WO2013061650A1 - Polyamide resin composition - Google Patents

Polyamide resin composition Download PDF

Info

Publication number
WO2013061650A1
WO2013061650A1 PCT/JP2012/065877 JP2012065877W WO2013061650A1 WO 2013061650 A1 WO2013061650 A1 WO 2013061650A1 JP 2012065877 W JP2012065877 W JP 2012065877W WO 2013061650 A1 WO2013061650 A1 WO 2013061650A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyamide resin
resin composition
parts
examples
Prior art date
Application number
PCT/JP2012/065877
Other languages
French (fr)
Japanese (ja)
Inventor
前田 修一
倉知 幸一郎
知之 中川
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011237374A external-priority patent/JP2013095778A/en
Priority claimed from JP2011237361A external-priority patent/JP2013095777A/en
Priority claimed from JP2011237642A external-priority patent/JP2013095789A/en
Priority claimed from JP2011237723A external-priority patent/JP2013095793A/en
Priority claimed from JP2011237721A external-priority patent/JP2013095791A/en
Priority claimed from JP2011237955A external-priority patent/JP2013095802A/en
Priority claimed from JP2011237722A external-priority patent/JP2013095792A/en
Priority claimed from JP2011237641A external-priority patent/JP2013095788A/en
Priority claimed from JP2011237910A external-priority patent/JP2013095799A/en
Priority claimed from JP2011237386A external-priority patent/JP2013095780A/en
Priority claimed from JP2011237957A external-priority patent/JP2013095804A/en
Priority claimed from JP2011237713A external-priority patent/JP2013095790A/en
Priority claimed from JP2011237901A external-priority patent/JP2013095798A/en
Priority claimed from JP2011237916A external-priority patent/JP2013095800A/en
Priority claimed from JP2011237956A external-priority patent/JP2013095803A/en
Priority claimed from JP2011237954A external-priority patent/JP2013095801A/en
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2013061650A1 publication Critical patent/WO2013061650A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the present invention relates to a specific polyamide resin composition in which various additives are blended, and a specific polyamide resin composition for various uses.
  • the name of the polyamide resin may be based on JIS K 6920-1.
  • Crystalline polyamides represented by nylon 6 (PA6), nylon 66 (PA66), etc. are widely used as textiles for clothing, industrial materials, or general-purpose engineering plastics because of their excellent properties and ease of melt molding.
  • problems such as changes in physical properties due to water absorption, acid, high-temperature alcohol, and deterioration in hot water have also been pointed out, and demand for polyamides with higher dimensional stability and chemical resistance is increasing. ing.
  • a polyamide resin using oxalic acid as a dicarboxylic acid component is called a polyoxamide resin, and is known to have a higher melting point and lower water absorption than other polyamide resins having the same amino group concentration (Patent Document 1). It is expected to be used in fields where the use of conventional polyamides, where changes in physical properties have become a problem, is difficult.
  • Non-Patent Document 1 discloses a polyoxamide resin using 1,6-hexanediamine as a diamine component
  • Non-Patent Document 2 discloses a polyoxamide resin (hereinafter also referred to as PA92) in which the diamine component is 1,9-nonanediamine.
  • Patent Document 2 discloses a polyoxamide resin using various diamine components and dibutyl oxalate as a dicarboxylic acid ester,
  • Patent Document 3 discloses a polyoxamide resin using two kinds of diamines of 1,9-nonanediamine and 2-methyl-1,8-octanediamine as diamine components in specific ratios.
  • Patent Document 4 a molding time is shortened by using a polyamide resin composition comprising a polyamide resin or a resin composition containing the polyamide resin, and a layered silicate and a moldability improver uniformly dispersed in the polyamide resin.
  • a polyamide resin composition comprising a polyamide resin or a resin composition containing the polyamide resin, and a layered silicate and a moldability improver uniformly dispersed in the polyamide resin.
  • Patent Document 5 a copper wire is coated with a resin composition for extrusion comprising 100 parts by weight of a polyamide resin, 0.01 to 2.0 parts by weight of a heavy metal deactivator and 0 to 3.0 parts by weight of a heat-resistant agent.
  • a resin composition for extrusion comprising 100 parts by weight of a polyamide resin, 0.01 to 2.0 parts by weight of a heavy metal deactivator and 0 to 3.0 parts by weight of a heat-resistant agent.
  • An electric wire is disclosed.
  • Patent Document 6 components used under harsh conditions such as electric tools, general industrial parts, machine parts, electronic parts, automobile interior and exterior parts, engine room parts, automobile electrical parts, etc., have low water absorption, It describes that high impact resistance is required in addition to excellent chemical resistance and hydrolysis resistance.
  • Patent Document 7 there is a demand for improving mechanical strength, fuel resistance (gasoline resistance, sour gasoline resistance, etc.), chemical resistance (antifreeze resistance, resistance to various chemicals), and the like. It is described that there is.
  • Patent Document 8 discloses an example of a composite material using nylon 6 as a crystalline polyamide, and Table 2 shows that these composite materials have tensile strength and tensile elasticity compared to the original nylon 6. It is disclosed that mechanical strength such as rate and heat resistance are improved.
  • Patent Document 9 polyamide resin is used as a resin used in resinification from the viewpoint of suppressing permeation of liquid or gas and excellent mechanical properties, and various liquids, vapors and / or gases of polyamide resin are used. In order to suppress permeation of water, it has been proposed to contain a layered silicate.
  • JP 2006-57033 A Japanese National Patent Publication No. 5-506466 WO2008 / 072754 JP-A-1-301750 JP-A-7-268211 JP 2000-129122 A Patent 3036666 JP 62-74957 A Japanese Patent Laid-Open No. 11-269376
  • the problem to be solved by the present invention is: Compared with conventional polyoxamide resin, Melting point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere and measurement at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere Moldable temperature estimated from temperature difference (Td-Tm) (° C) (hereinafter also referred to as temperature difference (Td-Tm)) from 1% weight loss temperature Td (° C) (thermal decomposition temperature) in the thermogravimetric analysis Wide, Excellent heat resistance estimated from the melting point Tm, It has a moderate melt viscosity and excellent melt moldability, and can reduce the molding cycle.
  • Td-Tm temperature difference
  • Td-Tm thermogravimetric analysis Wide
  • a polyamide resin composition comprising a polyamide resin and a mold release agent, which can also achieve good sliding properties between the mold and the molded product during molding and / or a short molding time;
  • a polyamide resin composition comprising a polyamide resin and a heat-resistant agent,
  • a polyamide resin composition comprising a polyamide resin and an impact modifier,
  • a polyamide resin composition comprising a polyamide resin and a filler,
  • a polyamide resin composition comprising a polyamide resin and a layered silicate dispersed therein, a polyamide resin and a conductivity imparting agent, and
  • Melting point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under
  • a polyamide resin composition for metal coating comprising a polyamide resin capable of forming a metal coating
  • a polyamide resin composition for injection molding comprising a polyamide resin capable of injection molding a molded body
  • a polyamide resin composition for molding vehicle parts including a polyamide resin capable of molding vehicle parts
  • a polyamide resin composition for a molded body that is in direct contact with a biodiesel fuel capable of molding a molded body having excellent resistance to biodiesel fuel A polyamide resin composition for fuel piping parts, including a polyamide resin capable of forming fuel piping parts
  • a polyamide resin composition for a printed circuit board surface mount component comprising a polyamide resin capable of forming a printed circuit board surface mount component
  • a polyamide resin composition for an electrophotographic apparatus component comprising a polyamide resin capable of forming an electrophotographic apparatus component
  • the present invention (1) A polyamide resin composition containing a polyamide resin (component A),
  • the component A is composed of a unit derived from a dicarboxylic acid and a unit derived from a diamine,
  • the dicarboxylic acid comprises oxalic acid (compound a);
  • the diamine comprises 1,6-hexanediamine (compound b) and 2-methyl-1,5-pentanediamine (compound c);
  • the molar ratio of the compound b to the compound c is 99: 1 to 50:50
  • the polyamide resin composition further comprises Release agent (component B1), Heat-resistant agent (component B2), Impact modifier (component B3), Filler (component B4), Layered silicate dispersed in component A (component B5) and conductivity imparting agent (component B6)
  • a polyamide resin composition comprising at least one additive selected from the group consisting of: (2) A polyamide resin composition containing a polyamide resin (component A), The component A is composed
  • melt point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere and measurement at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere
  • a polyamide resin composition comprising a polyamide resin and a mold release agent, which can also achieve good sliding properties between the mold and the molded product during molding and / or a short molding time;
  • a polyamide resin composition comprising a polyamide resin and a heat-resistant agent,
  • a polyamide resin composition comprising a polyamide resin and an impact modifier,
  • a polyamide resin composition comprising a polyamide resin and a filler,
  • a polyamide resin composition comprising a polyamide resin and a layered silicate dispersed therein, a polyamide resin and a conductivity imparting agent, and
  • Melting point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under
  • a polyamide resin composition for metal coating comprising a polyamide resin capable of forming a metal coating
  • a polyamide resin composition for injection molding comprising a polyamide resin capable of injection molding a molded body
  • a polyamide resin composition for extrusion molding comprising a polyamide resin capable of extruding a molded body
  • a polyamide resin composition for molding vehicle parts including a polyamide resin capable of molding vehicle parts
  • a polyamide resin composition for fuel piping parts including a polyamide resin capable of forming fuel piping parts
  • a polyamide resin composition for a printed circuit board surface mount component comprising a polyamide resin capable of forming a printed circuit board surface mount component
  • FIG. 2 is a cross-sectional view schematically showing an injection molding machine used in Examples 1 to 12 and Comparative Examples 2 to 3 in Table 1 in order to measure a releasing force. It is an injection-molded article molded using the pellets obtained in Examples 1 to 7 and Comparative Examples 2 and 4 in Table 17, and obtained in Examples 2-1 to 6 and Comparative Examples 2-2 and 4 in Table 19. An injection-molded article molded using the obtained pellets, Examples 5-1 to 4, 6-1, 7-1 to 5, and 8-1 to 3 in Table 28 and Comparative Examples 1-1 and 2-1 IC tray molded in 1. Quick connector example
  • Component A which is a polyamide resin in the present invention
  • the dicarboxylic acid component is succinic acid and the diamine component consists of 1,6-hexanediamine and 2-methyl-1,5-pentanediamine
  • the dicarboxylic acid comprises oxalic acid (compound a);
  • the diamine comprises 1,6-hexanediamine (compound b) and 2-methyl-1,5-pentanediamine (compound c);
  • the molar ratio of the compound b to the compound c is 99: 1 to 50:50,
  • the relative viscosity ⁇ r measured at 25 ° C. using a solution of component A having a concentration of 1.0 g / dl in 96% sulfuric acid is 1.8 to 6.0.
  • Component A uses compounds a, b and c, preferably polycondensation using a mixture thereof, so that it has a high molecular weight, a high melting point, a large difference between the melting point and the thermal decomposition temperature, and excellent melt moldability. Furthermore, it is excellent in chemical resistance, hydrolysis resistance and fuel barrier properties as compared with conventional polyamides without impairing the low water absorption seen in linear polyoxamide resins.
  • component A has a molar ratio of compound b to compound c: Preferably, 99: 1 to 55:45 mol%, More preferably, it is 99: 1 to 60:40 mol%.
  • the molar ratio of compound b and compound c also means the molar ratio of the unit derived from compound b and the unit derived from compound c in component A.
  • compound a oxalic acid
  • compound a succinic acid
  • oxalic acid source obtained by polycondensation of oxalic acid derived from the oxalic acid source and diamine.
  • This oxalic acid is derived from an oxalic acid source such as oxalic acid diester, and any oxalic acid may be used as long as it has reactivity with an amino group.
  • oxalic acid diesters are preferable from the viewpoint of suppressing side reactions in the polycondensation reaction.
  • Dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) oxalate examples thereof include oxalic acid diesters of aliphatic monohydric alcohols such as butyl, oxalic acid diesters of alicyclic alcohols such as dicyclohexyl oxalate, and oxalic acid diesters of aromatic alcohols such as diphenyl oxalate.
  • oxalic acid diesters oxalic acid diesters of aliphatic monohydric alcohols having more than 3 carbon atoms, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols are more preferable, Among them, dibutyl oxalate and diphenyl oxalate are more preferable, More preferred is dibutyl oxalate.
  • component A Relative viscosity of component A Using oxalic acid as compound a as the carboxylic acid component, As the diamine component, 1,6-hexanediamine, which is compound b, and 2-methyl-1,5-pentanediamine, which is compound c, are polycondensed so that the melting point is preferably in the range of 200 to 330 ° C. Compared to a polyamide resin obtained by polycondensation of compound a and compound b with a melting point exceeding 330 ° C.
  • Component A2 in the melt polymerization in the post-polymerization step of component A described later, Since it is not necessary to use an excessively high temperature condition in which a side reaction occurs and inhibits high molecular weight, high molecular weight (increase relative viscosity) is possible. Therefore, Component A has an excellent melt moldability because it can increase the relative viscosity as compared with the conventional polyamide resin. From the viewpoint of avoiding the tendency for the molded product after melt molding to become brittle and lowering the physical properties, to avoid the tendency to increase the melt viscosity at the time of melt molding and to deteriorate the molding processability, the relative viscosity ⁇ r and the melt viscosity are above a certain level.
  • a 96% concentrated sulfuric acid solution having a concentration of component A of 1.0 g / dl is used.
  • the relative viscosity ⁇ r measured at 25 ° C. is preferably 1.8 to 6.0, more preferably 1.8 to 4.5, more preferably 1.8 to 3.0, and still more preferably May be 1.85 to 2.5, more preferably 1.85 to 2.2.
  • the relative viscosity ⁇ r can be increased by increasing the degree of vacuum.
  • the melt viscosity of component A is preferably 100 to 700 Pa ⁇ s, more preferably 110 to 600 Pa ⁇ s, still more preferably 120 to 500 Pa ⁇ s, still more preferably 130 to 400 Pa ⁇ s, and further
  • the pressure is preferably 150 to 300 Pa ⁇ s, more preferably 160 to 220 Pa ⁇ s, and still more preferably 170 to 200 Pa ⁇ s.
  • the number average molecular weight (Mn) of component A is preferably 10,000 to 50,000, more preferably 11,000 to 40,000, and still more preferably 11,000 to 35,000.
  • each term has the following meaning.
  • Sp The number of hydrogens (4) counted in the integral value Sp.
  • S (NH 2 ) The number of hydrogens (2) counted in the integrated value S (NH 2 ).
  • N (NHCHO) number of terminal formamide groups per molecule.
  • S (NHCHO) The number of hydrogens (one) counted in the integral value S (NHCHO).
  • N (OBu) number of terminal butoxy groups per molecule.
  • Component A further changes the polycondensation ratio of compounds b and c,
  • the temperature difference (Td ⁇ Tm) is larger than that of the comparative component A2, and smaller than the polyamide resin obtained by polycondensation of the compound a and the compound c (hereinafter also referred to as the comparative component A1).
  • the melting point Tm is low compared to the comparative component A2, high compared to the comparative component A1, 1% weight loss temperature Td is higher than the comparative component A1,
  • the saturated water absorption rate can be smaller than the comparative component A2 and larger than the comparative component A1.
  • the component A is compared with the conventional polyoxamide resin, Relative viscosity ⁇ r (high molecular weight), Moldable temperature range estimated from temperature difference (Td-Tm), Heat resistance estimated from melting point Tm, Both the melt moldability estimated from the melt viscosity and the low water absorption can be sufficiently secured.
  • Component A has sufficient chemical resistance, resistance to resistance due to the high polymerization ratio (molar ratio) of compound b after sufficiently ensuring the moldable temperature range, heat resistance, melt moldability and low water absorption. Particularly contributes to hydrolyzability and fuel barrier properties.
  • Tm is preferably 260 to 330 ° C., more preferably 265 to 330 ° C.
  • Td is preferably 341 to 370 ° C, more preferably 345 to 370 ° C, and still more preferably 350 to 365 ° C.
  • the temperature difference (Td ⁇ Tm) is preferably 10 to 95 ° C., more preferably 20 to 95 ° C., still more preferably 25 to 95 ° C.
  • the saturated water absorption is preferably 0 to 2.4, more preferably 1 to 2.4, still more preferably 2 to 2.4, and still more preferably 2.3 to 2.4.
  • Component A can be produced using any method known as a method for producing polyamide, but from the viewpoint of high molecular weight and productivity, Preferably, it is obtained by polycondensation reaction of diamine and oxalic acid diester batchwise or continuously. More preferably, the diamine and oxalic acid diester are obtained by a two-stage polymerization method comprising a pre-polycondensation step and a post-polycondensation step, or a pressure polymerization method described in WO2008-072754. More preferable two-stage polymerization method and pressure polymerization method are specifically shown by the following operations.
  • Two-stage polymerization method (i) Pre-polycondensation step: First, the inside of the reactor is purged with nitrogen, and then the diamine (compounds b and c) and the oxalic acid diester which is the oxalic acid source of the compound a are mixed.
  • a solvent in which both the diamine and the oxalic acid diester are soluble may be used.
  • a solvent in which both the diamine component and the oxalic acid source component are soluble toluene, xylene, trichlorobenzene, phenol, trifluoroethanol, and the like can be used, and particularly, toluene can be preferably used.
  • the charging ratio between the oxalic acid diester and the diamine is 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1 (molar ratio) of oxalic acid diester / the diamine from the viewpoint of increasing the molecular weight. Ratio), more preferably 0.99 to 1.01 (molar ratio).
  • the temperature inside the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling.
  • the reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C., preferably 100 to 140 ° C.
  • the reaction time at the final temperature reached is 3-6 hours.
  • (Ii) Post-polycondensation step In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. From the final temperature reached in the pre-polycondensation step, that is, preferably 80 to 150 ° C. The temperature is preferably 295 ° C. or higher and 350 ° C. or lower, more preferably 298 ° C. or higher and 345 ° C. or lower, more preferably 298 ° C. or higher and 340 ° C. or lower. The reaction is preferably carried out while maintaining the temperature raising time, preferably 1 to 8 hours, more preferably 2 to 6 hours. Furthermore, in the post-polymerization step, polymerization can be performed under reduced pressure as necessary. A preferable final ultimate pressure in the case of carrying out the vacuum polymerization is 13.3 Pa to 0.1 MPa.
  • the reaction temperature is not particularly limited as long as the polyamide produced by the reaction of the diamine and the oxalic acid compound can maintain a slurry or solution state and does not thermally decompose.
  • the reaction temperature is preferably 150 ° C. to 250 ° C.
  • the charging ratio of dibutyl oxalate and diamine is 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1 (molar ratio), in terms of molar amount of dibutyl oxalate / total molar amount of diamine. More preferably, it is 0.99 to 1.01 (molar ratio).
  • the temperature is raised to a temperature not lower than the melting point of the polyamide resin and not pyrolyzed. For example, in the case of Component a, since the melting point is 245 to 300 ° C., the temperature is raised to 250 to 350 ° C., preferably 255 to 340 ° C., more preferably 260 to 335 ° C.
  • the pressure in the pressure vessel until reaching the predetermined temperature is adjusted to approximately 0.1 MPa, preferably 1 MPa to 0.2 MPa, from the saturated vapor pressure of the alcohol to be generated. After reaching the predetermined temperature, the pressure is released while distilling off the produced alcohol, and the polycondensation reaction is continued under an atmospheric pressure of nitrogen or reduced pressure as necessary.
  • a preferable final ultimate pressure in the case of carrying out the vacuum polymerization is 13.3 Pa to 0.1 MPa.
  • component A Component which can be used as dicarboxylic acid in component A
  • other dicarboxylic acid components other than compound a can be used within a range not impairing the effects of the present invention.
  • dicarboxylic acid components other than compound a oxalic acid
  • Aliphatic dicarboxylic acids such as suberic acid
  • alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid
  • terephthalic acid isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicar
  • polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid can be used as long as melt molding is possible.
  • the proportion thereof is 25 mol% or less, preferably 15 mol% or less, more preferably 10 mol% or less, and more preferably 5 mol% or less with respect to compound a (oxalic acid). More preferably, it is more preferably 0 mol% (that is, the dicarboxylic acid component consists only of compound a).
  • the molar ratio of the other dicarboxylic acid component to the compound a also means the molar ratio of the unit derived from the compound a and the unit derived from the other dicarboxylic acid component in the component A.
  • component A other diamine components other than compounds b and c can be used within the range not impairing the effects of the present invention.
  • Other diamine components other than 1,6-hexanediamine and 2-methyl-1,5-pentanediamine include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,9-nonanediamine, 2-methyl-1, 8-octanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4- Aliphatic diamines such as trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, and 5-methyl-1,9-nonanediamine; Furthermore, alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine, Further aromatic diamines such as p-phen
  • the proportion thereof is 25 mol% or less, preferably 15 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, with respect to compounds b and c. More preferably, it is 0 mol% (that is, the diamine component consists only of compounds b and c).
  • the molar ratio of the other diamine component with respect to the compounds b and c also means the molar ratio of the units derived from the compounds b and c and the units derived from the other diamine components in the component A.
