electrochemical biosensor structure and measuring method using the same
WO2014200206A1 (en) Sensor strip for measuring blood glucose level, manufacturing method therefor, and monitoring device using same
US6787013B2 (en) Biosensor
EP3024920B1 (en) Devices and systems for high-throughput electrophysiology
CN1751239B (en) Blood analysis device and blood analysis method
WO2010056049A2 (en) Humidity sensor of capacitance type and method of fabricating same
WO2013170641A1 (en) Single-cell array microchip, and manufacturing method, electrical measurement and electroporation method therefor
CN202189033U (en) Card type electrolyte testing electrode matched with dry type electrolyte analyzer
WO2010120155A2 (en) Biosensor for diagnosis of disease capable of rapidly separating blood cells
WO2014046318A1 (en) Sample recognition method and biosensor using same
US20140209486A1 (en) Detecting device and method applying a detecting strip
KR102083979B1 (en) Sensor strip and Apparatus for measuring biomaterial using the sensor strip
WO2023153615A1 (en) Micro needle sensor
CN100396786C (en) Multiple parameter micro sensor
WO2021177706A1 (en) Electrochemical sensor and method for manufacturing same
CN201653970U (en) Electrochemical biological sensing test paper
WO2009125930A1 (en) Bio-sensor
KR101647054B1 (en) Polymer cantilever structure integrated with a Graphene/PDMS composite sensor for detecting contractile force of cardiomyocyte, and manufacturing of the same
WO2017047856A1 (en) Biosensor strip and method of manufacturing same
KR20130047168A (en) Method for fabricating bio sensor strip using a paper and structure of the same
CN102192929A (en) Electrochemical biosensing test strip, and method for identifying biosensor apparatus
KR102471431B1 (en) Biosensor for detecting dopamine and system including the same
ITMI20070393A1 (en) ELECTROCHEMICAL SENSOR, KIT INCLUDING THE SENSOR AND PROCESS FOR ITS PRODUCTION
WO2024005493A1 (en) Biosensor strip for measuring bio sample, electrode structure thereof, and bio sample measurement method using same
KR101448243B1 (en) Method to recognze sample and bio sensor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810389

Country of ref document: EP

Kind code of ref document: A1