TW201317384A - Vapor deposition device - Google Patents

Vapor deposition device Download PDF

Info

Publication number
TW201317384A
TW201317384A TW101127504A TW101127504A TW201317384A TW 201317384 A TW201317384 A TW 201317384A TW 101127504 A TW101127504 A TW 101127504A TW 101127504 A TW101127504 A TW 101127504A TW 201317384 A TW201317384 A TW 201317384A
Authority
TW
Taiwan
Prior art keywords
gas
flow rate
mass flow
flow controller
material gases
Prior art date
Application number
TW101127504A
Other languages
Chinese (zh)
Inventor
Kiyoshi Yasufuku
Hidekazu Sakagami
Hiromutsu Kojima
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW201317384A publication Critical patent/TW201317384A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This vapor deposition device is equipped with: a susceptor (120) that has multiple areas on the top surface and on which a substrate to be treated (10) is mounted; and a gas supply unit (130) that faces the susceptor (120) and respectively supplies multiple material gases to the multiple areas. In addition, the vapor deposition device is equipped with: multiple gas-branching mechanisms for branching the multiple material gases in the same number as that of the multiple areas according to predetermined branching ratios, and for introducing the branched material gases to the gas supply unit (130) according to predetermined flow rates; multiple mixing pipes for mixing multiple predetermined material gases among the multiple material gases, said mixing pipes being respectively connected to the multiple gas-branching mechanisms; and a control unit (190) for controlling the multiple gas-branching mechanisms. The control unit (190) sets the respective predetermined branching ratios for the multiple gas-branching mechanisms, thereby regulating the flow rates of the multiple material gases to be respectively supplied to the aforementioned multiple areas.

Description

氣相成長裝置 Gas phase growth device

本發明係關於一種使用複數之材料氣體而於被處理基板上成膜之氣相成長裝置。 The present invention relates to a vapor phase growth apparatus for forming a film on a substrate to be processed using a plurality of material gases.

藉由使用化合物半導體材料之MOCVD(Metal Organic Chemical Vapor Deposition,金屬有機化學氣相沈積)法,可製造發光二極體、半導體雷射、宇宙用太陽能器件及高速器件等。 A light-emitting diode, a semiconductor laser, a solar device for a universe, a high-speed device, and the like can be manufactured by a MOCVD (Metal Organic Chemical Vapor Deposition) method using a compound semiconductor material.

於MOCVD法中,使用三甲基鎵(TMG,trimethylgallium)或三甲基鋁(TMA,rimethylaluminium)等有機金屬氣體及氨(NH3)、膦(PH3)或胂(AsH3)等氫化物氣體作為有助於成膜之材料氣體。 In the MOCVD method, an organometallic gas such as trimethylgallium or trimethylaluminium (TMA) or a hydride such as ammonia (NH 3 ), phosphine (PH 3 ) or hydrazine (AsH 3 ) is used. The gas acts as a material gas that contributes to film formation.

MOCVD法係藉由將上述材料氣體與載氣一併導入至成膜室內並加熱,使其於被處理基板上發生氣相反應,而使化合物半導體結晶於被處理基板上成長之方法。 The MOCVD method is a method in which a material semiconductor is introduced into a film forming chamber and heated by a gas phase reaction with a carrier gas to form a compound semiconductor crystal on the substrate to be processed.

眾所周知,於藉由MOCVD法形成所需之薄膜時,藉由具有反應性之材料氣體而於被處理基板表面上發生之表面反應具有極為複雜之機制。即,材料氣體之溫度、流速、壓力、材料氣體中所含之活性化學種之種類、反應系統中之殘留氣體成分、及被處理基板之溫度等多個參數有助於上述表面反應。因此,於MOCVD法中控制該等參數而形成所需之薄膜極為困難。 It is known that when a desired film is formed by MOCVD, a surface reaction occurring on the surface of a substrate to be processed by a reactive material gas has an extremely complicated mechanism. That is, a plurality of parameters such as the temperature of the material gas, the flow rate, the pressure, the type of the active chemical species contained in the material gas, the residual gas component in the reaction system, and the temperature of the substrate to be processed contribute to the surface reaction. Therefore, it is extremely difficult to control these parameters in the MOCVD method to form a desired film.

作為揭示用於MOCVD法之反應器之構成之先前文獻, 有日本專利特表2007-521633號公報(專利文獻1)。於專利文獻1所記載之反應器中,朝向距旋轉圓盤之旋轉軸處於不同之半徑方向距離之基板之氣體實質上具有相同之速度。朝向遠離軸之圓盤之部分之氣體含有較朝向靠近軸之部分之氣體為高濃度的反應氣體。 As a prior document which discloses the composition of a reactor for MOCVD, Japanese Patent Laid-Open Publication No. 2007-521633 (Patent Document 1). In the reactor described in Patent Document 1, the gas of the substrate having a different radial distance from the rotation axis of the rotating disk has substantially the same speed. The gas that is directed toward the portion of the disk that is away from the shaft contains a relatively high concentration of reactant gas for the gas that is closer to the portion of the shaft.

作為揭示化合物半導體製造裝置之先前文獻,有日本專利特開平6-295862號公報(專利文獻2)。於專利文獻2所記載之化合物半導體製造裝置中,使用分別獨立之配管將V族氣體、III族氣體及雜質氣體導入至反應管,並且藉由針閥控制其流量。 Japanese Patent Laid-Open No. Hei 6-295862 (Patent Document 2) is known as a prior art. In the compound semiconductor manufacturing apparatus described in Patent Document 2, a group V gas, a group III gas, and an impurity gas are introduced into the reaction tube by separate piping, and the flow rate is controlled by a needle valve.

先前技術文獻Prior technical literature 專利文獻Patent literature

專利文獻1:日本專利特表2007-521633號公報 Patent Document 1: Japanese Patent Laid-Open Publication No. 2007-521633

專利文獻2:日本專利特開平6-295862號公報 Patent Document 2: Japanese Patent Laid-Open No. Hei 6-295862

對於藉由MOCVD法而處理之氣相成長裝置,為提高化合物半導體結晶之品質並且抑制製造成本,而要求提高材料之良率及處理能力。因此,為可統一且高品質地處理儘可能多之大口徑被處理基板,而謀求氣相成長裝置之大型化。 In the vapor phase growth apparatus which is processed by the MOCVD method, in order to improve the quality of the compound semiconductor crystal and to suppress the production cost, it is required to improve the material yield and the processing ability. Therefore, it is possible to process the substrate of the large-caliber substrate as much as possible in a uniform and high-quality manner, and to increase the size of the vapor phase growth device.

於大型氣相成長裝置中,為較多地處理大口徑被處理基板,而使載置被處理基板之基座成為大型。又,為提高處理能力,而自大型基座之中心部至端部鋪滿被處理基板而 處理。因此,需要於載置於大型基座上之複數個被處理基板之各者上使具有均勻之膜厚及膜特性的化合物半導體結晶成長。 In the large-scale vapor phase growth apparatus, the large-diameter substrate to be processed is processed in a large amount, and the susceptor on which the substrate to be processed is placed is made large. Moreover, in order to improve the processing capability, the substrate to be processed is covered from the center portion to the end portion of the large base. deal with. Therefore, it is necessary to crystallize a compound semiconductor having a uniform film thickness and film characteristics on each of a plurality of substrates to be processed placed on a large susceptor.

為使具有均勻之膜厚及膜特性之化合物半導體結晶成長,而需要針對大型基座上之複數個區域之各者而調整材料氣體之混合比及流量。 In order to crystallize the compound semiconductor having a uniform film thickness and film characteristics, it is necessary to adjust the mixing ratio and flow rate of the material gas for each of a plurality of regions on the large susceptor.

本發明係鑒於上述問題點而完成者,其目的在於提供一種可針對基座上之複數個區域之各者而調整材料氣體之混合比及流量之氣相成長裝置。 The present invention has been made in view of the above problems, and an object thereof is to provide a vapor phase growth apparatus capable of adjusting a mixing ratio and a flow rate of a material gas for each of a plurality of regions on a susceptor.

基於本發明之氣相成長裝置包括:基座,其載置被處理基板,且於上表面具有複數個區域;及氣體供給部,其與基座對向,且將複數之材料氣體供給至上述複數個區域之各者。又,氣相成長裝置包括:複數個氣體分支機構,其等用以將複數之材料氣體相應於上述複數個區域之數量而以特定之分支比率分支,並以特定之流量導入至氣體供給部;複數個混合配管,其等將複數之材料氣體中之特定之複數之材料氣體混合,且分別與複數個氣體分支機構連接;及控制部,其控制複數個氣體分支機構。控制部藉由設定複數個氣體分支機構之各者之上述特定之分支比率,而調整於上述複數個區域之各者所供給之複數之材料氣體之流量。 A vapor phase growth apparatus according to the present invention includes: a susceptor on which a substrate to be processed is placed, and has a plurality of regions on an upper surface; and a gas supply portion that faces the susceptor and supplies a plurality of material gases to the above Each of the multiple regions. Further, the vapor phase growth device includes: a plurality of gas branching mechanisms for dividing a plurality of material gases at a specific branch ratio corresponding to the plurality of regions, and introducing the gas to the gas supply portion at a specific flow rate; a plurality of mixing pipes that mix a specific plurality of material gases of the plurality of material gases and are respectively connected to a plurality of gas branching mechanisms; and a control unit that controls the plurality of gas branching mechanisms. The control unit adjusts the flow rate of the plurality of material gases supplied by each of the plurality of regions by setting the specific branch ratio of each of the plurality of gas branching mechanisms.

於本發明之一形態中,控制部具有運算部,該運算部係根據於上述複數個區域之各者所供給之複數之材料氣體的 流量、及複數之材料氣體中之一部分材料氣體的流量,而算出複數之材料氣體中之剩餘部分之材料氣體的流量。控制部基於運算部之算出結果,藉由複數個氣體分支機構之各者調整上述剩餘部分之材料氣體的流量,而將供給至上述複數個區域之各者之複數之材料氣體的流量維持於特定之流量。 In one aspect of the present invention, the control unit includes a calculation unit that is based on a plurality of material gases supplied from each of the plurality of regions The flow rate of a portion of the material gas in the flow rate and the plurality of material gases is calculated, and the flow rate of the material gas remaining in the plurality of material gases is calculated. The control unit adjusts the flow rate of the material gas supplied to each of the plurality of regions by the respective gas branching units by adjusting the flow rate of the material gas of the remaining portions, based on the calculation result of the calculation unit, and maintains the flow rate of the plurality of material gases supplied to each of the plurality of regions. Traffic.

於本發明之一形態中,氣相成長裝置進而包括膜厚檢測機構,該膜厚檢測機構檢測形成於被處理基板上之膜之膜厚。控制部基於自膜厚檢測機構輸入之膜厚檢測信號,而調節複數個氣體分支機構之各者之上述特定的分支比率,且調整上述特定之流量。 In one aspect of the invention, the vapor phase growth apparatus further includes a film thickness detecting means that detects a film thickness of the film formed on the substrate to be processed. The control unit adjusts the specific branch ratio of each of the plurality of gas branching mechanisms based on the film thickness detection signal input from the film thickness detecting means, and adjusts the specific flow rate.

根據本發明,可針對基座上之複數個區域之各者而調整材料氣體之混合比及流量。 According to the present invention, the mixing ratio and flow rate of the material gas can be adjusted for each of a plurality of regions on the susceptor.

以下,說明本發明之一實施形態之氣相成長裝置。於以下實施形態之說明中,對於圖中之相同或相當之部分附上相同符號,且不重複其說明。又,作為氣相成長裝置之一例,說明立式簇射頭型MOCVD裝置。 Hereinafter, a vapor phase growth apparatus according to an embodiment of the present invention will be described. In the following description of the embodiments, the same or equivalent parts are attached to the same or the corresponding parts, and the description thereof will not be repeated. Further, as an example of a vapor phase growth apparatus, a vertical shower head type MOCVD apparatus will be described.

圖1係表示本發明之一實施形態之MOCVD裝置之構成之一部分之剖視圖。圖2係自下方觀察簇射板之圖。圖3係表示本實施形態之MOCVD裝置之混合配管及氣體分支機構之構成的系統圖。 Fig. 1 is a cross-sectional view showing a part of the configuration of an MOCVD apparatus according to an embodiment of the present invention. Figure 2 is a view of the shower plate viewed from below. Fig. 3 is a system diagram showing the configuration of a mixing pipe and a gas branching mechanism of the MOCVD apparatus of the present embodiment.