  • component A As the molding method of component A, all known molding methods applicable to polyamide such as injection, extrusion, hollow, press, roll, foaming, vacuum / pressure air, and stretching can be used. From the viewpoint of shortening the molding cycle property, the film can be processed into a film, a sheet, a molded product, a fiber and the like by these molding methods. Above all, It is suitable for metal coating processing, can coat metal articles appropriately and efficiently, is suitable for molding processing by injection molding, and can be processed into films, sheets, molded articles, fibers, etc. by these molding methods Can Suitable for molding by extrusion, can be processed into films, sheets, molded products, fibers, etc.
  • Component B1 which is a mold release agent, is a polyalkylene glycol end-modified product, phosphate ester, phosphite ester, higher fatty acid monoester, higher fatty acid, higher fatty acid metal salt, ethylene bisamide compound, low molecular weight polyethylene, At least one compound selected from the group consisting of magnesium silicate and substituted benzylidene sorbitols, It is selected from the viewpoint of stably ensuring good slipperiness between the mold and the molded product during molding and / or suppression of molding time.
  • Examples of preferable terminal modified products of polyalkylene glycol include terminal modified products of polyethylene glycol and terminal modified products of polypropylene glycol.
  • the terminal modification is preferably performed with an amino group, a carboxyl group or a methyl group.
  • the following formula (1) X—R 1 — (O—CH 2 —CH 2 ) n—O—R 2 —X (1)
  • X represents NH 2 , COOH, or H
  • R 1 and R 2 each independently represents a linear or branched alkylene group having 1 to 10 carbon atoms
  • n represents 4 to 1200.
  • Examples of preferred phosphate esters include the following formula: (R 5 O) n PO (OH) 3-n (Wherein n is 1 or 2, and R 5 is an alkyl group having 1 to 10 carbon atoms).
  • R 5 is an alkyl group having 1 to 10 carbon atoms.
  • R include an ethyl group, a butyl group, an octyl group, and an ethylhexyl group.
  • Examples of preferred phosphites include the following formula: (R 6 O) 3 P (Wherein R 6 represents hydrogen or an alkyl group having 10 to 25 carbon atoms, more preferably 12 to 20 carbon atoms, or a phenyl group, or a group in which a part of these groups is substituted with a hydrocarbon group. ).
  • R 6 represents hydrogen or an alkyl group having 10 to 25 carbon atoms, more preferably 12 to 20 carbon atoms, or a phenyl group, or a group in which a part of these groups is substituted with a hydrocarbon group.
  • the three RO groups in the above formula may be the same or different.
  • R is an aliphatic group such as a decyl group, a lauryl group, a tridecyl group, a stearyl group or an oleyl group; an aromatic group such as a phenyl group or a biphenyl group; an ethyl group, a propyl group, a t-butyl group, or a nonyl group. Examples thereof include an aromatic group having a substituent.
  • phosphate esters and phosphite esters include aliphatic phosphate esters such as di (2-ethylhexyl) phosphate, tridecyl phosphite, tris (tridecyl) phosphite, and tristearyl phosphite. And aromatic phosphites such as aliphatic phosphites, triphenyl phosphites and diphenyl monodecyl phosphites.
  • Preferred higher fatty acid monoesters include the following formula: R 7 —CO—O—R 8 (Wherein R 7 and R 8 each independently represents an alkyl group having 8 to 32 carbon atoms, preferably 10 to 30 carbon atoms) , That is, an ester compound of a higher fatty acid and a higher aliphatic monohydric alcohol.
  • R 1 and R 2 in the above formula include aliphatic groups such as a decyl group, a lauryl group, a tridecyl group, a stearyl group, and an oleyl group.
  • examples of the higher fatty acid include myristic acid, palmitic acid, behenic acid, oleic acid, and alginic acid.
  • examples of higher aliphatic alcohols include myristyl alcohol, behenyl alcohol, oleyl alcohol, stearyl alcohol, hexyldecyl alcohol, and the like.
  • higher fatty acid monoesters include higher fatty acid monoalkyl esters such as myristyl myristate, stearyl stearate, behenyl behenate, oleyl oleate, hexyldecyl myristate, and the like.
  • Examples of preferred higher fatty acids and higher fatty acid metal salts include: CH 3 — (CH 2 ) n —COOX (Wherein n represents a number of 9 to 25, preferably 11 to 20, and X represents a metal of H or Group I to III of the periodic table).
  • higher fatty acids examples include stearic acid, palmitic acid, oleic acid, aragydic acid, and behenic acid.
  • metal salt of higher fatty acid examples include zinc stearate, lithium stearate, calcium stearate, aluminum palmitate and the like.
  • Examples of preferred ethylene bisamide compounds include: CH 3 (CH 2 ) m CONH (CH 2 ) 2 NHCO (CH 2 ) n CH 3 (Wherein, m and n are each independently a number of 9 to 25, preferably 10 to 20).
  • ethylene bisamide compound More specific examples of the ethylene bisamide compound include ethylene bisstearylamide and ethylene bispalmitylamide.
  • Preferred low molecular weight polyethylene includes those having a viscosity average molecular weight in the range of 500 to 5000, and those having a viscosity average molecular weight in the range of 1000 to 3000 are more preferred.
  • the viscosity average molecular weight is measured by measuring the solution viscosity using an Ubbelohde viscometer.
  • Preferred examples of magnesium silicate include those having an average particle diameter of 1 to 10 ⁇ m.
  • the average particle size is 1 ⁇ m or more, white unevenness is hardly generated on the surface of the molded product, and when the average particle size is 10 ⁇ m or less, the mechanical properties of the molded product, in particular, the tensile elongation at break and the impact strength are difficult to decrease.
  • the magnesium silicate may be subjected to a surface treatment with aminosilane or the like. The average particle diameter is measured by a dynamic scattering method.
  • Examples of preferable substituted benzylidene sorbitols include substituted benzylidene sorbitols synthesized by dehydration condensation of sorbitol and substituted benzaldehyde under an acid catalyst.
  • the condensation ratio of substituted benzaldehyde to sorbitol is preferably 1 mol or 2 mol with respect to 1 mol of sorbitol. Accordingly, these substituted benzylidene sorbitols have the following formula:
  • R 9 represents H, a hydroxyl group, a halogen, or an alkyl group having 1 to 200 carbon atoms
  • R 10 and R 11 each independently represent H, a hydroxyl group, a halogen, or an alkyl group having 1 to 200 carbon atoms).
  • substituted benzylidene sorbitols examples include 1,3-benzylidene sorbitol, 1,3,4,4-dibenzylidene sorbitol, 1,3-mono (p-hydroxybenzylidene) sorbitol, 1,3,2,4-di (P-hydroxybenzylidene) sorbitol, 1,3-mono (p-chlorobenzylidene) sorbitol, 1,3,2,4-di (p-chlorobenzylidene) sorbitol, 1,3-mono (m-nitrobenzylidene) sorbitol 1,3,2,4-di (m-nitrobenzylidene) sorbitol, 1,3- (p-chlorobenzylidene) 2,4- (p-ethylbenzylidene) -d-sorbitol and the like.
  • the polyamide resin composition of the present invention has a wide moldable temperature range, is excellent in heat resistance and melt moldability, and does not impair the low water absorption seen in aliphatic linear polyoxamide resins, and can be used in conventional aliphatic polyamide resins.
  • the content of component A in the polyamide resin composition excluding component B1 is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, still more preferably 60 to 100% by mass, and still more preferably 70 to 100% by mass.
  • component B1 is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, still more preferably 0.1 to 1.5 parts by mass, and more preferably 100 parts by mass of component A.
  • the amount is preferably 0.1 to 1 part by mass, more preferably 0.1 to 0.5 part by mass.
  • Component B2 which is a heat-resistant agent, can be used to improve the heat resistance of the polyamide resin, and an organic or inorganic heat-resistant agent can be used depending on the purpose, preferably a hindered phenol compound or a hindered amine compound. And at least one compound selected from the group consisting of phosphorus compounds, sulfur compounds and benzotriazole compounds. More preferred are hindered phenol compounds and / or phosphorus compounds.
  • a metal compound (salt) belonging to Group I transition series elements for example, The metal halides, sulfates, acetates, salicylates, nicotinates or stearates are mentioned. Further, alkali metal halide salts may be used alone or in combination with metal compounds (salts) belonging to the above Group I transition series elements. Specific examples thereof are potassium iodide, sodium iodide or potassium bromide. Furthermore, it is more effective when a nitrogen-containing compound such as melamine, benguanamine, dimethylolurea or cyanuric acid is used in combination.
  • a nitrogen-containing compound such as melamine, benguanamine, dimethylolurea or cyanuric acid is used in combination.
  • the polyamide resin composition of the present invention has a wide moldable temperature range, excellent heat resistance, and melt moldability, Ensures stable chemical resistance, hydrolysis resistance, fuel barrier properties, and heat resistance compared to conventional aliphatic polyamide resins without compromising the low water absorption found in aliphatic linear polyoxamide resins From the point of view
  • the content of component A in the polyamide resin composition is preferably 50 to 99.99% by mass, more preferably 70 to 99.99% by mass, still more preferably 97.0 to 99.99% by mass, and still more preferably. It is 98.0 to 99.99% by mass, more preferably 98.0 to 99.9% by mass.
  • the content of component B2 is preferably based on 100 parts by mass of component A from the viewpoint of stably expressing the effect of the heat resisting agent while suppressing the occurrence of coloring and unevenness of the polyamide resin composition and the molded product molded therefrom.
  • the amount is 0.01 to 3.0 parts by weight, more preferably 0.01 to 2.0 parts by weight, and still more preferably 0.1 to 2.0 parts by weight.
  • the polyamide resin composition of the present invention preferably contains the following as other components.
  • Polymers other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of Component A. Part, more preferably 0.5 to 30 parts by weight.
  • the impact modifier (component B3) is a component that improves the impact resistance of the polyamide resin (component A).
  • the impact modifier (component B3) is not particularly limited as long as it improves the impact resistance of the polyamide resin (component A), and examples thereof include an elastomer.
  • the elastomer preferably has a flexural modulus of 500 MPa or less as measured in accordance with ASTM D-790. If the flexural modulus exceeds this value, the impact improvement effect may be insufficient.
  • component B3 (ethylene and / or propylene) ⁇ ⁇ -olefin copolymer, (ethylene and / or propylene) ⁇ ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid) Ester) -based copolymers, ionomer polymers, aromatic vinyl compound / conjugated diene compound-based block copolymers, and these can be used alone or in admixture.
  • the (ethylene and / or propylene) ⁇ ⁇ -olefin copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an ⁇ -olefin having 3 or more carbon atoms, and ⁇ -olefin having 3 or more carbon atoms.
  • olefins examples include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-butene, 3-methyl-1-pentene, 3- Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl- - pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-do
  • the above (ethylene and / or propylene) ⁇ ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer is ethylene and / or propylene and ⁇ , ⁇ -unsaturated carboxylic acid and And / or a polymer obtained by copolymerizing unsaturated carboxylic acid ester monomers.
  • ⁇ , ⁇ -unsaturated carboxylic acid monomers include acrylic acid and methacrylic acid, and ⁇ , ⁇ -unsaturated monomers.
  • saturated carboxylic acid ester monomers include methyl esters, ethyl esters, propyl esters, butyl esters, pentyl esters, hexyl esters, heptyl esters, octyl esters, nonyl esters, decyl esters, and the like of these unsaturated carboxylic acids.
  • a mixture is mentioned.
  • a maleic acid-modified ethylene-butene copolymer and / or a maleic acid-modified ethylene-propylene copolymer is preferable from the viewpoint of improving impact resistance while maintaining the strength during water absorption.
  • the above-mentioned ionomer polymer is obtained by ionizing at least part of the carboxyl group of the olefin and the ⁇ , ⁇ -unsaturated carboxylic acid copolymer by neutralization of metal ions.
  • Ethylene is preferably used as the olefin, and acrylic acid and methacrylic acid are preferably used as the ⁇ , ⁇ -unsaturated carboxylic acid.
  • the olefin is not limited to those exemplified here.
  • the body may be copolymerized.
  • metal ions include alkali metals and alkaline earth metals such as Li, Na, K, Mg, Ca, Sr, Ba, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc. Can be mentioned.
  • the aromatic vinyl compound / conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene polymer block, and the aromatic vinyl compound polymer block. And a block copolymer having at least one conjugated diene polymer block.
  • the unsaturated bond in the conjugated diene polymer block may be hydrogenated.
  • the aromatic vinyl compound polymer block is a polymer block mainly composed of structural units derived from an aromatic vinyl compound.
  • the aromatic vinyl compound includes styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,6-dimethylstyrene, vinylnaphthalene, vinyl Anthracene, 4-propyl styrene, 4-cyclohexyl styrene, 4-dodecyl styrene, 2-ethyl-4-benzyl styrene, 4- (phenyl butyl) styrene, etc. can be mentioned. It may have a structural unit consisting of one or more of the monomers.
  • the aromatic vinyl compound-based polymer block may optionally have a structural unit composed of a small amount of other unsaturated monomer.
  • Conjugated diene polymer blocks include 1,3-butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3- A polymer block formed from one or more conjugated diene compounds such as hexadiene, and hydrogenated aromatic vinyl compound / conjugated diene block copolymer is unsaturated in the conjugated diene polymer block. A part or all of the bonding portion is saturated by hydrogenation.
  • the distribution in the polymer block mainly composed of conjugated diene may be random, tapered, partially blocky, or any combination thereof.
  • the molecular structure of the aromatic vinyl compound / conjugated diene block copolymer and its hydrogenated product may be any of linear, branched, radial, or any combination thereof.
  • an aromatic vinyl compound / conjugated diene block copolymer and / or a hydrogenated product thereof one aromatic vinyl compound polymer block and one conjugated diene polymer block are linear.
  • Triblock copolymer in which three polymer blocks are linearly bonded in the order of bonded diblock copolymer, aromatic vinyl compound polymer block-conjugated diene polymer block-aromatic vinyl compound polymer block And one or more of these hydrogenated products are preferably used, and unhydrogenated or hydrogenated styrene / butadiene copolymer, unhydrogenated or hydrogenated styrene / isoprene copolymer, unhydrogenated or hydrogenated.
  • Styrene / isoprene / styrene copolymer unhydrogenated or hydrogenated styrene / butadiene / styrene copolymer, unhydrogenated or hydrogenated styrene / (isoprene / butylene) Diene) / styrene copolymer, and the like.
  • Carboxylic acid ester) -based copolymers, ionomer polymers, and block copolymers of aromatic vinyl compounds and conjugated diene compounds are preferably polymers modified with carboxylic acids and / or derivatives thereof. By modifying with such a component, a functional group having affinity for the polyamide resin is included in the molecule.
  • Examples of functional groups having an affinity for polyamide resin include carboxylic acid groups, carboxylic anhydride groups, carboxylic acid ester groups, carboxylic acid metal bases, carboxylic acid imide groups, carboxylic acid amide groups, and epoxy groups.
  • Examples of compounds containing these functional groups include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, methylmaleic acid, methyl fumaric acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4- Cyclohexene-1,2-dicarboxylic acid, endobicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid and metal salts of these carboxylic acids, monomethyl maleate, monomethyl itaconate, methyl acrylate, acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate,
  • the component B3 is composed of (ethylene and / or propylene) ⁇ ⁇ -olefin copolymer, (ethylene and / or propylene) ⁇ ( ⁇ , ⁇ - One or more polymers selected from the group consisting of (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) type copolymer and ionomer are preferred, maleic acid-modified ethylene-butene copolymer and maleic acid-modified ethylene One or more polymers selected from the group consisting of a propylene copolymer, an epoxy-modified styrene block copolymer and an ionomer are more preferable.
  • the polyamide resin composition of the present invention contains a polyamide resin (component A) and an impact modifier (component B3).
  • the amount of the impact modifier (component B3) is not particularly limited as long as the impact resistance of the polyamide resin (component A) is improved.
  • the amount of the impact modifier (component B3) with respect to 100 parts by mass is preferably 10 to 100 parts by mass. When the amount of the impact modifier (component B3) decreases, the impact resistance does not improve. On the other hand, when the impact modifier (component B3) increases, the effect of the wide moldable temperature range of the polyamide resin composition is not recognized.
  • the content of component A in the polyamide resin composition is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and still more preferably 70 to 90% by mass.
  • the amount of the impact modifier (component B3) with respect to 100 parts by mass of the polyamide resin (component A) is preferably 10 to 100 parts by mass, more preferably 10 to 50 parts by mass, and particularly preferably 10 To 30 parts by mass.
  • Component B4 As the filler (component B4), an inorganic and / or organic filler can be used, and an inorganic filler is preferable.
  • the shape of the filler (component B4) is arbitrary, and includes fibrous, particulate and the like.
  • Examples of the filler (component B4) include reinforcing fibers and / or inorganic particles.
  • the blending amount of the filler is appropriately set depending on the application, and is, for example, 2 to 500 parts by mass with respect to 100 parts by mass of the entire polyamide resin.
  • the reinforcing fiber is not particularly limited, and examples thereof include inorganic fibers such as glass fibers, carbon fibers, metal fibers, and mineral fibers, and organic fibers such as aramid fibers that are tougher than polyamide resins.
  • inorganic fibers such as glass fibers, carbon fibers, metal fibers, and mineral fibers
  • organic fibers such as aramid fibers that are tougher than polyamide resins.
  • Glass fiber is not particularly limited.
  • the diameter of the glass fiber is not limited, but is preferably 5 to 15 ⁇ m.
  • the fiber length may be a short fiber or a long fiber depending on the application, but is preferably 5 to 1000 ⁇ m.
  • the glass fiber may be crushed by blending or processing, but the crushed glass fiber preferably has the fiber length.
  • the compounding ratio of the glass fiber is preferably 2 to 40 parts by mass, more preferably 2 to 38 parts by mass, and preferably 3 to 35 parts by mass with respect to 100 parts by mass of the entire polyamide resin. If the blending amount of the glass fiber is small, the improvement in rigidity and creep resistance is lowered, and the bonding with a tube or the like may be deteriorated. On the other hand, when the compounding amount of the glass fiber is increased, the fluidity of the composition is deteriorated, which may cause a short shot or the surface state.
  • the carbon fibers are not particularly limited, such as pitch-based and PAN-based, but PAN-based carbon fibers are preferable in terms of properties such as physical properties and conductivity.
  • the fiber length before kneading of the carbon fiber may be a long fiber extending up to 1000 mm in addition to that of the short fiber depending on the use, but in the case of melt kneading for the purpose of pellet production, Preferably it is 0.1-12 mm, more preferably 1-8 mm,
  • the fiber diameter before kneading of the carbon fibers is preferably 5 to 15 ⁇ m, and carbon fibers having a finer fiber diameter can also be used.
  • the blending ratio of the carbon fiber is preferably 2 to 40 parts by mass, more preferably 2 to 38 parts by mass, and preferably 3 to 35 parts by mass with respect to 100 parts by mass of the entire polyamide resin. If the blending amount of carbon fiber is small, the improvement in rigidity, creep resistance, and conductivity may be lowered, so 5 parts by mass or more is preferable. On the other hand, when the blending amount of the carbon fiber exceeds 40 parts by mass, the fluidity of the composition is deteriorated, which may cause a short shot and the surface state may be deteriorated.
  • the polyamide resin used in the present invention has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability.
  • blending basically, it is held as it is, and certain properties such as mechanical strength and heat resistance are remarkably improved by blending the reinforcing fibers.
  • inorganic particles examples include particles of metals, metal oxides, inorganic compounds, and the like, which can be appropriately selected depending on the application.
  • the particle size of the inorganic particles is not particularly limited and can be appropriately selected depending on the application.
  • Specific examples of inorganic particles include metals such as tungsten, iron, zinc, tin, lead and copper, metal alloys such as tungsten copper and tungsten silver, metal oxides such as iron oxide and zinc oxide, and sulfides.
  • the particles include sulfides such as molybdenum.
  • inorganic particles having a density of 5 g / cm 3 or more such as tungsten particles
  • inorganic particles having a density of 5 g / cm 3 or more such as tungsten particles
  • magnetic particles such as ferrite such as barium ferrite and strontium ferrite, and rare earth magnetic materials such as samarium-cobalt and neodymium-iron-boron are used. It can be preferably used.
  • the inorganic particles may be used alone or in combination of two or more, and may be subjected to surface treatment.
  • Examples of the surface treatment include surface treatment with a titanate coupling agent, surface treatment with a silane surface treatment agent, and the like.
  • a titanate coupling agent for example, a known method described in the above-mentioned JP-A-2-255760, and for surface treatment with a silane-based surface treatment agent, for example, in the above-mentioned JP-A-10-158507. Any known method can be employed.
  • the mass ratio of the above-mentioned polyamide resin and inorganic particles can be within the range of 50/50 to 5/95, more preferably 20/80 to 5/95 for polyamide resin / inorganic particles, In this case, it is possible to more easily provide characteristics such as higher specific gravity and magnetism.
  • the layered silicate (component B5) is a component that imparts mechanical properties and heat resistance to the polymer material.
