WO2013051890A2 - Method for manufacturing multiple-diagnosis membrane sensor by using screen printing - Google Patents

Method for manufacturing multiple-diagnosis membrane sensor by using screen printing Download PDF

Info

Publication number
WO2013051890A2
WO2013051890A2 PCT/KR2012/008087 KR2012008087W WO2013051890A2 WO 2013051890 A2 WO2013051890 A2 WO 2013051890A2 KR 2012008087 W KR2012008087 W KR 2012008087W WO 2013051890 A2 WO2013051890 A2 WO 2013051890A2
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
membrane sensor
pad
sensor
sample
Prior art date
Application number
PCT/KR2012/008087
Other languages
French (fr)
Korean (ko)
Other versions
WO2013051890A3 (en
Inventor
김민곤
정효암
안준형
석호준
Original Assignee
광주과학기술원
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원, 한국생명공학연구원 filed Critical 광주과학기술원
Priority to CN201280049510.7A priority Critical patent/CN103890583B/en
Priority to US14/350,278 priority patent/US9970933B2/en
Priority claimed from KR1020120110524A external-priority patent/KR101471932B1/en
Publication of WO2013051890A2 publication Critical patent/WO2013051890A2/en
Publication of WO2013051890A3 publication Critical patent/WO2013051890A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding

Definitions

  • the present invention relates to a method for manufacturing a multi-diagnosis membrane sensor in which multiple channels are formed by using screen printing. More particularly, the present invention relates to a method for manufacturing a multi-diagnosis membrane sensor in which multiple channels are formed by screen printing on a membrane. It relates to a manufacturing method.
  • the strip diagnostic sensor has been widely used since the pregnancy kit in 1976, and is now widely used as a technology for early diagnosis of various diseases.
  • the most widely used strip sensor is an immunochromatography method using a nitrocellulose membrane, and has advantages of easy mass production, convenient use, and low manufacturing cost.
  • diagnostic biosensors are known to be important for manufacturing cost, productivity, and easy measurement methods.
  • the necessity of a technique for simultaneously diagnosing various diseases with a single measurement is increasing. Therefore, if a method of easily printing and manufacturing multiple patterns on a membrane widely used in diagnostic biosensors is devised, it is possible to mass-produce strip sensors capable of multiple diagnosis in various diagnostic biosensors including lateral flow assay (LFA). will be.
  • LFA lateral flow assay
  • microchannel channel sensors have advantages in that they are simple to use, inexpensive, and can be mass-produced, but there is a difficulty in optimizing the composition of the ink to be used according to the inkjet printing technology.
  • the present invention is derived from this background, and an object thereof is to provide a method for manufacturing a multi-diagnostic membrane sensor that can be mass-produced through screen printing on a membrane.
  • the present invention provides a method of manufacturing a multi-channel membrane sensor comprising the step of forming a multi-channel by screen printing (hydrophobic ink) on the membrane through which a water-soluble sample can flow.
  • the membrane is characterized in that made of one or more of nitrocellulose, nylon, polysulfone, polyethersulfone and PVDF (Polyvinylidene fluoride).
  • the hydrophobic ink is one or more selected from silver paste, carbon paste, platinum paste, ceramic paste, and wax, alcohol having 1 to 6 carbon atoms, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and It is characterized by comprising one or two or more organic solvents selected from acetone.
  • the present invention also provides a membrane sensor using a lateral flow including multiple channels formed by screen printing hydrophobic ink on the membrane surface.
  • the membrane sensor characterized in that it comprises a sample pad, a conjugation pad and an absorbent pad on the membrane.
  • the sample pad or absorbent pad is characterized in that consisting of at least one selected from cellulose, polyester, polypropylene and glass fibers.
  • the conjugation pad is made of at least one selected from cellulose, polyester, polypropylene, fiberglass, nitrocellulose, nylon, polysulfone, polyethersulfone and polyvinylidene fluoride (PVDF). do.
  • the signaling material is a metal nanoparticle, quantum dot (dot), nanoparticles, magnetic nanoparticles, enzymes, enzyme substrate, enzyme reaction generating material, absorbing material, fluorescent material or luminescent material It features.
  • the present invention also provides a method for analyzing a biological sample injecting a sample into the membrane sensor to measure the analyte.
  • the measuring method comprises measuring an electrochemical signal between multiple channels of the membrane sensor.
  • the membrane sensor of the present invention can form a plurality of channels on the membrane by a simple method, it is possible to mass-produce the sensor, and also to ensure the reliability of the detection.
  • Figure 1 illustrates the process of forming multiple channels on a membrane using screen printing of the present invention.
  • FIG. 2 shows a configuration of a membrane sensor according to an embodiment of the present invention.
  • Figure 3 is a photograph confirming the flow spread around the pattern when the phosphate buffered saline (PBS) solution on the screen printed membrane in accordance with Examples 1 to 3 (Example 1: Ethanol free, Example 2: Ethanol 5 Weight percent, Example 3: 10 weight percent ethanol).
  • PBS phosphate buffered saline
  • Figure 4 is a photograph showing the sensing results according to the concentration of the CRP antigen in Example 4.
  • Example 5 is a graph comparing the absorbance of each channel by the concentration in Example 4 by concentration.
  • Figure 6 shows a schematic diagram and a photograph of a sensor for measuring the electrochemiluminescence signal in the membrane sensor screen-printed in Example 5.
  • FIG. 7 is a photograph of a chemiluminescent signal measured according to an applied voltage in Example 5.
  • FIG. 8 is a graph comparing measurement of a current change according to an applied voltage with time in Example 5.
  • the present invention relates to a method for manufacturing a multi-channel membrane sensor, characterized in that to form a multi-channel on the membrane using a screen printing (Screen Printing) method.
  • FIG. 1 illustrates a process of a multi-channel membrane sensor according to an embodiment of the present invention.
  • the membrane 10 includes all materials in the form of a membrane capable of horizontal flow that can act as a passage through which a biological sample is transferred and at the same time confirm a desired chemical or biological reaction result. More preferably, a membrane made of a material selected from nitrocellulose, nylon, polysulfone, polyethersulfone, and polyvinylidene fluoride (PVDF) may be used, but is not limited thereto. May be appropriately selected.
  • PVDF polyvinylidene fluoride
  • Hydrophobic ink 20 is printed on the membrane by using a screen printing method.
  • the screen printing may be applied by a method well known in the art.
  • the printer for performing the screen printing may include a membrane formed under the mask and a squeegee for applying a fine mesh and a hydrophobic ink having an opening forming a predetermined pattern. It may be composed of a supporting stage module.
  • the screen printed ink is applied on the membrane to a thickness of 5 to 10 ⁇ m, and the applied ink is partially deposited through the pores of the membrane.
  • the hydrophobic ink is not limited as long as the component is not mixed with the injected sample and can serve as a channel for inducing the flow of the sample, but is preferably silver paste, carbon paste, platinum paste, ceramic paste or wax. Etc. may be used, and most preferably, silver paste is used.
  • the hydrophobic ink further includes an organic solvent. Since the hydrophobic ink is printed with an appropriate organic solvent because the membrane has a property of dissolving in an organic solvent, the hydrophobic property of the ink is increased, so that the sample around the pattern Can prevent the spread. In addition, when the organic solvent is used, the efficiency of penetration of the printed ink through the pores of the membrane is increased, thereby increasing the hydrophobic property of the formed channel.
  • the organic solvent may be an alcohol having 1 to 6 carbon atoms, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, or the like. However, the organic solvent may be appropriately controlled according to the material of the membrane used. In addition, the organic solvent is preferably 1 to 80 parts by weight, more preferably 5 to 50 parts by weight based on 100 parts by weight of hydrophobic solvent.
  • the membrane sensor of the present invention is a component of a typical strip biosensor as shown in FIG.
  • the sample pad 11 may include a conjugation pad 12, an absorbent pad 13, and a lower substrate 14.
  • the sample pad is a liquid sample is introduced into the reaction membrane, the absorption pad serves to absorb the sample developed into the reaction membrane.
  • the sample pad or absorbent pad is not limited as long as it is a material capable of absorbing a liquid sample, but is preferably made of a material such as cellulose, polyester, polypropylene or glass fiber.
  • the conjugation pad may include a signal generating material;
  • a conjugate of a substance that selectively binds to an analyte and a signal generating agent, such as a detection antibody, may be used.
  • the reaction material reacts with the receptor on the membrane.
  • the analyte may be measured by a signal of a signal generating material by an enzyme reaction. If the conjugate pad is coated with a substance that selectively binds to the analyte and a signal generating material, and then dried on the conjugation pad, the analyte as a signal of the signal generating material by the selective reaction between the receptor and the analyte. Can be measured.
  • the conjugate pad may be used as long as the conjugate pad is easily separated from the conjugate pad when the conjugate pad is wet with liquid, and is commonly used in LFA systems.
  • Any gating pad can be used, as well as materials such as cellulose, polyester, polypropylene or fiberglass, as well as membrane materials such as nitrocellulose, nylon, polysulfone, polyethersulfone or polyvinylidene fluoride (PVDF). .
  • the signal generating material may be a metal nanoparticle, a quantum dot nanoparticle, a magnetic nanoparticle, an enzyme, an enzyme substrate, an enzyme reaction generating material, an absorbing material, a fluorescent material, or a light emitting material.
  • the analyte may be detected through the color change of the metal nanoparticle by a selective reaction between the receptor and the analyte, and the analyte selectively bound to the receptor on the membrane.
  • the analyte can be quantitatively analyzed by measuring the absorbance and electrical conductivity of the conjugate of the metal nanoparticles.
  • Such metal nanoparticles may be, for example, gold nanoparticles, silver nanoparticles, copper nanoparticles, and the like, but are not limited thereto.
  • the signal generating material is an enzyme, an enzyme substrate or an enzyme reaction generating material
  • a redox reaction is performed by reacting the analyte or receptor with the enzyme, enzyme substrate or enzyme generating product by a selective reaction between a receptor and an analyte. Enzymatic reactions such as, etc. may be caused, and the analyte may be detected by measuring absorption, fluorescence, and luminescence of the product by the enzyme reaction.
  • Such enzymes may be, for example, but not limited to, glucose oxidase, glucose dehydrogenase, alkaline phosphatase, peroxidase, and the like
  • the enzyme substrate may be, for example, but not limited to, glucose, hydrogen peroxide, and the like.
  • the signal generating material a light absorbing material, a fluorescent material, or a light emitting material known in the art may be used, and a specific kind thereof may be appropriately selected by those skilled in the art.
  • the sample injected through the sample pad may be any sample including or without an analyte, and means a fluid that may flow from the sample pad to the absorption pad using the reaction membrane as a medium. Specifically, it means a sample in liquid form containing blood, serum, or a specific analyte (DNA, protein, chemical, toxic substance, etc.).
  • the present invention is characterized by a method of measuring the analyte through an immune response by injecting a sample into a multi-channel membrane sensor formed by printing a hydrophobic ink as described above.
  • the unreacted gold nanoparticle antibody complex passes first through the immobilized portion of the detection antibody, and then binds with anti-mouse IgG to display a control signal.
  • the concentration of antigen is high, the result of the anti-mouse IgG region is low, but in the case of the sensor of the present invention, the antigen-antibody reaction is independently performed in each of the multiple channels, and the detection antibody is fixed to the channel. Otherwise, the control channel is not affected by the concentration of the antigen, thereby obtaining more reliable results.
  • the concentration of the detection substance in the injected sample can be measured by measuring the current or resistance reflecting the electrical properties of the test solution existing between the electrodes. For example, when using a test solution with a higher resistivity compared to the detection material, a lower current flows through the test solution due to the higher resistance as the concentration of the detection material increases. Therefore, it is possible to measure the concentration of the detection substance by measuring the current flowing between the two electrodes.
  • the membrane was prepared in the same manner as in Example 1 except for mixing ethanol to 5% by weight and 10% by weight to the silver paste, and then screen printing the same.
  • a phosphate buffered saline (PBS, Gibco, USA) solution containing 1% (w / v) protease free Bovine serum albumin (Fitzerald) was flowed to the prepared multi-channel membrane, and the flow spread around the pattern. It confirmed and shown in FIG.
  • 0.1 mL of 0.1 M boric acid buffer pH 8.5 was added to 1 mL of gold nanoparticle colloid solution (20 nm, BBInternational, GB), and 10 ⁇ l of 1 mg / mL anti-CRP antibody (Abcam) was added for 30 minutes. I was. After the reaction, 1% (w / v) of BSA (protease free Bovine serum albumin, Fitzerald) dissolved in phosphate buffered saline (PBS, Gibco, USA) was added and reacted at 4 ° C. for 60 minutes. After the reaction, centrifuged at 10,000 rpm and 4 ° C.
  • BSA prote free Bovine serum albumin
  • the membrane and the sample pad (glass fiber, 7 mm ⁇ 7 mm), the absorption pad (glass fiber 7 mm ⁇ 10 mm) and the prepared conjugation pad was used to configure a biosensor as shown in FIG.
  • One of the two channels formed was fixed with 1 ⁇ L of anti-CRP polyclonal antibody (15) as a detection antibody and anti-mouse IgG (16) on the other at a concentration of 1 mg / ml.
  • FIG. 4 A photograph of the injection result of the sample is shown in FIG. 4, and the measured absorbance at each channel was compared in FIG. 5.
  • control region (right, anti-mouse IgG is fixed) shows high response regardless of CRP concentration, whereas the test region (left, anti-CRP polyclonal).
  • test region left, anti-CRP polyclonal.
  • the signal was increased as the CRP concentration was increased.
  • Example 5 Measurement of electrochemiluminescence signal using ruthenium tris-bipyridine in strip sensor with silver paste screen printing
  • the electrode was printed with silver paste on the screen 500 ⁇ m by the method of Example 1, and dried at room temperature for 3 hours. After drying was completed, copper wires were bonded to each electrode surface using DOTITE D-500 conductive silver paint (Fujikura Kasei Co. Ltd) between the two channels, through which each electrode was connected to CompactStat (Ivium Technologies). .
  • FIG. 7 is a photograph showing a chemiluminescence signal measured through the above process
  • FIG. 8 is a graph illustrating a comparison of measured current changes according to an applied voltage over time. As shown in FIG. 7 and FIG. 8, it can be seen that as the applied voltage is higher, the chemiluminescence signal and the measurement current increase between the channels, which can be measured using the electrical characteristics of the silver paste pattern manufactured through the present invention. To support it.
  • the antigen concentration can be easily measured through multiple immunochromatography by the biosensor of the present invention.