如圖1所示,本發明之一實施形態之MOCVD裝置100具 有於內部處理被處理基板10之成膜室110。於成膜室110內配置有載置被處理基板10之俯視圓形狀之基座120。 As shown in FIG. 1, an MOCVD apparatus 100 according to an embodiment of the present invention has The film forming chamber 110 of the substrate 10 to be processed is internally processed. The susceptor 120 in which the substrate to be processed 10 is placed in a plan view is placed in the film forming chamber 110.

基座120上被規定為複數個區域。於本實施形態中,規定有如下2個區域:基座120之中心側區域,其被自下述之簇射頭130如圖1之箭頭20所示般噴出混合氣體;及基座120之邊緣側區域,其被如箭頭30所示般噴出混合氣體。 The susceptor 120 is defined as a plurality of regions. In the present embodiment, the following two regions are defined: a central side region of the susceptor 120, which is ejected from the shower head 130 as shown by the arrow 20 in FIG. 1; and the edge of the susceptor 120. The side region is ejected as a mixture of gases as indicated by arrow 30.

但是,複數個區域並不限定於此,可根據基座120之大小、載置於基座120上之複數個被處理基板10之配置、及下述之氣體排出部141之位置等各種條件,並考慮被處理基板10上之化合物半導體之結晶成長而適當地規定。 However, the plurality of regions are not limited thereto, and various conditions such as the size of the susceptor 120, the arrangement of the plurality of substrates to be processed 10 placed on the susceptor 120, and the position of the gas discharge portion 141 described below may be used. The crystal growth of the compound semiconductor on the substrate 10 to be processed is appropriately determined.

於基座120之下方配置有俯視圓形狀之加熱器121。加熱器121配置於俯視圓形狀之支撐台151上。於支撐台151中心之下部連接有旋轉軸150之一端。於旋轉軸150之另一端連接有未圖示之致動器,且旋轉軸150設為可繞軸中心旋轉。基座120、加熱器121及支撐台151之中心位於旋轉軸150之中心軸上。 A heater 121 having a circular shape in plan view is disposed below the susceptor 120. The heater 121 is disposed on a support table 151 having a circular shape in plan view. One end of the rotating shaft 150 is connected to the lower portion of the center of the support table 151. An actuator (not shown) is connected to the other end of the rotating shaft 150, and the rotating shaft 150 is rotatable about the center of the shaft. The centers of the susceptor 120, the heater 121, and the support table 151 are located on the central axis of the rotating shaft 150.

以覆蓋基座120、加熱器121及支撐台151之周側面之方式設置有加熱器罩152。MOCVD裝置100包含基座120、加熱器121、支撐台151及加熱器罩152。 A heater cover 152 is provided to cover the circumferential sides of the susceptor 120, the heater 121, and the support table 151. The MOCVD apparatus 100 includes a susceptor 120, a heater 121, a support table 151, and a heater cover 152.

於成膜室110之上部,與基座120對向而設置有將複數之材料氣體供給至被處理基板10上之氣體供給部即簇射頭130。簇射頭130包含簇射板131、水冷部132及中空部133。 A shower head 130, which is a gas supply unit that supplies a plurality of material gases to the substrate to be processed 10, is provided on the upper portion of the film forming chamber 110 so as to face the susceptor 120. The shower head 130 includes a shower plate 131, a water-cooling portion 132, and a hollow portion 133.

如圖2所示,簇射板131具有用以將混合氣體噴出至被處 理基板10上之複數個開口131a。複數個開口131a中,自位於簇射板131之中心側區域20a之開口131a,對上述之基座120上之中心側區域噴出混合氣體。又,複數個開口131a中,自位於簇射板131之邊緣側區域30a之開口131a,對上述之基座120上之邊緣側區域噴出混合氣體。如圖1所示,簇射板131之下表面係與基座120之上表面平行地對向。 As shown in FIG. 2, the shower plate 131 has a function to eject the mixed gas to the location. A plurality of openings 131a on the substrate 10 are disposed. In the plurality of openings 131a, the mixed gas is ejected from the opening side 131a of the center side region 20a of the shower plate 131 to the center side region on the susceptor 120. Further, in the plurality of openings 131a, the mixed gas is ejected from the edge side region of the pedestal 120 from the opening 131a located in the edge side region 30a of the shower plate 131. As shown in FIG. 1, the lower surface of the shower plate 131 is opposed to the upper surface of the susceptor 120 in parallel.

水冷部132係使用以對簇射頭130進行水冷之冷卻水循環之部位。自包含泵、水供給源及冷卻源之水冷裝置160通過冷卻用配管161對水冷部132供給冷卻水。 The water-cooling portion 132 is a portion that circulates the cooling water that cools the shower head 130 by water. The water-cooling device 160 including the pump, the water supply source, and the cooling source supplies the cooling water to the water-cooling unit 132 through the cooling pipe 161.

於中空部133連接有下述之複數個混合配管。中空部133之內部與複數個混合配管內及簇射板131之複數個開口131a連通。MOCVD裝置100包含簇射頭130。 A plurality of mixing pipes described below are connected to the hollow portion 133. The inside of the hollow portion 133 communicates with a plurality of openings 131a in the plurality of mixing pipes and the shower plate 131. The MOCVD apparatus 100 includes a shower head 130.

又,MOCVD裝置100包含:氣體排出部141,其用以對成膜室110內部進行排氣;淨化管線142,其連接於氣體排出部141;及排氣處理裝置140,其連接於淨化管線142。 Further, the MOCVD apparatus 100 includes a gas discharge portion 141 for exhausting the inside of the film forming chamber 110, a purge line 142 connected to the gas discharge portion 141, and an exhaust treatment device 140 connected to the purge line 142. .

藉由該等構成,導入至成膜室110內部之混合氣體藉由氣體排出部141被排出至成膜室110之外部,所排出之混合氣體通過淨化管線142被輸送至排氣處理裝置140,並於排氣處理裝置140中實現無害化。 With this configuration, the mixed gas introduced into the inside of the film forming chamber 110 is discharged to the outside of the film forming chamber 110 by the gas discharging portion 141, and the discharged mixed gas is sent to the exhaust gas treatment device 140 through the purge line 142. It is detoxified in the exhaust gas treatment device 140.

當藉由本實施形態之MOCVD裝置100而於被處理基板10上形成薄膜時,將混合氣體自簇射頭130供給至成膜室110內。此時,隔著旋轉之基座120而藉由加熱器121對被處理基板10加熱。於已加熱之被處理基板10上發生化學反應,藉此,於被處理基板10上形成有薄膜。通過被處理基板10 上之混合氣體自氣體排出部141排出。 When a thin film is formed on the substrate to be processed 10 by the MOCVD apparatus 100 of the present embodiment, the mixed gas is supplied from the shower head 130 to the film forming chamber 110. At this time, the substrate to be processed 10 is heated by the heater 121 via the rotating susceptor 120. A chemical reaction occurs on the heated substrate 10 to be processed, whereby a thin film is formed on the substrate 10 to be processed. Through the substrate 10 to be processed The mixed gas is discharged from the gas discharge portion 141.

以下,說明包含於MOCVD裝置100中且將複數之混合氣體輸送至簇射頭130之配管系統。 Hereinafter, a piping system included in the MOCVD apparatus 100 and conveying a plurality of mixed gases to the shower head 130 will be described.

於本實施形態之MOCVD裝置100中,使用含有III族元素之III族材料氣體、含有V族元素之V族材料氣體、及含有雜質元素之摻雜材料氣體,作為用以於被處理基板10上形成化合物半導體之薄膜之複數之材料氣體。然而,複數之材料氣體並不限定於此,例如亦可使用含有Ⅱ族元素之Ⅱ族材料氣體、含有Ⅵ族元素之Ⅵ族材料氣體、及含有雜質元素之摻雜材料氣體。 In the MOCVD apparatus 100 of the present embodiment, a group III material gas containing a group III element, a group V material gas containing a group V element, and a dopant material gas containing an impurity element are used as the substrate 10 to be processed. A plurality of material gases forming a film of the compound semiconductor. However, the plurality of material gases are not limited thereto, and for example, a Group II material gas containing a Group II element, a Group VI material gas containing a Group VI element, and a dopant material gas containing an impurity element may be used.

作為III族元素,例如有Ga(鎵)、Al(鋁)或In(銦)等。作為III族材料氣體,可使用例如三甲基鎵(TMG,trimethylgallium)或三甲基鋁(TMA,trimethylaluminum)等有機金屬氣體。 Examples of the group III element include Ga (gallium), Al (aluminum), and In (indium). As the group III material gas, for example, an organometallic gas such as trimethylgallium or trimethylaluminum may be used.

作為V族元素,例如有N(氮)、P(磷)或As(砷)等。作為V族材料氣體,可使用例如氨(NH3)、膦(PH3)或胂(AsH3)等氫化物氣體。 Examples of the group V element include N (nitrogen), P (phosphorus) or As (arsenic). As the group V material gas, for example, a hydride gas such as ammonia (NH 3 ), phosphine (PH 3 ) or hydrazine (AsH 3 ) can be used.

作為雜質元素,有Mg(鎂)或Si(矽)等。作為摻雜材料氣體,可使用Cp2Mg(bis-cyclopentadienyl Mg,雙(環戊二烯)鎂)氣體或SiH4氣體等。 Examples of the impurity element include Mg (magnesium) or Si (yttrium). As the dopant material gas, Cp 2 Mg (bis-cyclopentadienyl Mg, bis(cyclopentadienyl) magnesium) gas or SiH 4 gas or the like can be used.

如圖1所示,MOCVD裝置100於基座120之邊緣側區域具有III族系混合氣體邊緣側供給源170,該III族系混合氣體邊緣側供給源170成為包含III族材料氣體之III族系混合氣體之供給源。又,MOCVD裝置100於基座120之邊緣側區 域具有V族系混合氣體邊緣側供給源171,且該V族系混合氣體邊緣側供給源171成為包含V族材料氣體之V族系混合氣體之供給源。 As shown in FIG. 1, the MOCVD apparatus 100 has a group III mixed gas edge side supply source 170 in the edge side region of the susceptor 120, and the group III mixed gas edge side supply source 170 becomes a group III system containing a group III material gas. A source of mixed gas. Moreover, the MOCVD device 100 is in the edge side region of the susceptor 120. The V-group mixed gas edge side supply source 171 is provided in the domain, and the V-group mixed gas edge side supply source 171 serves as a supply source of the V-based mixed gas containing the group V material gas.

又,MOCVD裝置100於基座120之中心側區域具有III族系混合氣體中心側供給源172,且該III族系混合氣體中心側供給源172成為包含III族材料氣體之III族系混合氣體之供給源。又,MOCVD裝置100於基座120之中心側區域具有V族系混合氣體邊緣側供給源173,且該V族系混合氣體邊緣側供給源173成為包含V族材料氣體之V族系混合氣體之供給源。 Further, the MOCVD apparatus 100 has a group III mixed gas center side supply source 172 in the center side region of the susceptor 120, and the group III mixed gas center side supply source 172 is a group III mixed gas containing a group III material gas. Supply source. Further, the MOCVD apparatus 100 has a V-type mixed gas edge side supply source 173 in the center side region of the susceptor 120, and the V-based mixed gas edge side supply source 173 becomes a V-based mixed gas containing a group V material gas. Supply source.

III族系混合氣體邊緣側供給源170係藉由III族系邊緣側混合配管170a而連接於簇射頭130,該III族系邊緣側混合配管170a上連接有作為流量調節機構之質量流量控制器170c。V族系混合氣體邊緣側供給源171係藉由V族系邊緣側混含配管171a而連接於簇射頭130,該V族系邊緣側混含配管171a上連接有質量流量控制器171c。 The group III mixed gas edge side supply source 170 is connected to the shower head 130 by a group III edge side mixing pipe 170a to which a mass flow controller as a flow rate adjusting mechanism is connected 170c. The V-type mixed gas edge side supply source 171 is connected to the shower head 130 by the V-based edge side mixed-use pipe 171a, and the V-type edge side mixed-use pipe 171a is connected to the mass flow controller 171c.