  • the layered silicate is preferably a flat plate having a side length of 0.002 to 1 ⁇ m and a thickness of 6 to 20 mm.
  • each layer maintains the interlayer distance of about 18 mm or more, and is disperse
  • interlayer distance refers to the distance between the centroids of the layered silicate in the form of a plate
  • uniformly dispersed means that each layer exists mainly in a random state, and the layered silicate 50% by mass or more, preferably 70% by mass or more is dispersed in a single layer without forming a multilayer.
  • layered silicate examples include layered phyllosilicate minerals composed of magnesium silicate or aluminum silicate layers, that is, aluminum silicate phyllosilicate or magnesium silicate phyllosilicate.
  • layered phyllosilicate minerals composed of magnesium silicate or aluminum silicate layers, that is, aluminum silicate phyllosilicate or magnesium silicate phyllosilicate.
  • Specific examples include smectite clay minerals such as montmorillonite, saponite, beidellite, nontronite, hectorite, and stevensite, vermiculite, and halloysite. It may be what was done.
  • a swelling agent such as organic amine or organic ammonium is usually used.
  • the swelling agent has a role of expanding the interlayer of the clay mineral and a role of giving the clay mineral a force for taking up the interlayer polymer.
  • a swelling agent is usually used.
  • the swelling agent has a role of expanding the interlayer of the clay mineral and a role of giving the clay mineral a force for taking up the interlayer polymer.
  • the layered silicate is preferably pulverized using a mixer, a ball mill, a vibration mill, a pin mill, a jet mill, a beating machine, or the like and previously set in a desired shape and size.
  • the method for adding the layered silicate is not particularly limited as long as the layered silicate can be uniformly dispersed in the component A.
  • the layered silicate is ionized with hydrochloric acid or the like, and a swelling agent such as, for example, 1,6-Hexanediamine and 2-methyl-1,5-pentanediamine are added to widen the space between the layers of the layered silicate in advance.
  • the raw material of component A can be introduce
  • an organic compound may be used as a swelling agent, and the layers may be spread in advance to about 100 mm or more and melt-mixed with component A to disperse each layer in a polyamide resin.
  • the polyamide resin composition of the present invention is a composite material containing the polyamide resin (component A) and the layered silicate (component B5) dispersed in the polyamide resin.
  • the amount of the layered silicate in the composite material of the present invention is not particularly limited as long as the mechanical properties and heat resistance of the composite material of the present invention are improved. Is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the conductivity-imparting agent (component B6) used in the present invention is not particularly limited as long as it can be added to the polyamide resin to impart conductivity.
  • particulate filler carbon black, graphite or the like can be suitably used.
  • flaky filler aluminum flakes, nickel flakes, nickel-coated mica and the like can be suitably used.
  • fibrous filler metal fibers such as carbon nanotubes, carbon nanofibers, carbon fibers, carbon-coated ceramic fibers, carbon whiskers, aluminum fibers, copper fibers, brass fibers, and stainless fibers can be suitably used.
  • the fibrous filler is also preferable from the viewpoint of improving the mechanical properties of a molded product obtained by molding the polyamide resin composition of the present invention.
  • the amount of the conductivity imparting agent is preferably 2 to 150 parts by mass, more preferably 2 to 100 parts by mass, and more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the entire polyamide resin.
  • the carbon black that can be used in the present invention includes all carbon blacks commonly used for imparting conductivity, and preferred carbon blacks include acetylene black obtained by incomplete combustion of acetylene gas, Examples include, but are not limited to, ketjen black, oil black, naphthalene black, thermal black, lamp black, channel black, roll black, disc black, etc., which are manufactured from crude crude oil by furnace-type incomplete combustion. Absent. Among these, acetylene black and / or furnace black (Ketjen black) are preferably used.
  • Carbon black is produced in various carbon powders having different characteristics such as particle diameter, surface area, DBP oil absorption, and ash content. Although there is no restriction
  • the average particle size is preferably 500 nm or less, more preferably 5 to 100 nm, More preferably, it is 10 to 70 nm
  • the surface area (BET method) is preferably 10 m 2 / g or more, more preferably 300 m
  • the DBP (dibutyl phthalate) oil absorption is preferably 50 ml / 100 g or more, more preferably 100 ml / 100 g, and further preferably 300 ml / 100 g or more.
  • the ash content of carbon black is preferably 0.5% by mass or less, and more preferably 0.3% by mass or less.
  • the DBP oil absorption referred to here is a value measured by a method defined in ASTM D-2414.
  • the carbon black preferably has a volatile content of less than 1.0% by mass.
  • carbon black various carbon powders having different characteristics such as average particle diameter, specific surface area, DBP oil absorption, and ash content are produced.
  • characteristics of the carbon black there is no particular limitation on the characteristics of the carbon black, but those having a good chain structure and a high aggregation density are preferred.
  • the size of the carbon black is Preferably it is 500 nm or less, More preferably, it is 5 to 100 nm, More preferably, it is 10 to 70 nm, Specific surface area (BET method) It is preferably 10-1500 m 2 / g or more, More preferably, it is 300-1500 m 2 / g or more, More preferably, it is 500-1500 m 2 / g, DBP (dibutyl phthalate) oil absorption is It is preferably 50 to 500 ml / 100 g or more, More preferably, it is 100 to 500 ml / 100 g, More preferably, it is 300 to 500 ml / 100 g or more.
  • the average particle size 100 arbitrary particles were selected by electron microscopy, and the arithmetic average value of these particle sizes was used.
  • the DBP oil absorption is measured by the method defined in AS
  • the blending ratio of carbon black is preferably 2 to 50 parts by mass with respect to 100 parts by mass of the entire polyamide resin.
  • the blending ratio of the carbon black is less than 2 parts by mass, it is not preferable because sufficient conductivity cannot be obtained.
  • the blending ratio exceeds 50 parts by weight, the melt viscosity is high, the fluidity is lowered, and the molding processability is significantly impaired. Therefore, it is not preferable. 2 to 15 parts by mass is preferred.
  • Carbon black is preferably 2 to 40% by mass, more preferably 2 to 30% by mass, still more preferably 2 to 15% by mass, and particularly preferably 3 to 15% by mass with respect to the entire polyamide resin composition.
  • pitch-based or PAN-based carbon fibers are used without limitation, but PAN-based carbon fibers are more preferable in view of properties such as physical properties and conductivity.
  • the carbon fiber length may be 1000 mm long fiber as well as short fiber depending on the application, but the fiber length before kneading is preferably 0.1 to 12 mm, particularly preferably 1 to 8 mm.
  • the fiber diameter of the carbon fiber is preferably 5 to 15 ⁇ m, but fine carbon fiber can also be used.
  • the blending ratio of the carbon fibers is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the entire polyamide resin. When the blending ratio exceeds 40 parts by mass, the rigidity is high and the impact resistance is inferior, the smoothness of the surface of the molded product is poor, and the slidability may be lowered.
  • the blending ratio of the carbon fiber is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 7 parts by mass or more. If the blending ratio is small, the electrical conductivity is lowered and it is easy to be charged with static electricity.
  • the blending ratio of the carbon fiber is preferably 2 to 40% by mass, more preferably 2 to 35% by mass, still more preferably 2 to 15% by mass, and particularly preferably 2 to 10% by mass with respect to the entire resin composition.
  • conductivity-imparting agents may be surface-treated with a surface treatment agent such as titanate, aluminum, or silane. It is also possible to use a granulated product for improving melt kneading workability.
  • the conductivity required for the polyamide resin composition of the present invention may vary depending on the application, and is not particularly limited.
  • the conductivity of the polyamide resin is about 10 15 ⁇ cm.
  • a conductivity-imparting agent By adding a conductivity-imparting agent, it can be reduced to, for example, about 10 12 to 10 1 ⁇ cm or less. do it.
  • a conductivity of about 10 3 to 10 6 ⁇ cm is considered to be one preferable range.
  • the polyamide resin composition for a cable housing of the present invention contains a polyamide resin (component A), a conductivity imparting agent (component B6), and an impact modifier (component B3).
  • This polyamide composition can contain the above-mentioned other components.
  • Polyamide resin composition for cable housing is composed of 65 to 75% by mass of polyamide resin (component A), 3 to 15% by mass of carbon fiber and 2 to 10% by mass of carbon black as conductivity imparting agent (component B6), and impact improvement. It is particularly preferable that the material (component B3) consists essentially of 10 to 20% by mass.
  • the manufacturing method of the polyamide resin composition used for manufacturing the cable housing is not limited to a specific method, but as a specific and efficient example, a mixture of raw materials is used as a single or twin screw extruder, Banbury mixer, kneader, and mixing.
  • An example is a method of supplying to a generally known melt mixer such as a roll and kneading.
  • the mixing order of the raw materials a method in which all the raw materials are blended and then melt-kneaded by the above method, a part of the raw materials are blended and then melt-kneaded by the above method, and the remaining raw materials are blended and melted
  • Any method may be used, such as a method of kneading or a method of mixing a part of raw materials and mixing the remaining raw materials using a side feeder during melt-kneading with a single or twin screw extruder.
  • the method for molding the cable housing from the polyamide resin composition is not particularly limited, and the polyamide resin composition can be injection molded using an injection molding machine or press molded using a press molding machine.
  • the cable housing of the present invention uses a polyamide resin composition obtained by blending a polyamide resin with a conductivity imparting agent such as carbon fiber and / or carbon black, and an impact modifier such as an acid-modified ethylene copolymer.
  • a conductivity imparting agent such as carbon fiber and / or carbon black
  • an impact modifier such as an acid-modified ethylene copolymer.
  • it is also excellent in low water absorption, molding processability, chemical resistance, and the like.
  • the polyamide resin composition of the present invention preferably contains the following as other components.
  • Polymers other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of Component A. Part, more preferably 0.5 to 30 parts by weight.
  • the resin composition of this invention can contain another additive in the range which does not impair the effect of this invention.
  • additives include pigments, dyes, colorants, antioxidants, weathering agents, UV absorbers, light stabilizers, lubricants, crystal nucleating agents, crystallization accelerators, heat resistance agents, antistatic agents, plasticizers, Examples thereof include stabilizers such as copper compounds, antistatic agents, flame retardants, glass fibers, lubricants, fillers, reinforcing fibers, reinforcing particles, and foaming agents.
  • Molding process from polyamide resin composition to molded body The present invention also provides a molded body molded from the above-described polyamide resin composition of the present invention.
  • the molding method from the polyamide resin composition of the present invention to a molded body all known molding methods applicable to polyamide such as injection, extrusion, hollow, press, roll, foaming, vacuum / pressure air, and stretching can be used. These can be processed into molded products such as films, sheets, molded products, and fibers.
  • predetermined amounts of polyamide resin, mold release agent and various additives used as necessary are reduced using a low-speed rotary mixer such as a V-type blender or tumbler or a high-speed rotary mixer such as a Henschel mixer. After mixing in advance, a method of directly molding a molded product using an injection molding machine or an extrusion molding machine can be applied.
  • a low-speed rotary mixer such as a V-type blender or tumbler
  • a high-speed rotary mixer such as a Henschel mixer.
  • the molded product obtained by the present invention includes various extruded products, various injection molded products, sheets, films, pipes, tubes, monofilaments, fibers, containers, etc. for which polyamide molded products have been conventionally used.
  • the molded article can be suitably used for a wide range of applications such as automobile parts, computers and related equipment, optical equipment parts, electrical / electronic equipment, information / communication equipment, precision equipment, civil engineering / building equipment, medical supplies, and household goods.
  • the polyamide resin composition for metal coating of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and melt moldability (hereinafter referred to as thermal characteristics) for improving productivity during coating processing.
  • the content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, still more preferably 60 to 100% by mass, still more preferably 70 to 100% by mass, and still more preferably. 80 to 100% by mass, more preferably 80 to 95% by mass.
  • the metal coating material of the present invention When the metal coating material of the present invention is formed on a metal substrate without using a primer, for example, it is preferable that the metal coating material further includes a component for improving adhesion.
  • a component for improving adhesion As a component aiming at adhesiveness improvement, a thermoplastic elastomer (component C1) and / or a silane coupling agent (component C2) are mentioned preferably, for example.
  • component C1 is preferably an epoxidized styrene elastomer (component C1 ′) and / or a modified polyolefin.
  • Component C1 is preferably 3 to 30 parts by mass with respect to 100 parts by mass of the polyamide resin, from the viewpoint of stably securing the adhesion, mechanical characteristics and surface characteristics of the polyamide resin composition of the present invention to the metal substrate.
  • the amount is preferably 3 to 28 parts by mass, more preferably 3 to 25 parts by mass.
  • the content of component C2 is based on 100 parts by mass of component A from the viewpoint of stably securing the adhesion, fluidity and surface characteristics of the polyamide resin composition of the present invention to the metal substrate.
  • the amount is preferably 0.01 to 0.5 parts by mass, more preferably 0.1 to 0.3 parts by mass.
  • Epoxidized styrene-based elastomer (component C1 ′)
  • component C1 ′ which is an epoxidized styrene-based elastomer, for example, as described in JP-A-2004-346255 described above
  • An epoxidized styrene thermoplastic elastomer obtained by epoxidizing a double bond derived from a conjugated diene compound in a block copolymer comprising a styrene compound polymer block and a conjugated diene compound polymer block is preferred.
  • the styrene compound polymer block, the conjugated diene compound, and the conjugated diene compound polymer block mean the following.
  • a styrene compound polymer block is a polymer block mainly composed of a group derived from a styrene compound.
  • a structural unit derived from a styrene compound has an adhesive force with a coating object and mechanical properties.
  • the content is preferably 50 to 80% by mass, more preferably 50 to 70% by mass, and still more preferably 50 to 60% by mass.
  • the conjugated diene compound is a conjugated diene compound or a partially hydrogenated product thereof.
  • the conjugated diene compound polymer block is a polymer block mainly composed of a group derived from a conjugated diene compound, and in the polymer block, the structural unit derived from a conjugated diene compound is from the viewpoint of flexibility,
  • the amount is preferably 20 to 50% by mass, more preferably 30 to 50% by mass, and still more preferably 40 to 50% by mass.
  • Styrenic compounds used for component C1 ′ include styrene, ⁇ -methylstyrene, vinyltoluene, p-tertiary butylstyrene, divinyl from the viewpoint of stably securing adhesive strength with the object to be coated and mechanical properties. At least one compound selected from the group consisting of benzene, p-methylstyrene, 1,1-diphenylstyrene, vinylnaphthalene and vinylanthracene is preferred, and styrene is more preferred.
  • Conjugated diene compounds used for component C1 ′ include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3 from the viewpoint of flexibility.
  • -At least one compound selected from the group consisting of octadiene and phenyl-1,3-butadiene is preferred, and butadiene and / or isoprene are more preferred.
  • the weight average molecular weight of component C1 ′ is preferably from 5,000 to 600,000, more preferably from 10,000 to 500,000, from the viewpoint of stably securing the adhesive force and mechanical properties with the coating target.
  • the molecular weight distribution [ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw / Mn)] is preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 5. Mw can be measured by gel permeation chromatography (GPC) under the following conditions.
  • -Apparatus Waters gel permeation chromatograph (product number: GPC / V2000) Column: Shodex AT-G + AT-806 ⁇ 2 -Eluent: Orthodichlorobenzene-Eluent flow rate: 1.0 mL / min-Column temperature: 145 ° C ⁇ Detection method: Differential refractometer (RI) -Calibration curve: Prepared using standard polystyrene material. Mn is measured under the aforementioned conditions.
  • the molecular structure of component C1 ' is preferably linear.
  • the styrene compound (P) and the conjugated diene compound (Q) have a structure such as PQP, QPQP, PQPPP, or the like.
  • a compound-conjugated diene compound block copolymer is preferred.
  • the block copolymer may have a polyfunctional coupling agent residue at the molecular end.
  • the manufacturing method of component C1 ′ may be any manufacturing method as long as a material having the structure as described above is obtained.
  • a styrene compound-conjugated diene compound block copolymer can be produced in an inert solvent using a lithium catalyst or the like.
  • Hydrogenation in the presence of a hydrogenation catalyst in an inert solvent can produce a partially hydrogenated block copolymer that is a raw material for component C1 ′.
  • the degree of hydrogenation can be determined by NMR analysis of the block copolymer before and after hydrogenation.
  • the hydrogenation rate is defined as the percentage of hydrogenated double bonds derived from the conjugated diene compound of the unhydrogenated / epoxidized raw material block copolymer. From the viewpoint of stably securing the heat resistance and cohesiveness of component C1 ′, the hydrogenation rate is preferably in the range of 0 to 80%, more preferably in the range of 10 to 70%.
  • Epoxidized styrene thermoplastic elastomer can be obtained by epoxidizing the block copolymer.
  • it can be obtained by reacting the block copolymer with an epoxidizing agent such as hydroperoxides and peracids in an inert solvent.
  • the inert solvent is used for the purpose of reducing the viscosity of the raw material, stabilizing by dilution of the epoxidizing agent, and for example, hexane, cyclohexane, toluene, benzene, ethyl acetate, carbon tetrachloride, chloroform and the like can be used.
  • hydroperoxides among epoxidizing agents include hydrogen peroxide, tertiary butyl hydroperoxide, cumene hydroperoxide, and the like.
  • “peracids” include performic acid, peracetic acid, perbenzoic acid, trifluoroperacetic acid and the like. Among them, peracetic acid is preferred because it is produced industrially in large quantities, can be obtained at low cost, and has high stability.
  • the amount of the epoxidizing agent is not strictly limited, and can be changed depending on the individual epoxidizing agent used, the desired degree of epoxidation, and the difference in the properties of the individual block copolymers used.
  • a catalyst can be used as necessary.
  • an alkali such as sodium carbonate or an acid such as sulfuric acid can be used as a catalyst.
  • hydroperoxides a catalytic effect is obtained by using a mixture of tungstic acid and caustic soda with hydrogen peroxide, organic acid with hydrogen peroxide, or molybdenum hexacarbonyl with tertiary butyl hydroperoxide. be able to.
  • peracetic acid is preferably 0 to 70 ° C. This is because decomposition of peracetic acid occurs when the temperature exceeds 70 ° C. No special operation of the reaction mixture is required, for example, the raw material mixture may be stirred for 2 to 10 hours.
  • the reaction temperature of epoxidation can be changed according to the reactivity of the epoxidizing agent used in accordance with a conventional method.
  • Isolation of the obtained epoxidized styrenic thermoplastic elastomer includes, for example, a method of precipitating with a poor solvent, a method of adding the epoxidized styrenic thermoplastic elastomer into hot water with stirring and distilling off the solvent, heating and The solvent can be directly dried by a decompression operation or the like. Moreover, when finally utilizing by a solution form, it can also be used without isolating.
  • the epoxidation rate of component C1 ′ is preferably 10 to 40%, more preferably 15 to 35, from the viewpoint of suppressing the gelation of component C1 ′ and stably ensuring the heat resistance of the polyamide resin composition of the present invention. % Is preferred.
  • the double bond derived from the conjugated diene compound remaining unsaturated without being hydrogenated or epoxidized is less than 90% of the total, More preferably, it is 40% or less.
  • Epoxidation rate ⁇ 10000 ⁇ D + 2 ⁇ H ⁇ (100 ⁇ S) ⁇ / ⁇ (N ⁇ 16) ⁇ (100 ⁇ S) ⁇ (D represents the molecular weight of the conjugated diene compound, H represents the hydrogenation rate (%), and S represents the content (mass%) of the styrene compound).
  • the weight (g) of the epoxidized styrenic thermoplastic elastomer used in the above, V is a titration amount (ml) of hydrobromic acid, and f is a factor of hydrobromic acid).
  • Component C2 which is a silane coupling agent, chemically converts an organic functional group having affinity or reactivity with an organic resin to a hydrolyzable silyl group having affinity or reactivity with an inorganic material. It is a silane compound having a bonded structure.
  • Examples of the hydrolyzable group bonded to silicon include an alkoxy group, a halogen, and an acetoxy group. Usually, an alkoxy group, particularly a methoxy group and an ethoxy group are preferably used.
  • the number of hydrolyzable groups attached to one silicon atom is selected between 1 and 3.
  • Examples of the organic functional group include an amino group, an epoxy group, a vinyl group, a carboxyl group, a mercapto group, a halogen group, a methacryloxy group, and an isocyanate group, and preferably an amino group or an epoxy group.
  • component C2 include ⁇ -aminoethyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminobutyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ - Aminopropylmethyldiethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ - (aminoethyl)- ⁇ -aminopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ -ureidopropyltriethoxysilane
  • component C2 is based on 100 parts by mass of component A from the viewpoint of stably securing the adhesion, fluidity and surface characteristics of the polyamide resin composition of the present invention to the metal substrate. 0.01 to 0.5 parts by mass is preferable, and 0.1 to 0.3 parts by mass is more preferable.
  • Polymers other than components A and B In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than components A and B, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers outside the polyamide, such as heat Plastic polymers and elastomers can be included.
  • polyamides other than components A and B such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers outside the polyamide, such as heat Plastic polymers and elastomers can be included.
  • the polyamide resin composition of the present invention can coat a wide range of metal substrates such as non-ferrous metals such as aluminum and iron, and the coated polyamide resin composition may form a coating material, and the coated polyamide resin composition and A metal substrate forms a metal coated article.
