WO2013061659A1 - Vapor deposition device - Google Patents

Vapor deposition device Download PDF

Info

Publication number
WO2013061659A1
WO2013061659A1 PCT/JP2012/068313 JP2012068313W WO2013061659A1 WO 2013061659 A1 WO2013061659 A1 WO 2013061659A1 JP 2012068313 W JP2012068313 W JP 2012068313W WO 2013061659 A1 WO2013061659 A1 WO 2013061659A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow rate
mass flow
branching
flow controller
Prior art date
Application number
PCT/JP2012/068313
Other languages
French (fr)
Japanese (ja)
Inventor
喜代志 安福
坂上 英和
弘睦 小島
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013061659A1 publication Critical patent/WO2013061659A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Definitions

  • the present invention relates to a vapor phase growth apparatus for forming a film on a substrate to be processed using a plurality of material gases.
  • Light emitting diodes, semiconductor lasers, solar power devices for space, and high-speed devices are manufactured by MOCVD (Metal Organic Chemical Vapor Deposition) using compound semiconductor materials.
  • MOCVD Metal Organic Chemical Vapor Deposition
  • an organic metal gas such as trimethylgallium (TMG) or trimethylaluminum (TMA) and a hydrogen compound gas such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 ) are formed into a film. Used as a contributing material gas.
  • the MOCVD method is a method in which a compound semiconductor crystal is grown on a substrate to be processed by introducing the above material gas into a film forming chamber together with a carrier gas and heating it to cause a gas phase reaction on the substrate to be processed.
  • Patent Document 1 JP-T-2007-521633
  • gases directed toward the substrate at different radial distances from the rotation axis of the rotating disk have substantially the same velocity.
  • the gas going to the part of the disk away from the axis contains a higher concentration of reaction gas than the gas going to the part near the axis.
  • Patent Document 2 As a prior document disclosing a compound semiconductor manufacturing apparatus, there is JP-A-6-295862 (Patent Document 2).
  • a group V gas, a group III gas, and an impurity gas are introduced into a reaction tube using independent pipes, and the flow rate is controlled by a needle valve.
  • a vapor phase growth apparatus for processing by the MOCVD method is required to improve material yield and processing capability in order to suppress the manufacturing cost while improving the quality of the compound semiconductor crystal. Therefore, the vapor phase growth apparatus has been increased in size so that as many substrates as possible having a large diameter can be processed at a high quality in a lump.
  • a susceptor on which the substrate to be processed is placed becomes large. Further, in order to improve the processing capability, the substrate to be processed is spread and processed from the center to the end of the large susceptor. Therefore, it is necessary to grow a compound semiconductor crystal having a uniform film thickness and film characteristics on each of a plurality of substrates to be processed placed on a large susceptor.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a vapor phase growth apparatus capable of adjusting the mixing ratio and flow rate of material gases for each of a plurality of regions on a susceptor.
  • a vapor phase growth apparatus includes a susceptor having a plurality of regions on an upper surface, a gas supply unit facing the susceptor and supplying a plurality of material gases to each of the plurality of regions.
  • the vapor phase growth apparatus includes a plurality of gas branching mechanisms for branching a plurality of material gases at a predetermined branching ratio by the number of the plurality of regions and introducing them into the gas supply unit at a predetermined flow rate, and a plurality of materials
  • a plurality of predetermined material gases in the gas are mixed, a plurality of mixing pipes connected to the plurality of gas branching mechanisms, respectively, and a control unit that controls the plurality of gas branching mechanisms.
  • the controller adjusts the flow rates of the plurality of material gases supplied in each of the plurality of regions by setting the predetermined branching ratio of each of the plurality of gas branching mechanisms.
  • control unit is configured to control the flow of the plurality of material gases from the flow rates of the plurality of material gases supplied in each of the plurality of regions and the flow rates of some of the material gases.
  • An arithmetic unit for calculating the flow rate of the remaining material gas is included.
  • the control unit adjusts the flow rate of the remaining material gas by each of the plurality of gas branching mechanisms based on the calculation result of the calculation unit, and sets the flow rate of the plurality of material gases supplied to each of the plurality of regions. Maintain a predetermined flow rate.
  • the vapor phase growth apparatus further includes a film thickness detection mechanism that detects the film thickness of the film formed on the substrate to be processed.
  • the control unit adjusts the predetermined branching ratio of each of the plurality of gas branching mechanisms and adjusts the predetermined flow rate based on the film thickness detection signal input from the film thickness detection mechanism.
  • the mixing ratio and flow rate of the material gas can be adjusted for each of a plurality of regions on the susceptor.
  • a vapor phase growth apparatus according to an embodiment of the present invention will be described.
  • the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
  • a vertical showerhead type MOCVD apparatus will be described as an example of a vapor phase growth apparatus.
  • FIG. 1 is a cross-sectional view showing a part of the configuration of an MOCVD apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view of the shower plate as viewed from below.
  • FIG. 3 is a system diagram showing the configuration of the mixing piping and the gas branching mechanism of the MOCVD apparatus according to the present embodiment.
  • an MOCVD apparatus 100 includes a film forming chamber 110 in which a substrate 10 to be processed is processed.
  • a susceptor 120 having a circular shape in plan view on which the substrate 10 to be processed is placed is disposed.
  • the susceptor 120 is defined in a plurality of areas.
  • Two regions are defined, the marginal region.
  • the plurality of regions is not limited to this, and depending on various conditions such as the size of the susceptor 120, the arrangement of the plurality of substrates to be processed 10 placed on the susceptor 120, and the position of a gas exhaust unit 141 described later, It is appropriately determined in consideration of the crystal growth of the compound semiconductor on the substrate 10 to be processed.
  • a heater 121 having a circular shape in plan view is disposed below the susceptor 120.
  • the heater 121 is disposed on a support base 151 having a circular shape in plan view.
  • One end of the rotating shaft 150 is connected to the lower part of the center of the support base 151.
  • An actuator (not shown) is connected to the other end of the rotating shaft 150, and the rotating shaft 150 is rotatable about the axis.
  • the centers of the susceptor 120, the heater 121, and the support base 151 are located on the central axis of the rotating shaft 150.
  • a heater cover 152 is provided so as to cover the peripheral side surfaces of the susceptor 120, the heater 121, and the support base 151.
  • the MOCVD apparatus 100 includes a susceptor 120, a heater 121, a support base 151, and a heater cover 152.
  • a shower head 130 is provided, which is a gas supply unit that supplies a plurality of material gases onto the substrate 10 to be processed, facing the susceptor 120.
  • the shower head 130 includes a shower plate 131, a water cooling part 132, and a hollow part 133.
  • the shower plate 131 has a plurality of openings 131a for spraying a mixed gas onto the substrate 10 to be processed.
  • the mixed gas is sprayed from the opening 131a located in the center side area 20a of the shower plate 131 to the center side area on the susceptor 120 described above.
  • mixed gas is sprayed on the edge side area
  • the lower surface of the shower plate 131 faces the upper surface of the susceptor 120 in parallel.
  • the water cooling part 132 is a part through which cooling water for cooling the shower head 130 circulates. Cooling water is supplied to the water cooling unit 132 from a water cooling device 160 including a pump, a water supply source, and a cooling source through a cooling pipe 161.
  • a plurality of mixing pipes which will be described later, are connected to the hollow portion 133.
  • the interior of the hollow portion 133 communicates with the plurality of mixing pipes and the plurality of openings 131 a of the shower plate 131.
  • the MOCVD apparatus 100 includes a shower head 130.
  • the MOCVD apparatus 100 includes a gas exhaust part 141 for exhausting the inside of the film forming chamber 110, a purge line 142 connected to the gas exhaust part 141, and an exhaust gas treatment apparatus 140 connected to the purge line 142. Including.
  • the mixed gas introduced into the film forming chamber 110 is exhausted to the outside of the film forming chamber 110 by the gas exhaust unit 141, and the exhausted mixed gas is sent to the exhaust gas treatment device 140 through the purge line 142. In the exhaust gas treatment device 140, it is rendered harmless.
  • a mixed gas is supplied from the shower head 130 into the film forming chamber 110.
  • the substrate to be processed 10 is heated by the heater 121 through the rotating susceptor 120.
  • a chemical reaction occurs on the heated substrate 10 to be processed, a thin film is formed on the substrate 10 to be processed.
  • the mixed gas that has passed over the substrate 10 is exhausted from the gas exhaust part 141.
  • a group III material gas containing a group III element and a group V material containing a group V element are used as a plurality of material gases for forming a compound semiconductor thin film on the substrate 10 to be processed.
  • a gas and a doping material gas containing an impurity element are used.
  • the plurality of material gases is not limited to this, and for example, a group II material gas containing a group II element, a group VI material gas containing a group VI element, and a doping material gas containing an impurity element may be used.
  • group III elements include Ga (gallium), Al (aluminum), and In (indium).
  • group III material gas for example, an organometallic gas such as trimethylgallium (TMG) or trimethylaluminum (TMA) can be used.
  • group V elements include N (nitrogen), P (phosphorus), and As (arsenic).
  • group V material gas for example, a hydrogen compound gas such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 ) can be used.
  • impurity element examples include Mg (magnesium) and Si (silicon).
  • As the doping material gas Cp 2 Mg (bis-cyclopentadienyl Mg) gas or SiH 4 gas can be used.
  • the MOCVD apparatus 100 includes a group III-based mixed gas edge supply source 170 serving as a supply source of a group III-based mixed gas containing a group III material gas in the edge region of the susceptor 120.
  • the MOCVD apparatus 100 includes a V group mixed gas edge supply source 171 serving as a supply source of a V group mixed gas containing a V group material gas in an edge side region of the susceptor 120.
  • the MOCVD apparatus 100 includes a group III mixed gas central supply source 172 serving as a supply source of a group III mixed gas containing a group III material gas in the central region of the susceptor 120.
  • the MOCVD apparatus 100 includes a V group mixed gas edge supply source 173 serving as a supply source of a V group mixed gas containing a V group material gas in a central region of the susceptor 120.
  • the group III-based mixed gas edge supply source 170 is connected to the shower head 130 by a group III-based edge mixing pipe 170a to which a mass flow controller 170c, which is a flow rate adjusting mechanism, is connected.
  • the V group mixed gas edge supply source 171 is connected to the shower head 130 by a V group edge mixing pipe 171a to which a mass flow controller 171c is connected.
  • the III group mixed gas center side supply source 172 is connected to the shower head 130 by a III group center side mixing pipe 172a to which a mass flow controller 172c is connected.
  • the group V mixed gas center side supply source 173 is connected to the shower head 130 by a group V center side mixed piping 173a to which the mass flow controller 173c is connected.
  • the MOCVD apparatus 100 includes a control unit 190 that controls all mass flow controllers included in the MOCVD apparatus 100.
  • the control unit 190 is connected to the group III mixed gas edge supply source 170 by the wiring 191, is connected to the group V mixed gas edge supply source 171 by the wiring 192, and is connected to the group III mixed gas center supply source 172 by the wiring 193. And is connected to the V group mixed gas center supply source 173 by a wiring 194.
  • All the mass flow controllers that adjust the flow rate of the mixed gas in the group III-based mixed gas edge supply source 170 are connected to the control unit 190 through the group III-based mixed gas edge supply source 170 by wiring not shown.
  • All the mass flow controllers for adjusting the flow rate of the mixed gas in the V group mixed gas edge supply source 171 are connected to the control unit 190 through the V group mixed gas edge supply source 171 by wiring not shown.
  • All the mass flow controllers that adjust the flow rate of the mixed gas in the group III-based mixed gas center-side supply source 172 are connected to the control unit 190 through the group-III-based mixed gas center-side supply source 172 by wiring (not shown).
  • All the mass flow controllers for adjusting the flow rate of the mixed gas in the V group mixed gas center supply source 173 are connected to the control unit 190 through the V group mixed gas center supply source 173 by wiring not shown.
  • the MOCVD apparatus 100 includes a film thickness sensor 196 that is a film thickness detection mechanism that detects the film thickness of the film formed on the substrate 10 to be processed.
  • the film thickness sensor 196 is connected to the control unit 190 through a wiring 195.
  • the MOCVD apparatus 100 includes a carrier gas supply source 180, a first group III material gas supply source 181, a second group III material gas supply source 182, a first group V material gas supply source 183, and a second group V material gas.
  • a supply source 184, a first doping material gas supply source 185, and a second doping material gas supply source 186 are provided.
  • the carrier gas supply source 180 supplies, for example, H 2 gas as the carrier gas.
  • the carrier gas supply source 180 is connected to the carrier line 180a.
  • the carrier line 180a is connected to the mass flow controllers A1, A2, B1, B2, C2, D2, G1, G2, H1, and H2.
  • the carrier line 180a is connected to the carrier line 180b and the carrier line 180c.
  • the carrier line 180b is branched into a group III system side mixing pipe 170b to which the mass flow controller E1 is connected and a group III system center side mixing pipe 172b to which the mass flow controller E2 is connected.
  • the carrier line 180c is branched into a group V system side mixing pipe 171b to which the mass flow controller F1 is connected and a group V system center side mixing pipe 173b to which the mass flow controller F2 is connected.
  • 1st group III material gas supply source 181 supplies TMG gas, for example.
  • the group III material gas supply source 181 is connected to a bubbling device.
  • the introduction side of the bubbling device is connected to a carrier line to which the mass flow controller A1 is connected via a valve.
  • the outlet side of the bubbling device is connected to a carrier line to which the mass flow controller A2 is connected via a valve.
  • the carrier line to which the mass flow controller A2 is connected is branched by a gas branch mechanism A5 provided with a mass flow controller A3 and a mass flow controller A4 of a slightly differential pressure specification.
  • the side to which the mass flow controller A3 is connected is connected to the group III system side mixing pipe 170b.
  • the side to which the mass flow controller A4 is connected is connected to the group III system center side mixing pipe 172b.
  • 2nd group III material gas supply source 182 supplies TMA gas, for example.
  • the Group III material gas supply source 182 is connected to a bubbling device.
  • the introduction side of the bubbling device is connected to a carrier line to which the mass flow controller B1 is connected via a valve.
  • the outlet side of the bubbling device is connected to a carrier line to which the mass flow controller B2 is connected via a valve.
  • the carrier line to which the mass flow controller B2 is connected is branched by a gas branching mechanism B5 including a mass flow controller B3 and a mass flow controller B4 having a slightly differential pressure specification.
  • the side to which the mass flow controller B3 is connected is connected to the group III system side mixing pipe 170b.
  • the side to which the mass flow controller B4 is connected is connected to the group III system center side mixing pipe 172b.
  • the first doping material gas supply source 185 supplies, for example, Cp 2 Mg gas.
  • the first doping material gas supply source 185 is connected to a bubbling device.
  • the introduction side of this bubbling device is connected to a carrier line to which the mass flow controller G1 is connected via a valve.
  • the outlet side of the bubbling device is connected to a carrier line to which the mass flow controller G2 is connected via a valve.
  • the carrier line to which the mass flow controller G2 is connected is branched by a gas branch mechanism G5 provided with a mass flow controller G3 and a mass flow controller G4 having a differential pressure specification.
  • the side to which the mass flow controller G3 is connected is connected to the group III system side mixing pipe 170b.
  • the side to which the mass flow controller G4 is connected is connected to the group III system center side mixing pipe 172b.
  • the second doping material gas supply source 186 supplies, for example, SiH 4 gas.
  • the second doping material gas supply source 186 is connected to the bubbling device.
  • the introduction side of the bubbling device is connected to a carrier line to which the mass flow controller H1 is connected via a valve.
  • the outlet side of the bubbling device is connected to a carrier line to which the mass flow controller H2 is connected via a valve.
  • the carrier line to which the mass flow controller H2 is connected is branched by a gas branch mechanism H5 provided with a mass flow controller H3 and a mass flow controller H4 having a slightly differential pressure specification.
  • the side to which the mass flow controller H3 is connected is connected to the group III system side mixing pipe 170b.
  • the side to which the mass flow controller H4 is connected is connected to the group III system center side mixing pipe 172b.
  • the first group V material gas supply source 183 supplies, for example, NH 3 gas.
  • the first group V material gas supply source 183 is connected to one end of a pipe to which the mass flow controller C1 is connected.
  • the other end of the pipe is connected to a carrier line to which the mass flow controller C2 is connected.
  • the carrier line to which the mass flow controller C2 is connected is branched by a gas branch mechanism C5 provided with a mass flow controller C3 and a mass flow controller C4 having a slightly differential pressure specification.
  • the side to which the mass flow controller C3 is connected is connected to the V group system side mixing pipe 171b.
  • the side to which the mass flow controller C4 is connected is connected to the V group center side mixing pipe 173b.
  • the 2V group material gas supply source 184 for example, supplying AsH 3 gas.
  • the second group V material gas supply source 184 is connected to one end of a pipe to which the mass flow controller D1 is connected.
  • the other end of the pipe is connected to a carrier line to which the mass flow controller D2 is connected.
  • the carrier line to which the mass flow controller D2 is connected is branched by a gas branch mechanism D5 provided with a mass flow controller D3 and a mass flow controller D4 of a slightly differential pressure specification.
  • the side to which the mass flow controller D3 is connected is connected to the V group system side mixing pipe 171b.
  • the side to which the mass flow controller D4 is connected is connected to the V group center side mixing pipe 173b.
  • FIG. 4 is a block diagram relating to the control unit of the MOCVD apparatus according to the present embodiment.
  • FIG. 5 is a flowchart showing a flow rate calculation process in the gas branch mechanism A5 by the calculation unit of the control unit.
  • FIG. 6 is a flowchart showing a flow rate calculation process in the gas branching mechanism B5 by the calculation unit of the control unit.
  • FIG. 7 is a flowchart showing a flow rate calculation process in the gas branch mechanism G5 by the calculation unit of the control unit.
  • FIG. 8 is a flowchart showing a flow rate calculation process in the gas branching mechanism H5 by the calculation unit of the control unit.
  • FIG. 9 is a flowchart showing a flow rate calculation process in the gas branch mechanism C5 by the calculation unit of the control unit.
  • FIG. 10 is a flowchart showing a flow rate calculation process in the gas branch mechanism D5 by the calculation unit of the control unit.
  • the control unit 190 includes an input unit 190A to which a signal sent from an external device such as a film thickness sensor 196 is input, and a calculation unit 190B that calculates a gas flow rate.
