WO2013061766A1 - 測定装置、指標算出方法、および指標算出プログラム - Google Patents

測定装置、指標算出方法、および指標算出プログラム Download PDF

Info

Publication number
WO2013061766A1
WO2013061766A1 PCT/JP2012/076111 JP2012076111W WO2013061766A1 WO 2013061766 A1 WO2013061766 A1 WO 2013061766A1 JP 2012076111 W JP2012076111 W JP 2012076111W WO 2013061766 A1 WO2013061766 A1 WO 2013061766A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
index
value
measurement
calculating
Prior art date
Application number
PCT/JP2012/076111
Other languages
English (en)
French (fr)
Inventor
敏之 尾崎
森 尚樹
小椋 敏彦
本田 孝
Original Assignee
オムロンヘルスケア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロンヘルスケア株式会社 filed Critical オムロンヘルスケア株式会社
Priority to CN201280052207.2A priority Critical patent/CN103906464B/zh
Priority to US14/348,473 priority patent/US20140243691A1/en
Priority to DE112012004459.2T priority patent/DE112012004459T5/de
Publication of WO2013061766A1 publication Critical patent/WO2013061766A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7242Details of waveform analysis using integration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Definitions

  • the present invention relates to a measurement apparatus, an index calculation method, and an index calculation program, and more particularly, to a measurement apparatus that measures a biological value and calculates an index value related to vascular stenosis, its index calculation method, and an index calculation program.
  • ABI lower limb blood pressure index: Ankle Brachial Blood Pressure Index
  • Patent Document 1 ABI measures blood pressure from the upper limb and the lower limb of a subject in a supine position with a blood pressure measurement device, It is obtained by calculating the blood pressure ratio.
  • blood pressure may not be measured accurately even when the pulse amplitude is small due to disturbance of the pulse amplitude due to arrhythmia or due to vascular stenosis. Therefore, even in such a case, there is a problem that the accuracy of ABI as an index of vascular stenosis is lowered.
  • the blood pressure measurement of the upper limbs and the lower limbs is necessary to calculate ABI as described above, the measurement may be painful depending on the measurement subject, and the measurement subject may have a heavy burden. There was also a problem. There is also a problem that a measurement time for blood pressure measurement is required.
  • the person to be measured needs to be in a supine position, and there is a problem that it is not easy as a screening test.
  • the present invention has been made in view of such problems, and is a measurement device that calculates an index value related to vascular stenosis easily and accurately while suppressing the burden on the subject, an index calculation method thereof, and an index calculation.
  • the purpose is to provide a program.
  • a measurement device is a measurement device for measuring a pulse wave and calculating an index value of arterial stenosis from the pulse wave, and is attached to a measurement site. And a measurement unit for measuring a value corresponding to a load applied to the measurement site, and an arithmetic device connected to the measurement unit.
  • the arithmetic device uses a pulse wave measurement unit for measuring a pulse wave based on a measurement value in the measurement unit, a first calculation unit for calculating a predetermined parameter value from the pulse wave, and the parameter value.
  • a second calculation unit for calculating an index value corresponding to ABI (Ankle Brachial Blood Pressure Index) as an index value of arterial stenosis.
  • the measurement unit includes a cuff for mounting on the measurement site and a sensor for detecting the internal pressure of the cuff, the arithmetic device is connected to the sensor, and the pulse wave measurement unit measures the pulse wave from the sensor. .
  • the first calculation unit represents, as the predetermined parameter value,% MAP (normalized pulse wave area) that is an index representing the sharpness of the pulse wave from the pulse wave, and an ankle pulse wave rising feature value
  • a UT UT: upstroke time
  • UT upstroke time
  • index value that represents a lower limb upper limb pulse wave transfer function that is a transfer function of a pulse wave from the upper limb to the lower limb
  • the second calculation unit combines two or more of% MAP calculated by the first calculation unit, UT, pulse amplitude, and an index value representing a lower limb upper limb pulse wave transfer function. An index value is calculated.
  • the second calculation unit combines an index value representing the lower limb upper limb pulse wave transfer function calculated by the first calculation unit with at least one of% MAP, UT, and pulse amplitude. Calculate the value.
  • the index calculation method is a calculation method for calculating an index value of arterial stenosis from a pulse wave, the step of acquiring the pulse wave, and calculating a predetermined parameter value from the pulse wave And a step of calculating an index value corresponding to ABI (Ankle Brachial Blood Pressure Index) as an index value of arterial stenosis using the parameter value.
  • ABI Accele Brachial Blood Pressure Index
  • the index calculation program is a program for causing a computer to execute a process of calculating an index value of arterial stenosis from a pulse wave, the step of acquiring a pulse wave, The computer is caused to execute a step of calculating a predetermined parameter value and a step of calculating an index value corresponding to ABI (Ankle Brachial Blood Pressure Index) as an index value of arterial stenosis using the parameter value.
  • ABI Application Brachial Blood Pressure Index
  • an index value corresponding to ABI which is an index value related to blood vessel stenosis that has been conventionally calculated from a blood pressure value, can be calculated from a pulse wave.
  • FIG. 10 It is a figure showing the detailed measurement result about the to-be-measured person from which the measured value shown by P3 of FIG. 6 was measured. It is a figure showing the measurement result of the pulse wave in a right person's right ankle (A) and a left ankle (B). It is a figure showing the step response (right step response) in the upper right arm-right ankle calculated from the pulse wave measured by the right ankle of FIG. 10 (A) and the pulse wave measured by the upper right arm. It is a figure showing the step response (left step response) in the left upper arm-left ankle calculated from the pulse wave measured by the left ankle of FIG. 10 (B) and the pulse wave measured by the left upper arm. It is a figure showing the comparison with the right step response of FIG.
  • FIG. 11 is an X-ray photography photograph showing the arterial state of the obstructive arteriosclerosis patient of a measuring object. It is a figure showing the measurement result of the pulse wave in the patient's upper right arm (A) and right ankle (B) of FIG. It is a figure showing the measurement result of the pulse wave in the patient's left upper arm (A) and left ankle (B) of FIG. It is a figure showing the right step response computed from the pulse wave measured by the upper right arm and right ankle of FIG. It is a figure showing the left step response calculated from the pulse wave measured by the left upper arm and left ankle of FIG. It is a figure showing the comparison with the right step response of FIG. 17, and the left step response of FIG.
  • FIG. 20 It is a schematic diagram of an Avolio model. It is a figure showing the stenosis degree given to the area represented by element number 82,104,111 (circle in FIG. 20) in the Avolio model used for calculation of the inventors. It is the figure which graphed the calculation result of inventors. It is a figure for demonstrating the upper area defined by the area of the step response, the upper area / lower area ratio, and the area maximum value. It is a figure showing correlation with ABI and the upper area of a step response. It is a figure showing correlation with ABI and step area upper side area / lower side area ratio. It is a figure showing correlation with ABI and the section maximum value of a step response. It is a figure showing the correlation of ABI and EABI. It is a flowchart showing the specific example of the flow of operation
  • FIG. 1 is a diagram illustrating a specific example of the configuration of the measurement apparatus 100 according to the present embodiment.
  • the measuring apparatus 100 includes an information processing unit 1, four detection units 20ar, 20al, 20br, and 20bl, and four cuffs 24ar, 24al, 24br, and 24bl.
  • the cuffs 24br, 24bl, 24ar, 24al are respectively attached to the limbs of the person 200 to be measured. Specifically, it is worn on the upper right arm (upper right limb), left upper arm (left upper limb), right ankle (right lower limb), and left ankle (left lower limb), respectively.
  • the “limb” represents a part included in the limb, and may be a wrist, a fingertip, or the like.
  • the cuffs 24ar, 24al, 24br, and 24bl are collectively referred to as “cuff 24” unless they need to be distinguished from each other.
  • Each of the detection units 20ar, 20al, 20br, and 20bl includes hardware necessary for detecting the pulse wave of the limb of the person 200 to be measured. Since the configurations of the detection units 20ar, 20al, 20br, and 20bl may all be the same, these are collectively referred to as the “detection unit 20” unless they need to be distinguished from each other.
  • the information processing unit 1 includes a control unit 2, an output unit 4, an operation unit 6, and a storage device 8.