III族系混合氣體中心側供給源172係藉由III族系中心側混合配管172a而連接於簇射頭130,該III族系中心側混合配管172a上連接有質量流量控制器172c。V族系混合氣體中心側供給源173係藉由V族系中心側混合配管173a而連接於簇射頭130,該V族系中心側混合配管173a上連接有質量流量控制器173c。 The group III mixed gas center side supply source 172 is connected to the shower head 130 by the group III center side mixing pipe 172a, and the mass flow center controller 172c is connected to the group III center side mixing pipe 172a. The V-type mixed gas center side supply source 173 is connected to the shower head 130 by a V-group center side mixing pipe 173a, and the V-type system-side mixing pipe 173a is connected to the mass flow controller 173c.

MOCVD裝置100具有控制部190,該控制部190控制MOCVD裝置100中所包含之所有質量流量控制器。控制部 190藉由配線191而與III族系混合氣體邊緣側供給源170連接,藉由配線192而與V族系混合氣體邊緣側供給源171連接,藉由配線193而與III族系混合氣體中心側供給源172連接,且藉由配線194而與V族系混合氣體中心側供給源173連接。 The MOCVD apparatus 100 has a control unit 190 that controls all of the mass flow controllers included in the MOCVD apparatus 100. Control department 190 is connected to the group III mixed gas edge side supply source 170 via the wiring 191, and is connected to the group V mixed gas edge side supply source 171 via the wiring 192, and is connected to the group III mixed gas center side by the wiring 193. The supply source 172 is connected, and is connected to the group V mixed gas center side supply source 173 via the wiring 194.

調整III族系混合氣體邊緣側供給源170之混合氣體之流量之所有質量流量控制器,經由III族系混合氣體邊緣側供給源170,並藉由未圖示之配線而與控制部190連接。 All the mass flow controllers that adjust the flow rate of the mixed gas of the III-type mixed gas edge side supply source 170 are connected to the control unit 190 via the III-series mixed gas edge side supply source 170 via wiring (not shown).

調整V族系混合氣體邊緣側供給源171之混合氣體之流量之所有質量流量控制器,經由V族系混合氣體邊緣側供給源171,並藉由未圖示之配線而與控制部190連接。 All the mass flow controllers that adjust the flow rate of the mixed gas of the V-type mixed gas edge side supply source 171 are connected to the control unit 190 via the V-type mixed gas edge side supply source 171 via wiring (not shown).

調整III族系混合氣體邊緣側供給源172之混合氣體之流量之所有質量流量控制器,經由III族系混合氣體邊緣側供給源172,並藉由未圖示之配線而與控制部190連接。 All the mass flow controllers that adjust the flow rate of the mixed gas of the III-type mixed gas edge side supply source 172 are connected to the control unit 190 via a group III mixed gas edge side supply source 172 via a wiring (not shown).

調整V族系混合氣體邊緣側供給源173之混合氣體之流量之所有質量流量控制器,經由V族系混合氣體邊緣側供給源173,並藉由未圖示之配線而與控制部190連接。 All the mass flow controllers that adjust the flow rate of the mixed gas of the V-type mixed gas edge side supply source 173 are connected to the control unit 190 via the V-type mixed gas edge side supply source 173 via a wiring (not shown).

又,本實施形態之MOCVD裝置100具有膜厚感測器196,該膜厚感測器196係作為檢測形成於被處理基板10上之膜之膜厚之膜厚檢測機構。膜厚感測器196藉由配線195而與控制部190連接。 Further, the MOCVD apparatus 100 of the present embodiment has a film thickness sensor 196 as a film thickness detecting means for detecting the film thickness of the film formed on the substrate 10 to be processed. The film thickness sensor 196 is connected to the control unit 190 via a wiring 195.

如圖3所示,MOCVD裝置100包含載氣供給源180、第1III族材料氣體供給源181、第2III族材料氣體供給源182、第1V族材料氣體供給源183、第2V族材料氣體供給源 184、第1摻雜材料氣體供給源185、及第2摻雜材料氣體供給源186。 As shown in FIG. 3, the MOCVD apparatus 100 includes a carrier gas supply source 180, a first group III material gas supply source 181, a second group III material gas supply source 182, a first group V material gas supply source 183, and a second group V material gas supply source. 184. The first dopant material gas supply source 185 and the second dopant material gas supply source 186.

載氣供給源180供給例如H2氣體作為載氣。載氣供給源180連接於載氣管線180a。載氣管線180a與質量流量控制器A1、A2、B1、B2、C2、D2、G1、G2、H1及H2連接。 The carrier gas supply source 180 supplies, for example, H 2 gas as a carrier gas. The carrier gas supply source 180 is connected to the carrier gas line 180a. The carrier gas line 180a is connected to the mass flow controllers A1, A2, B1, B2, C2, D2, G1, G2, H1 and H2.

又,載氣管線180a與載氣管線180b及載氣管線180c連接。載氣管線180b分支為質量流量控制器E1所連接之III族系邊緣側混合配管170b、及質量流量控制器E2所連接之III族系中心側混合配管172b。 Further, the carrier gas line 180a is connected to the carrier gas line 180b and the carrier gas line 180c. The carrier gas line 180b branches into a group III edge side mixing pipe 170b to which the mass flow controller E1 is connected, and a group III center side mixing pipe 172b to which the mass flow controller E2 is connected.

載氣管線180c分支為質量流量控制器F1所連接之V族系邊緣側混合配管171b、及質量流量控制器F2所連接之V族系中心側混合配管173b。 The carrier gas line 180c branches into a V-group edge side mixing pipe 171b to which the mass flow controller F1 is connected, and a V-group center side mixing pipe 173b to which the mass flow controller F2 is connected.

第1III族材料氣體供給源181供給例如TMG氣體。第1III族材料氣體供給源181連接於起泡裝置。該起泡裝置之導入側經由閥門,而與質量流量控制器A1所連接之載氣管線連接,且該起泡裝置之導出側經由閥門,而與質量流量控制器A2所連接之載氣管線連接。 The first group III material gas supply source 181 is supplied with, for example, TMG gas. The Group 1 III material gas supply source 181 is connected to the foaming device. The introduction side of the foaming device is connected to the carrier gas line connected to the mass flow controller A1 via a valve, and the leading side of the foaming device is connected to the carrier gas line connected to the mass flow controller A2 via a valve. .

質量流量控制器A2所連接之載氣管線係藉由包含微差壓規格之質量流量控制器A3及質量流量控制器A4之氣體分支機構A5而分支。連接有質量流量控制器A3之側連接於III族系邊緣側混合配管170b。連接有質量流量控制器A4之側連接於III族系中心側混合配管172b。 The carrier gas line connected to the mass flow controller A2 is branched by a mass flow controller A3 including a differential pressure gauge and a gas branching mechanism A5 of the mass flow controller A4. The side to which the mass flow controller A3 is connected is connected to the group III edge side mixing pipe 170b. The side to which the mass flow controller A4 is connected is connected to the group III center side mixing pipe 172b.

第2III族材料氣體供給源182供給例如TMA氣體。第2III族材料氣體供給源182連接於起泡裝置。該起泡裝置之導 入側經由閥門,而與質量流量控制器B1所連接之載氣管線連接。該起泡裝置之導出側經由閥門,而與質量流量控制器B2所連接之載氣管線連接。 The Group II III material gas supply source 182 supplies, for example, TMA gas. The Group 2 III material gas supply source 182 is connected to the foaming device. Guide to the foaming device The inlet side is connected to the carrier gas line to which the mass flow controller B1 is connected via a valve. The outlet side of the foaming device is connected to the carrier gas line to which the mass flow controller B2 is connected via a valve.

質量流量控制器B2所連接之載氣管線係藉由包含微差壓規格之質量流量控制器B3及質量流量控制器B4之氣體分支機構B5而分支。連接有質量流量控制器B3之側連接於III族系邊緣側混合配管170b。連接有質量流量控制器B4之側連接於III族系中心側混合配管172b。 The carrier gas line connected to the mass flow controller B2 is branched by a gas branching mechanism B5 including a differential flow pressure specification mass flow controller B3 and a mass flow controller B4. The side to which the mass flow controller B3 is connected is connected to the group III edge side mixing pipe 170b. The side to which the mass flow controller B4 is connected is connected to the group III center side mixing pipe 172b.

第1摻雜材料氣體供給源185供給例如Cp2Mg氣體。第1摻雜材料氣體供給源185連接於起泡裝置。該起泡裝置之導入側經由閥門,而與質量流量控制器G1所連接之載氣管線連接。該起泡裝置之導出側經由閥門,而與質量流量控制器G2所連接之載氣管線連接。 The first dopant material gas supply source 185 supplies, for example, Cp 2 Mg gas. The first dopant material gas supply source 185 is connected to the foaming device. The introduction side of the foaming device is connected to the carrier gas line to which the mass flow controller G1 is connected via a valve. The outlet side of the foaming device is connected to the carrier gas line to which the mass flow controller G2 is connected via a valve.

質量流量控制器G2所連接之載氣管線係藉由包含微差壓規格之質量流量控制器G3及質量流量控制器G4之氣體分支機構G5而分支。連接有質量流量控制器G3之側連接於III族系邊緣側混合配管170b,連接有質量流量控制器G4之側連接於III族系中心側混合配管172b。 The carrier gas line connected to the mass flow controller G2 is branched by a gas branching mechanism G5 including a differential flow pressure specification mass flow controller G3 and a mass flow controller G4. The side to which the mass flow controller G3 is connected is connected to the group III edge side mixing pipe 170b, and the side to which the mass flow controller G4 is connected is connected to the group III center side mixing pipe 172b.

第2摻雜材料氣體供給源186供給例如SiH4氣體。第2摻雜材料氣體供給源186連接於起泡裝置。該起泡裝置之導入側經由閥門,而與質量流量控制器H1所連接之載氣管線。該起泡裝置之導出側經由閥門,而與質量流量控制器H2所連接之載氣管線連接。 The second dopant material gas supply source 186 supplies, for example, SiH 4 gas. The second dopant material gas supply source 186 is connected to the foaming device. The introduction side of the foaming device is connected to the carrier gas line connected to the mass flow controller H1 via a valve. The outlet side of the foaming device is connected to the carrier gas line to which the mass flow controller H2 is connected via a valve.

質量流量控制器H2所連接之載氣管線係藉由包含微差壓 規格之質量流量控制器H3及質量流量控制器H4之氣體分支機構H5而分支。連接有質量流量控制器H3之側連接於III族系邊緣側混合配管170b。連接有質量流量控制器H4之側連接於III族系中心側混合配管172b。 The carrier gas line connected to the mass flow controller H2 is comprised of differential pressure The mass flow controller H3 of the specification and the gas branching mechanism H5 of the mass flow controller H4 are branched. The side to which the mass flow controller H3 is connected is connected to the group III edge side mixing pipe 170b. The side to which the mass flow controller H4 is connected is connected to the group III center side mixing pipe 172b.

第1V族材料氣體供給源183供給例如NH3氣體。第1V族材料氣體供給源183與質量流量控制器C1所連接之配管之一端連接。該配管之另一端側與質量流量控制器C2所連接之載氣管線連接。 The Group 1V material gas supply source 183 supplies, for example, NH 3 gas. The first group V material gas supply source 183 is connected to one end of a pipe to which the mass flow controller C1 is connected. The other end side of the pipe is connected to a carrier gas line to which the mass flow controller C2 is connected.

質量流量控制器C2所連接之載氣管線係藉由包含微差壓規格之質量流量控制器C3及質量流量控制器C4之氣體分支機構C5而分支。連接有質量流量控制器C3之側連接於V族系邊緣側混合配管171b。連接有質量流量控制器C4之側連接於V族系中心側混合配管173b。 The carrier gas line connected to the mass flow controller C2 is branched by a gas branching mechanism C5 including a differential pressure gauge mass flow controller C3 and a mass flow controller C4. The side to which the mass flow controller C3 is connected is connected to the V-group edge side mixing pipe 171b. The side to which the mass flow controller C4 is connected is connected to the V-system center side mixing pipe 173b.

第2V族材料氣體供給源184供給例如AsH3氣體。第2V族材料氣體供給源184與質量流量控制器D1所連接之配管之一端連接。該配管之另一端側與質量流量控制器D2所連接之載氣管線連接。 The second group V material gas supply source 184 supplies, for example, AsH 3 gas. The Group 2V material gas supply source 184 is connected to one end of a pipe to which the mass flow controller D1 is connected. The other end side of the pipe is connected to a carrier gas line to which the mass flow controller D2 is connected.