Abstract

The present invention relates to a method for manufacturing a multiple-diagnosis membrane sensor provided with multiple channels by using screen printing, and more specifically, to a method for manufacturing a membrane sensor capable of multiple diagnosis by means of forming multiple channels by screen-printing a hydrophobic ink on top of a membrane. The membrane sensor according to the present invention can allow mass-production of sensors and secure reliability of detection by forming the plurality of channels on top of the membrane by means of a simple method.

Description

스크린 프린팅을 이용한 다중 진단 멤브레인 센서의 제조방법Manufacturing Method of Multi-Diagnostic Membrane Sensor Using Screen Printing
본 발명은 스크린 프린팅을 이용하여 다중 채널이 형성된 다중 진단 멤브레인 센서의 제조방법에 관한 것으로, 보다 상세하게는 소수성 잉크가 멤브레인 상에 스크린 프린팅되어 다중 채널이 형성됨으로써 다중 진단이 가능하도록 한 멤브레인 센서의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a multi-diagnosis membrane sensor in which multiple channels are formed by using screen printing. More particularly, the present invention relates to a method for manufacturing a multi-diagnosis membrane sensor in which multiple channels are formed by screen printing on a membrane. It relates to a manufacturing method.
스트립 진단 센서는 1976년 임신진단 키트를 시작으로 매우 널리 이용되어 왔으며, 현재에 이르러서는 다양한 질병을 조기 진단하는 기술로 광범위 하게 상용화 되었다. 가장 광범위 하게 이용되는 스트립 센서로는 니트로셀룰로오스 멤브레인을 이용한 면역크로마토그래피 방법을 이용한 것으로, 대량 생산이 용이하고 사용이 편리하며 그 제조 단가가 저렴하다는 장점이 있다. 일반적으로 진단 바이오센서는 민감도와 재현성 이외에 사용화를 위해서 제조단가, 생산성, 쉬운 측정 방법 등이 중요한 요소로 알려져 있다. 이와 더불어 한번의 측정으로 다양한 질병을 동시 진단하는 기술의 필요성 또한 점차 부각되고 있다. 따라서, 진단 바이오센서에 널리 사용되는 멤브레인에 손쉽게 다중 패턴을 인쇄하여 제조하는 방법이 고안될 경우, LFA (lateral flow assay)를 포함한 다양한 진단 바이오센서에서 다중 진단이 가능한 스트립 센서의 대량생산이 가능해 질 것이다. The strip diagnostic sensor has been widely used since the pregnancy kit in 1976, and is now widely used as a technology for early diagnosis of various diseases. The most widely used strip sensor is an immunochromatography method using a nitrocellulose membrane, and has advantages of easy mass production, convenient use, and low manufacturing cost. In general, in addition to sensitivity and reproducibility, diagnostic biosensors are known to be important for manufacturing cost, productivity, and easy measurement methods. In addition, the necessity of a technique for simultaneously diagnosing various diseases with a single measurement is increasing. Therefore, if a method of easily printing and manufacturing multiple patterns on a membrane widely used in diagnostic biosensors is devised, it is possible to mass-produce strip sensors capable of multiple diagnosis in various diagnostic biosensors including lateral flow assay (LFA). will be.
최근 들어 종이나 멤브레인 위에 왁스, 파라핀 등을 이용하여 미세유체 채널등을 프린팅 하여 센서를 제조하는 기술연구가 활발히 진행되고 있다(Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices, Anal. Chem., 2010, 82 (1), pp 3-10; Inkjet-printed microfluidic multianalyte chemical sensing paper, Anal. Chem., 2008, 80, pp 6928-6934; FLASH: A rapid method for prototyping paper-based microfluidic devices, Lab Chip, 2008, 8, pp 2146-2150; Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis, Anal. Chem., 2008, 80, 3699-3707; Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing, Anal. Chem., 2010, 82, pp 329-335)Recently, researches on manufacturing sensors by printing microfluidic channels using wax or paraffin on paper or membranes have been actively conducted (Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices, Anal.Chem. , 2010, 82 (1), pp 3-10; Inkjet-printed microfluidic multianalyte chemical sensing paper, Anal Chem, 2008, 80, pp 6928-6934; FLASH:.. A rapid method for prototyping paper-based microfluidic devices, Lab Chip , 2008, 8, pp 2146-2150; Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis, Anal.Chem., 2008, 80, 3699-3707; Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing, Anal.Chem., 2010, 82, pp 329-335)
이러한 미세유로 채널 센서는 사용이 간단하고, 값싸며, 대량생산이 가능하다는 장점이 있으나, 잉크젯 프린팅 기술을 이용함에 따라 사용되는 잉크의 조성물을 최적화해야 하는 어려움이 있다. Such microchannel channel sensors have advantages in that they are simple to use, inexpensive, and can be mass-produced, but there is a difficulty in optimizing the composition of the ink to be used according to the inkjet printing technology.
따라서, 미세유로채널 제조 기술을 스트립 센서에 적용하여 다중 채널을 제조하는 방법이 대량생산이 용이하고 간단하다면, 저렴한 가격으로 손쉽게 측정이 가능한 다중 채널 스트립 센서를 제조하는 것이 가능할 것이다.Therefore, if the method of manufacturing a multi-channel by applying a micro euro channel manufacturing technique to a strip sensor is easy and mass-produced, it will be possible to manufacture a multi-channel strip sensor that can be easily measured at a low price.
본 발명은 이 같은 배경에서 도출된 것으로, 멤브레인에 대한 스크린 프린팅을 통하여 대량 생산이 가능한 다중 진단 멤브레인 센서의 제조 방법을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION The present invention is derived from this background, and an object thereof is to provide a method for manufacturing a multi-diagnostic membrane sensor that can be mass-produced through screen printing on a membrane.
상기 과제를 해결하기 위하여 본 발명은, 수용성 시료가 흐를 수 있는 멤브레인 위에, 소수성 잉크를 스크린 프린팅(Screen Printing)하여 다중 채널을 형성하는 단계를 포함하는 다중 채널 멤브레인 센서의 제조방법을 제공한다. In order to solve the above problems, the present invention provides a method of manufacturing a multi-channel membrane sensor comprising the step of forming a multi-channel by screen printing (hydrophobic ink) on the membrane through which a water-soluble sample can flow.
일 실시예의 제조방법에서, 상기 멤브레인은 니트로셀룰로오스, 나일론, 폴리술폰, 폴리에테르술폰 및 PVDF(Polyvinylidene fluoride) 중에서 1종 이상으로 이루어지는 것을 특징으로 한다. In one embodiment, the membrane is characterized in that made of one or more of nitrocellulose, nylon, polysulfone, polyethersulfone and PVDF (Polyvinylidene fluoride).
일 실시예의 제조방법에서, 상기 소수성 잉크는 실버페이스트, 카본페이스트, 백금페이스트, 세라믹페이스트 및 왁스 중에서 선택된 1종 이상이 사용되고, 탄소수 1 ~ 6 의 알코올, DMF(Dimethylformamide), DMSO(Dimethyl sulfoxide) 및 아세톤 중에서 선택된 1종 또는 2종 이상의 유기 용매를 포함하는 것을 특징으로 한다. In one embodiment, the hydrophobic ink is one or more selected from silver paste, carbon paste, platinum paste, ceramic paste, and wax, alcohol having 1 to 6 carbon atoms, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and It is characterized by comprising one or two or more organic solvents selected from acetone.
또한 본 발명은, 멤브레인 표면에 소수성 잉크가 스크린 프린팅되어 형성된 다중 채널을 포함하는 수평 흐름(lateral flow)을 이용한 멤브레인 센서를 제공한다. The present invention also provides a membrane sensor using a lateral flow including multiple channels formed by screen printing hydrophobic ink on the membrane surface.
일 실시예의 멤브레인 센서에서, 멤브레인 상에 샘플패드, 컨쥬게이션 패드 및 흡수패드를 포함하는 것을 특징으로 한다. In one embodiment the membrane sensor, characterized in that it comprises a sample pad, a conjugation pad and an absorbent pad on the membrane.
일 실시예의 멤브레인 센서에서, 상기 샘플패드 또는 흡수패드는 셀룰로오스, 폴리에스테르, 폴리프로필렌 및 유리 섬유 중에서 선택된 1종 이상으로 이루어지는 것을 특징으로 한다. In one embodiment of the membrane sensor, the sample pad or absorbent pad is characterized in that consisting of at least one selected from cellulose, polyester, polypropylene and glass fibers.