  • the control unit 2 is a device that controls the entire measuring apparatus 100, and typically includes a CPU (Central Processing Unit) 10, a ROM (Read Only Memory) 12, and a RAM (Random Access Memory) 14. Consists of.
  • the CPU 10 corresponds to an arithmetic processing unit, reads a program stored in advance in the ROM 12, and executes the program while using the RAM 14 as a work memory.
  • the control unit 2 is connected with an output unit 4, an operation unit 6, and a storage device 8.
  • the output unit 4 outputs the measured pulse wave, the pulse wave analysis result, and the like.
  • the output unit 4 may be a display device constituted by an LED (Light Emitting Diode) or LCD (Liquid Crystal Display), or a printer (driver).
  • the operation unit 6 receives an instruction from the user.
  • the storage device 8 holds various data and programs.
  • the CPU 10 of the control unit 2 reads and writes data and programs recorded in the storage device 8.
  • the storage device 8 may be constituted by, for example, a hard disk, a nonvolatile memory (for example, a flash memory), or a removable external recording medium.
  • the detection unit 20br detects the pulse wave in the upper right arm by adjusting and detecting the internal pressure (hereinafter referred to as “cuff pressure”) of the cuff 24br attached to the upper right arm of the person 200 to be measured.
  • the cuff 24br contains a fluid bag (for example, an air bag) (not shown).
  • the detection unit 20br includes a pressure sensor 28br, a pressure regulating valve 26br, a pressure pump 25br, an A / D (analog to digital) converter 29br, and a pipe 27br.
  • the cuff 24br, the pressure sensor 28br, and the pressure regulating valve 26br are connected by a pipe 22br.
  • the pressure sensor 28br is a detection part for detecting pressure fluctuation transmitted through the pipe 22br, and can be configured by using a semiconductor chip made of single crystal silicon or the like as an example.
  • the pressure fluctuation signal detected by the pressure sensor 28br is converted into a digital signal by the A / D conversion unit 29br and input to the control unit 2 as a pulse wave signal pbr (t).
  • the pressure regulating valve 26br is inserted between the pressure pump 25br and the cuff 24br, and maintains the pressure used to pressurize the cuff 24br in a predetermined range during measurement.
  • the pressure pump 25br operates in response to a detection command from the control unit 2, and supplies air to a fluid bag (not shown) in the cuff 24br in order to pressurize the cuff 24br.
  • the cuff 24br is pressed against the measurement site by this pressurization, and the pressure change corresponding to the pulse wave of the upper right arm is transmitted to the detection unit 20br via the pipe 22br.
  • the detection unit 20br detects the pulse wave of the upper right arm by detecting the transmitted pressure change.
  • the detection unit 20bl includes a pressure sensor 28bl, a pressure regulating valve 26bl, a pressure pump 25bl, an A / D converter 29bl, and a pipe 27bl.
  • the cuff 24bl, the pressure sensor 28bl, and the pressure regulating valve 26bl are connected by a pipe 22bl.
  • the detection unit 20ar includes a pressure sensor 28ar, a pressure regulating valve 26ar, a pressure pump 25ar, an A / D conversion unit 29ar, and a pipe 27ar.
  • the cuff 24ar, the pressure sensor 28ar, and the pressure regulating valve 26ar are connected by a pipe 22ar.
  • the detection unit 20al includes a pressure sensor 28al, a pressure regulating valve 26al, a pressure pump 25al, an A / D converter 29al, and a pipe 27al.
  • the cuff 24al, the pressure sensor 28al, and the pressure regulating valve 26al are connected by a pipe 22al.
  • each part in the detection units 20bl, 20ar, 20al is the same as that of the detection unit 20br, detailed description will not be repeated. Further, each part in the detection unit 20 will be described by omitting symbols such as “ar” and “br” unless it is particularly necessary to distinguish them.
  • the arterial volume sensor may include, for example, a light emitting element that emits light to the artery, and a light receiving element that receives transmitted light or reflected light of the artery irradiated by the light emitting element.
  • the arterial volume sensor includes a plurality of electrodes, allows a small constant current to flow through the measurement site of the person 200 to be measured, and detects a voltage change caused by a change in impedance (biological impedance) generated according to the propagation of the pulse wave. Good.
  • measuring apparatus 100 corresponds to ABI (Ankle Brachial Blood Pressure Index) which is a ratio of blood pressure values measured in upper and lower limbs from pulse waves measured in upper and lower limbs. An index representing the presence or absence of stenosis in the artery and the degree of stenosis is calculated.
  • ABI Gene Brachial Blood Pressure Index
  • FIG. 2 is a block diagram showing a specific example of a functional configuration of the measuring apparatus 100 for performing the above operation.
  • Each function shown in FIG. 2 is a function mainly formed on the CPU 10 when the CPU 10 reads out a program stored in the ROM 12 and executes it while using the RAM 14 as a work memory.
  • at least a part may be formed by hardware such as the device configuration and the electric circuit shown in FIG.
  • the measurement apparatus includes an adjustment unit 30, a pulse wave measurement unit 102, a calculation unit 104 for calculating the index, and an output unit 4 as functions thereof.
  • the adjusting unit 30 is a functional unit that adjusts the pressure in the cuff 24.
  • the function of the adjusting unit 30 is achieved by, for example, the pressure pump 25 and the pressure regulating valve 26 shown in FIG.
  • the pulse wave measurement unit 102 is connected to the adjustment unit 30 and the A / D conversion unit 29, and performs processing for measuring a pulse wave (PVR) in each limb.
  • the pulse wave measurement unit 102 adjusts the internal pressure of the cuff 24 by giving a command signal to the adjustment unit 30, and detects cuff pressure signals Par (t), Pal (t), Pbr detected in response to the command signal. (T), Pbl (t) is received. Then, by recording the received cuff pressure signals Par (t), Pal (t), Pbr (t), and Pbl (t) in time series, a pulse wave waveform for a plurality of beats is acquired for each limb. .
  • the pulse wave is measured, for example, for a predetermined time (for example, about 10 seconds).
  • an index of arterial stenosis corresponding to ABI which is calculated from pulse waves measured in the upper and lower limbs, will be described.
  • % MAP normalized pulse wave area
  • UT upstroke time
  • the UT is calculated as a period during which the ankle pulse wave rises from the rising point to the peak.
  • 3 to 5 are diagrams showing the correlation between ABI,% MAP, UT, and pulse amplitude. This value was obtained by measuring blood pressure and pulse wave for 200 adult men and women, respectively, and calculating ABI,% MAP, UT, and pulse amplitude.
  • each of% MAP, UT, and pulse amplitude can be used as an index of arterial stenosis corresponding to ABI.
  • at least two of% MAP, UT, and pulse amplitude can be combined and used as an index of arterial stenosis corresponding to ABI.
  • EABI a value obtained by multiplying each value of% MAP (A), UT (B), and pulse amplitude (C) by a conversion coefficient as an index, and this index, ABI.
  • ABI a value obtained by multiplying each value of% MAP (A), UT (B), and pulse amplitude (C) by a conversion coefficient as an index, and this index, ABI.
  • EABI aA + bB + cC + d (a to d are coefficients), and this index was compared with ABI.
  • FIG. 6 is a diagram showing the correlation between ABI and EABI.
  • FIG. 6 verifies that the index EABI calculated by combining% MAP (A), UT (B), and pulse amplitude (C) has a certain degree of correlation with ABI. Further,% MAP, UT, and pulse It was also verified that the correlation with ABI was higher than when one amplitude was used.
  • FIG. 6 there are some measured values that deviate significantly from the regression line.
  • 7 to 9 are diagrams showing detailed measurement results for the measurement subject whose measurement values shown in P1 to P3 were measured. 7 to 9, for each subject, ABI calculated from the right upper arm blood pressure value and right ankle blood pressure value (right ABI), the highest blood pressure value obtained from the right ankle blood pressure value, and the upper right arm Each pulse wave diagram of the right ankle is shown. Moreover, the time change of the measured pulse wave amplitude is represented by a graph.
  • the time change graph of the pulse wave amplitude is in an incomplete state, and there is a possibility that the blood pressure measurement of the right ankle cannot be accurately performed. Further, in the examples of FIGS. 8 and 9, the time change graph of the pulse wave amplitude is unstable, and there is a possibility that the blood pressure of the right ankle cannot be measured correctly.
  • a transfer function of a pulse wave from the upper limb to the lower limb (lower limb upper limb pulse wave transfer function) can be considered. This is because in the transfer function with the upper limb pulse wave as the input to the system (blood vessel path) and the lower limb pulse wave as the output from the system, if there is vascular stenosis in the system, it is considered that the step response will change is there. That is, this step response can be used as an index of arterial stenosis corresponding to ABI.