  • metal coating include anti-rust coating for fluid metal pipes for general industrial use, anti-corrosion coating for metal pipes such as steel pipes and aluminum pipes for automobile fuel, oil, brake fluid, etc., metal wire coatings, tank tanks For example, it is possible to apply to a metal pipe for automobiles.
  • a method of coating a metal substrate with the polyamide resin composition of the present invention for example, A method of coating a metal substrate which is an adherend with a polyamide resin composition already in a molten state, such as a steel pipe coating by extrusion, As in powder coating, a method of coating a metal substrate by heating a metal substrate that is an adherend, melting the solid polyamide resin composition by the heat, and For example, a method in which a metal substrate and a polyamide resin composition in a solid state in contact with each other are heated and coated may be used. Prior to coating with the polyamide resin composition of the present invention, the metal substrate may be subjected to primer treatment using a conventionally known primer for metal.
  • the temperature of the polyamide resin composition of the present invention is preferably maintained at a temperature that does not denature the polyamide resin composition of the present invention.
  • the polyamide resin composition for injection molding of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during injection molding.
  • the content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
  • polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
  • the resin composition of the present invention can produce an injection-molded body with little warpage and excellent dimensional stability with only component A.
  • the resin of the present invention may further include the above-described layered silicate (component B5). Further, by adding a layered silicate, it is possible to improve the rigidity, weather resistance and / or heat resistance, and barrier property against liquid or vapor of an injection-molded body produced from the resin composition of the present invention.
  • the amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited, but the rigidity, weather resistance and / or heat resistance of the injection-molded product, and liquid or vapor From the viewpoint of improving the barrier property against the above and from the viewpoint of securing the molding processability and impact resistance of the resin composition, it is preferably 0.05 to 10 parts by mass, more preferably 0. 05 to 8 parts by mass, more preferably 0.05 to 5 parts by mass.
  • injection-molded body of the present invention is a combination of not only injection molding but also, for example, extrusion molding, blow molding, compression molding, injection molding and the like. Can be produced by molding.
  • the injection molded product is not particularly limited, but a molded product that is required to have low warpage and excellent dimensional stability, for example, a component having a complicated shape, such as an oil tank for two-wheeled and four-wheeled vehicles, an intake system component, And molded articles suitable for the manufacture of integrated parts, electrical component cases, and other containers.
  • the injection-molded body also includes a welding joint member.
  • an intake system module component that integrates an intake system component such as an intake manifold of an automobile that requires high strength and durability, a cylinder head cover, an intake manifold, an air cleaner, and the like.
  • Cooling system parts such as water inlets and water outlets, fuel system parts such as fuel injection and fuel delivery pipes, containers such as oil tanks, and electrical equipment cases such as switches.
  • the polyamide resin composition for extrusion molding of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during extrusion molding. From the viewpoint of ensuring melt moldability (hereinafter also referred to as thermal characteristics), and ensuring low water absorption, chemical resistance, hydrolysis resistance, and mechanical strength and elongation and / or barrier properties of the extruded product.
  • the content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 92 to 100% by mass, and still more preferably. 95 to 100% by mass.
  • polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of Component A. Part, more preferably 0.5 to 30 parts by weight.
  • the resin composition of the present invention can produce an extrusion-molded body excellent in mechanical strength and elongation and / or barrier properties only with Component A, but more stable mechanical strength and elongation and / or barrier. In applications where properties are required, it is preferable to further include the above-mentioned layered silicate (component B5) in the resin composition of the present invention.
  • the layered silicate as a reinforcing agent imparts excellent mechanical strength obtained by good rigidity, high elasticity, high pulling force, etc., and excellent texture without impairing the elongation of the filament of the present invention. Can do.
  • the layered silicate can improve the mechanical strength, heat resistance, barrier properties against liquids (especially alcohol, water, etc.) and gases (especially oxygen, gasoline, etc.) as a barrier property improving component. .
  • the amount of the layered silicate is not particularly limited as long as the effect of improving mechanical strength and texture is obtained, but is preferably 0.05 with respect to 100 parts by mass of Component A used in the present invention. It is ⁇ 10 parts by mass, more preferably 0.05 to 8 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the ratio of the layered silicate decreases, the improvement effect tends to decrease, and when the ratio increases, the fluidity of the resin composition and the physical properties of the obtained molded product, particularly the impact strength, tend to decrease.
  • the polyamide resin composition for extrusion molding of the present invention is preferably molded using various types of extruders such as single screw and biaxial as the molding method, and melt molding is particularly preferable. Used.
  • the polyamide resin composition for extrusion molding of the present invention is a material suitable for processing various filaments, films and the like by a melt molding method.
  • the filament of the present invention can be used as various monofilaments and multifilaments.
  • applications include brush bristle, fishing line, hook-and-loop fastener, tire cord artificial turf, carpet, seat for automobile seats, Examples include fish nets, ropes, sills, filter threads, lawn mower filaments, toothbrushes, and automobile floor mats.
  • the method for forming the filament of the present invention is not limited to these.
  • the polyamide resin composition for extrusion molding containing component A is melted in a melt extruder such as a single screw, and the discharge amount is set.
  • the melt can be produced by extruding the melt from a spinneret through a gear pump that is controlled quantitatively and taking it at a predetermined take-up speed while cooling with air or water.
  • the filaments thus obtained may be further stretched at various magnifications depending on the application. Also, melt spinning and stretching may be performed simultaneously.
  • the filament may be either a monofilament or a multifilament, and may or may not be twisted.
  • the cross section of the filament may be circular, or may be an irregular cross section such as a hollow shape or a star shape.
  • the film of the present invention may be a stretched film or an unstretched film, and can be molded using any molding process known in the field of films.
  • a predetermined amount of component A and various other components used as necessary is melt-kneaded with an extruder, the kneaded product is extruded into a film form from a T-die, and cast on the casting roll surface.
  • An unstretched film can be formed by applying a T-die method for cooling the film, a tubular method in which the kneaded product is extruded from a ring die into a cylindrical shape, and then air-cooled or water-cooled.
  • the stretched film can be formed by a method of stretching the unstretched film uniaxially or biaxially and heat-setting as necessary below the melting point of the polymer constituting the unstretched film.
  • the polyamide film of the present invention may be used as one or more layers in a multilayer laminated film.
  • the layers other than the film of the present invention include, for example, a polyolefin film made of low density polyethylene, high density polyethylene, polypropylene, etc., a polyester film, a copolymer film made of ethylene-vinyl acetate copolymer, and an ionomer resin.
  • a film or the like can be used depending on the purpose.
  • the laminated film can be formed using a known method such as an adhesion method or a coextrusion method.
  • the bonding method the polyamide film of the present invention and one or more other films may be bonded with an adhesive.
  • the co-extrusion method the raw material polymer melts of the polyamide film of the present invention and one or more other films may be melt-coextruded from a multilayer die via an adhesive resin as necessary.
  • the film of the present invention can be suitably used for applications such as industrial materials, industrial materials, household goods, and more specifically for food packaging, especially for retort, where the contents are liquid, and used for metal coating.
  • An antirust effect can also be imparted.
  • the polyamide resin composition for molding vehicle parts of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range and heat resistance for improving productivity during molding of vehicle parts. From the viewpoint of securing the weather resistance of the component strength of the vehicle parts, ensuring the properties, melt moldability (hereinafter also referred to as thermal characteristics),
  • the content of component A in the resin composition is It is preferably 50 to 100% by mass, preferably 70 to 100% by mass, preferably 90 to 100% by mass, more preferably 92 to 100% by mass, and still more preferably 95 to 100% by mass.
  • polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
  • the amount is preferably 0.1 to 100 parts by mass, more preferably 0.1 to 50 parts by mass, and still more preferably 0.5 to 30 parts by mass.
  • UV absorber As an ultraviolet absorber, the ultraviolet absorber conventionally used for the polyamide resin can be used.
  • the ultraviolet absorber include benzophenone, benzotriazole, triazole, imidazole, oxazole, resorcinol, salicylate, cyanoacrylate, triazine, metal complex, and the like.
  • the benzotriazole type is preferable.
  • an ultraviolet absorber for example, Tinuvin 327 (Ciba Specialty Chemicals benzotriazole), Tinuvin 234 (Ciba Specialty Chemicals benzotriazole), Sanduvor VSU (Clariant) Oxalic acid anilide type).
  • the ultraviolet absorber is preferably from 0.01 to 5 parts by weight, more preferably from 0.01 to 3.0 parts by weight, more preferably from 0.01 to 2.0 parts by weight, based on 100 parts by weight of the resin. More preferably, the content is 1 to 2.0 parts by mass.
  • Light stabilizer examples include hindered amines. Specifically, for example, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3, 5-di-tert-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2,6,6-tetramethyl-4-piperidyl) -2,2-bis (3 5-di-tertbutyl-4-hydroxybenzyl) malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) decanedioate, bis (2,2,6,6-tetramethyl-4 -Piperidyl) succinate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 4- [3- (3,5-di
  • light stabilizers include, for example, Tinuvin 123 (Ciba Specialty Chemicals Co., Ltd., hindered amine series) Chimassorb 944 (Ciba Specialty Chemicals Co., Ltd., hindered amine series), Chimassorb 119 (Ciba Specialty Chemicals Co., Ltd.) Hindered amine system).
  • the light stabilizer is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 3.0 parts by weight, and more preferably 0.01 to 2.0 parts by weight with respect to 100 parts by weight of Component A. 0.1 to 2.0 parts by mass is more preferable.
  • Layered silicate (component B5) The vehicle parts of the present invention have low water absorption and excellent dimensional stability with only component A, but in applications where lower water absorption and dimensional stability are required, the layered silicate (component B5) is used as component A. Can be added. Further, by adding a layered silicate, it is possible to improve the rigidity, weather resistance and / or heat resistance, and barrier property against liquid or vapor of the vehicle component of the present invention.
  • the amount of the layered silicate is not particularly limited as long as the effect of improving mechanical strength and texture is obtained, but is preferably 0.05 with respect to 100 parts by mass of Component A used in the present invention. It is ⁇ 10 parts by mass, more preferably 0.05 to 8 parts by mass, and particularly preferably 0.05 to 5 parts by mass.
  • the ratio of the layered silicate decreases, the improvement effect tends to decrease, and when the ratio increases, the fluidity of the resin composition and the physical properties of the obtained molded product, particularly the impact strength, tend to decrease.
  • vehicle parts Examples of vehicle parts obtained by molding the polyamide resin composition for molding vehicle parts of the present invention include vehicle interior parts, vehicle exterior parts, automobile engine room interior parts, and the like.
  • Vehicle interior part means a part used for interior of a vehicle.
  • Vehicles include automobiles such as passenger cars, buses, trucks, special automobiles such as tractors, road rollers, snow vehicles, forklifts, wheel cranes, special purpose automobiles such as ambulances, fire trucks, television relay cars, and refrigerated cars. However, it is not limited to these.
  • the vehicle interior parts of the present invention include, for example, a register blade, a washer lever, a window regulator handle, a knob of a window regulator handle, a passing light lever, a sun visor bracket, an instrument panel, a console box, a glove box, a steering wheel, and a trim. It can be used for applications such as seat members such as seat rails, seat belt anchors, electric seat parts, seat heater parts, seat blowing parts, HVAC parts, steering switch parts, and the like.
  • Vehicle exterior parts means the parts used for the exterior of vehicles.
  • vehicles include automobiles such as passenger cars, buses, trucks, motorcycles, special automobiles such as tractors, road rollers, snow trucks, forklifts, wheel cranes, special purpose automobiles such as ambulances, fire trucks and television relays. Examples include, but are not limited to, cars, refrigerators, and motorbikes.
  • vehicle exterior parts include, but are not limited to, a mall, a lamp housing, a front grille, a mud guard, a side bumper, a bumper, and a fender.
  • automotive engine compartment components of the present invention include intake manifolds, air cleaners, resonators, fuel rails, throttle bodies and valves, air flow meters, EGR components, harness connectors, engine covers, cylinder head covers, Timing belt (chain cover), timing chain (belt) tensioner and guide, alternator cover, distributor cover, brake master cylinder, oil pump, oil filter, engine mount, paper canister, power steering oil reservoir, fuel strainer, radiator tank , Switch boots, lamp waterproof cover, connector cover, rubber hook, suspension There are boots, suspension upper mounts, suspension bushings, stabilizer bushings, steering rack boots, steering rack bushings, reservoir tank caps, plug cord caps, molded packing, battery terminal covers, and the like.
  • Polyamide resin composition for molded articles in direct contact with biodiesel fuel (1) Content of Component A
  • the polyamide resin composition for molded bodies (hereinafter also referred to as resin composition) that is in direct contact with the biodiesel fuel of the present invention can sufficiently ensure the relative viscosity ⁇ r and has a moldable temperature range.
  • polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
  • the amount is preferably 0.1 to 100 parts by mass, more preferably 0.1 to 50 parts by mass, and still more preferably 0.5 to 30 parts by mass.
  • the resin composition of the present invention can sufficiently secure the relative viscosity ⁇ r with only component A, has a wide moldable temperature range, is excellent in heat resistance and melt moldability, and has low water absorption as seen in aliphatic linear polyoxamide resins. It is possible to produce a molded article that stably secures chemical resistance, hydrolysis resistance, fuel barrier properties, and biodiesel fuel resistance as compared with conventional aliphatic polyamide resins without impairing properties. However, in applications where biodiesel fuel resistance is further required, it is preferable to further include the above-mentioned layered silicate in the resin composition of the present invention. In addition, by adding layered silicate, the molded body produced from the resin composition of the present invention improves the biodiesel fuel resistance, rigidity, weather resistance and / or heat resistance, and barrier property against liquid or vapor. Can be made.
  • the amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited, but the rigidity, weather resistance and / or heat resistance of the injection-molded product, and liquid or vapor From the viewpoint of improving the barrier property against the above and from the viewpoint of securing the molding processability and impact resistance of the resin composition, it is preferably 0.05 to 10 parts by mass, more preferably 0. 05 to 8 parts by mass, more preferably 0.05 to 5 parts by mass.
  • Plasticizer (component C5)
  • a plasticizer examples include benzenesulfonic acid butyramide, esters of p-hydroxybenzoic acid and linear or branched alcohols having 6 to 21 carbon atoms (for example, 2-ethylhexyl p-hydroxybenzoate). it can.
  • the compounding amount of the plasticizer is based on 100 parts by mass of the polyamide resin. The amount is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 30 parts by mass, and still more preferably 1 to 30 parts by mass.
  • Molded body in direct contact with biodiesel fuel The molded body in direct contact with the biodiesel fuel excellent in biodiesel fuel resistance of the present invention (hereinafter also referred to as molded body) is injected with the resin composition of the present invention.
  • All known molding methods applicable to polyamide, such as extrusion, hollow, press, roll, foaming, vacuum / pressure air, and stretching, are possible, and these molding methods can be used to process films, sheets, molded products, fibers, etc. it can.
  • the molded article excellent in biodiesel fuel resistance obtained by the present invention can be used for any of various molded articles for which conventional polyamide resin fuel parts have been used.
  • Examples of the molded body that comes into contact with the biodiesel fuel include a fuel tank, a fuel tube, a fuel pipe, a fuel transfer unit, a fuel pump module, and a valve.
  • the polyamide resin composition for fuel pipe parts of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during molding. From the viewpoint of ensuring melt moldability (hereinafter also referred to as thermal characteristics), environmental resistance such as low temperature impact resistance of fuel pipe parts, chemical resistance, and liquid, vapor and / or gas impermeability,
  • the content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
  • polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
  • the amount is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass, and still more preferably 0 to 30 parts by mass.
  • the resin composition of the present invention can produce a fuel piping component that is excellent in environmental resistance such as low-temperature impact resistance, chemical resistance and liquid, vapor and / or gas impermeability only with Component A.
  • the resin composition of the present invention can further contain a layered silicate (component B5).
  • layered silicate by adding layered silicate, the rigidity of fuel pipe parts prepared from the resin composition of the present invention, environmental resistance such as low temperature impact resistance, chemical resistance and impermeability of liquid, vapor and / or gas Can be improved.
  • the amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited.
  • the rigidity, weather resistance and / or heat resistance of the fuel pipe component, and liquid or vapor are not limited.
  • 0.05 to 10 parts by weight More preferably 0.05 to 8 parts by mass, More preferably, it is 0.05 to 5 parts by mass.
  • plasticizer (component C5) From the viewpoint of impact resistance at low temperature and imparting flexibility, the above-described plasticizer (component C5) is preferably blended with the polyamide resin composition of the present invention.
  • the compounding amount of the plasticizer is based on 100 parts by mass of the resin component in the polyamide resin composition of the present invention.
  • the amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
  • the polyamide resin composition of the present invention can dissipate static electricity generated when transporting fluids such as fuel by forming fuel transportation parts in the fuel piping parts, and can prevent parts from being damaged or exploding due to sparks. From the viewpoint of becoming, it is preferable to blend the above-described conductivity-imparting agent (component B6). For example, it is preferable that a fuel pipe component is joined to a conductive joint and a conductive tube to form an electric transportation circuit.
  • Examples of the conductivity imparting agent include all fillers added to impart conductive performance to the resin, and examples thereof include granular, flaky and fibrous fillers.
  • particulate filler carbon black, graphite or the like can be suitably used.
  • flaky filler aluminum flakes, nickel flakes, nickel-coated mica and the like can be suitably used.
  • fibrous filler metal fibers such as carbon nanotubes, carbon nanofibers, carbon fibers, carbon-coated ceramic fibers, carbon whiskers, aluminum fibers, copper fibers, brass fibers, and stainless fibers can be suitably used.
  • the fibrous filler is also preferable from the viewpoint of improving the mechanical properties of fuel piping parts obtained by molding the polyamide resin composition of the present invention.
  • carbon fiber and carbon black can be used suitably.
  • the blending amount of the conductivity imparting agent varies depending on the type of the conductivity imparting agent to be used, it cannot be specified unconditionally, but from the viewpoint of balance between conductivity, fluidity, mechanical strength, etc. 2 to 30 parts by weight is preferably selected with respect to 100 parts by mass of the entire resin including the polyamide resin.
  • the amount of the fuel pipe component obtained by melt-extruding the polyamide resin composition blended therewith is preferably 10 9 ⁇ cm or less, more preferably 10 6 ⁇ cm or less.
  • Organic fiber and inorganic filler (component C6)
  • the polyamide resin composition of the present invention is preferably used in a joint for fuel piping, Or it is preferable to mix
  • organic fibers examples include aramid fibers.
  • inorganic fibers such as glass fiber, carbon fiber, wollastonite and potassium titanate whisker, Inorganic fillers such as montmorillonite, talc, mica, calcium carbonate, silica, clay, kaolin, glass powder, and glass beads are used.
  • the fiber diameter is preferably 0.01 to 50 ⁇ m, more preferably 0.03 to 30 ⁇ m, still more preferably 0.05 to 20 ⁇ m
  • the fiber length is preferably 0.1 to 15 mm, more preferably 0.5 to 15 mm, still more preferably 0.5 to 10 mm, Are preferably used.
  • the inorganic fibers are cut and the like, and within the polyamide resin composition or the fuel pipe part of the present invention,
  • the fiber diameter of the inorganic fiber is 0.01 to 50 ⁇ m, preferably 0.03 to 30 ⁇ m
  • the fiber length of the inorganic fiber may be about 0.5 to 10 mm, preferably about 0.7 to 5 mm.
  • glass fibers are preferably used because of their high reinforcing effect.
  • the creep resistance of the fastening portion of the fuel pipe component of the present invention is high and deformation does not occur, and permanent sealing becomes possible.
  • the amount of organic fiber and / or inorganic filler used is the fuel pipe part of the present invention.
  • the amount is preferably 10 to 50% by weight.
  • Fuel piping component of the present invention is applied to various applications that require barrier properties of liquid or vapor fuel obtained by molding the polyamide resin composition for fuel piping components of the present invention. be able to.
  • Applicable uses include, for example, fuel tanks such as gasoline tanks, alcohol tanks, fuel tubes, brake oil tanks, clutch oil tanks, power steering oil tanks, Fuel strainer, fluorocarbon tube for cooler, fluorocarbon tank, canister, air cleaner, intake system parts, tire inner liner, tank valve, fuel delivery pipe, quick connector, EGR parts, parts for fuel tanks such as oil strainer, fuel tube, Fuel pipe fittings are preferred, Fuel tank parts, fuel tubes, and fuel pipe joints are more preferred.
  • the fuel tank parts of the present invention are prepared by injecting, extruding, hollowing, pressing, rolls, foaming, vacuum / pressure air, stretching, etc. Molded using a conventionally known molding method according to its application, vibration welding method, die slide injection, injection welding method such as die rotary injection and two-color molding, ultrasonic welding method, spin welding method, hot plate welding method, It can be applied to an object using a hot wire welding method, a laser welding method, a high frequency induction heating welding method, or the like.
  • the temperature of the polyamide resin is preferably maintained at a temperature that does not alter the polyamide resin.
