WO2013061849A1 - 心筋毒性検査および心筋細胞評価のための方法および装置 - Google Patents

心筋毒性検査および心筋細胞評価のための方法および装置 Download PDF

Info

Publication number
WO2013061849A1
WO2013061849A1 PCT/JP2012/076860 JP2012076860W WO2013061849A1 WO 2013061849 A1 WO2013061849 A1 WO 2013061849A1 JP 2012076860 W JP2012076860 W JP 2012076860W WO 2013061849 A1 WO2013061849 A1 WO 2013061849A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
electrode
potential
measurement
cardiomyocyte
Prior art date
Application number
PCT/JP2012/076860
Other languages
English (en)
French (fr)
Inventor
安田 賢二
智行 金子
典正 野村
服部 明弘
Original Assignee
国立大学法人東京医科歯科大学
一般社団法人オンチップ・セロミクス・コンソーシアム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学, 一般社団法人オンチップ・セロミクス・コンソーシアム filed Critical 国立大学法人東京医科歯科大学
Priority to US14/354,221 priority Critical patent/US20140349332A1/en
Priority to EP12843742.3A priority patent/EP2772531A4/en
Publication of WO2013061849A1 publication Critical patent/WO2013061849A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5061Muscle cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form

Definitions

  • the present invention relates to a method and apparatus for myocardial toxicity testing and cardiomyocyte evaluation.
  • bioassay It is a bioassay that is frequently used to observe changes in the state of cells and the response of cells to drugs and the like.
  • Conventional bioassays often use cultured cells in general. In this system, since the assay is performed using a plurality of cells, the average value of the value of the cell population has been observed as if it were a characteristic of one cell.
  • the problem of physical contact of cells and cell-cell interaction can be solved to some extent by performing a bioassay on a cell mass such as a tissue fragment.
  • a cell mass such as a tissue fragment.
  • a uniform cell mass cannot always be obtained. Therefore, there are problems that the obtained data varies and information is buried in the group.
  • Patent Document 1 JP-A-2006-94703
  • Non-patent Document 1 the most commonly used electrocardiogram analysis is the Poincare plotting method (Non-patent Document 1).
  • One point in the plot indicates information of two adjacent pulsation data. For example, the pulsation rate at a point in time on the X-axis and the previous pulsation rate on the Y-axis.
  • the fluctuation of the heart beat is estimated by quantifying the distribution of points on the graph.
  • cells were either treated as tissue fragments or treated as one cell like cultured cells. If the number of cells is too large, the information obtained is averaged as described in the section of the prior art, and there is a problem that a response to a drug or the like cannot be obtained accurately.
  • cells are used one by one, cells that originally function as cells of a multicellular tissue are used as separated and independent cells, so that the influence of cell-to-cell interaction does not appear. Again, there are problems in obtaining accurate drug response or bioassay data.
  • cardiomyocytes and fibroblasts propagation of pulsation from adjacent cardiomyocytes or fibroblasts can accurately measure cell potential and cell morphology in units of one cell, and drug toxicity test for cardiomyocytes is 1 It is important to develop devices and systems that can accurately measure cell potential and cell morphology.
  • cardiomyocytes differentiated from human stem cells such as human iPS cells or human ES cells
  • the cardiomyocytes have the same quality as the cardiomyocytes in the human heart. It is necessary to quantitatively evaluate whether it exists from the functional aspect of the cell.
  • the present invention provides the following apparatus and method for simultaneously measuring the electrophysiological characteristics and mechanical characteristics of cardiomyocytes and quantitatively evaluating these relationships to evaluate cardiotoxicity.
  • substrate A cell population comprising a plurality of cardiomyocytes to be evaluated or a non-cardiomyocyte such as fibroblasts and the like, which are placed on the substrate and perform stable pulsation;
  • a wall for filling a cell culture solution formed on the substrate so as to surround the periphery of the cell population;
  • One or more microelectrodes carrying one cell of the cell population or a local part of the cell population;
  • a reference electrode provided in the region for filling the cell culture medium surrounded by the wall,
  • a potential measuring means for measuring a cell potential placed on the microelectrode by using a lead wire connected to each of the microelectrodes and a lead wire connected to the comparison electrode;
  • Control / recording means for controlling electrical stimulation sent to the microelectrode and recording potential data measured by the potential measuring means;
  • a cardiotoxicity evaluation device As an optical measurement system, and recording means for recording the potential data and the displacement data in correlation with each other, A cardiotoxicity evaluation device.
  • substrate A cell population comprising a plurality of cardiomyocytes to be evaluated or a non-cardiomyocyte such as fibroblasts and the like, which are placed on the substrate and perform stable pulsation;
  • a wall for filling a cell culture solution formed on the substrate so as to surround the periphery of the cell population;
  • One or more microelectrodes carrying one cell of the cell population or a local part of the cell population;
  • a reference electrode provided in the region for filling the cell culture medium surrounded by the wall, A potential measuring means for measuring a cell potential placed on the microelectrode by using a lead wire connected to each of the microelectrodes and a lead wire connected to the comparison electrode;
  • Control / recording means for controlling electrical stimulation sent to the microelectrode and recording potential data measured by the potential measuring means; Fine particles having a particle size of about 1
  • An objective lens having a numerical aperture of about 0.3 or less and a zoom lens in the subsequent stage for continuously measuring the position and position change of the fine particles as displacement data including temporal movement amount data and angle change data in the movement direction.
  • An optical measuring means arranged with a system, and a recording means for correlating and recording the potential data and displacement data, A cardiotoxicity evaluation device.
  • the microelectrode includes a stimulation electrode for stimulating a cell and a measurement electrode for measuring a cell potential.
  • the present invention also provides the following apparatus and method for evaluating cardiotoxicity using extracellular potential measurement of cardiomyocytes.
  • (5) Using the cardiotoxicity evaluation apparatus described in (1) above, As a cell to be measured, generation of sharp inward current of Na ion within about 20 ms after the start of depolarization accompanied by a sharp and clear depolarization without adding a drug, and subsequent depolarization start
  • the extracellular potential is determined using cardiomyocytes that have a slow Ca ion inward current generation within about 100 ms and a significant K ion outward current observed after about 100 ms after depolarization is started.
  • a cardiotoxicity evaluation method characterized by measuring.
  • Cardiotoxicity evaluation method characterized by (7) The above (5) or (6), wherein the cardiotoxicity evaluation apparatus further comprises a culture solution supply / discharge channel for supplying and / or discharging the cell culture solution into the region surrounded by the wall. Cardiotoxicity assessment method. (8) The cardiotoxicity evaluation method according to any one of (5) to (7), wherein the microelectrode comprises a stimulation electrode for stimulating a cell and a potential measurement electrode for measuring a cell potential.
  • the present invention provides the following apparatus and method as a technique for applying cell stimulation in order to evaluate cardiotoxicity using extracellular potential measurement of cardiomyocytes.
  • substrate A cell population comprising a plurality of cardiomyocytes to be evaluated or a non-cardiomyocyte such as fibroblasts and the like, which are placed on the substrate and perform stable pulsation;
  • a wall for filling a cell culture solution formed on the substrate so as to surround the periphery of the cell population;
  • One or more microelectrodes for cell potential measurement wherein one cell of the cell population or a local part of the cell population is placed;
  • a stimulation electrode array including a plurality of microelectrodes arranged in a two-dimensional manner in which mutual signal intensity and phase for stimulating the cells can be controlled;
  • a reference electrode provided in the region for filling the cell culture medium surrounded by the wall,
  • a potential measuring means for measuring a cell potential placed on the microelectrode using a lead wire connected to each of the microelectrodes for cell
  • the cardiotoxicity evaluation apparatus further comprising a culture solution supply / discharge channel for supplying and / or discharging the cell culture solution into the region surrounded by the wall.
  • substrate A cell population comprising a plurality of cardiomyocytes to be evaluated or a non-cardiomyocyte such as fibroblasts and the like, which are placed on the substrate and perform stable pulsation;
  • a wall for filling a cell culture solution formed on the substrate so as to surround the periphery of the cell population;
  • One or more microelectrodes for cell potential measurement wherein one cell of the cell population or a local part of the cell population is placed;
  • a stimulation electrode array including a plurality of microelectrodes arranged in a two-dimensional manner in which mutual signal intensity and phase for stimulating the cells can be controlled;
  • a reference electrode provided in the region for filling the cell culture medium surrounded by the wall,
  • a potential measuring means for measuring a cell potential placed on the microelectrode using a lead wire connected to each of the microe
  • a cardiotoxicity evaluation method characterized by measuring. (12) The cardiotoxicity evaluation apparatus according to (11), wherein the cardiotoxicity evaluation apparatus further comprises a culture solution supply / discharge channel for supplying and / or discharging the cell culture solution into the region surrounded by the wall. Method.
  • a method for evaluating cardiotoxicity which includes a step of comparing and analyzing fluctuation (variation) of FPD (time from the first spike of sodium to the position of the inward current maximum) by electrophysiological measurement.
  • a well system capable of exchanging wells in units of one well that can constitute a cardiomyocyte network array, One or a plurality of unit wells comprising one well, the unit well including an electrode array including a cell potential measurement electrode, a cell stimulation electrode, and a reference electrode of a cardiomyocyte on a bottom surface of the well;
  • a well plate with one or more compartments in which one or more of the unit wells can be interchangeably mounted,
  • Each section of the well plate is provided with a contact point corresponding to the lead wire of the electrode array, and each unit well can be installed to be replaceable with respect to the section.
  • two or more cardiomyocyte network chips each including a well for containing cardiomyocytes and an electrode array including a cell stimulation electrode, a cell potential measurement electrode, and a reference electrode on a bottom surface of the well; A stage for mounting the chip;
  • An electrical potential measurement system including a power source for applying electrical stimulation to the cardiomyocytes through the electrode array and measuring an extracellular potential;
  • An optical observation system including an optical microscope for optically observing the cardiomyocytes, an image acquisition camera, and an illumination light source;
  • a cardiomyocyte measurement device system comprising a control / analysis device for recording and analyzing the potential measurement data and the optical observation data in synchronization.
  • a multi-electrode substrate for measuring the potential of a cardiomyocyte network arranged in an annular shape (i) an annular electrode corresponding to the cardiomyocyte network, wherein an annular potential measurement electrode in which a part of the electrode is missing;
  • a stimulation electrode for applying a local forced stimulation arranged in a partial defect site of the potential measurement electrode Comprising a reference electrode for noise removal arranged near the outside of the ring, or (ii) a plurality of potential measurement electrodes obtained by further dividing the potential measurement electrode of (i) into two or more;
  • a multi-electrode substrate comprising a reference electrode for noise removal arranged in the vicinity of the outside of the ring.
  • a sample loader for placing a cardiomyocyte sample in a block type unit well comprising one well provided with an electrode array including a cell potential measurement electrode, a cell stimulation electrode, and a reference electrode on the bottom surface, An outer shape that can be inserted into the upper surface of the unit well corresponding to the shape of the unit well, and a funnel-shaped inner surface, and a groove (opening) having a shape corresponding to the shape of the electrode of the unit well on the bottom surface, A sample loader capable of placing the cardiomyocytes on the electrodes by dropping an appropriate amount of the cardiomyocyte sample on the inner surface of the sample loader.
  • the field potential duration (FPD) (see the explanation below) and the magnitude of fluctuations of adjacent pulsations of cardiomyocytes (eg, short-term fluctuation: STV: Short-term variability) are independently used as indicators.
  • FPD field potential duration
  • STV short-term variability
  • an in vitro system capable of evaluating the electrophysiological response and mechanical response of a cardiomyocyte population in combination is provided, and measurement at the in vitro cardiomyocyte level that enables evaluation closer to the individual level. Is possible.
  • FIG. 3 is a diagram illustrating an optical system that optically detects the cells held in the cell holding unit CH of the myocardial toxicity testing apparatus shown in FIG. (A), (b) and (c) is a figure which shows the signal regarding measurement of a cell potential.
  • the horizontal axis represents time, and the vertical axis represents the cell potential obtained between the microelectrode 2 and the comparative electrode 2C .
  • (A), (b) and (c) is a figure which shows the signal regarding the result of having measured the volume change accompanying the pulsation of a cell with an optical system.
  • (A) is a figure which shows the cell potential change accompanying the inflow / outflow amount of the Na ⁇ +> ion, Ca ⁇ 2+ > ion, and K ⁇ +> ion component of the target cell in the normal state in which a drug is not contained in a culture solution, (b) is culture
  • FIG. (A) is a figure which shows an example of the cell potential change by addition of a chemical
  • (b) is an example of the Poincare plot which evaluates the homology of two adjacent pulsations about the cell potential change at each pulsation.
  • FIG. (A) is a schematic diagram which shows an example of the reentry circuit created by the cyclic
  • (b) is an example which has actually arrange
  • (A) is a schematic diagram which shows an example of the reentry circuit by the cyclic
  • (b) is the microscope picture which shows an example which has actually arrange
  • (C) is a photomicrograph showing an example in which cell populations are actually arranged in a ring shape on a microelectrode array.
  • (A) is a schematic diagram which shows an example of the reentry circuit measuring apparatus using a ring electrode
  • (b) is the graph which showed the normal pulsation data and the abnormal pulsation data actually measured with the electrode.
  • (A) is a schematic diagram showing an example of the arrangement of an electrode and a cell for measuring the potential of one cell
  • (b) is a photograph on the electrode of an isolated one cell actually measured with the electrode and its pulsating electrical data
  • (C) is the graph which showed the photograph on the electrode of the measured cell population, and the pulsation electrical data of 1 cell in a cell population.
  • the graph explaining the change with respect to the addition of the drug of the field potential signal waveform of the cell which can be measured with the cell measurement system of the present invention Regarding the elapsed time (FPD: field potential duration) from the sodium ion release time at the peak position of potassium ion release in the cell field potential signal waveform that can be measured by the cell measurement system of the present invention, the potassium ion channel inhibitor E4031 It is an example of the graph explaining an example of the average value of the change with respect to addition.
  • FPD field potential duration
  • the magnitude of the fluctuation is adjacent. It is an example of the graph and formula explaining one of the methods of evaluating quantitatively the short-term fluctuation of the pulsation to be performed based on a Poincare plotting.
  • the elapsed time FPD: field potential duration
  • the magnitude of the fluctuation is pointed.
  • FIG. 2 shows an example of FPD point plotting with respect to drug addition due to the difference in the shape of the cardiomyocyte network that can be measured by the cell measurement system of the present invention and the difference in position.
  • A is the microscope picture which showed an example of an actual cell network
  • (b) shows the graph which measured the change in the point of A, B, C, D of (a).
  • the figure shows an example of the point-in-time plotting of the transmission time from the pacemaker region to the local with respect to drug addition due to the difference in the shape of the cardiomyocyte network that can be measured by the cell measurement system of the present invention and the difference in position.
  • (A) is the microscope picture which showed an example of an actual cell network
  • (b) shows the graph which measured the change in the point of A, B, C, D of (a).
  • (C) is a formula for calculating STV.
  • cardiomyocyte network measurement that can be measured by the cell measurement system of the present invention, the relationship between the conventional in vitro measurement method and in vivo measurement method, and the relationship between the FP waveform of one cell and the FP composite waveform of the cell network are schematically shown. It is a figure.
  • FIG. 1 Configuration of an apparatus having a function of estimating a cell potential from an FP waveform of a cell obtained from each electrode and a function of synthesizing an electrocardiogram comparison waveform from an FP composite waveform of the cell network in cardiomyocyte network measurement that can be measured by the cell measurement system of the present invention
  • FIG. 1 the FP waveform (B) of cells obtained from each electrode of the cardiomyocyte network (A) arranged in a ring and the synthesized FP waveform (C) ) Is an example.
  • a pulsation signal is normally transmitted from the PM region.
  • the FP waveform (B) of cells obtained from each electrode of the cardiomyocyte network (A) arranged in a ring and the synthesized FP waveform (C) ) Is an example.
  • a pulsation signal is abnormally transmitted from the PM region. It is a graph which shows an example of the relationship between the beating frequency (Beating Frequency) of a myocardial cell and FPD in the cardiomyocyte network measurement which can be measured with the cell measuring system of the present invention.
  • FIG. 4 is a schematic diagram showing an example of a mechanism using a mechanism for maintaining a microelectrode at a constant potential by using feedback control of a microelectrode potential for FP measurement of a myocardial cell in cardiomyocyte network measurement that can be measured by the cell measurement system of the present invention.
  • a graph showing an example of the relationship of the response of the pulsation cycle of the cardiomyocyte population when forced pulsatile stimulation is given to a partial region of the cardiomyocyte population is there. It is a graph which shows an example of the change of the length of FPD when forced pulsatile stimulation is given to the partial area
  • (A) is an example of the relationship between the change in the FP waveform caused by the forced pulsatile stimulation and the change in the length of the FPD
  • (b) is the length of the FPD according to the change in the stimulation interval of the forced pulsatile stimulus.
  • It is a graph which shows an example of a change of.
  • the results shown in FIG. 33 and FIG. 34 for an example of the response of the cell population when forced pulsatile stimulation is applied to a partial region of the cardiomyocyte population.
  • FIG. 33 and FIG. 34 for an example of the response of the cell population when forced pulsatile stimulation is applied to a partial region of the cardiomyocyte population.
  • It is a summary table. 2 schematically shows a differential circuit between a reference electrode and a microelectrode for noise removal in the electrode potential measurement of the present invention.
  • (A) It is a schematic diagram of an example of the circuit which showed the principle. 2 schematically shows a differential circuit between a reference electrode and a microelectrode for noise removal in the electrode potential measurement of the present invention.
  • (B) It is a circuit diagram of an example of the amplifier circuit incorporating this difference circuit. 2 schematically shows a differential circuit between a reference electrode and a microelectrode for noise removal in the electrode potential measurement of the present invention.
  • (C) It is a figure which shows the example by which the noise was reduced by the circuit. It is a figure which shows typically the example of the comprehensive evaluation method of the cardiotoxicity evaluation method of this invention.
  • FIG. 1 shows an example of a configuration of a high-throughput cardiomyocyte network array chip composed of a cell culture module array.
  • 1 shows an example of the configuration of a cell network placement technique using a sample loader that effectively places cardiomyocytes in each well.
  • FIG. 6 shows another example of a system in which block-type wells are actually arranged and extracellular potential measurement is performed by a multi-electrode system.
  • 59 shows an example of a configuration in which an optical measurement module is incorporated in the system of FIG. It is a figure explaining the structure of the board
  • FIG. 1 is a perspective view schematically showing an example of the structure of a myocardial toxicity test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing an example of the configuration of the cell holding unit CH of the myocardial toxicity testing apparatus shown in FIG.
  • FIG. 3 is a diagram illustrating an optical system that optically detects the cells held in the cell holding unit CH of the myocardial toxicity testing apparatus shown in FIG.
  • the myocardial toxicity testing apparatus 100 is configured mainly with components constructed on a transparent substrate 1.
  • the transparent substrate 1 is an optically transparent material, for example, a glass substrate or a silicon substrate.
  • the microelectrode 2 is a transparent electrode made of ITO, for example, and is disposed on the transparent substrate 1.
  • Reference numeral 2 ′ denotes a lead wire for the microelectrode 2.
  • 3 1 , 3 2 , 3 3 and 3 4 are agarose gel walls, which are arranged around the microelectrode 2 with gaps 4 1 , 4 2 , 4 3 and 4 4 . Walls 3 1 , 3 2 , 3 3, and 3 4 formed by agarose gel are notched at the center to form a space for cell storage.
  • a microelectrode 2 is disposed on the transparent substrate 1 in the space serving as a cell storage portion formed by the walls 3 1 , 3 2 , 3 3 and 3 4 formed of agarose gel. Regardless of the presence or absence of the microelectrode 2, one cell 10 can be stored in the cell storage portion.
  • a microelectrode 2 is disposed on a transparent substrate 1 in a space serving as a cell storage portion formed by walls 3 1 , 3 2 , 3 3 and 3 4 formed of agarose gel, and cardiomyocytes 10 are disposed thereon. It is stored. A state in which the lead wire 2 ′ is connected to the microelectrode 2 and drawn out is shown.
  • Cells such as collagen adhere to the electrode surface and the transparent substrate on the cell placement surface when the cells are placed directly on the transparent substrate 1 without providing the cell placement surface of the microelectrode 2 and the microelectrode 2. It is better to apply materials that will help.
  • the cells in the cell storage part formed by the walls 3 1 , 3 2 , 3 3 and 3 4 by the agarose gel are not adhered to the cells, so that the walls 3 1 , 3 2 , 3 3 and 3 also 4 height as same extent as cells, cell 10 can not move over a wall.
  • the gaps 4 1 , 4 2 , 4 3 and 4 4 around the cell storage portion formed by cutting out the central portions of the walls 3 1 , 3 2 , 3 3 and 3 4 by the agarose gel are determined by the size of the cells. Since it is assumed to be small, the cell 10 does not move through the gaps 4 1 , 4 2 , 4 3 and 4 4 .
  • cell holding parts CH 1 , CH 2 , CH 3 and CH n hold one cardiomyocyte or fibroblast 10 1 , 10 2 , 10 3 and 10 n in the cell storage part respectively.
  • each has a microelectrode 2 and lead lines 2 ′ 1 , 2 ′ 2 , 2 ′ 3 and 2 ′ n are led out.
  • These cardiomyocytes or fibroblasts constitute a cell communication channel CCC arranged in series.
  • n is 20, for example.
  • the distribution of the 20 serially arranged cardiomyocytes and fibroblasts may be random, but the cells of the cell holding part CH 1 and the cells of CH 20 should be cardiomyocytes.
  • a cardiomyocyte population holding region including a cell population 10 G in which 3 ⁇ 3 cell holding portions CH G are formed at the left end of the cell communication channel CCC and the cardiomyocytes 10 are held in the respective cell holding portions CH.
  • This cell population 10 G functions as a pacemaker that performs stable pulsation.
  • the cell population 10 G only one cell holding part CH of the cell population 10 G is provided with the microelectrode 2, and the lead line 2 ′ G is drawn out.
  • the right of the central cell holder CH of the cell population 10 G are configured so as to be opposed to the cell holder CH 1 of the cell communication channel CCC.
  • Barrier 11 a is provided between the left end of the right and cell communication channel CCC of the cell population 10 G.
  • the barrier 11 a small opening 11 b in the lower portion of the central portion is formed.
  • the opening 11 b on both sides has a cell holder CH 1 of the cell population 10 cells holder CH right center of G and cell communication channel CCC that opposing the, with a gap 4 around the respective cell storage unit It is configured to allow physical contact and cell-cell interaction of the cells held in each.
  • the bottom of the cell population 10 G reference electrode 2 C is provided, is drawn out lead wire 2 'C.
  • Reference numeral 7 denotes a wall surrounding the periphery, which surrounds the cell population 10 G, the cell communication channel CCC, and the reference electrode 2 C.
  • 8 1 and 8 2 are pipes for supplying the cell culture solution to the region inside the wall 7 and discharging the cell culture solution from the region inside the wall 7. to near the bottom surface of the substrate 1 is supplied culture solution from the pipe 8 1 that is stretched, the culture medium from the pipe 8 2 that is stretched to near the bottom surface of the substrate 1 is discharged.
  • Pipe 8 3 is coupled near the outlet of pipe 8 1 of culture medium supplying the culture solution, the drug to be allowed to act on cells via the pipe 8 3 is supplied.
  • cells 10 while being exposed to cultures of cells that is supplied to the area inside the wall 7 by pipe 8 1, is stably held on the microelectrode 2.
  • the culture solution may be discharged culture solution from the interior of the region of the wall 7 by pipe 8 2.
  • the culture solution may be supplied after or while discharging the culture solution.
  • the drug to be allowed to act on cells via pipe 8 3
  • the culture medium supplied together with the culture solution by a pipe 8 1 do it.
  • the barrier 11 a between the cell population 10 G and the cell communication channel CCC when culture medium containing the drug is supplied into the region of the wall 7 by pipe 8 1, cell communication channel Compared to the degree to which the CCC cells are affected by the drug, the degree to which the cells of the cell population 10 G are affected by the drug is low. That is, when the culture medium containing the drug is supplied by a pipe 8 1, is supplied to the culture barrier 11 a gap and the barrier 11 a cell population 10 G overcame upper surface of the both side walls 7 of The cells of the cell population 10 G are also affected by the drug. However, since the effect is indirect compared with that of the cell communication channel CCC on cells, it does not affect the function as a pacemaker.
  • pipes 8 1 , 8 2, and 8 3 may be arbitrarily changed depending on the measurement method.
  • pipes 8 1 and the pipe 8 3 may be one which is separated, the pipe 8 2 is omitted, the pipe 8 1 feed, or as being used for both the discharge.
  • PC is a personal computer (potential measuring means, control / recording means), and measures and records the cell potential between the lead wire 2 'of the microelectrode 2 and the lead wire 2' of the comparison electrode 2C of the cell holding part CH. .
  • An operation signal Ms from the operator is applied to the personal computer 9.
  • the myocardial toxicity test apparatus 100 can be placed on the XY stage 15 of the optical observation apparatus 200 to observe the pulsation of an arbitrary cell 10 in the cell communication channel CCC using an optical system.
  • the XY stage 15 is optically transparent and is moved to an arbitrary position by the XY driving device 16 in accordance with a signal given by the personal computer PC in accordance with an operation signal Ms of the operator.
  • FIG. 3 shows an example in which the state of pulsation of the cell 10 n of the cell communication channel CCC is observed.
  • Reference numeral 12 denotes a culture solution.
  • Reference numeral 22 denotes a light source for a phase contrast microscope or differential interference microscope, and a halogen-based lamp is generally used.
  • Reference numeral 23 denotes a band-pass filter that transmits only light having a specific wavelength from light from a light source for observation of a stereoscopic microscope such as a phase difference. For example, in the case of the cell 10 n of the observation, it is possible to prevent damage of the cells 10 n by using light of a narrow band near the wavelength 700 nm.
  • Reference numeral 24 denotes a shutter, which has a function of blocking light irradiation while image measurement is not being performed, such as when the XY stage 15 is moved.
  • a condenser lens 25 introduces a phase difference ring for phase difference observation, and introduces a polarizer for differential interference observation.
  • a myocardial toxicity testing apparatus 100 formed on the substrate 1 is placed on the XY stage 15, and the XY stage 15 is moved by an XY driving device 16 so that an arbitrary position of the myocardial toxicity testing apparatus 100 is set. Observe and measure.
  • the state of pulsation of the cell 10 n in the myocardial toxicity test apparatus 100 is observed with the objective lens 17.
  • the focal position of the objective lens 17 can be moved in the Z-axis direction by the driving device 18 in accordance with a signal from the personal computer PC.
  • the objective lens 17 having a magnification of 40 times or more can be used.
  • the objective lens 17 What is observed by the objective lens 17 is a phase difference image or differential interference image of the cell 10 n by the light transmitted from the light source 22. Only the phase-contrast microscope image or the differential interference microscope image is observed by the camera 21 by the dichroic mirror 19 and the band-pass filter 20 that reflect light having the same wavelength as that transmitted through the band-pass filter 23.
  • the image signal observed by the camera 21 is introduced into the personal computer PC. Although not shown, the image can be displayed on a monitor or display connected to the personal computer.
  • FIG. 1 An example of the main size of the structure of the myocardial toxicity test apparatus 100 shown in FIG. 1 is as follows. This is an example in which the cell size is 10 ⁇ m ⁇ .
  • the transparent substrate 1 has a size of 100 mm ⁇ 150 mm
  • the microelectrode 2 has a size of 8 ⁇ m ⁇ 8 ⁇ m
  • the individual sizes of the walls 3 1 , 3 2 , 3 3 and 3 4 by agarose gel are 20 ⁇ m ⁇ 20 ⁇ m ⁇ 10 ⁇ m (high
  • the space 4 1 , 4 2 , 4 3 and 4 4 having a width of 2 ⁇ m, and the space serving as the cell storage part formed by the walls 3 1 , 3 2 , 3 3 and 3 4 by agarose gel is a cylindrical shape of 12 ⁇ m ⁇
  • the outer shape of the wall 7 is 5 mm ⁇ 5 mm and the height is 5 mm.
  • the height of the barrier 11a is 1 mm.
  • the microelectrode 2 has a square of 8 ⁇ m ⁇ 8 ⁇ m, but the entire wall 3 1 , 3 2 , 3 3 and 3 4 and the width of the gaps 4 1 , 4 2 , 4 3 and 4 4 are formed by agarose gel. It is good also as a circular electrode of 10 micrometers diameter used as the storage part of the cell comprised by these.
  • 4 (a), 4 (b), and 4 (c) are diagrams showing signals related to measurement of cell potential.
  • the horizontal axis represents time, and the vertical axis represents the cell potential obtained between the microelectrode 2 and the comparative electrode 2C .
  • 4 (a) is a cell potential based on the pulsation of the cell population 10 G.
  • the potential between the cell population 10 G C pulled out lead wire 2 from one 'leader line 2 and G were drawn from the reference electrode 2 C' of the shown in Figure 1.
  • FIG. 4 (b) shows the cell potential due to the pulsation of the target cell in a normal state where no drug is contained in the culture solution.
  • the target cells measured with the cell 10 n of the cell communication channel CCC the potential between the C 'lead wire 2 led from the reference electrode 2 C and n' to draw wire 2 drawn out from the cell 10 n It is measured.