  • the control unit 190 appropriately reads a program from the storage unit 190C in which a crystal growth sequence creation program for setting the gas flow rate is recorded, and calculates the gas flow rate in the calculation unit 190B.
  • the control unit 190 controls the gas branching mechanisms A5, B5, C5, D5, G5, and H5 by outputting a flow rate adjustment signal to each of the mass flow controllers A1 to H4 based on the calculation result of the calculation unit 190B. Adjust.
  • the carrier gas is introduced into the bubbling device by the mass flow controller A1, and TMG gas is generated by bubbling in the cylinder.
  • the amount of TMG gas generated is determined by the flow rate of the carrier gas introduced from the mass flow controller A1.
  • the generated TMG gas is mixed with the carrier gas sent from the mass flow controller A2.
  • the concentration and total flow rate of the TMG gas are determined by the flow rate of the carrier gas sent from the mass flow controller A2.
  • a part of the TMG gas mixed with the carrier gas is flow-controlled by the mass flow controller A3 and sent to the group III system side mixing pipe 170b.
  • the remaining part of the TMG gas mixed with the carrier gas is flow-controlled by the mass flow controller A4 and sent to the group III system central mixing pipe 172b.
  • the flow rate adjustment for TMG gas is performed as follows. As shown in FIG. 5, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism A5 to a predetermined fixed value Sa5 (slm) (T10). Next, the flow rate in the mass flow controller A1 is set to Sa1 (slm) (T11). As a result, the flow rate Sa2 (slm) in the mass flow controller A2 is calculated as Sa5-Sa1 (T12). Based on the calculation result, the flow rate is adjusted by the mass flow controller A2.
  • part of the TMA gas mixed with the carrier gas is flow-controlled by the mass flow controller B3 and sent to the group III system side mixing pipe 170b.
  • the remainder of the TMA gas mixed with the carrier gas is flow-controlled by the mass flow controller B4 and sent to the group III system central mixing pipe 172b.
  • the flow rate adjustment for TMA gas is performed as follows. As shown in FIG. 6, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism B5 to a predetermined fixed value Sb5 (slm) (T20). Next, the flow rate in the mass flow controller B1 is set to Sb1 (slm) (T21). As a result, the flow rate Sb2 (slm) in the mass flow controller B2 is calculated as Sb5-Sb1 (T22). Based on the calculation result, the flow rate is adjusted by the mass flow controller B2.
  • a part of the Cp 2 Mg gas mixed with the carrier gas is flow-controlled by the mass flow controller G3 and sent to the group III system side mixing pipe 170b.
  • the remainder of the Cp 2 Mg gas mixed with the carrier gas is flow-controlled by the mass flow controller G4 and sent to the group III system center side mixing pipe 172b.
  • the flow rate adjustment for Cp 2 Mg gas is performed as follows. As shown in FIG. 7, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism G5 to a predetermined fixed value Sg5 (slm) (T30). Next, the flow rate in the mass flow controller G1 is set to Sg1 (slm) (T31). As a result, the flow rate Sg2 (slm) in the mass flow controller G2 is calculated as Sg5-Sg1 (T32). Based on the calculation result, the flow rate is adjusted by the mass flow controller G2.
  • a part of the SiH 4 gas mixed with the carrier gas is flow-controlled by the mass flow controller H3 and sent to the group III system side mixing pipe 170b.
  • the remaining portion of the SiH 4 gas mixed with the carrier gas is flow-controlled by the mass flow controller H4 and sent to the group III system center side mixing pipe 172b.
  • the flow rate adjustment for the SiH 4 gas is performed as follows. As shown in FIG. 8, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism H5 to a predetermined fixed value Sh5 (slm) (T40). Next, the flow rate in the mass flow controller H1 is set to Sh1 (slm) (T41). As a result, the flow rate Sh2 (slm) in the mass flow controller H2 is calculated as Sh5-Sh1 (T42). Based on the calculation result, the flow rate is adjusted by the mass flow controller H2.
  • the flow rate of the carrier gas is controlled by the mass flow controller E1, and the carrier gas is sent to the group III system side mixing pipe 170b.
  • the total flow rate of the mixed gas reaching the group III mixed gas edge supply source 170 is determined by the flow rate of the carrier gas sent from the mass flow controller E1.
  • the carrier gas is flow-controlled by the mass flow controller E2 and sent to the group III system central mixing pipe 172b.
  • the total flow rate of the mixed gas reaching the group III mixed gas central supply source 172 is determined by the flow rate of the carrier gas sent from the mass flow controller E2.
  • FIG. 11 is a flowchart showing a flow rate calculation process in the mass flow controller E1 by the calculation unit of the control unit.
  • FIG. 12 is a flowchart showing a flow rate calculation process in the mass flow controller E2 by the calculation unit of the control unit.
  • the flow rate adjustment in the mass flow controller E1 is performed as follows. As shown in FIG. 11, the calculation unit 190B sets the total flow rate of the group III-based mixed gas edge supply source 170 to a predetermined fixed value S30 (slm) (T100). Next, the calculation unit 190B sets the branching ratio of the material gas in each gas branching mechanism to a predetermined branching ratio. The calculation unit 190B calculates the carrier gas flow rate from the total flow rate of each material gas branched according to the branching ratio. The branching ratio is a ratio sent to the edge side mixed pipe.
  • the calculation unit 190B sets the branching ratio of the gas branching mechanism A5 to Ra5 (%) (T110).
  • the calculation unit 190B uses the gas inflow amount Sa5 (slm) to the gas branching mechanism A5 that has already been set in the T10 step to calculate the flow rate Sa3 (slm) of the TMG gas sent to the group III system side mixing pipe 170b as Sa5 ⁇ . Calculated as Ra5 / 100 (T111).
  • the calculation unit 190B sets the branching ratio of the gas branching mechanism B5 to Rb5 (%) (T120).
  • the calculation unit 190B uses the gas inflow amount Sb5 (slm) to the gas branch mechanism B5 that has already been set in the T20 step, and calculates the flow rate Sb3 (slm) of the TMA gas sent to the group III system side mixing pipe 170b as Sb5 ⁇ Calculated as Rb5 / 100 (T121).
  • the calculation unit 190B sets the branching ratio of the gas branching mechanism G5 to Rg5 (%) (T130).
  • the calculation unit 190B uses the gas inflow amount Sg5 (slm) to the gas branch mechanism G5 that has already been set in the T30 step to calculate the flow rate Sg3 (slm) of the Cp 2 Mg gas sent to the group III system side mixing pipe 170b. Calculated as Sg5 ⁇ Rg5 / 100 (T131).
  • the calculation unit 190B sets the branching ratio of the gas branching mechanism H5 to Rh5 (%) (T140).
  • the calculation unit 190B uses the gas inflow amount Sh5 (slm) to the gas branch mechanism H5 that has already been set in the T40 step, and sets the flow rate Sh3 (slm) of the SiH 4 gas sent to the group III system side mixing pipe 170b to Sh5. * Calculated as Rh5 / 100 (T141).
  • the calculation unit 190B calculates the flow rate Se1 (slm) in the mass flow controller E1 as S30 ⁇ (Sa3 + Sb3 + Sg3 + Sh3) using the total flow rate of the calculated material gases (Sa3 + Sb3 + Sg3 + Sh3) (T150). Based on this calculation result, the flow rate is adjusted by the mass flow controller E1.
  • the flow rate adjustment in the mass flow controller E2 is performed as follows. As shown in FIG. 12, the calculation unit 190B sets the total flow rate of the group III mixed gas center-side supply source 172 to a predetermined fixed value S30a (slm) (T200).
  • the calculation unit 190B uses the branching ratio of the gas branching mechanism A5 set in the T110 step and the gas inflow amount Sa5 (slm) to the gas branching mechanism A5 already set in the T10 step.
  • the flow rate Sa4 (slm) of the TMG gas sent to the mixing pipe 172b is calculated as Sa5 ⁇ (1-Ra5 / 100) (T211).
  • the calculation unit 190B uses the branching ratio of the gas branching mechanism B5 set in the T120 step and the gas inflow amount Sb5 (slm) to the gas branching mechanism B5 already set in the T20 step.
  • the flow rate Sb4 (slm) of the TMA gas sent to the system center side mixing pipe 172b is calculated as Sb5 ⁇ (1-Rb5 / 100) (T221).
  • the calculation unit 190B uses the branching ratio of the gas branching mechanism G5 set in the T130 step and the gas inflow amount Sg5 (slm) to the gas branching mechanism G5 already set in the T30 step.
  • the flow rate Sg4 (slm) of the Cp 2 Mg gas sent to the system center side mixing pipe 172b is calculated as Sg5 ⁇ (1-Rg5 / 100) (T231).
  • the calculation unit 190B uses the branch ratio of the gas branch mechanism H5 set in the T140 step and the gas inflow amount Sh5 (slm) to the gas branch mechanism H5 already set in the T40 step, to calculate the group III
  • the flow rate Sh4 (slm) of the SiH 4 gas sent to the system center side mixing pipe 172b is calculated as Sh5 ⁇ (1 ⁇ Rh5 / 100) (T241).
  • the calculation unit 190B calculates the flow rate Se2 (slm) in the mass flow controller E2 as S30a ⁇ (Sa4 + Sb4 + Sg4 + Sh4) using the total flow rate of the calculated material gases (Sa4 + Sb4 + Sg4 + Sh4) (T250). Based on the calculation result, the flow rate is adjusted by the mass flow controller E2.
  • the flow rate is adjusted by the mass flow controller C ⁇ b> 1, and NH 3 gas is sent from the first V group material gas supply source 183.
  • the NH 3 gas is mixed with the carrier gas sent from the mass flow controller C2.
  • the concentration of NH 3 gas and the total flow rate are determined by the flow rate of the carrier gas sent from the mass flow controller C2.
  • a part of the NH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller C3 and sent to the group V-system side mixing pipe 171b.
  • the remaining portion of the NH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller C4 and sent to the group V system center side mixing pipe 173b.
  • the flow rate adjustment for the NH 3 gas is performed as follows. As shown in FIG. 9, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism C5 to a predetermined fixed value Sc5 (slm) (T50). Next, the flow rate in the mass flow controller C1 is set to Sc1 (slm) (T51). As a result, the flow rate Sc2 (slm) in the mass flow controller C2 is calculated as Sc5-Sc1 (T52). Based on the calculation result, the flow rate is adjusted by the mass flow controller C2.
  • the mass flow controller D3 a part of the AsH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller D3 and sent to the group V system edge side mixing pipe 171b.
  • the remaining portion of the AsH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller D4 and sent to the group V system center side mixing pipe 173b.
  • the flow rate adjustment for AsH 3 gas is performed as follows. As shown in FIG. 10, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism D5 to a predetermined fixed value Sd5 (slm) (T60). Next, the flow rate in the mass flow controller D1 is set to Sd1 (slm) (T61). As a result, the flow rate Sd2 (slm) in the mass flow controller D2 is calculated as Sd5-Sd1 (T62). Based on the calculation result, the flow rate is adjusted by the mass flow controller D2.
  • the flow rate of the carrier gas is controlled by the mass flow controller F1, and the carrier gas is sent to the group V system side mixing pipe 171b.
  • the total flow rate of the mixed gas reaching the V group mixed gas edge supply source 171 is determined by the flow rate of the carrier gas sent from the mass flow controller F1.
  • the carrier gas is flow-controlled by the mass flow controller F2 and sent to the V group center side mixing pipe 173b.
  • the total flow rate of the mixed gas that reaches the V group mixed gas center-side supply source 173 is determined by the flow rate of the carrier gas sent from the mass flow controller F2.
  • FIG. 13 is a flowchart showing a flow rate calculation process in the mass flow controller F1 by the calculation unit of the control unit.
  • FIG. 14 is a flowchart showing a flow rate calculation process in the mass flow controller F2 by the calculation unit of the control unit.
  • the flow rate adjustment in the mass flow controller F1 is performed as follows. As illustrated in FIG. 13, the calculation unit 190B sets the total flow rate of the V group mixed gas edge supply source 171 to a predetermined fixed value S31 (slm) (T300). Next, the calculation unit 190B sets the branching ratio of the material gas in each gas branching mechanism to a predetermined branching ratio. The calculation unit 190B calculates the carrier gas flow rate from the total flow rate of each material gas branched according to the branching ratio.
  • the calculation unit 190B sets the branching ratio of the gas branching mechanism C5 to Rc5 (%) (T310).
  • the calculation unit 190B uses the gas inflow amount Sc5 (slm) to the gas branch mechanism C5 that has already been set in the T50 step to calculate the flow rate Sc3 (slm) of the TMG gas sent to the group V system side mixing pipe 171b as Sc5 ⁇ Calculated as Rc5 / 100 (T311).
  • the calculation unit 190B sets the branching ratio of the gas branching mechanism D5 to Rd5 (%) (T320).
  • the calculation unit 190B uses the gas inflow amount Sd5 (slm) to the gas branching mechanism D5 that has already been set in the T60 step to calculate the flow rate Sd3 (slm) of the TMA gas sent to the group V system side mixing pipe 171b as Sd5 ⁇ Calculated as Rd5 / 100 (T321).
  • the calculation unit 190B calculates the flow rate Sf1 (slm) in the mass flow controller F1 as S31 ⁇ (Sc3 + Sd3) using the total flow rate (Sc3 + Sd3) of the calculated flow rates of the respective material gases (T350). Based on the calculation result, the flow rate is adjusted by the mass flow controller F1.
  • the flow rate adjustment in the mass flow controller F2 is performed as follows. As shown in FIG. 14, the calculation unit 190B sets the total flow rate of the V group mixed gas center supply source 173 to a predetermined fixed value S31a (slm) (T400).
  • the calculation unit 190B uses the branch ratio of the gas branch mechanism C5 set in the T310 step and the gas inflow amount Sc5 (slm) to the gas branch mechanism C5 already set in the T50 step to calculate the V group center side.
  • the flow rate Sc4 (slm) of the NH 3 gas sent to the mixing pipe 173b is calculated as Sc5 ⁇ (1 ⁇ Rc5 / 100) (T411).
  • the calculation unit 190B uses the branch ratio of the gas branch mechanism D5 set in the T320 step and the gas inflow amount Sd5 (slm) to the gas branch mechanism D5 already set in the T60 step,
  • the flow rate Sd4 (slm) of AsH 3 gas sent to the system center side mixing pipe 173b is calculated as Sd5 ⁇ (1-Rd5 / 100) (T421).
  • the calculation unit 190B calculates the flow rate Sf2 (slm) in the mass flow controller F2 as S31a ⁇ (Sc4 + Sd4) using the total flow rate (Sc4 + Sd4) of the calculated flow rates of the respective material gases (T450). Based on the calculation result, the flow rate is adjusted by the mass flow controller F2.
  • the MOCVD apparatus 100 includes a plurality of mixing pipes that mix and introduce a predetermined plurality of material gases among the plurality of material gases into the shower head 130.
  • the MOCVD apparatus 100 includes a plurality of gas branch mechanisms A5 and B5 for branching a plurality of material gases at a predetermined branch ratio by the number of a plurality of regions on the susceptor 120 and introducing them into the shower head 130 at a predetermined flow rate. , C5, D5, G5, and H5.
  • Each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 individually adjusts the branching ratio of each of the plurality of material gases. That is, the control unit 190 controls each of the plurality of gas branch mechanisms A5, B5, C5, D5, G5, and H5 independently of each other.
  • the control unit 190 sets a predetermined branching ratio for each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 to thereby provide a plurality of materials supplied in each of a plurality of regions on the susceptor 120. Adjust the gas flow rate.
  • control unit 190 determines the plurality of material gases from the flow rates of the plurality of material gases supplied in each of the plurality of regions on the susceptor 120 and the flow rates of some of the plurality of material gases.
  • the calculation part 190B which calculates the flow volume of the remaining material gas is included.
  • the control unit 190 adjusts the flow rate of the remaining material gas by each of the plurality of gas branch mechanisms A5, B5, C5, D5, G5, and H5 based on the calculation result of the calculation unit 190B.
  • the flow rate of the plurality of material gases supplied to each of the plurality of regions can be maintained at the predetermined flow rate.
  • control unit 190 can maintain the total flow rate in each of the mixed gas supply sources 170 to 173 at a predetermined flow rate by adjusting the flow rate in the mass flow controllers E1, E2, F1, and F2.
  • each of the plurality of gas branch mechanisms A5, B5, C5, D5, G5, and H5 is configured by two mass flow controllers having a slightly differential pressure specification, but the gas branch mechanism is configured by a flow splitter. May be.
  • the shower head 130 sprays a plurality of mixed gases mixed in each of a plurality of mixing pipes to a plurality of regions on the susceptor 120, respectively.
  • the concentration and flow rate of each of the predetermined plurality of material gases are adjusted.
  • the Group III mixed gas edge side supply source is set.
  • the mixing ratio of the plurality of Group III material gases in 170 and the Group III mixed gas center supply source 172 can be adjusted.
  • the mixing ratio of a plurality of V group material gases in the V group mixed gas edge supply source 171 and the V group mixed gas center supply source 173 can be adjusted.
  • the flow rate ratio of the group III-based mixed gas and the group V-based mixed gas in the mixed gas sprayed to the edge region of the susceptor 120 in a state where the mixing ratio of the plurality of group III material gases is constant can be adjusted.
  • the mixing ratio and flow rate of the material gas can be adjusted for each of a plurality of regions on the susceptor 120.
  • all of the uniformity of the layer thickness, composition, and impurity addition amount of the grown crystals should be sufficient on the substrate 10 to be processed. it can. That is, a compound semiconductor crystal having a uniform film thickness and film characteristics can be grown on each of the plurality of substrates to be processed 10.
  • the MOCVD apparatus 100 includes a film thickness sensor 196.
  • the control unit 190 adjusts the predetermined branching ratio of each of the gas branching mechanisms A5, B5, C5, D5, G5, and H5 based on the film thickness detection signal input from the film thickness sensor 196, and The predetermined flow rate is adjusted.
  • the film thickness of the film formed on the substrate to be processed 10 depends on the amount of the group III material supplied. Therefore, when the film thickness detected by the film thickness sensor 196 is smaller than the set value, the flow rate in the mass flow controller A1 is increased to increase the amount of TMG generated. At this time, the flow rate in the mass flow controller A2 is adjusted by the control unit 190 so as to decrease by the flow rate increased in the mass flow controller A1.
  • the flow rate of the TMG gas flowing into the gas branching mechanism A5 does not change, and the branching ratio in the gas branching mechanism A5 does not change, so the group III system side mixing pipe 170b and the group III system center side mixing are performed.
  • the total flow rate of TMG gas sent to the pipe 172b is maintained. That is, the flow rate of TMG gas can be maintained while increasing the amount of TMG.
  • the branch ratio in the gas branch mechanism A5 is changed. Specifically, the proportion of TMG gas sent to the group III center-side mixing pipe 172b is increased so that the amount of TMG supplied to the center-side region on the susceptor 120 does not change. Therefore, only the amount of TMG supplied to the edge region on the susceptor 120 is reduced.
  • the flow rate in the mass flow controller A2 is adjusted by the control unit 190 so as to be reduced by the flow rate increased in the mass flow controller A1.
  • the change in the branching ratio in the gas branching mechanism A5 does not change the total flow rate of the TMG gas sent to the group III system side mixing pipe 170b and the group III system center side mixing pipe 172b.
  • the flow rate is adjusted by the control unit 190.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This vapor deposition device is equipped with: a susceptor (120) that has multiple areas on the top surface and on which a substrate to be treated (10) is mounted; and a gas supply unit (130) that faces the susceptor (120) and respectively supplies multiple material gases to the multiple areas. In addition, the vapor deposition device is equipped with: multiple gas-branching mechanisms for branching the multiple material gases in the same number as that of the multiple areas according to predetermined branching ratios, and for introducing the branched material gases to the gas supply unit (130) according to predetermined flow rates; multiple mixing pipes for mixing multiple predetermined material gases among the multiple material gases, said mixing pipes being respectively connected to the multiple gas-branching mechanisms; and a control unit (190) for controlling the multiple gas-branching mechanisms. The control unit (190) sets the respective predetermined branching ratios for the multiple gas-branching mechanisms, thereby regulating the flow rates of the multiple material gases to be respectively supplied to the aforementioned multiple areas.