  • the fuel pipe component of the present invention is obtained by molding the polyamide resin of the present invention, and preferably comprises a layer comprising the polyamide resin composition for fuel pipe components of the present invention (hereinafter referred to as layer 1). It is preferable to have (also called).
  • the fuel pipe component of the present invention may be a single-layer tube composed of only layer 1, but is preferably used as a multilayer tube in which one or more layers other than layer 1 and layer 1 are laminated. In practical fuel piping parts, multi-layer tubes are often used.
  • the thickness of the layer 1 is determined from the viewpoint of stably ensuring the fuel impermeability and simultaneously satisfying many required characteristics required for the fuel piping component.
  • the thickness is preferably 20 to 80%, more preferably 30 to 70%.
  • the outer diameter of the fuel piping component can be designed in consideration of the flow rate of various fuels, and the wall thickness is a thickness that does not increase the permeability of various fuels and can maintain the breaking pressure of the fuel tube, and although it can be designed with a thinness that can maintain flexibility with a good degree of ease of assembly of the fuel tube and vibration resistance during use,
  • the outer diameter is preferably 4 to 15 mm, more preferably 3 to 13 mm,
  • the wall thickness is preferably 0.5 to 2 mm, more preferably 0.7 to 1.8 mm.
  • At least one resin selected from the group consisting of fluororesin, high-density polyethylene resin, PA11 resin and PA12 More preferably, it consists of a resin composition containing at least one resin selected from the group consisting of PA11 resin and PA12 and a plasticizer (preferably, the above-mentioned suitable plasticizer).
  • the content of the plasticizer ensures a stable breaking pressure of the fuel pipe component and suppresses bleed out, with respect to 100 parts by mass of the resin component of the layer other than the layer 1.
  • the amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
  • a conductivity imparting agent (preferably, the above-described suitable conductivity imparting agent (component B6)) is added. It is preferable to mix
  • fluororesin examples include polytetrafluoroethylene (PTEF), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF). Further, it may be a resin partially containing chlorine, such as polychlorofluoroethylene (PCTFE), or a copolymer with ethylene or the like.
  • PTEF polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PCTFE polychlorofluoroethylene
  • the high density polyethylene resin those having an average molecular weight of about 200,000 to 300,000 are preferable in consideration of mechanical properties.
  • the high-density polyethylene resin has a low-temperature embrittlement temperature of ⁇ 80 ° C. or lower and excellent low-temperature impact resistance.
  • layers other than the layer 1 may be provided via an adhesive layer when the adhesiveness to the composition layer is poor.
  • Extrusion molding is preferably used as a method for producing the fuel pipe component of the present invention, and as a method for producing a multilayer fuel pipe component, for example, from the number of extruders corresponding to the number of constituent layers or the number of materials.
  • a multilayer tube such as a multilayer fuel tube
  • the molten resin extruded from a number of extruders corresponding to the number of constituent layers or the number of materials is introduced into one multilayer tube die, Bond each layer in the die or immediately after exiting the die, After that, the method of manufacturing in the same way as normal tube molding, Once the single layer tube is formed, Examples include a method of coating another layer on the outside of the tube.
  • the shape of the tube may be a straight tube or may be processed into a bellows shape.
  • a protective layer may be provided on the outside,
  • the forming material include rubbers such as chloroprene rubber, ethylene propylene diene terpolymer, epichlorohydrin rubber, chlorinated polyethylene, acrylic rubber, chlorosulfonated polyethylene, and silicon rubber.
  • the resin composition of the present invention is melted separately at an extrusion temperature of 340 ° C., the discharged molten resin is molded into a laminated tubular body, cooled by a sizing die that controls dimensions, and taken up.
  • a single-layer tube formed by molding the resin composition of the present invention can be produced.
  • Extrusion temperature of the resin composition of the present invention is 340 ° C
  • PA11 is melted separately at an extrusion temperature of 260 ° C.
  • the discharged molten resin is joined by an adapter, formed into a laminated tubular body, cooled by a sizing die that controls dimensions, and taken up.
  • Layer 1 (inner layer) formed by molding the resin composition of the present invention A two-layer hose can be manufactured as layer 2 (outer layer) formed by molding PA6.
  • Extrusion temperature of the resin composition of the present invention is 340 ° C
  • PA11 was extruded at 260 ° C
  • PA12 is melted separately at an extrusion temperature of 260 ° C.
  • the discharged molten resin is joined by an adapter, formed into a laminated tubular body, cooled by a sizing die that controls dimensions, and taken off.
  • Layer 1 (innermost layer) formed by molding the resin composition of the present invention Layer 2 (intermediate layer) formed by molding PA6, A three-layer tube having a layer 3 (outermost layer) formed by molding PA12 can be produced.
  • an innermost layer extruder, an inner layer extruder, an intermediate layer extruder and an outer layer extruder are provided, and the resin discharged from these four extruders is collected by an adapter into a tube shape.
  • an apparatus comprising a die to be formed, a sizing die that cools the tube and controls its dimensions, and a take-up machine.
  • a resin composition containing PA11 of the present invention in the hopper of the innermost layer (layer 4) extruder A resin composition containing PA12 in the hopper of the inner layer (layer 3) extruder
  • the resin composition of the present invention is applied to the hopper of the intermediate layer (layer 1) extruder.
  • a multilayer tube can be produced by introducing another resin composition into the hopper of the outer layer extruder.
  • fuel pipe parts such as tubes for automobile fuel pipe systems are preferably mentioned.
  • the fuel pipe joint of the present invention can be produced by any of the injection molding methods and other known methods for producing resin joints of the present invention. Also good.
  • a fuel pipe quick connector More preferably, the quick connector for fuel pipes obtained by molding the polyamide resin composition for fuel pipe parts of the present invention in the cylindrical main body portion of the quick connector for fuel pipes may be mentioned.
  • FIG. 3 shows a cross section of a typical quick connector 1.
  • the end of the steel tube 2 and the end of the plastic tube 3 are connected to each other.
  • the flange-shaped portion 4 located away from the end of the steel tube 2 is detachably engaged by the retainer 5 of the connector 1, and the fuel is sealed by the row of O-rings 6.
  • the connector end portion forms an elongated nipple 7 having a plurality of jaw portions 8 protruding in the radial direction.
  • the end portion of the plastic tube 3 is closely fitted to the outer surface of the nipple 7 and the fuel is sealed by mechanical joining with the jaw portion 8 and an O-ring 9 provided between the tube and the nipple.
  • each part such as a cylindrical main body, a retainer and an O-ring is formed by injection molding and then assembled and assembled at a predetermined place.
  • the quick connector is assembled into an assembly that is engaged with a tube, preferably a tube formed from a resin composition containing a resin (hereinafter also referred to as a resin tube), and used as a fuel piping component.
  • a tube preferably a tube formed from a resin composition containing a resin (hereinafter also referred to as a resin tube), and used as a fuel piping component.
  • the quick connector and the resin tube may be mechanically joined by fitting, but are preferably joined by a welding method such as spin welding, vibration welding, laser welding, or ultrasonic welding. Thereby, airtightness can be improved.
  • airtightness can be improved by using a thick resin tube, heat-shrinkable tube, clip or the like that can apply a sufficient tightening force to the overlapping part.
  • the resin tube may have a corrugated area in the middle.
  • a corrugated region is a region in which an appropriate region in the middle of the tube body is formed into a corrugated shape, a bellows shape, an accordion shape, a corrugated shape, or the like.
  • the resin tube preferably includes a layer made of a polyamide resin composition including a polyamide resin such as nylon 11 or nylon 12, and preferably has a multilayer structure including a barrier layer.
  • a polyamide resin such as nylon 11 or nylon 12
  • a barrier layer preferably has a multilayer structure including a barrier layer.
  • PBT, PBN, fluorine resin, PA92 Nylon in which clay is nano-dispersed, EVOH, or the like can be used as a resin for forming the barrier layer.
  • a configuration in which a conductive layer is included in the innermost layer is preferable for preventing damage due to static electricity.
  • the protective member may be a sponge-like porous body by a known method.
  • a protective part that is lightweight and excellent in heat insulation can be formed. Moreover, material cost can also be reduced. Alternatively, the strength may be improved by adding glass fiber or the like.
  • the shape of a protection member is not specifically limited, Usually, it is a block-shaped member which has a recessed part which receives a cylindrical member or a multilayer tube. In the case of a cylindrical member, a multilayer tube can be inserted later into a cylindrical member prepared in advance, or the cylindrical member can be coated and extruded on the multilayer tube to adhere both together.
  • the adhesive is applied to the inner surface of the protective member or the concave surface as necessary, and the multilayer tube is inserted or fitted into the inner surface, and the multilayer tube and the protective member are integrated with each other. Forming a structure.
  • the quick connector according to the present invention when combined with an airtightness improving technique such as O-ring or welding, has a small amount of wall permeation of fuel / gasoline mixed fuel and the like, and has excellent characteristics such as creep deformation resistance. . Therefore, the quick connector according to the present invention is useful as an excellent fuel line system capable of flexibly responding to strict fuel emission regulations in combination with a resin tube excellent in fuel barrier properties, preferably a fuel tube according to the present invention.
  • SMT surface mounting technology
  • SMD surface mounted component
  • the polyamide resin composition for SMD of the present invention (hereinafter also referred to as a resin composition) is a good moldable temperature range, heat resistance, and the like for improving the productivity at the time of molding SMD. From the viewpoint of ensuring melt moldability (hereinafter also referred to as thermal characteristics), ensuring stable heat resistance at high temperatures of SMD, and stable chemical resistance to various chemicals,
  • the content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, still more preferably 60 to 100% by mass, and still more preferably 70 to 90% by mass. It is.
  • polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
  • the resin composition of the present invention preferably contains component C7 that is inorganic particles, Considering that SMD is used as a component of a printed wiring board, inorganic particles such as metal oxides and inorganic compounds having no conductivity are more preferable. More preferred are metal oxides such as iron oxide and zinc oxide, and sulfides such as molybdenum sulfide.
  • inorganic particles having a density of 5 g / cm 3 or more can be preferably used.
  • magnetic particles such as ferrites such as barium ferrite and strontium ferrite, rare earth magnetic materials such as samarium-cobalt and neodymium-iron-boron are used. It can be preferably used.
  • the inorganic particles may be used alone or in combination of two or more, and may be subjected to surface treatment.
  • Examples of the surface treatment include surface treatment with a titanate coupling agent, surface treatment with a silane surface treatment agent, and the like.
  • a titanate coupling agent for example, a known method described in the above-mentioned JP-A-2-255760
  • a known method described in the above-mentioned JP-A-10-158507 can be employed.
  • the mass ratio of component A and component C7 is such that the weight ratio of component A and component C7 (component A / component C7) is from the viewpoint of efficiently adding properties such as higher specific gravity and magnetism.
  • the ratio is preferably 50/50 to 5/95, more preferably 20/80 to 5/95.
  • the resin composition of the present invention preferably contains a reinforcing fiber from the viewpoint of ensuring the resistance to deformation load received under high temperature, and has conductivity when considering that SMD is used as a component of a printed wiring board. Preferably not.
  • reinforcing fibers examples include inorganic fibers such as glass fibers and mineral fibers, and organic fibers such as aramid fibers that are tougher than polyamide resins. Glass fibers are preferred from the viewpoint of availability. By blending the reinforcing fiber, physical properties such as strength and creep resistance of the composition are improved.
  • the fiber diameter is preferably 0.01 to 50 ⁇ m, more preferably 0.03 to 30 ⁇ m
  • the fiber length is preferably 1 to 50 mm, more preferably 1 to 30 mm, still more preferably 1 to 20 mm, Are preferably used.
  • the fiber diameter of the inorganic fiber is 0.01 to 50 ⁇ m, preferably 0.03 to 30 ⁇ m
  • the fiber length of the inorganic fiber may be about 0.5 to 10 mm, preferably about 0.7 to 5 mm.
  • the blending ratio of the glass fiber ensures the effect of improving the rigidity and creep resistance of the molded body by the resin composition of the present invention stably, and stably secures the fluidity of the resin composition of the present invention to suppress short shots.
  • the amount is preferably 2 to 40 parts by weight, more preferably 2 to 38 parts by weight, and still more preferably 3 to 35 parts by weight with respect to 100 parts by weight of the total resin of the resin composition of the present invention. Part.
  • Component A has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability. In addition, it is basically maintained as it is, and certain characteristics such as mechanical strength and heat resistance are improved by the addition of the reinforcing fiber.
  • the SMD of the present invention is obtained by, for example, injection molding, extrusion molding, blow molding, (press, roll) compression molding, hollow molding, foaming, vacuum / compressed air, It can be produced by molding by combining stretch foaming, stretching and the like.
  • the reinforcing fibers and inorganic particles It is also possible to add the reinforcing fibers into the resin that is blended in advance with the resin and the reinforcing fibers blended in the resin composition of the present invention, such as component A, or melted and kneaded in the middle of the molding machine.
  • a flexible wiring board, a harness / cable, an SMT connector and the like are preferable, and an SMT connector is more preferable.
  • the polyamide resin composition for an electrophotographic apparatus component (hereinafter also referred to as a resin composition) of the present invention can be molded well to improve productivity during molding of the electrophotographic apparatus component. From the viewpoint of ensuring the temperature range, heat resistance, melt moldability, and ensuring that the electrophotographic apparatus parts stably maintain conductivity, surface smoothness and mechanical properties at high temperatures,
  • the content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
  • Conductivity means, for example, an electrical characteristic such that static electricity does not accumulate in an insulator such as a resin when an electrophotographic apparatus component operates in the electronic apparatus. Thereby, it is possible to dissipate static electricity generated when the electrophotographic apparatus component operates in the electronic apparatus.
  • the blending amount of the conductivity imparting agent varies depending on the type of the conductivity imparting agent to be used, it cannot be specified unconditionally, but from the viewpoint of balance between conductivity, fluidity, mechanical strength, etc.
  • the amount is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the entire resin including the polyamide resin.
  • the amount is more preferably 2 to 30 parts by weight, still more preferably 2 to 15 parts by weight.
  • the amount is more preferably 3 to 40 parts by mass, still more preferably 5 to 35 parts by mass, and still more preferably 7 to 35 parts by mass.
  • the conductivity required for the material for an electrophotographic apparatus component of the present invention may vary depending on the application, but considering that the surface resistance of the polyamide resin is about 10 15 ⁇ , the conductivity of the resin composition of the present invention is By adding a property-imparting agent, it is preferably about 10 1 to 10 12 ⁇ , more preferably about 10 3 to 10 10 ⁇ .
  • the resin composition of the present invention can produce an electrophotographic apparatus component that is excellent only in components A and B6 and has excellent conductivity, surface smoothness, and mechanical properties at high temperatures.
  • the addition of layered silicate can improve the rigidity and mechanical properties of the electrophotographic apparatus parts produced from the resin composition of the present invention.
  • the amount of the above-mentioned layered silicate ensures the viewpoint of improving the rigidity, weather resistance and / or heat resistance of the parts of the electrophotographic apparatus, and the barrier property against liquid or vapor, and the molding processability and impact resistance of the resin composition. From the viewpoint, with respect to 100 parts by mass of component A, The amount is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, and still more preferably 0.05 to 5 parts by mass.
  • polystyrene resin elastomer other than Component A
  • component A elastomer
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
  • the resin composition of this invention may mix
  • the blending ratio of the glass fiber ensures the effect of improving the rigidity and creep resistance of the molded body by the resin composition of the present invention stably, and ensures the fluidity of the resin composition of the present invention to suppress short shots.
  • the amount is preferably 2 to 40 parts by weight, more preferably 2 to 38 parts by weight, and still more preferably 3 to 35 parts by weight with respect to 100 parts by weight of the total resin of the resin composition of the present invention. Part.
  • Component A has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability. In addition, it is basically maintained as it is, and certain characteristics such as mechanical strength and heat resistance are improved by the addition of the reinforcing fiber.
  • Electrophotographic apparatus component The electrophotographic apparatus component of the present invention is obtained by, for example, injection molding, extrusion molding, blow molding, (press, roll) compression molding, hollow molding, foaming, vacuum- It can be produced by molding by combining compressed air, stretched foaming, stretching and the like.
  • Ingredients such as component A and the resin to be blended with the resin composition of the present invention and component B6, if necessary, component C8 are blended in advance, or component B is necessary in the resin melt-kneaded in the middle of the molding machine.
  • reinforcing fibers can be introduced.
  • the electrophotographic component can be produced by molding the electrophotographic apparatus component of the present invention by, for example, injection molding, extrusion molding, blow molding, compression molding or the like.
  • the electrophotographic apparatus component of the present invention is preferably obtained by inflation extrusion from the viewpoint of productivity.
  • a molded product having a cylindrical shape having an arbitrary diameter and a thickness of 30 to 1000 ⁇ m, more preferably 30 to 500 ⁇ m, still more preferably 30 to 300 ⁇ m is obtained.
  • the parts of the electrophotographic apparatus formed in this way have no seams, and the electrophotographic apparatus such as an electrophotographic copying machine, an intermediate transfer belt used for a printer, a fax machine, a transfer conveying belt, etc. It is useful as a belt for photographic devices.
  • a conductive roll for an electrophotographic apparatus can be obtained by coating an electrophotographic apparatus part formed into a cylindrical shape on a conductive support, and heating and fusing it. Or it can also be set as an electroconductive roll by carrying out melt coating of the electroconductive polyamide composition continuously on an electroconductive support body with an extruder.
  • the conductive roll is useful as, for example, a cleaning roll, a charging roll, a developing roll, or a transfer roll.
  • the electrophotographic apparatus component of the present invention formed into a cylindrical shape with the above-described thickness has an average surface roughness Ra of 1 ⁇ m or less, and the ratio between the maximum value and the minimum value of the surface resistivity in the same plane is 10. It is desirable to be less than double.
  • Ra is 1 ⁇ m or less, the sharpness of the generated image is remarkably improved.
  • the parts of the electrophotographic apparatus of the present invention have a uniform attractive force for attracting toner and paper, and the intermediate transfer belt, transfer conveyance It can be used more suitably as an electrophotographic apparatus component such as a belt, a cleaning roll, a charging roll, a developing roll, and a transfer roll.
  • an electrophotographic apparatus component such as a belt, a cleaning roll, a charging roll, a developing roll, and a transfer roll.
  • the Ra of the electrophotographic apparatus component it is effective to set the temperature of the annular die at the time of molding slightly higher.
  • the aggregate size of the conductivity imparting agent in order to suppress the ratio of the maximum value and the minimum value of the volume resistivity in the same plane of the electrophotographic apparatus component to 10 times or less, it is effective to suppress the aggregate size of the conductivity imparting agent to be small. Specifically, a method of forming the aggregate so that the average diameter thereof is 3 ⁇ m or less, more preferably 2 ⁇ m or less is effective.
  • the polyamide resin composition for IC tray of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range and heat resistance for improving the productivity at the time of molding an IC tray. From the viewpoint of ensuring the heat resistance and melt moldability (hereinafter, also referred to as thermal characteristics), and ensuring stable heat resistance at high temperatures of SDM and chemical resistance to various chemicals,
  • the content of component A in the resin composition is preferably 50 to 99% by mass, more preferably 55 to 99% by mass, and still more preferably 60 to 98% by mass.
  • the polyamide resin composition of the present invention has the above-mentioned conductivity from the viewpoint that the IC tray can dissipate static electricity generated when the integrated circuit component is transported or packaged, and the integrated circuit component can be prevented from being damaged.
  • An imparting agent (component B6) is blended.
  • Conductivity means, for example, an electrical characteristic such that static electricity does not accumulate in an insulator such as a resin when an IC tray transports or packages an integrated circuit component. As a result, it is possible to dissipate static electricity generated when the IC tray carries or packages integrated circuit components.
  • the blending amount of the conductivity imparting agent varies depending on the type of the conductivity imparting agent to be used, it cannot be specified unconditionally, but from the viewpoint of balance between conductivity, fluidity, mechanical strength, etc.
  • the amount is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass, and further preferably 5 to 40 parts by mass with respect to 100 parts by mass of the entire resin including the polyamide resin.
  • carbon black from the viewpoint of the balance between conductivity and fluidity, with respect to 100 parts by mass of the entire resin including the polyamide resin, The amount is more preferably 2 to 30 parts by weight, still more preferably 2 to 15 parts by weight.
  • the amount is more preferably 3 to 40 parts by mass, still more preferably 5 to 35 parts by mass, and still more preferably 7 to 35 parts by mass.
  • the conductivity required for the IC tray material of the present invention may vary depending on the application, but considering that the surface resistance of the polyamide resin is about 10 15 ⁇ , imparting conductivity to the resin composition of the present invention.
  • the agent it is preferably about 10 0 to 10 12 ⁇ , more preferably about 10 0 to 10 10 ⁇ .
  • polymers other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
  • the resin composition of this invention may mix
  • the blending ratio of the glass fiber ensures the effect of improving the rigidity and creep resistance of the molded body by the resin composition of the present invention stably, and stably secures the fluidity of the resin composition of the present invention to suppress short shots.