  • the cell communication channel CCC is delayed by the time ⁇ t required for transmission of pulsation by the cell 10.
  • FIG. 4C shows the cell potential due to the pulsation of the target cell in a state where the culture solution contains the drug.
  • the target cell for measurement is the cell 10 n of the cell communication channel CCC, and the comparison with FIG. 4B is made clear.
  • the delay of time ⁇ t + ⁇ is not a delay of time ⁇ t required for transmission of pulsation by the cells 10 of the cell communication channel CCC. It is observed that This means that the magnitude of Na ion inhibition due to the action of the drug on the cells of the cell communication channel CCC appears as an increase in the delay of + ⁇ . That is, the toxicity of a drug to cardiomyocytes can be evaluated as Na ion inhibition.
  • the microelectrode used for observation may be referred to as an observation electrode.
  • FIG. 5A, FIG. 5B, and FIG. 5C are diagrams showing signals related to the result of measuring the volume change accompanying the pulsation of the cells by the optical system.
  • FIG. 5A shows the volume change accompanying the pulsation of the cells of the cell population 10 G.
  • One pulsation of cells of the cell population 10 G is optically detected in the form shown in FIG.
  • the contraction and expansion associated with the pulsation of cells are recognized as changes appearing in pulses.
  • the period of this waveform is the same as the period of change in cell potential associated with the pulsation shown in FIG. FIG.
  • FIG. 5 (b) shows the volume change associated with the pulsation of the target cell in a normal state where the drug is not contained in the culture solution, and the lower part shows a time differential value in order to evaluate this as an electrical signal.
  • Waveform is shown.
  • the target cell for measurement is the cell 10 n of the cell communication channel CCC
  • the pulsation of the cell 10 n is optically detected in the form shown in FIG.
  • FIG. 5A shows that the cell communication channel CCC is delayed by a time ⁇ t required for transmission of pulsation by the cell 10.
  • FIG. 5 (c) is an explanatory diagram for evaluating the volume change accompanying the pulsation of the target cell in the state where the drug is contained in the culture solution.
  • FIG. 5 (a) and FIG. The time axis is shown in an enlarged form as compared with ().
  • the upper part is a waveform corresponding to the upper part of the waveform in FIG. 5B, and as is apparent from the waveform in FIG. 5A, the time ⁇ t required for transmission of pulsation by the cell 10 of the cell communication channel CCC. It is observed that the delay is further increased by ⁇ .
  • the effect of the volume change accompanying the pulsation of the target cell due to the drug is characterized in that the slope of the volume change becomes smaller than the increase in the delay.
  • FIG. 5C shows a waveform when processed as a time differential value in order to evaluate the upper waveform.
  • this time differential value As can be seen by comparing this time differential value with that in the lower part of FIG. 5B, the peak value becomes smaller and the slope becomes gentler. This means that the contraction rate of the myocardium is reduced by the drug, and the cardiac output is reduced. That is, the toxicity of a drug to cardiomyocytes can be evaluated as a decrease in contraction rate.
  • FIG. 6 (a) shows changes in cell potential associated with the inflow and outflow amounts of Na + ions, Ca 2+ ions, and K + ion components of target cells in a normal state in which no drug is contained in the culture solution.
  • FIG. 6 (b) shows changes in cell potential associated with the inflow / outflow amount of Na + ion, Ca 2+ ion, and K + ion component of the target cell in a state where the drug is contained in the culture solution.
  • a QT delay appears and the waveform extends in the time axis direction. Furthermore, the waveform is greatly deformed with the inflow and outflow of K + ions.
  • APD is an expression taken from the initials of Action Potential Duration. If the magnitude and ratio of these values are evaluated, the influence of the drug on the inflow / outflow amount of Na + ion, Ca 2+ ion, and K + ion component can be evaluated.
  • FIG. 7 is a diagram for explaining an example of the arrangement of an optical system for optically detecting cells of the myocardial toxicity test apparatus and movable electrodes. For example, an example of observing the pulsation state of a cell 10 n to be measured is shown. Yes.
  • Reference numeral 12 denotes a culture solution.
  • Reference numeral 22 denotes a light source for a phase contrast microscope or differential interference microscope, and a halogen-based lamp is generally used.
  • Reference numeral 221 denotes a fluorescent light source for measuring fluorescence of cells, and a mercury lamp, a monochromatic laser, an LED light source or the like is generally used.
  • Reference numeral 23 denotes a band-pass filter that transmits only light having a specific wavelength from light of a light source for observation of a stereoscopic microscope such as a phase difference.
  • Reference numeral 231 denotes a band that transmits only light having an excitation wavelength that excites specific fluorescence from the fluorescent light source 221. It is a path filter.
  • a shape change such as pulsation accumulation change information of the cell 10 n
  • an image passing through the band-pass filter 20 that transmits only light having a wavelength for measuring the cell shape is measured in real time by the camera 21.
  • damage to the cell 10 n can be prevented by using a narrow band light having a wavelength near 700 nm for measurement.
  • Reference numerals 24 and 241 denote shutters, which have a function of blocking light irradiation while image measurement is not performed, for example, when the XY stage 15 is moved.
  • a condenser lens 25 introduces a phase difference ring for phase difference observation, and introduces a polarizer for differential interference observation.
  • fluorescence measurement for example, when measuring intracellular calcium release, a combination of a band pass filter that selectively transmits light at an excitation wavelength of about 500 nm and a fluorescence measurement wavelength of about 600 nm is used, and only the light of the fluorescence wavelength is used.
  • the fluorescence image that has passed through the band-pass filter 201 that selectively transmits is measured by the camera 201.
  • the measurement time resolution of the camera is 0.1 ms or more. High-speed continuous images can be acquired.
  • a myocardial toxicity testing apparatus 100 formed on the substrate 1 is placed on the XY stage 15, and the XY stage 15 is moved by an XY driving device 16 so that an arbitrary position of the myocardial toxicity testing apparatus 100 is set. Observe and measure.
  • the state of pulsation of the cell 10 n in the myocardial toxicity test apparatus 100 is observed with the objective lens 17.
  • the focal position of the objective lens 17 can be moved in the Z-axis direction by the driving device 18 in accordance with a signal from the personal computer PC.
  • the objective lens 17 having a magnification of 40 times or more can be used. What is observed by the objective lens 17 is a phase difference image or differential interference image of the cell 10 n by the light transmitted from the light source 22. Only the phase-contrast microscope image or the differential interference microscope image is observed by the camera 21 by the dichroic mirror 192 and the band-pass filter 20 that reflect the light having the same wavelength as that transmitted through the band-pass filter 23. The image signal observed by the camera 21 is introduced into the personal computer PC.
  • the movable electrode 27 for stimulating the cells is arranged, and the coordinates of the movable electrode can be adjusted not only at an arbitrary position on the same plane as the XY stage but also at an arbitrary height. A position control mechanism is provided.
  • the movable electrode is made of a specific electrode or only a few cells near the tip of the movable electrode, such as a metal electrode with insulation coating on the portion other than the tip, and a glass electrode with a tip opening size of about 5 microns or less.
  • An electrode having a configuration capable of applying electrical stimulation can be used. When using a metal electrode, electrical stimulation can be effectively transmitted to the cells by adding platinum black or the like to the tip surface.
  • the position of the tip of the movable electrode is adjusted according to the degree of response of the cell to the electrical stimulation, and may be in contact with the cell or may be disposed in the very vicinity of the cell.
  • the electrode 2 for cell potential measurement may be used as a ground electrode by switching at the moment of applying an electrical stimulus in order to apply the stimulus of the stimulus electrode to a specific target cell appropriately, or separately.
  • the ground electrode 28 may be disposed.
  • the existing microelectrode 2 may be used as a stimulation electrode. In that case, what is normally connected to the electrical signal measuring circuit 30 is connected to the electrical stimulation circuit 31 by switching switching at the moment of applying a stimulus by switching of the switching circuit 29 to which the microelectrode is connected.
  • a rectangular wave stimulation signal can be applied to the microelectrode 2.
  • the switching circuit 29 can be switched to the ground.
  • the movable electrode can be used not only as a stimulation electrode but also as an electrode for measuring an electrical signal of a cell or as a ground electrode.
  • the movable electrode is connected to the switching circuit 291, and the cell potential is measured by switching to the electric signal measuring circuit 301 by switching according to the use as the cell potential measurement, cell stimulation, and ground electrode, respectively.
  • it can be used as a ground electrode by connecting to an electrical stimulation circuit 311 to give a rectangular wave stimulation signal to a cell, or by grounding the cell.
  • the timing of electrical stimulation given to the cells by the electrical stimulation circuits 31 and 311 can be mainly used in the following two applications.
  • One is a cell network with autonomous pulsation function, which gives irregular stimulation during the pulsation interval of the normal cardiomyocyte network, and the other is a cardiomyocyte network without autonomous pulsation ability.
  • the electrical stimulation circuits 31 and 311 can perform feedback control that analyzes the pulsation period information obtained by the electrical signal measurement circuits 30 and 301 and determines the timing of stimulation based on the result. .
  • the same measurement can be performed without the microelectrode 2 in the present system.
  • the data of the electrical characteristics of a specific cell is obtained using a movable electrode as necessary from the result of measurement with an optical measurement device arranged in the system.
  • a large cell network can be constructed more freely as long as optical measurement is possible without being restricted by the number of microelectrodes arranged in advance.
  • FIG. 8 is a schematic diagram showing an example of generation of an electric signal of a cell.
  • the influx of sodium ions from the sodium ion channel in the cell membrane occurs into the cell, the cell potential drops rapidly, then, after a short delay, the cell potential decreases due to the inflow of calcium ions, As the next step, the cell potential rises due to the discharge of potassium ions to the outside of the cell.
  • the change in cell potential is caused by the difference in characteristics of various ion channels having different response characteristics existing in the cardiomyocyte membrane.
  • each ion channel is blocked by the influence of the drug, so that it blocks according to the characteristic of the drug.
  • the change of the waveform of the electric signal according to the type of the ion channel can be measured, and thereby the inhibitory effect of the drug on the ion channel can be estimated.
  • the ion channels that are particularly important for drug evaluation are the four ion channels FastNa, SlowNa, Ca, IKr, and IKs, and the block states of these four types of ion channels can be measured.
  • FIG. 9A shows changes in the electrical signals of the cells shown in FIG. 8 when reagent E-4031 that actually selectively inhibits potassium ion channels is added at various concentrations. Since the IKr ion channel responsible for the extracellular discharge function of K ions that raise the cell potential is inhibited, it can be seen that the change in the positive cell potential is gradually delayed as the drug concentration increases.
  • FIG. 9A shows specific one-beat data of the cell response. Actually, the magnitude of the fluctuation width of the response in each adjacent beat is important for estimating the influence of the drug. Index.
  • FIG. 9B shows an example of this, which is an analysis method for comparing the correlation between adjacent beat data called Poincare plot.
  • a plot is made with the position of the response time of a specific ion channel at the nth beat on the X axis and the position of the response time of the same ion channel at the (n + 1) th beat on the Y axis. .
  • the control time without addition of the drug has a delay in response time with the addition of 40 nM, but the homology between adjacent beats is maintained.
  • FIG. 10 (a) is a schematic diagram showing an example of a reentry circuit drug based on a cyclic network of cardiomyocytes using a cell placement technique at the level of one cell.
  • a ring network of cells created only from cardiomyocytes becomes a normal network model.
  • a pathological model such as cardiac hypertrophy
  • it is realized by incorporating fibroblasts into the cell network.
  • fibroblasts mixed in the network cause a delay or attenuation of the transmission rate of the cardiomyocyte network, and as a result, occurrence of extra-systole can be predicted.
  • FIG. 10B is a photomicrograph showing an example in which cardiomyocytes are actually arranged on the microelectrode.
  • the signal transmission delay between adjacent cardiomyocytes can be measured. Since this transmission speed depends on the magnitude of the first electrical signal generated at the time of pulsation, this signal transmission delay data can be used as an inhibitory effect on the Na ion channel.
  • FIG. 11A is a schematic diagram showing an example of a reentry circuit using a cyclic network of cardiomyocytes using a cell population having a certain width.
  • the pulsation signal of the cardiomyocyte is unique in its passage, and the same as long as there is no fluctuation of the pulsation of the cell itself as shown in FIG. Maintaining properties, cells transmit pulsatile signals between adjacent cells.
  • FIG. 11 when cells are arranged with a certain width to form a circular network, the cell population has different paths for each pulsation as indicated by a solid line 35, a broken line 36, and a dotted line 37. Will have the freedom to take.
  • FIG. 11B is a photomicrograph showing an example in which a cell population is actually arranged on a microelectrode. A cell population in which about 60% of fibroblasts are mixed with about 60% of cardiomyocytes is arranged.
  • FIG. 11C is a photomicrograph showing an example in which cell populations are actually arranged in a ring shape on the microelectrode array.
  • the calcium firing of each cell in the cell population network can be estimated at the single cell level by using the high-speed fluorescence measurement camera shown in FIG. It is possible to actually analyze the change of the route in each lap, as to which route of signal transmission is proceeding.
  • FIG. 12 (a) is a schematic diagram showing an example of a reentry circuit measuring device using an annular electrode.
  • one annular electrode 38 having a diameter of 50 to 100 microns formed in a ring shape with a diameter of 1 to 3 mm is arranged on the bottom surface of each 96-well plate 42, and a cell population is formed only on the electrode surface as 41.
  • Is arranged in a ring shape, and the bottom surface of the periphery excluding the electrode is coated with a material having no cell adhesiveness such as agarose.
  • a concentric reference electrode ring 39 is disposed in a region coated so that the cells do not adhere, and a channel 40 through which the reagent can enter and exit is disposed.
  • FIG. 12B is a graph showing normal pulsation data and abnormal pulsation data actually measured with electrodes.
  • the annular electrode is used.
  • the same system as that of the present annular electrode can be used to optically measure abnormal pulsations. Can do.
  • the electrical signal can also be acquired by bringing the moving electrode shown in FIG. 7 into contact with the annular cell network.
  • FIG. 13A is a schematic diagram showing an example of the arrangement of the microelectrode 2 for measuring the potential of one cell and the cell.
  • One cell to be measured is placed on the microelectrode 2 having a diameter of 10 to 50 microns. This shows a method of measuring only cells.
  • a material such as agarose that inhibits cell adhesion is coated around the electrode so that cells on the electrode are held in place.
  • FIG. 13 (b) shows a photograph on the electrode of an isolated single cell actually measured with the microelectrode 2 and its pulsation electrical data, but the signal of the isolated single cell is unstable and is shown in the graph. It pulsates with a large fluctuation.
  • FIG. 13 (b) shows a photograph on the electrode of an isolated single cell actually measured with the microelectrode 2 and its pulsation electrical data, but the signal of the isolated single cell is unstable and is shown in the graph. It pulsates with a large fluctuation.
  • FIG. 13 (b) shows a photograph
  • one cell is arranged on the microelectrode 2 in the same manner as in FIG. 13 (b), but by forming a cell population connected to other cells.
  • the stability of the pulsation cycle is realized.
  • cell grouping as shown in this embodiment is performed. Only one cell to be measured is placed on the microelectrode so that pulsation data of one cell can be acquired while realizing stabilization by the above, and other cardiomyocytes are placed in order to maintain the stability of this specific cell.
  • a measurement system using a configuration in which the electrode is not placed on the electrode is useful.
  • FIG. 14 is a schematic diagram for explaining an embodiment in which the camera light receiving element is used for measuring the potential of one cell in the present invention.
  • a camera light receiving element converts an optical signal into an electric signal on a photoelectric conversion surface and uses this electric signal for measurement. By removing this photoelectric surface and using an electric signal array portion, It becomes possible to acquire an electric signal in two dimensions.
  • an electrode array having a size of one cell level can be used, for example, cells having a certain width shown in FIG. 11 that require simultaneous measurement of electrical signals of cells in a cell population. It is possible to measure the occurrence of spiral reentry, which is a change in signal transmission path in a collective network.
  • the pixel measurement interval needs to be about 1 / 10,000 second, and it is necessary to use a camera light receiving element of a high-speed camera with a shutter speed of 1/10000 second.
  • the acquired cell signal data can be directly applied to an image processing technique used in an existing camera, and real-time processing using an image processing FPGA becomes possible.
  • feedback stimulation to the stimulation electrode can be performed based on the data obtained by the real-time processing.
  • FIG. 15 is a schematic diagram illustrating an example of a mechanism capable of measuring a plurality of samples with the cell measurement system of the present invention.
  • the system of this embodiment includes an analysis module, a multistage incubator, an electrical analysis module, and an online analysis module connected by an online network.
  • the analysis module includes a phase-contrast microscope or differential interference microscope that measures changes in cell shape, optical measurement using fluorescence microscope and camera imaging analysis, and agarose can be locally dissolved on a micron scale using a microscope system. It consists of agarose processing technology.
  • a multi-stage incubator has a plurality of cell culture tanks, and a microelectrode chip is arranged in the cell culture tank, and the measurement of electrical signals and electrical stimulation of each cell are performed in parallel in the incubator.
  • the obtained electrical signal is measured in real time by the electrical analysis module, and the data is recorded in an online accessible storage with the same time stamp as the result of the optical measurement data and the electrical measurement data. It is possible to analyze the recorded data by appropriately accessing the recorded data online.
  • FIG. 16 is a schematic diagram for explaining heart information that can be measured by the cell measurement system of the present invention.
  • the signal data of ion channels such as Na, Ca, IKr, and IKs. From the measurement of the rate of signal transmission between adjacent cardiomyocytes, Na Inhibition of ion channels can be measured.
  • the occurrence of arrhythmia can be measured and the cardiac output can be estimated by optical measurement of the shape change of one cell.
  • it is possible to measure the occurrence of reentry by arranging the cell network in a ring shape, and it is possible to measure as a pathologic heart model such as cardiac hypertrophy by adding fibroblasts to the cell arrangement.
  • FIG. 17 is a graph illustrating an example of a change in the field potential (FP) signal waveform of a cell obtained from autonomously beating cardiomyocytes with respect to drug addition in the cell measurement system of the present invention.
  • the cell field potential signal waveform shows changes in cell potential generated by ions flowing into and out of the cell as shown in FIG. 8, and the differential value of the cell potential, that is, ions per unit time.
  • inward ionic currents such as sodium and calcium in the process leading to depolarization are negative, and outward ionic currents such as potassium in the subsequent repolarization process are positive. ing.
  • a plurality of adjacent waveforms are averaged to obtain a noise component and each adjacent waveform.
  • One FP waveform is extracted as an average value excluding the influence of differences and the like, and is used to estimate the state of each ion channel by detailed analysis of one waveform reflecting the average value.
  • the average value of adjacent FP signal waveforms is not acquired, but a portion depending on the fluctuation of the response of the ion channel is compared and extracted from the difference between adjacent FP signal waveforms, and the magnitude of this fluctuation is Based on this, the blocked amount of the ion channel is estimated quantitatively.
  • the magnitude of fluctuation is generally indicated by the inverse [1 / (n) 1/2 ] of the square root of element n. That is, when the number of ion channels on the cell surface is functioning, for example, 10 4 , the magnitude of functional fluctuation as the sum of ion channels is 1% [1 / (10 4 ) 1/2 ]. However, if the number of ion channels that function up to 10 2 decreases due to blocking by the drug, the magnitude of the fluctuation of the function will rapidly increase to 10% [1 / (10 2 ) 1/2 ]. Increasing and adjacent FP waveforms will cause significant changes. That is, if the fluctuation magnitude can be estimated by comparing changes in adjacent FP waveforms, the total amount of blocked ion channels can be estimated from the fluctuation magnitude.
  • the inflow time of sodium ions into the cell is set as a reference (zero), and from that time, potassium ions
  • the change in the length of the FPD is the peak value of the inflow of potassium ions following the inflow and outflow of ions such as sodium and calcium.
  • the fluctuation of the position of the FPD can be noted as an indicator of the amount of change as the sum of changes in ions entering and exiting when various ion channels of the cell are blocked by the drug.
  • Fluctuations in adjacent FP waveforms of ion channels of all relevant cells The thing that reflects the sum. In fact, the position of the FPD in FIG. 17 (the position of the red arrowhead) was confirmed. By adding E4031, a potassium ion channel inhibitor, the FPD was between 425-450 ms before the addition, but 10 nM was added. 642-645ms, 663-694ms with the addition of 100nM, 746-785ms with the addition of 1 ⁇ M, the FPD value increases monotonously with the addition of the inhibitor, and adjacent FPDs are not the same value, It will take different values that reflect fluctuations.
  • FIG. 18 shows an example of the experimental result depending on the concentration of E4031 regarding the extension of FPD when the potassium ion channel of the cell is inhibited by the drug E4031 having the function of specifically inhibiting the potassium ion channel. .
  • the outflow of ions is delayed by inhibition of the potassium ion channel, and FPD is extended in a concentration-dependent manner.
  • the fluctuation measurement is similarly performed on the experimental result.
  • FIG. 19 shows how the FPDs of adjacent pulsations are in a homologous state when focusing on FPD fluctuations by using the Poincare plotting, which generally measures the rhythm fluctuations of an electrocardiogram, to evaluate the FPD values in the FP waveform.
  • the Poincare plotting generally measures the rhythm fluctuations of an electrocardiogram, to evaluate the FPD values in the FP waveform.
  • STV short-term variability
  • FIG. 20 shows the point of view in the method of estimating how much the FPD of the adjacent pulsations deviates from the homologous state when focusing on the fluctuation of the FPD using the Poincare plotting.
  • the magnitude of the fluctuation of the beat in terms of how much it deviates from the average value of the beat (the sum of all samples corresponds to the ideal value of the ion channel response) (LTV: Long-term variability) It explains how to estimate.
  • LTV Long-term variability
  • FIG. 21 is a summary of the FPD fluctuations shown by the Poincare plotting as an example of the response of the myocardial cells when E4031 is actually added stepwise, and the fluctuations are quantitatively summarized as STV. It is presumed that the ion channel is blocked in response to the addition of E4031 by extending the length of time of FPD, and it can be seen that the value of STV increases abruptly with the addition of a high concentration.
  • FIG. 22 shows the ratio (%) in which the extension of FPD corresponding to conventional QT extension measurement is observed on the X axis using myocardial cells, and the ratio (%) in which the increase in STV is observed on the Y axis.
  • Evaluations were made on drugs known to have toxicity and drugs known to have no cardiotoxicity.
  • evaluation was based only on the results of FPD data on the X-axis, but when the evaluation was performed with the results of STV on the Y-axis, as shown in the figure, a two-dimensional In the mapping on the graph, the distribution is the same as the known literature results in three areas of high risk (High risk), low risk (Low risk), and no risk (No risk) with high cardiotoxicity. I understand that. From this, it can be seen that the addition of STV in addition to the conventional FPD makes it possible to more accurately and easily estimate the possibility of the cardiotoxicity of the drug.
  • FIG. 23 shows the difference in STV response for FPD to drug addition.
  • a local FPD pointe plotting A, B
  • a two-dimensional myocardial sheet are constructed and the local pointe plots are plotted.
  • B shows the result of measuring the Ting (C, D).
  • C, D the result of measuring the Ting
  • B and D are located in the vicinity and A and C are located far from the pager area PM.
  • FPD that was distributed on the diagonal line of Poincare plotting X Y before the addition of the drug caused large fluctuations in the cyclic models (A, B) due to the addition of a low-volume cardiotoxic drug.
  • the two-dimensional sheet model (C, D) hardly fluctuates.
  • the pulsation shifts to the fibrillation state or the stop state in the annular model (A, B), but in the region C far from the PM in the two-dimensional sheet model (C, D).
  • the amount of increase in STV is still lower than that in region C in the nearby region D.
  • a cell population (network) arranged linearly from the pacemaker region is more than a cell population (network) of a two-dimensional sheet. It can be seen that the effect of the drug is accurately reflected.
  • FIG. 24 shows the difference in the response of the STV with respect to the transmission rate (V) of the pulsatile stimulus from the PM region to the addition of the drug.
  • TdP Torsad Pointes
  • FIG. 24C shows the definition of STV, and the transmission time T from the PM region (or the distance from the PM is divided by this transmission time). The measurement is performed using the apparent transmission speed V) at the observation point.
  • LTV The definition of LTV is the same as STV, but FPD is changed to T or V.
  • FIG. 24 (a) as an example, when the cardiomyocyte network is constructed in a ring shape, the pointe-care plotting (A, B) of the local transmission time T and the myocardial sheet spread in two dimensions are constructed and the local FIG. 24 (b) shows the result of measuring the Poincare plotting (C, D).
  • B and D are located in the vicinity and A and C are located far from the pager area PM.
  • the cardiotoxicity of a drug by STV measurement of the transmission time T is determined from the pacemaker area by using a two-dimensional sheet-like cell population (network). It can be seen that the linearly arranged cell population (network) reflects the influence of the drug more accurately, and at the same time, it is possible to more effectively measure the occurrence of spatially dependent fluctuations.
  • FIG. 25 shows an FP waveform, a conventional in vitro measurement technique (for example, patch clamp method), and a conventional in vivo measurement technique (for example, when acquiring an electrical FP waveform from each cardiomyocyte in the cardiomyocyte network of the present invention.
  • the relationship with the electrocardiogram) is schematically illustrated.
  • the waveform obtained by the FP measurement of the cell of the present invention indicates the magnitude of ion flow per unit time entering and exiting the cell, and becomes cell potential change information (electrically ionic current).
  • the cell potential obtained by the conventional cell-based in-vitro measurement has a differential / integral relationship as depicted in FIG.
  • the FP waveform measured from one electrode obtained from each cell is superposed on each FP waveform obtained from a plurality of electrodes arranged in a plurality of regions of the cell network.
  • a synthetic FP waveform of the cell network can be obtained, which is homologous to the electrocardiogram data of the QT region corresponding to the response of the ventricular tissue portion of the electrocardiogram which is a potential change signal waveform obtained from the heart.
  • FIG. 26 schematically shows the configuration of the apparatus system for estimating the correlation between the information measured by the conventional technique described in FIG. 25 and the FP data obtained by the apparatus of the present invention.
  • FP data acquired in units of one electrode from a plurality of microelectrodes arranged so as to measure a local FP on one cell or cell network can be accumulated, and the cell potential can be estimated by differentiating each FP data.
  • FIG. 27 and 28 show an example in which the FP data from each electrode is actually overlaid by the arithmetic circuit described in FIG.
  • the cardiomyocyte network is arranged in a ring shape as shown in FIG. 27A, and microelectrodes are arranged at regular intervals along the network.
  • the pulsation signal is transmitted from R2 ⁇ R8 or L1 ⁇ L8 can be seen in the FP waveform of each electrode in FIG. 27 (B).
  • the waveform obtained by superimposing these becomes the waveform of the lower S.
  • FIG. 27C shows the result of actual measurement and synthesis over a long period of time.
  • FIG. 28 shows a waveform that corresponds to an electrocardiogram when the arrhythmia state in which the pulsation signal from the PM region is not transmitted regularly becomes a very disturbed waveform.
  • a waveform having the same shape as that of the arrhythmia can be seen as a synthesized FP waveform.
  • FIG. 29 shows the relationship of the size of the FPD to the pulsation cycle of the cardiomyocytes.
  • a black circle is a result of measuring FPD in cardiomyocytes having various autonomous pulsations with the apparatus system of the present invention.
  • the cell changes the value of FPD depending on its pulsation cycle. This is because when the measurement is performed using cardiomyocytes using autonomous pulsation, when the pulsation cycle of the cell changes, stops pulsating, or becomes unstable due to the drug, this side effect causes the original ion channel. This suggests that the FPD may change due to a cause that is not a block.
  • the red X indicates the FPD value when the pulsation cycle of the cell is forcibly changed by forced pulsation.
  • the pulsation cycle can be maintained for a certain period of time or longer by continuous external stimulation. It can be seen that a stable FPD is obtained.
  • FIG. 30 shows an example of temporal changes in the FPD of cardiomyocytes when forced pulsatile stimulation is applied to the cardiomyocytes that are actually autonomously pulsating from the outside using the system of the present invention.
  • a cell with an autonomous pulsation interval of about 4 seconds gives a forced pulsatile stimulus of 1 Hz
  • the FPD value changes greatly immediately after that, and the position of 550 ms is about 30 seconds after the start of stimulation. It can be seen that it stabilizes.
  • the autonomic pulsation period is different, and the FPD becomes gradually longer.