Description

気相成長装置Vapor growth equipment
 本発明は、複数の材料ガスを用いて被処理基板上に成膜する気相成長装置に関する。 The present invention relates to a vapor phase growth apparatus for forming a film on a substrate to be processed using a plurality of material gases.
 化合物半導体材料を用いたMOCVD(Metal Organic Chemical Vapor Deposition)法により、発光ダイオード、半導体レーザ、宇宙用ソーラーパワーデバイス、および、高速デバイスなどが製造されている。 Light emitting diodes, semiconductor lasers, solar power devices for space, and high-speed devices are manufactured by MOCVD (Metal Organic Chemical Vapor Deposition) using compound semiconductor materials.
 MOCVD法においては、トリメチルガリウム(TMG)またはトリメチルアルミニウム(TMA)などの有機金属ガスと、アンモニア(NH3)、ホスフィン(PH3)またはアルシン(AsH3)などの水素化合物ガスとを成膜に寄与する材料ガスとして用いる。 In the MOCVD method, an organic metal gas such as trimethylgallium (TMG) or trimethylaluminum (TMA) and a hydrogen compound gas such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 ) are formed into a film. Used as a contributing material gas.
 MOCVD法は、上記の材料ガスをキャリアガスと共に成膜室内に導入して加熱し、被処理基板上で気相反応させることにより、被処理基板上に化合物半導体結晶を成長させる方法である。 The MOCVD method is a method in which a compound semiconductor crystal is grown on a substrate to be processed by introducing the above material gas into a film forming chamber together with a carrier gas and heating it to cause a gas phase reaction on the substrate to be processed.
 MOCVD法によって所望の薄膜を形成する際、反応性を有する材料ガスによって被処理基板表面で生起される表面反応は、極めて複雑なメカニズムを有することが知られている。すなわち、材料ガスの温度、流速、圧力、材料ガスに含まれる活性化学種の種類、反応系における残留ガス成分、および、被処理基板の温度など、多数のパラメータが、上記表面反応に寄与する。そのため、MOCVD法でこれらのパラメータを制御して所望の薄膜を形成させることは極めて難しい。 It is known that when a desired thin film is formed by MOCVD, the surface reaction caused on the surface of the substrate to be processed by the reactive material gas has an extremely complicated mechanism. That is, a large number of parameters contribute to the surface reaction, such as the temperature, flow velocity, pressure of the material gas, the type of active chemical species contained in the material gas, the residual gas component in the reaction system, and the temperature of the substrate to be processed. Therefore, it is extremely difficult to form a desired thin film by controlling these parameters by MOCVD.
 MOCVD法に用いられる反応器の構成を開示した先行文献として、特表2007-521633号公報(特許文献1)がある。特許文献1に記載された反応器においては、回転ディスクの回転軸から異なる半径方向距離にある基板に向かうガスが、実質的に同一の速度を有する。軸から離れたディスクの部分に向かうガスは、軸に近い部分に向かうガスよりも高濃度の反応ガスを含む。 As a prior document disclosing the configuration of the reactor used in the MOCVD method, there is JP-T-2007-521633 (Patent Document 1). In the reactor described in Patent Document 1, gases directed toward the substrate at different radial distances from the rotation axis of the rotating disk have substantially the same velocity. The gas going to the part of the disk away from the axis contains a higher concentration of reaction gas than the gas going to the part near the axis.
 化合物半導体製造装置を開示した先行文献として、特開平6-295862号公報(特許文献2)がある。特許文献2に記載された化合物半導体製造装置においては、V族ガス、III族ガス、不純物ガスをそれぞれ独立した配管を用いて反応管に導入するとともに、ニードルバルブによってその流量を制御している。 As a prior document disclosing a compound semiconductor manufacturing apparatus, there is JP-A-6-295862 (Patent Document 2). In the compound semiconductor manufacturing apparatus described in Patent Document 2, a group V gas, a group III gas, and an impurity gas are introduced into a reaction tube using independent pipes, and the flow rate is controlled by a needle valve.
特表2007-521633号公報Special table 2007-521633 特開平6-295862号公報JP-A-6-295862
 MOCVD法により処理する気相成長装置には、化合物半導体結晶の品質を向上しつつ製造コストを抑えるために、材料の歩留まりおよび処理能力を向上することが求められる。そのため、可能な限り多くの大口径の被処理基板を一括して高品質に処理可能なように、気相成長装置の大型化が図られている。 A vapor phase growth apparatus for processing by the MOCVD method is required to improve material yield and processing capability in order to suppress the manufacturing cost while improving the quality of the compound semiconductor crystal. Therefore, the vapor phase growth apparatus has been increased in size so that as many substrates as possible having a large diameter can be processed at a high quality in a lump.
 大型の気相成長装置においては、大口径の被処理基板を多く処理するために、被処理基板を載置するサセプタが大型となる。また、処理能力を向上するために、大型のサセプタの中心部から端部まで被処理基板が敷き詰められて処理される。そのため、大型のサセプタ上に載置された複数の被処理基板の各々において、均一な膜厚および膜特性を有する化合物半導体結晶を成長させる必要がある。 In a large-scale vapor phase growth apparatus, in order to process a large number of substrates to be processed with a large diameter, a susceptor on which the substrate to be processed is placed becomes large. Further, in order to improve the processing capability, the substrate to be processed is spread and processed from the center to the end of the large susceptor. Therefore, it is necessary to grow a compound semiconductor crystal having a uniform film thickness and film characteristics on each of a plurality of substrates to be processed placed on a large susceptor.
 均一な膜厚および膜特性を有する化合物半導体結晶を成長させるためには、大型のサセプタ上の複数の領域毎に材料ガスの混合比および流量を調整することが必要である。 In order to grow a compound semiconductor crystal having a uniform film thickness and film characteristics, it is necessary to adjust the mixing ratio and flow rate of the material gas for each of a plurality of regions on a large susceptor.
 本発明は上記の問題点に鑑みなされたものであって、サセプタ上の複数の領域毎に材料ガスの混合比および流量を調整できる気相成長装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a vapor phase growth apparatus capable of adjusting the mixing ratio and flow rate of material gases for each of a plurality of regions on a susceptor.
 本発明に基づく気相成長装置は、被処理基板が載置され、上面に複数の領域を有するサセプタと、サセプタと対向し、上記複数の領域の各々に複数の材料ガスを供給するガス供給部とを備える。また、気相成長装置は、複数の材料ガスを上記複数の領域の数だけ所定の分岐比率で分岐して所定の流量でガス供給部に導入するための複数のガス分岐機構と、複数の材料ガスのうちの所定の複数の材料ガスを混合し、複数のガス分岐機構とそれぞれ接続された複数の混合配管と、複数のガス分岐機構を制御する制御部とを備える。制御部は、複数のガス分岐機構の各々の上記所定の分岐比率を設定することにより、上記複数の領域のそれぞれにおいて供給される複数の材料ガスの流量を調整する。 A vapor phase growth apparatus according to the present invention includes a susceptor having a plurality of regions on an upper surface, a gas supply unit facing the susceptor and supplying a plurality of material gases to each of the plurality of regions. With. Further, the vapor phase growth apparatus includes a plurality of gas branching mechanisms for branching a plurality of material gases at a predetermined branching ratio by the number of the plurality of regions and introducing them into the gas supply unit at a predetermined flow rate, and a plurality of materials A plurality of predetermined material gases in the gas are mixed, a plurality of mixing pipes connected to the plurality of gas branching mechanisms, respectively, and a control unit that controls the plurality of gas branching mechanisms. The controller adjusts the flow rates of the plurality of material gases supplied in each of the plurality of regions by setting the predetermined branching ratio of each of the plurality of gas branching mechanisms.
 本発明の一形態においては、制御部は、上記複数の領域のそれぞれにおいて供給される複数の材料ガスの流量と複数の材料ガスのうちの一部の材料ガスの流量とから複数の材料ガスのうちの残部の材料ガスの流量を算出する演算部を有する。制御部が、演算部の算出結果に基づいて、複数のガス分岐機構の各々により上記残部の材料ガスの流量を調整して、上記複数の領域のそれぞれに供給される複数の材料ガスの流量を所定の流量に維持する。 In one embodiment of the present invention, the control unit is configured to control the flow of the plurality of material gases from the flow rates of the plurality of material gases supplied in each of the plurality of regions and the flow rates of some of the material gases. An arithmetic unit for calculating the flow rate of the remaining material gas is included. The control unit adjusts the flow rate of the remaining material gas by each of the plurality of gas branching mechanisms based on the calculation result of the calculation unit, and sets the flow rate of the plurality of material gases supplied to each of the plurality of regions. Maintain a predetermined flow rate.
 本発明の一形態においては、気相成長装置は、被処理基板上に形成された膜の膜厚を検出する膜厚検出機構をさらに備える。制御部は、膜厚検出機構から入力された膜厚検出信号に基づいて、複数のガス分岐機構の各々の上記所定の分岐比率を調節し、かつ、上記所定の流量を調整する。 In one embodiment of the present invention, the vapor phase growth apparatus further includes a film thickness detection mechanism that detects the film thickness of the film formed on the substrate to be processed. The control unit adjusts the predetermined branching ratio of each of the plurality of gas branching mechanisms and adjusts the predetermined flow rate based on the film thickness detection signal input from the film thickness detection mechanism.
 本発明によれば、サセプタ上の複数の領域毎に材料ガスの混合比および流量を調整できる。 According to the present invention, the mixing ratio and flow rate of the material gas can be adjusted for each of a plurality of regions on the susceptor.
本発明の一実施形態に係るMOCVD装置の構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the MOCVD apparatus which concerns on one Embodiment of this invention. シャワープレートを下方から見た図である。It is the figure which looked at the shower plate from the lower part. 同実施形態に係るMOCVD装置の混合配管およびガス分岐機構の構成を示す系統図である。It is a systematic diagram which shows the structure of the mixing piping and gas branch mechanism of the MOCVD apparatus which concerns on the same embodiment. 同実施形態に係るMOCVD装置の制御部に関するブロック図である。It is a block diagram regarding the control part of the MOCVD apparatus which concerns on the same embodiment. 制御部の演算部によるガス分岐機構A5における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in gas branching mechanism A5 by the calculating part of a control part. 制御部の演算部によるガス分岐機構B5における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in gas branching mechanism B5 by the calculating part of a control part. 制御部の演算部によるガス分岐機構G5における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the gas branch mechanism G5 by the calculating part of a control part. 制御部の演算部によるガス分岐機構H5における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the gas branch mechanism H5 by the calculating part of a control part. 制御部の演算部によるガス分岐機構C5における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the gas branch mechanism C5 by the calculating part of a control part. 制御部の演算部によるガス分岐機構D5における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the gas branch mechanism D5 by the calculating part of a control part. 制御部の演算部によるマスフローコントローラE1における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the massflow controller E1 by the calculating part of a control part. 制御部の演算部によるマスフローコントローラE2における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the massflow controller E2 by the calculating part of a control part. 制御部の演算部によるマスフローコントローラF1における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the massflow controller F1 by the calculating part of a control part. 制御部の演算部によるマスフローコントローラF2における流量算出過程を示すフロー図である。It is a flowchart which shows the flow volume calculation process in the massflow controller F2 by the calculating part of a control part.
 以下、本発明の一実施形態に係る気相成長装置について説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。また、気相成長装置の一例として、縦型シャワーヘッド型のMOCVD装置について説明する。 Hereinafter, a vapor phase growth apparatus according to an embodiment of the present invention will be described. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. A vertical showerhead type MOCVD apparatus will be described as an example of a vapor phase growth apparatus.
 図1は、本発明の一実施形態に係るMOCVD装置の構成の一部を示す断面図である。図2は、シャワープレートを下方から見た図である。図3は、本実施形態に係るMOCVD装置の混合配管およびガス分岐機構の構成を示す系統図である。 FIG. 1 is a cross-sectional view showing a part of the configuration of an MOCVD apparatus according to an embodiment of the present invention. FIG. 2 is a view of the shower plate as viewed from below. FIG. 3 is a system diagram showing the configuration of the mixing piping and the gas branching mechanism of the MOCVD apparatus according to the present embodiment.
 図1に示すように、本発明の一実施形態に係るMOCVD装置100は、被処理基板10が内部で処理される成膜室110を備えている。成膜室110内には、被処理基板10が載置される平面視円形状のサセプタ120が配置されている。 As shown in FIG. 1, an MOCVD apparatus 100 according to an embodiment of the present invention includes a film forming chamber 110 in which a substrate 10 to be processed is processed. In the film forming chamber 110, a susceptor 120 having a circular shape in plan view on which the substrate 10 to be processed is placed is disposed.
 サセプタ120上は、複数の領域に規定される。本実施形態においては、後述するシャワーヘッド130から図1の矢印20で示すように混合ガスを噴き付けられるサセプタ120の中心側領域と、矢印30で示すように混合ガスを噴き付けられるサセプタ120の縁側領域との2つの領域が規定されている。 The susceptor 120 is defined in a plurality of areas. In the present embodiment, the center side region of the susceptor 120 to which the mixed gas is sprayed as shown by an arrow 20 in FIG. 1 from the shower head 130 to be described later, and the susceptor 120 to which the mixed gas is sprayed as shown by the arrow 30. Two regions are defined, the marginal region.
 ただし、複数の領域はこれに限られず、サセプタ120の大きさ、サセプタ120に載置される複数の被処理基板10の配置、および、後述するガス排気部141の位置などの種々の条件により、被処理基板10上における化合物半導体の結晶成長を考慮して適宜規定される。 However, the plurality of regions is not limited to this, and depending on various conditions such as the size of the susceptor 120, the arrangement of the plurality of substrates to be processed 10 placed on the susceptor 120, and the position of a gas exhaust unit 141 described later, It is appropriately determined in consideration of the crystal growth of the compound semiconductor on the substrate 10 to be processed.
 サセプタ120の下方には、平面視円形状のヒータ121が配置されている。ヒータ121は、平面視円形状の支持台151上に配置されている。支持台151の中心の下部に回転軸150の一端が接続されている。回転軸150の他端には、図示しないアクチュエータが接続されており、回転軸150は軸中心に回転可能にされている。回転軸150の中心軸上に、サセプタ120、ヒータ121および支持台151の中心が位置している。 Below the susceptor 120, a heater 121 having a circular shape in plan view is disposed. The heater 121 is disposed on a support base 151 having a circular shape in plan view. One end of the rotating shaft 150 is connected to the lower part of the center of the support base 151. An actuator (not shown) is connected to the other end of the rotating shaft 150, and the rotating shaft 150 is rotatable about the axis. The centers of the susceptor 120, the heater 121, and the support base 151 are located on the central axis of the rotating shaft 150.
 サセプタ120、ヒータ121および支持台151の周側面を覆うように、ヒータカバー152が設けられている。MOCVD装置100は、サセプタ120、ヒータ121、支持台151およびヒータカバー152を含む。 A heater cover 152 is provided so as to cover the peripheral side surfaces of the susceptor 120, the heater 121, and the support base 151. The MOCVD apparatus 100 includes a susceptor 120, a heater 121, a support base 151, and a heater cover 152.
 成膜室110の上部には、サセプタ120と対向し、被処理基板10上に複数の材料ガスを供給するガス供給部であるシャワーヘッド130が設けられている。シャワーヘッド130は、シャワープレート131、水冷部132および中空部133を含む。 In the upper part of the film forming chamber 110, a shower head 130 is provided, which is a gas supply unit that supplies a plurality of material gases onto the substrate 10 to be processed, facing the susceptor 120. The shower head 130 includes a shower plate 131, a water cooling part 132, and a hollow part 133.
 図2に示すように、シャワープレート131は、被処理基板10上に混合ガスを噴き付けるための複数の開口131aを有している。複数の開口131aのうち、シャワープレート131の中心側領域20aに位置する開口131aから、上述したサセプタ120上の中心側領域に混合ガスが噴き付けられる。また、複数の開口131aのうち、シャワープレート131の縁側領域30aに位置する開口131aから、上述したサセプタ120上の縁側領域に混合ガスが噴き付けられる。図1に示すように、シャワープレート131の下面は、サセプタ120の上面と平行に対向している。 As shown in FIG. 2, the shower plate 131 has a plurality of openings 131a for spraying a mixed gas onto the substrate 10 to be processed. Of the plurality of openings 131a, the mixed gas is sprayed from the opening 131a located in the center side area 20a of the shower plate 131 to the center side area on the susceptor 120 described above. Moreover, mixed gas is sprayed on the edge side area | region on the susceptor 120 mentioned above from the opening 131a located in the edge side area | region 30a of the shower plate 131 among several opening 131a. As shown in FIG. 1, the lower surface of the shower plate 131 faces the upper surface of the susceptor 120 in parallel.
 水冷部132は、シャワーヘッド130を水冷するための冷却水が循環する部位である。水冷部132には、ポンプ、水供給源および冷却源を含む水冷装置160から冷却用配管161を通じて冷却水が供給される。 The water cooling part 132 is a part through which cooling water for cooling the shower head 130 circulates. Cooling water is supplied to the water cooling unit 132 from a water cooling device 160 including a pump, a water supply source, and a cooling source through a cooling pipe 161.
 中空部133には、後述する複数の混合配管が接続されている。中空部133の内部は、複数の混合配管内およびシャワープレート131の複数の開口131aと連通している。MOCVD装置100は、シャワーヘッド130を含む。 A plurality of mixing pipes, which will be described later, are connected to the hollow portion 133. The interior of the hollow portion 133 communicates with the plurality of mixing pipes and the plurality of openings 131 a of the shower plate 131. The MOCVD apparatus 100 includes a shower head 130.
 また、MOCVD装置100は、成膜室110の内部を排気するためのガス排気部141と、ガス排気部141に接続されたパージライン142と、パージライン142に接続された排ガス処理装置140とを含む。 The MOCVD apparatus 100 includes a gas exhaust part 141 for exhausting the inside of the film forming chamber 110, a purge line 142 connected to the gas exhaust part 141, and an exhaust gas treatment apparatus 140 connected to the purge line 142. Including.
 これらにより、成膜室110の内部に導入された混合ガスはガス排気部141によって成膜室110の外部に排気され、排気された混合ガスはパージライン142を通って排ガス処理装置140に送られ、排ガス処理装置140において無害化される。 As a result, the mixed gas introduced into the film forming chamber 110 is exhausted to the outside of the film forming chamber 110 by the gas exhaust unit 141, and the exhausted mixed gas is sent to the exhaust gas treatment device 140 through the purge line 142. In the exhaust gas treatment device 140, it is rendered harmless.
 本実施形態に係るMOCVD装置100により被処理基板10に薄膜を形成する際には、混合ガスをシャワーヘッド130から成膜室110内へ供給する。このとき、回転しているサセプタ120を介してヒータ121により被処理基板10を加熱する。加熱された被処理基板10上で化学反応が起こることにより、被処理基板10上に薄膜が形成される。被処理基板10上を通過した混合ガスは、ガス排気部141から排気される。 When forming a thin film on the substrate 10 to be processed by the MOCVD apparatus 100 according to this embodiment, a mixed gas is supplied from the shower head 130 into the film forming chamber 110. At this time, the substrate to be processed 10 is heated by the heater 121 through the rotating susceptor 120. When a chemical reaction occurs on the heated substrate 10 to be processed, a thin film is formed on the substrate 10 to be processed. The mixed gas that has passed over the substrate 10 is exhausted from the gas exhaust part 141.
 以下、MOCVD装置100に含まれる、シャワーヘッド130に複数の混合ガスを送る配管系統について説明する。 Hereinafter, a piping system for sending a plurality of mixed gases to the shower head 130 included in the MOCVD apparatus 100 will be described.