  • the inventors actually measured the pulse wave of each of a healthy person and an arteriosclerosis obliterans (ASO) patient, and calculated a step response.
  • ASO arteriosclerosis obliterans
  • FIG. 10 shows the measurement results of pulse waves at the right ankle (A) and the left ankle (B) of a healthy person
  • FIGS. 11 and 12 show the pulse waves measured with the left and right upper arms.
  • the calculated step response at the right upper arm-right ankle (right step response) and the step response at the left upper arm-left ankle (left step response) are shown. Comparing these, it can be seen that they are almost the same as shown in FIG.
  • FIG. 14 is an X-ray photograph showing the arterial state of the obstructive arteriosclerosis patient to be measured. Arterial occlusion is seen in the circled portion of FIG.
  • FIG. 15 shows the measurement results of pulse waves at the upper right arm (A) and right ankle (B) of the patient
  • FIG. 16 shows the measurement results of pulse waves at the left upper arm (A) and the left ankle (B).
  • Represents. 17 and 18 show the right step response calculated from the pulse wave measured at the upper right arm and the right ankle in FIG. 15, and the left step calculated from the pulse wave measured at the left upper arm and the left ankle in FIG. Step response is shown. Comparing these, it can be seen that they are greatly different as shown in FIG.
  • the inventors calculated the degree of arterial stenosis and the change in step response using a circulatory system model.
  • the circulatory system model used here is a model obtained by dividing a blood vessel constituting a living body into a plurality of sections.
  • a typical example of such a circulatory system model is described in Reference 1 “Avolio, AP, Multi-branched Model of Human Arterial System, 1980, Med. & Biol. Enng. & Comp., 18, 796”.
  • the so-called “Avolio model” is known, and the inventors adopted this Avolio model as a circulatory system model for this calculation.
  • FIG. 20 is a schematic diagram of the Avolio model.
  • the Avolio model divides a whole body artery into 128 blood vessel elements (sections), and defines shape values representing each section.
  • the Avolio model includes, as shape values, length, radius, tube wall thickness, and Young's modulus associated with each section.
  • FIG. 21 is a diagram showing the degree of stenosis given to the sections indicated by element numbers 82, 104, and 111 (circles in FIG. 20) in the Avolio model used for the calculation by the inventors.
  • the degree of stenosis represented by the data ID “82/104 / 111-0” is not giving stenosis to each section, and calculates the step response of a healthy person. As the data ID increases, the degree of stenosis given to each section increases, and the step response in a state where arteriosclerosis has advanced is calculated.
  • FIG. 22 is a graph of the calculation results. From FIG. 22, it can be seen that the more healthy, the larger the slope of the rise, and the value decreases rapidly after reaching the maximum value. The greater the degree of stenosis, the slower the rise, and the change from the maximum value. It can also be seen that
  • the inventors define three values of the upper area, the upper area / lower area ratio, and the section maximum value in the step response section as shown in FIG. We examined whether it could be an indicator of the corresponding arterial stenosis.
  • FIGS. 24 to 26 are diagrams showing the correlation between ABI, upper area, upper area / lower area ratio, and section maximum value, respectively. The measurement values at this time also use the measurement results for 200 adult men and women used in FIGS.
  • the value obtained by the step response can be used as an index of arterial stenosis corresponding to ABI.
  • the upper area calculated from the step response can be used as an index of arterial stenosis corresponding to ABI. It is considered that there is.
  • FIG. 27 is a diagram showing the correlation between ABI and EABI.
  • the index EABI calculated by combining% MAP (A), UT (B), pulse amplitude (C), and the index (upper area) (D) calculated from the step response is significantly correlated with ABI. It was verified that the correlation was higher than that in the case of using one each of% MAP, UT, and pulse amplitude, or a combination thereof, which was verified earlier.
  • FIG. 28 is a flowchart showing a specific example of the flow of operations in measurement apparatus 100.
  • the operation shown in the flowchart of FIG. 28 is realized by causing the CPU 10 to read out a program stored in the ROM 12 and execute the program while using the RAM 14 as a work memory, thereby demonstrating the functions shown in FIG.
  • step S101 CPU 10 starts pressurizing cuff 24 and maintains the pressurization to a pressure suitable for pulse wave measurement.
  • step S109 the CPU 10 performs hold control for maintaining the cuff pressure at the pressure.
  • This pressure corresponds to, for example, a constant pressure of about 50 to 60 mmHg, a pressure about 5 to 10 mmHg lower than the minimum blood pressure value, and the like.
  • step S111 the CPU 10 analyzes the pulse wave obtained based on the cuff pressure change during the hold control, and calculates an index EABI corresponding to ABI as an index of arterial stenosis.
  • step S121 the CPU 10 outputs the arterial stenosis index EABI calculated from the pulse wave.
  • the output here may be a screen display or may be transmitted to another device such as a PC or an external recording medium.
  • step S113 various calculation methods are mentioned as a calculation method of the index EABI in step S113. This is because, as described above, any one of% MAP, UT, pulse amplitude, and lower limb upper limb pulse wave transfer function (for example, upper area) may be used as the index value EABI. It is because the above combination may be sufficient.
  • FIG. 29 is a flowchart showing a specific example of the operation in step S113 when the index value EABI is calculated by combining all of them as an example.
  • the index value EABI calculated in this way has a high correlation with ABI, and thus can be used as an index of arterial stenosis with high accuracy.
  • CPU 10 determines% MAP (A), UT (B), pulse amplitude (C), and lower limb upper limb pulse wave transfer function (D) (eg, upper area). Are calculated in order. Of course, this calculation order is not limited to the order shown in FIG.
  • an index corresponding to ABI that indicates the presence or absence of stenosis in the artery and the degree of stenosis can be calculated from the pulse wave.
  • the pulse wave is calculated based on the waveform for several beats, it is not easily affected by this. Therefore, it is less affected by arrhythmia or calcification, and the index can be calculated with higher accuracy than when calculating the index from the conventional blood pressure value.
  • any index value (% MAP, UT, pulse amplitude, and lower limb upper limb pulse wave transfer function (such as upper area)) obtained from the pulse wave may be used as an index indicating the presence or absence of stenosis in the artery and the degree of stenosis. Although it is possible, a more accurate index can be obtained by combining these. Furthermore, from the verification by the inventors, it is possible to obtain an index with particularly high accuracy by using or combining the lower limb upper limb pulse wave transfer function (for example, the upper area).
  • the measurement subject can measure in the sitting position instead of the supine position, and the convenience as a screening test can be greatly improved.
  • the calculation of the index indicating the presence or absence of the stenosis in the artery and the degree of stenosis from the pulse wave is performed by the measurement device 100 or an arithmetic device such as a PC (personal computer) using the value from the measurement device 100.
  • a program can be provided. Such a program is stored on a computer-readable recording medium such as a flexible disk attached to the computer, a CD-ROM (Compact Disk-Read Only Memory), a ROM (Read Only Memory), a RAM (Random Access Memory), and a memory card. And can be provided as a program product. Alternatively, the program can be provided by being recorded on a recording medium such as a hard disk built in the computer. A program can also be provided by downloading via a network.
  • the program according to the present invention is a program module that is provided as a part of a computer operating system (OS) and calls necessary modules in a predetermined arrangement at a predetermined timing to execute processing. Also good. In that case, the program itself does not include the module, and the process is executed in cooperation with the OS. A program that does not include such a module can also be included in the program according to the present invention.
  • OS computer operating system
  • the program according to the present invention may be provided by being incorporated in a part of another program. Even in this case, the program itself does not include the module included in the other program, and the process is executed in cooperation with the other program. Such a program incorporated in another program can also be included in the program according to the present invention.
  • the provided program product is installed in a program storage unit such as a hard disk and executed.
  • the program product includes the program itself and a recording medium on which the program is recorded.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)