  • it is desirable to conduct a drug toxicity test after 30 seconds from the start of stimulation until the FPD is stabilized after the forced pulsatile stimulation is started.
  • FIG. 31 shows an example of cell arrangement in the case where FPD, transmission time T, or transmission speed V is actually measured by applying a forced pulsatile stimulus from the outside using the system of the present invention.
  • FIG. 31A shows an example of stimulus measurement using a cell population arranged to cover at least two microelectrodes. For example, while applying a forced stimulation signal at a constant interval of 60 beats per minute from the stimulation electrode, the FPD of the cell at the adjacent measurement electrode, or the transmission time T of the pulsation signal from the stimulation time of the stimulation electrode to the cell on the measurement electrode, Alternatively, the transmission speed V to the cell on the measurement electrode is measured.
  • FIG. 31A shows an example of stimulus measurement using a cell population arranged to cover at least two microelectrodes. For example, while applying a forced stimulation signal at a constant interval of 60 beats per minute from the stimulation electrode, the FPD of the cell at the adjacent measurement electrode, or the transmission time T of the pulsation signal from the stimulation time of the stimulation electrode to the cell
  • FIG. 31 (b) shows a forced stimulation pulsation provided by stimulation microelectrodes arranged at the end points of a linearly arranged cardiomyocyte network, and this transmission is performed with a minute arrangement arranged along the cardiomyocyte network at regular intervals.
  • the electrode array measures the FPD, T, V of myocardial cells on each electrode, predicts not only the data of each electrode with respect to the stimulation signal of the stimulation electrode but also the prediction of the occurrence of arrhythmia by the combined FP of each recording electrode FP, The relationship between T and V can be estimated.
  • what is shown here is merely an example of the cell arrangement, and the same measurement can be performed by giving a forced pulsation to the PM region of the circular cell network shown in FIG. It is also possible to measure FPD with the minimum number of cells by using the stimulation electrode as a measurement electrode in the upper cell.
  • the myocardium is mentioned for the myocardial cell network, but it includes the addition of fibroblasts so as to have the same properties as the living tissue.
  • FIG. 32 schematically shows that a potential clamp type feedback control mechanism that keeps the potential of the electrode 2 constant can be used to perform the FP measurement of the cells arranged on the microelectrode 2.
  • the FP of the cell does not measure by amplifying the signal from the conventional electrode, but monitors the current supplied from an external power source in order to maintain the potential of the electrode 2, and displays the result in real time. It is estimated by analyzing with.
  • zero is normally selected as the potential to be kept constant, but when the cell state is changed, such as changing the depolarization potential, the potential can be adjusted to a different one.
  • FIG. 33 shows the pulsation cycle of a cell population when forced pulsatile stimulation is applied to a partial region of the cell population actually differentiated from human ES cells into cardiomyocytes using the system of the present invention described above. It is a graph of an example of the result of having measured change. As can be seen from this graph, in a normal myocardial cell population, when a forced stimulation of, for example, 0.6 Hz to 1.8 Hz is given as in this example, in response to the forced stimulation linearly in all of this range. It can be seen that the beat follows.
  • FIG. 34 (a) since the pulsation of the cell population has the same period as the interval of the forced pulsation stimulation when the forced pulsation stimulation is actually applied, the cardiomyocyte population in this forced pulsation stimulation state is shown in FIG.
  • the change of the waveform of FP and the change of the length of FPD are shown. As can be seen from the graph, it can be seen that the FP waveform is changed and the length of the FPD is shortened by increasing the forced pulsation stimulation interval. Therefore, as shown in FIG. 34 (b), when this change in FPD is shown in a graph, this shortening depends on the period (RR) of the forced pulsation interval.
  • FIG. 35 is a table showing the data shown in the graphs of FIGS.
  • a healthy cardiomyocyte is a cell capable of stable pulsation.
  • the cell population subjected to differentiation induction may be used as it is, or the cardiomyocytes subjected to differentiation induction may be dispersed and measured and evaluated in units of one cell.
  • these dispersed cardiomyocytes may be repopulated and measured, or these dispersed cardiomyocytes may be mixed with human heart-derived fibroblasts to be measured and evaluated as a new cell population. .
  • These cardiomyocytes can be used for myocardial toxicity tests.
  • FIG. 36A shows a comparison between the microelectrode 2 on which the cell 10 is placed and the bare cell on which the cells arranged in the vicinity of the microelectrode 2 are not placed in order to reduce the noise of the cell signal electronically.
  • the circuit which outputs the difference value of the electric potential between the electrodes 2c is shown typically.
  • FIG. 36B by incorporating this circuit in the first stage of the amplifier circuit, it can be seen that noise is reduced without depending on a specific frequency as shown in FIG. 36C. .
  • the position of the comparison electrode 2c with respect to the microelectrode is closer, for example, those arranged at a distance of 50 ⁇ m can perform a sufficient function but can provide a noise reduction function up to a distance of 1 mm. .
  • FIG. 37 is a diagram schematically showing an example of a comprehensive evaluation method for cardiotoxicity evaluation of the present invention.
  • FPD values obtained from the results of cardiomyocyte cell potential measurement after the addition of a specific concentration of drug first, the aggregated results of the extent of FPD extension are taken as values on the X axis, and the above FPD time The fluctuation is set as the value on the Y-axis from the Poincare plotting to STV, and the result is plotted.
  • FIG. 37 (b) is an example of various drugs plotted in the XY diagram as a result.
  • a drug in the region where FPD prolongation and fluctuation (STV) increase are small can be judged to have QT prolongation but no cardiotoxicity, and FPD prolongation and fluctuation (STV) increase simultaneously In some cases (upper right in X? Y drawing), it can be predicted that there is cardiotoxicity such as TdP.
  • FIG. 38 is a schematic diagram showing an example of the configuration of a system for actually measuring cardiotoxicity.
  • the system of this embodiment is composed of a liquid feeding unit, a cell culture measurement unit, and a cell analysis / stimulation unit.
  • the liquid feeding section can be fed by a syringe pump system, a peristaltic pump system or an HPLC pump system that continuously feeds the culture solution to each cell culture chamber cultured in the cell culture measurement section.
  • a resistance heating wiring for temperature adjustment is wound around the outer periphery of the pipe of the liquid feeding section, and the liquid temperature in the pipe is continuously monitored by a heat detection mechanism such as a micro K-type thermocouple or thermistor, so that the liquid temperature to be introduced can be controlled. By adjusting the degree of resistance heating to be controlled, a solution at a constant temperature is always introduced.
  • a mechanism such as a merging pipe and a switching pipe is arranged in the pipe for adding the drug to be tested in this liquid feeding section, so that a drug having a desired concentration can be introduced into each cell culture chamber. Can do.
  • a part of the liquid introduction tube is optically transparent and can be quantitatively evaluated by absorption spectroscopic measurement in the wavelength range of 280 nm to 800 nm. It is desirable that a mechanism is added.
  • the waste liquid it is desirable that a part of the waste liquid tube is optically transparent and that a mechanism capable of quantitative evaluation is added by absorption spectroscopic measurement in the wavelength range of 280 nm to 800 nm.
  • the control temperature of the chemical solution is usually desirably a temperature close to the normal temperature of the human body, and from this point of view, it is desirable to be able to control the temperature in the range of 30 degrees Celsius to 45 degrees Celsius.
  • FIG. 39 is a schematic diagram and a photograph showing an example of the configuration of the cell culture measurement chamber in the system for measuring cardiotoxicity of the present invention.
  • a multi-electrode substrate 4201 (see FIG. 40) on which a plurality of cell potential measurement electrodes are arranged is bonded to a cell culture container 4202 on which a culture solution introduction mechanism / discharge mechanism is arranged, so that eight samples can be measured simultaneously.
  • It is a possible cell culture measurement plate.
  • the solution inlet is arranged in a fan-like shape on the bottom surface closest to the multi-electrode substrate 4201.
  • the liquid discharge mechanism is developed in a fan shape in the same direction as the interface direction of the liquid level at a position that determines the height 4204 of the upper liquid level.
  • FIG. 41 is a diagram schematically illustrating the configuration of the electrode wiring of the electrode arrangement arranged on the multi-electrode substrate.
  • a transparent electrode such as ITO is used as an electrode for observing the shape of a cell.
  • the transparent electrode has a higher resistance value than a normal metal electrode as a characteristic of the transparent electrode, it is particularly multi-electrode.
  • the substrate becomes large, such as a plate, the wiring becomes long and the impedance becomes very large.
  • the metal layer is arranged on the transparent electrode with the same wiring as the transparent electrode, the resistance value can be lowered by the conductivity of the metal electrode.
  • a metal layer 4303 is disposed on the upper surface of the metal layer 4303 and the upper surface thereof is covered with an insulating film.
  • the metal electrode material used here for example, gold, platinum, titanium, copper, aluminum or the like may be used.
  • FIG. 42 is a schematic diagram showing an example of electrode arrangement on a multi-electrode substrate.
  • a reference electrode 4403 for noise removal is arranged.
  • the results of a plurality of local responses of the cardiomyocyte network obtained from each measurement electrode 4402 can be measured, and fluctuations in the transmission speed can be obtained by comparative analysis of the transmission poisoning degree between the measurement electrodes.
  • the measurement electrodes are connected in a straight line.
  • FIG. 42 (c) a part of the above FIG. 42 (b) is cut away to make it easy to obtain the FP waveform of local cardiomyocytes.
  • FIG. 42 (d) is an example of an electrode arrangement for measuring cells arranged in a ring shape on the ring electrode. These measure the cardiomyocyte network arranged in a ring shape as shown in FIG. 11 and FIG. 12, but a part of the ring-shaped measurement electrode is lost and a local forced stimulation is applied to the site. A stimulation electrode is arranged, and a reference electrode for noise removal is arranged. Further, in FIG. 42 (e), the measurement electrodes are also divided so that the response of the local cardiomyocytes can be measured.
  • FIG. 43 is a schematic diagram showing an example of the system configuration of the present invention for simultaneously measuring the mechanical characteristics and electrical characteristics of cardiomyocytes.
  • the system includes (1) a cell network chip in which a plurality of microelectrodes capable of culturing a cell population and acquiring cell potential data of a microregion in the population are arranged on a substrate; A chip mounter that fixes the chip and is electrically connected to the cell stimulation / cell potential measurement system, and (3) an environmental control vessel that can control the temperature, humidity, oxygen concentration, carbon dioxide concentration, etc. of the cell population to be cultured.
  • a micro multi-electrode potential measurement system capable of stimulating specific cardiomyocytes in a cell population and simultaneously measuring cell potentials of various micro regions in the cell population; and (5) the cell network described above
  • the particle size arranged in the cell population is about 0.1, 0.2 ⁇ m or less by culturing by mixing with the surface of the cardiomyocyte population in the chip or in the cell population, 0. ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 0.6,0 ⁇ m.
  • the shape and shape of myocardial cells whose brightness and birefringence can be easily distinguished with an optical microscope from cardiomyocytes such as plastic microparticles, glass microparticles, gold microparticles, etc.
  • An optical image comprising one or more position coordinate probe fine particles for measurement, (6) the illumination light source for optically measuring the fine particles, an optical microscope, and an image acquisition camera for acquiring the image.
  • a computer system is capable our image analysis and cell potential for analysis and stimulus control and integration data recording which performs feedback stimulus based on the results.
  • For stimulation for causing depolarization of cardiomyocytes (A) the measurement using the conduction of autonomous pulsation of the cardiomyocyte population is performed, and (B) in the cardiomyocyte population. Applying a forced electrical stimulus to a specific cell from the outside and measuring the conduction; (C) a relationship between a cell potential value and a delay time based on the measured cell potential data for a specific cell in the cardiomyocyte population. It is possible to apply a stimulus by mainly selecting from three means of giving a feedback stimulus at a specific timing satisfying the condition and measuring its conduction.
  • FIG. 44 is an example of a data acquisition monitor screen showing an example of data acquired from an example of the system configuration of the present invention for simultaneously measuring the mechanical characteristics and electrical characteristics of cardiomyocytes.
  • a large number of polystyrene fine particles are arranged on the surface of the cardiomyocyte population, and a probe fine particle displacement observation window is set for the polystyrene fine particles to be used as five probes, and the fine particles in the window are arranged.
  • the displacement of a specific probe fine particle can be continuously measured as a vector time change in the X-axis direction and the Y-axis direction.
  • FIG. 45 is an example of data acquired from an example of the system configuration of the present invention for simultaneously measuring the mechanical characteristics and electrical characteristics of cardiomyocytes. As can be seen from the figure, in addition to the cell potential data, it is possible to obtain the displacement amount of the myocardial cells at the same time and displacement speed data obtained by time-differentiating the displacement amount.
  • FIG. 46 is a diagram for explaining an example of acquisition of cell displacement direction data acquired from an example of the system configuration of the present invention for simultaneously measuring the mechanical characteristics and electrical characteristics of cardiomyocytes. It is a continuous image showing the time change of the probe fine particles arranged in the upper cell, and this displacement data is acquired as an (X, Y) component, and this is obtained by using a polar coordinate system (r, By converting into ⁇ ), it is possible to quantitatively estimate the effect of the medicine using two indexes of displacement and angle change.
  • the graph below shows an example of a phenomenon in which it is observed that the fluctuation of the angle change of the fine particle displacement is actually increased by the addition of the drug.
  • FIG. 47 is a diagram for explaining an example of the spatial arrangement of the cardiomyocyte network in the system of the present invention for simultaneously measuring the mechanical characteristics and electrical characteristics of the cardiomyocytes.
  • A shows one minute cardiomyocyte cluster arranged on one minute electrode
  • (b) shows two-dimensionally arranged cells arranged in a two-dimensional cardiomyocyte sheet.
  • the cardiomyocytes are arranged linearly on a microelectrode array arranged linearly in one dimension, and arranged so that the firing of the cardiomyocytes at the end points is conducted to the other end,
  • FIG. 48 shows cell potential (Action Potential) graphs of human stem cell-derived cardiomyocytes (top three types) classified based on the well-known cell potential measurement of myocardial cells, and their cell potentials are time-differentiated.
  • the extracellular potential (Field ⁇ Potential) graph (lower three types) is shown.
  • the left graph shows atrial muscle cells
  • the middle graph shows ventricular muscle (Purkinje cells) cells
  • the right graph shows atrioventricular nodal cells. Therefore, when measuring the drug response of the ventricular muscle or the conduction response in the ventricular muscle, it is desirable to measure the characteristics shown in the graph in the lower center using the cells measured by the extracellular potential.
  • FIG. 49 is a diagram showing an example of fluctuations in the cell potential of cardiomyocytes and fluctuations in drug response of the hERG ion channel.
  • the extracellular potential Field (Potential: FP) responds between adjacent pulsatile cycles as described above.
  • FP Extracellular potential
  • AP Cell Potential
  • FIG. 49 (B) shows an example of the result of measuring the change in cell potential of the whole cell against inhibition by E4031 in the same manner for CHO cells in which only the hERG ion channel is forcibly expressed.
  • the average value of the measured data is shown in the conventional tail current measurement.
  • the block of the ion channel advances, the current itself decreases and the measurement becomes difficult.
  • FIG. 50 is a diagram for explaining the principle of the cell stimulation method at an arbitrary position by superimposing stimulation potentials from the stimulation electrode array.
  • a number of stimulation electrode arrays capable of controlling the electrode potential and phase between adjacent electrodes are two-dimensionally arranged on the substrate, and each electrode is separated from a single electrode.
  • Stimulation of the cell outputs a weak potential change that does not cause depolarization of the cell, and by superimposing these, a superposition potential sufficient to give the cell stimulation is generated specifically at a specific position on the two-dimensional plane Therefore, it is possible to calculate the electric field strength and phase pattern of each electrode that each electrode needs to generate based on the rules of Fourier synthesis, and to give a stimulus only to a specific place.
  • an electrode array is arranged in a circular ring shape, and by controlling them with the above method, it is possible to give a stimulus by a focused electric field at the center of the ring. It is.
  • this electrode array is arranged in a form floating spatially in the Z-axis direction from the XY plane (R-axis direction) that is the cell culture layer, specifically, the plane (R-axis) on which the electrode array is arranged Direction) and the electric field irradiation direction (Z-axis direction) in the plane of the electric field focusing
  • the arrangement of the stimulation electrode array is as follows.
  • the distance from R 0 to Z f is m ⁇ , where R 0 is the foot of the perpendicular drawn from the focal point Z f to the R axis plane.
  • is the wavelength of the stimulation signal wave based on the conduction velocity in the cell population generated from each stimulation electrode
  • m is a natural number.
  • the position R n indicates the position of the concentric circle of the n-th stimulation electrode, and its width is about ⁇ ⁇ / 4 at most in terms of conduction velocity in terms of the distance from the position of the focal point where the stimulation is applied.
  • Z f is the same as the substrate on which the cell network is arranged.
  • the phase of the stimulation signal of each stimulation electrode is converted from the conduction velocity and changed according to the deviation, so that it can be changed to any specific position in the stimulation ring electrode. It is possible to give a stimulus.
  • the myocardial cell network is taken as an example, but the same processing is possible for all cells having the ability to transmit excitatory conduction between cells.
  • FIG. 51 illustrates the effect of combining an objective lens having a numerical aperture of 0.3 or less and a zoom lens system for optical measurement of fine particles.
  • an image from an objective lens is directly formed on an image recording element such as a CCD camera and observed.
  • NA numerical aperture
  • the magnification is enlarged, there is a problem that the depth of focus at which the image is not blurred becomes shallow.
  • an image acquired with an objective lens having a low magnification that is, a low numerical aperture
  • FIG. 51A shows an example of the configuration of the optical system of the present invention.
  • a zoom optical system is arranged after the objective lens, and a video camera is arranged after the objective lens.
  • FIG. 51B is a result of actually observing fine particles directly using an objective lens having various magnifications (numerical apertures) and observing image blur in the depth direction.
  • FIG. 51C is an observation result of an optical system image obtained by actually adding a zoom system to a 10 ⁇ objective lens (numerical aperture 0.28).
  • the zoom system is used to enlarge the magnification ratio (positional coordinate resolution) equivalent to 20 times the objective lens and 40 times the objective lens, the depth of focus is maintained at about 25 ⁇ m, and particularly the contraction.
  • position coordinate resolution position coordinate resolution
  • FIG. 52 shows an example in which cell potential measurement and mechanical measurement are simultaneously measured using the above system.
  • A is a result of simultaneous measurement of changes in extracellular potential (FP) and generated tension (Optical imaging) when verapamil is added as an example of a drug that loses the contraction tension of cardiomyocytes.
  • FIG. B shows the time change of disappearance of contractile force when the drug concentration reaches 100 nM.
  • Fig. B the electrical firing of the excitatory conduction of the cells is maintained, but the contractile force disappears suddenly, and finally the excitatory conduction continues in electrophysiology, but the mechanical It can be seen that the contraction force disappears.
  • FIG. 53 summarizes the results obtained in FIG. 52 in a graph.
  • FIG. 53A is an extracellular potential waveform actually obtained with an electrophysiological extracellular potential.
  • the extracellular potential changes as follows. If the drug has sodium ion channel inhibition, a decrease in the first spike waveform portion occurs, and if there is calcium ion channel inhibition, FPD (time from the first spike of sodium to the position of the inward current maximum) FPD changes the waveform in the direction of shortening, and when there is potassium ion channel inhibition, conversely, FPD changes the direction of extension.
  • FIG. 53B is a graph summarizing the correlation between changes in FPD and changes in contraction force (Displacement). It is clear that the loss of contraction force occurs where the decrease in FPD is less pronounced.
  • FIG. 53C is an analysis of the disappearance of contractile force from another viewpoint. Specifically, as described in the explanation of FIG.
  • the relationship between the change in strength of the first spike of sodium and the change in contractile force is shown.
  • the inhibition of the sodium ion channel increases with the concentration of the drug, but in light of the results in FIG. B, the first spike is the cellular electrophysiological response (calcium ion channel). It can be seen that the strength is sufficient to induce the response of the potassium ion channel and the response of the potassium ion channel, and in this, the loss of tension occurs.
  • the administration of this drug causes the inhibition of sodium ion channels, but the inhibition is still at a level that still has sufficient capacity for excitability, and the calcium ion channel and the potassium ion channel are further converted into FPD.
  • FIG. 54A further summarizes viewpoints for measuring the risk of arrhythmia occurrence by electrical / optical simultaneous measurement in addition to the above viewpoints.
  • FPD time fluctuation obtained by electrophysiological measurement movement distance (displacement amount) of muscle contraction obtained by optical measurement, fluctuation (variation) between each contraction interval, and each of movement direction (angle)
  • fluctuation (variation) between the contraction intervals can be measured simultaneously.
  • how much the loss of uniformity of contraction force of each cell caused by variation in the original quality of cardiomyocyte population, as well as the proarrhythmic effect due to conventional electrophysiological reasons, occurs due to drug administration It can be compared with the variation of FPD by electrophysiological measurement.
  • FIG. 54B is a graph showing how the fluctuation increases as the displacement amount further decreases.
  • FIG. 55 shows an example of an apparatus configuration in which extracellular potential measurement and contractile function change measurement optical system are combined.
  • a cardiomyocyte network chip incorporating two or more extracellular potential measurement functions is placed on a stage that can be moved in three dimensions, and potential measurement is performed continuously by combining a chip mounter with each chip. be able to.
  • the displacement amount (contraction distance) and displacement direction (contraction angle) of the cardiomyocytes in each chip can be measured by periodically moving the stage.
  • FIG. 56 shows an example of the configuration of a high-throughput cardiomyocyte network array chip composed of cell culture module arrays.
  • a multi-well type cell culture plate is often used. Some wells may not be able to use all wells effectively due to problems such as unfavorable cell culture conditions or cells not being implanted. To solve this problem, separate each well in advance, extract only the wells in good condition after the start of culture, and draw them up to make a multi-well plate. The well can be used in good condition.
  • One of the embodiments shown in FIG. 56 is a simple illustration.
  • Cells are cultured in wells 5601 previously separated as minimum units, and wells in which good cells are cultured are arranged in a plate 5603 to form a high-throughput cardiomyocyte network array chip.
  • an electrode array 5602 for electrical measurement of extracellular potential and cell stimulation is arranged in each well, a contact for connecting the electrode array 5602 is arranged in advance on a plate incorporating the well, and there is one well. Since it can be easily exchanged in units (as one block), in particular, by exchanging only wells with cell networks exhausted by drugs in units of one unit, not in units of plates, but in units of wells in the plate It is possible to have an economic effect by exchanging with.
  • FIG. 57 shows an example of the configuration of a cell network placement technique using a sample loader 5701 that effectively places cardiomyocytes in each well 5601.
  • the sample loader 5701 has a structure that can be inserted into the upper surface of the well 5601.
  • a groove having a width of 100 ⁇ m to 300 ⁇ m and a length of about 500 ⁇ m to 3 mm is opened on the lower surface of the sample loader.
  • FIG. 57D when the liquid 5702 containing cells is dropped on the inner surface, the cells settle and are arranged in a straight line as in the shape of the groove. .
  • the cell is effectively sedimented with a steep slope of 30 degrees from the vertical direction. However, if it is 40 degrees or less, the cells can be effectively sedimented into the groove on the bottom surface.
  • the cell concentration in the liquid containing the cells is quantitatively adjusted in advance, the total number of cells to be arranged can be adjusted only by adjusting the liquid volume, and if the cell volume is reduced, the monolayer is adjusted. If a cardiomyocyte network is constructed and the amount of cells is increased, a multilayer cell network such as two layers or three layers can be constructed. Further, as shown in FIG.
  • the structure of the sample loader is adjusted so that the direction of the groove and the direction of the electrodes arranged in a straight line coincide with each other as shown in the present embodiment,
  • the cells can be effectively arranged in an electrode array simply by inserting.
  • the sample loader places cells on the chip by effectively sedimenting them. Therefore, it is preferable to remove and use at the time of cell measurement.
  • FIG. 58 shows another example of a system that measures the extracellular potential using a multi-electrode system by actually arranging the block-type wells.
  • the electrodes are discrete electrodes arranged in series.
  • the electrodes in the well are ring-shaped as shown in FIG.
  • a sample loader having a ring-shaped bottom groove is used instead of a linear bottom groove as shown in FIG.
  • FIG. 59 shows a configuration in which an optical measurement module is further incorporated, and the mechanical characteristics in each well can be measured by moving the optical system.
  • FIG. 60 is a diagram illustrating the configuration of a substrate in which microprojections for periodically preventing the contraction of cardiomyocytes during culture measurement are arranged in the cardiomyocyte network and the cardiomyocyte sheet.
  • FIG. 60A shows an example of an experimental result showing a state in which the cardiomyocyte network 6001 is peeled off from the collagen layer on the bottom surface by the generated contractive force and gradually contracted into a lump as shown in FIG. It is a thing. When cardiomyocytes contract in a lump like this, they disappear from the arranged microelectrode array, making it difficult to measure the extracellular potential, the excitation stimulation conduction velocity from the network, and this temporal fluctuation. In order to avoid this, as shown in FIG.
  • minute protrusions (pillars) 6003 may be periodically arranged on the substrate surface 6002 in the region where the cardiomyocyte network or cardiomyocyte sheet is cultured.
  • 60C and 60D are electron micrographs of an example in which pillars are actually arranged with a diameter of 3 ⁇ m, a height of 5 ⁇ m, and a period of 50 ⁇ m.
  • the diameter of the pillar is desirably 5 ⁇ m or less
  • the height is desirably 3 ⁇ m or more
  • the arrangement period of the pillars on the substrate is desirably 50 ⁇ m or less.
  • the cylindrical shape was shown in the present Example, the shape of a rectangular parallelepiped may be sufficient.
  • FIG. 61 is a schematic diagram showing another example of the electrode arrangement on the multi-electrode substrate shown in FIG.
  • a stimulation electrode 6101 is arranged at the center of an annular arrangement of measurement electrodes 6102, and cardiomyocytes are two-dimensionally arranged on these electrodes.
  • the measurement electrode 6102 can measure a state in which excitatory conduction of myocardial cells ignited by forced stimulation from the center electrode 6101 propagates concentrically.
  • the measurement electrode 6102 arranged on the circumference can be measured as a waveform disturbance.
  • FIG. 61 (b) is a schematic view of the annular measurement electrode 6102 divided into four parts.
  • a two-dimensional cardiomyocyte sheet is used.
  • the cardiomyocytes are arranged in an annular shape on the annular measurement electrode 6102 and the stimulation electrode 6101.
  • the rotational direction of excitatory conduction can be estimated by checking the time difference of excitatory conduction between the measurement electrodes 6102 divided into four.
  • FIG. 62 schematically shows an example of an embodiment using metal microwires as electrodes.
  • a small platinum electrode 6202 having a thickness of 10 ⁇ m is arranged on the bottom surface of a container 6201 having the same shape as the sample loader shown in FIG. 57, and the surface thereof is modified with platinum black.
  • a platinum electrode is incorporated into the sedimented cardiomyocyte network, and the cardiomyocyte potential can be measured in the same manner as the vapor deposition electrode pattern arranged on the bottom surface of the substrate.
  • FIG. 62A a small platinum electrode 6202 having a thickness of 10 ⁇ m is arranged on the bottom surface of a container 6201 having the same shape as the sample loader shown in FIG. 57, and the surface thereof is modified with platinum black.
  • a platinum electrode is incorporated into the sedimented cardiomyocyte network, and the cardiomyocyte potential can be measured in the same manner as the vapor deposition electrode pattern arranged on the bottom surface of the substrate.
  • a cardiomyocyte differentiated from a stem cell such as an iPS cell is a healthy cardiomyocyte that can be used for drug discovery screening or regenerative medicine.
  • Electrode array 5603 ... Plate, 5701 ... Sample Loader, 5702 ... Liquid containing cells, 6001 ... Cardiomyocyte network, 6002 ... Substrate surface, 6003 ... Microprojection (pillar), 6101 ... Stimulation electrode, 6102 ... Measurement electrode, 6103 ... Reference electrode, 6201 ... Container, 6202 ... microelectrode wire for measurement, 6203 ... stimulation electrode wire, 6204 ... groove.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 透明基板上に心筋細胞集団を配置し、心筋拍動細胞に与えた強制拍動刺激に対する心筋細胞の応答から心筋細胞の品質を評価する。透明基板上に心筋細胞集団を配置し、ネットワークを構成する細胞には薬物が作用するように薬物を含む液体の流れに曝す。ネットワークの隣接する心筋拍動細胞の比較から得られるゆらぎ計測から薬物による心毒性の程度を評価する。