 本実施形態に係るMOCVD装置100においては、被処理基板10上に化合物半導体の薄膜を形成するための複数の材料ガスとして、III族元素を含むIII族材料ガス、V族元素を含むV族材料ガス、および、不純物元素を含むドーピング材料ガスを用いる。ただし、複数の材料ガスはこれに限られず、たとえば、II族元素を含むII族材料ガス、VI族元素を含むVI族材料ガス、および、不純物元素を含むドーピング材料ガスを用いてもよい。 In the MOCVD apparatus 100 according to the present embodiment, a group III material gas containing a group III element and a group V material containing a group V element are used as a plurality of material gases for forming a compound semiconductor thin film on the substrate 10 to be processed. A gas and a doping material gas containing an impurity element are used. However, the plurality of material gases is not limited to this, and for example, a group II material gas containing a group II element, a group VI material gas containing a group VI element, and a doping material gas containing an impurity element may be used.
 III族元素としては、たとえば、Ga(ガリウム)、Al(アルミニウム)またはIn(インジウム)などがある。III族材料ガスとしては、たとえば、トリメチルガリウム(TMG)またはトリメチルアルミニウム(TMA)などの有機金属ガスを用いることができる。 Examples of group III elements include Ga (gallium), Al (aluminum), and In (indium). As the group III material gas, for example, an organometallic gas such as trimethylgallium (TMG) or trimethylaluminum (TMA) can be used.
 V族元素としては、たとえば、N(窒素)、P(リン)またはAs(ヒ素)などがある。V族材料ガスとしては、たとえば、アンモニア(NH3)、ホスフィン(PH3)またはアルシン(AsH3)などの水素化合物ガスを用いることができる。 Examples of group V elements include N (nitrogen), P (phosphorus), and As (arsenic). As the group V material gas, for example, a hydrogen compound gas such as ammonia (NH 3 ), phosphine (PH 3 ), or arsine (AsH 3 ) can be used.
 不純物元素としては、Mg(マグネシウム)またはSi(シリコン)などがある。ドーピング材料ガスとしては、Cp2Mg(bis-cyclopentadienyl Mg)ガスまたはSiH4ガスなどを用いることができる。 Examples of the impurity element include Mg (magnesium) and Si (silicon). As the doping material gas, Cp 2 Mg (bis-cyclopentadienyl Mg) gas or SiH 4 gas can be used.
 図1に示すように、MOCVD装置100は、サセプタ120の縁側領域にIII族材料ガスを含むIII族系混合ガスの供給源となるIII族系混合ガス縁側供給源170を備えている。また、MOCVD装置100は、サセプタ120の縁側領域にV族材料ガスを含むV族系混合ガスの供給源となるV族系混合ガス縁側供給源171を備えている。 As shown in FIG. 1, the MOCVD apparatus 100 includes a group III-based mixed gas edge supply source 170 serving as a supply source of a group III-based mixed gas containing a group III material gas in the edge region of the susceptor 120. In addition, the MOCVD apparatus 100 includes a V group mixed gas edge supply source 171 serving as a supply source of a V group mixed gas containing a V group material gas in an edge side region of the susceptor 120.
 また、MOCVD装置100は、サセプタ120の中心側領域にIII族材料ガスを含むIII族系混合ガスの供給源となるIII族系混合ガス中心側供給源172を備えている。また、MOCVD装置100は、サセプタ120の中心側領域にV族材料ガスを含むV族系混合ガスの供給源となるV族系混合ガス縁側供給源173を備えている。 In addition, the MOCVD apparatus 100 includes a group III mixed gas central supply source 172 serving as a supply source of a group III mixed gas containing a group III material gas in the central region of the susceptor 120. In addition, the MOCVD apparatus 100 includes a V group mixed gas edge supply source 173 serving as a supply source of a V group mixed gas containing a V group material gas in a central region of the susceptor 120.
 III族系混合ガス縁側供給源170は、流量調節機構であるマスフローコントローラ170cが接続されたIII族系縁側混合配管170aによりシャワーヘッド130に接続されている。V族系混合ガス縁側供給源171は、マスフローコントローラ171cが接続されたV族系縁側混合配管171aによりシャワーヘッド130に接続されている。 The group III-based mixed gas edge supply source 170 is connected to the shower head 130 by a group III-based edge mixing pipe 170a to which a mass flow controller 170c, which is a flow rate adjusting mechanism, is connected. The V group mixed gas edge supply source 171 is connected to the shower head 130 by a V group edge mixing pipe 171a to which a mass flow controller 171c is connected.
 III族系混合ガス中心側供給源172は、マスフローコントローラ172cが接続されたIII族系中心側混合配管172aによりシャワーヘッド130に接続されている。V族系混合ガス中心側供給源173は、マスフローコントローラ173cが接続されたV族系中心側混合配管173aによりシャワーヘッド130に接続されている。 The III group mixed gas center side supply source 172 is connected to the shower head 130 by a III group center side mixing pipe 172a to which a mass flow controller 172c is connected. The group V mixed gas center side supply source 173 is connected to the shower head 130 by a group V center side mixed piping 173a to which the mass flow controller 173c is connected.
 MOCVD装置100は、MOCVD装置100に含まれる全てのマスフローコントローラを制御する制御部190を備えている。制御部190は、配線191によりIII族系混合ガス縁側供給源170と接続され、配線192によりV族系混合ガス縁側供給源171と接続され、配線193によりIII族系混合ガス中心側供給源172と接続され、配線194によりV族系混合ガス中心側供給源173と接続されている。 The MOCVD apparatus 100 includes a control unit 190 that controls all mass flow controllers included in the MOCVD apparatus 100. The control unit 190 is connected to the group III mixed gas edge supply source 170 by the wiring 191, is connected to the group V mixed gas edge supply source 171 by the wiring 192, and is connected to the group III mixed gas center supply source 172 by the wiring 193. And is connected to the V group mixed gas center supply source 173 by a wiring 194.
 III族系混合ガス縁側供給源170における混合ガスの流量を調整する全てのマスフローコントローラは、III族系混合ガス縁側供給源170を介して図示しない配線により制御部190と接続されている。 All the mass flow controllers that adjust the flow rate of the mixed gas in the group III-based mixed gas edge supply source 170 are connected to the control unit 190 through the group III-based mixed gas edge supply source 170 by wiring not shown.
 V族系混合ガス縁側供給源171における混合ガスの流量を調整する全てのマスフローコントローラは、V族系混合ガス縁側供給源171を介して図示しない配線により制御部190と接続されている。 All the mass flow controllers for adjusting the flow rate of the mixed gas in the V group mixed gas edge supply source 171 are connected to the control unit 190 through the V group mixed gas edge supply source 171 by wiring not shown.
 III族系混合ガス中心側供給源172における混合ガスの流量を調整する全てのマスフローコントローラは、III族系混合ガス中心側供給源172を介して図示しない配線により制御部190と接続されている。 All the mass flow controllers that adjust the flow rate of the mixed gas in the group III-based mixed gas center-side supply source 172 are connected to the control unit 190 through the group-III-based mixed gas center-side supply source 172 by wiring (not shown).
 V族系混合ガス中心側供給源173における混合ガスの流量を調整する全てのマスフローコントローラは、V族系混合ガス中心側供給源173を介して図示しない配線により制御部190と接続されている。 All the mass flow controllers for adjusting the flow rate of the mixed gas in the V group mixed gas center supply source 173 are connected to the control unit 190 through the V group mixed gas center supply source 173 by wiring not shown.
 また、本実施形態に係るMOCVD装置100は、被処理基板10上に形成された膜の膜厚を検出する膜厚検出機構である膜厚センサー196を備える。膜厚センサー196は、配線195により制御部190と接続されている。 Moreover, the MOCVD apparatus 100 according to the present embodiment includes a film thickness sensor 196 that is a film thickness detection mechanism that detects the film thickness of the film formed on the substrate 10 to be processed. The film thickness sensor 196 is connected to the control unit 190 through a wiring 195.
 図3に示すように、MOCVD装置100は、キャリアガス供給源180、第1III族材料ガス供給源181、第2III族材料ガス供給源182、第1V族材料ガス供給源183、第2V族材料ガス供給源184、第1ドーピング材料ガス供給源185、および、第2ドーピング材料ガス供給源186を備えている。 As shown in FIG. 3, the MOCVD apparatus 100 includes a carrier gas supply source 180, a first group III material gas supply source 181, a second group III material gas supply source 182, a first group V material gas supply source 183, and a second group V material gas. A supply source 184, a first doping material gas supply source 185, and a second doping material gas supply source 186 are provided.
 キャリアガス供給源180は、キャリアガスとして、たとえば、H2ガスを供給する。キャリアガス供給源180は、キャリアライン180aに接続されている。キャリアライン180aは、マスフローコントローラA1,A2,B1,B2,C2,D2,G1,G2,H1,H2と接続されている。 The carrier gas supply source 180 supplies, for example, H 2 gas as the carrier gas. The carrier gas supply source 180 is connected to the carrier line 180a. The carrier line 180a is connected to the mass flow controllers A1, A2, B1, B2, C2, D2, G1, G2, H1, and H2.
 また、キャリアライン180aは、キャリアライン180bおよびキャリアライン180cと接続されている。キャリアライン180bは、マスフローコントローラE1が接続されたIII族系縁側混合配管170bと、マスフローコントローラE2が接続されたIII族系中心側混合配管172bとに分岐されている。 The carrier line 180a is connected to the carrier line 180b and the carrier line 180c. The carrier line 180b is branched into a group III system side mixing pipe 170b to which the mass flow controller E1 is connected and a group III system center side mixing pipe 172b to which the mass flow controller E2 is connected.
 キャリアライン180cは、マスフローコントローラF1が接続されたV族系縁側混合配管171bと、マスフローコントローラF2が接続されたV族系中心側混合配管173bとに分岐されている。 The carrier line 180c is branched into a group V system side mixing pipe 171b to which the mass flow controller F1 is connected and a group V system center side mixing pipe 173b to which the mass flow controller F2 is connected.
 第1III族材料ガス供給源181は、たとえば、TMGガスを供給する。第1III族材料ガス供給源181は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラA1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラA2が接続されたキャリアラインと接続されている。 1st group III material gas supply source 181 supplies TMG gas, for example. The group III material gas supply source 181 is connected to a bubbling device. The introduction side of the bubbling device is connected to a carrier line to which the mass flow controller A1 is connected via a valve. The outlet side of the bubbling device is connected to a carrier line to which the mass flow controller A2 is connected via a valve.
 マスフローコントローラA2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラA3およびマスフローコントローラA4を備えたガス分岐機構A5により分岐されている。マスフローコントローラA3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラA4が接続されている側は、III族系中心側混合配管172bに接続されている。 The carrier line to which the mass flow controller A2 is connected is branched by a gas branch mechanism A5 provided with a mass flow controller A3 and a mass flow controller A4 of a slightly differential pressure specification. The side to which the mass flow controller A3 is connected is connected to the group III system side mixing pipe 170b. The side to which the mass flow controller A4 is connected is connected to the group III system center side mixing pipe 172b.
 第2III族材料ガス供給源182は、たとえば、TMAガスを供給する。第2III族材料ガス供給源182は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラB1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラB2が接続されたキャリアラインと接続されている。 2nd group III material gas supply source 182 supplies TMA gas, for example. The Group III material gas supply source 182 is connected to a bubbling device. The introduction side of the bubbling device is connected to a carrier line to which the mass flow controller B1 is connected via a valve. The outlet side of the bubbling device is connected to a carrier line to which the mass flow controller B2 is connected via a valve.
 マスフローコントローラB2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラB3およびマスフローコントローラB4を備えたガス分岐機構B5により分岐されている。マスフローコントローラB3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラB4が接続されている側は、III族系中心側混合配管172bに接続されている。 The carrier line to which the mass flow controller B2 is connected is branched by a gas branching mechanism B5 including a mass flow controller B3 and a mass flow controller B4 having a slightly differential pressure specification. The side to which the mass flow controller B3 is connected is connected to the group III system side mixing pipe 170b. The side to which the mass flow controller B4 is connected is connected to the group III system center side mixing pipe 172b.
 第1ドーピング材料ガス供給源185は、たとえば、Cp2Mgガスを供給する。第1ドーピング材料ガス供給源185は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラG1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラG2が接続されたキャリアラインと接続されている。 The first doping material gas supply source 185 supplies, for example, Cp 2 Mg gas. The first doping material gas supply source 185 is connected to a bubbling device. The introduction side of this bubbling device is connected to a carrier line to which the mass flow controller G1 is connected via a valve. The outlet side of the bubbling device is connected to a carrier line to which the mass flow controller G2 is connected via a valve.
 マスフローコントローラG2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラG3およびマスフローコントローラG4を備えたガス分岐機構G5により分岐されている。マスフローコントローラG3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラG4が接続されている側は、III族系中心側混合配管172bに接続されている。 The carrier line to which the mass flow controller G2 is connected is branched by a gas branch mechanism G5 provided with a mass flow controller G3 and a mass flow controller G4 having a differential pressure specification. The side to which the mass flow controller G3 is connected is connected to the group III system side mixing pipe 170b. The side to which the mass flow controller G4 is connected is connected to the group III system center side mixing pipe 172b.
 第2ドーピング材料ガス供給源186は、たとえば、SiH4ガスを供給する。第2ドーピング材料ガス供給源186は、バブリング装置に接続されている。このバブリング装置の導入側は、バルブを介して、マスフローコントローラH1が接続されたキャリアラインと接続されている。このバブリング装置の導出側は、バルブを介して、マスフローコントローラH2が接続されたキャリアラインと接続されている。 The second doping material gas supply source 186 supplies, for example, SiH 4 gas. The second doping material gas supply source 186 is connected to the bubbling device. The introduction side of the bubbling device is connected to a carrier line to which the mass flow controller H1 is connected via a valve. The outlet side of the bubbling device is connected to a carrier line to which the mass flow controller H2 is connected via a valve.
 マスフローコントローラH2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラH3およびマスフローコントローラH4を備えたガス分岐機構H5により分岐されている。マスフローコントローラH3が接続されている側は、III族系縁側混合配管170bに接続されている。マスフローコントローラH4が接続されている側は、III族系中心側混合配管172bに接続されている。 The carrier line to which the mass flow controller H2 is connected is branched by a gas branch mechanism H5 provided with a mass flow controller H3 and a mass flow controller H4 having a slightly differential pressure specification. The side to which the mass flow controller H3 is connected is connected to the group III system side mixing pipe 170b. The side to which the mass flow controller H4 is connected is connected to the group III system center side mixing pipe 172b.
 第1V族材料ガス供給源183は、たとえば、NH3ガスを供給する。第1V族材料ガス供給源183は、マスフローコントローラC1が接続された配管の一端と接続されている。この配管の他端側は、マスフローコントローラC2が接続されたキャリアラインに接続されている。 The first group V material gas supply source 183 supplies, for example, NH 3 gas. The first group V material gas supply source 183 is connected to one end of a pipe to which the mass flow controller C1 is connected. The other end of the pipe is connected to a carrier line to which the mass flow controller C2 is connected.
 マスフローコントローラC2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラC3およびマスフローコントローラC4を備えたガス分岐機構C5により分岐されている。マスフローコントローラC3が接続されている側は、V族系縁側混合配管171bに接続されている。マスフローコントローラC4が接続されている側は、V族系中心側混合配管173bに接続されている。 The carrier line to which the mass flow controller C2 is connected is branched by a gas branch mechanism C5 provided with a mass flow controller C3 and a mass flow controller C4 having a slightly differential pressure specification. The side to which the mass flow controller C3 is connected is connected to the V group system side mixing pipe 171b. The side to which the mass flow controller C4 is connected is connected to the V group center side mixing pipe 173b.
 第2V族材料ガス供給源184は、たとえば、AsH3ガスを供給する。第2V族材料ガス供給源184は、マスフローコントローラD1が接続された配管の一端と接続されている。この配管の他端側は、マスフローコントローラD2が接続されたキャリアラインに接続されている。 The 2V group material gas supply source 184, for example, supplying AsH 3 gas. The second group V material gas supply source 184 is connected to one end of a pipe to which the mass flow controller D1 is connected. The other end of the pipe is connected to a carrier line to which the mass flow controller D2 is connected.
 マスフローコントローラD2が接続されたキャリアラインは、微差圧仕様のマスフローコントローラD3およびマスフローコントローラD4を備えたガス分岐機構D5により分岐されている。マスフローコントローラD3が接続されている側は、V族系縁側混合配管171bに接続されている。マスフローコントローラD4が接続されている側は、V族系中心側混合配管173bに接続されている。 The carrier line to which the mass flow controller D2 is connected is branched by a gas branch mechanism D5 provided with a mass flow controller D3 and a mass flow controller D4 of a slightly differential pressure specification. The side to which the mass flow controller D3 is connected is connected to the V group system side mixing pipe 171b. The side to which the mass flow controller D4 is connected is connected to the V group center side mixing pipe 173b.
 以下に、各材料ガスの供給方法および流量調整方法について説明する。図4は、本実施形態に係るMOCVD装置の制御部に関するブロック図である。図5は、制御部の演算部によるガス分岐機構A5における流量算出過程を示すフロー図である。図6は、制御部の演算部によるガス分岐機構B5における流量算出過程を示すフロー図である。図7は、制御部の演算部によるガス分岐機構G5における流量算出過程を示すフロー図である。 Hereinafter, a method for supplying each material gas and a method for adjusting the flow rate will be described. FIG. 4 is a block diagram relating to the control unit of the MOCVD apparatus according to the present embodiment. FIG. 5 is a flowchart showing a flow rate calculation process in the gas branch mechanism A5 by the calculation unit of the control unit. FIG. 6 is a flowchart showing a flow rate calculation process in the gas branching mechanism B5 by the calculation unit of the control unit. FIG. 7 is a flowchart showing a flow rate calculation process in the gas branch mechanism G5 by the calculation unit of the control unit.
 図8は、制御部の演算部によるガス分岐機構H5における流量算出過程を示すフロー図である。図9は、制御部の演算部によるガス分岐機構C5における流量算出過程を示すフロー図である。図10は、制御部の演算部によるガス分岐機構D5における流量算出過程を示すフロー図である。 FIG. 8 is a flowchart showing a flow rate calculation process in the gas branching mechanism H5 by the calculation unit of the control unit. FIG. 9 is a flowchart showing a flow rate calculation process in the gas branch mechanism C5 by the calculation unit of the control unit. FIG. 10 is a flowchart showing a flow rate calculation process in the gas branch mechanism D5 by the calculation unit of the control unit.
 図4に示すように、制御部190には、膜厚センサー196などの外部装置から送られた信号が入力される入力部190Aと、ガス流量を算出する演算部190Bとを含む。制御部190は、ガス流量設定用の結晶成長シーケンス作成用プログラムが記録された記憶部190Cから適宜プログラムを読み込んで、演算部190Bにおいてガス流量を算出する。 As shown in FIG. 4, the control unit 190 includes an input unit 190A to which a signal sent from an external device such as a film thickness sensor 196 is input, and a calculation unit 190B that calculates a gas flow rate. The control unit 190 appropriately reads a program from the storage unit 190C in which a crystal growth sequence creation program for setting the gas flow rate is recorded, and calculates the gas flow rate in the calculation unit 190B.