質量流量控制器D2所連接之載氣管線係藉由包含微差壓規格之質量流量控制器D3及質量流量控制器D4之氣體分支機構D5而分支。連接有質量流量控制器D3之側連接於V族系邊緣側混合配管171b。連接有質量流量控制器D4之側連接於V族系中心側混合配管173b。 The carrier gas line connected to the mass flow controller D2 is branched by a gas branching mechanism D3 including a differential flow pressure specification mass flow controller D3 and a mass flow controller D4. The side to which the mass flow controller D3 is connected is connected to the V-group edge side mixing pipe 171b. The side to which the mass flow controller D4 is connected is connected to the V-system center side mixing pipe 173b.

以下說明各材料氣體之供給方法及流量調整方法。圖4係關於本實施形態之MOCVD裝置之控制部之方塊圖。圖5 係表示利用控制部之運算部所進行之氣體分支機構A5之流量算出過程的流程圖。圖6係表示利用控制部之運算部所進行之氣體分支機構B5之流量算出過程的流程圖。圖7係表示利用控制部之運算部所進行之氣體分支機構G5之流量算出過程的流程圖。 The supply method of each material gas and the flow rate adjustment method will be described below. Fig. 4 is a block diagram showing a control unit of the MOCVD apparatus of the embodiment. Figure 5 The flow chart of the flow rate calculation process of the gas branching mechanism A5 by the calculation unit of the control unit is shown. Fig. 6 is a flowchart showing a flow rate calculation process of the gas branching mechanism B5 by the calculation unit of the control unit. Fig. 7 is a flowchart showing a flow rate calculation process of the gas branching mechanism G5 by the calculation unit of the control unit.

圖8係表示利用控制部之運算部所進行之氣體分支機構H5之流量算出過程的流程圖。圖9係表示利用控制部之運算部所進行之氣體分支機構C5之流量算出過程的流程圖。圖10係表示利用控制部之運算部所進行之氣體分支機構D5之流量算出過程的流程圖。 FIG. 8 is a flowchart showing a flow rate calculation process of the gas branching mechanism H5 by the calculation unit of the control unit. FIG. 9 is a flowchart showing a flow rate calculation process of the gas branching mechanism C5 by the calculation unit of the control unit. FIG. 10 is a flowchart showing a flow rate calculation process of the gas branching mechanism D5 by the calculation unit of the control unit.

如圖4所示,於控制部190包含自膜厚感測器196等外部裝置送出之信號所輸入之輸入部190A、及算出氣體流量之運算部190B。控制部190自記錄有氣體流量設定用之結晶成長序列生成用程式之記憶部190C適當地讀入程式,並於運算部190B中算出氣體流量。 As shown in FIG. 4, the control unit 190 includes an input unit 190A to which a signal sent from an external device such as the film thickness sensor 196 is input, and a calculation unit 190B for calculating a gas flow rate. The control unit 190 reads the program from the memory unit 190C in which the program for generating the crystal growth sequence for setting the gas flow rate is appropriately read, and calculates the gas flow rate in the calculation unit 190B.

控制部190基於運算部190B之算出結果而對各質量流量控制器A1~H4輸出流量調整信號,藉此控制氣體分支機構A5、B5、C5、D5、G5及H5而調整氣體流量。 The control unit 190 outputs a flow rate adjustment signal to each of the mass flow controllers A1 to H4 based on the calculation result of the calculation unit 190B, thereby controlling the gas branching mechanisms A5, B5, C5, D5, G5, and H5 to adjust the gas flow rate.

如圖3所示,利用質量流量控制器A1將載氣導入至起泡裝置內,並使其於氣缸內起泡而產生TMG氣體。TMG氣體之產生量由自質量流量控制器A1導入之載氣之流量決定。 As shown in FIG. 3, the carrier gas is introduced into the foaming device by the mass flow controller A1, and is bubbled in the cylinder to generate TMG gas. The amount of TMG gas generated is determined by the flow rate of the carrier gas introduced from the mass flow controller A1.

使所產生之TMG氣體與自質量流量控制器A2輸送之載氣混合。TMG氣體之濃度及總流量由自質量流量控制器A2輸送之載氣之流量決定。 The generated TMG gas is mixed with the carrier gas delivered from the mass flow controller A2. The concentration of TMG gas and the total flow rate are determined by the flow rate of the carrier gas delivered from the mass flow controller A2.

與載氣混合後之TMG氣體之一部分係由質量流量控制器A3控制流量而輸送至III族系邊緣側混合配管170b。與載氣混合後之TMG氣體之剩餘部分係由質量流量控制器A4控制流量而輸送至III族系中心側混合配管172b。 A portion of the TMG gas mixed with the carrier gas is sent to the group III edge side mixing pipe 170b by the mass flow controller A3 to control the flow rate. The remaining portion of the TMG gas mixed with the carrier gas is sent to the group III center side mixing pipe 172b by the mass flow controller A4 to control the flow rate.

與TMG氣體相關之流量調整係以如下方式進行。如圖5所示,運算部190B將向氣體分支機構A5之氣體流入量設定為特定之固定值Sa5(slm)(T10)。其次,將質量流量控制器A1之流量設定為Sa1(slm)(T11)。其結果,將質量流量控制器A2之流量Sa2(slm)設為Sa5-Sa1並算出(T12)。根據該算出結果,進行利用質量流量控制器A2之流量調整。 The flow adjustment associated with the TMG gas is performed as follows. As shown in FIG. 5, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism A5 to a specific fixed value Sa5 (slm) (T10). Next, the flow rate of the mass flow controller A1 is set to Sa1 (slm) (T11). As a result, the flow rate Sa2 (slm) of the mass flow controller A2 is set to Sa5-Sa1 and calculated (T12). Based on the calculation result, the flow rate adjustment by the mass flow controller A2 is performed.

同樣地,與載氣混合後之TMA氣體之一部分係由質量流量控制器B3控制流量而輸送至III族系邊緣側混合配管170b;與載氣混合後之TMA氣體之剩餘部分係由質量流量控制器B4控制流量而輸送至III族系中心側混合配管172b。 Similarly, one part of the TMA gas mixed with the carrier gas is controlled by the mass flow controller B3 to be sent to the III-group edge side mixing pipe 170b; the remaining portion of the TMA gas mixed with the carrier gas is controlled by the mass flow rate. The device B4 controls the flow rate and delivers it to the group III center side mixing pipe 172b.

與TMG氣體相關之流量調整係以如下方式進行。如圖6所示,運算部190B將向氣體分支機構B5之氣體流入量設定為特定之固定值Sb5(slm)(T20)。其次,將質量流量控制器B1之流量設定為Sb1(slm)(T21)。其結果,將質量流量控制器B2之流量Sb2(slm)設為Sb5-Sb1並算出(T22)。根據該算出結果,進行利用質量流量控制器B2之流量調整。 The flow adjustment associated with the TMG gas is performed as follows. As shown in FIG. 6, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism B5 to a specific fixed value Sb5 (slm) (T20). Next, the flow rate of the mass flow controller B1 is set to Sb1 (slm) (T21). As a result, the flow rate Sb2 (slm) of the mass flow controller B2 is set to Sb5-Sb1 and calculated (T22). Based on the calculation result, the flow rate adjustment by the mass flow controller B2 is performed.

與載氣混合後之Cp2Mg氣體之一部分係由質量流量控制器G3控制流量而輸送至III族系邊緣側混合配管170b。與載氣混合後之Cp2Mg氣體之剩餘部分係由質量流量控制器G4控制流量而輸送至III族系中心側混合配管172b。 A portion of the Cp 2 Mg gas mixed with the carrier gas is sent to the group III edge side mixing pipe 170b by the flow rate controlled by the mass flow controller G3. The remaining portion of the Cp 2 Mg gas mixed with the carrier gas is sent to the group III center side mixing pipe 172b by the flow rate controlled by the mass flow controller G4.

與Cp2Mg氣體相關之流量調整係以如下方式進行。如圖7所示,運算部190B將向氣體分支機構G5之氣體流入量設定為特定之固定值Sg5(slm)(T30)。其次,將質量流量控制器G1之流量設定為Sg1(slm)(T31)。其結果,將質量流量控制器G2之流量Sg2(slm)設為Sg5-Sg1並算出(T32)。根據該算出結果,進行利用質量流量控制器G2之流量調整。 The flow rate adjustment associated with the Cp 2 Mg gas is carried out as follows. As shown in FIG. 7, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism G5 to a specific fixed value Sg5 (slm) (T30). Next, the flow rate of the mass flow controller G1 is set to Sg1 (slm) (T31). As a result, the flow rate Sg2 (slm) of the mass flow controller G2 is set to Sg5-Sg1 and calculated (T32). Based on the calculation result, the flow rate adjustment by the mass flow controller G2 is performed.

與載氣混合後之SiH4氣體之一部分係由質量流量控制器H3控制流量而輸送至III族系邊緣側混合配管170b。與載氣混合後之SiH4氣體之剩餘部分係由質量流量控制器H4控制流量而輸送至III族系中心側混合配管172b。 A portion of the SiH 4 gas mixed with the carrier gas is sent to the group III edge side mixing pipe 170b by the flow rate controlled by the mass flow controller H3. The remaining portion of the SiH 4 gas mixed with the carrier gas is sent to the group III center side mixing pipe 172b by the flow rate controlled by the mass flow controller H4.

與SiH4氣體相關之流量調整係以如下方式進行。如圖8所示,運算部190B將向氣體分支機構H5之氣體流入量設定為特定之固定值Sh5(slm)(T40)。其次,將質量流量控制器H1之流量設定為Sh1(slm)(T41)。其結果,將質量流量控制器H2之流量Sh2(slm)設為Sh5-Sh1並算出(T42)。基於該算出結果,進行利用質量流量控制器H2之流量調整。 The flow rate adjustment associated with the SiH 4 gas is carried out as follows. As shown in FIG. 8, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism H5 to a specific fixed value Sh5 (slm) (T40). Next, the flow rate of the mass flow controller H1 is set to Sh1 (slm) (T41). As a result, the flow rate Sh2 (slm) of the mass flow controller H2 is set to Sh5-Sh1 and calculated (T42). Based on the calculation result, the flow rate adjustment by the mass flow controller H2 is performed.

如此,複數之III族系材料氣體及複數之摻雜材料氣體於III族系邊緣側混合配管170b及III族系中心側混合配管172b之各者中混合。 In this way, a plurality of the group III material gas and a plurality of doping material gases are mixed in each of the group III edge side mixing pipe 170b and the group III center side mixing pipe 172b.

進而,載氣由質量流量控制器E1控制流量而輸送至III族系邊緣側混合配管170b。到達III族系混合氣體邊緣側供給源170之混合氣體之總流量由自質量流量控制器E1輸送之載氣之流量決定。 Further, the carrier gas is controlled to flow rate by the mass flow controller E1 and sent to the group III edge side mixing pipe 170b. The total flow rate of the mixed gas reaching the III-type mixed gas edge side supply source 170 is determined by the flow rate of the carrier gas delivered from the mass flow controller E1.

載氣由質量流量控制器E2控制流量而輸送至III族系中心 側混合配管172b。到達III族系混合氣體中心側供給源172之混合氣體之總流量由自質量流量控制器E2輸送之載氣之流量決定。 The carrier gas is controlled by the mass flow controller E2 and sent to the center of the III system. The side mixing pipe 172b. The total flow rate of the mixed gas reaching the group III mixed gas center side supply source 172 is determined by the flow rate of the carrier gas delivered from the mass flow controller E2.

圖11係表示利用控制部之運算部所進行之質量流量控制器E1之流量算出過程的流程圖。圖12係表示利用控制部之運算部所進行之質量流量控制器E2之流量算出過程的流程圖。 Fig. 11 is a flowchart showing a flow rate calculation process of the mass flow controller E1 by the calculation unit of the control unit. Fig. 12 is a flowchart showing a flow rate calculation process of the mass flow controller E2 by the calculation unit of the control unit.

質量流量控制器E1之流量調整係以如下方式進行。如圖11所示,運算部190B將III族系混合氣體邊緣側供給源170之總流量設定為特定之固定值S30(slm)(T100)。其次,運算部190B將各氣體分支機構中之材料氣體之分支比率設定為特定之分支比率。運算部190B自根據該分支比率而分支之各材料氣體之合計流量算出載氣流量。再者,所謂分支比率係指輸送至邊緣側混合配管之比率。 The flow rate adjustment of the mass flow controller E1 is performed as follows. As shown in FIG. 11, the calculation unit 190B sets the total flow rate of the group III mixed gas edge side supply source 170 to a specific fixed value S30 (slm) (T100). Next, the calculation unit 190B sets the branch ratio of the material gas in each gas branching mechanism to a specific branch ratio. The calculation unit 190B calculates the carrier gas flow rate from the total flow rate of the material gases branched according to the branch ratio. In addition, the branch ratio means the ratio of the conveyance to the edge side mixing piping.