Description

心筋毒性検査および心筋細胞評価のための方法および装置
 本発明は、心筋毒性検査および心筋細胞評価のための方法および装置に関する。
 細胞の状態の変化や、細胞の薬物等に対する応答を観察するのに多用されているのはバイオアッセイである。従来のバイオアッセイでは、一般的に培養細胞を用いることが多い。この系では複数の細胞を用いてアッセイを行うので、細胞集団の値の平均値をあたかも1細胞の特性であるかの様に観察してきた。
 しかし、実際には細胞は集団の中で細胞周期が同調しているものはまれであり、各々の細胞が異なった周期でタンパク質を発現している。このため、刺激に対する応答の結果を解析するときにゆらぎの問題が常に付きまとう。
 すなわち、細胞の反応機構自体が普遍的に持つ応答のゆらぎが存在するために、常に、平均的なレスポンスしか得ることができない。これらの問題を解決するために、同調培養等の手法が開発されているが、常に同じステージにある細胞群を使用することは、常にそのような細胞を供給し続けなければならないということで、バイオアッセイを広く一般に広める障害となっている。
 また、細胞に対する刺激(シグナル)は、細胞周辺の溶液に含まれるシグナル物質、栄養、溶存気体の量によって与えられるものと、他の細胞との物理的接触・細胞間インタラクションによるものの2種類があることからも、ゆらぎについての判断が難しいのが実情であった。
 細胞の物理的接触・細胞間インタラクションの問題は、バイオアッセイを組織断片のような細胞塊で行うことである程度解決できる。しかし、この場合、培養細胞と異なり、常に均一な素性の細胞塊を得ることができない。そのため、得られるデータがばらついたり、集団の中に情報が埋もれてしまったりする問題がある。
 細胞群の細胞の1つ1つを最小構成単位とする情報処理モデルの計測のために、本願の発明者らは特開2006‐94703(特許文献1)等に示すように、細胞を特定の空間配置の中に閉じ込めておくための複数の細胞培養区画を構成し、隣接する区画間は細胞の通り抜けることができない溝またはトンネルでお互いを連結するとともに、必要に応じて、溝またはトンネルあるいは細胞培養区画に、細胞の電位変化を計測するための複数の電極パターンを持つ構造の集合細胞マイクロアレー(バイオアッセイチップ)を提案した。
 また、心臓の複雑な機能を反映して取得される心電図の評価法として、通常の非線形ダイナミクス計測に使われている手法を応用して心電図解析をする手法が提案されている。例えば、もっとも一般に使われている心電図解析はポワンカレプロッティング法である(非特許文献1)。プロット中の1点は、隣接する2つの拍動データの情報を示しており例えばX軸にある時点の拍動レートを、Y軸に1つ前の拍動レートを示すこととなる。これによって心臓の拍動のゆらぎについてグラフ上の点の分布を定量化することによって見積もるものである。その他の心臓の拍動のゆらぎを計測する手法としては、相関次元法(correlation dimension)、非線形予測法(nonlinear predictability)(非特許文献2)、近似エントロピー法(非特許文献3)などがある。
 心毒性の評価については、また、心筋細胞の収縮力、すなわち血液の拍出量が、薬剤の投与に対してどのように変化するかという観点での薬物の副作用の評価があるが、これについては現在、in vivoでの計測が中心となっており、現在のところ、細胞をベースとしたin vitro系でのスクリーニング系は確立していない。
特開2006‐94703号公報
Brennan M,Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect non-linear features of heart rate variability? Biomedical Engineering, IEEE Transactions on, Proc. IEEE Transactions on Biomedical Engineering, 2001, 48, 1342-1347 Kanters JK, Holstein-Rathlou NH, Agner E (1994). "Lack of evidence for low-dimensional chaos in heart rate variability". Journal of Cardiovascular Electrophysiology 5 (7): 591-601.PMID 7987529. Storella RJ, Wood HW, Mills KM et al. (1994). "Approximate entropy and point correlation dimension of heart rate variability in healthy subjects". Integrative Physiological & Behavioral Science 33 (4): 315-20.PMID 10333974.
 従来のバイオアッセイでは、細胞を組織断片として扱うか、培養細胞のように1細胞として扱うかのいずれかであった。細胞の数が多すぎると上記従来技術の項で述べたように、得られる情報が平均的なものになってしまい、薬剤などに対するレスポンスが正確に得られない問題がある。細胞を1細胞ずつ用いる場合は、本来、多細胞組織の細胞として機能している細胞を、引き離された独立した状態の細胞として使用するために、細胞同士のインタラクションの影響が現れなくなることとなり、やはり正確な薬剤レスポンスすなわちバイオアッセイデータを得る上で問題がある。
 心筋細胞および線維芽細胞について見ると隣接する心筋細胞あるいは線維芽細胞からの拍動の伝播が、1細胞単位で細胞電位、細胞形態が正確に計測できるとともに、心筋細胞に対する薬物の毒性検査が1細胞の細胞電位、細胞形態として正確に計測できるデバイスやシステムを開発することが重要である。
 ヒトiPS細胞あるいはヒトES細胞などのヒト幹細胞から分化誘導した心筋細胞について、これらの細胞を創薬スクリーニングあるいは再生医療に使うためには、この心筋細胞が、ヒト心臓にある心筋細胞と同じ品質であるかどうかを細胞の機能面から定量的に評価する必要がある。
 本発明は、心筋細胞の電気生理学的特性と力学的特性を同時計測して、これらの関係を定量的に評価して心毒性を評価するために、以下の装置および方法を提供する。
(1)基板、
 該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
 上記基板上に上記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
 上記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している一つ以上の微小電極、
 上記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
 上記微小電極のそれぞれに接続された引き出し線と上記比較電極に接続された引き出し線とを用いて上記微小電極に載置されている細胞電位を計測する電位計測手段、
 上記微小電極へ送る電気刺激を制御し、上記電位計測手段で計測した電位データを記録する、制御/記録手段、
 上記細胞集団上または集団内の一カ所以上に空間的に距離を持って配置した、上記心筋細胞を含む細胞集団とは光学特性の異なる粒径約1μm以上約50μm以下の微粒子(例:ポリスチレン微粒子、ガラス微粒子、金微粒子)、
 上記微粒子を光学的に計測するための照射用光源、光学顕微鏡および画像取得カメラを含み、上記微粒子の位置および位置変化を、時間的な移動量データおよびその移動方向の角度変化データを含む変位データとして連続的に計測する、光学的計測系、ならびに
 上記電位データと上記変位データとを相関付けて記録する記録手段、
を備えた心毒性評価装置。
(2)基板、
 該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
 上記基板上に上記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
 上記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している一つ以上の微小電極、
 上記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
 上記微小電極のそれぞれに接続された引き出し線と上記比較電極に接続された引き出し線とを用いて上記微小電極に載置されている細胞電位を計測する電位計測手段、
 上記微小電極へ送る電気刺激を制御し、上記電位計測手段で計測した電位データを記録する、制御/記録手段、
 上記細胞集団上あるいは集団内の一カ所以上に空間的に距離を持って配置した上記心筋細胞を含む細胞集団とは光学特性の異なる粒径約1μm以上約50μm以下の微粒子、
 上記微粒子の位置および位置変化を、時間的な移動量データおよびその移動方向の角度変化データを含む変位データとして連続的に計測する、開口数約0.3以下の対物レンズとこの後段にズームレンズ系とを配置した光学的計測手段、ならびに
 上記電位データと変位データを相関付けて記録する記録手段、
を備えた心毒性評価装置。
(3)さらに、上記細胞培養液を上記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、上記(1)または(2)記載の心毒性評価装置。
(4)前記微小電極が、細胞を刺激するための刺激電極および細胞電位を測定するための測定電極からなる、上記(1)~(3)のいずれか記載の心毒性評価装置。
 また、本発明は、心筋細胞の細胞外電位計測を用いて心毒性を評価するために、以下の装置および方法を提供する。
(5)上記(1)記載の心毒性評価装置を用いて、
 計測を行う細胞として、薬剤を添加していない状態で、急激で明確な脱分極に伴った脱分極開始後約20ms以内でのシャープなNaイオンの内向き電流の発生と、その後の脱分極開始後約100ms以内でのゆるやかなCaイオンの内向き電流の発生と、脱分極開始後約100ms以降に観察される顕著なKイオンの外向き電流の発生がある心筋細胞を用いて細胞外電位を計測することを特徴とする心毒性評価方法。
(6)上記(2)記載の心毒性評価装置を用いて、
 計測を行う細胞として、薬剤を添加していない状態で、急激で明確な脱分極に伴った脱分極開始後20ms以内でのシャープなNaイオンの内向き電流の発生と、その後の脱分極開始後100ms以内でのゆるやかなCaイオンの内向き電流の発生と、脱分極開始後100ms以降に観察される顕著なKイオンの外向き電流の発生がある心筋細胞を用いて細胞外電位を計測することを特徴とする心毒性評価方法。
(7)上記心毒性評価装置がさらに、上記細胞培養液を上記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、上記(5)または(6)記載の心毒性評価方法。
(8)上記微小電極が、細胞を刺激するための刺激電極および細胞電位を測定するための電位測定電極からなる、上記(5)~(7)のいずれか記載の心毒性評価方法。
 また、本発明は、心筋細胞の細胞外電位計測を用いて心毒性を評価するために、細胞刺激を与える手法として、以下の装置および方法を提供する。
(9)基板、
 該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
 上記基板上に上記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
 上記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している細胞電位計測用の一つ以上の微小電極、
 上記細胞を刺激するための相互の信号強度と位相が制御可能な2次元に配置された複数の微小電極を含む刺激電極アレイ、
 上記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
 上記細胞電位計測用の微小電極のそれぞれに接続された引き出し線と上記比較電極に接続された引き出し線とを用いて上記微小電極に載置されている細胞電位を計測する電位計測手段、ならびに
 上記細胞刺激用の微小電極へ送る電気刺激を制御し、上記電位計測手段で計測した電位データを記録する、制御/記録手段、を備える心毒性評価装置。
(10)さらに、上記細胞培養液を上記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、上記(9)記載の心毒性評価装置。
(11)基板、
 該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
 上記基板上に上記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
 上記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している細胞電位計測用の一つ以上の微小電極、
 上記細胞を刺激するための相互の信号強度と位相が制御可能な2次元に配置された複数の微小電極を含む刺激電極アレイ、
 上記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
 上記細胞電位計測用の微小電極のそれぞれに接続された引き出し線と上記比較電極に接続された引き出し線とを用いて上記微小電極に載置されている細胞電位を計測する電位計測手段、ならびに
 上記細胞刺激用の微小電極へ送る電気刺激を制御し、上記電位計測手段で計測した電位データを記録する、制御/記録手段、を備える心毒性評価装置を用いて、
 計測を行う細胞として、薬剤を添加していない状態で、急激で明確な脱分極に伴った脱分極開始後約20ms以内でのシャープなNaイオンの内向き電流の発生と、その後の脱分極開始後約100ms以内でのゆるやかなCaイオンの内向き電流の発生と、脱分極開始後約100ms以降に観察される顕著なKイオンの外向き電流の発生がある心筋細胞を用いて細胞外電位を計測することを特徴とする心毒性評価方法。
(12)上記心毒性評価装置がさらに、上記細胞培養液を上記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、上記(11)記載の心毒性評価方法。
(13)心筋細胞の光学的計測と細胞電位計測とを同期して計測・解析することができる装置システムを用いて薬物の心毒性評価を行う方法であって、
 上記心筋細胞に対象薬物を接触させたときの光学的計測により得られた筋収縮に関連する心筋細胞の運動距離(変異量)および運動方向(角度)の各収縮インターバル間でのゆらぎ(ばらつき)と、電気生理学的計測によるFPD(ナトリウムの最初のスパイクから内向き電流極大位置までの時間)のゆらぎ(ばらつき)とを比較解析する工程を含む、心毒性評価方法。
(14)心筋細胞ネットワークアレイを構成することができる1ウェル単位でウェルを交換可能なウェルシステムであって、
 1つのウェルからなる1つまたは複数のユニットウェルであって、該ウェルの底面に心筋細胞の細胞電位計測用電極、細胞刺激用電極、および参照電極を含む電極アレイを備えるユニットウェルと、
 1つまたは複数の上記ユニットウェルを交換可能に装着できる1つまたは複数の区画を備えたウェルプレートとを備え、
 上記ウェルプレートの各区画は、上記電極アレイのリード線に対応して接続する接点を備え、上記各ユニットウェルが上記区画に対して交換可能に設置されうる、ウェルシステム。
(15)心筋細胞を収容するためのウェルならびに該ウェルの底面に細胞刺激用電極、細胞電位計測用電極、および参照電極を含む電極アレイを備えた二つ以上の心筋細胞ネットワークチップと、
 上記チップを載置するためのステージと、
 上記電極アレイを通じて上記心筋細胞に電気刺激を与え、細胞外電位を計測するための電源を含む電位計測系と、
 上記心筋細胞を光学的に観察するための光学顕微鏡、画像収収録用カメラ、および照明用光源を含む光学観察系と、
 上記電位計測データと上記光学観察データを同期して記録・解析するための制御・解析装置とを備える、心筋細胞計測装置システム。
(16)心毒性評価のために使用される、上記(15)記載の心筋細胞計測装置システム。
(17)円環状に配置した心筋細胞ネットワークの電位計測のための多電極基板であって、
(i)上記心筋細胞ネットワークと対応する円環状の電極であって、該電極の一部が欠損された円環状の電位計測用電極と、
 上記電位計測用電極の一部欠損部位に配置された局所強制刺激を与えるための刺激電極と、
 上記円環の外側近傍に配置されたノイズ除去のための参照電極とを備えるか、または
(ii)上記(i)の電位計測用電極をさらに2つ以上に分割した複数の電位計測用電極と、
 上記電位計測用電極の一部欠損部位に配置された局所強制刺激を与えるための刺激電極と、
 上記円環の外側近傍に配置されたノイズ除去のための参照電極とを備える、多電極基板。
(18)二次元心筋細胞シートを用いて心筋細胞ネットワークの電位を計測するための多電極基板であって、
 円環状の電極であって、該電極の一部が欠損された円環状の電位計測用電極と、
 上記円環の中心に配置された局所強制刺激を与えるための刺激電極と、
 上記電位計測用電極の一部欠損部位の外側近傍に配置されたノイズ除去のための参照電極とを備える、多電極基板。
(19)底面に細胞電位計測用電極、細胞刺激用電極、および参照電極を含む電極アレイを備える1ウェルからなるブロック型ユニットウェルに心筋細胞サンプルを載置するためのサンプルローダーであって、
 上記ユニットウェルの形状に対応して上記ユニットウェル上面に挿入できる外形、および漏斗状の内面を有し、底面に上記ユニットウェルの電極の形状に対応する形状の溝(開口)を有し、
 上記サンプルローダー内面に適量の上記心筋細胞サンプルを滴下することによって、上記電極上に上記心筋細胞を載置することができる、サンプルローダー。
(20)心筋細胞ネットワークまたは心筋細胞シートを用いて培養計測する際の心筋細胞の収縮を防ぐための微小突起が周期的に配置された心筋細胞培養計測用基板。
(21)微小電極ワイヤーを電極として用いることを特徴とする心毒性評価装置。
 心筋細胞および線維芽細胞の薬剤に対する応答の変化を細胞のゆらぎ計測から正確に評価することができる。
 従来、フィールド・ポテンシャル・デュレーション(FPD)(後述の説明を参照)および心筋細胞の隣接する拍動の揺らぎの大きさ(例えば、短期変動:STV: Short-term variability)のそれぞれを独立に指標とすることはあっても、両者を組み合わせて心筋毒性の検査することはなかった。本発明の心筋毒性検査方法に従って、FPD波形の延長だけでなく、心筋細胞の隣接する拍動の揺らぎの大きさ(STV)の増加も組み合わせて評価することにより、より正確な心筋毒性の評価が可能となる。
 さらに、本発明により、心筋細胞集団の電気生理学的応答と力学的応答をあわせて評価することができるin vitro系が提供され、より個体レベルに近い評価が可能なin vitro心筋細胞レベルでの計測が可能となる。
本発明の実施例に係る心筋毒性検査装置の構造の1例を模式的に示した斜視図である。 図1に示す心筋毒性検査装置の細胞保持部CHの構成の1例を模式的に示す斜視図である。 図3は、図1に示す心筋毒性検査装置の細胞保持部CHに保持された細胞を光学的に検出する光学系を説明する図である。 (a)、(b)および(c)は、細胞電位の計測に関する信号を示す図である。それぞれ、横軸に時間を、縦軸に微小電極2と比較電極2との間に得られる細胞電位を示す。 (a)、(b)および(c)は、細胞の拍動に伴う体積変化を光学系によって計測した結果に関する信号を示す図である。 (a)は培養液に薬物が含まれない通常状態における標的細胞のNaイオン、Ca2+イオン、Kイオン成分の流入出量に伴う細胞電位変化を示す図であり、(b)は培養液に薬物が含まれた状態における標的細胞のNaイオン、Ca2+イオン、Kイオン成分の流入出量に伴う細胞電位変化を示す図である。 心筋毒性検査装置の細胞を光学的に検出する光学系および可動電極の配置の一例を説明する図である。 細胞の電気信号の発生を説明する模式図である。 (a)は薬剤の添加による細胞電位変化の一例を示す図であり、(b)は各拍動時の細胞電位変化について、隣接した2つの拍動の相同性を評価するポアンカレプロットの一例を示す図である。 (a)は1細胞レベルでの細胞配置技術を用いた心筋細胞の環状ネットワークによって作成したリエントリー回路の一例を示す模式図であり、(b)は実際に微小電極上に細胞を配置した一例を示す顕微鏡写真である。 (a)は一定の幅の細胞集団を用いて心筋細胞の環状ネットワークによるリエントリー回路の一例を示す模式図であり、(b)は実際に微小電極上に細胞を配置した一例を示す顕微鏡写真であり、(c)は実際に微小電極アレイ上に環状に細胞集団を配置した一例を示す顕微鏡写真である。 (a)は環状電極を用いたリエントリー回路計測装置の一例を示す模式図であり、(b)は実際に電極で計測した、正常拍動データと異常拍動データを示したグラフである。 (a)は1細胞の電位計測を行う電極と細胞の配置の一例を示す模式図であり、(b)は実際に電極で計測した孤立1細胞の電極上の写真とその拍動電気データ、(c)は計測した細胞集団の電極上での写真と細胞集団の中の1細胞の拍動電気データを示したグラフである。 本発明でカメラ受光素子を1細胞の電位計測に用いた実施例を説明する模式図である。 本発明の細胞計測システムで複数試料を計測できる機構の一例を説明する模式図である。 本発明の細胞計測システムで計測できる心臓情報を説明する模式図である。 本発明の細胞計測システムで計測できる細胞のフィールド・ポテンシャル信号波形の薬物の添加に対する変化を説明するグラフの一例である。 本発明の細胞計測システムで計測できる細胞のフィールド・ポテンシャル信号波形のカリウムイオン放出のピーク位置のナトリウムイオン放出時間からの経過時間(FPD:フィールド・ポテンシャル・デュレーション)について、カリウムイオンチャンネル阻害剤E4031の添加に対する変化の平均値の一例を説明するグラフの一例である。 本発明の細胞計測システムで計測できる細胞のフィールド・ポテンシャル信号波形のカリウムイオン放出のピーク位置のナトリウムイオン放出時間からの経過時間(FPD:フィールド・ポテンシャル・デュレーション)について、そのゆらぎの大きさについて隣接する拍動の短期変動をポワンカレプロッティングに基づいて定量的に評価する方法のひとつを説明するグラフおよび式の一例である。 本発明の細胞計測システムで計測できる細胞のフィールド・ポテンシャル信号波形のカリウムイオン放出のピーク位置のナトリウムイオン放出時間からの経過時間(FPD:フィールド・ポテンシャル・デュレーション)について、そのゆらぎの大きさをポワンカレプロッティングに基づいて定量的に評価する方法のひとつを説明するグラフおよび式の一例である。 本発明の細胞計測システムで計測できる心筋細胞のフィールド・ポテンシャル信号波形のカリウムイオン放出のピーク位置のナトリウムイオン放出時間からの経過時間(FPD:フィールド・ポテンシャル・デュレーション)について、そのE4031の添加によって起こるゆらぎの大きさの一例をポワンカレプロッティングで表示したもの(a)と、これについてSTVをまとめたもの(b)である。 本発明の細胞計測システムで計測できる心筋細胞にさまざまな心毒性を持つことが知られている薬剤と比較薬剤を添加した場合のFPDとSTVについて示したものである。 本発明の細胞計測システムで計測できる心筋細胞ネットワークの形状の違い、ならびに位置の違いによる薬剤添加に対するFPDのポワンカレプロッティングの一例を示したものである。(a)は実際の細胞ネットワークの一例を示した顕微鏡写真、(b)は(a)のA,B,C,Dの点での変化を計測したグラフを示したものである。 本発明の細胞計測システムで計測できる心筋細胞ネットワークの形状の違い、ならびに位置の違いによる薬剤添加に対するペースメーカー領域から局所への伝達時間のポワンカレプロッティングの一例を示したものである。(a)は実際の細胞ネットワークの一例を示した顕微鏡写真、(b)は(a)のA,B,C,Dの点での変化を計測したグラフを示したものである。(c)は、STVの算出式である。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、従来のin vitro計測法、in vivo計測法との関係、1細胞のFP波形と細胞ネットワークのFP合成波形との関係を模式的に示した図である。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において各電極から得られた細胞のFP波形から細胞電位を見積もる機能と細胞ネットワークのFP合成波形から心電図比較波形を合成する機能を有する装置の構成を模式的に示した図である。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、環状に配置した心筋細胞ネットワーク(A)の各電極から得られた細胞のFP波形(B)および、これを合成した合成FP波形(C)の一例を示す。この例では、PM領域から正常に拍動シグナルが伝達する例を示している。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、環状に配置した心筋細胞ネットワーク(A)の各電極から得られた細胞のFP波形(B)および、これを合成した合成FP波形(C)の一例を示す。この例では、PM領域から拍動シグナルが異常に伝達する例を示している。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、心筋細胞の拍動周波数(Beating Frequency)とFPDの関係一例を示すグラフである。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、心筋細胞に強制拍動を与えたときのFPDの時間変化の一例を示すグラフである。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、心筋細胞に強制拍動を与えてFPDを計測する場合の細胞ネットワーク配置の例を示す顕微鏡写真である。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、心筋細胞のFP計測に微量電極電位のフィードバック制御を用いて微小電極を一定電位に保つ機構を用いた機構の一例を示す模式図である。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、心筋細胞集団の一部領域に強制拍動刺激を与えたときの、心筋細胞集団の拍動周期の応答の関係の一例を示すグラフである。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、心筋細胞集団の一部領域に強制拍動刺激を与えたときの、FPDの長さの変化の一例を示すグラフである。(a)は、強制拍動刺激によって引き起こされるFP波形の変化とFPDの長さの変化の関係の一例を、(b)は、強制拍動刺激の刺激インターバルの変化に応じたFPDの長さの変化の一例を示すグラフである。 本発明の細胞計測システムで計測できる心筋細胞ネットワーク計測において、心筋細胞集団の一部領域に強制拍動刺激を与えたときの、細胞集団の応答の一例について図33および図34に示した結果をまとめた表である。 本発明の電極電位計測に置けるノイズ除去のための比較電極と微小電極の間の差分回路を模式的に示したものである。(a)原理を示した回路の一例の模式図である。 本発明の電極電位計測に置けるノイズ除去のための比較電極と微小電極の間の差分回路を模式的に示したものである。(b)この差分回路を組み込んだ増幅回路の一例の回路図である。 本発明の電極電位計測に置けるノイズ除去のための比較電極と微小電極の間の差分回路を模式的に示したものである。(c)回路によってノイズが低減された例を示す図である。 本発明の心毒性評価法の総合的評価法の例を模式的に示す図である。(a)細胞のFPDのデータからX軸にFPD延長の程度を、Y軸にFPDの時間的ゆらぎの大きさをプロットする。(b)は、その結果の平均をX?Y図にプロットしたものの一例を示す。 本発明の心毒性を計測するシステムの構成の一例を示す模式図である。 本発明の心毒性を計測するシステム中の細胞培養計測チャンバーの構成の一例を示す模式図と写真である。 細胞培養計測プレートの断面を模式的に示した図である。 多電極基板に配置されている電極配置の電極配線の構成を模式的に説明する図である。 多電極基板上の電極配置の例を示した模式図である。 心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例を示した模式図である。 心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例から取得されるデータの一例を示したデータ取得モニター画面の一例である。 心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例から取得されたデータの一例である。 心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例から取得された細胞変位の方向データの取得の一例を説明する図である。 心筋細胞の力学特性と電気特性を同時計測する本発明のシステムでの心筋細胞ネットワークの空間配置の例を説明する図である。 心筋細胞の電気特性を計測する細胞の細胞外電位の波形パターンの例を説明する図である。 心筋細胞の細胞電位、hERGイオンチャンネルの薬物応答のゆらぎ変化の一例を示す図である。 刺激電極アレイからの刺激電位重ね合わせによる任意の位置での細胞刺激法の原理を説明する図である。 微粒子の光学計測について開口数0.3以下の対物レンズとズームレンズ系を組み合わせた場合の効果を説明する図である。 心筋細胞ネットワークにおいて、ベラパミル投与後の電気生理学的細胞外電位データと細胞の収縮力変化を同時計測したときの結果の一例を示す図である。 心筋細胞ネットワークにおいて、ベラパミル投与後の電気生理学的細胞外電位データと細胞の収縮力変化を同時計測したときの解析結果の一例を示す図である。 心筋細胞ネットワークにおいて、ベラパミル投与後の電気生理学的細胞外電位とそのゆらぎデータと細胞の収縮力変化の変位方向と角度方向それぞれのゆらぎ量を同時計測したときの解析結果の一例と、その解析への利用方法を示す図である。 細胞外電位計測と収縮機能変化計測用光学システムを組み合わせた装置構成の一例である。 細胞培養モジュールアレイから構成されるハイスループット心筋細胞ネットワークアレイチップの構成の一例を示したものである。 各ウエルに効果的に心筋細胞を配置するサンプルローダーを用いた細胞ネットワーク配置技術の構成の一例を示したものである。 ブロック型の各ウエルを実際に配置して多電極システムによって細胞外電位計測を行うシステムの別の一例を示したものである。 図58のシステムにに光学計測モジュールを組み込んだ構成の一例を示したものである。 心筋細胞ネットワークおよび心筋細胞シートにおいて、その培養計測中の収縮を防ぐための微小突起が周期的に配置された基板の構成を説明した図である。 多電極基板上の電極配置の例を示した模式図である。 金属微小ワイヤーを電極として用いた実施例の一例を模式的に示したものである。
 図1は本発明の実施例に係る心筋毒性検査装置の構造の1例を模式的に示した斜視図である。図2は、図1に示す心筋毒性検査装置の細胞保持部CHの構成の1例を模式的に示す斜視図である。図3は、図1に示す心筋毒性検査装置の細胞保持部CHに保持された細胞を光学的に検出する光学系を説明する図である。
 図1および2を参照して、心筋毒性検査装置100は、透明基板1の上に構築されている部品を主体として構成される。透明基板1は光学的に透明な材料、例えば、ガラス基板あるいはシリコン基板である。微小電極2は、例えば、ITOによる透明電極とされ、透明基板1上に配置される。2’は微小電極2の引き出し線である。3,3,3及び3はアガロースゲルによる壁であり、微小電極2の周辺に間隙4,4,4及び4を介して配置される。アガロースゲルによる壁3,3,3及び3は中心部が切り欠かれて細胞収納部となる空間を形成している。アガロースゲルによる壁3,3,3及び3により形成される細胞収納部となる空間の透明基板1上には、必要により、微小電極2が配置される。微小電極2の有無に係らず、細胞収納部に一つの細胞10が収納できる。図2では、アガロースゲルによる壁3,3,3及び3により形成される細胞収納部となる空間の透明基板1上に、微小電極2が配置され、その上に心筋細胞10が収納されている。微小電極2に引き出し線2’が接続されて引き出されている様子を示す。微小電極2の細胞載置面および微小電極2を設けないで透明基板1に、直接、細胞を載置する場合の細胞載置面にはコラーゲン等の細胞が電極表面および透明基板に接着するのを助ける素材を塗っておくのがよい。アガロースゲルによる壁3,3,3及び3により形成される細胞収納部内の細胞は、アガロースゲルは細胞にとっては非接着性であるため、この壁3,3,3及び3の高さを細胞と同程度としても、壁を乗り越えて細胞10が移動することはない。また、アガロースゲルによる壁3,3,3及び3中心部が切り欠かれて形成される細胞収納部の周辺の間隙4,4,4及び4は細胞の大きさより小さいものとされるから、この間隙4,4,4及び4をすり抜けて細胞10が移動することはない。