Abstract

 測定装置(100)は、脈波を測定するための脈波測定部(102)と、脈波から所定のパラメータ値を算出し、そのパラメータ値を用いて、動脈狭窄の指標値としてABI(Ankle Brachial Blood Pressure Index)に相当する指標値を算出するための算出部(104)とを含む。

Description

測定装置、指標算出方法、および指標算出プログラム
 この発明は測定装置、指標算出方法、および指標算出プログラムに関し、特に、生体値を測定して血管狭窄に関する指標値を算出する測定装置、その指標算出方法、および指標算出プログラムに関する。
 従来、血管狭窄の指標として、上肢血圧と下肢血圧との比率であるABI(下肢上肢血圧指標:Ankle Brachial Blood Pressure Index)が用いられている。
 たとえば特開2004-261319号公報(以下、特許文献1)にも開示されているように、ABIは、血圧測定装置で臥位状態の被測定者の上肢および下肢それぞれから血圧を測定し、その血圧比を算出することで得られる。
特開2004-261319号公報
 しかしながら、動脈の石灰化が高度である場合に動脈の圧迫が不十分となり、精度よく血圧測定ができない場合がある。そのため、このような場合には、ABIの血管狭窄の指標としての精度が低下するという問題があった。
 また、不整脈による脈振幅の乱れや血管狭窄によって脈振幅が小さい場合にも、精度よく血圧測定ができない場合がある。そのため、このような場合にも、ABIの血管狭窄の指標としての精度が低下するという問題があった。
 また、上述のようにABIを算出するためには上肢、下肢の血圧測定が必要であることから被測定者によっては測定に苦痛が伴う場合があり、被測定者の負担が大きい場合がある、という問題もあった。また、血圧測定のための測定時間が必要となる、という問題もあった。
 さらには、上述のように、ABIを算出するためには被測定者は仰臥位状態となる必要があり、スクリーニング検査としての簡便性に欠ける、という問題もあった。
 本発明はこのような問題に鑑みてなされたものであって、被測定者の負担を抑えつつ簡便に、かつ精度よく血管狭窄に関する指標値を算出する測定装置、その指標算出方法、および指標算出プログラムを提供することを目的としている。
 上記目的を達成するために、本発明のある局面に従うと、測定装置は、脈波を測定し、脈波から動脈狭窄の指標値を算出するための測定装置であって、測定部位に装着され、測定部位に与えられた負荷に応じた値を測定するための測定部と、測定部に接続された演算装置とを備える。演算装置は、測定部での測定値を基に脈波を測定するための脈波測定部と、脈波から所定のパラメータ値を算出するための第1の算出部と、パラメータ値を用いて、動脈狭窄の指標値としてABI(Ankle Brachial Blood Pressure Index)に相当する指標値を算出するための第2の算出部とを含む。
 好ましくは、測定部は、測定部位に装着するためのカフと、カフの内圧を検出するためのセンサとを含み、演算装置はセンサと接続され、脈波測定部はセンサから脈波を測定する。
 好ましくは、第1の算出部は、所定のパラメータ値として、脈波から当該脈波の先鋭度を表わす指標である%MAP(正規化脈波面積)と、足首脈波の上昇特徴値を表わす指標であるUT(UT:upstroke Time)と、脈振幅と、上肢から下肢への脈波の伝達関数である下肢上肢脈波伝達関数を表わす指標値とのうちの少なくとも1つを算出する。
 より好ましくは、第2の算出部は、第1の算出部で算出された%MAPと、UTと、脈振幅と、下肢上肢脈波伝達関数を表わす指標値とのうちの2以上を組み合わせて指標値を算出する。
 より好ましくは、第2の算出部は、第1の算出部で算出された下肢上肢脈波伝達関数を表わす指標値と、%MAP、UT、および脈振幅のうちの少なくとも1つとを組み合わせて指標値を算出する。
 本発明の他の局面に従うと、指標算出方法は脈波から動脈狭窄の指標値を算出するための算出方法であって、脈波を取得するステップと、脈波から所定のパラメータ値を算出するステップと、パラメータ値を用いて、動脈狭窄の指標値としてABI(Ankle Brachial Blood Pressure Index)に相当する指標値を算出するステップとを含む。
 本発明のさらに他の局面に従うと、指標算出プログラムはコンピュータに、脈波から動脈狭窄の指標値を算出する処理を実行させるためのプログラムであって、脈波を取得するステップと、脈波から所定のパラメータ値を算出するステップと、パラメータ値を用いて、動脈狭窄の指標値としてABI(Ankle Brachial Blood Pressure Index)に相当する指標値を算出するステップとをコンピュータに実行させる。
 この発明によると、従来、血圧値から算出されていた血管狭窄に関する指標値であるABIに相当する指標値を、脈波から算出することができる。
実施の形態にかかる測定装置の構成の具体例を示す図である。 測定装置の機能構成の具体例を示すブロック図である。 ABIと%MAPとの相関関係を表わした図である。 ABIとUTとの相関関係を表わした図である。 ABIと脈振幅との相関関係を表わした図である。 ABIと脈波から算出された指標EABIとの相関関係を表わした図である。 図6のP1に示された測定値が測定された被測定者について詳しい測定結果を表わした図である。 図6のP2に示された測定値が測定された被測定者について詳しい測定結果を表わした図である。 図6のP3に示された測定値が測定された被測定者について詳しい測定結果を表わした図である。 健常者の右足首(A)および左足首(B)での脈波の測定結果を表わす図である。 図10(A)の右足首で測定された脈波と右上腕で測定された脈波とから算出された右上腕-右足首でのステップ応答(右ステップ応答)を表わす図である。 図10(B)の左足首で測定された脈波と左上腕で測定された脈波とから算出された左上腕-左足首でのステップ応答(左ステップ応答)を表わす図である。 図11の右ステップ応答と図12の左ステップ応答との比較を表わす図である。 測定対象の閉塞性動脈硬化症患者の動脈状態を表わしたX線撮影写真である。 図14の患者の右上腕(A)および右足首(B)での脈波の測定結果を表わす図である。 図14の患者の左上腕(A)および左足首(B)での脈波の測定結果を表わす図である。 図15の右上腕および右足首で測定された脈波から算出された右ステップ応答を表わす図である。 図16の左上腕および左足首で測定された脈波から算出された左ステップ応答を表わす図である。 図17の右ステップ応答と図18の左ステップ応答との比較を表わす図である。 Avolioモデルの模式図である。 発明者らの算出に用いた、Avolioモデルにおいて要素番号82,104,111(図20中の丸印)で表わされた区間に与えた狭窄度を表わす図である。 発明者らの算出結果をグラフ化した図である。 ステップ応答の区間で定義された、上側面積、上側面積/下側面積比、および区間最大値を説明するための図である。 ABIと、ステップ応答の上側面積との相関関係を表わした図である。 ABIと、ステップ応答の上側面積/下側面積比との相関関係を表わした図である。 ABIと、ステップ応答の区間最大値との相関関係を表わした図である。 ABIとEABIとの相関関係を表わした図である。 測定装置での動作の流れの具体例を表わすフローチャートである。 図28のステップS113での動作の具体例を表わしたフローチャートである。
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。
 <装置構成>
 図1は、本実施の形態にかかる測定装置100の構成の具体例を示す図である。