具體而言,運算部190B將氣體分支機構A5之分支比率設定為Ra5(%)(T110)。運算部190B使用已於T10步驟中所設定之向氣體分支機構A5之氣體流入量Sa5(slm),將輸送至III族系邊緣側混合配管170b之TMG氣體之流量Sa3(slm)設為Sa5×Ra5/100並算出(T111)。 Specifically, the calculation unit 190B sets the branch ratio of the gas branching mechanism A5 to Ra5 (%) (T110). The calculation unit 190B uses the gas inflow amount Sa5 (slm) to the gas branching mechanism A5 set in the step T10, and sets the flow rate Sa3 (slm) of the TMG gas sent to the group III edge side mixing pipe 170b to Sa5 × Ra5/100 is calculated (T111).

同樣地,運算部190B將氣體分支機構B5之分支比率設定為Rb5(%)(T120)。運算部190B使用已於T20步驟中所設定之向氣體分支機構B5之氣體流入量Sb5(slm),將輸送至III族系邊緣側混合配管170b之TMA氣體之流量Sb3(slm)設為Sb5×Rb5/100並算出(T121)。 Similarly, the calculation unit 190B sets the branch ratio of the gas branching mechanism B5 to Rb5 (%) (T120). The calculation unit 190B uses the gas inflow amount Sb5 (slm) to the gas branching mechanism B5 set in the step T20, and sets the flow rate Sb3 (slm) of the TMA gas sent to the group III edge side mixing pipe 170b to Sb5 × Rb5/100 is calculated (T121).

同樣地,運算部190B將氣體分支機構G5之分支比率設定為Rg5(%)(T130)。運算部190B使用已於T30步驟中所設定之向氣體分支機構G5之氣體流入量Sg5(slm),將輸送至III族系邊緣側混合配管170b之Cp2Mg氣體之流量Sg3(slm)設為Sg5×Rg5/100並算出(T131)。 Similarly, the calculation unit 190B sets the branch ratio of the gas branching mechanism G5 to Rg5 (%) (T130). The calculation unit 190B sets the flow rate Sg3 (slm) of the Cp 2 Mg gas to the group III edge side mixing pipe 170b using the gas inflow amount Sg5 (slm) to the gas branching mechanism G5 set in the step T30. Sg5 × Rg5 / 100 and calculated (T131).

同樣地,運算部190B將氣體分支機構H5之分支比率設定為Rh5(%)(T140)。運算部190B使用已於T40步驟中所設定之向氣體分支機構H5之氣體流入量Sh5(slm),將輸送至III族系邊緣側混合配管170b之SiH4氣體之流量Sh3(slm)設為Sh5×Rh5/100並算出(T141)。 Similarly, the calculation unit 190B sets the branch ratio of the gas branching mechanism H5 to Rh5 (%) (T140). The calculation unit 190B sets the flow rate Sh3 (slm) of the SiH 4 gas supplied to the III-group edge side mixing pipe 170b to Sh5 using the gas inflow amount Sh5 (slm) to the gas branching mechanism H5 set in the step T40. ×Rh5/100 and calculated (T141).

運算部190B使用所算出之各材料氣體之流量之合計流量(Sa3+Sb3+Sg3+Sh3),將質量流量控制器E1之流量Se1(slm)設為S30-(Sa3+Sb3+Sg3+Sh3)並算出(T150)。基於該算出結果,進行利用質量流量控制器E1之流量調整。 The calculation unit 190B uses the calculated total flow rate of the flow rates of the respective material gases (Sa3+Sb3+Sg3+Sh3), and sets the flow rate Se1 (slm) of the mass flow controller E1 to S30-(Sa3+Sb3+Sg3+Sh3). And calculate (T150). Based on the calculation result, the flow rate adjustment by the mass flow controller E1 is performed.

同樣地,質量流量控制器E2之流量調整係以如下方式進行。如圖12所示,運算部190B將III族系混合氣體中心側供給源172之總流量設定為特定之固定值S30a(slm)(T200)。 Similarly, the flow rate adjustment of the mass flow controller E2 is performed as follows. As shown in FIG. 12, the calculation unit 190B sets the total flow rate of the group III mixed gas center side supply source 172 to a specific fixed value S30a (slm) (T200).

運算部190B使用上述T110步驟中所設定之氣體分支機構A5之分支比率、及已於T10步驟中所設定之向氣體分支機構A5之氣體流入量Sa5(slm),將輸送至III族系中心側混合配管172b之TMG氣體之流量Sa4(slm)設為Sa5×(1-Ra5/100)並算出(T211)。 The calculation unit 190B transfers the branch ratio of the gas branching mechanism A5 set in the above step T110 to the gas inflow amount Sa5 (slm) to the gas branching mechanism A5 set in the step T10, and transports it to the center side of the group III system. The flow rate Sa4 (slm) of the TMG gas of the mixing pipe 172b is Sa5 × (1 - Ra5 / 100) and is calculated (T211).

同樣地,運算部190B使用上述T120步驟中所設定之氣 體分支機構B5之分支比率、及已於T20步驟中所設定之流入氣體分支機構B5之氣體流入量Sb5(slm),將輸送至III族系中心側混合配管172b之TMA氣體之流量Sb4(slm)設為Sb5×(1-Rb5/100)並算出(T221)。 Similarly, the calculation unit 190B uses the gas set in the above step T120. The branch ratio of the body branching unit B5 and the gas inflow amount Sb5 (slm) of the inflowing gas branching mechanism B5 set in the step T20, and the flow rate Sb4 of the TMA gas sent to the group III center side mixing pipe 172b (slm) ) is set to Sb5 × (1-Rb5/100) and calculated (T221).

同樣地,運算部190B使用上述T130步驟中所設定之氣體分支機構G5之分支比率、及已於T30步驟中所設定之向氣體分支機構G5之氣體流入量Sg5(slm),將輸送至III族系中心側混合配管172b之Cp2Mg氣體之流量Sg4(slm)設為Sg5×(1-Rg5/100)並算出(T231)。 Similarly, the calculation unit 190B transfers the branch ratio of the gas branching mechanism G5 set in the above step T130 to the gas inflow amount Sg5 (slm) to the gas branching mechanism G5 set in the step T30, and transfers it to the group III. The flow rate Sg4 (slm) of the Cp 2 Mg gas in the center side mixing pipe 172b is Sg5 × (1 - Rg5 / 100) and is calculated (T231).

同樣地,運算部190B使用上述T140步驟中所設定之氣體分支機構H5之分支比率、及已於T40步驟中所設定之流入氣體分支機構H5之氣體流入量Sh5(slm),將輸送至III族系中心側混合配管172b之SiH4氣體之流量Sh4(slm)設為Sh5×(1-Rh5/100)並算出(T241)。 Similarly, the calculation unit 190B transfers to the group III using the branch ratio of the gas branching mechanism H5 set in the above step T140 and the gas inflow amount Sh5 (slm) of the inflowing gas branching mechanism H5 set in the step T40. The flow rate Sh4 (slm) of the SiH 4 gas in the center side mixing pipe 172b is set to Sh5 × (1 - Rh 5 / 100) and calculated (T241).

運算部190B使用所算出之各材料氣體之流量之合計流量(Sa4+Sb4+Sg4+Sh4),將質量流量控制器E2之流量Se2(slm)設為S30a-(Sa4+Sb4+Sg4+Sh4)並算出(T250)。基於該算出結果,進行利用質量流量控制器E2之流量調整。 The calculation unit 190B uses the calculated total flow rate of each material gas flow rate (Sa4+Sb4+Sg4+Sh4), and sets the flow rate Se2 (slm) of the mass flow controller E2 to S30a-(Sa4+Sb4+Sg4+Sh4). And calculate (T250). Based on the calculation result, the flow rate adjustment by the mass flow controller E2 is performed.

如圖3所示,由質量流量控制器C1調整流量並自第1V族材料氣體供給源183輸送NH3氣體。使NH3氣體與自質量流量控制器C2輸送之載氣混合。NH3氣體之濃度及總流量由自質量流量控制器C2輸送之載氣之流量決定。 As shown in FIG. 3, the flow rate is adjusted by the mass flow controller C1 and the NH 3 gas is supplied from the first group V material gas supply source 183. The NH 3 gas is mixed with the carrier gas delivered from the mass flow controller C2. The concentration of NH 3 gas and the total flow rate are determined by the flow rate of the carrier gas delivered from the mass flow controller C2.

與載氣混合後之NH3氣體之一部分係由質量流量控制器 C3控制流量而輸送至V族系邊緣側混合配管171b。與載氣混合後之NH3氣體之剩餘部分係由質量流量控制器C4控制流量而輸送至V族系中心側混合配管173b。 A portion of the NH 3 gas mixed with the carrier gas is sent to the V-system edge side mixing pipe 171b by the flow rate controlled by the mass flow controller C3. The remaining portion of the NH 3 gas mixed with the carrier gas is sent to the V-system center side mixing pipe 173b by the flow rate controlled by the mass flow controller C4.

與NH3氣體相關之流量調整係以如下方式進行。如圖9所示,運算部190B將向氣體分支機構C5之氣體流入量設定為特定之固定值Sc5(slm)(T50)。其次,將質量流量控制器C1之流量設定為Sc1(slm)(T51)。其結果,將質量流量控制器C2之流量Sc2(slm)設為Sc5-Sc1並算出(T52)。根據該算出結果,進行利用質量流量控制器C2之流量調整。 The flow rate adjustment associated with the NH 3 gas is carried out as follows. As shown in FIG. 9, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism C5 to a specific fixed value Sc5 (slm) (T50). Next, the flow rate of the mass flow controller C1 is set to Sc1 (slm) (T51). As a result, the flow rate Sc2 (slm) of the mass flow controller C2 is set to Sc5-Sc1 and calculated (T52). Based on the calculation result, the flow rate adjustment by the mass flow controller C2 is performed.

同樣地,與載氣混合後之AsH3氣體之一部分係由質量流量控制器D3控制流量而輸送至V族系邊緣側混合配管171b。與載氣混合之AsH3氣體之剩餘部分係由質量流量控制器D4控制流量而輸送至V族系中心側混合配管173b。 Similarly, a part of the AsH 3 gas mixed with the carrier gas is controlled by the mass flow controller D3 to be sent to the V-group edge side mixing pipe 171b. The remaining portion of the AsH 3 gas mixed with the carrier gas is sent to the V-system center side mixing pipe 173b by the flow rate controlled by the mass flow controller D4.

與AsH3氣體相關之流量調整係以如下方式進行。如圖10所示,運算部190B將向氣體分支機構D5之氣體流入量設定為特定之固定值Sd5(slm)(T60)。其次,將質量流量控制器D1中之流量設定為Sd1(slm)(T61)。其結果,將質量流量控制器D2之流量Sd2(slm)設為Sd5-Sd1並算出(T62)。根據該算出結果,進行利用質量流量控制器D2之流量調整。 The flow rate adjustment associated with the AsH 3 gas is performed as follows. As shown in FIG. 10, the calculation unit 190B sets the gas inflow amount to the gas branching mechanism D5 to a specific fixed value Sd5 (slm) (T60). Next, the flow rate in the mass flow controller D1 is set to Sd1 (slm) (T61). As a result, the flow rate Sd2 (slm) of the mass flow controller D2 is set to Sd5 - Sd1 and calculated (T62). Based on the calculation result, the flow rate adjustment by the mass flow controller D2 is performed.

如此,複數之V族系材料氣體於V族系邊緣側混合配管171b及V族系中心側混合配管173b之各者中混合。 In this way, a plurality of V-based material gases are mixed in each of the V-based edge side mixing pipe 171b and the V group center side mixing pipe 173b.

進而,載氣由質量流量控制器F1控制流量而輸送至V族系邊緣側混合配管171b。到達V族系混合氣體邊緣側供給源171之混合氣體之總流量由自質量流量控制器F1輸送之 載氣之流量決定。 Further, the carrier gas is controlled to flow rate by the mass flow controller F1 and sent to the V-group edge side mixing pipe 171b. The total flow rate of the mixed gas reaching the V-type mixed gas edge side supply source 171 is delivered from the mass flow controller F1. The flow rate of the carrier gas is determined.