 制御部190は、演算部190Bの算出結果に基づいて各マスフローコントローラA1~H4に流量調整信号を出力することにより、ガス分岐機構A5,B5,C5,D5,G5,H5を制御してガス流量を調整する。 The control unit 190 controls the gas branching mechanisms A5, B5, C5, D5, G5, and H5 by outputting a flow rate adjustment signal to each of the mass flow controllers A1 to H4 based on the calculation result of the calculation unit 190B. Adjust.
 図3に示すように、マスフローコントローラA1にてキャリアガスをバブリング装置内に導入し、シリンダ内でバブリングさせてTMGガスを発生させる。マスフローコントローラA1から導入されるキャリアガスの流量により、TMGガスの発生量が決定される。 As shown in FIG. 3, the carrier gas is introduced into the bubbling device by the mass flow controller A1, and TMG gas is generated by bubbling in the cylinder. The amount of TMG gas generated is determined by the flow rate of the carrier gas introduced from the mass flow controller A1.
 発生したTMGガスは、マスフローコントローラA2から送られたキャリアガスと混合される。マスフローコントローラA2から送られるキャリアガスの流量により、TMGガスの濃度および総流量が決定される。 The generated TMG gas is mixed with the carrier gas sent from the mass flow controller A2. The concentration and total flow rate of the TMG gas are determined by the flow rate of the carrier gas sent from the mass flow controller A2.
 キャリアガスと混合されたTMGガスの一部は、マスフローコントローラA3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたTMGガスの残部は、マスフローコントローラA4にて流量制御されてIII族系中心側混合配管172bに送られる。 A part of the TMG gas mixed with the carrier gas is flow-controlled by the mass flow controller A3 and sent to the group III system side mixing pipe 170b. The remaining part of the TMG gas mixed with the carrier gas is flow-controlled by the mass flow controller A4 and sent to the group III system central mixing pipe 172b.
 TMGガスに関する流量調整は次のように行なわれる。図5に示すように、演算部190Bは、ガス分岐機構A5へのガス流入量を所定の固定値Sa5(slm)に設定する(T10)。次に、マスフローコントローラA1における流量をSa1(slm)に設定する(T11)。その結果、マスフローコントローラA2における流量Sa2(slm)をSa5-Sa1として算出する(T12)。この算出結果に基づいて、マスフローコントローラA2による流量調整が行なわれる。 The flow rate adjustment for TMG gas is performed as follows. As shown in FIG. 5, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism A5 to a predetermined fixed value Sa5 (slm) (T10). Next, the flow rate in the mass flow controller A1 is set to Sa1 (slm) (T11). As a result, the flow rate Sa2 (slm) in the mass flow controller A2 is calculated as Sa5-Sa1 (T12). Based on the calculation result, the flow rate is adjusted by the mass flow controller A2.
 同様に、キャリアガスと混合されたTMAガスの一部は、マスフローコントローラB3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたTMAガスの残部は、マスフローコントローラB4にて流量制御されてIII族系中心側混合配管172bに送られる。 Similarly, part of the TMA gas mixed with the carrier gas is flow-controlled by the mass flow controller B3 and sent to the group III system side mixing pipe 170b. The remainder of the TMA gas mixed with the carrier gas is flow-controlled by the mass flow controller B4 and sent to the group III system central mixing pipe 172b.
 TMAガスに関する流量調整は次のように行なわれる。図6に示すように、演算部190Bは、ガス分岐機構B5へのガス流入量を所定の固定値Sb5(slm)に設定する(T20)。次に、マスフローコントローラB1における流量をSb1(slm)に設定する(T21)。その結果、マスフローコントローラB2における流量Sb2(slm)をSb5-Sb1として算出する(T22)。この算出結果に基づいて、マスフローコントローラB2による流量調整が行なわれる。 The flow rate adjustment for TMA gas is performed as follows. As shown in FIG. 6, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism B5 to a predetermined fixed value Sb5 (slm) (T20). Next, the flow rate in the mass flow controller B1 is set to Sb1 (slm) (T21). As a result, the flow rate Sb2 (slm) in the mass flow controller B2 is calculated as Sb5-Sb1 (T22). Based on the calculation result, the flow rate is adjusted by the mass flow controller B2.
 キャリアガスと混合されたCp2Mgガスの一部は、マスフローコントローラG3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたCp2Mgガスの残部は、マスフローコントローラG4にて流量制御されてIII族系中心側混合配管172bに送られる。 A part of the Cp 2 Mg gas mixed with the carrier gas is flow-controlled by the mass flow controller G3 and sent to the group III system side mixing pipe 170b. The remainder of the Cp 2 Mg gas mixed with the carrier gas is flow-controlled by the mass flow controller G4 and sent to the group III system center side mixing pipe 172b.
 Cp2Mgガスに関する流量調整は次のように行なわれる。図7に示すように、演算部190Bは、ガス分岐機構G5へのガス流入量を所定の固定値Sg5(slm)に設定する(T30)。次に、マスフローコントローラG1における流量をSg1(slm)に設定する(T31)。その結果、マスフローコントローラG2における流量Sg2(slm)をSg5-Sg1として算出する(T32)。この算出結果に基づいて、マスフローコントローラG2による流量調整が行なわれる。 The flow rate adjustment for Cp 2 Mg gas is performed as follows. As shown in FIG. 7, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism G5 to a predetermined fixed value Sg5 (slm) (T30). Next, the flow rate in the mass flow controller G1 is set to Sg1 (slm) (T31). As a result, the flow rate Sg2 (slm) in the mass flow controller G2 is calculated as Sg5-Sg1 (T32). Based on the calculation result, the flow rate is adjusted by the mass flow controller G2.
 キャリアガスと混合されたSiH4ガスの一部は、マスフローコントローラH3にて流量制御されてIII族系縁側混合配管170bに送られる。キャリアガスと混合されたSiH4ガスの残部は、マスフローコントローラH4にて流量制御されてIII族系中心側混合配管172bに送られる。 A part of the SiH 4 gas mixed with the carrier gas is flow-controlled by the mass flow controller H3 and sent to the group III system side mixing pipe 170b. The remaining portion of the SiH 4 gas mixed with the carrier gas is flow-controlled by the mass flow controller H4 and sent to the group III system center side mixing pipe 172b.
 SiH4ガスに関する流量調整は次のように行なわれる。図8に示すように、演算部190Bは、ガス分岐機構H5へのガス流入量を所定の固定値Sh5(slm)に設定する(T40)。次に、マスフローコントローラH1における流量をSh1(slm)に設定する(T41)。その結果、マスフローコントローラH2における流量Sh2(slm)をSh5-Sh1として算出する(T42)。この算出結果に基づいて、マスフローコントローラH2による流量調整が行なわれる。 The flow rate adjustment for the SiH 4 gas is performed as follows. As shown in FIG. 8, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism H5 to a predetermined fixed value Sh5 (slm) (T40). Next, the flow rate in the mass flow controller H1 is set to Sh1 (slm) (T41). As a result, the flow rate Sh2 (slm) in the mass flow controller H2 is calculated as Sh5-Sh1 (T42). Based on the calculation result, the flow rate is adjusted by the mass flow controller H2.
 このように、III族系縁側混合配管170bおよびIII族系中心側混合配管172bの各々において、複数のIII族系材料ガスおよび複数のドーピング材料ガスが混合される。 In this way, a plurality of group III-based material gases and a plurality of doping material gases are mixed in each of the group III-based edge side mixing piping 170b and the group III-based center side mixing piping 172b.
 さらに、マスフローコントローラE1にてキャリアガスが流量制御されてIII族系縁側混合配管170bに送られる。マスフローコントローラE1から送られるキャリアガスの流量により、III族系混合ガス縁側供給源170に到達する混合ガスの総流量が決定される。 Furthermore, the flow rate of the carrier gas is controlled by the mass flow controller E1, and the carrier gas is sent to the group III system side mixing pipe 170b. The total flow rate of the mixed gas reaching the group III mixed gas edge supply source 170 is determined by the flow rate of the carrier gas sent from the mass flow controller E1.
 マスフローコントローラE2にてキャリアガスが流量制御されてIII族系中心側混合配管172bに送られる。マスフローコントローラE2から送られるキャリアガスの流量により、III族系混合ガス中心側供給源172に到達する混合ガスの総流量が決定される。 The carrier gas is flow-controlled by the mass flow controller E2 and sent to the group III system central mixing pipe 172b. The total flow rate of the mixed gas reaching the group III mixed gas central supply source 172 is determined by the flow rate of the carrier gas sent from the mass flow controller E2.
 図11は、制御部の演算部によるマスフローコントローラE1における流量算出過程を示すフロー図である。図12は、制御部の演算部によるマスフローコントローラE2における流量算出過程を示すフロー図である。 FIG. 11 is a flowchart showing a flow rate calculation process in the mass flow controller E1 by the calculation unit of the control unit. FIG. 12 is a flowchart showing a flow rate calculation process in the mass flow controller E2 by the calculation unit of the control unit.
 マスフローコントローラE1における流量調整は次のように行なわれる。図11に示すように、演算部190Bは、III族系混合ガス縁側供給源170の総流量を所定の固定値S30(slm)に設定する(T100)。次に、演算部190Bは、各ガス分岐機構における材料ガスの分岐比率を所定の分岐比率に設定する。演算部190Bは、その分岐比率に従って分岐された各材料ガスの合計流量からキャリアガス流量を算出する。なお、分岐比率とは、縁側混合配管に送られる割合とする。 The flow rate adjustment in the mass flow controller E1 is performed as follows. As shown in FIG. 11, the calculation unit 190B sets the total flow rate of the group III-based mixed gas edge supply source 170 to a predetermined fixed value S30 (slm) (T100). Next, the calculation unit 190B sets the branching ratio of the material gas in each gas branching mechanism to a predetermined branching ratio. The calculation unit 190B calculates the carrier gas flow rate from the total flow rate of each material gas branched according to the branching ratio. The branching ratio is a ratio sent to the edge side mixed pipe.
 具体的には、演算部190Bは、ガス分岐機構A5の分岐比率をRa5(%)に設定する(T110)。演算部190Bは、既にT10工程で設定されたガス分岐機構A5へのガス流入量Sa5(slm)を用いて、III族系縁側混合配管170bに送られるTMGガスの流量Sa3(slm)をSa5×Ra5/100として算出する(T111)。 Specifically, the calculation unit 190B sets the branching ratio of the gas branching mechanism A5 to Ra5 (%) (T110). The calculation unit 190B uses the gas inflow amount Sa5 (slm) to the gas branching mechanism A5 that has already been set in the T10 step to calculate the flow rate Sa3 (slm) of the TMG gas sent to the group III system side mixing pipe 170b as Sa5 ×. Calculated as Ra5 / 100 (T111).
 同様に、演算部190Bは、ガス分岐機構B5の分岐比率をRb5(%)に設定する(T120)。演算部190Bは、既にT20工程で設定されたガス分岐機構B5へのガス流入量Sb5(slm)を用いて、III族系縁側混合配管170bに送られるTMAガスの流量Sb3(slm)をSb5×Rb5/100として算出する(T121)。 Similarly, the calculation unit 190B sets the branching ratio of the gas branching mechanism B5 to Rb5 (%) (T120). The calculation unit 190B uses the gas inflow amount Sb5 (slm) to the gas branch mechanism B5 that has already been set in the T20 step, and calculates the flow rate Sb3 (slm) of the TMA gas sent to the group III system side mixing pipe 170b as Sb5 × Calculated as Rb5 / 100 (T121).
 同様に、演算部190Bは、ガス分岐機構G5の分岐比率をRg5(%)に設定する(T130)。演算部190Bは、既にT30工程で設定されたガス分岐機構G5へのガス流入量Sg5(slm)を用いて、III族系縁側混合配管170bに送られるCp2Mgガスの流量Sg3(slm)をSg5×Rg5/100として算出する(T131)。 Similarly, the calculation unit 190B sets the branching ratio of the gas branching mechanism G5 to Rg5 (%) (T130). The calculation unit 190B uses the gas inflow amount Sg5 (slm) to the gas branch mechanism G5 that has already been set in the T30 step to calculate the flow rate Sg3 (slm) of the Cp 2 Mg gas sent to the group III system side mixing pipe 170b. Calculated as Sg5 × Rg5 / 100 (T131).
 同様に、演算部190Bは、ガス分岐機構H5の分岐比率をRh5(%)に設定する(T140)。演算部190Bは、既にT40工程で設定されたガス分岐機構H5へのガス流入量Sh5(slm)を用いて、III族系縁側混合配管170bに送られるSiH4ガスの流量Sh3(slm)をSh5×Rh5/100として算出する(T141)。 Similarly, the calculation unit 190B sets the branching ratio of the gas branching mechanism H5 to Rh5 (%) (T140). The calculation unit 190B uses the gas inflow amount Sh5 (slm) to the gas branch mechanism H5 that has already been set in the T40 step, and sets the flow rate Sh3 (slm) of the SiH 4 gas sent to the group III system side mixing pipe 170b to Sh5. * Calculated as Rh5 / 100 (T141).
 演算部190Bは、算出した各材料ガスの流量の合計流量(Sa3+Sb3+Sg3+Sh3)を用いて、マスフローコントローラE1における流量Se1(slm)をS30-(Sa3+Sb3+Sg3+Sh3)として算出する(T150)。この算出結果に基づいて、マスフローコントローラE1による流量調整が行なわれる。 The calculation unit 190B calculates the flow rate Se1 (slm) in the mass flow controller E1 as S30− (Sa3 + Sb3 + Sg3 + Sh3) using the total flow rate of the calculated material gases (Sa3 + Sb3 + Sg3 + Sh3) (T150). Based on this calculation result, the flow rate is adjusted by the mass flow controller E1.
 同様に、マスフローコントローラE2における流量調整は次のように行なわれる。図12に示すように、演算部190Bは、III族系混合ガス中心側供給源172の総流量を所定の固定値S30a(slm)に設定する(T200)。 Similarly, the flow rate adjustment in the mass flow controller E2 is performed as follows. As shown in FIG. 12, the calculation unit 190B sets the total flow rate of the group III mixed gas center-side supply source 172 to a predetermined fixed value S30a (slm) (T200).
 演算部190Bは、上記T110工程で設定されたガス分岐機構A5の分岐比率と、既にT10工程で設定されたガス分岐機構A5へのガス流入量Sa5(slm)を用いて、III族系中心側混合配管172bに送られるTMGガスの流量Sa4(slm)をSa5×(1-Ra5/100)として算出する(T211)。 The calculation unit 190B uses the branching ratio of the gas branching mechanism A5 set in the T110 step and the gas inflow amount Sa5 (slm) to the gas branching mechanism A5 already set in the T10 step. The flow rate Sa4 (slm) of the TMG gas sent to the mixing pipe 172b is calculated as Sa5 × (1-Ra5 / 100) (T211).
 同様に、演算部190Bは、上記T120工程で設定されたガス分岐機構B5の分岐比率と、既にT20工程で設定されたガス分岐機構B5へのガス流入量Sb5(slm)を用いて、III族系中心側混合配管172bに送られるTMAガスの流量Sb4(slm)をSb5×(1-Rb5/100)として算出する(T221)。 Similarly, the calculation unit 190B uses the branching ratio of the gas branching mechanism B5 set in the T120 step and the gas inflow amount Sb5 (slm) to the gas branching mechanism B5 already set in the T20 step. The flow rate Sb4 (slm) of the TMA gas sent to the system center side mixing pipe 172b is calculated as Sb5 × (1-Rb5 / 100) (T221).
 同様に、演算部190Bは、上記T130工程で設定されたガス分岐機構G5の分岐比率と、既にT30工程で設定されたガス分岐機構G5へのガス流入量Sg5(slm)を用いて、III族系中心側混合配管172bに送られるCp2Mgガスの流量Sg4(slm)をSg5×(1-Rg5/100)として算出する(T231)。 Similarly, the calculation unit 190B uses the branching ratio of the gas branching mechanism G5 set in the T130 step and the gas inflow amount Sg5 (slm) to the gas branching mechanism G5 already set in the T30 step. The flow rate Sg4 (slm) of the Cp 2 Mg gas sent to the system center side mixing pipe 172b is calculated as Sg5 × (1-Rg5 / 100) (T231).
 同様に、演算部190Bは、上記T140工程で設定されたガス分岐機構H5の分岐比率と、既にT40工程で設定されたガス分岐機構H5へのガス流入量Sh5(slm)を用いて、III族系中心側混合配管172bに送られるSiH4ガスの流量Sh4(slm)をSh5×(1-Rh5/100)として算出する(T241)。 Similarly, the calculation unit 190B uses the branch ratio of the gas branch mechanism H5 set in the T140 step and the gas inflow amount Sh5 (slm) to the gas branch mechanism H5 already set in the T40 step, to calculate the group III The flow rate Sh4 (slm) of the SiH 4 gas sent to the system center side mixing pipe 172b is calculated as Sh5 × (1−Rh5 / 100) (T241).
 演算部190Bは、算出した各材料ガスの流量の合計流量(Sa4+Sb4+Sg4+Sh4)を用いて、マスフローコントローラE2における流量Se2(slm)をS30a-(Sa4+Sb4+Sg4+Sh4)として算出する(T250)。この算出結果に基づいて、マスフローコントローラE2による流量調整が行なわれる。 The calculation unit 190B calculates the flow rate Se2 (slm) in the mass flow controller E2 as S30a− (Sa4 + Sb4 + Sg4 + Sh4) using the total flow rate of the calculated material gases (Sa4 + Sb4 + Sg4 + Sh4) (T250). Based on the calculation result, the flow rate is adjusted by the mass flow controller E2.
 図3に示すように、マスフローコントローラC1にて流量を調整して第1V族材料ガス供給源183からNH3ガスを送出する。NH3ガスは、マスフローコントローラC2から送られたキャリアガスと混合される。マスフローコントローラC2から送られるキャリアガスの流量により、NH3ガスの濃度および総流量が決定される。 As shown in FIG. 3, the flow rate is adjusted by the mass flow controller C <b> 1, and NH 3 gas is sent from the first V group material gas supply source 183. The NH 3 gas is mixed with the carrier gas sent from the mass flow controller C2. The concentration of NH 3 gas and the total flow rate are determined by the flow rate of the carrier gas sent from the mass flow controller C2.
 キャリアガスと混合されたNH3ガスの一部は、マスフローコントローラC3にて流量制御されてV族系縁側混合配管171bに送られる。キャリアガスと混合されたNH3ガスの残部は、マスフローコントローラC4にて流量制御されてV族系中心側混合配管173bに送られる。 A part of the NH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller C3 and sent to the group V-system side mixing pipe 171b. The remaining portion of the NH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller C4 and sent to the group V system center side mixing pipe 173b.
 NH3ガスに関する流量調整は次のように行なわれる。図9に示すように、演算部190Bは、ガス分岐機構C5へのガス流入量を所定の固定値Sc5(slm)に設定する(T50)。次に、マスフローコントローラC1における流量をSc1(slm)に設定する(T51)。その結果、マスフローコントローラC2における流量Sc2(slm)をSc5-Sc1として算出する(T52)。この算出結果に基づいて、マスフローコントローラC2による流量調整が行なわれる。 The flow rate adjustment for the NH 3 gas is performed as follows. As shown in FIG. 9, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism C5 to a predetermined fixed value Sc5 (slm) (T50). Next, the flow rate in the mass flow controller C1 is set to Sc1 (slm) (T51). As a result, the flow rate Sc2 (slm) in the mass flow controller C2 is calculated as Sc5-Sc1 (T52). Based on the calculation result, the flow rate is adjusted by the mass flow controller C2.
 同様に、キャリアガスと混合されたAsH3ガスの一部は、マスフローコントローラD3にて流量制御されてV族系縁側混合配管171bに送られる。キャリアガスと混合されたAsH3ガスの残部は、マスフローコントローラD4にて流量制御されてV族系中心側混合配管173bに送られる。 Similarly, a part of the AsH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller D3 and sent to the group V system edge side mixing pipe 171b. The remaining portion of the AsH 3 gas mixed with the carrier gas is flow-controlled by the mass flow controller D4 and sent to the group V system center side mixing pipe 173b.
 AsH3ガスに関する流量調整は次のように行なわれる。図10に示すように、演算部190Bは、ガス分岐機構D5へのガス流入量を所定の固定値Sd5(slm)に設定する(T60)。次に、マスフローコントローラD1における流量をSd1(slm)に設定する(T61)。その結果、マスフローコントローラD2における流量Sd2(slm)をSd5-Sd1として算出する(T62)。この算出結果に基づいて、マスフローコントローラD2による流量調整が行なわれる。 The flow rate adjustment for AsH 3 gas is performed as follows. As shown in FIG. 10, the calculation unit 190B sets the gas inflow amount to the gas branch mechanism D5 to a predetermined fixed value Sd5 (slm) (T60). Next, the flow rate in the mass flow controller D1 is set to Sd1 (slm) (T61). As a result, the flow rate Sd2 (slm) in the mass flow controller D2 is calculated as Sd5-Sd1 (T62). Based on the calculation result, the flow rate is adjusted by the mass flow controller D2.
 このように、V族系縁側混合配管171bおよびV族系中心側混合配管173bの各々において、複数のV族系材料ガスが混合される。 In this way, a plurality of group V material gases are mixed in each of the group V edge-side mixing piping 171b and the group V center-side mixing piping 173b.
 さらに、マスフローコントローラF1にてキャリアガスが流量制御されてV族系縁側混合配管171bに送られる。マスフローコントローラF1から送られるキャリアガスの流量により、V族系混合ガス縁側供給源171に到達する混合ガスの総流量が決定される。 Furthermore, the flow rate of the carrier gas is controlled by the mass flow controller F1, and the carrier gas is sent to the group V system side mixing pipe 171b. The total flow rate of the mixed gas reaching the V group mixed gas edge supply source 171 is determined by the flow rate of the carrier gas sent from the mass flow controller F1.
 マスフローコントローラF2にてキャリアガスが流量制御されてV族系中心側混合配管173bに送られる。マスフローコントローラF2から送られるキャリアガスの流量により、V族系混合ガス中心側供給源173に到達する混合ガスの総流量が決定される。 The carrier gas is flow-controlled by the mass flow controller F2 and sent to the V group center side mixing pipe 173b. The total flow rate of the mixed gas that reaches the V group mixed gas center-side supply source 173 is determined by the flow rate of the carrier gas sent from the mass flow controller F2.
 図13は、制御部の演算部によるマスフローコントローラF1における流量算出過程を示すフロー図である。図14は、制御部の演算部によるマスフローコントローラF2における流量算出過程を示すフロー図である。 FIG. 13 is a flowchart showing a flow rate calculation process in the mass flow controller F1 by the calculation unit of the control unit. FIG. 14 is a flowchart showing a flow rate calculation process in the mass flow controller F2 by the calculation unit of the control unit.