 図1において、細胞保持部CH、CH、CHおよびCHはそれぞれ細胞収納部に一つの心筋細胞あるいは線維芽細胞10、10、10および10を保持するとともに、図では明確でないが、それぞれ、微小電極2を備えていて、引き出し線2’、2’、2’および2’が引き出されている。これらの心筋細胞または線維芽細胞は直列配列された細胞連絡チャネルCCCを構成する。ここで、nは例えば20である。また、これら20個の直列配列された心筋細胞および線維芽細胞の配分は、ランダムでよいが、細胞保持部CHの細胞およびCH20の細胞は心筋細胞であったほうがよい。この細胞連絡チャネルCCCの左端には3×3の細胞保持部CHが形成されていて、それぞれの細胞保持部CHに心筋細胞10が保持されてなる細胞集団10を含む心筋細胞集団保持領域が存在する。この細胞集団10は安定した拍動を行うペースメーカーとして機能するものである。細胞集団10では、細胞集団10の一つの細胞保持部CHのみに微小電極2が備えられ、引き出し線2’が引き出されている。また、細胞集団10の右側の中央の細胞保持部CHが細胞連絡チャネルCCCの細胞保持部CHに対向するように構成されている。細胞集団10の右側と細胞連絡チャネルCCCの左端部との間に障壁11が設けられる。この障壁11の中央部の下部には小さい開口11が形成される。この開口11の両側には対向する細胞集団10の右側の中央の細胞保持部CHと細胞連絡チャネルCCCの細胞保持部CHがあり、それぞれの細胞収納部の周辺の間隙4を介してそれぞれに保持されている細胞の物理的接触・細胞間インタラクションが可能なように構成されている。細胞集団10の下部に比較電極2が設けられ、引き出し線2’が引き出されている。
 7は周辺を取り巻く壁であり、細胞集団10G、細胞連絡チャネルCCCおよび比較電極2を取り巻いている。8および8は壁7の内部の領域に、細胞の培養液を供給し、および、壁7の内部の領域から、細胞の培養液を排出するためのパイプであり、図の例では、基板1の底面近くまで延伸されたパイプ8から培養液が供給され、基板1の底面近くまで延伸されたパイプ8から培養液が排出される。培養液を供給するパイプ8の培養液の出口の近くにパイプ8が結合され、このパイプ8を介して細胞に作用させたい薬剤が供給される。したがって、細胞10はパイプ8により壁7の内部の領域に供給される細胞の培養液に曝されながら、微小電極2の上に安定して保持される。細胞を培養液に曝す必要がなくなったときは、パイプ8により壁7の内部の領域から培養液を排出すればよい。また、培養液を新しいものと交換するときは、培養液を排出した後、あるいは、排出しながら、培養液を供給すればよい。一方、細胞に薬剤を作用させたいときは、パイプ8により培養液を排出しながら、パイプ8を介して細胞に作用させたい薬剤を培養液に加えて、パイプ8により培養液とともに供給すればよい。このとき、細胞集団10と細胞連絡チャネルCCCとの間に障壁11を設けたことにより、薬剤を含む培養液がパイプ8により壁7の内部の領域に供給されるとき、細胞連絡チャネルCCCの細胞が薬剤の影響を受ける程度に比し、細胞集団10の細胞が薬剤の影響を受ける程度は低いものとなる。すなわち、パイプ8により薬剤を含む培養液が供給されるとき、この培養液は障壁11の両側の壁7との隙間および障壁11の上面を乗り越えて細胞集団10にも供給されるから細胞集団10の細胞も薬剤の影響を受ける。しかし、その影響は細胞連絡チャネルCCCの細胞に対するものと比較すれば間接的であるので、ペースメーカーとしての機能に影響を及ぼすほどのものではない。なお、パイプ8、パイプ8およびパイプ8の構成、配置は計測の仕方により任意に変更してよい。例えば、パイプ8およびパイプ8は分離されたものとしてもよいし、パイプ8は省略して、パイプ8を供給、排出の両方に使用するものとしてもよい。
 PCはパソコン(電位計測手段,制御/記録手段)であり、細胞保持部CHの微小電極2の引き出し線2’と比較電極2の引き出し線2’との間で細胞電位を計測し記録する。また、パソコン9には操作者の操作信号Msが加えられる。
 心筋毒性検査装置100は光学観察装置200のXYステージ15に載せて細胞連絡チャネルCCCの任意の細胞10の拍動を、光学系により観察することが出来る。XYステージ15は、光学的に透明であるとともに、操作者の操作信号Msに応じてパソコンPCが与える信号に応じてX-Y駆動装置16により、任意の位置に移動される。図3では、細胞連絡チャネルCCCの細胞10の拍動の状態を観察する例を示している。12は培養液を示す。
 22は位相差顕微鏡あるいは微分干渉顕微鏡の光源であり、一般にハロゲン系のランプが用いられる。23は位相差等の実体顕微鏡観察の光源の光から特定の波長のもののみを透過させるバンドパスフィルタである。例えば細胞10の観察の場合には、波長700nm近傍の狭帯域の光を用いることで細胞10の損傷を防ぐことができる。24はシャッターで、XYステージ15を移動させる場合など、画像計測をしていない間は光の照射を遮断する機能を有する。25はコンデンサレンズであり、位相差観察をする場合は位相差リングを導入し、微分干渉観察をする場合は、偏光子を導入する。XYステージ15上には基板1上に形成されている心筋毒性検査装置100が載置されX-Y駆動装置16によって前記XYステージ15を移動させることで前記心筋毒性検査装置100の任意の位置を観察し、計測することができる。前記心筋毒性検査装置100内の細胞10の拍動の状態は、対物レンズ17で観察される。対物レンズ17の焦点位置はパソコンPCによる信号に応じて駆動装置18によってZ軸方向に移動させることができる。対物レンズ17の倍率は40倍以上のものが使用できる。対物レンズ17で観察されるのは、光源22から透過された光による細胞10の位相差像あるいは微分干渉像である。前記バンドパスフィルタ23を透過するのと同波長の光を反射するダイクロイックミラー19およびバンドパスフィルタ20によって、位相差顕微鏡像あるいは微分干渉顕微鏡像のみがカメラ21によって観察される。カメラ21によって観察された画像信号はパソコンPCに導入される。また、図示していないが、画像はパソコンと接続されたモニターまたはディスプレイにより表示され得る。
 図1に示す心筋毒性検査装置100の構造の主要なサイズの例を示すと以下のようである。これは、細胞の大きさを10μmφとした例である。透明基板1の大きさは100mm×150mm、微小電極2は8μm×8μmの大きさ、アガロースゲルによる壁3,3,3及び3の個々の大きさは20μm×20μm×10μm(高さ)、間隙4,4,4及び4の幅2μm、アガロースゲルによる壁3,3,3及び3により形成される細胞収納部となる空間は12μmφの円柱状、壁7の外形は5mm×5mmとし高さは5mmである。障壁11aの高さは1mmである。尚、ここでは、微小電極2は8μm×8μmの正方形としたが、アガロースゲルによる壁3,3,3及び3の全体と間隙4,4,4及び4の幅とで構成する細胞の収納部となる10μmφの円状の電極としてもよい。
 以下、本発明の心筋毒性検査装置100の構成例とこれを用いた具体的な計測例を説明する。
 図4(a)、図4(b)および図4(c)は、細胞電位の計測に関する信号を示す図である。それぞれ、横軸に時間を、縦軸に微小電極2と比較電極2との間に得られる細胞電位を示す。図4(a)は細胞集団10の拍動による細胞電位である。ここでは、図1に示す細胞集団10の一つから引き出された引き出し線2’と比較電極2から引き出された引き出し線2’との間の電位である。図に示すように、安定した拍動を示し、ペースメーカーとして機能しうることがわかる。図4(b)は培養液に薬物が含まれない通常状態における標的細胞の拍動による細胞電位である。ここでは、計測の標的細胞を細胞連絡チャネルCCCの細胞10とし、細胞10から引き出された引き出し線2’と比較電極2から引き出された引き出し線2’との間の電位が計測されている。図4(a)の波形と比較して明らかなように、細胞連絡チャネルCCCの細胞10による拍動の伝達に要する時間Δtだけ遅れていることが観察される。これに対して、図4(c)は培養液に薬物が含まれた状態における標的細胞の拍動による細胞電位である。ここでも、計測の標的細胞を細胞連絡チャネルCCCの細胞10とし、図4(b)との比較が明確になるようにしている。図4(a)、図4(b)、の波形と比較して明らかなように、細胞連絡チャネルCCCの細胞10による拍動の伝達に要する時間Δtだけの遅れではなく、時間Δt+αの遅れとなっていることが観察される。これは、細胞連絡チャネルCCCの細胞に対する薬物の作用によるNaイオン阻害の大きさが+αの遅れの増大として表れていることを意味する。すなわち、心筋細胞に対する薬物の毒性をNaイオン阻害として評価することが出来る。
 なお、観察に使用する微小電極を観察電極と言う場合がある。
 図5(a)、図5(b)および図5(c)は、細胞の拍動に伴う体積変化を光学系によって計測した結果に関する信号を示す図である。図5(a)は細胞集団10の細胞の拍動に伴う体積変化である。細胞集団10の細胞の一つの拍動を図3に示す形で光学的に検出したものである。細胞の拍動に伴う収縮および拡張がパルス状に現れる変化として認められる。この波形の周期は、図4(a)に示す拍動に伴う細胞電位の変化の周期と同じである。図5(b)は培養液に薬物が含まれない通常状態における標的細胞の拍動に伴う体積変化を上段に示し、下段にこれを電気信号として評価するために時間微分値として処理したときの波形を示す。ここでも、計測の標的細胞を細胞連絡チャネルCCCの細胞10とし、細胞10の拍動を図3に示す形で光学的に検出したものである。図5(a)の波形と比較して明らかなように、細胞連絡チャネルCCCの細胞10による拍動の伝達に要する時間Δtだけ遅れていることが観察される。これに対して、図5(c)は培養液に薬物が含まれた状態における標的細胞の拍動に伴う体積変化を評価するための説明図であり、図5(a)、図5(b)に比し時間軸を拡大した形で示す。上段は図5(b)の上段の波形に対応する波形であり、図5(a)の波形と比較して明らかなように、細胞連絡チャネルCCCの細胞10による拍動の伝達に要する時間Δtよりもさらにβだけ遅れが増大していることが観察される。標的細胞の拍動に伴う体積変化が薬物により受ける影響は、この遅延の増大以上に体積変化の傾きが小さくなることが特徴的である。図5(c)の下段に参考波形として示した薬物を含まない培養液での体積変化と比較してみるとこのことがよく分かる。図5(c)の中段には、上段の波形を評価するために時間微分値として処理したときの波形を示す。この時間微分値を図5(b)の下段のそれと比較すると分かるように、ピーク値が小さくなるとともに、傾きが緩やかになっている。これは、薬物により心筋の収縮速度が低下して、心拍出量が低下したことを意味する。すなわち、心筋細胞に対する薬物の毒性を収縮速度の低下として評価することが出来る。
 図6(a)は培養液に薬物が含まれない通常状態における標的細胞のNaイオン、Ca2+イオン、Kイオン成分の流入出量に伴う細胞電位変化を示す。図6(b)は培養液に薬物が含まれた状態における標的細胞のNaイオン、Ca2+イオン、Kイオン成分の流入出量に伴う細胞電位変化を示す。図6(a)、図6(b)を対比してすぐ分かるように、QT遅延が表われて波形が時間軸方向に伸びている。さらにKイオンの流入出に伴い、波形が大きく変形している。これを電気信号として評価するために、図に破線で示した“0”と“100”の間の値に対して、30%、60%および90%の値の継続時間をAPD30,APD60およびAPD90として検出する。ここで、APDとはAction Potential Durationの頭文字からとった表現である。これらの値の大きさおよび比率を評価すれば、その薬物のNaイオン、Ca2+イオン、Kイオン成分の流入出量に及ぼす影響を評価できる。
 図7は、心筋毒性検査装置の細胞を光学的に検出する光学系および可動電極の配置の一例を説明する図であり、例えば計測する細胞10の拍動の状態を観察する例を示している。12は培養液を示す。22は位相差顕微鏡あるいは微分干渉顕微鏡の光源であり、一般にハロゲン系のランプが用いられる。221は細胞の蛍光計測をするための蛍光光源であり、一般に水銀ランプ、単色光レーザー、LED光源などが用いられる。23は位相差等の実体顕微鏡観察の光源の光から特定の波長のもののみを透過させるバンドパスフィルタであり、231は蛍光光源221から特定の蛍光を励起する励起波長の光のみを透過させるバンドパスフィルタである。例えば細胞10の拍動堆積変化情報のような形状変化の観察の場合には、細胞形状を計測するための波長の光だけを透過させるバンドパスフィルタ20を通過した像をカメラ21でリアルタイム計測するが、計測に波長700nm近傍の狭帯域の光を用いることで細胞10の損傷を防ぐことができる。24および241はシャッターで、XYステージ15を移動させる場合など、画像計測をしていない間は光の照射を遮断する機能を有する。25はコンデンサレンズであり、位相差観察をする場合は位相差リングを導入し、微分干渉観察をする場合は、偏光子を導入する。蛍光計測の場合は、例えば細胞内カルシウム放出の計測を行う場合は、励起波長500nm程度、蛍光計測波長600nm程度での光を選択的に透過するバンドパスフィルタの組み合わせを用い、蛍光波長の光だけを選択的に透過するバンドパスフィルタ201を通過した蛍光像をカメラ201で計測する。このとき、細胞ネットワーク中での1細胞単位でのカルシウム放出の時間的前後関係を計測して細胞ネットワーク中での信号伝達の経路を計測する場合には、カメラの計測時間分解能は0.1ms以上の高速連続画像が取得できるものとなっている。XYステージ15上には基板1上に形成されている心筋毒性検査装置100が載置されX-Y駆動装置16によって前記XYステージ15を移動させることで前記心筋毒性検査装置100の任意の位置を観察し、計測することができる。前記心筋毒性検査装置100内の細胞10の拍動の状態は、対物レンズ17で観察される。対物レンズ17の焦点位置はパソコンPCによる信号に応じて駆動装置18によってZ軸方向に移動させることができる。対物レンズ17の倍率は40倍以上のものが使用できる。対物レンズ17で観察されるのは、光源22から透過された光による細胞10の位相差像あるいは微分干渉像である。前記バンドパスフィルタ23を透過するのと同波長の光を反射するダイクロイックミラー192およびバンドパスフィルタ20によって、位相差顕微鏡像あるいは微分干渉顕微鏡像のみがカメラ21によって観察される。カメラ21によって観察された画像信号はパソコンPCに導入される。また、この実施例では細胞への刺激を行うための可動電極27が配置されており、可動電極の座標がXYステージと同じ平面上の任意の位置のみならず、高さを任意に調節することができる位置制御機構が備わっている。この位置制御機構を用いて細胞ネットワーク中の特定の1細胞あるいは数細胞の位置に可動電極の先端を移動させることで、任意の特定の細胞あるいは数細胞に刺激を与えることができる。可動電極の素材としては、先端部以外の部分は絶縁被覆されている金属電極、先端の開口サイズが5ミクロン程度以下のガラス電極等の、可動電極先端近傍にある特定の細胞あるいは数細胞のみに電気刺激を与えることができる構成の電極を用いることができる。金属電極を用いる場合は、先端部表面に白金黒などを付加することによって効果的に電気刺激を細胞に伝達することができる。可動電極の先端の位置は、電気刺激に対する細胞の応答の程度によって調整するものとし、細胞に接しても良いし、あるいは、細胞のごく近傍に配置しても良い。また、刺激電極の刺激を適切に標的とする特定の細胞に与えるために電気刺激を与える瞬間にスイッチングによって細胞電位計測のための電極2を接地電極として用いても良いし、あるいは、別途、別の接地電極28を配置しても良い。さらに、特定の細胞を刺激するために、既存の微小電極2を刺激電極として用いても良い。その場合には、微小電極が接続されているスイッチング回路29のスイッチングによって、通常は電気信号計測回路30に接続されているものを、刺激を与える瞬間に、スイッチング切り替えによって、電気刺激回路31に接続をして矩形波の刺激信号を微小電極2に与えることができる。また、上記可動電極27を用いて刺激を与える瞬間には、スイッチング回路29を接地にスイッチングすることができる。他方、可動電極も、刺激電極としてだけでなく、細胞の電気信号を計測する電極として用いたり、接地電極として用いることもできる。その場合は、可動電極はスイッチング回路291に接続されており、細胞電位計測、細胞刺激、接地電極としての利用に応じて、それぞれスイッチングによって、電気信号計測回路301に接続されて細胞電位を計測したり、電気刺激回路311に接続をして矩形波の刺激信号を細胞に与えたり、また、接地させることで、接地電極として用いることができる。電気刺激回路31、311が細胞に与える電気刺激のタイミングは、おもに次の2つの用途で用いることができる。ひとつは自律拍動機能を持った細胞ネットワークにおいて、その正常な心筋細胞ネットワークの拍動インターバルの間に、イレギュラーな刺激を与えるものであり、他方は、自律拍動能を有さない心筋細胞ネットワークに対して拍動インターバルを与えるものである。ともに、計測するのは、拍動インターバルの周期(2つの拍動間の時間差)を5ms単位で徐々に短くしていったときの、細胞ネットワークの応答の変化を追跡できるものである。そのために、電気刺激回路31、311は、電気信号計測回路30、301などによって得られた拍動周期情報を解析して、その結果に基づいて刺激のタイミングを決定するフィードバック制御を行うことができる。さらに、可動電極27を電気信号計測のために用いる場合、本システムにおいて微小電極2が無くても同様な計測ができることとなる。これは、システムに構成されている光学計測によって細胞ネットワーク中の各細胞の拍動周期の計測は可能であることから、この拍動周期が安定状態から不整脈などの不安定状態になることはシステムに配置されている光学計測装置のみで計測し、その結果から必要に応じて、可動電極を用いて特定の細胞の電気的特性のデータを取得するものであり、この場合には、システム上に事前に配置している微小電極数の制約を受けず、光学計測できる範囲で、より自由に大きな細胞ネットワークを構築することができる。
 図8に、細胞の電気信号の発生の一例について模式図で示した。最初に、細胞膜にあるナトリウムイオンチャンネルからのナトリウムイオンの細胞内への流入が発生し細胞電位が急激に下がり、次に、少しの遅延を経て、カルシウムイオンの流入による細胞電位の低下が起き、そして、次のステップとして、カリウムイオンの細胞外への排出が起きることで細胞電位の上昇が起きる。細胞電位の変化は、心筋細胞膜に存在する応答特性の異なるさまざまなイオンチャンネルの特性の違いによって引き起こされる。それぞれのイオンチャンネルに起因して引き起こされる電位変化のピークの位置を、各イオンチャンネルの特性時間として解析すると、薬剤の影響によって各イオンチャンネルがブロックされることで、その薬剤の特性に応じてブロックされたイオンチャンネルの種類に応じた電気信号の波形の変化を計測することができ、それによって薬剤のイオンチャンネルへの阻害効果を見積もることができる。薬剤の評価に特に重要なイオンチャンネルは、FastNa、SlowNa、Ca、IKr、IKsの4つのイオンチャンネルであり、これら4種類のイオンチャンネルのブロックの状態を計測することができる。
 図9(a)は、図8で示した細胞の電気信号について、実際にカリウムイオンチャンネルを選択的に阻害する試薬E-4031を様々な濃度で添加したときの変化を示したものである。細胞の電位を上げるKイオンの細胞外への排出機能を担うIKrイオンチャンネルを阻害することから、薬剤濃度が高まるにつれて正方向の細胞電位の変化が徐々に遅延することが分かる。図9(a)に示したのは、細胞の応答の特定の1拍動データであるが、実際には隣接する各拍動での応答のゆらぎ幅の大きさが、薬剤の影響を見積もる重要な指標となる。図9(b)がその一例であり、ポアンカレプロットと呼ばれる隣接する拍動データの相関を比較する解析手法である。ここでは、X軸にn回目の拍動時の特定のイオンチャンネルの応答時間の位置を、Y軸に(n+1)回目の拍動時の同じイオンチャンネルの応答時間の位置を置いたプロットを行う。すると、隣接する拍動同士での特性が同じ場合は、グラフ内の点線で描かれたY=X上にプロットが並ぶこととなるが、隣接する拍動同士での応答に大きな揺らぎがある場合は、Y=Xから離れた位置までの大きなプロットの分布が観測されることとなる。実際に、この例では、薬剤を添加しないControlに対して、40nMの添加では応答時間の遅延があるが、隣接した拍動間での相同性は維持されている。他方、400nMまで薬剤の添加をすると応答時間の更なる遅延に加えて、隣接した拍動間での相同性も崩れ、不安定な拍動周期が発生することとなることが本プロットによって明らかにできる。この結果は、心毒性を示すQT延長計測の結果とも一致しており、ポアンカレプロットによって1細胞レベルでの隣接した各拍動のゆらぎの増大の計測を指標にすることでQT延長の発生を見積もることができる。この現象は、特定のイオンチャンネルが薬剤によってブロックされたときに、そのブロックの程度が軽微な場合は、イオンの排出能力の低下という現象が見えるだけで細胞応答の不安定性はまだ発生しないのに対して、さらに、ブロックの程度が重度になると、機能しているイオンチャンネルの数が極端に減少して、そのために細胞のイオン排出能力について同じ細胞でありながら再現性の低い大きな揺らぎを持った結果が出てくることとなる。そして、このゆらぎの大きさがQT延長の発生し易さの指標として用いることができるものである。
 図10(a)は、1細胞レベルでの細胞配置技術を用いた心筋細胞の環状ネットワークによるリエントリー回路薬剤の一例を示す模式図である。心筋細胞のみで細胞の環状ネットワークを作成したものは、正常ネットワークモデルとなり、心肥大などの病理モデルの場合には、細胞ネットワークの中に線維芽細胞を組み込むことで実現される。そして、ネットワーク中に混在する線維芽細胞が心筋細胞ネットワークの伝達速度の遅延や減衰をもたらし、その結果、期外収縮の発生を予測することができる。図10(b)は、実際に微小電極上に心筋細胞を配置した一例を示す顕微鏡写真である。実際に、この写真に示したように、1細胞単位で微小電極上に配置された場合は、隣接した心筋細胞同士の信号伝達の遅延を計測することができる。そして、この伝達速度は拍動のときに発生する最初の電気信号の大きさに依存することから、Naイオンチャンネルへの阻害効果として、この信号伝達の遅延データを用いることができる。
 図11(a)は、一定の幅の細胞集団を用いて心筋細胞の環状ネットワークによるリエントリー回路の一例を示す模式図である。図10に示した1細胞単位での環状細胞ネットワークでは、心筋細胞の拍動信号はその通過について一意的であり、図9に示したような細胞自体の拍動のゆらぎが無い限り、同一の特性を維持して細胞は拍動信号を隣接細胞間で伝達する。他方、この図11で示したように、一定の幅で細胞を配置して環状ネットワークを形成した場合、細胞集団はその伝達について実線35、破線36、点線37のように拍動ごとに異なる経路を取る自由度を持つこととなる。特に、図9で説明したように、薬剤の添加によって各心筋細胞の応答特性に大きなゆらぎが発生すると、容易に応答する細胞が環状ネットワークを刺激信号が周回するたびに、その都度異なることから、経路の違いがより顕著となる。これはスパイラル・リエントリーと呼ばれる心臓の致死に至る期外収縮の機構と同じメカニズムとなることから、このような幅を持った細胞集団ベースでの環状ネットワークを特に用いることでスパイラル・リエントリーの計測が可能となる。図11(b)は実際に微小電極上に細胞集団を配置した一例を示す顕微鏡写真であり、心筋細胞60%程度に線維芽細胞40%程度を混ぜた細胞集団を配置している。実際に、このような配置を行うと、隣接電極間での伝達速度の隣接拍動間でのゆらぎは大きくなり、特に薬剤の添加によって、そのゆらぎの増大が顕著となることから、隣接拍動間での伝達速度のゆらぎ幅の変化からスパイラル・リエントリーの発生を見積もることができる。図11(c)は、さらに実際に微小電極アレイ上に環状に細胞集団を配置した一例を示す顕微鏡写真である。実際のスパイラル・リエントリーの計測には、図7に示した高速蛍光計測カメラを用いることで、細胞集団ネットワーク中での各細胞のカルシウム発火を1細胞レベルで見積もることができ、その結果として細胞の信号伝達がどのような経路で進んでいるのか、各周回での経路の変化を実際に解析することができる。
 図12(a)は環状電極を用いたリエントリー回路計測装置の一例を示す模式図である。この例では、1~3mmの直径のリング状に形成した電極幅50~100ミクロンの環状電極38を各96穴ウエルプレート42の底面に1つ配置し、電極表面にのみ41のように細胞集団が環状に配置されるように、電極上の除く周囲の底面については、表面にアガロース等の細胞接着性の無い素材をコートしている。この細胞が接着しないようにコートされた領域に、同心円状に参照電極リング39が配置されており、また、試薬の出入りが行える流路40が配置されている。このような電極を用いることで簡易に心筋細胞の異常拍動を簡便に計測することができる。図12(b)は実際に電極で計測した、正常拍動データと異常拍動データを示したグラフである。本実施例では、環状電極を用いたが、図7で示した光学計測システムを用いることで、本環状電極による効果と同じ、異常拍動を光学的に計測することができるシステムを構築することができる。その場合、電気的信号を計測する場合には、図7で示した移動電極を環状細胞ネットワークに接触させることで、電気信号も取得することができる。
 図13(a)は1細胞の電位計測を行う微小電極2と細胞の配置の一例を示す模式図であり、直径10ミクロンから50ミクロンの微小電極2上に、計測の対象となる細胞を1細胞だけ配置して計測する手法を示したものである。本実施例でも、他の実施例と同様、電極上の細胞がその場所に保持されるように電極周囲には、細胞接着性を阻害するアガロースなどの素材がコートされている。図13(b)は実際に微小電極2で計測した孤立1細胞の電極上の写真とその拍動電気データを示したものであるが、孤立した一細胞の信号は不安定でありグラフに示したように大きなゆらぎを持って拍動している。他方、図13(c)で示したように、微小電極2上には、図13(b)と同様に1細胞が配置されているが、他の細胞と連結された細胞集団となることで、拍動信号グラフを見てもわかるように、拍動周期の安定性が実現される。実際の1細胞レベルでの拍動計測では、図9でも示したように、隣接した各拍動間のゆらぎの大きさが指標となることから、本実施例で示したような、細胞集団化による安定化を実現しながら、1細胞の拍動データが取得できるように、特定の計測したい1細胞のみ微小電極上に配置され、この特定細胞の安定性を維持するために他の心筋細胞を電極上には載らない形で配置されている構成を用いた計測システムが有用である。
 図14は、本発明でカメラ受光素子を1細胞の電位計測に用いた実施例を説明する模式図である。通常、カメラ受光素子は、光電変換面で光信号を電気信号に変換して、この電気信号を計測に用いるものであることから、この光電面を除去して、電気信号アレイ部分を用いることで、2次元での電気信号を取得することが可能となる。これによって、1細胞レベルでのサイズの電極アレイを用いることができるため、例えば細胞集団の中の各細胞の電気信号を同時に計測することが必要な、図11で示した一定の幅を持つ細胞集団ネットワーク中での信号伝達経路の変化というスパイラル・リエントリーの発生を計測することが可能となる。実際の計測では、画素の計測インターバルは1万分の1秒程度必要であり、1万分の1秒のシャッタースピードの高速カメラのカメラ受光素子を利用する必要がある。この場合、取得された細胞の信号データは、既存のカメラで用いられている画像処理技術をそのまま適用することができ、画像処理用のFPGAを用いた実時間処理が可能となる。また、その実時間処理によって得られたデータに基づいて刺激電極へのフィードバック刺激を行うことも可能となる。
 図15は、本発明の細胞計測システムで複数試料を計測できる機構の一例を説明する模式図である。この実施例のシステムは、分析モジュール、多段インキュベーター、電気解析モジュールとオンラインネットワークで接続されたオンライン解析モジュールとからなる。ここで、分析モジュールには、細胞形状の変化を計測する位相差顕微鏡あるいは微分干渉顕微鏡、そして蛍光顕微鏡とカメラ撮影解析による光学的計測、アガロースを顕微鏡システムを利用してミクロンのスケールで局所溶解できるアガロース加工技術からなっている。多段インキュベーターには、複数の細胞培養槽が配置されており、また、細胞培養槽の中には微小電極チップが配置されており、各細胞の電気信号の計測、電気的刺激がインキュベーター中で並列で連続処理できるようになっている。得られた電気信号については、電気解析モジュールで実時間計測を行い、そのデータはオンラインアクセスが可能なストレージに、光学計測のデータと電気計測データの結果が同じ時間スタンプを持った形で記録されており、この記録データにオンラインで解析モジュールが適宜アクセスすることで解析することができる。
 図16は、本発明の細胞計測システムで計測できる心臓情報を説明する模式図である。微小電極上での1細胞の電気信号計測によって、Na、Ca、IKr、IKsなどのイオンチャンネルの信号データを計測することができ、隣接する心筋細胞間での信号伝達の速度変化の計測からNaイオンチャンネルの阻害を計測することができる。また、1細胞の形状変化の光学計測によって不整脈の発生の計測および心臓の拍出量の見積もりができる。さらに、環状に細胞ネットワークを配置することによってリエントリーの発生を計測することができ、さらに線維芽細胞を細胞配置に加えることで心肥大などの病理心臓モデルとしての計測がすることができる。
 図17は、本発明の細胞計測システムにおいて、自律拍動している心筋細胞から取得される細胞のフィールド・ポテンシャル(FP)信号波形の薬剤添加に対する変化の一例を例示するグラフである。細胞のフィールド・ポテンシャル信号波形は、図8に示したように細胞に流入するイオン、流出するイオンによって発生する細胞電位の変化を示すものであり、細胞電位の微分値、すなわち単位時間当たりのイオン電流の流れの総和であり、この場合、脱分極に至るプロセスでのナトリウムやカルシウムなどの内向きイオン電流が負に、それに続く再分極プロセスでのカリウムなどの外向きイオン電流が正に取られている。通常、この細胞のFP信号波形については、この図17に示すように隣接する各拍動についての相互の違いに着目するより、複数の隣接する波形を平均化してノイズ成分や隣接した各波形の違いなどの影響を排除した平均値としての1つのFP波形を抽出し、その平均値を反映した1波形の詳細解析によって各イオンチャンネルの状態を見積もるために用いている。しかし、本発明では、隣接するFP信号波形の平均値を取得するのではなく、隣接するFP信号波形の違いのうちイオンチャンネルの応答のゆらぎに依存する部分を比較抽出して、このゆらぎの大きさに基づいてイオンチャンネルのブロックされた量を定量的に推定するものである。これについては、一般にゆらぎの大きさが要素nの平方根の逆数[1/(n)1/2]で示されることから、その意味を理解することができる。すなわち、細胞表面にあるイオンチャンネルの数が、例えば104個機能している場合には、イオンチャンネルの総和としての機能のゆらぎの大きさは1%[1/(1041/2]となるが、薬剤によってブロックされることで102個まで機能しているイオンチャンネルが減少すれば、その機能のゆらぎの大きさは10%[1/(1021/2]と急激に増加し、隣接するFP波形は大きな変化を発生させることとなる。すなわち、隣接するFP波形の変化を比較してゆらぎの大きさを見積もることができれば、このゆらぎの大きさからブロックされたイオンチャンネルの総量を見積もることができるのである。
 この隣接する波形の変化について、特にカリウムイオンの放出によって発生する外向きイオン電流のピークの場所に着目し、例えばナトリウムイオンの細胞内への流入時間を基準(ゼロ)とし、その時間からカリウムイオンの放出のピークまでの時間をフィールド・ポテンシャル・デュレーション(FPD)として定義すると、このFPDの長さの変化は、ナトリウム、カルシュウム等のイオンの出入りに続くカリウムイオンの流入のピークの値となるため、細胞が持っているさまざまなイオンチャンネルが薬剤によってブロックされたことで発生するイオンの出入りの変化の総和としての変化量の指標として着目することができ、また、このFPDの位置のゆらぎは、すべての関係する細胞のイオンチャンネルの隣接するFP波形のゆらぎの総和を反映したものとなる。実際に、図17のFPDの位置(赤矢頭の位置)を確認すると、カリウムイオンチャンネル阻害剤であるE4031の添加によってFPDは添加前には425-450msの間であったものが、10nMの添加で642-645ms、100nMの添加で663-694ms、1μMの添加で746-785msというように阻害剤の添加によって単調にFPDの値は増加してゆき、また、隣接するFPDは同じ値ではなく、ゆらぎを反映した異なる値を取ることとなる。
 図18は、実際にカリウムイオンチャンネルを特異的に阻害する機能を持つ薬剤E4031によって細胞のカリウムイオンチャンネルが阻害されたときのFPDの延長についてE4031濃度依存の実験結果の一例を示したものである。ここでは、カリウムイオンチャンネルの阻害によってイオンの流出が遅延し、FPDが濃度依存的に延長することが推測できる。この実験結果について、同様に上記ゆらぎ計測をする場合を考える。
 図19は一般に心電図の拍動ゆらぎを計測するポワンカレプロッティングを、FP波形におけるFPDの値の評価に用いてFPDのゆらぎに着目した場合の、隣接した拍動のFPDがどの程度、相同状態からずれたかを見積もる手法の着目点のうち、隣接する拍動の揺らぎの大きさ(短期変動:STV: Short-term variability)の見積もり方を説明するものである。図19(a)において、X=Yとなる対角線は、隣接した拍動FPDとFPDn+1がまったく同じFPDの大きさを持つ場合に位置するものとなり、2つのFPDの差(FPDn+1-FPD)の大きさの対角線からの鉛直距離が基準化された隣接拍動自体のゆらぎの大きさとなり、特にk個のサンプリング数に対しては、図19(b)に示す(式1)のような数式で評価することができる。