일 실시예의 멤브레인 센서에서, 상기 컨쥬게이션 패드는 셀룰로오스, 폴리에스테르, 폴리프로필렌, 유리섬유, 니트로셀룰로오스, 나일론, 폴리술폰, 폴리에테르술폰 및 PVDF(Polyvinylidene fluoride) 중에서 선택된 1종 이상으로 이루어지는 것을 특징으로 한다. In one embodiment of the membrane sensor, the conjugation pad is made of at least one selected from cellulose, polyester, polypropylene, fiberglass, nitrocellulose, nylon, polysulfone, polyethersulfone and polyvinylidene fluoride (PVDF). do.
일 실시예의 멤브레인 센서에서, 상기 신호발생물질은 금속 나노입자, 퀀텀닷(quantum dot), 나노입자, 자기 나노입자, 효소, 효소기질, 효소반응 생성물질, 흡광물질, 형광물질 또는 발광물질인 것을 특징으로 한다. In one embodiment of the membrane sensor, the signaling material is a metal nanoparticle, quantum dot (dot), nanoparticles, magnetic nanoparticles, enzymes, enzyme substrate, enzyme reaction generating material, absorbing material, fluorescent material or luminescent material It features.
또한 본 발명은, 상기 멤브레인 센서에 시료를 주입하여 분석대상물질을 측정하는 생체 시료의 분석방법을 제공한다. The present invention also provides a method for analyzing a biological sample injecting a sample into the membrane sensor to measure the analyte.
일 실시예의 측정방법에서, 상기 멤브레인 센서의 다중 채널 사이에서 전기화학적 신호를 측정하는 단계를 포함하는 것을 특징으로 한다. In one embodiment, the measuring method comprises measuring an electrochemical signal between multiple channels of the membrane sensor.
본 발명의 멤브레인 센서는 간단한 방법으로 멤브레인 상에 다수의 채널을 형성할 수 있어, 센서의 대량 생산이 가능하며, 검출의 신뢰성 또한 확보할 수 있다. The membrane sensor of the present invention can form a plurality of channels on the membrane by a simple method, it is possible to mass-produce the sensor, and also to ensure the reliability of the detection.
도 1은 본 발명의 스크린 프린팅을 이용하여 멤브레인 상에 다중 채널을 형성하는 과정을 도식화한 것이다. Figure 1 illustrates the process of forming multiple channels on a membrane using screen printing of the present invention.
도 2는 본 발명의 일 실시예에 따른 멤브레인 센서의 구성을 나타낸 것이다. 2 shows a configuration of a membrane sensor according to an embodiment of the present invention.
도 3은 실시예 1 ~ 3에 따라 스크린 프린팅된 멤브레인 상에 인산완충식염수(PBS) 용액을 흘려 주었을 때 패턴 주위로 퍼진 흐름을 확인한 사진이다(실시예 1 : 에탄올 무, 실시예 2 : 에탄올 5 중량%, 실시예 3 : 에탄올 10 중량%).Figure 3 is a photograph confirming the flow spread around the pattern when the phosphate buffered saline (PBS) solution on the screen printed membrane in accordance with Examples 1 to 3 (Example 1: Ethanol free, Example 2: Ethanol 5 Weight percent, Example 3: 10 weight percent ethanol).
도 4는 실시예 4에서 CRP 항원의 농도에 따른 센싱 결과를 나타낸 사진이다. Figure 4 is a photograph showing the sensing results according to the concentration of the CRP antigen in Example 4.
도 5는 실시예 4에서 각 채널의 흡광도를 농도별로 측정하여 비교한 그래프이다. 5 is a graph comparing the absorbance of each channel by the concentration in Example 4 by concentration.
도 6은 실시예 5에서 스크린프린팅 된 멤브레인 센서에서 전기화학발광 신호를 측정하기 위한 센서의 모식도 및 사진을 나타낸 것이다.Figure 6 shows a schematic diagram and a photograph of a sensor for measuring the electrochemiluminescence signal in the membrane sensor screen-printed in Example 5.
도 7은 실시예 5에서 인가 전압에 따른 화학발광 신호를 측정한 사진이다.FIG. 7 is a photograph of a chemiluminescent signal measured according to an applied voltage in Example 5. FIG.
도 8은 실시예 5에서 인가 전압에 따른 전류변화를 시간에 따라 측정하여 비교한 그래프이다. FIG. 8 is a graph comparing measurement of a current change according to an applied voltage with time in Example 5. FIG.
[부호의 설명][Description of the code]
10 : 멤브레인 11 : 샘플패드10: membrane 11: sample pad
12 : 컨쥬게이션 패드 13 : 흡수패드12: conjugation pad 13: absorption pad
14 : 하부기판 15 : anti-CRP 폴리클로날 항체14: lower substrate 15: anti-CRP polyclonal antibody
16 : anti-mouse IgG 20 : 소수성 잉크16: anti-mouse IgG 20: hydrophobic ink
30 : 파라핀 잉크30: paraffin ink
본 발명은 스크린 프린팅(Screen Printing) 방법을 이용하여 멤브레인에 다중 채널을 형성하는 것을 특징으로 하는 다중 채널 멤브레인 센서의 제조 방법에 관한 것이다. The present invention relates to a method for manufacturing a multi-channel membrane sensor, characterized in that to form a multi-channel on the membrane using a screen printing (Screen Printing) method.
도 1은 본 발명의 일 실시예에 따른 다중 채널 멤브레인 센서의 공정을 도식화한 것이다. 1 illustrates a process of a multi-channel membrane sensor according to an embodiment of the present invention.
먼저 멤브레인(10)은 생체시료가 이송되는 통로 역할을 수행함과 동시에 원하는 화학, 생물학적 반응 결과를 확인할 수 있는 수평흐름이 가능한 멤브레인 형태의 모든 재질을 포함한다. 보다 바람직하게는 니트로셀룰로오스, 나일론, 폴리술폰, 폴리에테르술폰 및 PVDF(Polyvinylidene fluoride) 중에서 선택된 재질의 멤브레인을 사용하는 것이 좋으나, 이에 한정되는 것은 아니며, 액체 시료의 수평 흐름이 가능한 재질 중에서 당업자에 의하여 적절히 선택될 수 있다. First, the membrane 10 includes all materials in the form of a membrane capable of horizontal flow that can act as a passage through which a biological sample is transferred and at the same time confirm a desired chemical or biological reaction result. More preferably, a membrane made of a material selected from nitrocellulose, nylon, polysulfone, polyethersulfone, and polyvinylidene fluoride (PVDF) may be used, but is not limited thereto. May be appropriately selected.
상기 멤브레인 위에 스크린 프린팅 방법을 이용하여 소수성 잉크(20)가 프린팅 된다. 상기 스크린 프린팅은 당업계에 널리 알려진 방법으로 적용될 수 있으며, 일 예로서 상기 스크린 프린팅을 수행하는 프린터는 일정 패턴을 이루는 개구부가 형성된 미세메쉬와 소수성 잉크를 도포하기 위한 스퀴지 및 상기 마스크 하부에 멤브레인을 지지하는 스테이지 모듈로 구성될 수 있다. 스크린 프린팅된 잉크는 5 ~ 10 μm 의 두께로 멤브레인 위에 도포되고, 도포된 잉크는 멤브레인의 기공을 통하여 일부는 침착되게 된다. Hydrophobic ink 20 is printed on the membrane by using a screen printing method. The screen printing may be applied by a method well known in the art. For example, the printer for performing the screen printing may include a membrane formed under the mask and a squeegee for applying a fine mesh and a hydrophobic ink having an opening forming a predetermined pattern. It may be composed of a supporting stage module. The screen printed ink is applied on the membrane to a thickness of 5 to 10 μm, and the applied ink is partially deposited through the pores of the membrane.
상기 소수성 잉크는 주입시료와 혼합되지 아니하여 시료의 흐름을 유도하는 채널의 역할을 할 수 있는 성분이면 그 종류가 제한되지 아니하나, 바람직하게는 실버페이스트, 카본페이스트, 백금페이스트, 세라믹페이스트, 왁스 등이 사용될 수 있으며, 가장 바람직하게는 실버페이스트가 사용되는 것이 좋다. The hydrophobic ink is not limited as long as the component is not mixed with the injected sample and can serve as a channel for inducing the flow of the sample, but is preferably silver paste, carbon paste, platinum paste, ceramic paste or wax. Etc. may be used, and most preferably, silver paste is used.
상기 스크린 프린팅을 통하여 원하는 형태로 인쇄한 후, 이를 건조시키면 시료의 이동을 가능하게 하는 다중 채널을 형성시킬 수 있다. After printing in a desired form through the screen printing, and drying it to form a multi-channel that enables the movement of the sample.
또한, 상기 소수성 잉크는 유기 용매를 추가적으로 더 포함하는 것이 바람직한데, 이는 멤브레인이 유기 용매에 녹는 성질이 있기 때문에 적절한 유기 용매와 함께 소수성 잉크가 프린팅 되는 경우 잉크의 소수성 성질이 증가하므로 패턴 주위로 시료가 퍼지는 것을 막을 수 있다. 또한 유기용매를 사용할 경우 프린팅된 잉크가 멤브레인의 기공을 통하여 침투되는 효율이 증대되므로, 그에 따라 형성된 채널의 소수성 성질이 증가 될 수 있다.In addition, it is preferable that the hydrophobic ink further includes an organic solvent. Since the hydrophobic ink is printed with an appropriate organic solvent because the membrane has a property of dissolving in an organic solvent, the hydrophobic property of the ink is increased, so that the sample around the pattern Can prevent the spread. In addition, when the organic solvent is used, the efficiency of penetration of the printed ink through the pores of the membrane is increased, thereby increasing the hydrophobic property of the formed channel.