載氣由質量流量控制器F2控制流量而輸送至V族系中心側混合配管173b。到達V族系混合氣體中心側供給源173之混合氣體之總流量由自質量流量控制器F2輸送之載氣之流量決定。 The carrier gas is controlled by the mass flow controller F2 to be sent to the V-system center side mixing pipe 173b. The total flow rate of the mixed gas reaching the V-type mixed gas center side supply source 173 is determined by the flow rate of the carrier gas delivered from the mass flow controller F2.

圖13係表示利用控制部之運算部所進行之質量流量控制器F1之流量算出過程的流程圖。圖14係表示利用控制部之運算部所進行之質量流量控制器F2之流量算出過程的流程圖。 Fig. 13 is a flowchart showing a flow rate calculation process of the mass flow controller F1 by the calculation unit of the control unit. Fig. 14 is a flowchart showing a flow rate calculation process of the mass flow controller F2 by the calculation unit of the control unit.

質量流量控制器F1之流量調整係以如下方式進行。如圖13所示,運算部190B將V族系混合氣體邊緣側供給源171之總流量設定為特定之固定值S31(slm)(T300)。其次,運算部190B將各氣體分支機構中之材料氣體之分支比率設定為特定之分支比率。運算部190B自根據該分支比率而分支之各材料氣體之合計流量算出載氣流量。 The flow rate adjustment of the mass flow controller F1 is performed as follows. As shown in FIG. 13, the calculation unit 190B sets the total flow rate of the V-group mixed gas edge side supply source 171 to a specific fixed value S31 (slm) (T300). Next, the calculation unit 190B sets the branch ratio of the material gas in each gas branching mechanism to a specific branch ratio. The calculation unit 190B calculates the carrier gas flow rate from the total flow rate of the material gases branched according to the branch ratio.

具體而言,運算部190B將氣體分支機構C5之分支比率設定為Rc5(%)(T310)。運算部190B使用已於T50步驟中所設定之向氣體分支機構C5之氣體流入量Sc5(slm),將輸送至V族系邊緣側混合配管171b之TMG氣體之流量Sc3(slm)設為Sc5×Rc5/100並算出(T311)。 Specifically, the calculation unit 190B sets the branch ratio of the gas branching mechanism C5 to Rc5 (%) (T310). The calculation unit 190B uses the gas inflow amount Sc5 (slm) to the gas branching mechanism C5 set in the step T50, and sets the flow rate Sc3 (slm) of the TMG gas sent to the V-group edge side mixing pipe 171b to Sc5 × Rc5/100 is calculated (T311).

同樣地,運算部190B將氣體分支機構D5之分支比率設定為Rd5(%)(T320)。運算部190B使用已於T60步驟中所設定之向氣體分支機構D5之氣體流入量Sd5(slm),將輸送至V族系邊緣側混合配管171b之TMA氣體之流量Sd3(slm)設 為Sd5×Rd5/100並算出(T321)。 Similarly, the calculation unit 190B sets the branch ratio of the gas branching mechanism D5 to Rd5 (%) (T320). The calculation unit 190B sets the flow rate Sd3 (slm) of the TMA gas sent to the V-type edge side mixing pipe 171b using the gas inflow amount Sd5 (slm) to the gas branching mechanism D5 set in the step T60. It is Sd5 × Rd5/100 and is calculated (T321).

運算部190B使用所算出之各材料氣體之流量之合計流量(Sc3+Sd3),將質量流量控制器F1之流量Sf1(slm)設為S31-(Sc3+Sd3)並算出(T350)。基於該算出結果,進行利用質量流量控制器F1之流量調整。 The calculation unit 190B calculates the flow rate Sf1 (slm) of the mass flow controller F1 using the calculated total flow rate of each material gas flow rate (Sc3+Sd3) as S31-(Sc3+Sd3) and calculates (T350). Based on the calculation result, the flow rate adjustment by the mass flow controller F1 is performed.

同樣地,質量流量控制器F2之流量調整係以如下方式進行。如圖14所示,運算部190B將V族系混合氣體中心側供給源173之總流量設定為特定之固定值S31a(slm)(T400)。 Similarly, the flow rate adjustment of the mass flow controller F2 is performed as follows. As shown in FIG. 14, the calculation unit 190B sets the total flow rate of the V-group mixed gas center side supply source 173 to a specific fixed value S31a (slm) (T400).

運算部190B使用上述T310步驟中所設定之氣體分支機構C5之分支比率、及已於T50步驟中所設定之向氣體分支機構C5之氣體流入量Sc5(slm),將輸送至V族系中心側混合配管173b之NH3氣體之流量Sc4(slm)設為Sc5×(1-Rc5/100)並算出(T411)。 The calculation unit 190B conveys the branch ratio of the gas branching mechanism C5 set in the above step T310 and the gas inflow amount Sc5 (slm) to the gas branching mechanism C5 set in the step T50, and transports it to the center side of the V group system. The flow rate Sc4 (slm) of the NH 3 gas of the mixing pipe 173b is set to Sc5 × (1 - Rc5 / 100) and calculated (T411).

同樣地,運算部190B使用上述T320步驟中所設定之氣體分支機構D5之分支比率、及已於T60步驟中所設定之流入氣體分支機構D5之氣體流入量Sd5(slm),將輸送至V族系中心側混合配管173b之AsH3氣體之流量Sd4(slm)設為Sd5×(1-Rd5/100)並算出(T421)。 Similarly, the calculation unit 190B is transported to the V group using the branch ratio of the gas branching mechanism D5 set in the above step T320 and the gas inflow amount Sd5 (slm) of the inflowing gas branching mechanism D5 set in the step T60. The flow rate Sd4 (slm) of the AsH 3 gas in the center side mixing pipe 173b is Sd5 × (1 - Rd 5 / 100) and is calculated (T421).

運算部190B使用所算出之各材料氣體之流量之合計流量(Sc4+Sd4),將質量流量控制器F2之流量Sf2(slm)設為S31a-(Sc4+Sd4)並算出(T450)。基於該算出結果,進行利用質量流量控制器F2之流量調整。 The calculation unit 190B calculates the flow rate Sf2 (slm) of the mass flow controller F2 using the calculated total flow rate of each material gas flow rate (Sc4+Sd4) as S31a-(Sc4+Sd4) and calculates (T450). Based on the calculation result, the flow rate adjustment by the mass flow controller F2 is performed.

如上所述,MOCVD裝置100具有複數個混合配管,該等混合配管將複數之材料氣體中之特定之複數之材料氣體混 合後分別導入至簇射頭130。又,MOCVD裝置100具有複數個氣體分支機構A5、B5、C5、D5、G5及H5,該等氣體分支機構用以相應於基座120上之複數個區域之數量而將複數之材料氣體以特定之分支比率分支,並以特定之流量導入至簇射頭130。 As described above, the MOCVD apparatus 100 has a plurality of mixing pipes that mix a specific plurality of material gases of a plurality of material gases. They are respectively introduced into the shower head 130. Further, the MOCVD apparatus 100 has a plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 for using a plurality of material gases to be specific to the number of the plurality of regions on the susceptor 120. The branch ratio branches and is introduced to the shower head 130 at a specific flow rate.

複數個氣體分支機構A5、B5、C5、D5、G5及H5之各者係個別地調節複數之材料氣體之各者的分支比率。即,藉由控制部190而互相獨立地控制複數個氣體分支機構A5、B5、C5、D5、G5及H5之各者。 Each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 individually adjusts the branching ratio of each of the plurality of material gases. That is, each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 is controlled independently of each other by the control unit 190.

控制部190藉由設定複數個氣體分支機構A5、B5、C5、D5、G5及H5之各者之特定的分支比率,而調整於基座120上之複數個區域之各者所供給之複數之材料氣體的流量。 The control unit 190 adjusts the specific branch ratio of each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 to adjust the plurality of the plurality of regions provided on the susceptor 120. The flow of material gas.

如上所述,控制部190具有運算部190B,該運算部190B根據於基座120上之複數個區域之各者所供給之複數之材料氣體的流量、及複數之材料氣體中之一部分材料氣體的流量,而算出複數之材料氣體中之剩餘部分之材料氣體的流量。 As described above, the control unit 190 includes a calculation unit 190B that divides the flow rate of the plurality of material gases supplied from each of the plurality of regions on the susceptor 120 and a part of the material gas of the plurality of material gases. The flow rate is calculated as the flow rate of the material gas remaining in the plurality of material gases.

控制部190基於運算部190B之算出結果,藉由複數個氣體分支機構A5、B5、C5、D5、G5及H5之各者調整上述剩餘部分之材料氣體的流量,藉此,可將供給至基座120上之複數個區域之各者之複數之材料氣體的流量維持於上述特定之流量。 The control unit 190 adjusts the flow rate of the material gas in the remaining portion by the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 based on the calculation result of the calculation unit 190B, thereby supplying the base material to the base. The flow rate of the plurality of material gases of each of the plurality of zones on the block 120 is maintained at the above specified flow rate.

又,控制部190調整質量流量控制器E1、E2、F1及F2之流量,藉此,可將各混合氣體供給源170~173之總流量維 持於特定之流量。 Further, the control unit 190 adjusts the flow rates of the mass flow controllers E1, E2, F1, and F2, whereby the total flow rate of each of the mixed gas supply sources 170 to 173 can be maintained. Hold on a specific flow.

於本實施形態中,複數個氣體分支機構A5、B5、C5、D5、G5及H5之各者包含2個微差壓規格之質量流量控制器,但氣體分支機構亦可包含分流器。 In the present embodiment, each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 includes two mass flow controllers of a differential pressure specification, but the gas branching mechanism may include a flow divider.

簇射頭130將於複數個混合配管之各者混合之複數之混合氣體分別噴出至基座120上的複數個區域。並於複數之混合氣體之各者調節特定之複數之材料氣體之各者的濃度及流量。 The shower head 130 ejects a plurality of mixed gases of a plurality of mixed pipes to a plurality of regions on the susceptor 120, respectively. The concentration and flow rate of each of the plurality of material gases are adjusted for each of the plurality of mixed gases.

具體而言,例如,將質量流量控制器A3與質量流量控制器A4之流量比、以及質量流量控制器B3與質量流量控制器B4之流量比設定為不同,藉此,可調整III族系混合氣體邊緣側供給源170與III族系混合氣體中心側供給源172中之複數之III族材料氣體之混合比。同樣地,可調整V族系混合氣體邊緣側供給源171與V族系混合氣體中心側供給源173中之複數之V族材料氣體之混合比。 Specifically, for example, the flow ratio of the mass flow controller A3 to the mass flow controller A4 and the flow ratio of the mass flow controller B3 to the mass flow controller B4 are set to be different, whereby the III-series mixing can be adjusted. The mixing ratio of the gas edge side supply source 170 and the plurality of group III material gases in the group III mixed gas center side supply source 172. Similarly, the mixing ratio of the plurality of V-group material gases in the V-based mixed gas edge side supply source 171 and the V-based mixed gas center side supply source 173 can be adjusted.

又,於將複數之III族材料氣體之混合比設為固定之狀態下,可調整噴出至基座120之邊緣側區域之混合氣體中之III族系混合氣體與V族系混合氣體的流量比、以及噴出至中心側區域之混合氣體中之III族系混合氣體與V族系混合氣體的流量比。 Further, in a state where the mixing ratio of the plurality of group III material gases is fixed, the flow ratio of the group III mixed gas to the group V mixed gas in the mixed gas discharged to the edge side region of the susceptor 120 can be adjusted. And a flow ratio of the group III mixed gas to the group V mixed gas in the mixed gas discharged to the center side region.

具體而言,例如,將質量流量控制器A3、A4、B3、B4、C3、C4之流量分別設為LA3、LA4、LB3、LB4、LC3、LC4。若設為滿足LA3:LA4=LB3:LB4,並且滿足LC3/(LA3+LB3)=LC4/(LA4+LB4),則可於基座120之邊緣側區域與 中心側區域使所噴出之III族系混合氣體與V族系混合氣體之流量比相同。 Specifically, for example, the flow rates of the mass flow controllers A3, A4, B3, B4, C3, and C4 are respectively L A3 , L A4 , L B3 , L B4 , L C3 , and L C4 . If it is set to satisfy L A3 : L A4 = L B3 : L B4 and L C3 / (L A3 + L B3 ) = L C4 / (L A4 + L B4 ) is satisfied, it can be in the edge side region of the susceptor 120 The flow rate ratio of the III-based mixed gas to the V-based mixed gas to be discharged is the same as that in the center side region.