  • the amount is preferably 2 to 40 parts by weight, more preferably 2 to 38 parts by weight, and still more preferably 3 to 35 parts by weight with respect to 100 parts by weight of the total resin of the resin composition of the present invention. Part.
  • Component A has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability. In addition, it is basically maintained as it is, and certain characteristics such as mechanical strength and heat resistance are improved by the addition of the reinforcing fiber.
  • IC tray of the present invention is obtained by subjecting the resin composition of the present invention to, for example, injection molding, extrusion molding, blow molding, (press, roll) compression molding, hollow molding, foaming, vacuum / pressure air, stretched foaming. It can be produced by molding by combining stretching and the like.
  • component A and the resin to be blended with the resin composition of the present invention and component B, and if necessary, component B in the resin that is pre-blended with reinforcing fibers or melt-kneaded in the middle of the molding machine For example, reinforcing fibers can be introduced.
  • Preferred IC trays obtained by molding the resin composition of the present invention include IC transport trays, IC storage trays, trays for heat treatment processes such as baking treatment, IC substrate cleaning trays, and the like.
  • the polyamide resin composition for industrial tubes of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during molding. From the viewpoint of ensuring melt formability (hereinafter also referred to as thermal characteristics), environmental resistance such as low temperature impact resistance of industrial tube products, chemical resistance and impermeability of liquid, vapor and / or gas,
  • the content of component A in the resin composition is Preferably, it is 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
  • polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer, Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
  • polyamides other than component A such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers
  • An elastomer can be included.
  • the polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
  • the amount is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass, and still more preferably 0 to 30 parts by mass.
  • the resin composition of the present invention can produce an industrial tube excellent in environmental resistance such as low-temperature impact resistance, chemical resistance and liquid, vapor and / or gas impermeability only with Component A. Furthermore, in the use for which highly accurate dimensional stability is calculated
  • the amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited, but the rigidity, weather resistance and / or heat resistance of the industrial tube, and liquid or vapor are not limited. From the viewpoint of improving the barrier properties against and from the viewpoint of securing the molding processability and impact resistance of the resin composition, the amount is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, and still more preferably 0.05 to 5 parts by mass.
  • plasticizer (component C) From the viewpoint of improving impact resistance at low temperatures, the above-mentioned plasticizer (component C) is preferably blended with the polyamide resin composition of the present invention.
  • the compounding amount of the plasticizer is based on 100 parts by mass of the resin component in the polyamide resin composition of the present invention.
  • the amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
  • the polyamide resin composition of the present invention preferably contains the above-described conductivity-imparting agent (component B6), As the conductivity imparting agent, conductive carbon black is preferable.
  • the blending amount of the conductivity imparting agent is based on the polyamide resin composition of the present invention.
  • the amount is preferably 1 to 40 parts by mass, more preferably 3 to 35 parts by mass, and still more preferably 3 to 20 parts by mass.
  • Examples of the conductive carbon black include acetylene black and ketjen black. Among them, those having a good chain structure and a high aggregation density are preferable.
  • the industrial tube of the present invention is obtained by molding the polyamide resin of the present invention, and is preferably a layer comprising the industrial tube polyamide resin composition of the present invention (hereinafter also referred to as layer 1). It is preferable to have.
  • a hose is a hollow tube made of a soft material such as resin and used to send fluids such as liquids and gases. It is a slightly thick tube that can be bent at any time and used. It is called a tube.
  • the industrial tube of the present invention may be a single-layer tube composed of only the layer 1, but is preferably used as a multilayer tube in which one or more layers other than the layer 1 and the layer 1 are laminated. In practical industrial tubes, multilayer tubes are often used.
  • the thickness of the layer 1 is ensured from the viewpoint of stably ensuring the impermeability of liquid, vapor and / or gas, and simultaneously satisfying many required characteristics required for an industrial tube.
  • the thickness is preferably 20 to 80% of the wall thickness of the tube, and more preferably 30 to 70%.
  • the outer diameter of the industrial tube can be designed taking into account the flow rates of various liquids, vapors and / or gases, and the wall thickness does not increase the permeability of various liquids, vapors and / or gases, and is normal It can be designed with a thickness that can maintain the breaking pressure of the tube, and a thickness that can maintain flexibility with a satisfactory degree of ease of assembly work and vibration resistance during use.
  • the outer diameter is preferably 4 to 15 mm, more preferably 5 to 15 mm
  • the wall thickness is preferably 0.5 to 2 mm, more preferably 0.5 to 1.8 mm.
  • At least one resin selected from the group consisting of fluororesin, high-density polyethylene resin, PA11 resin and PA12 More preferably, it consists of a resin composition containing at least one resin selected from the group consisting of PA11 resin and PA12 and a plasticizer (preferably, the above-mentioned suitable plasticizer).
  • the content of the plasticizer is relative to 100 parts by mass of the resin component of the layer other than the layer 1. The amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
  • a conductivity-imparting agent (the above-mentioned suitable conductivity-imparting agent) may be blended in the above-mentioned suitable blending amount. preferable.
  • fluororesin examples include polytetrafluoroethylene (PTEF), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF). Further, it may be a resin partially containing chlorine, such as polychlorofluoroethylene (PCTFE), or a copolymer with ethylene or the like.
  • PTEF polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PCTFE polychlorofluoroethylene
  • the high density polyethylene resin those having an average molecular weight of about 200,000 to 300,000 are preferable in consideration of mechanical properties.
  • the high-density polyethylene resin has a low-temperature embrittlement temperature of ⁇ 80 ° C. or lower and excellent low-temperature impact resistance.
  • layers other than the layer 1 may be provided via an adhesive layer when the adhesiveness to the composition layer is poor.
  • extrusion molding is preferably used, and as a method for producing a multilayer industrial tube, for example, from the number of extruders corresponding to the number of constituent layers or the number of materials.
  • a multilayer tube such as a multilayer fuel tube
  • the molten resin extruded from a number of extruders corresponding to the number of constituent layers or the number of materials is introduced into one multilayer tube die, Bond each layer in the die or immediately after exiting the die, After that, the method of manufacturing in the same way as normal tube molding, Once the single layer tube is formed, Examples include a method of coating another layer on the outside of the tube.
  • the shape of the tube may be a straight tube or may be processed into a bellows shape.
  • a protective layer may be provided on the outside,
  • the forming material include rubbers such as chloroprene rubber, ethylene propylene diene terpolymer, epichlorohydrin rubber, chlorinated polyethylene, acrylic rubber, chlorosulfonated polyethylene, and silicon rubber.
  • multilayer tubes can be formed with a Plabor (Plastics Engineering Laboratory Co., Ltd.) 2-layer hose molding machine and a 3-layer tube molding machine.
  • an innermost layer extruder, an inner layer extruder, an intermediate layer extruder and an outer layer extruder are provided, and the resin discharged from these four extruders is collected by an adapter into a tube shape.
  • an apparatus comprising a die to be formed, a sizing die that cools the tube and controls its dimensions, and a take-up machine.
  • a resin composition containing PA11 of the present invention in the hopper of the innermost layer (layer 4) extruder A resin composition containing PA12 in the hopper of the inner layer (layer 3) extruder
  • the resin composition of the present invention is applied to the hopper of the intermediate layer (layer 1) extruder.
  • a multilayer tube can be produced by introducing another resin composition into the hopper of the outer layer extruder.
  • Industrial tubes are preferably pneumatic tubes, hydraulic tubes, paint spray tubes, tubes for automobile piping (intake systems, cooling systems, fuel systems, etc.), and medical tubes such as catheters.
  • Production Example 1 (Component A: PX6-1) In a pressure vessel with an internal volume of about 150 liters equipped with a stirrer, thermometer, torque meter, pressure gauge, raw material inlet directly connected with a diaphragm pump, nitrogen gas inlet, pressure outlet, pressure regulator and polymer outlet.
  • the internal pressure was adjusted to 0.5 MPa while extracting the generated butanol from the pressure relief port.
  • butanol was extracted from the pressure relief port over about 20 minutes, and the internal pressure was brought to normal pressure. From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 liters / minute, the temperature of the polycondensate was brought to 310 ° C. over about 1 hour, and the reaction was carried out at 310 ° C. for 1.5 hours. . Thereafter, the stirring was stopped and the system was pressurized to 1 MPa with nitrogen and allowed to stand for about 10 minutes.
  • the pressure was released to an internal pressure of 0.1 MPa, and the polycondensate was extracted in a string form from the lower outlet of the pressure vessel.
  • the string-like polymer was immediately cooled with water, and the water-cooled string-like resin was pelletized with a pelletizer.
  • the temperature was raised to 275 ° C. over 1.5 hours. Meanwhile, the internal pressure was adjusted to 0.5 MPa while extracting the generated butanol from the pressure relief port. Immediately after the temperature of the polycondensate reached 270 ° C., butanol was extracted from the pressure release port over about 20 minutes, and the internal pressure was brought to normal pressure. From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 liters / minute, the temperature of the polycondensate was changed to 290 ° C. over about 1 hour, and the reaction was carried out at 290 ° C. for 2 hours. Thereafter, the stirring was stopped and the system was pressurized to 1 MPa with nitrogen and allowed to stand for about 10 minutes.
  • the pressure was released to an internal pressure of 0.1 MPa, and the polycondensate was extracted in a string form from the lower outlet of the pressure vessel.
  • the string-like polymer was immediately cooled with water, and the water-cooled string-like resin was pelletized with a pelletizer.
  • the pressure was released to an internal pressure of 0.1 MPa, and the polycondensate was extracted in a string form from the lower outlet of the pressure vessel.
  • the string-like polymer was immediately cooled with water, and the water-cooled string-like resin was pelletized with a pelletizer.
  • Comparative resin 1 (polyamide resin: PX6-6, comparative production example 1)
  • Pre-polycondensation step The inside of a 1 L separable flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a raw material inlet is replaced with nitrogen gas having a purity of 99.9999%. 500 ml of dehydrated toluene, 1,6-Hexanediamine 58.7209 g (0.5053 mol) was charged. After this separable flask was placed in an oil bath and heated to 50 ° C, Dibutyl oxalate (102.1956 g, 0.5053 mol) was charged.
  • the temperature of the salt bath was set to 340 ° C. over 1 hour, the pressure in the container was reduced to about 66.5 Pa, and the reaction was further continued for 2 hours. Subsequently, after introducing nitrogen gas to normal pressure, it was removed from the salt bath and cooled to room temperature under a nitrogen stream of 50 ml / min to obtain a polyamide resin.
  • Compound B1 release agent
  • Compound p terminal modified product of polypropylene glycol (PPGA)
  • Compound q Tris (tridecyl phosphite)
  • Compound r Myristyl myristyl
  • Compound s Zinc stearate
  • Compound t Ethylene bisstearyl amide
  • Compound u Low molecular weight PE
  • Compound v Talc (magnesium silicate)
  • Compound w 1,3,2,4-dibenzylidenesorbitol
  • Compound x 3,9-bis [2- (3- (t-butyl-4-hydroxy-5-methylphenyl) propoxy) -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro (5,5) Undecane
  • Compound y Triethylene glycol-bis [3- (3t-butyl-5methyl-4-hydroxyphenyl) propionate]
  • B4-1 Glass fiber (ECST-289 manufactured by Nippon Electric Glass (fiber diameter 13 ⁇ m)
  • B4-2 Carbon fiber (Toho Tenax Co., Ltd.
  • Besphite HTA-C6NR (fiber diameter 7 ⁇ m)
  • B4-3 Brass fiber (fiber diameter 80 ⁇ m)
  • B4-4 Strontium ferrite powder with an average particle diameter of 10 ⁇ m surface-treated with an aminosilane coupling agent
  • B4-5 Tungsten powder with an average particle diameter of 10 ⁇ m surface-treated with an aminosilane coupling agent (component B5 (layered silicate))
  • B6-1 Carbon black (Evonik Degussa Japan Co., Ltd.
  • B6-2 Carbon fiber (Toho Tenax Co., Ltd. Besphite HTA-C6NR (fiber diameter 7 ⁇ m) B6-3: Brass fiber (fiber diameter 80 ⁇ m), Ketjen black (EC600JD made by Ketjen Black International)
  • FIG. 1 is a cross-sectional view showing an outline of an injection molding machine for measuring a mold release force.
  • the fixed mold 3 and the movable mold 6 are processed so as to form a box having a width of 80 mm, a length of 100 mm, a depth of 30 mm, a wall thickness of 2.3 mm, and a cross rib inside.
  • the polyamide resin composition of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, is excellent in chemical resistance and hydrolysis resistance, and has mechanical properties under wet conditions.
  • Excellent polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component has a wider moldable temperature range, better melt moldability, higher molecular weight, and better heat resistance It turns out that a heat-resistant molded object can be manufactured. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Examples 1 to 7 and Comparative Examples 2 to 3 For the resin compositions containing the polyamide resins of Production Examples 1 to 5 and Comparative Resin Examples 2 (PA6) and 3 (PA66) and heat-resistant agents (compounds a and b), the compositions shown in Table 1 In a twin-screw kneader PCM-45 manufactured by Ikekai Tekko Co., Ltd., set the cylinder temperature to 340 ° C when PA6-1-2 and 6 are included as polyamide resin.
  • the heat-resistant molded article of the present invention was obtained by injection molding at a mold temperature of 80 ° C.
  • the polyamide resin composition of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, is excellent in chemical resistance and hydrolysis resistance, and has mechanical properties under wet conditions.
  • Excellent polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component has a wider moldable temperature range, better melt moldability, higher molecular weight, and better heat resistance It turns out that a heat-resistant molded object can be manufactured. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • the polyamide resin used in the present invention has low water absorption compared to nylon 6 and nylon 66, excellent chemical resistance, hydrolysis resistance, excellent mechanical properties under wet conditions, and It can be seen that it is possible to produce a tough molded body having a wider moldable temperature range and better melt moldability than the polyamide resin using 1,6-hexanediamine alone as the diamine component, and capable of increasing the molecular weight.
  • the polyamide resin composition of the present invention includes an impact modifier (component B) in addition to the polyamide resin (component A).
  • the polyamide resin composition basically includes a polyamide resin (component A). ) Characteristics.
  • Example 1 100 parts by weight of PX6-1 pellets, 40 parts by weight of Mitsui DuPont Himiran 1706 pellets (Ionomer) (B3-1) were blended in advance, and the resulting mixed pellets were fed to a Japanese-made TEX44 twin screw extruder for melt kneading. The strand was cooled and solidified in a cooling water tank, and then a pellet-like sample was obtained with a pelletizer. The pellet was dried under reduced pressure, and the pellet was subjected to evaluation.
  • Example 2 Except for following the formulation in Table 4, pellets were prepared in the same manner as in Example 1, and the pellets were subjected to evaluation.
  • Example 3 The impact improving material (B) was made by Mitsui DuPont, made by HiMilan 1855 pellets (ionomer) (B3-2), and the pellets were prepared in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellets were evaluated. It was used for.
  • Example 4 Except for the impact modifier (B), Exxelor VA1801 (maleic acid-modified ethylene-propylene resin) (B3-3), manufactured by Exxon Chemicals, the pellets were prepared in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellet was subjected to evaluation.
  • B impact modifier
  • Exxelor VA1801 maleic acid-modified ethylene-propylene resin
  • B3-3 manufactured by Exxon Chemicals
  • Example 5 Except for following the formulation in Table 4, pellets were prepared in the same manner as in Example 4, and the pellets were subjected to evaluation.
  • Example 6 The impact modifier (B) was Tafmer MH5020 (maleic acid-modified ethylene-butene resin) (B3-4) manufactured by Mitsui Chemicals, and pellets were prepared in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellet was subjected to evaluation.
  • Example 7 A pellet was prepared in the same manner as in Example 6 except that the impact modifier (B) was Tafuma-MH7020 (maleic acid-modified ethylene-butene resin) (B3-5) manufactured by Mitsui Chemicals and the formulation shown in Table 4 was followed. The pellet was used for evaluation.
  • the impact modifier (B) was manufactured by Asahi Kasei Corporation, Tuftec M1943 (epoxy-modified styrene block copolymer resin) (B3-6), and pellets were produced in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellet was subjected to evaluation.
  • Example 1 A pellet was prepared in the same manner as in Example 1 except that 100 parts by mass of Ube Industries 1015B pellet (nylon 6) and 18 parts by mass of B3-3 were used, and the pellet was subjected to evaluation.
  • Example 2 A pellet was prepared in the same manner as in Example 1 except that 100 parts by mass of Ube Industries 2020B pellet (nylon 66) and 25 parts by mass of B3-4 were used, and the pellet was subjected to evaluation. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Tables 5 to 8 (Examples 1 to 22 and Comparative Examples 1 to 4) (Test Example 1) Production Examples 1-5, Polyamides PX6-1 to PX6-6 produced in Comparative Production Example 1, nylon 6 (Ube Industries, UBE nylon 1015B: PA6) and nylon 66 (Ube Industries, UBE nylon 2020B: PA66) The relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, and mechanical properties in dry and wet conditions were measured. The results are shown in Table 5.
  • Examples 1 to 12, Comparative Examples 1 and 2 Polyamides PX6-1 to PX6-5 produced in Production Examples 1 to 5, nylon 6 (Ube Industries, UBE nylon 1015B) and nylon 66 (Ube Industries, UBE nylon 2020B), and glass fiber (manufactured by Nippon Electric Glass) Using ECST-289 (fiber diameter 13 ⁇ m), carbon fiber (Toho Tenax Co., Ltd., Besphite HTA-C6NR (fiber diameter 7 ⁇ m), brass fiber (fiber diameter 80 ⁇ m), a mixture having the ratio shown in Table 6 was prepared. .
  • the mixture was used in a biaxial kneader having a cylinder diameter of 40 mm, using resin temperatures of 300 ° C. (Examples 5 to 9), 340 ° C. (Examples 1 to 4 and Examples 10 to 12), and nylon 6.
  • the mixture was melt-kneaded at 260 ° C. and nylon 266 at 290 ° C., extruded into a strand, cooled in a water tank, and then pelletized using a pelletizer.
  • a predetermined test piece was prepared by injection molding using the obtained pellet.
  • Examples 13 to 22, Comparative Examples 3 to 4 Polyamides PX6-1 to PX6-5 produced in Production Examples 1 to 5 and Nylon 6 (manufactured by Ube Industries, UBE nylon 1015B), strontium ferrite having an average particle diameter of 10 ⁇ m and an aminosilane coupling treated with an aminosilane coupling agent Mixtures having the ratios shown in Tables 7 and 8 were prepared using tungsten powder having an average particle size of 10 ⁇ m and surface-treated with an agent.
  • these mixtures were mixed using a biaxial kneader having a cylinder diameter of 40 mm, and the resin temperature was 300 ° C. (Examples 14, 19, 21), 340 ° C. (Examples 13, 15, 16, 17, 18, 20, 22).
  • nylon 6 was melt-kneaded at 260 ° C., extruded into a strand shape, cooled in a water tank, and then pelletized using a pelletizer.
  • a predetermined test piece was prepared by injection molding using the obtained pellet. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Test Example 2 Using the resin composition and test piece obtained above, tensile strength, tensile strength after oxidation-resistant gasoline treatment, saturated water absorption, and calcium chloride resistance were evaluated. The evaluation results are shown in Table 6.
  • Tables 9 to 11 (Examples 1 to 14 and Comparative Examples 1 to 4) (Test Example 1) Polyamides PX6-1 to PX6-6 produced in Production Examples 1 to 5 and Comparative Production Example 1, nylon 6 (Ube Industries, UBE nylon 1015B: PA6) and nylon 66 (Ube Industries, UBE nylon 2020B: PA66) The relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, and mechanical properties in dry and wet conditions were measured. The results are shown in Table 9.
  • Example 1 To 100 parts by mass of PX6-1 produced in Production Example 1, 0.5 parts by mass of organic montmorillonite (Nanocor, Nanomer 30TC) was added, and melt-kneaded using a twin-screw kneader at 340 ° C. A composite material of the present invention in the form of pellets was obtained.
  • organic montmorillonite Nanocor, Nanomer 30TC
  • Examples 2 to 7 A composite material of the present invention in the form of a pellet was obtained in the same manner as in Example 1 except that the composition in Table 10 was followed.
  • the kneading temperature of Examples 5 to 7 was 300 ° C.
  • the kneading temperature of Examples 2 to 4 was 340 ° C.
  • Example 1 A composite material was obtained in the same manner as in Example 1 using PA6 (manufactured by Ube Industries, UBE nylon 1015B) instead of the polyamide resin.
  • the kneading temperature was 260 ° C.
  • Test Example 2 The composite materials of Examples 1 to 7 and Comparative Example 1 were measured for dry and wet mechanical properties, calcium chloride resistance, and ethanol vapor permeability coefficient. The results are shown in Table 10. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Example 8 To 100 parts by mass of PX6-1 produced in Production Example 1, 1.5 parts by mass of organic montmorillonite (Nanocor, Nanomer 30TC) was added, and melt-kneaded at 340 ° C. using a biaxial kneader. A composite material of the present invention in the form of pellets was obtained.