상기 유기 용매로는 탄소수 1 ~ 6 의 알코올, DMF(Dimethylformamide), DMSO(Dimethyl sulfoxide), 아세톤 등을 사용할 수 있으나, 사용되는 멤브레인의 재질에 따라 적절하게 조절하는 것이 바람직하다. 또한 상기 유기 용매는 소수성 용매 100 중량부에 대하여 1 ~ 80 중량부, 보다 바람직하게는 5 ~ 50 중량부가 사용되는 것이 좋다. The organic solvent may be an alcohol having 1 to 6 carbon atoms, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, or the like. However, the organic solvent may be appropriately controlled according to the material of the membrane used. In addition, the organic solvent is preferably 1 to 80 parts by weight, more preferably 5 to 50 parts by weight based on 100 parts by weight of hydrophobic solvent.
또한, 상기 스크린 프린팅된 멤브레인의 건조 시, 50 ~ 200 ℃의 오븐에서 10분 내지 3시간 동안 건조하는 것이 바람직하다.한편 본 발명의 멤브레인 센서는 도 2에서 보는 바와 같이 일반적인 스트립 바이오센서의 구성요소인 샘플패드(11), 컨쥬게이션 패드(12), 흡수패드(13), 하부기판(14)을 포함하여 이루어질 수 있다. 본 발명에서 샘플패드는 액상시료가 투입되어 반응 멤브레인으로 전개되도록 하며, 흡수패드는 반응 멤브레인으로 전개된 시료를 흡수하는 역할을 한다. 상기 샘플패드 또는 흡수패드는 액상 시료를 흡수할 수 있는 재료라면 그 종류가 제한되지 않으나, 바람직하게는 셀룰로오스, 폴리에스테르, 폴리프로필렌 또는 유리 섬유와 같은 재질로 이루어지는 것이 좋다. In addition, when drying the screen printed membrane, it is preferable to dry for 10 minutes to 3 hours in an oven at 50 ~ 200 ℃. Meanwhile, the membrane sensor of the present invention is a component of a typical strip biosensor as shown in FIG. The sample pad 11 may include a conjugation pad 12, an absorbent pad 13, and a lower substrate 14. In the present invention, the sample pad is a liquid sample is introduced into the reaction membrane, the absorption pad serves to absorb the sample developed into the reaction membrane. The sample pad or absorbent pad is not limited as long as it is a material capable of absorbing a liquid sample, but is preferably made of a material such as cellulose, polyester, polypropylene or glass fiber.
그리고 본 발명에서 상기 컨쥬게이션 패드는 신호발생물질; 또는 검출 항체와 같이 분석대상물질에 선택적으로 결합하는 물질과 신호발생물질의 접합체가 처리되어 있는 것을 사용할 수 있다. In the present invention, the conjugation pad may include a signal generating material; Alternatively, a conjugate of a substance that selectively binds to an analyte and a signal generating agent, such as a detection antibody, may be used.
상기 컨쥬게이션 패드에 신호발생물질이 도포된 후 건조되어 있는 경우는, 예를 들어 상기 신호발생물질이 효소, 효소 기질 또는 화학발광물질인 경우에, 멤브레인 상에 리셉터와 함께 상기 신호발생물질에 반응하는 효소 기질 또는 효소 등을 미리 주입 또는 흡착시킨 후 시료를 주입함으로써 효소반응에 의한 신호발생물질의 신호로 분석대상물질을 측정할 수 있다. 상기 컨쥬게이션 패드에 분석대상물질에 선택적으로 결합하는 물질과 신호발생물질의 접합체가 도포된 후 건조되어 있는 경우에는, 리셉터와 분석대상물질의 선택적인 반응에 의한 신호발생물질의 신호로 분석대상물질을 측정할 수 있다.When the signaling material is applied to the conjugation pad and then dried, for example, when the signaling material is an enzyme, an enzyme substrate or a chemiluminescent material, the reaction material reacts with the receptor on the membrane. By injecting or adsorbing an enzyme substrate or an enzyme in advance, and then injecting a sample, the analyte may be measured by a signal of a signal generating material by an enzyme reaction. If the conjugate pad is coated with a substance that selectively binds to the analyte and a signal generating material, and then dried on the conjugation pad, the analyte as a signal of the signal generating material by the selective reaction between the receptor and the analyte. Can be measured.
본 발명에 있어서, 상기 컨쥬게이션 패드로는 접합체를 도포하여 건조한 후, 상기 컨쥬게이션 패드가 액체에 젖을 경우 접합체가 컨쥬게이션 패드로부터 쉽게 떨어지는 물질이면 모두 사용할 수 있으며, LFA 시스템에서 일반적으로 사용되는 컨쥬게이션 패드라면 모두 사용될 수 있으며, 셀룰로오스, 폴리에스테르, 폴리프로필렌 또는 유리섬유와 같은 재질뿐 만 아니라, 니트로셀룰로오스, 나일론, 폴리술폰, 폴리에테르술폰 또는 PVDF(Polyvinylidene fluoride)와 같은 멤브레인 재질 모두 사용될 수 있다. In the present invention, after the conjugate pad is coated and dried, the conjugate pad may be used as long as the conjugate pad is easily separated from the conjugate pad when the conjugate pad is wet with liquid, and is commonly used in LFA systems. Any gating pad can be used, as well as materials such as cellulose, polyester, polypropylene or fiberglass, as well as membrane materials such as nitrocellulose, nylon, polysulfone, polyethersulfone or polyvinylidene fluoride (PVDF). .
한편, 상기 신호발생물질은 금속 나노입자, 퀀텀닷(quantum dot) 나노입자, 자기 나노입자, 효소, 효소 기질, 효소반응 생성물질, 흡광물질, 형광물질 또는 발광물질인 것을 특징으로 할 수 있다. 상기 신호발생물질이 금속 나노입자일 경우에는 리셉터와 분석대상물질의 선택적인 반응에 의한 금속 나노입자의 색변화를 통해 분석대상물질을 검출할 수 있으며, 멤브레인 상에서 리셉터에 선택적으로 결합된 분석대상물질과 금속 나노입자의 결합체의 흡광도, 전기 전도도 등을 측정함으로써 분석대상물질을 정량적으로 분석할 수 있다. 이러한 금속 나노입자는, 예를 들어, 금 나노입자, 은 나노입자, 구리 나노입자 등일 수 있으나, 이에 제한되는 것은 아니다.The signal generating material may be a metal nanoparticle, a quantum dot nanoparticle, a magnetic nanoparticle, an enzyme, an enzyme substrate, an enzyme reaction generating material, an absorbing material, a fluorescent material, or a light emitting material. When the signal generating material is a metal nanoparticle, the analyte may be detected through the color change of the metal nanoparticle by a selective reaction between the receptor and the analyte, and the analyte selectively bound to the receptor on the membrane. The analyte can be quantitatively analyzed by measuring the absorbance and electrical conductivity of the conjugate of the metal nanoparticles. Such metal nanoparticles may be, for example, gold nanoparticles, silver nanoparticles, copper nanoparticles, and the like, but are not limited thereto.
상기 신호발생물질이 효소, 효소 기질 또는 효소반응 생성물질일 경우에는 리셉터와 분석대상물질의 선택적인 반응에 의해 분석대상물질 또는 리셉터와 상기 효소, 효소 기질 또는 효소반응 생성물질이 반응하여 산화환원반응 등과 같은 효소반응을 일으키게 되는데, 이 때 상기 효소 반응에 의한 생성물의 흡광, 형광, 발광 등을 측정함으로써 분석대상물질을 검출할 수 있다. 이러한 효소는, 예를 들어 글루코스 옥시다아제, 글루코스 탈수소효소, 알칼리 포스파타제, 퍼옥시다제 등일 수 있으나 이에 제한되는 것은 아니며, 효소 기질은, 예를 들어 글루코스, 과산화수소 등일 수 있으나 이에 제한되는 것은 아니다.When the signal generating material is an enzyme, an enzyme substrate or an enzyme reaction generating material, a redox reaction is performed by reacting the analyte or receptor with the enzyme, enzyme substrate or enzyme generating product by a selective reaction between a receptor and an analyte. Enzymatic reactions such as, etc. may be caused, and the analyte may be detected by measuring absorption, fluorescence, and luminescence of the product by the enzyme reaction. Such enzymes may be, for example, but not limited to, glucose oxidase, glucose dehydrogenase, alkaline phosphatase, peroxidase, and the like, and the enzyme substrate may be, for example, but not limited to, glucose, hydrogen peroxide, and the like.
이외에도 상기 신호발생물질로서 당업계에 공지된 흡광물질, 형광물질 또는 발광물질을 사용할 수 있으며, 구체적인 종류는 당업자에 의해 적절히 선택될 수 있다. In addition, as the signal generating material, a light absorbing material, a fluorescent material, or a light emitting material known in the art may be used, and a specific kind thereof may be appropriately selected by those skilled in the art.