 他方、図20はポワンカレプロッティングを用いてFPDのゆらぎに着目した場合の、隣接した拍動のFPDがどの程度、相同状態からずれたかを見積もる手法の着目点のうち、隣接した各拍動が拍動の平均値(すべてのサンプルの総和でイオンチャンネルの応答の理想値に相当)からどれだけずれているかという観点での拍動の揺らぎの大きさ(長期変動:LTV: Long-term variability)の見積もり方を説明するものである。図20(a)において、X=Yとなる対角線上に配置されたFPDの平均値FPDmeanと隣接した拍動FPDとFPDn+1それぞれとの距離の2つのFPDの差[(FPDn+1-FPDmean)+(FPD-FPDmean)]の大きさの対角線からの鉛直距離が基準化されたものでFPDの平均値からのゆらぎの大きさとなり、特にk個のサンプリング数に対しては図20(b)の(式2)のような数式で評価することができる。これはX=-Yの対称性からのずれを示しており、この大きさによって拍動が単なる平均値まわりのゆらぎを行っているのか、あるいは、履歴を持っているものかを見出す指標とすることができる。
 図21には、実際にE4031を段階的に添加したときの心筋細胞の応答の一例をポワンカレプロッティングで示したFPDのゆらぎと、そのゆらぎを定量的にSTVとしてまとめたものである。イオンチャンネルがE4031の添加に応じてブロックされてゆくことがFPDの時間の長さの延長によって推定されるとともに、特に高濃度の添加によって急激にSTVの値が増加することがわかる。
 図22は、X軸に従来のQT延長計測に当たるFPDの延長が心筋細胞を用いて観察された割合(%)を、Y軸にはSTVの増加が観察された割合(%)を取り、心毒性があることが知られている薬剤、心毒性が無いことが知られている薬剤について評価を行ったものである。従来の薬剤の毒性検査については、X軸にあるFPDのデータの結果のみによって評価していたが、Y軸にあるSTVの結果を加えて評価を行うと、図からもわかるように2次元のグラフ上のマッピングの中で、心毒性が高い高リスク(High risk)、リスクが低い(Low risk)、リスクなし(No risk)の3つの領域の中に、既知の文献結果と同じ分布をすることがわかる。このことから従来のFPDに加えてSTVを加えることで薬剤の心毒性の可能性についてより的確にかつ容易に推測を行うことが可能となることがわかる。
 図23は薬剤の添加に対するFPDについてのSTVの応答の違いを示したものである。図23(a)では、その一例として環状に心筋細胞ネットワークを構築した場合の局所のFPDのポワンカレプロッティング(A,B)、ならびに2次元に拡がった心筋シートを構築してその局所のポワンカレプロッティング(C,D)を計測した結果を(b)に示す。この例ではペーメーカー領域PMからB,Dは近傍、A,Cは遠方に位置している。(b)において薬剤添加前には、ポワンカレプロッティングのX=Yの対角線上に分布していたFPDは、低容量の心毒性薬剤添加によって、環状モデル(A,B)ではともに大きなゆらぎが発生しSTVの増加が観察されるが、2次元シートモデル(C,D)ではほとんどゆらぎが発生しない。また中容量の薬剤添加に対しては、環状モデル(A,B)では拍動が細動状態あるいは停止状態に移行するが、2次元シートモデル(C,D)ではPMから遠方の領域CでSTVの増加が見られるが、近傍の領域Dでは、まだSTVの増加量は領域Cより低いことが観察される。この例でもわかるようにFPDのSTV計測による薬物の心毒性の予測に対しては2次元シート状の細胞集団(ネットワーク)より、ペースメーカー領域から線状に配置された細胞集団(ネットワーク)が、より正確に薬物の影響を反映させることがわかる。
 図24は薬剤の添加に対するPM領域からの拍動刺激の伝達速度(V)についてのSTVの応答の違いを示したものである。これは、心毒性としておこるトルサードポワンツ(TdP)は心筋細胞組織での伝達異常であることから、実際にPM領域からの伝達速度がどの程度のゆらぎとして発生するかを確認することで薬物毒性を見積もる手法である。この場合にはSTVの定義については図24(c)の(式3)に示したように、FPDに変わって、PM領域からの伝達時間T(あるいはPMからの距離をこの伝達時間で割った、その観測点での見かけ上の伝達速度V)を用いて計測することとなる。LTVについても定義はSTVと同様にFPDを、TあるいはVに変更したものとなる。図24(a)では、その一例として環状に心筋細胞ネットワークを構築した場合の局所の伝達時間Tのポワンカレプロッティング(A,B)、ならびに2次元に拡がった心筋シートを構築してその局所のポワンカレプロッティング(C,D)を計測した結果を図24(b)に示す。この例でも図23と同じくペーメーカー領域PMからB,Dは近傍、A,Cは遠方に位置している。図24(b)において薬剤添加前には、ポワンカレプロッティングのX=Yの対角線上に分布していたFPDは、低容量の心毒性薬剤添加によって、環状モデル(A,B)ではともに大きなゆらぎが発生し伝達時間の大きなゆらぎを示すSTVの増加が観察されるが、2次元シートモデル(C,D)ではほとんどゆらぎが発生しない。また中容量の薬剤添加に対しては、環状モデル(A,B)では拍動が細動状態あるいは停止状態に移行するが、2次元シートモデル(C,D)ではPMから遠方の領域CでSTVの増加が見られるが、近傍の領域Dでは、まだSTVの増加量は領域Cより低いことが観察される。この例でもわかるように伝達時間T(あるいは各局所での見かけの伝達速度V)のSTV計測による薬物の心毒性の予測に対しては2次元シート状の細胞集団(ネットワーク)より、ペースメーカー領域から線状に配置された細胞集団(ネットワーク)が、より正確に薬物の影響を反映させることがわかると同時に、より効果的に空間配置依存的なゆらぎの発生を計測できることがわかる。
 図25は、本発明の心筋細胞ネットワークで各心筋細胞から電気的FP波形を取得するときの、そのFP波形と従来のin vitro計測技術(例えばパッチクランプ法)、従来のin vivo計測技術(例えば心電図)との関係を模式的に図示したものである。本発明の細胞のFP計測で得られた波形は、細胞から出入りする単位時間当たりのイオン流の大きさを示すものであり、細胞の電位変化情報(電気的にはイオン電流)となり、これは、従来の細胞ベースでのin vitro計測で得られる細胞電位とは、図25に描いているように微分・積分の関係となる。次に、各細胞(あるいは細胞ネットワークの局所)から得られた1電極から計測したFP波形を、細胞ネットワークの複数の領域に配置した複数の電極から得られた各々のFP波形を重ね合わせることで細胞ネットワークの合成FP波形を得ることができるが、これは心臓から得られる電位変化信号波形である心電図のうち心室組織部分の応答にあたるQT領域の心電図データと相同性を持っているものである。
 図26は、上記、図25で説明を行った従来の技術で計測した情報と、本発明の装置で得られたFPデータとの相関関係を見積もるための装置システムの構成を模式的に示したものである。1細胞あるいは細胞ネットワーク上の局所のFPを計測できるように配置された複数の微小電極から1電極単位で取得したFPデータを集積し、その各FPデータを微分して細胞電位を見積もることができる機能を有する演算回路、あるいは、各電極データを重ね合わせることによって、心電図の心室部分の心電図波形(Q-T部分)との比較ができる演算回路を有するものである。特に、重ね合わせ回路を用いて単一の電極のFPデータを解析するだけでなく、例えば直列に配置された細胞ネットワーク上に等間隔で配置された複数の微小電極アレイのデータを合成することは、各電極上の細胞のFPの結果のみならず細胞間を伝達する状態を反映したデータを表示することとなり、特に、心筋細胞間の伝達異常である不整脈を見積もる上では、伝達の異常が合成FP波形に反映されることから、この重ね合わせ回路の結果を期外収縮発生の直接予測機構に情報を移動させて、この結果から心電図解析と同様な予測が可能である。他方の微分回路から得られる細胞電位データについても細胞電位依存的に活性化状態が異なるイオンチャンネルの状態を見積もるために用いられる。
 図27および図28は、実際に上記図26で述べた演算回路によって各電極からのFPデータを重ね合わせた例を示したものである。図27では、図27(A)に示したように心筋細胞ネットワークが環状に配置されており、そのネットワークに沿って一定間隔で微小電極が配置されている。ペースメーカー(PM)領域が電極R1の位置にある環状心筋細胞ネットワークにおいて拍動シグナルがR2→R8、あるいはL1→L8に伝達するところが図27(B)の各電極のFP波形で見ることができる。そしてこれを重ね合わせた波形が下Sの波形となる。図27(C)は、実際に長期で計測して合成した結果である。これが実際の心電図のQT領域の波形を推定するために必要な、FPの伝達情報が含まれた合成FP波形となる。この図からもわかるようにPM領域から正常に拍動シグナルが伝達する場合には、図27(C)からもわかるように合成波形もなめらかな波形となる。他方、図28は図28(B)からもわかるようにPM領域からの拍動シグナルが規則正しく伝達しなくなる不整脈状態になると、合成FPとなるSも非常に乱れた波形となり、心電図に相当する図28(C)でも不整脈と同様な形状の波形が合成FP波形としてみることができる。ここで特記すべきことは、図28(B)の各微小電極の1電極データのみから不整脈を予測する場合には、観測する電極によっては(例えばL5)顕著な不整脈の発生を予測することは難しく、図28(B)Sあるいは図28(C)に見られるように合成FP波形とすることでより的確に予測することが可能となることがわかる。
 図29は、心筋細胞の拍動周期に対するFPDの大きさの関係を示したものである。黒丸は、いろいろな自律拍動を持つ心筋細胞でのFPDを本発明の装置システムで計測した結果である。この結果からもわかるように、細胞はその拍動周期に依存してFPDの値を変化させることがわかる。これは自律拍動を用いた心筋細胞による計測を行った場合に、薬剤によって細胞の拍動周期が変化したり拍動停止したり、あるいは不安定化したときに、この副作用によって本来のイオンチャンネルのブロックではない原因によってFPDが変化する可能性があることを示唆している。また、赤×印は強制拍動によって細胞の拍動周期を強制的に変化させたときのFPDの値を示しており、外部からの連続刺激によって一定時間以上、一定の拍動周期を維持すれば、安定したFPDとなることがわかる。
 図30は、実際に自律拍動をしている心筋細胞に本発明のシステムを用いて外部から強制拍動刺激を与えたときの心筋細胞のFPDの時間変化の一例を示したものである。この例でもわかるように、自律拍動インターバルが4秒程度であった細胞が1Hzの強制拍動刺激を与えると直後からFPDの値が大きく変化し、刺激開始後およそ30秒ほどで550msの位置で安定化することがわかる。また強制拍動刺激終了後においても異なる自律拍動周期を持ち、また、FPDが徐々に長くなってゆくことも見ることができる。これらの結果からもわかるように、強制拍動刺激を与え始めてからFPDが安定化するまでの刺激開始後30秒後以降に、薬物毒性検査をすることが望ましい。
 図31は、実際に本発明のシステムを用いて外部から強制拍動刺激を与えてFPD、あるいは伝達時間T、あるいは伝達速度Vを計測する場合の細胞配置の例を示すものである。図31(a)は、少なくとも2つの微小電極を覆うように配置された細胞集団を用いた刺激計測の例である。刺激電極から例えば毎分60拍の一定のインターバルの強制刺激信号を与えながら隣接する計測電極で細胞のFPD、あるいは刺激電極の刺激時間から計測電極上の細胞までの拍動信号の伝達時間T,あるいは計測電極上の細胞までの伝達速度Vを計測するものである。図31(b)は、直線状に配置された心筋細胞ネットワークの端点に配置した刺激微小電極によって強制刺激拍動を与え、この伝達について、一定の間隔で心筋細胞ネットワークに沿って配置された微小電極アレイによって、各電極上の心筋細胞のFPD,T,Vを計測し、刺激電極の刺激信号に対する各電極のデータのみならず、各記録電極のFPの合成FPによる不整脈発生の予測、各電極間でのTとVの関係などについて見積もることができる。ただし、ここで示したのはあくまでも細胞配置の一例であり、上記、図27で示した環状細胞ネットワークのPM領域に強制拍動を与えて同様の計測をすることもできるし、あるいは、刺激電極上の細胞をこの刺激電極を計測電極として用いることで、最小細胞数でのFPDの計測をおこなうことも可能である。
 またここまでのすべての実施例について、心筋細胞ネットワークについては一部心筋のみについて言及したが、繊維芽細胞を生体組織と同様な性質となるように添加することが含まれるものである。
 図32は、微小電極2上に配置された細胞のFP計測を行うために、電極2の電位を一定に保つ電位クランプ型のフィードバック制御機構を用いることができることを模式的に示したものである。ここでは、細胞のFPは、従来の電極からの信号を増幅して計測するのではなく、電極2の電位を保つために外部の電源から供給される電流をモニターして、この結果を実時間で解析することで見積もるものである。ここで一定に保つ電位としては、通常はゼロを選ぶが、脱分極電位を変化させるなどの細胞状態を変化される場合には、電位を異なるものに調整することも可能である。
 図33は、実際にヒトES細胞から心筋細胞に分化させた細胞集団の一部領域に上記記載の本発明のシステムを用いて強制拍動刺激を与えた時の、細胞集団の拍動周期の変化を計測した結果の一例のグラフである。このグラフからもわかるように、正常な心筋細胞集団では、この例のようにたとえば0.6Hzから1.8Hzの強制刺激を与えた時に、この範囲のすべてにおいて線形に、強制刺激に応答して拍動が追従することがわかる。
 図34(a)は、実際に強制拍動刺激を与えたところで細胞集団の拍動がその強制拍動刺激のインターバルと同じ周期になることから、この強制拍動刺激状態での心筋細胞集団のFPの波形の変化とFPDの長さの変化を示したものである。グラフからもわかるように、強制拍動刺激インターバルを早くすることでFP波形が変化し、FPDの長さが短くなることがわかる。そこで図34(b)に示したように、このFPDの変化をグラフで示すと、この短縮が、強制拍動インターバルの周期(RR)に依存することから、この補正
関係について、既知のヒト心臓においてのQTインターバルの長さと心拍との関係の研究(Patrick Davey, How to correct the QT interval for the effects of heart rate in clinical studies. Journal of Pharmacological and Toxicological Methods 48 (2002) 3 - 9)からFredericiaの補正、すなわち拍動の速さの違いによってQTの長さが変化してしまい相対比較できないことから、拍動周期が毎分60拍の心筋拍動時のQTの長さ(QT)に補正するためにQT=QT/(RR)1/3として換算するもの、あるいは、Bazettが提唱したQT=QT/(RR)1/2として換算するものに一致するかどうかが重要となる。これは、上に説明したようにin vivoでのQTの長さは、本システムで計測する細胞ネットワーク全体で計測したFPDの長さの重ね合わせに相当し、それは、すなわち各細胞のFPD自体が、上記、FredericiaあるいはBazettの補正の範疇に入るべきであることを示唆しているが、実際に、図34(b)の結果は、QT=QT/(RR)1/2.5 となっており、FredericiaあるいはBazettの補正の間にあることがわかる。また、図35は図33および図34のグラフに示したデータを表にしたものである。
 これらの結果は、実際にスクリーニングや再生医療で使用する心筋細胞の品質の確認に、心筋細胞に対して強制拍動刺激を与えたときの心筋細胞の応答を計測することで対応できることを示している。すなわち
1)心筋細胞あるいは心筋細胞集団に対して強制拍動刺激を与え、細胞あるいは細胞集団がその強制拍動刺激に応答して強制拍動刺激と同じインターバルで応答するかどうかを確認し、かつ、その応答がどの強制拍動刺激の周波数の範囲で対応するかどうかを計測し、拍動が追従できることを確認することで健全な心筋細胞である十分条件の一つを満たしていると判断すること、あるいはさらに具体的に、この応答の追従がたとえば少なくても1.8Hzまで追従することで健全な心筋細胞である十分条件の一つを満たしていると判断すること。
2)上記、強制拍動刺激インターバル(RR)に対して細胞の拍動の追従が確認できた周波数の範疇で、強制拍動刺激に対するFPDの変化が、FPD/(RR)1/3からFPD/(RR)1/2の間にあることを確認することで健全な心筋細胞である十分条件の一つを満たしていると判断すること。
 上記手順を用いることで、心筋細胞の品質の管理が可能となる。健全な心筋細胞とは、安定した拍動を行うことが可能な細胞である。ここで評価対象となる細胞集団については、分化誘導を行った細胞集団をそのまま用いても良いし、あるいは、分化誘導を行った心筋細胞を分散し1細胞単位で計測評価しても良いし、あるいは、これら分散した心筋細胞を再度細胞集団化して計測しても良いし、あるいは、これら分散した心筋細胞をヒト心臓由来の線維芽細胞と混合して新たな細胞集団として計測評価しても良い。
 これらの心筋細胞は、心筋毒性検査に使用することができる。
 図36(a)は、細胞信号のノイズを電子回路的に低減するために、細胞10が載っている微小電極2と、この微小電極2の近傍に配置された細胞が載っていないむき出しの比較電極2cとの間の電位の差分値を出力する回路を模式的に示したものである。実際に、この回路を図36(b)に示すように、増幅回路の初段に組み込むことで、図36(c)に示したようにノイズが特定の周波数に依存せず低減されることが分かる。このとき、比較電極2cの微小電極に対する位置はより近傍であることが望ましく、たとえば50μmの距離に配置されているものは十分な機能を果たすが1mmの距離までノイズ低減の機能をもたらすことができる。
 図37は、本発明の心毒性評価の総合的評価法の例を模式的に示した図である。特定の濃度の薬剤を添加した後の心筋細胞の細胞電位計測の結果から得られたFPDの値について、まずFPD延長の程度の集計結果をX軸上の値とし、さらに上述のFPDの時間的ゆらぎの大きさをポワンカレプロッティングからSTVとしてY軸上の値とし、この結果をプロットする。図37(b)は、様々な薬剤についてその結果X?Y図にプロットしたものの一例である。図からわかるように、FPDの延長とゆらぎ(STV)の増大が小さい領域にある薬剤は、QT延長はあるが心毒性は無いと判断でき、FPDの延長とゆらぎ(STV)の増大が同時に起こる場合(X?Y図面で右上)にTdPなどの心毒性があることを予測することができる。
 図38は、実際に心毒性を計測するためのシステムの構成の一例を示した模式図である。この実施例のシステムは、送液部、細胞培養計測部、細胞解析・刺激部からなっている
 送液部は、細胞培養計測部の中で培養している各細胞培養チャンバーに培養溶液を連続して送液するシリンジポンプ系あるいはペリスタポンプ系あるいはHPLCポンプ系によって送液することができる。また、送液部の配管の外周には温度調整用の抵抗加熱用配線を巻き付け管内の液温を微小K型熱電対やサーミスタ等の熱検知機構で連続モニターすることで、導入する液温を制御する抵抗加熱の程度を調整して、つねに一定の温度での溶液が導入されるようになっている。また、この送液部には、試験する薬剤を添加するために合流配管や切り替え配管などの機構が配管中に配置されており、これによって希望する濃度の薬剤を各細胞培養チャンバーに導入することができる。また、導入される薬液の濃度を定量的に確認するために、液の導入管の一部が光学的に透明であり波長280nmから800nmの範囲で吸光分光計測によって、定量的な評価が可能な機構が付加されていることが望ましい。また、同様に廃液についても廃液管の一部が光学的に透明であり波長280nmから800nmの範囲で吸光分光計測によって、定量的な評価が可能な機構が付加されていることが望ましい。また薬液の制御温度としては、人体の正常温度に近い温度が通常望ましく、その観点からセ氏30度から45度の範囲での温度制御ができることが望ましい。
 図39は、本発明の心毒性を計測するシステム中の細胞培養計測チャンバーの構成の一例を示す模式図と写真である。複数の細胞電位計測電極が配置された多電極基板4201(図40を参照)は、培養液の導入機構・排出機構が配置された細胞培養容器4202が接着しており、同時に8検体の計測が可能な細胞培養計測プレートとなっている。図40に細胞培養計測プレートの断面を模式的に示しているように、この細胞培養容器4202において、溶液の導入口は、多電極基板4201に一番近い底面に扇状に広がる形状で配置されており、他方、液の排出機構は、上部の液面の高さ4204を決める位置に液面の界面の方向と同じ向きに扇状に展開している。
 図41は、多電極基板に配置されている電極配置の電極配線の構成を模式的に説明する図である。本発明では、細胞の形状を観察するために、電極にITOなどの透明電極を用いているが、透明電極の特性として通常の金属電極に比べて高い抵抗値を持っているため、特に多電極基板がプレートなどの大きなものとなると、配線が長くなりインピーダンスが非常に大きくなる。これを回避するために、透明電極上に金属レイヤーを透明電極と同じ配線で配置すれば、金属電極の導電性によって抵抗値を下げることができる。実際には、細胞を培養する領域では、光学的観察をすることからガラス基板4301上の透明電極4302を用いた配線を配置しており、細胞観察をしない領域では透明電極に重なるようにその上に金属レイヤー4303が配置されており、その上面が絶縁膜で被覆されている。ここで用いる金属電極素材としては、たとえば金、プラチナ、チタン、銅、アルミ二ムなどを用いれば良い。
 図42は、多電極基板上の電極配置の例を示した模式図である。まず、図42(a)では、細胞培養領域4404に直列に配置した心筋細胞ネットワークの一端を局所刺激する刺激電極4401と、この刺激電極によって刺激された心筋細胞の興奮伝導を計測する計測電極4402と、ノイズ除去のための参照電極4403が配置されている。各計測電極4402から得られた心筋細胞ネットワークの複数の局所応答の結果を計測することができるとともに、伝達速度のゆらぎを各計測電極間の伝達毒度の比較解析をすることで求めることができる。図42(b)では、計測電極が一直線に繋がっているものであり、この構成にすることで、心電図のST領域(心室領域)の心電図波形と同様な波形を計測することができる。図42(c)では、上記、図42(b)の一部を切り離して、局所の心筋細胞のFP波形を取得することを容易にしたものである。図42(d)は、リング状電極の上にリング状に細胞を配置して計測するための電極配置の一例である。これらは図11、図12に示したようにリング状に配置した心筋細胞ネットワークを計測するものであるが、リング状の計測電極の一部を欠損させ、その部位に局所強制刺激を与えるための刺激電極を配置し、また、ノイズ除去のための参照電極を配置している。さらに図42(e)では、計測電極も分割して、局所心筋細胞の応答を計測することが可能な配置となっている。
 図43は心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例を示した模式図である。本システムは、(1)細胞集団を培養することができ、かつ、集団中の微小領域の細胞電位データを取得できる複数の微小電極が基板上に配置された細胞ネットワークチップと、(2)このチップを固定し細胞刺激・細胞電位計測システムと電気的に接合するチップマウンター、(3)培養する細胞集団の温度や湿度、酸素濃度、二酸化炭素濃度などの環境を制御することができる環境制御容器、(4)細胞集団中の特定の心筋細胞に刺激を与え、また、細胞集団中のさまざまな微小領域の細胞電位を同時連続計測できる微小多電極電位計測システムと、(5)上記、細胞ネットワークチップ中の心筋細胞集団の表面、あるいは細胞集団の中に混入させて培養することによって細胞集団中に配置された粒径が最小で約0.1、0.2μm、0.3μm、0.4μm、0.5μm、0.6、0μm.7μm、好ましくは約0.8μm、より好ましくは約0.9μm、最も好ましくは約1μmから、最大で約500μm、400μm、300μm、好ましくは約200μm、より好ましくは約100μm、最も好ましくは約50μmまでのサイズのポリスチレン微粒子やガラス微粒子、金微粒子などのプラスチック・高分子・ガラス・金属微粒子等の心筋細胞とは輝度や複屈折率が光学顕微鏡によって容易に識別することができる心筋細胞の形状変化を計測するための1個以上の位置座標プローブ微粒子と、(6)上記、微粒子を光学的に計測するための照明用光源と光学顕微鏡と、その画像を取得する画像取得用カメラとからなる光学画像取得系と、(7)電位波形を分析して細胞電位計測を行い、かつ、画像解析によって細胞変位計測を行い、かつ、その解析結果に基づいてフィードバック刺激を行うことが可能な我画像解析・細胞電位解析・刺激制御・統合データ収録用のコンピュータシステムからなる。この装置を用いた計測では、心筋細胞の脱分極を起こすための刺激について、(A)上記心筋細胞集団の自律拍動の伝導を利用した計測を行うこと、(B)上記心筋細胞集団中の特定の細胞に外部から強制電気刺激を与え、この伝導を計測すること、(C)上記心筋細胞集団中の特定の細胞に、計測した細胞電位データに基づいて細胞電位の値と遅延時間の関係を満たす特定のタイミングでフィードバック刺激を与えてその伝導を計測すること、の主に3つの手段から選んで刺激を与えることができる。
 図44は、心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例から取得されるデータの一例を示したデータ取得モニター画面の一例である。本実施例では、心筋細胞集団の表面に多数のポリスチレン微粒子を配置し、その中の5個のプローブとすることとしたポリスチレン微粒子についてプローブ微粒子変位観察窓を設定し、その窓の中の微粒子の移動に伴って窓の重心が移動することによって、特定のプローブ微粒子の変位をX軸方向とY軸方向のベクトル時間変化として継続して計測することができる構成となっている。また、ちょうど光学計測をしている位置の特定のターゲット心筋細胞の細胞電位データを計測することで、Naイオンチャンネル、Caイオンチャンネル、Kイオンチャンネルの伝導刺激応答の変化と、細胞形状の変化を相関付けて計測することができる。特に、複数のプローブ微粒子の変位を同時計測することと、変位量の変化に加えて変位方向の変化を計測することができることで、細胞集団の中の各心筋細胞の応答特性のばらつきによって生じる薬剤添加に対する収縮強度の変化が、一様に発生するものか、あるいは不均一に発生するものかを定量的に見積もることも可能となっている。
 図45は、心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例から取得されたデータの一例である。図からもわかるように、細胞電位データに加えて、同じ時間での心筋細胞の変位量、そして、この変位量を時間微分した変位速度データを得ることができる。
 図46は、心筋細胞の力学特性と電気特性を同時計測する本発明のシステム構成の一例から取得された細胞変位の方向データの取得の一例を説明する図である。上段の細胞に配置したプローブ微粒子の時間変化を示す連続画像であるが、この変位データを(X,Y)成分として取得し、これを変位長さrと角度変化θからなる極座標系(r,θ)に変換することで、変位量と角度変化の2つの指標を用いて、薬剤の効果を定量的に見積もることが可能である。下グラフでは、実際に、薬剤の添加によって微粒子の変位の角度変化のゆらぎが増大することが観察される現象の一例を示したものである。
 図47は、心筋細胞の力学特性と電気特性を同時計測する本発明のシステムでの心筋細胞ネットワークの空間配置の例を説明する図である。(a)は1微小電極上に1微小心筋細胞クラスターを配置したもの、(b)は2次元に配置された微小電極アレイに対して2次元に広がった心筋細胞シート状に細胞を配置したもの、(c)は直線状に1次元に配置した微小電極アレイ上に心筋細胞を直線状に配置して、端点での心筋細胞の発火が他端に伝導するように配置したもの、(d)はリング状に配置した微小電極アレイ上にリング状に心筋細胞ネットワークを配置したもので、そのリング状に配置された心筋細胞ネットワークを閉ループとなるように接続したものと、あるいはリング状に配置した細胞ネットワークの一部を切断して開ループとなるように配置されたものなどがある。ここで、特に(c)のように直線状に細胞を配置した場合には、心筋細胞の基板表面への接着が十分ではない場合には、(e)に示したように心筋細胞の基板表面への接着に対して、心筋細胞間の収縮力が強すぎるために細胞が徐々に収縮して細胞ネットワークの空間配置が維持できず細胞塊となってしまう。これを回避するためには(d)で示したようなリング状での細胞配置をすることが収縮力を効果的に逃すことができ効果的である。また、基板表面のコラーゲン層に従来のコラーゲンに替わって、コラーゲンビトリゲルを用いることも有効である。
 図48は、実際によく知られている心筋細胞の細胞電位計測に基づいて分類した、ヒト幹細胞由来心筋細胞の細胞電位(Action Potential)グラフ(上段3種類)と、その細胞電位を時間微分した細胞外電位(Field Potential)グラフ(下段3種類)を示したものである。左のグラフは心房筋型細胞を、中央のグラフは心室筋(プルキンエ細胞)型細胞を、右のグラフは房室結節型細胞を示している。従って、心室筋の薬剤応答、あるいは心室筋での伝導応答計測を行う場合には、中央下段のグラフで示された特徴を細胞外電位で計測された細胞を用いて計測することが望ましい。この特徴は、薬剤を添加していない状態で、急激で明確な脱分極に伴った脱分極開始後20ms以内でのシャープなNaイオンの内向き電流の発生と、その後の脱分極開始後100ms以内でのゆるやかなCaイオンの内向き電流の発生と、脱分極開始後100ms以降に観察される顕著なKイオンの外向き電流の発生があるものである。
 図49は、心筋細胞の細胞電位、hERGイオンチャンネルの薬物応答のゆらぎ変化の一例を示す図である。図49(A)に示したように、hERGイオンチャンネルを特異的に阻害する薬剤E4031を添加すると、すでに述べたように細胞外電位(Field Potential: FP)はその応答が、隣接拍動周期間で大きなゆらぎを発生させるが(応答の安定性が消失するが)、同様にヒト幹細胞由来心筋細胞を用いて、その細胞電位(Action Potential: AP)についてもFPと同様な傾向と程度のゆらぎを発生させることがわかる。このことから、従来のパッチクランプ法等の電気生理学的細胞電位計測法を用いても、その観察を、各応答の平均値を取るのではなく、取得したデータのゆらぎの程度を定量的に計測することで見積もることも可能である。また、このときに細胞の応答を安定性を調整するために、たとえばパッチクランプ法を用いた計測の場合も、孤立心筋細胞1細胞での計測を行うより、心筋細胞集団中の1細胞を計測することが望ましい。図49(B)には、hERGイオンチャンネルだけを強制的に発現させたCHO細胞について、同様にE4031による阻害に対する細胞全体の細胞電位の変化を計測した結果の一例を示したものである。この結果から分かるように、従来のテールカレント(tail current)計測では計測したデータの平均値を示すが、イオンチャンネルのブロックが進むと電流自体が減少して計測が困難となる。しかし、細胞応答のゆらぎ計測を行うと、そのゆらぎの増大がhERGイオンチャンネルのブロック率が高まったときに急激に増大することから、電流量が大きいときには従来のテールカレント計測を行い、ブロック量が大きくなってカレントに基づいた計測が難しいときには、ゆらぎ計測で計測するという2手法の組み合わせ計測が有効である。
 図50は、刺激電極アレイからの刺激電位重ね合わせによる任意の位置での細胞刺激法の原理を説明する図である。図50(A)に示したように、隣接する電極間での電極電位と位相を制御することができる多数の刺激電極アレイを基板上に2次元に配置し、各電極から、単独の電極からの刺激では細胞に脱分極を起こすことが無い微弱な電位変化を出力させ、これらを重ね合わせることで細胞刺激を与えるに十分な重ね合わせ電位を2次元面上の特定に位置に特異的に発生させるために、各電極が発生させる必要がある電極の電場強度と位相のパターンをフーリエ合成の規則に基づいて算出し、特定の場所のみに刺激を与えることができる。その一例として、たとえば図50(B)に示したように、円リング状に電極アレイを配置し、これらを上記手法にて制御することで、リングの中央において集束電場による刺激を与えることが可能である。この電極アレイが、細胞培養レイヤーあるXY平面(R軸方向)から空間的にZ軸方向に浮いた形で配置されているとき、具体的には、電極アレイが配置されている平面(R軸方向)と、電場照射方向(Z軸方向)との面内での電場集束時の刺激電極アレイの配置は以下の通りとなる。まず、Z軸上の点Zfに電場を集束させる場合、この焦点ZfからR軸平面に下ろした垂線の足をRとしたとき、RからZfまでの距離がmλであったとする。ただし、ここでλは各刺激電極から発生させる細胞集団内での伝導速度に基づいた刺激信号波の波長、mは自然数とする。Rの位置に刺激電極を配置した場合、同心円状に配置した微小電極各々の半径は、中心からn番目の同位相の場所の半径をRとした場合、
Figure JPOXMLDOC01-appb-I000001