 図1を参照して、測定装置100は、情報処理ユニット1と、4つの検出ユニット20ar,20al,20br,20blと、4つのカフ24ar,24al,24br,24blとを含む。
 カフ24br,24bl,24ar,24alは、それぞれ被測定者200の肢部に装着される。具体的には、それぞれ、右上腕(右上肢)、左上腕(左上肢)、右足首(右下肢)および左足首(左下肢)に装着される。なお、「肢部」とは、四肢に含まれる部位を表わし、手首や指尖部などであってもよい。カフ24ar,24al,24br,24blは、特に区別する必要がない限り、これらを総称して、「カフ24」と呼ぶ。
 検出ユニット20ar,20al,20br,20blは、それぞれ、被測定者200の肢部の脈波を検出するために必要なハードウェアを含む。検出ユニット20ar,20al,20br,20blの構成は全て同様であってよいので、特に区別する必要がない限り、これらを総称して、「検出ユニット20」と呼ぶ。
 情報処理ユニット1は、制御部2と、出力部4と、操作部6と、記憶装置8とを含む。
 制御部2は、測定装置100全体の制御を行なう装置であり、代表的に、CPU(Central Processing Unit)10と、ROM(Read Only Memory)12と、RAM(Random Access Memory)14とを含むコンピュータで構成される。
 CPU10は、演算処理部に相当し、ROM12に予め格納されているプログラムを読出して、RAM14をワークメモリとして使用しながら、当該プログラムを実行する。
 また、制御部2には、出力部4、操作部6および記憶装置8が接続されている。出力部4は、測定された脈波や脈波解析結果などを出力する。出力部4は、LED(Light Emitting Diode)またはLCD(Liquid Crystal Display)などで構成される表示デバイスであってもよいし、プリンタ(ドライバ)であってもよい。
 操作部6は、ユーザからの指示を受付ける。記憶装置8は、各種データやプログラムを保持する。制御部2のCPU10は、記憶装置8に記録されたデータやプログラムの読み出しや書き込みを行なう。記憶装置8は、たとえば、ハードディスク、不揮発性メモリ(たとえば、フラッシュメモリ)、あるいは、着脱可能な外部記録媒体などにより構成されてよい。
 ここで、各検出ユニット20の構成について具体的に説明する。
 検出ユニット20brは、被測定者200の右上腕に装着されたカフ24brの内圧(以下、「カフ圧」という)の調整および検出を行なうことで、右上腕における脈波を検出する。カフ24brは、図示のない流体袋(たとえば空気袋)を内包している。
 検出ユニット20brは、圧力センサ28brと、調圧弁26brと、圧力ポンプ25brと、A/D(analog to digital)変換部29brと、配管27brとを含む。カフ24brと、圧力センサ28br,調圧弁26brとは、配管22brによって接続されている。
 圧力センサ28brは、配管22brを介して伝達される圧力変動を検出するための検出部位であり、一例として、単結晶シリコンなどからなる半導体チップを用いて構成することができる。圧力センサ28brによって検出された圧力変動信号は、A/D変換部29brによってデジタル信号に変換されて、脈波信号pbr(t)として制御部2に入力される。
 調圧弁26brは、圧力ポンプ25brとカフ24brとの間に介挿され、測定時にカフ24brの加圧に用いられる圧力を所定の範囲に維持する。圧力ポンプ25brは、制御部2からの検出指令に応じて作動し、カフ24brを加圧するためにカフ24br内の流体袋(図示せず)に空気を供給する。
 この加圧によって、カフ24brは測定部位に押圧され、右上腕の脈波に応じた圧力変化がそれぞれ配管22brを介して検出ユニット20brへ伝達される。検出ユニット20brは、この伝達される圧力変化を検出することで、右上腕の脈波を検出する。
 検出ユニット20blも同様に、圧力センサ28blと、調圧弁26blと、圧力ポンプ25blと、A/D変換部29blと、配管27blとを含む。カフ24blと、圧力センサ28bl,調圧弁26blとは、配管22blによって接続されている。
 また、検出ユニット20arは、圧力センサ28arと、調圧弁26arと、圧力ポンプ25arと、A/D変換部29arと、配管27arとを含む。カフ24arと、圧力センサ28ar,調圧弁26arとは、配管22arによって接続されている。
 検出ユニット20alも同様に、圧力センサ28alと、調圧弁26alと、圧力ポンプ25alと、A/D変換部29alと、配管27alとを含む。カフ24alと、圧力センサ28al,調圧弁26alとは、配管22alによって接続されている。
 検出ユニット20bl,20ar,20al内の各部の機能は、検出ユニット20brと同様であるので、詳細な説明は繰返さない。また、検出ユニット20内の各部についても、特に区別する必要がない限り、“ar”,“br”などの記号は省略して説明する。
 なお、本実施の形態では、圧力センサ28を用いて脈波を検出する構成について説明するが、動脈容積センサ(図示せず)を用いて脈波を検出する構成であってもよい。この場合、動脈容積センサは、たとえば、動脈に対して光を照射する発光素子と、発光素子によって照射された光の動脈の透過光または反射光を受光する受光素子とを含んでよい。あるいは、複数の電極を含み、被測定者200の測定部位に微少の一定電流を流すとともに、脈波の伝播に応じて生じるインピーダンス(生体インピーダンス)の変化によって生じる電圧変化を検出するようにしてもよい。
 <動作概要>
 本実施の形態にかかる測定装置100では、上肢および下肢で測定された脈波から、上肢および下肢で測定された血圧値の比率であるABI(下肢上肢血圧指標:Ankle Brachial Blood Pressure Index)に相当する、動脈における狭窄の有無や狭窄度合いを表わす指標を算出する。
 <機能構成>
 図2は、上記動作を行なうための測定装置100の機能構成の具体例を示すブロック図である。
 図2に示される各機能は、CPU10がROM12に格納されているプログラムを読出してRAM14をワークメモリとして使用しながら実行することで、主に、CPU10上に形成される機能である。しかしながら、少なくとも一部が、図1に示された装置構成や電気回路等のハードウェアで形成されてもよい。
 図2を参照して、測定装置は、その機能として、調整部30、脈波測定部102、上記指標を算出するための算出部104、および出力部4を含む。
 調整部30は、カフ24内の圧力を調整する機能部である。調整部30の機能は、たとえば、図1に示した圧力ポンプ25および調圧弁26により達成される。
 脈波測定部102は、調整部30およびA/D変換部29と接続され、各肢部における脈波(PVR)を測定するための処理を行なう。脈波測定部102は、調整部30に指令信号を与えることでカフ24の内圧を調整するとともに、当該指令信号に応答して検出されたカフ圧信号Par(t),Pal(t),Pbr(t),Pbl(t)を受信する。そして、受信したカフ圧信号Par(t),Pal(t),Pbr(t),Pbl(t)を時系列に記録することで、肢部ごとに、複数拍分の脈波波形を取得する。脈波の測定は、たとえば所定時間(たとえば10秒程度)行なわれる。
 ここで、上肢および下肢で測定された脈波から算出される、ABIに相当する動脈狭窄の指標について説明する。
 脈波を用いた動脈狭窄の指標としては、脈振幅の他、たとえば、%MAP(正規化脈波面積)と言われる脈波の先鋭度を表わす指標が挙げられる。%MAPは、たとえば、脈波のピーク高さHすなわち脈圧に対する、脈波面積を均等にならしたときの最低血圧からの高さMの割合(=M/H×100)として算出される。動脈狭窄や動脈閉塞がある場合、%MAPの指標値は大きくなる。