본 발명에서 샘플패드를 통하여 주입되는 시료는 분석대상물질이 포함되거나 포함되지 않은 임의의 시료일 수 있으며, 반응 멤브레인을 매개체로 하여 샘플패드에서 흡수패드로 흘러 갈수 있는 유체를 의미한다. 구체적으로 혈액, 혈청 또는 특정 분석물질(DNA, 단백질, 화학물질, 독성물질 등)을 포함하는 액체 형태의 시료를 의미한다.In the present invention, the sample injected through the sample pad may be any sample including or without an analyte, and means a fluid that may flow from the sample pad to the absorption pad using the reaction membrane as a medium. Specifically, it means a sample in liquid form containing blood, serum, or a specific analyte (DNA, protein, chemical, toxic substance, etc.).
또한 본 발명은, 상기와 같이 소수성 잉크가 프린팅되어 형성된 다중 채널 멤브레인 센서에 시료를 주입하여 면역 반응 등을 통하여 분석대상물질을 측정하는 방법을 특징으로 한다. In another aspect, the present invention is characterized by a method of measuring the analyte through an immune response by injecting a sample into a multi-channel membrane sensor formed by printing a hydrophobic ink as described above.
상기 다중 채널 각각에 검출 항체 등을 고정시켜 각각의 채널에서 독립적인 측정이 가능하다. 즉 예를 들어 일반적인 LFA 스트립의 경우, 반응하지 않은 금 나노입자 항체 복합체는 검출항체가 고정된 부분을 먼저 통과 한 후, anti-mouse IgG와 결합하여 대조군(control) 시그널을 나타낸다. 결국, 항원의 농도가 높은 경우 anti-mouse IgG 영역의 결과는 낮게 나타나게 되나, 본 발명의 센서의 경우에는 각각의 다중 채널에서 항원-항체 반응이 독립적으로 이루어지며, 검출 항체가 고정된 채널과는 달리 대조군 채널에서는 항원의 농도에 영향을 받지 아니하는 바, 보다 신뢰성 있는 결과를 확보할 수 있다. By detecting a detection antibody or the like in each of the multiple channels, independent measurement in each channel is possible. That is, for example, in the case of a typical LFA strip, the unreacted gold nanoparticle antibody complex passes first through the immobilized portion of the detection antibody, and then binds with anti-mouse IgG to display a control signal. As a result, when the concentration of antigen is high, the result of the anti-mouse IgG region is low, but in the case of the sensor of the present invention, the antigen-antibody reaction is independently performed in each of the multiple channels, and the detection antibody is fixed to the channel. Otherwise, the control channel is not affected by the concentration of the antigen, thereby obtaining more reliable results.
또한, 스크린 프린팅 된 소수성 잉크의 전기적 특성을 이용하여 멤브레인 센서의 다중 채널 사이에서 전기화학적 신호를 측정하여 시료의 분석을 진행할 수도 있으며, 보다 구체적으로 전극 사이의 다중 채널에 시료를 포함한 실험 용액을 주입한 후 마주보는 전극 간에 일정한 전압 또는 전류를 가해주게 되면 전극 사이에 존재하는 실험 용액의 전기적 특성을 반영하는 전류 또는 저항을 측정하여 주입된 시료에서 검출 물질의 농도를 측정할 수 있다. 예를 들어 검출 물질과 비교하여 비저항이 큰 실험 용액을 사용하면, 검출 물질의 농도가 증가할수록 높아진 저항으로 인해 더 낮은 전류가 실험 용액을 통해 흐르게 된다. 따라서 두 전극 사이에 흐르는 전류를 측정하여 검출 물질의 농도를 측정하는 것이 가능하다. In addition, by using the electrical properties of the screen-printed hydrophobic ink to measure the electrochemical signal between the multi-channel of the membrane sensor can be analyzed the sample, more specifically injecting the test solution containing the sample in the multi-channel between the electrodes After applying a constant voltage or current between the opposite electrodes, the concentration of the detection substance in the injected sample can be measured by measuring the current or resistance reflecting the electrical properties of the test solution existing between the electrodes. For example, when using a test solution with a higher resistivity compared to the detection material, a lower current flows through the test solution due to the higher resistance as the concentration of the detection material increases. Therefore, it is possible to measure the concentration of the detection substance by measuring the current flowing between the two electrodes.
전술한, 그리고 추가적인 본 발명의 양상들은 첨부된 도면들을 참조하여 설명되는 바람직한 실시예 들을 통해 더욱 명확하게 설명될 것이다. 이하에서는 본 발명을 이러한 실시예들을 통해 당업자가 용이하게 이해하고 재현할 수 있도록 상세히 설명하기로 한다.The foregoing and further aspects of the present invention will be more clearly described through the preferred embodiments described with reference to the accompanying drawings. Hereinafter, the present invention will be described in detail so that those skilled in the art can easily understand and reproduce the present invention through these embodiments.
그러나 하기 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다 However, the following examples are only intended to illustrate the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1 : 스크린 프린팅에 의한 다중 채널 멤브레인의 제조Example 1 Preparation of Multichannel Membrane by Screen Printing
소수성 잉크로서 실버페이스트를 니트로셀룰로오스 멤브레인(Millipore, 180 sec Nitrocellulose, 4 mm × 25 mm) 상에 도 1에서 보는 바와 같이 4개의 채널이 형성되도록 5 ~ 10 ㎛의 두께로 스크린 프린팅 하였다. 다음, 상온에서 15분간 건조한 후, 100 ℃ 건조 오븐에서 1시간 동안 처리하여 최종적으로 다중 채널 멤브레인을 얻었다.As a hydrophobic ink Silver paste was screen printed on a nitrocellulose membrane (Millipore, 180 sec Nitrocellulose, 4 mm × 25 mm) with a thickness of 5-10 μm to form four channels as shown in FIG. 1. Then, after drying for 15 minutes at room temperature, and treated for 1 hour at 100 ℃ drying oven to finally obtain a multi-channel membrane.
실시예 2 ~ 3 : 유기 용매를 사용한 스크린 프린팅Examples 2-3: Screen Printing Using Organic Solvents
상기 실버페이스트에 에탄올을 각각 5 중량%, 10 중량%가 되도록 혼합한 후, 이를 스크린 프린팅하는 것을 제외하고는 상기 실시예 1과 동일하게 멤브레인을 제조하였다. The membrane was prepared in the same manner as in Example 1 except for mixing ethanol to 5% by weight and 10% by weight to the silver paste, and then screen printing the same.
상기 제조된 다중 채널 멤브레인에 1%(w/v)의 BSA(protease free Bovine serum albumin, Fitzerald)가 포함된 인산완충식염수(PBS, Gibco, USA) 용액을 흘려 보냈으며, 패턴 주위로 퍼진 흐름을 확인하여 도 3에 나타내었다. A phosphate buffered saline (PBS, Gibco, USA) solution containing 1% (w / v) protease free Bovine serum albumin (Fitzerald) was flowed to the prepared multi-channel membrane, and the flow spread around the pattern. It confirmed and shown in FIG.
상기 도 3에서 보는 바와 같이, 에탄올이 첨가된 실버페이스트가 인쇄된 패턴의 경우, 첨가되지 않은 패턴과 비교하여 채널 주변으로 퍼진 용액이 크게 감소하였으며, 특히 에탄올이 10중량%로 포함된 경우에는 패턴 주위로 퍼진 흐름이 거의 존재하지 않음을 알 수 있었다. 일반적으로 니트로셀룰로오스 멤브레인의 경우 에탄올에 녹는 성질이 있으므로, 적절하게 에탄올의 농도가 조절되면 실버페이스트가 침습되어 이의 소수성 성질이 증가되는 것으로 보여진다. As shown in FIG. 3, in the case of the printed pattern of silver paste to which ethanol was added, the solution spread around the channel was greatly reduced compared to the pattern without addition, especially when 10 wt% of ethanol was included. It can be seen that there is almost no flow spread around. In general, nitrocellulose membranes are soluble in ethanol, so when the concentration of ethanol is properly adjusted, silver paste is invaded and its hydrophobicity is increased.
실시예 4 : 바이오센서를 이용한 인간 혈청 내의 CRP(C-Reactive Protein) 측정Example 4 Measurement of C-Reactive Protein in Human Serum Using a Biosensor
4-1. 금 나노입자-항체 접합체 합성4-1. Gold nanoparticle-antibody conjugate synthesis