  • organic montmorillonite Nanocor, Nanomer 30TC
  • Example 9 to 14 A composite material of the present invention in the form of a pellet was obtained in the same manner as in Example 8 except that the composition in Table 11 was followed.
  • the kneading temperature of Examples 12 to 14 was 300 ° C.
  • the kneading temperature of Examples 9 to 11 was 340 ° C.
  • Example 3 A composite material was obtained in the same manner as in Example 8 using PA6 (manufactured by Ube Industries, UBE nylon 1030B) instead of the polyamide resin.
  • the kneading temperature was 260 ° C.
  • Table 11 shows the measurement results of Examples 8 to 14 and Comparative Examples 3 to 4.
  • Tables 12 to 14 (Examples 1 to 20 and Comparative Examples 1 to 3) Production Examples 1-5, Polyamides PX6-1 to PX6-6 produced in Comparative Production Example 1, nylon 6 (Ube Industries, UBE nylon 1015B: PA6) and nylon 66 (Ube Industries, UBE nylon 2020B: PA66) The relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, and mechanical properties in dry and wet conditions were measured. The results are shown in Table 12.
  • these mixtures were mixed using a twin-screw kneader having a cylinder diameter of 40 mm, the cylinder set temperature was 340 ° C. in Examples 1 to 9 and 14 to 15, and 300 ° C. in Examples 10 to 13 (260 when nylon 6 was used).
  • the cylinder set temperature was 340 ° C. in Examples 1 to 9 and 14 to 15, and 300 ° C. in Examples 10 to 13 (260 when nylon 6 was used).
  • a temperature of 290 ° C. for PA66 extruded into a strand, cooled in a water bath, and then pelletized using a pelletizer to obtain a polyamide resin composition.
  • the polyamide resin composition using PX6-6 could not be melt kneaded and molded because Td-Tm was small.
  • Various test pieces were prepared from the obtained pellets by injection molding.
  • Example 16 to 20 Comparative Example 3
  • a cylinder set temperature of 340 ° C. in Examples 16 to 17 and 300 ° C. in Examples 18 to 20 (260 ° C. in PA6)
  • the resin temperature was 340 ° C. in Examples 16 to 17, the resin temperature was 300 ° C. in Examples 18 to 20 (260 ° C. in PA6), and the mold temperature was 80 ° C.
  • the evaluation shown in Table 14 was performed by the method described above.
  • U-BOND Z488 used as an impact modifier is acid-modified polyethylene manufactured by Ube Maruzen Polyethylene
  • Tuffmer MC1307 is a polyolefin elastomer manufactured by Mitsui Chemicals
  • Tuffmer MH5010 is an acid manufactured by Mitsui Chemicals. It is a modified ethylene / butadiene copolymer.
  • Examples 2-1-1 to 3 and Examples 2-2 to 5 The metal coating material and metal-coated article of the present invention were produced.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Example 1-1: Comparative Resin 1 (PX6-6) Comparative Example 1-2: Comparative Resin 2 (PA6) Comparative Example 1-3: Comparative Resin 4 (PA12)
  • Examples 2-1-1 to 3, Examples 2-2 to 5, and Comparative Examples 2-3-1 to 2 The polyamide resin produced in Examples 1-1 to 5 and PA12, As an epoxidized styrenic thermoplastic elastomer, Daicel Chemical Epofriend A1010 is used, In the composition shown in Table 16, in a biaxial kneader PCM-45 manufactured by Ikekai Tekko Co., Ltd., the cylinder set temperature is 340 ° C. when PA 6-1 to 2 and 6 are included as the polyamide resin.
  • a metal coating material was prepared by melt-kneading at a rotational speed of 150 rpm.
  • a metal-coated article was produced by sandwiching the melt-kneaded metal-coated polyamide resin composition between metal substrates (galvanized steel sheet and aluminum plate). Moreover, the saturation water absorption rate and chemical resistance were evaluated by the methods described later using films formed under the conditions of (5) above from the melt-kneaded samples.
  • the polyamide resin composition for metal coating of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, has excellent melt moldability, and can have a higher molecular weight. It turns out that it can shape
  • Examples 1 to 8 and Comparative Examples 1 to 4 Examples 1 to 7, Comparative Examples 1 to 4
  • the polyamide resin composition for injection molding of the present invention was produced.
  • Examples 1 to 5 are polyamide resin compositions for injection molding composed of Component A
  • Examples 6 and 7 are polyamide resin compositions for injection molding composed of Component A and glass fibers.
  • Example 1 Production Examples 1 to 5 (PX6-1 to 5) Comparative Example 1: Comparative Resin 1 (PX6-6) Comparative Example 2: Comparative resin 2 (PA6) Comparative Example 3: Comparative Resin 3 (PA66) Comparative Example 4: PX6-5 of Example 7 was replaced with PA6, and pellets that were polyamide resin compositions for injection molding containing glass fibers were prepared under the same conditions as in Example 7.
  • Example 6 and 7 100 parts by mass of PX6-1 and PX6-5 pellets were kneaded in a twin screw extruder with a 44 mm ⁇ vent set to a barrel temperature of 340 and 300 ° C., respectively.
  • glass fiber fiber diameter 11 ⁇ m, fiber cut length 3 mm
  • Pellets that were polyamide resin compositions for molding were prepared.
  • Example 8 Intake manifolds and fuel injections were produced by injection molding using the resin compositions of Examples 1 to 7 and Comparative Examples 1 to 4.
  • the polyamide resin compositions for injection molding of Examples 1 to 7 had moldability equal to or higher than that of PA6 and PA66.
  • the polyamide resin composition for injection molding of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, is excellent in chemical resistance and hydrolysis resistance, and is a machine under wet conditions. Excellent physical properties, wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine as a diamine component, excellent melt moldability, and higher molecular weight. It can be seen that a tough injection-molded product with reduced warpage can be produced even when glass fiber, which is said to have a large warpage and low dimensional stability, is added. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Examples 1-1 to 5 The polyamide resin composition for extrusion molding of the present invention was produced.
  • Examples 2-1 to 5 A filament (monofilament) using the polyamide resin composition for extrusion molding of the present invention was produced.
  • Examples 3-1 to 5 A single-layer tube using the polyamide resin composition for extrusion molding of the present invention was produced.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Example 1-1: Comparative Resin 1 (PX6-6) Comparative Example 1-2: Comparative Resin 2 (PA6)
  • Example 2-1 to 5 and Comparative Example 2-2 Each of the polyamide resin compositions of Examples 1-1 to 5 and Comparative Example 1-2 was Using an extruder with a screw diameter of 30 mm, the cylinder set temperature was 280 to 310 ° C. in Examples 2-3 to 5 and Comparative Example 2-2. In the case of Examples 2-1 and 340 ° C.
  • Examples 3-1 to 5 and Comparative Example 3-2 For the polyamide resin and PA6 produced in Examples 1 to 5, using an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., the outer diameter is 1/2 inch and the thickness is 1 mm. Single layer tubes were produced.
  • Example 19 (Examples 1-1 to 5, 2-1 to 6, and 3-1 to 5, Comparative Examples 1-1 to 3, 2-2, 2-4, and 3-2 to 3) (Examples 1-1 to 5) A polyamide resin composition for molding vehicle parts of the present invention comprising Component A was produced. (Examples 2-1 to 6) A polyamide resin composition for molding vehicle parts according to the present invention comprising component A and glass fiber was produced. (Examples 3-1 to 5) A polyamide resin composition for molding vehicle parts of the present invention comprising Component A, an ultraviolet absorber and a light stabilizer was produced. (Example 4) Vehicle interior parts were produced using the polyamide resin composition for molding vehicle parts of the present invention. (Example 5) A vehicle exterior part using the polyamide resin composition for molding vehicle parts of the present invention was produced.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Example 1-1: Comparative Resin 1 (PX6-6) Comparative Example 1-2: Comparative Resin 2 (PA6) Comparative Example 1-3: Comparative Resin 3 (PA66)
  • Examples 2-1 to 6 and Comparative Examples 2-2 and 4 For the polyamide resin compositions of Examples 2-1 to 6 and Comparative Examples 2-2 and 4, the barrel temperature is 340 ° C. when PA 6-1 to 2 and 6 are included as the polyamide resin. 300 ° C when PA 6-3 to 5 is included as a polyamide resin, 260 ° C when PA6 is included as the polyamide resin, Were kneaded with a 44 mm ⁇ vented twin screw extruder set to When kneading into this polyamide resin, glass fiber (average diameter 11 ⁇ m, average fiber length 3 mm) is supplied from the middle of the extruder to 43 parts by mass with respect to 100 parts by mass of the polyamide resin. Pellets of polyamide resin compositions for molding vehicle parts of 2-1 to 6 and Comparative Examples 2-2 and 4 were prepared.
  • Examples 3-1 to 5 and Comparative Examples 3-2 to 3 Into the polyamide resin composition pellets produced in Examples 1-1 to 5 and Comparative Examples 1-2 to 3, Tinuvin 327 as an ultraviolet absorber and Tinuvin 123 as a light stabilizer were added to 100 parts by mass of the polyamide resin.
  • Example 4 Production of vehicle interior parts
  • Examples 1-1 to 5 sun visor brackets and instruments by injection molding using the polyamide resin compositions of Examples 3-1 to 5 and Comparative Examples 3-2 to 3 containing an ultraviolet absorber and a light stabilizer A mental panel was manufactured.
  • Examples 1-1 to 5 and 3-1 to 5 had a moldability equal to or higher than that of Comparative Examples 3-2 to 3 including PA6 or PA66.
  • Example 5 Manufacture of vehicle exterior parts
  • front grills and mudguards were manufactured by injection molding.
  • the polyamide resins of Examples 1-1 to 5 had a moldability equal to or higher than that of Comparative Examples 1-2 to 3 including PA6 or PA66.
  • the molded product obtained by molding the resin composition of the present invention and the resin composition of the present invention has low water absorption compared to materials such as nylon 6, nylon 66 and nylon 12, and has chemical resistance.
  • the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Tables 21 to 23 (Examples 1-1 to 5, 2-1 to 4, 3-1 to 2, 3-5, 4-1 to 4, 5-1 to 5, and 6-1 to 7, Comparative Examples 1-1 to 4, 2-4, 3-3 to 4, 4-4, 5-2 and 5-4) Examples 1-1 to 5, Examples 2-1 to 4, Examples 3-1, 2, and 5, Examples 4-1 to 4,
  • the polyamide resin composition for fuel pipe parts of the present invention was produced in the intermediate layer and outer layer of Examples 6-1 to 6 and the outer layer of Example 6-7.
  • a joint for a fuel pipe part which is a fuel pipe part of the present invention was manufactured.
  • Examples 5-1 to 5 a single-layer fuel tube that is a fuel piping component of the present invention was manufactured, In Examples 6-1 to 5, a three-layer fuel tube that is a fuel piping component of the present invention was manufactured, In Example 7, a gasoline tank and a fuel tube, which are fuel piping parts of the present invention, were manufactured.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Example 1-1: Comparative Resin 1 (PX6-6) Comparative Example 1-2: Comparative Resin 2 (PA6) Comparative Example 1-3: Comparative Resin 3 (PA66) Comparative Example 1-4: Comparative resin 4 (PA12)
  • Example 2-1 to 4 and Comparative Examples 4 to 4 PX6-1 produced in Example 1-1 with the composition shown in Table 21
  • Glass fiber (CS-3J-265S manufactured by Nitto Boseki Co., Ltd.) and / or carbon fiber (K223SE manufactured by Mitsubishi Chemical) was kneaded in a TEX44 twin screw extruder manufactured by Nippon Steel, The strand was cooled and solidified in a cooling water tank, and then a pellet of Example 2-1 was obtained with a pelletizer.
  • glass fiber was described as GF and carbon fiber as CF.
  • a pellet of Example 2-4 was obtained under the same conditions as in Example 2-1, except that PX6-1 was replaced with PX6-4 produced in Example 1-4.
  • Example 1-2 30% by mass of glass fiber (CS-3J-265S manufactured by Nitto Boseki Co., Ltd.) was kneaded in a TEX44 twin-screw extruder manufactured by Nippon Steel, The strand was cooled and solidified in a cooling water tank, and then a pellet of Example 2-2 was obtained with a pelletizer.
  • Examples 2-2 Examples 2-3 to 4 and Comparative Example 2-4 were performed under the same conditions except that PX6-2 was replaced with PX6-3 and 4 prepared in Examples 1-3 and 4, respectively, and PA12. Pellets were obtained.
  • a 30 mm screw extruder (Cylinder temperature: 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., a plastic joint for fuel piping having an outer diameter of 8 mm, a wall thickness of 2 mm, and a length of 100 mm was manufactured.
  • Examples 5-1 to 5 and Comparative Examples 2 and 4 For the polyamide resins PA6 and PA66 produced in Examples 1-1 to 5, using an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., an outer diameter of 1/2 inch. A single-layer tube having a thickness of 1 mm was manufactured.
  • Multi-layer tube forming equipment includes an inner layer extruder, an intermediate layer extruder and an outer layer extruder. Resin discharged from these three extruders is collected by an adapter and molded into a tube, and the tube is cooled.
  • a three-layer tube having an inner diameter of 6 mm and an outer diameter of 8 mm was prepared using an apparatus (product name: Platform, manufactured by Plastic Engineering Laboratory Co., Ltd.) consisting of a sizing die and a take-up machine for controlling the size.
  • Table 3 shows the composition and thickness of the resin composition of the inner layer, intermediate layer, and outer layer of the tube. In addition, the following was used as a raw material.
  • Resin r1 Vinylidene fluoride resin (cefal soft, manufactured by Central Glass)
  • Resin r2 High density polyethylene resin (8600A, manufactured by Tosoh Corporation)
  • Plasticizer Benzenesulfonic acid butyramide (BBSA, manufactured by Proviron) (In Table 23, it is described as BSBA)
  • Adhesive Maleic acid-modified polyethylene (U Bond F1100, manufactured by Ube Industries)
  • Example 7 Using PX6-1 to PX6-5, PA6, PA66, and PA12 manufactured in Examples 1 to 5, a fuel tank for transporting a gasoline tank and gasoline fuel, which are fuel pipe components, was manufactured by injection molding. Injection molding conditions are When using PX6-1-3 as polyamide resin, When using PX6-4-6 as polyamide resin, When PA6 is used as a polyamide resin, 290 ° C when PA66 is used as the polyamide resin 23 ° C when PA12 is used as polyamide resin A test plate was obtained by molding with an electrophotographic apparatus part having a mold temperature of 80 ° C. The injection molding conditions were: injection pressure: primary pressure 650 kg / cm 2 , injection time: 11 seconds, cooling time: 20 seconds. The gasoline tank and the fuel tube, which are fuel piping parts of the present invention, had a formability equal to or higher than that of PA6, PA66, and PA12.
  • Example 3-1, 2 and 5 Comparative Examples 3-3 to 4, Examples 4-1 to 4 and Comparative Example 4-4, the fuel barrier properties of the joint for fuel piping which is a fuel piping component of the present invention (Measure fuel permeation (total permeation and HC permeation)
  • Examples 5-1 to 5 and Comparative Examples 5-2 and 4 the vapor barrier properties (moisture permeability) of the single-layer fuel tubes were measured. The results are shown in Table 22.
  • the polyamide resin composition for fuel pipe parts of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, and has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, and it has excellent melt moldability and can have a higher molecular weight. It can be seen that a fuel piping component having excellent environmental resistance such as low temperature impact resistance, chemical resistance, and fuel impermeability can be produced by molding it. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Examples 1-1 to 5 2-1-1 to 2, 2-2 to 3, 2-4-1 to 2, and 2-5, the polyamide resin composition for a printed circuit board surface mount component of the present invention is manufactured. did.
  • it is a polyamide resin composition for printed circuit board surface-mount components comprising component A
  • Examples 2-1-1 to 2, 2-2 to 3, 2-2-4-1 to 2, and 2-5 printed circuit board surface-mount components comprising component A and glass fibers (inorganic particles) It is a polyamide resin composition.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Example 1-1: Comparative Resin 1 (PX6-6) Comparative Example 1-2: Comparative Resin 2 (PA6) Comparative Example 1-3: Comparative Resin 2 (PA66) Comparative Example 1-4: Comparative resin 2 (PA12)
  • Examples 2-1-1 to 2, 2-2 to 3, 2-4-1 to 2, 2-5 and Comparative Examples 2-3-1 to 2 The polyamide resin and PA66 produced in Examples 1-1 to 5 and Comparative Example 1-1; Using glass fiber (ECST-289 manufactured by Nippon Electric Glass (fiber diameter 13 ⁇ m)) A mixture having the ratio shown in Table 2 was prepared.
  • each of these mixtures was used using a biaxial kneader with a cylinder diameter of 40 mm, 340 ° C when PA 6-1 to 2 and 6 are included as polyamide resin, 300 ° C when PA 6-3 to 5 is included as a polyamide resin,
  • PA66 is included as a polyamide resin
  • the mixture was melt kneaded and extruded into a strand shape, cooled in a water tank, and then pelleted using a pelletizer.
  • the polyamide resin composition for a printed circuit board surface mount component of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, and has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, and it has excellent melt moldability and can have a higher molecular weight. It can be seen that a printed circuit board surface mount component having excellent heat resistance under high temperature and chemical resistance against various chemicals can be produced. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Resin Example 1-1: Comparative Resin 1 (PX6-6) Comparative Resin Example 1-2: Comparative Resin 2 (PA6) Comparative Resin Example 1-3: Comparative Resin 3 (PA66)
  • Examples 1-1 to 4, 2-1, 3-1 to 5, Comparative Examples 1-1 and 2-1, Examples 4-1 to 4, 5-1, 6-1 to 5, and Comparative Example 4 -1 and 5-1) (I) Polyamide resins produced in Examples 1-1 to 5, PA6 and PA66, conductive fillers and layered silicates, Carbon black (EC600JD made by Ketjen Black International), Carbon fiber (Besfight HTA-C6NR manufactured by Toho Tenax Co., Ltd. (fiber diameter 7 ⁇ m), Organized montmorillonite (Nanocor, Nanomer 30TC) Were used to make a mixture of the proportions shown in Table 26 (carbon black is labeled CB).
  • each of these mixtures was used using a twin-screw kneader with a cylinder diameter of 40 mm (Tex44 twin-screw extruder manufactured by Nippon Steel).
  • PX6-1 to 3 As the polyamide resin
  • PA6 290 ° C when PA66 is used as the polyamide resin
  • the mixture was melt kneaded and extruded into strands, cooled in a water tank, and then pelletized as a resin composition of the present invention using a pelletizer.
  • a seamless belt-like film having a thickness of 200 ⁇ m was prepared by an inflation extrusion molding method.
  • the inflation extrusion molding method uses an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel, Ltd., with a take-off speed of 40 m / min, a die lip width of 2 mm, and a blow ratio of 1.2.
  • a seamless belt-like film of 150 mm was produced.
  • the polyamide resin composition for electrophotographic apparatus parts of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and wet conditions. Excellent mechanical properties at lower temperatures, wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as diamine component, and excellent melt moldability, and higher molecular weight Thus, it can be seen that it is possible to produce an electrophotographic apparatus component that is excellent in electrical conductivity, surface smoothness, and mechanical property stability at high temperatures. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Tables 27 to 28 (Examples 1-1 to 4, 2-1, 3-1 to 5, 4-1 to 3, 5-1 to 4, 6-1, 7-1 to 5, 8- 1-3 Comparative Examples 1-1 and 2-1) In Production Examples 1-1 to 5, component A was produced. In Examples 1-1 to 4, 2-1, 3-1 to 5, and 4-1 to 3, the polyamide resin composition for IC tray of the present invention was produced. In Examples 5-1 to 4, 6-1, 7-1 to 5 and 8-1 to 3, IC trays of the present invention were produced.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Production Example 1-1: Comparative Resin 1 (PX6-6) Comparative Resin Example 1-2: Comparative Resin 2 (PA6) Comparative Resin Example 1-3: Comparative Resin 2 (PA66)
  • Example 1-1 to 4, 2-1, 3-1 to 5, and 4-1 to 3 and Comparative Examples 1-1 and 2-1 Polyamide resins produced in Examples 1-1 to 5, PA6 and PA66, and conductive fillers, Carbon black (EC600JD made by Ketjen Black International), Carbon fiber (Toho Tenax Co., Ltd. Besfight HTA-C6NR (fiber diameter 7 ⁇ m), Brass fiber (fiber diameter 80 ⁇ m) Were used to make a mixture of the proportions shown in Table 28 (carbon black is labeled CB). Furthermore, each of these mixtures was used using a twin-screw kneader with a cylinder diameter of 40 mm (Tex44 twin-screw extruder manufactured by Nippon Steel).
  • Examples 5-1 to 4, 6-1, 7-1 to 5, and 8-1 to 3 and Comparative Examples 1-1 and 2-1 Using the pellets produced in Examples 1-1 to 2, 2-1, 3-1 to 5, and 4-1 to 3 and Comparative Examples 1-1 and 2-1, the IC tray of the present invention is shown in FIG. Was obtained by injection molding under the following injection conditions. ⁇ Injection molding machine: IS-80 manufactured by Toshiba Machine Co., Ltd.