 また、UT(UT:upstroke Time)と言われる足首脈波の上昇特徴値を表わす指標が挙げられる。UTは、立ち上がり点からピークまでの足首脈波が上昇する期間として算出される。動脈狭窄や動脈閉塞がある場合には上記期間が延長されるため、UTの指標値は大きくなる。
 発明者らは、これら指標とABIとの相関性について検証を行なった。図3~図5は、ABIと%MAP、UT、および脈振幅との相関関係を表わした図である。この値は、成人男女200人を対象としてそれぞれ血圧、脈波を測定して、ABI、%MAP、UT、および脈振幅を算出することで得られたものである。
 図3~図5より、%MAP、UT、および脈振幅のいずれの指標もABIとある程度の相関があることが検証された。そのため、%MAP、UT、および脈振幅のそれぞれを、ABIに相当する動脈狭窄の指標として用いることが可能であると考察される。または、より相関性を高めるため、%MAP、UT、および脈振幅のうちの少なくとも2つを組み合わせてABIに相当する動脈狭窄の指標として用いることも可能と考察される。
 発明者らは、一例として、%MAP(A)、UT(B)、および脈振幅(C)のそれぞれの値に変換係数を乗じた値(EABI)を指標として算出し、この指標とABIとの相関性について検証を行なった。すなわち、EABI=aA+bB+cC+d(a~dは係数)として指標を算出し、この指標とABIとを比較した。図6は、ABIとEABIとの相関関係を表わした図である。
 図6より、%MAP(A)、UT(B)、および脈振幅(C)を組み合わせて算出した指標EABIはABIとある程度の相関があることが検証され、さらに、%MAP、UT、および脈振幅それぞれ1つを用いた場合よりもABIとの相関性が高くなることも検証された。
 なお、図6においてP1~P3に示されたように、いくつか、回帰直線から大きく外れた測定値が存在する。図7~図9は、P1~P3に示された測定値が測定された被測定者について詳しい測定結果を表わした図である。図7~図9においては、それぞれの被測定者に関して、右上腕血圧値および右足首血圧値から算出されたABI(右ABI)と、右足首血圧値から得られた最高血圧値、および右上腕と右足首とのそれぞれの脈波図が示されている。また、測定された脈波振幅の時間変化がグラフで表わされている。
 図7の例では、脈波振幅の時間変化グラフが不完全な状態であり、右足首の血圧測定が正確にできていない可能性がある。また、図8および図9の例では脈波振幅の時間変化グラフがガタついており、右足首の血圧が正しく測定できていない可能性がある。
 この検証より、回帰直線より大きく外れた測定値は、血圧測定が正しくできていない可能性がある。そのため、このような例を除くと、相関性がさらに高くなると考えられる。つまり、ABIに相当する動脈狭窄の指標として、%MAP、UT、および脈振幅のうちのいずれか1つ以上を用いることが可能であることが検証された。
 ABIに相当する動脈狭窄の指標の他の例として、上肢から下肢への脈波の伝達関数(下肢上肢脈波伝達関数)が考えられる。これは、上肢脈波を系(血管経路)への入力、下肢脈波を系からの出力とした伝達関数において、その系に血管狭窄があれば、ステップ応答に変化が現れると考えられるからである。すなわち、このステップ応答をABIに相当する動脈狭窄の指標として用いることが可能と考えられる。
 これを検証するため、発明者らは、実際に健常者および閉塞性動脈硬化症(ASO:arteriosclerosis obliterans)患者それぞれの脈波を測定し、ステップ応答を算出した。
 図10は、健常者の右足首(A)および左足首(B)での脈波の測定結果を表わしており、図11および図12は、それらと、左右上腕で測定された脈波とから算出された右上腕-右足首でのステップ応答(右ステップ応答)、左上腕-左足首でのステップ応答(左ステップ応答)を表わしている。これらを比較すると、図13に示されるように、ほぼ同一であることが分かる。
 図14は、測定対象の閉塞性動脈硬化症患者の動脈状態を表わしたX線撮影写真である。図14の丸印部分に動脈閉塞が見られる。
 図15は当該患者の右上腕(A)および右足首(B)での脈波の測定結果を表わしており、図16は左上腕(A)および左足首(B)での脈波の測定結果を表わしている。そして、図17および図18は、図15の右上腕および右足首で測定された脈波から算出された右ステップ応答、図16の左上腕および左足首で測定された脈波から算出された左ステップ応答を表わしている。これらを比較すると、図19に示されるように、大きく異なっていることが分かる。
 つまり、このことより、左右のステップ応答の相関性が高いほど動脈の閉塞がなく、相関性が低いほど動脈硬化症の可能性が高い、と言える。
 そこで、発明者らは、動脈狭窄の度合いとステップ応答の変化とを、循環系モデルを用いて算出した。ここで用いた循環系モデルは、生体を構成する血管を複数の区間に分割してモデル化したものである。このような循環系モデルの代表的なものとして、参考文献1「Avolio,A.P, Multi-branched Model of Human Arterial System, 1980, Med. & Biol. Engng. & Comp., 18,796」に記載されている、いわゆる「Avolioモデル」が知られており、発明者らはこの演算に、循環系モデルとして、このAvolioモデルを採用した。
 図20は、Avolioモデルの模式図である。
 図20を参照して、Avolioモデルでは、全身の動脈を128の血管要素(区間)に分割し、各区間を代表する形状値を規定している。Avolioモデルは、形状値として、各区間に対応付けられた、長さ・半径・管壁の厚さ・ヤング率を含む。
 発明者らは、図20のAvolioモデルにおいて要素番号82,104,111(図20中の丸印)で表わされた区間に様々な狭窄度での狭窄を発生させるようパラメータを設定し、ステップ応答変化を算出した。図21は、発明者らの算出に用いた、Avolioモデルにおいて要素番号82,104,111(図20中の丸印)で表わされた区間に与えた狭窄度を表わす図である。データID「82/104/111-0」で表わされた狭窄度は、各区間に狭窄を与えておらず、健常者のステップ応答を算出するものである。データIDが大きくなるほど各区間に与える狭窄度が大きくなり、動脈硬化症が進んだ状態におけるステップ応答を算出するものとなる。
 図22は、算出結果をグラフ化したものである。図22より、健常であるほど立ち上がりの傾きが大きく、いったん極大値に達した後に急速に値が減少するという変化が見られ、狭窄度が大きくなるほど上記立ち上がりが緩やかになり、極大値からの変化も小さくなることが分かる。
 そこで、発明者らは、図23に示されるようにステップ応答の区間で、上側面積、上側面積/下側面積比、および区間最大値の3つの値を定義し、これら3つの値がABIに相当する動脈狭窄の指標となり得るか否かを検討した。
 図24~図26は、それぞれ、ABIと、上側面積、上側面積/下側面積比、および区間最大値との相関関係を表わした図である。このときの測定値も、図3~図5に用いられた成人男女200人を対象とした測定結果を用いている。
 図24~図26より、いずれの値もABIとある程度の相関があることが検証され、特に、上側面積がABIとの相関性が高いことが検証された。そこで、ステップ応答で得られる値はABIに相当する動脈狭窄の指標として用いることが可能であり、特に、ステップ応答から算出される上側面積はABIに相当する動脈狭窄の指標として用いることが可能であると考察される。または、より相関性を高めるため、上述の%MAP、UT、脈振幅、およびステップ応答から算出される指標のうちの少なくとも2つを組み合わせてABIに相当する動脈狭窄の指標として用いることも可能と考察される。