금 나노입자 콜로이드 용액(20 nm, BBInternational, GB) 1 mL에 0.1 M 의 붕산 버퍼 (pH 8.5) 0.1 mL를 넣고, 1 mg/mL의 anti-CRP 항체(Abcam) 10㎕ 를 넣어 30분 동안 반응시켰다. 상기 반응 후 1%(w/v)의 BSA(protease free Bovine serum albumin, Fitzerald)를 인산완충식염수(PBS, Gibco, USA)에 녹인 용액 0.1 mL를 첨가하여 60분 동안 4℃에서 반응시켰다. 상기 반응 후, 10,000 rpm, 4℃에서 20분간 원심분리 하여 3차례에 걸쳐 10 mM의 PBS에 녹인 1 mg/mL의 BSA 용액 1 mL을 넣어 정제·회수하여 금 나노입자-항체 접합체를 합성하였다. 합성된 금 나노입자-항체 접합체를 2.5배 농축시킨 후, 약 7 × 4 mm로 절단된 컨쥬게이션 패드(fusion 5, whatman)에 10μL씩 주입하여 건조하였다.0.1 mL of 0.1 M boric acid buffer (pH 8.5) was added to 1 mL of gold nanoparticle colloid solution (20 nm, BBInternational, GB), and 10 μl of 1 mg / mL anti-CRP antibody (Abcam) was added for 30 minutes. I was. After the reaction, 1% (w / v) of BSA (protease free Bovine serum albumin, Fitzerald) dissolved in phosphate buffered saline (PBS, Gibco, USA) was added and reacted at 4 ° C. for 60 minutes. After the reaction, centrifuged at 10,000 rpm and 4 ° C. for 20 minutes, 1 mL of 1 mg / mL BSA solution dissolved in 10 mM PBS was added and purified and recovered three times to synthesize gold nanoparticle-antibody conjugates. The synthesized gold nanoparticle-antibody conjugate was concentrated 2.5 times, and dried by injecting 10 μL into a conjugation pad (fusion 5, whatman) cut to about 7 × 4 mm.
4-2. 멤브레인의 제조4-2. Preparation of the Membrane
소수성 잉크로서 실버페이스트를 니트로셀룰로오스 멤브레인(Millipore, 180 sec Nitrocellulose, 7 mm × 25 mm) 상에 도 2에서 보는 바와 같이 2개의 채널이 형성되도록 약 10 ㎛의 두께로 스크린 프린팅 하였다. As a hydrophobic ink Silver paste was screen printed on a nitrocellulose membrane (Millipore, 180 sec Nitrocellulose, 7 mm × 25 mm) to a thickness of about 10 μm so that two channels were formed as shown in FIG. 2.
다음, 상온에서 15분간 건조한 후, 100 ℃ 건조 오븐에서 1시간 동안 처리하여 최종적으로 다중 채널 멤브레인을 얻었다. Then, after drying for 15 minutes at room temperature, and treated for 1 hour at 100 ℃ drying oven to finally obtain a multi-channel membrane.
상기 멤브레인과 샘플패드(유리섬유, 7 mm × 7mm), 흡수패드(유리섬유 7 mm × 10 mm) 및 상기 제조된 컨쥬게이션 패드를 사용하여 도 2와 같은 바이오센서를 구성하였다. The membrane and the sample pad (glass fiber, 7 mm × 7 mm), the absorption pad (glass fiber 7 mm × 10 mm) and the prepared conjugation pad was used to configure a biosensor as shown in FIG.
상기 형성된 2개의 채널 중 한 쪽에는 검출 항체로서 anti-CRP 폴리클로날 항체(15)를, 다른 한쪽에는 anti-mouse IgG(16)를 각각 1 mg/ml 의 농도로 1 μL씩 고정시켰다. One of the two channels formed was fixed with 1 μL of anti-CRP polyclonal antibody (15) as a detection antibody and anti-mouse IgG (16) on the other at a concentration of 1 mg / ml.
다음 0, 1, 10, 100 및 1000 ng/mL의 농도로 CRP를 녹인 인간 혈장(CRP free serum) 50 ㎕를 샘플패드에 주입하였으며, 3 분 경과 후 각 채널에서의 흡광도를 측정하였다. Next, 50 μl of human plasma (CRP free serum) in which CRP was dissolved at concentrations of 0, 1, 10, 100, and 1000 ng / mL was injected into the sample pad, and absorbance in each channel was measured after 3 minutes.
상기 샘플의 주입 결과 사진을 도 4에 나타내었으며, 각 채널에서의 측정된 흡광도를 도 5에서 비교하였다. A photograph of the injection result of the sample is shown in FIG. 4, and the measured absorbance at each channel was compared in FIG. 5.
상기 도 4 및 5에서 보는 바와 같이, Control 영역(오른쪽, anti-mouse IgG가 고정된 부분)의 경우 CRP 농도와 상관없이 모두 높은 반응을 나타내고 있는 반면, Test 영역(왼쪽, anti-CRP 폴리클로날 항체가 고정된 부분)의 경우 CRP 농도가 증가함에 따라 신호가 증가하는 것을 확인할 수 있었다. As shown in FIGS. 4 and 5, the control region (right, anti-mouse IgG is fixed) shows high response regardless of CRP concentration, whereas the test region (left, anti-CRP polyclonal). In the case where the antibody is immobilized, the signal was increased as the CRP concentration was increased.
실시예 5 : 실버페이스트가 스크린 프린팅된 스트립센서에서의 루테늄 트리스-비피리딘을 이용한 전기화학발광 신호 측정Example 5: Measurement of electrochemiluminescence signal using ruthenium tris-bipyridine in strip sensor with silver paste screen printing
5-1. 센서제조5-1. Sensor manufacturing
파라핀 고체 잉크를 사용하는 프린터를 이용하여 니트로셀룰로오스 멤브레인(Millipore, 90 sec Nitrocellulose, 12 mm × 10 mm) 상에 1.1 mm 간격의 채널을 인쇄하고, 100 ℃에서 1분간 처리하여 파라핀이 멤브레인으로 스며들도록 하였다. 상기 제조된 멤브레인에 도 6에서 보는 바와 같이, 실시예 1의 방법으로 실버페이스트를 스크린 500 ㎛의 간격을 갖도록 전극을 프린팅하고, 상온에서 3시간 동안 건조시켰다. 건조가 완료된 후, 두 채널 사이를 DOTITE D-500 전도성 실버 도료 (Fujikura Kasei Co. Ltd)를 이용하여 각 전극 표면에 동선을 본딩하고, 이 동선을 통해 각 전극을 CompactStat(Ivium Technologies)에 연결시켰다.Print a 1.1 mm channel on a nitrocellulose membrane (Millipore, 90 sec Nitrocellulose, 12 mm × 10 mm) using a printer using a paraffin solid ink, and treat it for 1 minute at 100 ° C to allow the paraffin to penetrate into the membrane. It was. As shown in FIG. 6, the electrode was printed with silver paste on the screen 500 μm by the method of Example 1, and dried at room temperature for 3 hours. After drying was completed, copper wires were bonded to each electrode surface using DOTITE D-500 conductive silver paint (Fujikura Kasei Co. Ltd) between the two channels, through which each electrode was connected to CompactStat (Ivium Technologies). .
5-2. 전기화학발광 신호 측정5-2. Electrochemiluminescence Signal Measurement
1 mg 의 루테늄 트리스-비피리딘을 100 ㎕의 DMSO 에 녹인 후, PBS버퍼 용액에 녹인 5 M 트리프로필 아민을 각각 10 mM PBS 버퍼에 100배 희석하고, 각각의 용액을 1 : 1의 부피비로 혼합하여 반응용액을 제조하였다. 제조된 반응용액 20 ㎕를 상기 제조한 센서의 멤브레인 하단부에 주입하여 채널 사이로 통과시킨 후 1.7V, 2.5V, 4V를 160초 동안 적용하고 1초 단위로 전류를 측정하였으며, 동시에 화학발광신호를 측정하였다. 상기 화학발광신호는 LAS3000(Fujifilm) 이용하여 측정하였다. After dissolving 1 mg of ruthenium tris-bipyridine in 100 μl of DMSO, 5 M tripropyl amine dissolved in PBS buffer solution was diluted 100-fold in 10 mM PBS buffer, respectively, and each solution was mixed in a volume ratio of 1: 1. To prepare a reaction solution. 20 μl of the prepared reaction solution was injected into the lower end of the membrane of the sensor, and passed through the channels, and then 1.7V, 2.5V, and 4V were applied for 160 seconds, and current was measured in units of 1 second. It was. The chemiluminescence signal was measured using LAS3000 (Fujifilm).
도 7은 상기 과정을 통하여 화학발광신호를 측정한 사진을 나타낸 것이며, 도 8은 인가 전압에 따른 전류변화를 시간에 따라 측정하여 비교한 그래프를 나타낸 것이다. 상기 도 7 및 도8 에서 보는 바와 같이 인가 전압이 높을수록 채널 사이의 화학발광신호와 측정전류가 증가하는 것을 확인할 수 있으며, 이는 본 발명을 통하여 제작된 실버페이스트 패턴의 전기적 특성을 이용한 측정이 가능함을 뒷받침한다. 7 is a photograph showing a chemiluminescence signal measured through the above process, and FIG. 8 is a graph illustrating a comparison of measured current changes according to an applied voltage over time. As shown in FIG. 7 and FIG. 8, it can be seen that as the applied voltage is higher, the chemiluminescence signal and the measurement current increase between the channels, which can be measured using the electrical characteristics of the silver paste pattern manufactured through the present invention. To support it.
결국 본 발명의 바이오센서에 의한 다중 면역 크로마토그래피를 통하여 손쉽게 항원의 농도별 측정이 가능함을 확인할 수 있었다. 또한 스크린 프린팅된 페이스트의 전기적 특성을 이용하여 전기화학발광 신호를 측정하는 것이 가능함을 확인할 수 있었다. As a result, it was confirmed that the antigen concentration can be easily measured through multiple immunochromatography by the biosensor of the present invention. In addition, it was confirmed that it is possible to measure the electrochemiluminescence signal using the electrical properties of the screen printed paste.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific parts of the present invention in detail, it is apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