と置くことが出来る。ただし、位置Rは、n番目の刺激電極の同心円の位置を示し、その幅は刺激を与える焦点の位置からの距離に換算して伝導速度換算で高々±λ/4程度とする。当然、Rの位置に基準となる刺激電極が配置されなくても、同心円の焦点位置に特異的に刺激を与えることができるし、また、Zfについても細胞ネットワークが配置された基板と同じ基板上に刺激電極アレイを配置してZf=0としても良い。さらに、焦点位置が円の中心からずれる場合には、そのずれに合わせて各刺激電極の刺激信号の位相を伝導速度から換算して変更することで、刺激リング電極内の任意の特定の位置に刺激を与えることが可能である。上記説明では、心筋細胞ネットワークを例として挙げたが、細胞間の興奮伝導の伝達能力を持つ細胞であれば、すべて同様な処理が可能である。
 図51に、微粒子の光学計測について開口数0.3以下の対物レンズとズームレンズ系を組み合わせた場合の効果を説明する。通常の光学系では、対物レンズからの像を直接、CCDカメラ等の画像記録素子に結像させて観察しているが、その場合には、対物レンズの開口数(NA)に応じた焦点深度となり、倍率を拡大すると、それに対して像のボケが生じない焦点深度が浅くなる問題があった。これを解決するためには、低倍率(すなわち低開口数)の対物レンズで取得した像を後段に加えたズームレンズ系で拡大すれば良い。開口数によって像の空間分解能は規定されるが、本発明では、すでに形状が既知のプローブ微粒子を用いているため、その微粒子の像がボケなければ、空間分解を多少犠牲にしても正確な微粒子の空間座標を取得できるため問題は無い。図51Aは、本発明の光学系の構成の一例を示したものである。対物レンズの後段にズーム光学系を配置し、その後段にビデオカメラを配置している。図51Bは、実際にさまざまな倍率(開口数)の対物レンズを用いて直接微粒子を観察して、深さ方向で像のボケを観察した結果である。この結果からも分かるように、10倍(開口数0.3)の対物レンズでは、焦点深度15μmまでの像をボケ無く観察することができるが、20倍(開口数0.4)、40倍(開口数0.6)ともに、5μm程度の深さ方向までしかボケが発生しない像を得る事はできない。図51Cは、実際に10倍(開口数0.28)の対物レンズにズーム系を加えた光学系の像の観察結果である。この結果からも分かるように、対物レンズ20倍、対物レンズ40倍と同等の拡大率(位置座標分解能)にズーム系を用いて拡大しても、その焦点深度は25μm程度が維持され、特に収縮運動を行う心筋細胞ネットワークにおいて、深さ方向での大きな変位に対しても、プローブ微粒子の座標を見失う事無く、同様の画像処理を用いて位置座標分解能で追跡することが可能となる。
 図52に、上記システムを用いて細胞電位計測と力学計測を同時計測した場合の一例を示す。Aは、心筋細胞の収縮張力が消失する薬剤の一例としてベラパミルを添加したときの、細胞外電位(FP)と、発生張力(Optical imaging)の変化を同時計測したものである。薬剤濃度が100nMとなったところでの収縮力の消失の時間変化を図Bに示している。図Bからもわかるように、細胞の興奮伝導の電気的発火は維持されているが、急激に収縮力が消失し、最終的に電気生理学的には興奮伝導は引き続き起こっているが、力学的には収縮力が消失してしまうことがわかる。また、図Aの1000nMのデータからもわかるように、この場合は、電気生理学的な興奮も起こらず、かつ、力学的収縮が起きていないことがわかる。この例からもわかるように、電気生理学的計測のみでは、電気的興奮が維持されているところで実際に力学的収縮がどの時点で消失するかを正確に予測する事は難しい。また、力学的計測のみでは力学的収縮が消失したときに、これが電気的興奮が維持されているところで収縮力が消失したのか、あるいは、電気的興奮そのものが消失して収縮しなくなったのか、識別することは困難である。しかし、図52に示すように、同時に両者を計測することができれば、電気的興奮刺激があるところで収縮力がどのように消失してゆくのかを定量的に評価することができる。
 図53は、図52で得られた結果をグラフにまとめたものである。図53Aは、実際に電気生理学的細胞外電位で得られる細胞外電位波形である。薬物の投与によって、細胞外電位は以下のような変化が起こる。薬物にナトリウムイオンチャンネル阻害がある場合には、最初のスパイク波形部分の減少が発生し、カルシウムイオンチャンネル阻害がある場合には、FPD(ナトリウムの最初のスパイクから内向き電流極大位置までの時間)が短縮する方向に、また、カリウムイオンチャンネル阻害がある場合には、逆にFPDは延長する方向に波形を変化させる。従って、収縮力を引き起こすカルシウムイオンチャンネルの阻害が薬物によって発生するとき、同時に、この薬剤がカリウムイオンチャンネル阻害も引き起こす場合には、見掛け上、収縮力の減少に対してFPDの短縮は同時計測できないこととなる(カリウムの延長効果がカルシウムの阻害によるFPDの短縮効果を打ち消すため)。そのため、実際には、電気的計測に加えて、力学的計測を同時に計測する必要があるのである。
 図53Bは、実際にFPDの変化と、収縮力(Displacement)の変化の相関をまとめたグラフである。FPDの減少は、あまり顕著ではないところで収縮力の消失が起こっていることが明らかである。
 図53Cは、別の観点から収縮力の消失を解析したものである。具体的には、図52の説明でも述べたように、ナトリウムの最初のスパイクの強度の変化と、収縮力の変化の関係を示したものである。図からもわかるように、ナトリウムイオンチャンネルの阻害が薬物の濃度に依存して増大しているが、図Bの結果と照らし合わせて、最初のスパイクは細胞の電気生理学的な応答(カルシウムイオンチャンネルの応答とカリウムイオンチャンネルの応答)を誘発するには十分な強度を維持しており、その中で、張力の消失が起きている事がわかる。
 以上を総合的に分析すると、この薬剤投与によって、ナトリウムイオンチャンネルの阻害は発生するが、興奮発生にはまだ十分な余力があるレベルでの阻害であり、さらにカルシウムイオンチャンネルとカリウムイオンチャンネルをFPDの位置があまり移動しない程度に同程度に阻害するため、FPDの位置については問題が無く、FPDと関連づけられるQT延長リスクの発生は観察されない事が予想される。しかし、実際にはカルシウムイオンチャンネルの阻害が起きているために、収縮力の消失が起きる事が分析できる。
 上記結果が示すように、電気生理学的な細胞外電位波形分析と張力発生計測を同時計測として組み合わせる事で、従来、電気的計測のみでは判断できなかった、カルシウムイオンチャンネルの阻害効果とカリウムイオンチャンネル阻害効果の関係を見積もる事が可能となる。
 図54Aは、さらに上記観点に加えて、電気/光学同時計測による催不整脈発生リスク計測の観点をまとめたものである。電気生理学的計測によって得られたFPDの時間ゆらぎ、光学的計測によって得られた筋収縮についての運動距離(変位量)の各収縮インターバル間でのゆらぎ(ばらつき)、そして運動方向(角度)の各収縮インターバル間でのゆらぎ(ばらつき)の計測を、上記、本発明のシステムでは同時に行うことができる。特に、従来の電気生理学的理由による催不整脈効果だけでなく、心筋細胞集団の元来の品質のばらつきに起因した各細胞の収縮力の一様性の喪失が薬剤投与によってどの程度発生するのか、電気生理学的計測によるFPDのばらつきと比較解析することができる。たとえば、従来の計測法では見積もることができなかった観点として、本図にも示したように、FPDのゆらぎ増大が見られないことが確認されているところで、収縮力のばらつきが最も大きく薬剤投与によって出ており、角度ゆらぎも増大することが観察される。このことから心筋細胞集団は収縮力の減少にあわせて挙動が一様でなくなり、協同性を必要とするいポンプ機能に障害が発生することが定量的に推定することができる。
 このように「ゆらぎ」解析を、変位方向と角度方向の2つの指標についてあわせて取得することも、電気生理学的計測のみでは得られない薬物特性の判断の指標となる。
 図54Bは、さらに変位量の減少に対して、ゆらぎの増大がどのようになるかをグラフにして提示したものである。10nMのベラパミル投与時では、収縮力の減少に対して、角度ゆらぎはほとんど増大しないが、100nMのベラパミルを投与したときに急激に角度方向での収縮方向ゆらぎ(すなわち集団の収縮方向がランダム化する)が発生することがわかる。
 図55は、細胞外電位計測と収縮機能変化計測用光学システムを組み合わせた装置構成の一例である。2個以上の細胞外電位計測機能を組み込んだ心筋細胞ネットワークチップを3次元で移動させることができるステージ上に配置し、電位計測については各チップそれぞれにチップマウンターを組み合わせることで常時連続計測を行うことができる。また、光学計測については、上記ステージを周期的に移動させることで、各チップ内の心筋細胞の変位量(収縮距離)、変位方向(収縮角度)の計測を行うことができる。ここで、計測については、n=50回程度の拍動データを各チップについて取得することで、上記、ゆらぎ計測についても対応することが可能である。
 図56は、細胞培養モジュールアレイから構成されるハイスループット心筋細胞ネットワークアレイチップの構成の一例を示したものである。一般に、薬物に対する応答を計測する場合には、その計測スループットを上げるため、マルチウエル型の細胞培養プレートを用いることが多いが、実際に、予めマルチウエル構造となったプレートで細胞培養を行うと、いくつかのウエルでは細胞培養の状態が好ましくなかったり、あるいは、細胞が着床しなかったりという問題によって、すべてのウエルが効果的に利用できない可能性があった。これを解決するためには、予め、各ウエルを切り離しておいて、培養開始後に、状態の良好なウエルのみを抽出して、これをくみ上げることでマルチウエルプレートとすれば、プレート内のすべてのウエルが良好な状態で利用できるものとなる。図56に示した実施例のひとつは、これを簡単に示したものである。最小ユニットとなる予め切り離されたウエル5601中で細胞を培養し、良好な細胞が培養されているウエルをプレート5603内に並べてハイスループット心筋細胞ネットワークアレイチップとするものである。ここで、各ウエルには細胞外電位の電気計測ならびに細胞刺激用の電極アレイ5602が配置されているため、これを接続する接点がウエルを組み込むプレートには予め配置されており、ウエルは1つ単位で(1ブロックとして)簡便に交換することができるため、特に、薬剤によって疲弊した細胞ネットワークを持つウエルのみをひとつ単位で交換することで、プレート単位での交換ではなく、プレート内のウエル単位での交換ということで経済的効果を持たせることができる。
 図57は、各ウエル5601に効果的に心筋細胞を配置するサンプルローダー5701を用いた細胞ネットワーク配置技術の構成の一例を示したものである。図57Aにも示したように、サンプルローダー5701は、ウエル5601の上面に挿入できる構造となっている。また、図57Bおよび図57Cにも示したように、サンプルローダーの下面には、幅100μmから300μmの幅で、長さ500μmから3mm程度の長さの溝が開いており、サンプルローダー内面が漏斗状に絞り込まれていることから、図57Dに示したように、内面に、細胞を含む液体5702を滴下することで、細胞が沈降し、上記溝の形状と同じように直線状に配置される。本実施例では、鉛直方向から30度の急峻なスロープで効果的に細胞が沈降するような構成としたが、40度以下であれば効果的に細胞を底面の溝に沈降させることができる。ここで、細胞を含む液体中の細胞濃度を予め定量的に調整しておけば、液量の調整のみで配置する細胞の総数を調整することができ、細胞量を細小にすればモノレイヤーの心筋細胞ネットワークが構築され、細胞量を増やせば、2層、3層というように多層の細胞ネットワークを構築することができる。また、図57Eのように、本実施例でも示したように溝の配置方向と、直線状に配置した電極の方向を一致させるようにサンプルローダーの構造を調整しておけば、ウエルにサンプルローダーを差し込むだけで、細胞を電極アレイ状に効果的に配置することができる。さらに、本実施例で示したように、光学的計測を効果的に行い、かつ、効果的に溶液交換を行うためには、サンプルローダーは、細胞をチップ上に効果的に沈降させて配置するために有効であり、細胞計測時には取り外して用いることが好ましい。
 図58は、上記、ブロック型の各ウエルを実際に配置して多電極システムによって細胞外電位計測を行うシステムの別の一例を示したものである。上記、図57では、電極の配置は直列に並んだ離散型電極であったが、本実施例では、ウエル内の電極は上記図12等で示したようなリング状となっており、本ウエルに細胞をリング状に配置するには、図57のような直線型の底面溝ではなくリング状の底面溝のサンプルローダーを用いる。図59は、さらに光学計測モジュールを組み込んだ構成となっており、光学系を移動させることで、各ウエル内の力学的特性の計測を行うことができる。
 図60は、心筋細胞ネットワークおよび心筋細胞シートにおいて、その培養計測中の心筋細胞の収縮を防ぐための微小突起が周期的に配置された基板の構成を説明した図である。図60Aは、図47でも示したように、心筋細胞ネットワーク6001が、その発生収縮力によって底面のコラーゲン層から剥離して、徐々に塊状に収縮してゆく状態を示した実験結果の一例を示したものである。このように心筋細胞が塊状に収縮してしまうと、配置された微小電極アレイ上から無くなってしまうため、細胞外電位ならびにネットワークからの興奮刺激伝導速度およびこの時間的ゆらぎの計測が困難となる。これを回避するためには、図60Bに示したように、心筋細胞ネットワークあるいは心筋細胞シートを培養する領域の基板表面6002に、微小な突起物(ピラー)6003を周期的に配置すればよい。図60Cおよび図60Dは、実際に、直径3μm、高さ5μm、周期50μmでピラーを配置した例の電子顕微鏡写真である。ここで、ピラーの直径は5μm以下であることが望ましく、高さは3μm以上であることが望ましく、また、ピラーの基板上での配置の周期は50μm以下であることが望ましい。また、本実施例では円柱状の形状を示したが、直方体の形状でも良い。
 図61は、図42にも示した多電極基板上の電極配置の別の例を示した模式図である。まず、図61(a)では、円環状に配置された計測用電極6102に対して、その円環の中心に刺激用電極6101を配置しており、これらの電極の上に心筋細胞を2次元シート状に培養したとき、中心電極6101からの強制刺激によって発火した心筋細胞の興奮伝導が、同心円状に伝搬する状態を計測用電極6102で計測することができる。ここで、薬物を添加することで伝導のゆらぎが発生すると、円周上に配置された計測用電極6102では波形の乱れとして計測する事が可能となる。ここで、円環計測電極6102の中心電極6101からの距離は、200μm以上であることが望ましい。図61(b)は、円環状計測電極6102を4分割したものの模式図である。上記図61(a)では、心筋細胞2次元シートを用いたが、この例では、心筋細胞は円環状の計測電極6102ならびに刺激電極6101の上に円環状に配置されており、この円環状の心筋細胞ネットワーク状の興奮伝導の伝搬について、4分割された計測電極6102の間の興奮伝導の時間差を確認する事で、興奮伝導の回転方向を見積もることができる。
 図62は、金属微小ワイヤーを電極として用いた実施例の一例を模式的に示したものである。図62(a)に示した実施例では、図57で示したサンプルローダーと同様な形状の容器6201の底面に太さ10μmの微小白金電極6202が配置されており、その表面は白金黒で修飾されている。心筋細胞を容器6201中に滴下すると、沈降した心筋細胞ネットワーク中に白金電極が組み込まれ、基板底面に配置した蒸着電極パターンと同様に、心筋細胞電位の計測を行うことができる。図62(b)の上面図で示したように、周期的に配置された計測用微小電極ワイヤー6202によって、ワイヤーの周囲に配置された心筋細胞外電位の計測ならびに、隣接するワイヤー間の伝導を計測することも可能である。特に、ワイヤーのひとつを刺激電極ワイヤー6203にすることで、強制刺激による細胞の興奮伝導の計測も可能である。本実施例では、ワイヤー太さに10μmの白金ワイヤーを用いたが、太さ30μm以下のものであれば同様な空間分解能を持った計測が可能である。また、このワイヤー構造は、ワイヤー周囲の細胞を固定して、上記図60で述べた心筋細胞ネットワークの収縮を防ぐ効果も併せ持っている。
 本発明によれば、iPS細胞等の幹細胞から分化させた心筋細胞について、その心筋細胞が創薬スクリーニングあるいは再生医療のために使うことができる健全な心筋細胞であるかどうかを評価できる。
 1…透明基板、2…微小電極、2c…比較電極、2’…微小電極2の引き出し線、3,3,3及び3…アガロースゲルによる壁、4,4,4及び4…間隙、7…周辺を取り巻く壁、8,8,8…パイプ、PC…パソコン、Ms…パソコンの操作信号、10,10,10,10,---,10…心筋細胞あるいは線維芽細胞、15…光学観察装置の透明ステージ、16…X-Y駆動装置、18…Z駆動装置、CH、CH、CHおよびCH…細胞保持部、CCC…細胞連絡チャネル、10…細胞集団、11…障壁、11…開口、19、191、192、193…ダイクロイックミラー、20、201…バンドパスフィルタ、21、211…カメラ、22…光源、221…蛍光光源、23、231…バンドパスフィルタ、24、241…シャッター、25…コンデンサレンズ、26…対物レンズ、27…可動電極、28…接地電極、29、291…スイッチング回路、30、301…電気信号計測回路、31、311…電気刺激回路、32…心筋細胞、33…線維芽細胞、34…細胞配置用ピペット、35…N周回目の伝達経路、36…(N+1)周回目の伝達経路、37…(N+2)周回目の伝達経路、38…測定電極、39…参照電極、40…送液系、41…環状に配置した細胞集団、42…96穴ウエルプレート、43…カメラ受光素子、44…細胞、45…細胞刺激電極、100…心筋毒性検査装置、4201…多電極基板、4202…細胞培養容器、4203…溶液の流れ、4204…液面の高さ、4301…ガラス基板、4302…透明電極、4303…金属レイヤー、4304…絶縁膜、4401…刺激電極、4402…計測電極、4403…参照電極、4404…細胞培養領域、5601…シングルウェル、5602…電極アレイ、5603…プレート、5701…サンプルローダー、5702…細胞を含む液体、6001…心筋細胞ネットワーク、6002…基板表面、6003…微小突起物(ピラー)、6101…刺激用電極、6102…計測用電極、6103…参照電極、6201…容器、6202…計測用微小電極ワイヤー、6203…刺激電極ワイヤー、6204…溝。