 発明者らは、一例として、%MAP(A)、UT(B)、脈振幅(C)、およびステップ応答から算出される指標(上側面積)(D)のそれぞれの値に変換係数を乗じた値(EABI)を指標として算出し、この指標とABIとの相関性について検証を行なった。すなわち、EABI=aA+bB+cC+dD+e(a~eは係数)として指標を算出し、この指標とABIとを比較した。図27は、ABIとEABIとの相関関係を表わした図である。
 図27より、%MAP(A)、UT(B)、脈振幅(C)、およびステップ応答から算出される指標(上側面積)(D)を組み合わせて算出した指標EABIはABIとかなり相関性が高いことが検証され、先に検証した、%MAP、UT、および脈振幅それぞれ1つを用いた場合や、これらを組み合わせた場合よりも相関性が高いことが検証された。
 なお、図27においても、図6と同様に、Q1~Q4に示されたような回帰直線から大きく外れた測定値が存在する。これらそれぞれについて測定結果を検証すると、いずれも、上述と同様に、血圧測定の信憑性が低いことがわかった。そのため、このような例を除くと、相関性がさらに高くなると考えられる。
 <動作フロー>
 図28は、測定装置100での動作の流れの具体例を表わすフローチャートである。図28のフローチャートに表わされる動作は、CPU10がROM12に格納されているプログラムを読出してRAM14をワークメモリとして使用しながら実行し、図2に示される各機能を発揮させることによって実現される。
 図28を参照して、ステップS101でCPU10はカフ24の加圧を開始し、脈波の測定に適した圧力まで加圧を維持する。そして、ステップS109でCPU10は、カフ圧を当該圧力に維持するためのホールド制御を行なう。この圧力としては、たとえば、50~60mmHg程度の一定圧や、最低血圧値より5~10mmHg程度低い圧などが相当する。そして、ステップS111でCPU10は、ホールド制御中のカフ圧変化に基づいて得られた脈波を分析し、動脈狭窄の指標として、ABIに相当する指標EABIを算出する。
 ステップS121でCPU10は、脈波から算出された動脈狭窄の指標EABIを出力する。ここでの出力は、画面表示であってもよいし、PCや外部記録媒体などの他の装置に送信するものであってもよい。
 なお、上記ステップS113での指標EABIの算出方法としては、様々な算出方法が挙げられる。なぜなら、上述のように、指標値EABIとして、%MAP、UT、脈振幅、および(たとえば上側面積などの)下肢上肢脈波伝達関数のうちのいずれか1つを用いてもよいし、2つ以上の組み合わせであってもよいからである。
 図29は、一例として、これらすべてを組み合わせて指標値EABIを算出する場合の、上記ステップS113での動作の具体例を表わしたフローチャートである。上述のように、このようにして算出された指標値EABIは、ABIと高い相関性を有するため、高い精度で動脈狭窄の指標として用いることが可能となる。
 図29を参照して、ステップS201~S207で、CPU10は、%MAP(A)、UT(B)、脈振幅(C)、および(たとえば上側面積などの)下肢上肢脈波伝達関数(D)を順に算出する。もちろん、この算出順は、図29に表わされた順に限定されるものではない。
 そして、ステップS209でCPU10は、予め規定されている変換係数を用いて、指標EABI=aA+bB+cC+dD+e(a~eは係数)を算出する。
 <実施の形態の効果>
 測定装置100において以上の動作が行なわれることで、動脈における狭窄の有無や狭窄度合いを表わす、ABIに相当する指標を脈波から算出することができる。
 上述のように、血圧値は動脈の石灰化の影響を受けやすいことが知られている。また、不整脈によって脈振幅が乱れたり、血管狭窄によって脈振幅が小さくなったりする場合もあり、これらの影響も受けやすいことが知られている。
 これに対して、脈波は数拍分の波形に基づいて算出されるものであるため、このような影響を受け難い。そのため、従来の血圧値から指標を算出する場合よりも脈波から算出する方が不整脈や石灰化などの影響を受け難く、精度よく指標が算出できる。
 動脈における狭窄の有無や狭窄度合いを表わす指標として脈波から得られるいずれかの指標値(%MAP、UT、脈振幅、および(たとえば上側面積などの)下肢上肢脈波伝達関数)を用いることも可能であるが、これらを組み合わせることで、より精度よい指標を得ることができる。さらに、発明者らの検証より、特に(たとえば上側面積などの)下肢上肢脈波伝達関数を用いる、または組み合わせることで、特に精度よい指標を得ることが可能となる。
 また、血圧を測定する必要がないため、被測定者は仰臥位ではなく座位状態で測定することが可能で、スクリーニング検査としての簡便性を格段に向上させることができる。
 さらに、上述の、脈波からの、動脈における狭窄の有無や狭窄度合いを表わす指標の算出を測定装置100、または測定装置100からの値を用いてPC(パーソナルコンピュータ)等の演算装置に実行させるためのプログラムを提供することもできる。このようなプログラムは、コンピュータに付属するフレキシブルディスク、CD-ROM(Compact Disk-Read Only Memory)、ROM(Read Only Memory)、RAM(Random Access Memory)およびメモリカードなどのコンピュータ読取り可能な記録媒体にて記録させて、プログラム製品として提供することもできる。あるいは、コンピュータに内蔵するハードディスクなどの記録媒体にて記録させて、プログラムを提供することもできる。また、ネットワークを介したダウンロードによって、プログラムを提供することもできる。
 なお、本発明にかかるプログラムは、コンピュータのオペレーティングシステム(OS)の一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。その場合、プログラム自体には上記モジュールが含まれずOSと協働して処理が実行される。このようなモジュールを含まないプログラムも、本発明にかかるプログラムに含まれ得る。
 また、本発明にかかるプログラムは他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には上記他のプログラムに含まれるモジュールが含まれず、他のプログラムと協働して処理が実行される。このような他のプログラムに組込まれたプログラムも、本発明にかかるプログラムに含まれ得る。
 提供されるプログラム製品は、ハードディスクなどのプログラム格納部にインストールされて実行される。なお、プログラム製品は、プログラム自体と、プログラムが記録された記録媒体とを含む。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 情報処理ユニット、2 制御部、4 出力部、6 操作部、8 記憶装置、12 ROM、14 RAM、20,20al,20ar,20bl,20br 検出ユニット、22al,22ar,22bl,22br,27al,27ar,27bl,27br 配管、24,24al,24ar,24bl,24br カフ、25,25al,25ar,25bl,25br 圧力ポンプ、26,26al,26ar,26bl,26br 調圧弁、28,28al,28ar,28bl,28br 圧力センサ、29,29al,29ar,29bl,29br 変換部、30 調整部、100 測定装置、102 脈波測定部、104 算出部。