  1. 수용성 시료가 흐를 수 있는 멤브레인 위에, 소수성 잉크를 스크린 프린팅(Screen Printing)하여 다중 채널을 형성하는 단계를 포함하는 것을 특징으로 하는 다중 채널 멤브레인 센서의 제조방법.A method of manufacturing a multi-channel membrane sensor comprising the step of screen printing a hydrophobic ink on a membrane through which a water-soluble sample can flow.
  2. 제1항에 있어서,The method of claim 1,
    상기 멤브레인은 니트로셀룰로오스, 나일론, 폴리술폰, 폴리에테르술폰 및 PVDF(Polyvinylidene fluoride) 중에서 1종 이상으로 이루어지는 것을 특징으로 하는 다중 채널 멤브레인 센서의 제조방법.The membrane is a nitrocellulose, nylon, polysulfone, polyethersulfone and PVDF (Polyvinylidene fluoride) a method for producing a multi-channel membrane sensor, characterized in that made of one or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 소수성 잉크는 실버페이스트, 카본페이스트, 백금페이스트, 세라믹페이스트 및 왁스 중에서 선택된 1종 이상이 사용되는 것을 특징으로 하는 다중 채널 멤브레인 센서의 제조방법.The hydrophobic ink is a method of manufacturing a multi-channel membrane sensor, characterized in that at least one selected from silver paste, carbon paste, platinum paste, ceramic paste and wax is used.
  4. 제1항에 있어서,The method of claim 1,
    상기 소수성 잉크는 탄소수 1 ~ 6 의 알코올, DMF(Dimethylformamide), DMSO(Dimethyl sulfoxide) 및 아세톤 중에서 선택된 1종 또는 2종 이상의 유기 용매를 포함하는 것을 특징으로 하는 다중 채널 멤브레인 센서의 제조방법.The hydrophobic ink is a method for producing a multi-channel membrane sensor, characterized in that it comprises one or two or more organic solvents selected from alcohols of 1 to 6 carbon atoms, dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and acetone.
  5. 멤브레인 표면에 소수성 잉크가 스크린 프린팅되어 형성된 다중 채널을 포함하는 것을 특징으로 하는 수평 흐름(lateral flow)을 이용한 멤브레인 센서.A membrane sensor using a lateral flow, characterized in that it comprises a multi-channel formed by screen printing the hydrophobic ink on the membrane surface.
  6. 제5항에 있어서, The method of claim 5,
    멤브레인 상에 샘플패드, 컨쥬게이션 패드 및 흡수패드를 포함하는 것을 특징으로 하는 멤브레인 센서. A membrane sensor comprising a sample pad, a conjugation pad and an absorbent pad on a membrane.
  7. 제6항에 있어서,The method of claim 6,
    상기 샘플패드 또는 흡수패드는 셀룰로오스, 폴리에스테르, 폴리프로필렌 및 유리 섬유 중에서 선택된 1종 이상으로 이루어지는 것을 특징으로 하는 멤브레인 센서.The sample pad or absorbent pad is a membrane sensor, characterized in that consisting of at least one selected from cellulose, polyester, polypropylene and glass fibers.
  8. 제6항에 있어서,The method of claim 6,
    상기 컨쥬게이션 패드는 셀룰로오스, 폴리에스테르, 폴리프로필렌, 유리섬유, 니트로셀룰로오스, 나일론, 폴리술폰, 폴리에테르술폰 및 PVDF(Polyvinylidene fluoride) 중에서 선택된 1종 이상으로 이루어지는 것을 특징으로 하는 멤브레인 센서.The conjugation pad is a membrane sensor comprising at least one selected from cellulose, polyester, polypropylene, glass fiber, nitrocellulose, nylon, polysulfone, polyethersulfone and polyvinylidene fluoride (PVDF).
  9. 제6항에 있어서,The method of claim 6,
    상기 컨쥬게이션 패드는 신호발생물질, 또는 분석대상물질에 선택적으로 결합하는 물질과 산호발생물질의 접합체가 처리된 것을 특징으로 하는 멤브레인 센서.The conjugation pad is a membrane sensor, characterized in that a conjugate of a signal generating material or a material selectively binding to the analyte and a coral generating material is processed.
  10. 제9항에 있어서, The method of claim 9,
    상기 신호발생물질은 금속 나노입자, 퀀텀닷(quantum dot), 나노입자, 자기 나노입자, 효소, 효소기질, 효소반응 생성물질, 흡광물질, 형광물질 또는 발광물질인 것을 특징으로 하는 멤브레인 센서.The signal generating material is a metal nanoparticle, quantum dot (quantum dot), nanoparticles, magnetic nanoparticles, enzymes, enzyme substrates, enzyme reaction generating material, light absorbing material, fluorescent material or light emitting material, characterized in that the membrane sensor.
  11. 제5항 내지 제10항 중에서 선택된 어느 한 항의 멤브레인 센서에 시료를 주입하여 분석대상물질을 측정하는 것을 특징으로 하는 생체 시료의 분석방법.A method of analyzing a biological sample, wherein the analyte is measured by injecting a sample into the membrane sensor of any one of claims 5 to 10.
  12. 제11항에 있어서,The method of claim 11,
    상기 멤브레인 센서의 다중 채널 사이에서 전기화학적 신호를 측정하는 단계를 포함하는 것을 특징으로 하는 생체 시료의 분석방법.And measuring an electrochemical signal between the multiple channels of the membrane sensor.
PCT/KR2012/008087 2011-10-06 2012-10-05 Method for manufacturing multiple-diagnosis membrane sensor by using screen printing WO2013051890A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280049510.7A CN103890583B (en) 2011-10-06 2012-10-05 Utilize the manufacture method of the multiple diagnostic film sensors of serigraphy
US14/350,278 US9970933B2 (en) 2011-10-06 2012-10-05 Method for manufacturing multiple-diagnosis membrane sensor by using screen printing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0101671 2011-10-06
KR20110101671 2011-10-06
KR1020120110524A KR101471932B1 (en) 2011-10-06 2012-10-05 A method of producing membrane sensor for multiple diagnosis using screen printing
KR10-2012-0110524 2012-10-05