Claims (21)

  1.  基板、
     該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
     前記基板上に前記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
     前記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している一つ以上の微小電極、
     前記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
     前記微小電極のそれぞれに接続された引き出し線と前記比較電極に接続された引き出し線とを用いて前記微小電極に載置されている細胞電位を計測する電位計測手段、
     前記微小電極へ送る電気刺激を制御し、前記電位計測手段で計測した電位データを記録する、制御/記録手段、
     前記細胞集団上または集団内の一カ所以上に空間的に距離を持って配置した、前記心筋細胞を含む細胞集団とは光学特性の異なる粒径約1μm以上約50μm以下の微粒子、
     前記微粒子を光学的に計測するための照射用光源、光学顕微鏡および画像取得カメラを含み、前記微粒子の位置および位置変化を、時間的な移動量データおよびその移動方向の角度変化データを含む変位データとして連続的に計測する、光学的計測系、ならびに
     前記電位データと前記変位データとを相関付けて記録する記録手段、
    を備えた心毒性評価装置。
  2.  基板、
     該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
     前記基板上に前記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
     前記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している一つ以上の微小電極、
     前記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
     前記微小電極のそれぞれに接続された引き出し線と前記比較電極に接続された引き出し線とを用いて前記微小電極に載置されている細胞電位を計測する電位計測手段、
     前記微小電極へ送る電気刺激を制御し、前記電位計測手段で計測した電位データを記録する、制御/記録手段、
     前記細胞集団上あるいは集団内の一カ所以上に空間的に距離を持って配置した前記心筋細胞を含む細胞集団とは光学特性の異なる粒径約1μm以上約50μm以下の微粒子、
     前記微粒子の位置および位置変化を、時間的な移動量データおよびその移動方向の角度変化データを含む変位データとして連続的に計測する、開口数約0.3以下の対物レンズとこの後段にズームレンズ系とを配置した光学的計測手段、ならびに
     前記電位データと変位データを相関付けて記録する記録手段、
    を備えた心毒性評価装置。
  3.  さらに、前記細胞培養液を前記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、請求項1または2記載の心毒性評価装置。
  4.  前記微小電極が、細胞を刺激するための刺激電極および細胞電位を測定するための測定電極からなる、請求項1~3のいずれか記載の心毒性評価装置。
  5.  請求項1記載の心毒性評価装置を用いて、
     計測を行う細胞として、薬剤を添加していない状態で、急激で明確な脱分極に伴った脱分極開始後20ms以内でのシャープなNaイオンの内向き電流の発生と、その後の脱分極開始後100ms以内でのゆるやかなCaイオンの内向き電流の発生と、脱分極開始後100ms以降に観察される顕著なKイオンの外向き電流の発生がある心筋細胞を用いて細胞外電位を計測することを特徴とする心毒性評価方法。
  6.  請求項2記載の心毒性評価装置を用いて、
     計測を行う細胞として、薬剤を添加していない状態で、急激で明確な脱分極に伴った脱分極開始後20ms以内でのシャープなNaイオンの内向き電流の発生と、その後の脱分極開始後100ms以内でのゆるやかなCaイオンの内向き電流の発生と、脱分極開始後100ms以降に観察される顕著なKイオンの外向き電流の発生がある心筋細胞を用いて細胞外電位を計測することを特徴とする心毒性評価方法。
  7.  前記心毒性評価装置がさらに、前記細胞培養液を前記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、請求項5または6記載の心毒性評価方法。
  8.  前記微小電極が、細胞を刺激するための刺激電極および細胞電位を測定するための電位測定電極からなる、請求項5~7のいずれか一項記載の心毒性評価方法。
  9.  基板、
     該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
     前記基板上に前記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
     前記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している細胞電位計測用の一つ以上の微小電極、
     前記細胞を刺激するための相互の信号強度と位相が制御可能な2次元に配置された複数の微小電極を含む刺激電極アレイ、
     前記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
     前記細胞電位計測用の微小電極のそれぞれに接続された引き出し線と前記比較電極に接続された引き出し線とを用いて前記微小電極に載置されている細胞電位を計測する電位計測手段、ならびに
     前記細胞刺激用の微小電極へ送る電気刺激を制御し、前記電位計測手段で計測した電位データを記録する、制御/記録手段、を備える心毒性評価装置。
  10.  さらに、前記細胞培養液を前記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、請求項9記載の心毒性評価装置。
  11.  基板、
     該基板上に配置した複数個の安定した拍動を行う評価対象の心筋細胞または該心筋細胞および繊維芽細胞等の非心筋細胞を含む細胞集団、
     前記基板上に前記細胞集団の周辺を囲むように形成された細胞培養液を満たすための壁、
     前記細胞集団の一つの細胞あるいは細胞集団の局所部分を載置している細胞電位計測用の一つ以上の微小電極、
     前記細胞を刺激するための相互の信号強度と位相が制御可能な2次元に配置された複数の微小電極を含む刺激電極アレイ、
     前記壁で囲われた細胞培養液を満たすための領域内に設けられた比較電極、
     前記細胞電位計測用の微小電極のそれぞれに接続された引き出し線と前記比較電極に接続された引き出し線とを用いて前記微小電極に載置されている細胞電位を計測する電位計測手段、ならびに
     前記細胞刺激用の微小電極へ送る電気刺激を制御し、前記電位計測手段で計測した電位データを記録する、制御/記録手段、を備える心毒性評価装置を用いて、
     計測を行う細胞として、薬剤を添加していない状態で、急激で明確な脱分極に伴った脱分極開始後約20ms以内でのシャープなNaイオンの内向き電流の発生と、その後の脱分極開始後約100ms以内でのゆるやかなCaイオンの内向き電流の発生と、脱分極開始後約100ms以降に観察される顕著なKイオンの外向き電流の発生がある心筋細胞を用いて細胞外電位を計測することを特徴とする心毒性評価方法。
  12.  前記心毒性評価装置がさらに、前記細胞培養液を前記壁で囲われた領域内に供給しおよび/または排出する培養液供給/排出チャネルを備える、請求項11記載の心毒性評価方法。
  13.  心筋細胞の光学的計測と細胞電位計測とを同期して計測・解析することができる装置システムを用いて薬物の心毒性評価を行う方法であって、
     前記心筋細胞に対象薬物を接触させたときの光学的計測により得られた筋収縮に関連する心筋細胞の運動距離(変異量)および運動方向(角度)の各収縮インターバル間でのゆらぎ(ばらつき)と、電気生理学的計測によるFPD(ナトリウムの最初のスパイクから内向き電流極大位置までの時間)のゆらぎ(ばらつき)とを比較解析する工程を含む、心毒性評価方法。
  14.  心筋細胞ネットワークアレイを構成することができる1ウェル単位でウェルを交換可能なウェルシステムであって、
     1つのウェルからなる1つまたは複数のユニットウェルであって、該ウェルの底面に心筋細胞の細胞電位計測用電極、細胞刺激用電極、および参照電極を含む電極アレイを備えるユニットウェルと、
     1つまたは複数の前記ユニットウェルを交換可能に装着できる1つまたは複数の区画を備えたウェルプレートとを備え、
     前記ウェルプレートの各区画は、前記電極アレイのリード線に対応して接続する接点を備え、前記各ユニットウェルが前記区画に対して交換可能に設置されうる、ウェルシステム。
  15.  心筋細胞を収容するためのウェルならびに該ウェルの底面に細胞刺激用電極、細胞電位計測用電極、および参照電極を含む電極アレイを備えた二つ以上の心筋細胞ネットワークチップと、
     前記チップを載置するためのステージと、
     前記電極アレイを通じて前記心筋細胞に電気刺激を与え、細胞外電位を計測するための電源を含む電位計測系と、
     前記心筋細胞を光学的に観察するための光学顕微鏡、画像収収録用カメラ、および照明用光源を含む光学観察系と、
     前記電位計測データと前記光学観察データを同期して記録・解析するための制御・解析装置とを備える、心筋細胞計測装置システム。
  16.  心毒性評価のために使用される、請求項15記載の心筋細胞計測装置システム。
  17.  円環状に配置した心筋細胞ネットワークの電位計測のための多電極基板であって、
    (i)前記心筋細胞ネットワークと対応する円環状の電極であって、該電極の一部が欠損された円環状の電位計測用電極と、
     前記電位計測用電極の一部欠損部位に配置された局所強制刺激を与えるための刺激電極と、
     前記円環の外側近傍に配置されたノイズ除去のための参照電極とを備えるか、または
    (ii)前記(i)の電位計測用電極をさらに2つ以上に分割した複数の電位計測用電極と、
     前記電位計測用電極の一部欠損部位に配置された局所強制刺激を与えるための刺激電極と、
     前記円環の外側近傍に配置されたノイズ除去のための参照電極とを備える、多電極基板。
  18.  二次元心筋細胞シートを用いて心筋細胞ネットワークの電位を計測するための多電極基板であって、
     円環状の電極であって、該電極の一部が欠損された円環状の電位計測用電極と、
     前記円環の中心に配置された局所強制刺激を与えるための刺激電極と、
     前記電位計測用電極の一部欠損部位の外側近傍に配置されたノイズ除去のための参照電極とを備える、多電極基板。
  19.  底面に細胞電位計測用電極、細胞刺激用電極、および参照電極を含む電極アレイを備える1ウェルからなるブロック型ユニットウェルに心筋細胞サンプルを載置するためのサンプルローダーであって、
     前記ユニットウェルの形状に対応して前記ユニットウェル上面に挿入できる外形、および漏斗状の内面を有し、底面に前記ユニットウェルの電極の形状に対応する形状の溝(開口)を有し、
     前記サンプルローダー内面に適量の前記心筋細胞サンプルを滴下することによって、前記電極上に前記心筋細胞を載置することができる、サンプルローダー。
  20.  心筋細胞ネットワークまたは心筋細胞シートを用いて培養計測する際の心筋細胞の収縮を防ぐための微小突起が周期的に配置された心筋細胞培養計測用基板。
  21.  微小電極ワイヤーを電極として用いることを特徴とする心毒性評価装置。
     
PCT/JP2012/076860 2011-10-28 2012-10-17 心筋毒性検査および心筋細胞評価のための方法および装置 WO2013061849A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/354,221 US20140349332A1 (en) 2011-10-28 2012-10-17 Method and device for examining myocardial toxicity and evaluating cardiomyocyte
EP12843742.3A EP2772531A4 (en) 2011-10-28 2012-10-17 METHOD AND DEVICE FOR EXAMINING MYOCARDIAL TOXICITY AND FOR CARDIOMYOCYTE EVALUATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011237608 2011-10-28
JP2011-237608 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013061849A1 true WO2013061849A1 (ja) 2013-05-02

Family

ID=48167682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076860 WO2013061849A1 (ja) 2011-10-28 2012-10-17 心筋毒性検査および心筋細胞評価のための方法および装置

Country Status (4)

Country Link
US (1) US20140349332A1 (ja)
EP (1) EP2772531A4 (ja)
JP (1) JPWO2013061849A1 (ja)
WO (1) WO2013061849A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164243A (zh) * 2014-03-31 2016-11-23 松下知识产权经营株式会社 电化学测定器件
JP2018088865A (ja) * 2016-12-02 2018-06-14 株式会社ディスコ マイクロ電極体及びマイクロ電極体の製造方法
WO2018199334A1 (ja) 2017-04-28 2018-11-01 株式会社 Ion Chat Research 細胞の膜電位/膜電流の測定方法
WO2019208828A1 (ja) 2018-04-27 2019-10-31 株式会社 Ion Chat Research 容量型電位測定デバイスによる細胞内電位の測定方法
WO2021034107A1 (ko) * 2019-08-22 2021-02-25 차의과학대학교 산학협력단 약물의 심장 효능 및 독성 시험을 위한 심근내막 수준 생체모방 심장칩
WO2021101313A1 (ko) * 2019-11-22 2021-05-27 차의과학대학교 산학협력단 심근주막 수준 생체모방 심장칩 및 이의 용도
WO2023074783A1 (ja) * 2021-10-28 2023-05-04 富士フイルム株式会社 心筋細胞層の製造方法、心筋細胞層、およびその利用
WO2023195493A1 (ja) * 2022-04-06 2023-10-12 富士フイルム株式会社 評価システム、情報処理装置、及び情報処理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297249A (zh) * 2014-09-15 2015-01-21 浙江大学 基于心肌细胞传感器的药物心脏毒性检测分析方法
JP6380983B2 (ja) * 2014-11-26 2018-08-29 富士フイルム株式会社 位相差顕微鏡
US20190169670A1 (en) * 2016-08-11 2019-06-06 Novoheart Limited Systems and methods for modeling disease and assessing adverse side effects of therapeutics therefor
US20180372724A1 (en) * 2017-06-26 2018-12-27 The Regents Of The University Of California Methods and apparatuses for prediction of mechanism of activity of compounds
EP3502695A1 (en) * 2017-12-22 2019-06-26 IMEC vzw A method and a system for analysis of cardiomyocyte function
US20210132043A1 (en) * 2018-03-28 2021-05-06 Novoheart Limited Modeling neurological disorders and ataxias with cardiac dysfunction using bioengineered heart tissues
JP7186395B2 (ja) * 2019-01-25 2022-12-09 国立大学法人滋賀医科大学 記録装置、記録方法およびプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094703A (ja) 2004-08-30 2006-04-13 Onchip Cellomics Consortium 心筋拍動細胞を用いた細胞バイオアッセイチップおよびこれを用いるバイオアッセイ
JP2006515420A (ja) * 2002-11-06 2006-05-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 微粒子ベースの方法およびシステムならびにその用途
JP2008263858A (ja) * 2007-04-20 2008-11-06 Tokyo Medical & Dental Univ 細胞応答計測装置および細胞応答計測チップ
WO2008149976A1 (ja) * 2007-06-08 2008-12-11 National University Corporation Tokyo Medical And Dental University 心臓リエントリーモデルチップおよび心臓リエントリーモデルチップによる薬剤の評価装置および方法
WO2008152983A1 (ja) * 2007-06-08 2008-12-18 National University Corporation Tokyo Medical And Dental University モデル細胞チップ、モデル細胞チップによる薬効評価装置、および薬効評価方法
WO2010064700A1 (ja) * 2008-12-05 2010-06-10 国立大学法人東京医科歯科大学 心筋毒性検査装置、心筋毒性検査チップおよび心筋毒性検査方法
WO2012043820A1 (ja) * 2010-09-30 2012-04-05 国立大学法人東京医科歯科大学 心筋毒性検査および心筋細胞評価のための方法および装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515420A (ja) * 2002-11-06 2006-05-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 微粒子ベースの方法およびシステムならびにその用途
JP2006094703A (ja) 2004-08-30 2006-04-13 Onchip Cellomics Consortium 心筋拍動細胞を用いた細胞バイオアッセイチップおよびこれを用いるバイオアッセイ
JP2008263858A (ja) * 2007-04-20 2008-11-06 Tokyo Medical & Dental Univ 細胞応答計測装置および細胞応答計測チップ
WO2008149976A1 (ja) * 2007-06-08 2008-12-11 National University Corporation Tokyo Medical And Dental University 心臓リエントリーモデルチップおよび心臓リエントリーモデルチップによる薬剤の評価装置および方法
WO2008152983A1 (ja) * 2007-06-08 2008-12-18 National University Corporation Tokyo Medical And Dental University モデル細胞チップ、モデル細胞チップによる薬効評価装置、および薬効評価方法
WO2010064700A1 (ja) * 2008-12-05 2010-06-10 国立大学法人東京医科歯科大学 心筋毒性検査装置、心筋毒性検査チップおよび心筋毒性検査方法
WO2012043820A1 (ja) * 2010-09-30 2012-04-05 国立大学法人東京医科歯科大学 心筋毒性検査および心筋細胞評価のための方法および装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BRENNAN M; PALANISWAMI M; KAMEN P: "Do existing measures of Poincare plot geometry reflect non-linear features of heart rate variability? Biomedical Engineering", IEEE TRANSACTIONS ON, PROC. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 48, 2001, pages 1342 - 1347
FUJITA, K. ET AL.: "Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell.", J. BIOMED. OPT., vol. 14, no. 2, 2009, pages 024038 - 1 - 024038-7, XP055150647 *
KANTERS JK; HOLSTEIN-RATHLOU NH; AGNER E: "Lack of evidence for low-dimensional chaos in heart rate variability", JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, vol. 5, no. 7, 1994, pages 591 - 601
KAZUHIRO NONAKA ET AL.: "Analysis of Cell Population Behavior on a Culture Surface Using a Particle Image Velocimetry", LIFE SUPPORT, vol. 22, no. 3, 2010, pages 125 - 131, XP055150643 *
PATRICK DAVEY: "How to correct the QT interval for the effects of heart rate in clinical studies", JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, vol. 48, 2002, pages 3 - 9, XP055089624, DOI: doi:10.1016/S1056-8719(03)00008-X
See also references of EP2772531A4
STORELLA RJ; WOOD HW; MILLS KM ET AL.: "Approximate entropy and point correlation dimension of heart rate variability in healthy subjects", INTEGRATIVE PHYSIOLOGICAL & BEHAVIORAL SCIENCE, vol. 33, no. 4, 1994, pages 315 - 20

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164243A (zh) * 2014-03-31 2016-11-23 松下知识产权经营株式会社 电化学测定器件
CN106164243B (zh) * 2014-03-31 2018-04-27 松下知识产权经营株式会社 电化学测定器件
JP2018088865A (ja) * 2016-12-02 2018-06-14 株式会社ディスコ マイクロ電極体及びマイクロ電極体の製造方法
WO2018199334A1 (ja) 2017-04-28 2018-11-01 株式会社 Ion Chat Research 細胞の膜電位/膜電流の測定方法
US11480539B2 (en) 2017-04-28 2022-10-25 Ion Chat Research Corporate Method for measuring membrane potential/membrane current of cell
WO2019208828A1 (ja) 2018-04-27 2019-10-31 株式会社 Ion Chat Research 容量型電位測定デバイスによる細胞内電位の測定方法
WO2021034107A1 (ko) * 2019-08-22 2021-02-25 차의과학대학교 산학협력단 약물의 심장 효능 및 독성 시험을 위한 심근내막 수준 생체모방 심장칩
WO2021101313A1 (ko) * 2019-11-22 2021-05-27 차의과학대학교 산학협력단 심근주막 수준 생체모방 심장칩 및 이의 용도
WO2023074783A1 (ja) * 2021-10-28 2023-05-04 富士フイルム株式会社 心筋細胞層の製造方法、心筋細胞層、およびその利用
WO2023195493A1 (ja) * 2022-04-06 2023-10-12 富士フイルム株式会社 評価システム、情報処理装置、及び情報処理方法

Also Published As

Publication number Publication date
EP2772531A1 (en) 2014-09-03
EP2772531A4 (en) 2015-04-29
JPWO2013061849A1 (ja) 2015-04-02
US20140349332A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP6318130B2 (ja) 心筋毒性検査および心筋細胞評価のための方法および装置
WO2013061849A1 (ja) 心筋毒性検査および心筋細胞評価のための方法および装置
JP2013094168A (ja) 心筋毒性検査および心筋細胞評価のための方法および装置
WO2014098182A1 (ja) 心筋毒性検査および心筋細胞評価のための方法および装置
JP5614928B2 (ja) 心筋毒性検査装置、心筋毒性検査チップおよび心筋毒性検査方法
JP5786146B2 (ja) モデル細胞チップ、モデル細胞チップによる薬効評価装置、および薬効評価方法
Dolenšek et al. The relationship between membrane potential and calcium dynamics in glucose-stimulated beta cell syncytium in acute mouse pancreas tissue slices
Roux et al. Astroglial connexin 43 hemichannels modulate olfactory bulb slow oscillations
Kaneko et al. An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size
Chavarha et al. Fast two-photon volumetric imaging of an improved voltage indicator reveals electrical activity in deeply located neurons in the awake brain
JP2023519337A (ja) 生物学的サンプルを電子的および光学的に監視するためのシステムおよび方法
JP2017511477A (ja) 医薬スクーリングのための方法および装置
Jin et al. Quantifying spatial and temporal variations of the cell membrane ultra-structure by bimFCS
JP4402118B2 (ja) 細胞計測方法
Daily et al. High-throughput phenotyping of human induced pluripotent stem cell-derived cardiomyocytes and neurons using electric field stimulation and high-speed fluorescence imaging
JP2006094703A (ja) 心筋拍動細胞を用いた細胞バイオアッセイチップおよびこれを用いるバイオアッセイ
Zhang et al. Comparison of fluorescence biosensors and whole-cell patch clamp recording in detecting ACh, NE, and 5-HT
Pfeiffer et al. Optimized temporally deconvolved Ca2+ imaging allows identification of spatiotemporal activity patterns of CA1 hippocampal ensembles
JP4535832B2 (ja) 異種細胞を用いる細胞再構成デバイスおよびこれを用いるバイオアッセイ
JP2007228863A (ja) 閉鎖型反応検出装置
Haglund Electrophysiological correlates to the intrinsic optical signal in the rat neocortical slice
Zhu et al. Three-Dimensional Cardiomyocyte–Nanobiosensing System for Specific Recognition of Drug Subgroups
Terpitz et al. Prototype for Automatable, Dielectrophoretically-Accessed Intracellular Membrane–Potential Measurements by Metal Electrodes
Contreras et al. A High Performance, Inexpensive Setup for Simultaneous Multisite Recording of Electrophysiological Signals and Wide-Field Optical Imaging in the Mouse Cortex
Petersen Whole-cell recording and voltage-sensitive dye imaging in vivo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540741

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012843742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14354221

Country of ref document: US