反之,藉由以不滿足上述關係之方式設定LC3及LC4,可於基座120之邊緣側區域與中心側區域使所噴出之III族系混合氣體與V族系混合氣體的流量比不同。再者,上述關係式係規定僅使用一種V族材料氣體之情形。 On the other hand, by setting L C3 and L C4 in such a manner that the above relationship is not satisfied, the flow ratios of the III-based mixed gas and the V-based mixed gas which are ejected can be made different in the edge side region and the center side region of the susceptor 120. . Furthermore, the above relationship is a case where only one gas of a group V material is used.

如上所述,於本實施形態之MOCVD裝置100中,可針對基座120上之複數個區域之各者而調整材料氣體之混合比及流量。其結果,於處理多片、大面積之被處理基板10之情形時,可使成長之結晶之層厚、組成、及雜質添加量之均一性之全部於被處理基板10上為充分者。即,可於複數個被處理基板10之各者使具有均勻之膜厚及膜特性之化合物半導體結晶成長。 As described above, in the MOCVD apparatus 100 of the present embodiment, the mixing ratio and the flow rate of the material gas can be adjusted for each of a plurality of regions on the susceptor 120. As a result, in the case of processing a plurality of large-area substrates 10 to be processed, it is sufficient that the thickness of the grown crystal, the composition, and the uniformity of the amount of added impurities are sufficient for the substrate 10 to be processed. That is, the compound semiconductor crystal having a uniform film thickness and film characteristics can be grown in each of the plurality of substrates 10 to be processed.

又,本實施形態之MOCVD裝置100具有膜厚感測器196。控制部190基於自膜厚感測器196輸入之膜厚檢測信號,而調節複數個氣體分支機構A5、B5、C5、D5、G5及H5之各者之上述特定的分支比率,並調整上述特定之流量。 Further, the MOCVD apparatus 100 of the present embodiment has a film thickness sensor 196. The control unit 190 adjusts the specific branch ratio of each of the plurality of gas branching mechanisms A5, B5, C5, D5, G5, and H5 based on the film thickness detection signal input from the film thickness sensor 196, and adjusts the above specificity. Traffic.

形成於被處理基板10上之膜之膜厚係依存於所供給之III族材料之量。因此,於藉由膜厚感測器196而檢測出之膜厚量小於設定值之情形時,增大質量流量控制器A1之流量而使TMG之產生量增多。此時,質量流量控制器A2之流量係以相應於在質量流量控制器A1中增大之流量而減小之方式,藉由控制部190調整其流量。 The film thickness of the film formed on the substrate to be processed 10 depends on the amount of the III-group material to be supplied. Therefore, when the film thickness detected by the film thickness sensor 196 is smaller than the set value, the flow rate of the mass flow controller A1 is increased to increase the amount of TMG generated. At this time, the flow rate of the mass flow controller A2 is adjusted by the control unit 190 in a manner corresponding to the decrease in the flow rate increased in the mass flow controller A1.

藉由以此方式進行調整,流入至氣體分支機構A5之TMG氣體之流量並未變化,氣體分支機構A5之分支比率亦未變化。因此,可維持輸送至III族系邊緣側混合配管170b及III族系中心側混合配管172b之TMG氣體之合計流量。即,可使TMG之量增多並且維持TMG氣體之流量。 By adjusting in this manner, the flow rate of the TMG gas flowing into the gas branching mechanism A5 does not change, and the branch ratio of the gas branching mechanism A5 does not change. Therefore, the total flow rate of the TMG gas delivered to the group III edge side mixing pipe 170b and the group III center side mixing pipe 172b can be maintained. That is, the amount of TMG can be increased and the flow rate of TMG gas can be maintained.

上述情形係於基座120上之邊緣側區域及中心側區域之兩者變更TMG之量的情形,以下說明僅於任一者變更TMG之量的情形。 In the above case, the amount of TMG is changed in both the edge side region and the center side region on the susceptor 120, and the case where the amount of TMG is changed in either case will be described below.

例如,說明僅於基座120上之邊緣側區域降低所供給之TMG之量之情形。為減小質量流量控制器A1之流量,並且維持供給至基座120上之中心側區域之TMG之量,而變更氣體分支機構A5之分支比率。具體而言,使輸送至III族系中心側混合配管172b之TMG氣體之比率增多,而使供給至基座120上之中心側區域之TMG量不變。因此,僅供給至基座120上之邊緣側區域之TMG量下降。 For example, a case will be described in which only the edge side region on the susceptor 120 reduces the amount of TMG supplied. In order to reduce the flow rate of the mass flow controller A1 and maintain the amount of TMG supplied to the center side region on the susceptor 120, the branch ratio of the gas branching mechanism A5 is changed. Specifically, the ratio of the TMG gas supplied to the group III center side mixing pipe 172b is increased, and the amount of TMG supplied to the center side region on the susceptor 120 is not changed. Therefore, only the amount of TMG supplied to the edge side region on the susceptor 120 is lowered.

此時,質量流量控制器A2之流量以相應於在質量流量控制器A1增大之流量而減小之方式,藉由控制部190調整其流量。又,質量流量控制器E1、E2之流量係以藉由氣體分支機構A5之分支比率之變更,而使輸送至III族系邊緣側混合配管170b及III族系中心側混合配管172b之TMG氣體之合計流量不變化之方式,藉由控制部190進行調整。 At this time, the flow rate of the mass flow controller A2 is adjusted by the control unit 190 in a manner corresponding to the decrease in the flow rate increased by the mass flow controller A1. In addition, the flow rate of the mass flow controllers E1 and E2 is transmitted to the group III side side mixing pipe 170b and the group III center side mixing pipe 172b by the change of the branch ratio of the gas branching unit A5. The control unit 190 performs adjustment so that the total flow rate does not change.

根據上述構成,可維持供給至基座120上之複數個區域之複數之材料氣體的流量而於穩定之成膜條件下進行處理,並且可將以所需之混合比混合之複數之材料氣體供給 至各區域。其結果,可於複數個被處理基板10之各者使具有均勻之膜厚及膜特性之化合物半導體結晶成長。 According to the above configuration, the flow rate of the plurality of material gases supplied to the plurality of regions on the susceptor 120 can be maintained and processed under stable film formation conditions, and a plurality of material gases supplied at a desired mixing ratio can be supplied. To each region. As a result, the compound semiconductor crystal having a uniform film thickness and film characteristics can be grown in each of the plurality of substrates 10 to be processed.

當認為本次所揭示之實施形態於所有方面均為例示而非限制性者。本發明之範圍並非由上述之說明而由申請專利範圍表示,且意圖包含與申請專利範圍均等之意思及範圍內之所有變更。 The embodiments disclosed herein are considered to be illustrative and not restrictive in all respects. The scope of the present invention is defined by the scope of the claims, and is intended to be

10‧‧‧被處理基板 10‧‧‧Processed substrate

20‧‧‧箭頭 20‧‧‧ arrow

20a‧‧‧中心側區域 20a‧‧‧Center side area

30‧‧‧箭頭 30‧‧‧ arrow

30a‧‧‧邊緣側區域 30a‧‧‧Edge side area

100‧‧‧MOCVD裝置 100‧‧‧MOCVD device

110‧‧‧成膜室 110‧‧‧filming room

120‧‧‧基座 120‧‧‧Base

121‧‧‧加熱器 121‧‧‧heater

130‧‧‧簇射頭 130‧‧‧Tufted head

131‧‧‧簇射板 131‧‧‧Raining board

131a‧‧‧開口 131a‧‧‧ openings

132‧‧‧水冷部 132‧‧‧Water Cooling Department

133‧‧‧中空部 133‧‧‧ Hollow

140‧‧‧排氣處理裝置 140‧‧‧Exhaust treatment unit

141‧‧‧氣體排出部 141‧‧‧ gas discharge department

142‧‧‧淨化管線 142‧‧‧purification pipeline

150‧‧‧旋轉軸 150‧‧‧Rotary axis

151‧‧‧支撐台 151‧‧‧Support table

152‧‧‧加熱器罩 152‧‧‧heater cover

160‧‧‧水冷裝置 160‧‧‧Water cooling device

161‧‧‧冷卻用配管 161‧‧‧Cooling piping

170‧‧‧III族系混合氣體邊緣側供給源 170‧‧‧III mixed gas edge side supply source

170a、170b‧‧‧III族系邊緣側混合配管 170a, 170b‧‧‧III family edge side mixing piping

170c‧‧‧質量流量控制器 170c‧‧‧mass flow controller

171‧‧‧V族系混合氣體邊緣側供給源 171‧‧‧V-type mixed gas edge side supply source

171a、171b‧‧‧V族系邊緣側混合配管 171a, 171b‧‧‧V family edge side mixing piping

171c‧‧‧質量流量控制器 171c‧‧‧mass flow controller

172‧‧‧III族系混合氣體中心側供給源 172‧‧‧III mixed gas center side supply

172a、172b‧‧‧III族系中心側混合配管 172a, 172b‧‧‧III family center side mixing piping

172c‧‧‧質量流量控制器 172c‧‧‧mass flow controller

173‧‧‧V族系混合氣體中心側供給源 173‧‧‧V-type mixed gas center side supply source

173a、173b‧‧‧V族系中心側混合配管 173a, 173b‧‧‧V family center side mixing piping

173c‧‧‧質量流量控制器 173c‧‧‧mass flow controller

180‧‧‧載氣供給源 180‧‧‧ Carrier gas supply

180a、180b、180c‧‧‧載氣管線 180a, 180b, 180c‧‧‧ carrier gas pipeline

181‧‧‧第1III族材料氣體供給源 181‧‧‧Part 1III material gas supply source

182‧‧‧第2III族材料氣體供給源 182‧‧‧Part 2III material gas supply

183‧‧‧第1V族材料氣體供給源 183‧‧‧Part 1V material gas supply source

184‧‧‧第2V族材料氣體供給源 184‧‧‧2V material gas supply source

185‧‧‧第1摻雜材料氣體供給源 185‧‧‧1st doping material gas supply source

186‧‧‧第2摻雜材料氣體供給源 186‧‧‧2nd doping material gas supply source

190‧‧‧控制部 190‧‧‧Control Department

190A‧‧‧輸入部 190A‧‧ Input Department

190B‧‧‧運算部 190B‧‧‧ Computing Department

190C‧‧‧記憶部 190C‧‧‧Memory Department

191‧‧‧配線 191‧‧‧ wiring

192‧‧‧配線 192‧‧‧ wiring

193‧‧‧配線 193‧‧‧ wiring

194‧‧‧配線 194‧‧‧ wiring

195‧‧‧配線 195‧‧‧ wiring

196‧‧‧膜厚感測器 196‧‧‧ film thickness sensor

A1、A2、A3、A4‧‧‧質量流量控制器 A1, A2, A3, A4‧‧‧ mass flow controller

A5‧‧‧氣體分支機構 A5‧‧‧ gas branches

B1、B2、B3、B4‧‧‧質量流量控制器 B1, B2, B3, B4‧‧‧ mass flow controller

B5‧‧‧氣體分支機構 B5‧‧‧ gas branches

C1、C2、C3、C4‧‧‧質量流量控制器 C1, C2, C3, C4‧‧‧ mass flow controllers

C5‧‧‧氣體分支機構 C5‧‧‧ gas branches

D1、D2、D3、D4‧‧‧質量流量控制器 D1, D2, D3, D4‧‧‧ mass flow controller

D5‧‧‧氣體分支機構 D5‧‧‧ gas branches

E1、E2‧‧‧質量流量控制器 E1, E2‧‧‧ mass flow controller

F1、F2‧‧‧質量流量控制器 F1, F2‧‧‧ mass flow controller

G1、G2、G3、G4‧‧‧質量流量控制器 G1, G2, G3, G4‧‧‧ mass flow controllers

G5‧‧‧氣體分支機構 G5‧‧‧ gas branches

H1、H2、H3、H4‧‧‧質量流量控制器 H1, H2, H3, H4‧‧‧ mass flow controllers

H5‧‧‧氣體分支機構 H5‧‧‧ gas branches

圖1係表示本發明之一實施形態之MOCVD裝置之構成之一部分之剖視圖。 Fig. 1 is a cross-sectional view showing a part of the configuration of an MOCVD apparatus according to an embodiment of the present invention.