 マスフローコントローラF1における流量調整は次のように行なわれる。図13に示すように、演算部190Bは、V族系混合ガス縁側供給源171の総流量を所定の固定値S31(slm)に設定する(T300)。次に、演算部190Bは、各ガス分岐機構における材料ガスの分岐比率を所定の分岐比率に設定する。演算部190Bは、その分岐比率に従って分岐された各材料ガスの合計流量からキャリアガス流量を算出する。 The flow rate adjustment in the mass flow controller F1 is performed as follows. As illustrated in FIG. 13, the calculation unit 190B sets the total flow rate of the V group mixed gas edge supply source 171 to a predetermined fixed value S31 (slm) (T300). Next, the calculation unit 190B sets the branching ratio of the material gas in each gas branching mechanism to a predetermined branching ratio. The calculation unit 190B calculates the carrier gas flow rate from the total flow rate of each material gas branched according to the branching ratio.
 具体的には、演算部190Bは、ガス分岐機構C5の分岐比率をRc5(%)に設定する(T310)。演算部190Bは、既にT50工程で設定されたガス分岐機構C5へのガス流入量Sc5(slm)を用いて、V族系縁側混合配管171bに送られるTMGガスの流量Sc3(slm)をSc5×Rc5/100として算出する(T311)。 Specifically, the calculation unit 190B sets the branching ratio of the gas branching mechanism C5 to Rc5 (%) (T310). The calculation unit 190B uses the gas inflow amount Sc5 (slm) to the gas branch mechanism C5 that has already been set in the T50 step to calculate the flow rate Sc3 (slm) of the TMG gas sent to the group V system side mixing pipe 171b as Sc5 × Calculated as Rc5 / 100 (T311).
 同様に、演算部190Bは、ガス分岐機構D5の分岐比率をRd5(%)に設定する(T320)。演算部190Bは、既にT60工程で設定されたガス分岐機構D5へのガス流入量Sd5(slm)を用いて、V族系縁側混合配管171bに送られるTMAガスの流量Sd3(slm)をSd5×Rd5/100として算出する(T321)。 Similarly, the calculation unit 190B sets the branching ratio of the gas branching mechanism D5 to Rd5 (%) (T320). The calculation unit 190B uses the gas inflow amount Sd5 (slm) to the gas branching mechanism D5 that has already been set in the T60 step to calculate the flow rate Sd3 (slm) of the TMA gas sent to the group V system side mixing pipe 171b as Sd5 × Calculated as Rd5 / 100 (T321).
 演算部190Bは、算出した各材料ガスの流量の合計流量(Sc3+Sd3)を用いて、マスフローコントローラF1における流量Sf1(slm)をS31-(Sc3+Sd3)として算出する(T350)。この算出結果に基づいて、マスフローコントローラF1による流量調整が行なわれる。 The calculation unit 190B calculates the flow rate Sf1 (slm) in the mass flow controller F1 as S31− (Sc3 + Sd3) using the total flow rate (Sc3 + Sd3) of the calculated flow rates of the respective material gases (T350). Based on the calculation result, the flow rate is adjusted by the mass flow controller F1.
 同様に、マスフローコントローラF2における流量調整は次のように行なわれる。図14に示すように、演算部190Bは、V族系混合ガス中心側供給源173の総流量を所定の固定値S31a(slm)に設定する(T400)。 Similarly, the flow rate adjustment in the mass flow controller F2 is performed as follows. As shown in FIG. 14, the calculation unit 190B sets the total flow rate of the V group mixed gas center supply source 173 to a predetermined fixed value S31a (slm) (T400).
 演算部190Bは、上記T310工程で設定されたガス分岐機構C5の分岐比率と、既にT50工程で設定されたガス分岐機構C5へのガス流入量Sc5(slm)を用いて、V族系中心側混合配管173bに送られるNH3ガスの流量Sc4(slm)をSc5×(1-Rc5/100)として算出する(T411)。 The calculation unit 190B uses the branch ratio of the gas branch mechanism C5 set in the T310 step and the gas inflow amount Sc5 (slm) to the gas branch mechanism C5 already set in the T50 step to calculate the V group center side. The flow rate Sc4 (slm) of the NH 3 gas sent to the mixing pipe 173b is calculated as Sc5 × (1−Rc5 / 100) (T411).
 同様に、演算部190Bは、上記T320工程で設定されたガス分岐機構D5の分岐比率と、既にT60工程で設定されたガス分岐機構D5へのガス流入量Sd5(slm)を用いて、V族系中心側混合配管173bに送られるAsH3ガスの流量Sd4(slm)をSd5×(1-Rd5/100)として算出する(T421)。 Similarly, the calculation unit 190B uses the branch ratio of the gas branch mechanism D5 set in the T320 step and the gas inflow amount Sd5 (slm) to the gas branch mechanism D5 already set in the T60 step, The flow rate Sd4 (slm) of AsH 3 gas sent to the system center side mixing pipe 173b is calculated as Sd5 × (1-Rd5 / 100) (T421).
 演算部190Bは、算出した各材料ガスの流量の合計流量(Sc4+Sd4)を用いて、マスフローコントローラF2における流量Sf2(slm)をS31a-(Sc4+Sd4)として算出する(T450)。この算出結果に基づいて、マスフローコントローラF2による流量調整が行なわれる。 The calculation unit 190B calculates the flow rate Sf2 (slm) in the mass flow controller F2 as S31a− (Sc4 + Sd4) using the total flow rate (Sc4 + Sd4) of the calculated flow rates of the respective material gases (T450). Based on the calculation result, the flow rate is adjusted by the mass flow controller F2.
 上記のように、MOCVD装置100は、シャワーヘッド130に複数の材料ガスのうちの所定の複数の材料ガスを混合してそれぞれ導入する複数の混合配管を備えている。また、MOCVD装置100は、複数の材料ガスをサセプタ120上の複数の領域の数だけ所定の分岐比率で分岐して所定の流量でシャワーヘッド130に導入するための複数のガス分岐機構A5,B5,C5,D5,G5,H5を備えている。 As described above, the MOCVD apparatus 100 includes a plurality of mixing pipes that mix and introduce a predetermined plurality of material gases among the plurality of material gases into the shower head 130. In addition, the MOCVD apparatus 100 includes a plurality of gas branch mechanisms A5 and B5 for branching a plurality of material gases at a predetermined branch ratio by the number of a plurality of regions on the susceptor 120 and introducing them into the shower head 130 at a predetermined flow rate. , C5, D5, G5, and H5.
 複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々は、複数の材料ガスの各々の分岐比率を個別に調節する。すなわち、制御部190により複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々が互いに独立して制御される。 Each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 individually adjusts the branching ratio of each of the plurality of material gases. That is, the control unit 190 controls each of the plurality of gas branch mechanisms A5, B5, C5, D5, G5, and H5 independently of each other.
 制御部190は、複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々の所定の分岐比率を設定することにより、サセプタ120上の複数の領域のそれぞれにおいて供給される複数の材料ガスの流量を調整する。 The control unit 190 sets a predetermined branching ratio for each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 to thereby provide a plurality of materials supplied in each of a plurality of regions on the susceptor 120. Adjust the gas flow rate.
 上記のように、制御部190は、サセプタ120上の複数の領域のそれぞれにおいて供給される複数の材料ガスの流量と複数の材料ガスのうちの一部の材料ガスの流量とから複数の材料ガスのうちの残部の材料ガスの流量を算出する演算部190Bを有している。 As described above, the control unit 190 determines the plurality of material gases from the flow rates of the plurality of material gases supplied in each of the plurality of regions on the susceptor 120 and the flow rates of some of the plurality of material gases. The calculation part 190B which calculates the flow volume of the remaining material gas is included.
 制御部190が、演算部190Bの算出結果に基づいて、複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々により上記残部の材料ガスの流量を調整することにより、サセプタ120上の複数の領域のそれぞれに供給される複数の材料ガスの流量を上記所定の流量に維持することができる。 The control unit 190 adjusts the flow rate of the remaining material gas by each of the plurality of gas branch mechanisms A5, B5, C5, D5, G5, and H5 based on the calculation result of the calculation unit 190B. The flow rate of the plurality of material gases supplied to each of the plurality of regions can be maintained at the predetermined flow rate.
 また、制御部190が、マスフローコントローラE1,E2,F1,F2における流量を調整することにより、各混合ガス供給源170~173における総流量を所定の流量に維持することができる。 Further, the control unit 190 can maintain the total flow rate in each of the mixed gas supply sources 170 to 173 at a predetermined flow rate by adjusting the flow rate in the mass flow controllers E1, E2, F1, and F2.
 本実施形態においては、複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々は、2つの微差圧仕様のマスフローコントローラにより構成されているが、ガス分岐機構はフロースプリッタで構成されていてもよい。 In the present embodiment, each of the plurality of gas branch mechanisms A5, B5, C5, D5, G5, and H5 is configured by two mass flow controllers having a slightly differential pressure specification, but the gas branch mechanism is configured by a flow splitter. May be.
 シャワーヘッド130は、複数の混合配管のそれぞれで混合された複数の混合ガスをサセプタ120上の複数の領域にそれぞれ噴き付ける。複数の混合ガスの各々においては、所定の複数の材料ガスの各々の濃度および流量が調節されている。 The shower head 130 sprays a plurality of mixed gases mixed in each of a plurality of mixing pipes to a plurality of regions on the susceptor 120, respectively. In each of the plurality of mixed gases, the concentration and flow rate of each of the predetermined plurality of material gases are adjusted.
 具体的には、たとえば、マスフローコントローラA3とマスフローコントローラA4との流量比と、マスフローコントローラB3とマスフローコントローラB4との流量比とを、異なるように設定することにより、III族系混合ガス縁側供給源170とIII族系混合ガス中心側供給源172とにおける複数のIII族材料ガスの混合比を調整できる。同様に、V族系混合ガス縁側供給源171とV族系混合ガス中心側供給源173とにおける複数のV族材料ガスの混合比を調整できる。 Specifically, for example, by setting the flow rate ratio between the mass flow controller A3 and the mass flow controller A4 and the flow rate ratio between the mass flow controller B3 and the mass flow controller B4 to be different from each other, the Group III mixed gas edge side supply source is set. The mixing ratio of the plurality of Group III material gases in 170 and the Group III mixed gas center supply source 172 can be adjusted. Similarly, the mixing ratio of a plurality of V group material gases in the V group mixed gas edge supply source 171 and the V group mixed gas center supply source 173 can be adjusted.
 また、複数のIII族材料ガスの混合比を一定にした状態で、サセプタ120の縁側領域に噴き付けられる混合ガス中のIII族系混合ガスとV族系混合ガスとの流量比と、中心側領域に噴き付けられる混合ガス中のIII族系混合ガスとV族系混合ガスとの流量比とを調整することができる。 Further, the flow rate ratio of the group III-based mixed gas and the group V-based mixed gas in the mixed gas sprayed to the edge region of the susceptor 120 in a state where the mixing ratio of the plurality of group III material gases is constant, The flow rate ratio between the group III-based mixed gas and the group V-based mixed gas in the mixed gas sprayed on the region can be adjusted.
 具体的には、たとえば、マスフローコントローラA3,A4,B3,B4,C3,C4の流量をそれぞれ、LA3,LA4,LB3,LB4,LC3,LC4とする。LA3:LA4=LB3:LB4を満たしつつ、LC3/(LA3+LB3)=LC4/(LA4+LB4)を満たすようにすれば、サセプタ120の縁側領域と中心側領域とにおいて、噴き付けられるIII族系混合ガスとV族系混合ガスとの流量比を同一にすることができる。 Specifically, for example, the flow rates of the mass flow controllers A3, A4, B3, B4, C3, and C4 are L A3 , L A4 , L B3 , L B4 , L C3 , and L C4 , respectively. If L A3 : L A4 = L B3 : L B4 is satisfied and L C3 / (L A3 + L B3 ) = L C4 / (L A4 + L B4 ) is satisfied, the edge side area and the center side area of the susceptor 120 , The flow rate ratio of the group III-based mixed gas and the group V-based mixed gas to be sprayed can be made the same.
 逆に、LC3およびLC4が上記の関係を満たさないように設定することにより、サセプタ120の縁側領域と中心側領域とにおいて、噴き付けられるIII族系混合ガスとV族系混合ガスとの流量比を異なるようにすることができる。なお、上記の関係式は、V族材料ガスを一種類のみ使用している場合を規定している。 On the contrary, by setting L C3 and L C4 so as not to satisfy the above relationship, the group III-based mixed gas and the group V-based mixed gas sprayed in the edge region and the center region of the susceptor 120 The flow ratio can be made different. In addition, said relational expression prescribes | regulates the case where only one type of V group material gas is used.
 上記のように、本実施形態に係るMOCVD装置100においては、サセプタ120上の複数の領域毎に材料ガスの混合比および流量を調整できる。その結果、多数枚、大面積の被処理基板10を処理する場合に、成長した結晶の層厚、組成、不純物添加量の均一性の全てを被処理基板10上で充分なものとすることができる。すなわち、複数の被処理基板10の各々において、均一な膜厚および膜特性を有する化合物半導体結晶を成長させることができる。 As described above, in the MOCVD apparatus 100 according to the present embodiment, the mixing ratio and flow rate of the material gas can be adjusted for each of a plurality of regions on the susceptor 120. As a result, when a large number of substrates to be processed 10 having a large area are processed, all of the uniformity of the layer thickness, composition, and impurity addition amount of the grown crystals should be sufficient on the substrate 10 to be processed. it can. That is, a compound semiconductor crystal having a uniform film thickness and film characteristics can be grown on each of the plurality of substrates to be processed 10.
 また、本実施形態に係るMOCVD装置100は、膜厚センサー196を備えている。制御部190は、膜厚センサー196から入力された膜厚検出信号に基づいて、複数のガス分岐機構A5,B5,C5,D5,G5,H5の各々の上記所定の分岐比率を調節し、かつ、上記所定の流量を調整する。 Further, the MOCVD apparatus 100 according to the present embodiment includes a film thickness sensor 196. The control unit 190 adjusts the predetermined branching ratio of each of the gas branching mechanisms A5, B5, C5, D5, G5, and H5 based on the film thickness detection signal input from the film thickness sensor 196, and The predetermined flow rate is adjusted.
 被処理基板10上に形成される膜の膜厚は、供給されるIII族材料の量に依存する。そのため、膜厚センサー196により検出された膜厚量が設定値より小さい場合、マスフローコントローラA1における流量を大きくしてTMGの発生量を多くする。このとき、マスフローコントローラA2における流量は、マスフローコントローラA1において大きくした流量分だけ小さくなるように制御部190により調整される。 The film thickness of the film formed on the substrate to be processed 10 depends on the amount of the group III material supplied. Therefore, when the film thickness detected by the film thickness sensor 196 is smaller than the set value, the flow rate in the mass flow controller A1 is increased to increase the amount of TMG generated. At this time, the flow rate in the mass flow controller A2 is adjusted by the control unit 190 so as to decrease by the flow rate increased in the mass flow controller A1.
 このように調整することにより、ガス分岐機構A5に流入するTMGガスの流量は変化せず、ガス分岐機構A5における分岐比率も変化させないため、III族系縁側混合配管170bおよびIII族系中心側混合配管172bに送られるTMGガスの合計流量は維持される。すなわち、TMGの量を多くしつつTMGガスの流量を維持することができる。 By adjusting in this way, the flow rate of the TMG gas flowing into the gas branching mechanism A5 does not change, and the branching ratio in the gas branching mechanism A5 does not change, so the group III system side mixing pipe 170b and the group III system center side mixing are performed. The total flow rate of TMG gas sent to the pipe 172b is maintained. That is, the flow rate of TMG gas can be maintained while increasing the amount of TMG.
 上記の場合は、サセプタ120上の縁側領域および中心側領域の両方でTMGの量を変更した場合であるが、いずれか一方のみにおいてTMGの量を変更する場合について以下に説明する。 The above case is a case where the amount of TMG is changed in both the edge region and the center region on susceptor 120, and the case where the amount of TMG is changed only in either one will be described below.
 たとえば、サセプタ120上の縁側領域のみにおいて、供給されるTMGの量を低くする場合について説明する。マスフローコントローラA1における流量を小さくしつつ、サセプタ120上の中心側領域に供給されるTMGの量を維持するために、ガス分岐機構A5における分岐比率を変更する。具体的には、III族系中心側混合配管172bに送られるTMGガスの割合を多くして、サセプタ120上の中心側領域に供給されるTMG量が変化しないようにする。よって、サセプタ120上の縁側領域に供給されるTMG量のみが低下する。 For example, the case where the amount of TMG supplied is reduced only in the edge region on the susceptor 120 will be described. In order to maintain the amount of TMG supplied to the central region on the susceptor 120 while reducing the flow rate in the mass flow controller A1, the branch ratio in the gas branch mechanism A5 is changed. Specifically, the proportion of TMG gas sent to the group III center-side mixing pipe 172b is increased so that the amount of TMG supplied to the center-side region on the susceptor 120 does not change. Therefore, only the amount of TMG supplied to the edge region on the susceptor 120 is reduced.
 このとき、マスフローコントローラA2における流量は、マスフローコントローラA1において大きくした流量分だけ小さくなるように制御部190により調整される。また、ガス分岐機構A5における分岐比率の変更により、III族系縁側混合配管170bおよびIII族系中心側混合配管172bに送られるTMGガスの合計流量が変化しなしように、マスフローコントローラE1、E2における流量が制御部190により調整される。 At this time, the flow rate in the mass flow controller A2 is adjusted by the control unit 190 so as to be reduced by the flow rate increased in the mass flow controller A1. In addition, in the mass flow controllers E1 and E2, the change in the branching ratio in the gas branching mechanism A5 does not change the total flow rate of the TMG gas sent to the group III system side mixing pipe 170b and the group III system center side mixing pipe 172b. The flow rate is adjusted by the control unit 190.
 上記の構成により、サセプタ120上の複数の領域に供給される複数の材料ガスの流量を維持して安定した成膜条件で処理しつつ、各領域に所望の混合比で混合された複数の材料ガスを供給できる。その結果、複数の被処理基板10の各々において、均一な膜厚および膜特性を有する化合物半導体結晶を成長させることができる。 With the above configuration, a plurality of materials mixed in each region at a desired mixing ratio while maintaining the flow rate of a plurality of material gases supplied to a plurality of regions on the susceptor 120 and processing under stable film forming conditions. Gas can be supplied. As a result, a compound semiconductor crystal having a uniform film thickness and film characteristics can be grown on each of the plurality of substrates to be processed 10.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 被処理基板、20a 中心側領域、30a 縁側領域、100 MOCVD装置、110 成膜室、120 サセプタ、121 ヒータ、130 シャワーヘッド、131 シャワープレート、131a 開口、132 水冷部、133 中空部、140 排ガス処理装置、141 ガス排気部、142 パージライン、150 回転軸、151 支持台、152 ヒータカバー、160 水冷装置、161 冷却用配管、170 III族系混合ガス縁側供給源、171 V族系混合ガス縁側供給源、172 III族系混合ガス中心側供給源、173 V族系混合ガス中心側供給源、170a,170b III族系縁側混合配管、171a,171b V族系縁側混合配管、170c,171c,172c,173c,A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4,E1,E2,F1,F2,G1,G2,G3,G4,H1,H2,H3,H4 マスフローコントローラ、172a,172b III族系中心側混合配管、173a,173b V族系中心側混合配管、180 キャリアガス供給源、180a,180b,180c キャリアライン、181 第1III族材料ガス供給源、182 第2III族材料ガス供給源、183 第1V族材料ガス供給源、184 第2V族材料ガス供給源、185 第1ドーピング材料ガス供給源、186 第2ドーピング材料ガス供給源、190 制御部、190A 入力部、190B 演算部、190C 記憶部、191,192,193,194,195 配線、196 膜厚センサー、A5,B5,C5,D5,G5,H5 ガス分岐機構。 10 substrate to be processed, 20a center side area, 30a edge side area, 100 MOCVD apparatus, 110 film forming chamber, 120 susceptor, 121 heater, 130 shower head, 131 shower plate, 131a opening, 132 water cooling part, 133 hollow part, 140 exhaust gas Processing equipment, 141 gas exhaust section, 142 purge line, 150 rotating shaft, 151 support base, 152 heater cover, 160 water cooling device, 161 cooling pipe, 170 group III mixed gas edge supply source, 171 group V mixed gas edge side Supply source, 172 Group III mixed gas center supply source, 173 Group V mixed gas center supply source, 170a, 170b Group III edge mixing tube, 171a, 171b Group V edge mixing tube, 170c, 171c, 172c , 173c, A1, 2, A3, A4, B1, B2, B3, B4, C1, C2, C3, C4, D1, D2, D3, D4, E1, E2, F1, F2, G1, G2, G3, G4, H1, H2, H3, H4 mass flow controller, 172a, 172b Group III center side mixed piping, 173a, 173b Group V center side mixed piping, 180 carrier gas supply source, 180a, 180b, 180c carrier line, 181 Group 1 III material gas supply source 182, Group 2 III material gas supply source, 183, Group 1 V material gas supply source, 184, Group 2 V material gas supply source, 185, First doping material gas supply source, 186, Second doping material gas supply source, 190 control unit, 190A input unit, 190B calculation unit, 190C storage unit, 191, 192, 193, 194, 19 Wiring, 196 a film thickness sensor, A5, B5, C5, D5, G5, H5 gas diverter.