Publications (2)

Publication Number Publication Date
WO2013051890A2 true WO2013051890A2 (en) 2013-04-11
WO2013051890A3 WO2013051890A3 (en) 2013-07-04

Family

ID=48044314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/008087 WO2013051890A2 (en) 2011-10-06 2012-10-05 Method for manufacturing multiple-diagnosis membrane sensor by using screen printing

Country Status (1)

Country Link
WO (1) WO2013051890A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11313854B2 (en) 2015-11-19 2022-04-26 Sartorius Stedim Biotech Gmbh Patterned membrane structure
US11913949B2 (en) * 2014-06-10 2024-02-27 Sartorius Stedim Biotech Gmbh Lateral flow membrane designed for multiparameter readouts and compact multiparameter lateral flow immunoassay device comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106902A (en) * 2000-05-24 2001-12-07 서정구 Electrochemical membrane strip biosensor
US20060267005A1 (en) * 2004-02-09 2006-11-30 Seiko Epson Corporation Transistor, circuit board, display and electronic equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106902A (en) * 2000-05-24 2001-12-07 서정구 Electrochemical membrane strip biosensor
US20060267005A1 (en) * 2004-02-09 2006-11-30 Seiko Epson Corporation Transistor, circuit board, display and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913949B2 (en) * 2014-06-10 2024-02-27 Sartorius Stedim Biotech Gmbh Lateral flow membrane designed for multiparameter readouts and compact multiparameter lateral flow immunoassay device comprising the same
US11313854B2 (en) 2015-11-19 2022-04-26 Sartorius Stedim Biotech Gmbh Patterned membrane structure

Also Published As

Publication number Publication date
WO2013051890A3 (en) 2013-07-04

Similar Documents

Publication Publication Date Title
KR101471932B1 (en) A method of producing membrane sensor for multiple diagnosis using screen printing
Ge et al. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing
EP2986987B1 (en) Electrochemical lateral flow bioassay and biosensor
US9810658B2 (en) Method for the detection and quantification of analytes using three-dimensional paper-based devices
Ballerini et al. Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics
RU2423073C2 (en) Nicrofluidic devices and methods of their preparation and application
WO2013051889A2 (en) Membrane sensor enabled with sequential change of reaction condition with single sample injection
JP5036867B2 (en) Biosensor
CN1531650A (en) Biosensor
WO2015119386A1 (en) High-sensitivity and lateral-flow immunochromatographic chip using enzyme-mimic inorganic nanoparticles and detection method using same
WO2017115989A1 (en) Membrane strip sensor using expansion member
WO2013051890A2 (en) Method for manufacturing multiple-diagnosis membrane sensor by using screen printing
KR102153736B1 (en) Integrated vertical flow bio-sensor and method for analyzing using the same
JP2008286714A (en) Voltanometric biosensor
WO2020231158A2 (en) Test strip for multiplex immunoassay analysis and multiplex immunoassay analysis device using same
CN107764882A (en) A kind of capacitance resistance type immunity test strip of carbon mano-tube composite modification and preparation method thereof
WO2020158996A1 (en) Lateral flow assay apparatus using membrane pattern
CN207662839U (en) A kind of capacitance resistance type immunity test strip of carbon mano-tube composite modification
KR100455907B1 (en) Non-separation type enzyme-immunsensor using parallel microporous electrodes
WO2022114811A1 (en) Rapid diagnostic kit using immunochromatography
KR102043709B1 (en) Method of analyzing bio-material
EP2131196A1 (en) Detection of analytes on a flow-through biosensor
MX2008000678A (en) Microfluidic devices and methods of preparing and using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280049510.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838624

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14350278

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12838624

Country of ref document: EP

Kind code of ref document: A2