圖2係自下方觀察簇射板之圖。 Figure 2 is a view of the shower plate viewed from below.

圖3係表示該實施形態之MOCVD裝置之混合配管及氣體分支機構之構成之系統圖。 Fig. 3 is a system diagram showing the configuration of a mixing pipe and a gas branching mechanism of the MOCVD apparatus of the embodiment.

圖4係與該實施形態之MOCVD裝置之控制部相關之方塊圖。 Fig. 4 is a block diagram showing a control unit of the MOCVD apparatus of the embodiment.

圖5係表示利用控制部之運算部所進行之氣體分支機構A5之流量算出過程的流程圖。 Fig. 5 is a flowchart showing a flow rate calculation process of the gas branching mechanism A5 by the calculation unit of the control unit.

圖6係表示利用控制部之運算部所進行之氣體分支機構B5之流量算出過程的流程圖。 Fig. 6 is a flowchart showing a flow rate calculation process of the gas branching mechanism B5 by the calculation unit of the control unit.

圖7係表示利用控制部之運算部所進行之氣體分支機構G5之流量算出過程的流程圖。 Fig. 7 is a flowchart showing a flow rate calculation process of the gas branching mechanism G5 by the calculation unit of the control unit.

圖8係表示利用控制部之運算部所進行之氣體分支機構H5之流量算出過程的流程圖。 FIG. 8 is a flowchart showing a flow rate calculation process of the gas branching mechanism H5 by the calculation unit of the control unit.

圖9係表示利用控制部之運算部所進行之氣體分支機構C5之流量算出過程的流程圖。 FIG. 9 is a flowchart showing a flow rate calculation process of the gas branching mechanism C5 by the calculation unit of the control unit.

圖10係表示利用控制部之運算部所進行之氣體分支機構D5之流量算出過程的流程圖。 FIG. 10 is a flowchart showing a flow rate calculation process of the gas branching mechanism D5 by the calculation unit of the control unit.

圖11係表示利用控制部之運算部所進行之質量流量控制器E1之流量算出過程的流程圖。 Fig. 11 is a flowchart showing a flow rate calculation process of the mass flow controller E1 by the calculation unit of the control unit.

圖12係表示利用控制部之運算部所進行之質量流量控制器E2之流量算出過程的流程圖。 Fig. 12 is a flowchart showing a flow rate calculation process of the mass flow controller E2 by the calculation unit of the control unit.

圖13係表示利用控制部之運算部所進行之質量流量控制器F1之流量算出過程的流程圖。 Fig. 13 is a flowchart showing a flow rate calculation process of the mass flow controller F1 by the calculation unit of the control unit.

圖14係表示利用控制部之運算部所進行之質量流量控制器F2之流量算出過程的流程圖。 Fig. 14 is a flowchart showing a flow rate calculation process of the mass flow controller F2 by the calculation unit of the control unit.

10‧‧‧被處理基板 10‧‧‧Processed substrate

20‧‧‧箭頭 20‧‧‧ arrow

30‧‧‧箭頭 30‧‧‧ arrow

100‧‧‧MOCVD裝置 100‧‧‧MOCVD device

110‧‧‧成膜室 110‧‧‧filming room

120‧‧‧基座 120‧‧‧Base

121‧‧‧加熱器 121‧‧‧heater

130‧‧‧簇射頭 130‧‧‧Tufted head

131‧‧‧簇射板 131‧‧‧Raining board

132‧‧‧水冷部 132‧‧‧Water Cooling Department

133‧‧‧中空部 133‧‧‧ Hollow

140‧‧‧排氣處理裝置 140‧‧‧Exhaust treatment unit

141‧‧‧氣體排出部 141‧‧‧ gas discharge department

142‧‧‧淨化管線 142‧‧‧purification pipeline

150‧‧‧旋轉軸 150‧‧‧Rotary axis

151‧‧‧支撐台 151‧‧‧Support table

152‧‧‧加熱器罩 152‧‧‧heater cover

160‧‧‧水冷裝置 160‧‧‧Water cooling device

161‧‧‧冷卻用配管 161‧‧‧Cooling piping

170‧‧‧III族系混合氣體邊緣側供給源 170‧‧‧III mixed gas edge side supply source

170a、170b‧‧‧III族系邊緣側混合配管 170a, 170b‧‧‧III family edge side mixing piping

170c‧‧‧質量流量控制器 170c‧‧‧mass flow controller

171‧‧‧V族系混合氣體邊緣側供給源 171‧‧‧V-type mixed gas edge side supply source

171a、171b‧‧‧V族系邊緣側混合配管 171a, 171b‧‧‧V family edge side mixing piping

171c‧‧‧質量流量控制器 171c‧‧‧mass flow controller

172‧‧‧III族系混合氣體中心側供給源 172‧‧‧III mixed gas center side supply

172a、172b‧‧‧III族系中心側混合配管 172a, 172b‧‧‧III family center side mixing piping

172c‧‧‧質量流量控制器 172c‧‧‧mass flow controller

173‧‧‧V族系混合氣體中心側供給源 173‧‧‧V-type mixed gas center side supply source

173a、173b‧‧‧V族系中心側混合配管 173a, 173b‧‧‧V family center side mixing piping

173c‧‧‧質量流量控制器 173c‧‧‧mass flow controller

190‧‧‧控制部 190‧‧‧Control Department

191‧‧‧配線 191‧‧‧ wiring

192‧‧‧配線 192‧‧‧ wiring

193‧‧‧配線 193‧‧‧ wiring

194‧‧‧配線 194‧‧‧ wiring

195‧‧‧配線 195‧‧‧ wiring

Claims (3)

一種氣相成長裝置,其包括:基座(120),其載置被處理基板(10),且於上表面具有複數個區域;氣體供給部(130),其與上述基座(120)對向,且將複數之材料氣體供給至上述複數個區域之各者;複數個氣體分支機構(A5、B5、C5、D5、G5、H5),其等用以將上述複數之材料氣體相應於上述複數個區域之數量而以特定之分支比率分支,並以特定之流量導入至上述氣體供給部(130);複數個混合配管,其等將上述複數之材料氣體中之特定之複數之材料氣體混合,且分別與上述複數個氣體分支機構(A5、B5、C5、D5、G5、H5)連接;及控制部(190),其控制上述複數個氣體分支機構(A5、B5、C5、D5、G5、H5);且上述控制部(190)藉由設定上述複數個氣體分支機構(A5、B5、C5、D5、G5、H5)之各者之上述特定之分支比率,而調整於上述複數個區域之各者所供給之上述複數之材料氣體之流量。 A vapor phase growth apparatus comprising: a susceptor (120) on which a substrate to be processed (10) is placed, and having a plurality of regions on an upper surface; and a gas supply portion (130) opposite to the susceptor (120) And supplying a plurality of material gases to each of the plurality of regions; a plurality of gas branching mechanisms (A5, B5, C5, D5, G5, H5) for equalizing the plurality of material gases a plurality of regions are branched and branched at a specific branch ratio, and introduced into the gas supply portion (130) at a specific flow rate; a plurality of mixing pipes that mix a specific plurality of material gases in the plurality of material gases And respectively connected to the plurality of gas branching mechanisms (A5, B5, C5, D5, G5, H5); and a control unit (190) that controls the plurality of gas branching mechanisms (A5, B5, C5, D5, G5) And H5); and the control unit (190) adjusts the plurality of regions by setting the specific branch ratio of each of the plurality of gas branching mechanisms (A5, B5, C5, D5, G5, and H5) The flow rate of the above plurality of material gases supplied by each of them. 如請求項1之氣相成長裝置,其中上述控制部(190)包括:運算部(190B),其根據於上述複數個區域之各者所供給之上述複數之材料氣體之流量、及上述複數之材料氣體中之一部分材料氣體之流量,而算出上述複數之材料氣體中之剩餘部分之材料氣體之流量; 上述控制部(190)基於上述運算部(190B)之算出結果,藉由上述複數個氣體分支機構(A5、B5、C5、D5、G5、H5)之各者調整上述剩餘部分之材料氣體之流量,而將供給至上述複數個區域之各者之上述複數之材料氣體之流量維持於上述特定之流量。 The vapor phase growth apparatus of claim 1, wherein the control unit (190) includes: a calculation unit (190B) that calculates a flow rate of the plurality of material gases supplied from each of the plurality of regions, and the plurality of a flow rate of a part of the material gas in the material gas, and calculating a flow rate of the material gas of the remaining part of the plurality of material gases; The control unit (190) adjusts the flow rate of the remaining portion of the material gas by each of the plurality of gas branching mechanisms (A5, B5, C5, D5, G5, and H5) based on the calculation result of the calculation unit (190B). And maintaining the flow rate of the plurality of material gases supplied to each of the plurality of regions at the specific flow rate. 如請求項1或2之氣相成長裝置,其中進而包括:膜厚檢測機構(196),其檢測形成於被處理基板(10)上之膜之膜厚;上述控制部(190)基於自上述膜厚檢測機構(196)輸入之膜厚檢測信號,而調節上述複數個氣體分支機構(A5、B5、C5、D5、G5、H5)之各者之上述特定的分支比率,且調整上述特定之流量。 The vapor phase growth device of claim 1 or 2, further comprising: a film thickness detecting mechanism (196) for detecting a film thickness of a film formed on the substrate to be processed (10); the control portion (190) is based on the above The film thickness detecting means (196) inputs a film thickness detecting signal, and adjusts the specific branching ratio of each of the plurality of gas branching mechanisms (A5, B5, C5, D5, G5, and H5), and adjusts the specific one. flow.
TW101127504A 2011-10-28 2012-07-30 Vapor deposition device TW201317384A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011237413A JP2013098233A (en) 2011-10-28 2011-10-28 Vapor phase growth device

Publications (1)

Publication Number Publication Date
TW201317384A true TW201317384A (en) 2013-05-01

Family

ID=48167503

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101127504A TW201317384A (en) 2011-10-28 2012-07-30 Vapor deposition device

Country Status (3)

Country Link
JP (1) JP2013098233A (en)
TW (1) TW201317384A (en)
WO (1) WO2013061659A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439921A (en) * 1990-06-05 1992-02-10 Fujitsu Ltd Control method of gas flow rate at vapor phase epitaxial growth apparatus
JPH08203694A (en) * 1995-01-30 1996-08-09 Hitachi Ltd Plasma treatment device
JP2002110567A (en) * 2000-10-03 2002-04-12 Mitsubishi Electric Corp Chemical vapor phase deposition apparatus and method of forming film on semiconductor wafer
JP3856730B2 (en) * 2002-06-03 2006-12-13 東京エレクトロン株式会社 A gas diversion supply method to a chamber from a gas supply facility provided with a flow rate control device.

Also Published As

Publication number Publication date
WO2013061659A1 (en) 2013-05-02
JP2013098233A (en) 2013-05-20

Similar Documents

Publication Publication Date Title
US20110212623A1 (en) Substrate treatment device
US20040050325A1 (en) Apparatus and method for delivering process gas to a substrate processing system
TWI503867B (en) Cvd method and cvd reactor
JP4840832B2 (en) Vapor phase growth apparatus, vapor phase growth method, and semiconductor device manufacturing method
KR20020096980A (en) Chemical vapor deposition apparatus and chemical vapor deposition method
JP4699545B2 (en) Vapor growth apparatus and vapor growth method
CN112695302B (en) MOCVD reactor
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
TW201317385A (en) Vapor deposition device
KR101055330B1 (en) Inner Blocks for Thin Film Manufacturing Equipment and Thin Film Manufacturing Equipment
CN108070905A (en) Film formation device
JP2011018895A (en) Vapor-phase growth apparatus for group-iii nitride semiconductor
TWI502096B (en) Reaction device and manufacture method for chemical vapor deposition
JP4879693B2 (en) MOCVD apparatus and MOCVD method
TWI409359B (en) Vapor phase growth reactor
TW201317384A (en) Vapor deposition device
KR102072704B1 (en) Vapor deposition method
JP5481416B2 (en) Vapor growth apparatus and vapor growth method
TWI776114B (en) Semiconductor manufacturing equipment
WO2013143241A1 (en) Chemical vapour deposition method for organic metal compound and apparatus therefor
KR20120090349A (en) A chemical vapor deposition apparatus
JP4835666B2 (en) Vapor growth method
JP2013171972A (en) Vapor phase growth apparatus and vapor phase growth method
JP5481415B2 (en) Vapor growth apparatus and vapor growth method
WO2012137776A1 (en) Chemical vapor deposition device