Claims (3)

  1.  被処理基板(10)が載置され、上面に複数の領域を有するサセプタ(120)と、
     前記サセプタ(120)と対向し、前記複数の領域の各々に複数の材料ガスを供給するガス供給部(130)と、
     前記複数の材料ガスを前記複数の領域の数だけ所定の分岐比率で分岐して所定の流量で前記ガス供給部(130)に導入するための複数のガス分岐機構(A5,B5,C5,D5,G5,H5)と、
     前記複数の材料ガスのうちの所定の複数の材料ガスを混合し、前記複数のガス分岐機構(A5,B5,C5,D5,G5,H5)とそれぞれ接続された複数の混合配管と、
     前記複数のガス分岐機構(A5,B5,C5,D5,G5,H5)を制御する制御部(190)と
    を備え、
     前記制御部(190)は、前記複数のガス分岐機構(A5,B5,C5,D5,G5,H5)の各々の前記所定の分岐比率を設定することにより、前記複数の領域のそれぞれにおいて供給される前記複数の材料ガスの流量を調整する、気相成長装置。
    A susceptor (120) on which a substrate to be processed (10) is mounted and having a plurality of regions on the upper surface;
    A gas supply unit (130) facing the susceptor (120) and supplying a plurality of material gases to each of the plurality of regions;
    A plurality of gas branching mechanisms (A5, B5, C5, D5) for branching the plurality of material gases at a predetermined branching ratio by the number of the plurality of regions and introducing them into the gas supply unit (130) at a predetermined flow rate. , G5, H5),
    A plurality of mixing pipes that mix a predetermined plurality of material gases of the plurality of material gases and are respectively connected to the plurality of gas branch mechanisms (A5, B5, C5, D5, G5, H5),
    A control unit (190) for controlling the plurality of gas branching mechanisms (A5, B5, C5, D5, G5, H5),
    The controller (190) is supplied to each of the plurality of regions by setting the predetermined branching ratio of each of the plurality of gas branching mechanisms (A5, B5, C5, D5, G5, H5). A vapor phase growth apparatus that adjusts flow rates of the plurality of material gases.
  2.  前記制御部(190)は、前記複数の領域のそれぞれにおいて供給される前記複数の材料ガスの流量と前記複数の材料ガスのうちの一部の材料ガスの流量とから前記複数の材料ガスのうちの残部の材料ガスの流量を算出する演算部(190B)を有し、
     前記制御部(190)が、前記演算部(190B)の算出結果に基づいて、前記複数のガス分岐機構(A5,B5,C5,D5,G5,H5)の各々により前記残部の材料ガスの流量を調整して、前記複数の領域のそれぞれに供給される前記複数の材料ガスの流量を前記所定の流量に維持する、請求項1に記載の気相成長装置。
    The control unit (190) includes a flow rate of the plurality of material gases supplied in each of the plurality of regions and a flow rate of a part of the plurality of material gases to determine a portion of the plurality of material gases. An arithmetic unit (190B) for calculating the flow rate of the remaining material gas,
    Based on the calculation result of the calculation unit (190B), the control unit (190) causes the flow rate of the remaining material gas by each of the plurality of gas branching mechanisms (A5, B5, C5, D5, G5, H5). The vapor phase growth apparatus according to claim 1, wherein the flow rate of the plurality of material gases supplied to each of the plurality of regions is maintained at the predetermined flow rate.
  3.  被処理基板(10)上に形成された膜の膜厚を検出する膜厚検出機構(196)をさらに備え、
     前記制御部(190)は、前記膜厚検出機構(196)から入力された膜厚検出信号に基づいて、前記複数のガス分岐機構(A5,B5,C5,D5,G5,H5)の各々の前記所定の分岐比率を調節し、かつ、前記所定の流量を調整する、請求項1または2に記載の気相成長装置。
    A film thickness detection mechanism (196) for detecting the film thickness of the film formed on the substrate (10) to be processed;
    The control unit (190), based on the film thickness detection signal input from the film thickness detection mechanism (196), each of the plurality of gas branch mechanisms (A5, B5, C5, D5, G5, H5). The vapor phase growth apparatus according to claim 1 or 2, wherein the predetermined branching ratio is adjusted and the predetermined flow rate is adjusted.
PCT/JP2012/068313 2011-10-28 2012-07-19 Vapor deposition device WO2013061659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011237413A JP2013098233A (en) 2011-10-28 2011-10-28 Vapor phase growth device
JP2011-237413 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013061659A1 true WO2013061659A1 (en) 2013-05-02