Claims (7)

  1.  脈波を測定し、前記脈波から動脈狭窄の指標値を算出するための測定装置であって、
     測定部位に装着され、前記測定部位に与えられた負荷に応じた値を測定するための測定部と、
     前記測定部に接続された演算装置とを備え、
     前記演算装置は、
     前記測定部での測定値を基に脈波を測定するための脈波測定部と、
     前記脈波から所定のパラメータ値を算出するための第1の算出部と、
     前記パラメータ値を用いて、前記動脈狭窄の指標値としてABI(Ankle Brachial Blood Pressure Index)に相当する指標値を算出するための第2の算出部とを含む、測定装置。
  2.  前記測定部は、前記測定部位に装着するためのカフと、前記カフの内圧を検出するためのセンサとを含み、
     前記演算装置は前記センサと接続され、
     前記脈波測定部は前記センサから脈波を測定する、請求項1に記載の測定装置。
  3.  前記第1の算出部は、前記所定のパラメータ値として、前記脈波から当該脈波の先鋭度を表わす指標である%MAP(正規化脈波面積)と、足首脈波の上昇特徴値を表わす指標であるUT(UT:upstroke Time)と、脈振幅と、上肢から下肢への脈波の伝達関数である下肢上肢脈波伝達関数を表わす指標値とのうちの少なくとも1つを算出する、請求項1または2に記載の測定装置。
  4.  前記第2の算出部は、前記第1の算出部で算出された%MAPと、UTと、脈振幅と、下肢上肢脈波伝達関数を表わす指標値とのうちの2以上を組み合わせて前記指標値を算出する、請求項3に記載の測定装置。
  5.  前記第2の算出部は、前記第1の算出部で算出された下肢上肢脈波伝達関数を表わす指標値と、%MAP、UT、および脈振幅のうちの少なくとも1つとを組み合わせて前記指標値を算出する、請求項3に記載の測定装置。
  6.  脈波から動脈狭窄の指標値を算出するための算出方法であって、
     前記脈波を取得するステップと、
     前記脈波から所定のパラメータ値を算出するステップと、
     前記パラメータ値を用いて、前記動脈狭窄の指標値としてABI(Ankle Brachial Blood Pressure Index)に相当する指標値を算出するステップとを含む、指標算出方法。
  7.  コンピュータに、脈波から動脈狭窄の指標値を算出する処理を実行させるためのプログラムであって、
     前記脈波を取得するステップと、
     前記脈波から所定のパラメータ値を算出するステップと、
     前記パラメータ値を用いて、前記動脈狭窄の指標値としてABI(Ankle Brachial Blood Pressure Index)に相当する指標値を算出するステップとを前記コンピュータに実行させる、指標算出プログラム。
PCT/JP2012/076111 2011-10-28 2012-10-09 測定装置、指標算出方法、および指標算出プログラム WO2013061766A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280052207.2A CN103906464B (zh) 2011-10-28 2012-10-09 测定装置和指标计算方法
US14/348,473 US20140243691A1 (en) 2011-10-28 2012-10-09 Measurement device, index calculating method, and index calculating program
DE112012004459.2T DE112012004459T5 (de) 2011-10-28 2012-10-09 Messvorrichtung, Kennzahlberechnungsverfahren und Kennzahlberechnungsprogramm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-237574 2011-10-28
JP2011237574A JP5887836B2 (ja) 2011-10-28 2011-10-28 測定装置、指標算出方法、および指標算出プログラム

Publications (1)

Publication Number Publication Date
WO2013061766A1 true WO2013061766A1 (ja) 2013-05-02

Family

ID=48167600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076111 WO2013061766A1 (ja) 2011-10-28 2012-10-09 測定装置、指標算出方法、および指標算出プログラム

Country Status (5)

Country Link
US (1) US20140243691A1 (ja)
JP (1) JP5887836B2 (ja)
CN (1) CN103906464B (ja)
DE (1) DE112012004459T5 (ja)
WO (1) WO2013061766A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6248735B2 (ja) * 2014-03-24 2017-12-20 オムロンヘルスケア株式会社 血管指標値算出装置、血管指標値算出方法、および、血管指標値算出プログラム
US11439312B2 (en) 2016-04-24 2022-09-13 The Trustees Of Columbia University In The City Of New York Monitoring treatment of peripheral artery disease (PAD) using diffuse optical imaging
JP6683034B2 (ja) * 2016-06-24 2020-04-15 オムロンヘルスケア株式会社 血圧脈波測定装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121616A (ja) * 2002-10-04 2004-04-22 Nippon Colin Co Ltd 自動診断装置
JP2006346288A (ja) * 2005-06-17 2006-12-28 Fukuda Denshi Co Ltd 血管弾性指数の経時推移レポート及び生体情報出力装置
JP2007185320A (ja) * 2006-01-12 2007-07-26 Omron Healthcare Co Ltd 狭窄部位の推定装置
WO2011052651A1 (ja) * 2009-10-30 2011-05-05 オムロンヘルスケア株式会社 脈波解析装置および記録媒体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433569B2 (ja) * 2000-05-30 2010-03-17 オムロンヘルスケア株式会社 動脈狭窄評価装置
JP3568515B2 (ja) * 2001-12-06 2004-09-22 コーリンメディカルテクノロジー株式会社 下肢上肢血圧指数測定装置
JP3621379B2 (ja) * 2002-01-09 2005-02-16 コーリンメディカルテクノロジー株式会社 動脈硬化評価装置
JP2004223046A (ja) * 2003-01-24 2004-08-12 Nippon Colin Co Ltd 動脈硬化評価装置
JP2006296888A (ja) * 2005-04-22 2006-11-02 Fukuda Denshi Co Ltd 生体情報出力装置及び方法並びに生体情報レポート
JP5109027B2 (ja) * 2007-03-30 2012-12-26 国立大学法人京都大学 血管状態評価装置、血管状態評価方法および血管状態評価プログラム
CN201088579Y (zh) * 2007-08-06 2008-07-23 北京麦邦光电仪器有限公司 一种动脉硬化检测和评估装置
US9826959B2 (en) * 2008-11-04 2017-11-28 Fujifilm Corporation Ultrasonic diagnostic device
EP2393425A1 (en) * 2009-02-05 2011-12-14 Yoram Palti Detecting a stenosis in a blood vessel
CN201658364U (zh) * 2010-04-22 2010-12-01 深圳市盛力康实业发展有限公司 一种脉搏波速度和踝臂指数检测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121616A (ja) * 2002-10-04 2004-04-22 Nippon Colin Co Ltd 自動診断装置
JP2006346288A (ja) * 2005-06-17 2006-12-28 Fukuda Denshi Co Ltd 血管弾性指数の経時推移レポート及び生体情報出力装置
JP2007185320A (ja) * 2006-01-12 2007-07-26 Omron Healthcare Co Ltd 狭窄部位の推定装置
WO2011052651A1 (ja) * 2009-10-30 2011-05-05 オムロンヘルスケア株式会社 脈波解析装置および記録媒体

Also Published As

Publication number Publication date
CN103906464B (zh) 2016-06-01
JP2013094262A (ja) 2013-05-20
CN103906464A (zh) 2014-07-02
DE112012004459T5 (de) 2014-07-10
US20140243691A1 (en) 2014-08-28
JP5887836B2 (ja) 2016-03-16

Similar Documents

Publication Publication Date Title
JP6058397B2 (ja) 連続非侵襲血圧デバイスからの信号を強化し分析する装置及び方法
WO2013061765A9 (ja) 測定装置、評価方法、および評価プログラム
KR20150082401A (ko) 개선된 혈압 모니터 및 방법
US6440080B1 (en) Automatic oscillometric apparatus and method for measuring blood pressure
JP2012517291A (ja) 心臓血管パラメータの計算
JP2016514983A (ja) 末梢血管の状態の自動化された評価
AU2016398145B2 (en) Blood pressure/pulse wave measurement device and program
JP2004121616A (ja) 自動診断装置
EP3050500B1 (en) Measuring apparatus and measuring method
JP5887836B2 (ja) 測定装置、指標算出方法、および指標算出プログラム
JP2007007077A (ja) 血圧監視装置
US20200288984A1 (en) Sphygmomanometer, blood pressure measurement method, and blood pressure measurement program
KR101918577B1 (ko) 혈압계 및 이를 이용한 혈압 측정 방법
AU2016398146B2 (en) Blood pressure/pulse wave measurement device
US20240008748A1 (en) Method and apparatus for determining information about an arterial property of a subject
US20230263476A1 (en) Method and apparatus for estimating the reliability of cardiac output measurements
EP4173555A1 (en) Device, system and method for calibrating a blood pressure surrogate for use in monitoring a subject's blood pressure
RU2698447C1 (ru) Способ определения артериального давления в плече на каждом сердечном сокращении
KR20190009079A (ko) 웨어러블 혈압계 및 이를 이용한 혈압 제공 방법
EP3581104A1 (en) Method, device and computer program product for estimating a compliance of a blood vessel in a subject

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842761

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348473

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012004459

Country of ref document: DE

Ref document number: 1120120044592

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842761

Country of ref document: EP

Kind code of ref document: A1