Family

ID=48167503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068313 WO2013061659A1 (en) 2011-10-28 2012-07-19 Vapor deposition device

Country Status (3)

Country Link
JP (1) JP2013098233A (en)
TW (1) TW201317384A (en)
WO (1) WO2013061659A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439921A (en) * 1990-06-05 1992-02-10 Fujitsu Ltd Control method of gas flow rate at vapor phase epitaxial growth apparatus
JPH08203694A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Plasma treatment device
JP2002110567A (en) * 2000-10-03 2002-04-12 Mitsubishi Electric Corp Chemical vapor phase deposition apparatus and method of forming film on semiconductor wafer
JP2004005308A (en) * 2002-06-03 2004-01-08 Tokyo Electron Ltd Method of dividing flow supply of gas to chamber from gas supply plant equipped with flow-control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439921A (en) * 1990-06-05 1992-02-10 Fujitsu Ltd Control method of gas flow rate at vapor phase epitaxial growth apparatus
JPH08203694A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Plasma treatment device
JP2002110567A (en) * 2000-10-03 2002-04-12 Mitsubishi Electric Corp Chemical vapor phase deposition apparatus and method of forming film on semiconductor wafer
JP2004005308A (en) * 2002-06-03 2004-01-08 Tokyo Electron Ltd Method of dividing flow supply of gas to chamber from gas supply plant equipped with flow-control device

Also Published As

Publication number Publication date
TW201317384A (en) 2013-05-01
JP2013098233A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
JP3696632B2 (en) Gas inlet for wafer processing chamber
US11814727B2 (en) Systems and methods for atomic layer deposition
JP4840832B2 (en) Vapor phase growth apparatus, vapor phase growth method, and semiconductor device manufacturing method
KR20150108755A (en) Gas distribution system, reactor including the system, and methods of using the same
TWI391519B (en) Vapor-phase growth apparatus and vapor-phase growth method
WO2012024033A2 (en) Showerhead assembly with gas injection distribution devices
JP5079902B1 (en) Reaction chamber opening method and vapor phase growth apparatus
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
WO2013061660A1 (en) Vapor deposition device
CN112695302B (en) MOCVD reactor
US9404182B2 (en) Multi-wafer reactor
JP2019507237A5 (en) Methods for increasing the ratio of reactive ions to neutral species
JP4879693B2 (en) MOCVD apparatus and MOCVD method
US9340875B2 (en) Reaction device with peripheral-in and center-out design for chemical vapor deposition
KR20090018898A (en) Thin film production equipment and inner block for thin film production equipment
WO2013061659A1 (en) Vapor deposition device
JP2007242875A (en) Organometallic vapor phase growth apparatus, and vapor phase growth method using it
JP2012028732A (en) Vapor phase growth device
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
JP2012009752A (en) Vapor phase growth device and gas discharging device
JP2002212735A (en) Organic metal vapor growth apparatus and gaseous material supply method
KR20120090349A (en) A chemical vapor deposition apparatus
JP5481415B2 (en) Vapor growth apparatus and vapor growth method
JP2013171972A (en) Vapor phase growth apparatus and vapor phase growth method
KR101062457B1 (en) Chemical vapor deposition apparatus and gas supply method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843457

Country of ref document: EP

Kind code of ref document: A1