  • Cylinder set temperature When PX6-1 and PX6-2 are included as polyamide resins C1 310 ° C; C2 340 ° C; C3 340 ° C; C4 340 ° C; Nozzle heater 340 ° C When PX6-3 to 5 are included as polyamide resin C1 280 ° C; C2 300 ° C; C3 300 ° C; C4 300 ° C; Nozzle heater 300 ° C When PA6 is included as a polyamide resin C1 210 ° C; C2 260 ° C; C3 260 ° C; C4 260 ° C; Nozzle heater 260 ° C When PA66 is included as a polyamide resin C1 240 ° C; C2 290 ° C; C3 290 ° C; C4 290 ° C; Nozzle heater 290 ° C Injection pressure: Primary pressure 650 kg / cm 2 -Mold temperature: Moving mold 40 ° C; Fixed mold 40 ° C ⁇ Injection time: 11 seconds
  • the polyamide resin composition for IC trays of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, has excellent melt moldability, and can have a higher molecular weight. It can be seen that an IC tray having a smooth surface and stable mechanical properties and conductivity even at high temperatures can be produced. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Tables 29 to 30 (Examples 1-1 to 5, 2-1 to 5 and 3-1 to 7, Comparative Examples 1-1 to 3, 2-2 and 3-2 to 3) Examples 1-1 to 5, Examples 2-1 to 5, Inner layer, intermediate layer and outer layer of Examples 3-1 to 5,
  • the polyamide resin composition for industrial tubes of the present invention was produced in the intermediate layer of Example 3-6 and the outer layers of Examples 3-6 and 7. In Examples 2-1 to 5 and Examples 3-1 to 7, industrial tubes of the present invention were produced.
  • Examples 1-1 to 5 Production examples 1 to 5 (PX6-1 to 5) Comparative Example 1-1: Comparative Resin 1 (PX6-6) Comparative Example 1-2: Comparative Resin 2 (PA6) Comparative Example 1-3: Comparative Resin 4 (PA12)
  • Examples 2-1 to 5 and Comparative Example 1-2 For the polyamide resin and PA6 produced in Examples 1 to 5, using an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., the outer diameter is 1/2 inch and the thickness is 1 mm. Single layer tubes were produced.
  • Multi-layer tube forming equipment includes an inner layer extruder, an intermediate layer extruder and an outer layer extruder. Resin discharged from these three extruders is collected by an adapter and molded into a tube, and the tube is cooled.
  • a multilayer tube having an inner diameter of 6 mm and an outer diameter of 8 mm was prepared using an apparatus (Plabor (manufactured by Plastic Engineering Laboratory Co., Ltd.)) consisting of a sizing die and a take-up machine for controlling the size.
  • the composition and thickness of the resin composition of the inner layer, intermediate layer and outer layer of the tube are shown in Table 2. In addition, the following was used as a raw material.
  • Resin r1 Vinylidene fluoride resin (cefural soft (manufactured by Central Glass))
  • Resin r2 High density polyethylene resin (8600A, manufactured by Tosoh Corporation)
  • Plasticizer Benzenesulfonic acid butyramide (BBSA (Proviron)
  • Adhesive Maleic acid-modified polyethylene (U Bond F1100, manufactured by Ube Industries)
  • the polyamide resin composition for industrial tubes of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, and has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, and it has excellent melt moldability and can have a higher molecular weight. It can be seen that an industrial tube excellent in environmental resistance such as low-temperature impact resistance, chemical resistance and liquid, vapor and / or gas impermeability can be produced by molding it. Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
  • Relative viscosity ⁇ r of polyamide resin ⁇ r was measured at 25 ° C. using an Ostwald viscometer using a 96% sulfuric acid solution (concentration: 1.0 g / dl) of each polyamide resin of Production Examples 1 to 5 and Comparative Resins 1 and 2.
  • melt viscosity of polyamide resin The melt viscosity of each polyamide resin of Production Examples 1 to 5 and Comparative Resins 1 and 2 is a 25 mm cone plate in a melt viscoelasticity measuring device ARES manufactured by TA Instruments Japan. In the nitrogen, 340 ° C when PA 6-1 to 2 and 6 are included as polyamide resin, 300 ° C when PA 6-3 to 5 is included as a polyamide resin, 260 ° C when PA6 is included as the polyamide resin, The measurement was performed under the condition of a shear rate of 0.1 s-1.
  • Tm Melting point of polyamide resin (Tm) Tm of each polyamide resin of Production Examples 1 to 5, Specific Resin 1 and Comparative Resins 1 to 4 was measured under a nitrogen atmosphere using PYRIS Diamond DSC manufactured by PerkinELmer.
  • Tm when PA 6-1 to 2 and 6 are included as the polyamide resin is The temperature is raised from 30 ° C. to 350 ° C. at a rate of 10 ° C./min (referred to as a temperature rise first run), After holding at 350 ° C for 3 minutes, Decrease the temperature to -100 ° C at a rate of 10 ° C / min (referred to as the first temperature drop) Next, the temperature was raised to 350 ° C.
  • Tm when PA6-3-5, PA6, PA66 and PA12 are included as the polyamide resin is The temperature is increased from 30 ° C. to 310 ° C. at a rate of 10 ° C./min (referred to as a temperature rising first run), After holding at 310 ° C for 3 minutes, Decrease the temperature to -100 ° C at a rate of 10 ° C / min (referred to as the first temperature drop) Next, the temperature was raised to 310 ° C. at a rate of 10 ° C./min (referred to as a temperature rise second run). The endothermic peak temperature of the elevated temperature second run was defined as Tm.
  • Test film and plate molding conditions (5-1) Saturated water absorption rate, chemical resistance, hydrolysis resistance, water absorption rate and calcium chloride resistance test film Vacuum press machine TMB-10 manufactured by Toho Machinery Co., Ltd. was used to obtain films for testing the saturated water absorption, chemical resistance, hydrolysis resistance and water absorption of each polyamide resin of Production Examples 1 to 5 and Comparative Resins 1 to 4.
  • Zinc chloride resistance (cycle) (Table 7, Table 8) An ASTM No. 1 test piece was used and immersed in water at 80 ° C. for 8 hours as a pretreatment. Next, after conditioning for 1 hour in an 80 ° C. and 85% RH constant temperature and humidity chamber, a saturated zinc chloride aqueous solution was applied to the test piece and heat treated in a 100 ° C. oven for 1 hour. The humidity control and heat treatment were repeated as one cycle up to 30 cycles, and the number of cycles in which the test piece cracked was used as an index.
  • Ethanol vapor transmission coefficient (Table 10) 50 ml of ethanol was put into a stainless steel container, and the film formed under the condition (5) was covered with a PTFE gasket and covered with a screw pressure. The cup was placed in a constant temperature bath at 60 ° C., and nitrogen was allowed to flow at 50 ml / min in the bath. The change in weight over time was measured, and when the rate of change in weight per hour was stabilized, the fuel permeability coefficient was calculated from the following equation. The transmission area of the sample is 78.5 cm 2 .
  • Ethanol permeability coefficient [permeation weight (g) ⁇ film thickness (mm)] / [permeation area (mm 2 ) ⁇ days (day) ⁇ pressure (atom)]
  • Adhesive strength of metal-coated articles (Table 16) A test film (dimensions: 150 mm ⁇ 100 mm, thickness 0.1 mm) which is a metal coating material, Scissors between galvanized steel sheet (JIS G3302 SPGC Z22, dimensions: 150 mm x 150 mm, thickness 0.5 mm) and aluminum plate (JIS No. 1100, dimensions: 150 mm x 150 mm, thickness 0.5 mm), Using the Toyo Machinery vacuum press TMB-10, In a reduced pressure atmosphere of 500 to 700 Pa, when PA 6-1 to 2 and 6 are included as a polyamide resin, 340 ° C.
  • Warpage (warping of inward tilt) (%) (B length ⁇ A length) / B length ⁇ 100
  • Oxygen permeability coefficient of polyamide resin (Table 18) Test piece cut out from test film (thickness 30 ⁇ m) is measured based on “ASTM D3985” using MOCON tester OX-TRAN 2 / 20-MH at a temperature of 23 ° C. and a humidity of 97% RH. did. (12) Tensile strength, tensile elongation, and tensile modulus of monofilament The tensile strength, tensile elongation, and tensile modulus of the monofilament were measured according to JIS L1070 and L1073.
  • Ethanol vapor permeability coefficient of polyamide resin (Table 21) 50 ml of ethanol was put in a stainless steel container, and a test film was used to cover the container covered with a PTFE gasket and tightened with screw pressure. The cup was placed in a constant temperature bath at 60 ° C., and nitrogen was allowed to flow at 50 ml / min in the bath. The change in weight with time was measured, and when the weight change rate per hour was stabilized, the ethanol vapor transmission coefficient was calculated from the following equation. The transmission area of the sample is 78.5 cm2.
  • Ethanol vapor transmission coefficient [Permeation weight (g) x film thickness (mm)] / [Permeation area (mm 2 ) ⁇ days (day) ⁇ pressure (atom)]
  • E10 fuel permeability coefficient of polyamide resin (Table 21)
  • an E10 fuel permeation test was performed at a measurement ambient temperature of 60 ° C. using a test piece of ⁇ 75 mm and thickness 1 mm molded by injection molding.
  • 10% ethanol was mixed with Fuel C in which isooctane and toluene were mixed at a volume ratio of 1: 1.
  • the fuel permeation measurement sample surface was placed with the permeation surface facing downward so that the fuel always contacted.
  • PX6-1 to 3 Permeation weight (g) x film thickness (mm)] / [Permeation area (mm 2 ) ⁇ days (day) ⁇ pressure (atom)]
  • PA6 is used as a polyamide resin
  • 290 ° C when PA66 is used as the polyamide resin 230 ° C when PA12 is used as the polyamide resin A test plate was obtained by molding with an electrophotographic apparatus part having a mold temperature of 80 ° C.
  • the injection molding conditions were: injection pressure: primary pressure 650 kg / cm 2 , injection time: 11 seconds, cooling time: 20 seconds.
  • Test pieces (Type I test pieces described in ASTM D638) were prepared by the following method. That is, a metal piece made into a half of a mold for producing a Type I test piece is inserted, and polyethylene which has been modified with maleic anhydride is injected and filled into a portion where the metal piece is not inserted. Next, after the injection-filled maleic anhydride-modified polyethylene is sufficiently cooled, the metal piece in the mold is removed, and the resin to be evaluated is injected into the mold part from which the metal piece has been removed. Fill.
  • a test piece having the following interface is obtained. Injection molding conditions are When using PX6-1-3 as polyamide resin, When using PX6-4-6 as polyamide resin, When PA6 is used as a polyamide resin, 290 ° C when PA66 is used as the polyamide resin 23 ° C when PA12 is used as polyamide resin 20 ° C when polyethylene modified with maleic anhydride is used A test plate was obtained by molding with an electrophotographic apparatus part having a mold temperature of 80 ° C.
  • the injection molding conditions were: injection pressure: primary pressure 650 kg / cm 2 , injection time: 11 seconds, cooling time: 20 seconds.
  • the resin to be evaluated peels off from the boundary surface between polyethylene modified with maleic anhydride at a tensile speed of 50 mm / min and a metal piece or breaks at a portion other than the boundary surface (base material breakdown) ) was measured as the initial adhesive strength.
  • Adhesive strength after immersion of polyamide resin in fuel (Table 21) A test piece molded in the same procedure as the evaluation of the initial adhesive strength was put in an autoclave, and Fuel C + 10% ethanol mixed fuel was sealed until the test piece was completely immersed. The autoclave was left in a 60 ° C. hot water tank for 350 hours. Thereafter, the maximum tensile strength of the test piece taken out was measured in the same manner as described above, and was taken as the adhesive strength after immersion in fuel.
  • Ethanol permeability (Table 29) The following operations were performed on the tubes manufactured in Examples 2-1 to 5, Comparative Example 2-2, Examples 3-1 to 7 and Comparative Examples 3-2 to 3 in Table 29. One end of the tube cut to 30 cm was sealed, ethanol was put inside, the other end was also sealed, the whole weight was measured, and then the test tube was placed in an oven at 60 ° C. to change the weight (g / 24 Time) was measured and ethanol permeability was evaluated.
  • Tube low temperature impact resistance (Table 30) The tubes produced in Examples 3-1 to 7 and Comparative Examples 3-2 to 3 in Table 30 were measured for low temperature impact resistance according to SAE J844.

Abstract

Provided are: a polyamide resin composition comprising a polyamide resin and various additives, wherein the polyamide resin is able to achieve heat resistance, melt-moldability and a reduction in the number of molding cycles in comparison to those of conventional polyoxamide resins and can be molded into a molded article having excellent chemical resistance, hydrolysis resistance and fuel barrier properties without deteriorating low water absorbability; and a molded article produced by molding the polyamide resin composition. A polyamide resin composition comprising a polyamide resin (component (A)) and additionally comprising various additives, wherein the component (A) is produced by binding a unit derived from a dicarboxylic acid to a unit derived from a diamine, the dicarboxylic acid comprises oxalic acid (compound (a)), the diamine comprises 1,6-hexanediamine (compound (b)) and 2-methyl-1,5-pentanediamine (compound (c)), and the molar ratio of the compound (b) to the compound (c) is 99:1 to 50:50; and a molded article produced by molding the polyamide resin composition.

Description

ポリアミド樹脂組成物Polyamide resin composition
 本発明は、種々添加剤が配合された特定のポリアミド樹脂の組成物、及び、種々用途のための特定のポリアミド樹脂の組成物に関する。 The present invention relates to a specific polyamide resin composition in which various additives are blended, and a specific polyamide resin composition for various uses.
 以下、ポリアミド樹脂の呼称は、JIS K 6920-1に基づく場合もある。
 ナイロン6(PA6)、ナイロン66(PA66)などに代表される結晶性ポリアミドは、その優れた特性と溶融成形の容易さから、衣料用、産業資材用繊維、あるいは汎用のエンジニアリングプラスチックとして広く用いられているが、一方では吸水による物性変化、酸、高温のアルコール、熱水中での劣化などの問題点も指摘されており、より寸法安定性、耐薬品性に優れたポリアミドへの要求が高まっている。
Hereinafter, the name of the polyamide resin may be based on JIS K 6920-1.
Crystalline polyamides represented by nylon 6 (PA6), nylon 66 (PA66), etc. are widely used as textiles for clothing, industrial materials, or general-purpose engineering plastics because of their excellent properties and ease of melt molding. On the other hand, problems such as changes in physical properties due to water absorption, acid, high-temperature alcohol, and deterioration in hot water have also been pointed out, and demand for polyamides with higher dimensional stability and chemical resistance is increasing. ing.
 ジカルボン酸成分として蓚酸を用いるポリアミド樹脂はポリオキサミド樹脂と呼ばれ、同じアミノ基濃度の他のポリアミド樹脂と比較して融点が高いこと、吸水率が低いことが知られ(特許文献1)、吸水による物性変化が問題となっていた従来のポリアミドが使用困難な分野での活用が期待される。 A polyamide resin using oxalic acid as a dicarboxylic acid component is called a polyoxamide resin, and is known to have a higher melting point and lower water absorption than other polyamide resins having the same amino group concentration (Patent Document 1). It is expected to be used in fields where the use of conventional polyamides, where changes in physical properties have become a problem, is difficult.
 これまでに、ジアミン成分として種々の脂肪族直鎖ジアミンを用いたポリオキサミド樹脂が提案されている。例えば、 So far, polyoxamide resins using various aliphatic linear diamines as diamine components have been proposed. For example,
 非特許文献1には、ジアミン成分として1,6-ヘキサンジアミンを用いたポリオキサミド樹脂が開示され、 Non-Patent Document 1 discloses a polyoxamide resin using 1,6-hexanediamine as a diamine component,
 非特許文献2には、ジアミン成分が1,9-ノナンジアミンであるポリオキサミド樹脂(以下、PA92ともいう)が開示され、
 特許文献2には、種々ジアミン成分と、ジカルボン酸エステルとして蓚酸ジブチルを用いたポリオキサミド樹脂が開示され、
Non-Patent Document 2 discloses a polyoxamide resin (hereinafter also referred to as PA92) in which the diamine component is 1,9-nonanediamine.
Patent Document 2 discloses a polyoxamide resin using various diamine components and dibutyl oxalate as a dicarboxylic acid ester,
 特許文献3には、ジアミン成分として1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンの2種のジアミンを特定の比率で用いたポリオキサミド樹脂が開示されている。 Patent Document 3 discloses a polyoxamide resin using two kinds of diamines of 1,9-nonanediamine and 2-methyl-1,8-octanediamine as diamine components in specific ratios.
 特許文献4には、ポリアミド樹脂又はこれを含む樹脂組成物と、ポリアミド樹脂中に均一に分散された層状珪酸塩及び成形性改良剤とからなるポリアミド樹脂組成物を用いることによって、成形時間が短く、かつ優れた機械的性質を有する成形体を与えるポリアミド組成物を提供することが開示されている。 In Patent Document 4, a molding time is shortened by using a polyamide resin composition comprising a polyamide resin or a resin composition containing the polyamide resin, and a layered silicate and a moldability improver uniformly dispersed in the polyamide resin. In addition, it is disclosed to provide a polyamide composition that gives a molded article having excellent mechanical properties.
 特許文献5には、ポリアミド樹脂100重量部と重金属不活性化剤0.01~2.0重量部と耐熱剤0~3.0重量部とからなる押出成形用樹脂組成物を銅線に被覆してなる電線が開示されている。 In Patent Document 5, a copper wire is coated with a resin composition for extrusion comprising 100 parts by weight of a polyamide resin, 0.01 to 2.0 parts by weight of a heavy metal deactivator and 0 to 3.0 parts by weight of a heat-resistant agent. An electric wire is disclosed.
 特許文献6には、電動工具、一般工業部品、機械部品、電子部品、自動車内外部品、エンジンルーム内部品、自動車電装部品等の過酷な条件の下で使用される部品には、低吸水性、耐薬品性及び耐加水分解性等に優れることに加えて、高い耐衝撃性が求められていることが記載されている。 In Patent Document 6, components used under harsh conditions such as electric tools, general industrial parts, machine parts, electronic parts, automobile interior and exterior parts, engine room parts, automobile electrical parts, etc., have low water absorption, It describes that high impact resistance is required in addition to excellent chemical resistance and hydrolysis resistance.
 ポリアミド樹脂を用いた部品の使用条件が厳しい用途では、用途によるが、例えば、
 特許文献7には、機械的強度、耐燃料性(耐ガソリン性、耐サワーガソリン性など)、耐薬品性(耐凍結防止剤性のほか各種薬品に対する抵抗性)などを改善することに要求があることが記載されている。
In applications where the usage conditions of parts using polyamide resin are severe, depending on the application, for example,
In Patent Document 7, there is a demand for improving mechanical strength, fuel resistance (gasoline resistance, sour gasoline resistance, etc.), chemical resistance (antifreeze resistance, resistance to various chemicals), and the like. It is described that there is.
 結晶性ポリアミドに層状珪酸塩を分散させ、複合材料化することにより、結晶性ポリアミドの機械強度、耐熱性、及び液体又は蒸気に対するバリア性を向上できることが知られているが、例えば、
 特許文献8には、結晶性ポリアミドとしてナイロン6を用いた複合材料の例が開示され、さらに第2表では、これらの複合材料は、元のナイロン6と比較して、引張り強さ及び引張り弾性率等の機械強度、並びに耐熱性が向上することが開示されている。
It is known that the mechanical strength, heat resistance, and barrier property against liquid or vapor of crystalline polyamide can be improved by dispersing layered silicate in crystalline polyamide and making it into a composite material.
Patent Document 8 discloses an example of a composite material using nylon 6 as a crystalline polyamide, and Table 2 shows that these composite materials have tensile strength and tensile elasticity compared to the original nylon 6. It is disclosed that mechanical strength such as rate and heat resistance are improved.
 従来の産業用チューブは、金属製であったが、重量を軽減するために、樹脂化が進行しているが、例えば、
 特許文献9には、樹脂化で使用される樹脂として、液体または気体の透過抑制、および優れた機械的性質の観点から、ポリアミド樹脂が用いられ、ポリアミド樹脂の種々の液体、蒸気及び/又は気体の透過を抑制するために、層状珪酸塩を含有させることが提案されている。
Conventional industrial tubes were made of metal, but in order to reduce weight, resinization has progressed.
In Patent Document 9, polyamide resin is used as a resin used in resinification from the viewpoint of suppressing permeation of liquid or gas and excellent mechanical properties, and various liquids, vapors and / or gases of polyamide resin are used. In order to suppress permeation of water, it has been proposed to contain a layered silicate.
特開2006-57033号公報JP 2006-57033 A 特表平5-506466号公報Japanese National Patent Publication No. 5-506466 WO2008/072754号公報WO2008 / 072754 特開平1-301750号公報JP-A-1-301750 特開平7-268211号公報JP-A-7-268211 特開2000-129122JP 2000-129122 A 特許3036666号Patent 3036666 特開昭62-74957号公報JP 62-74957 A 特開平11-269376号公報Japanese Patent Laid-Open No. 11-269376
 本発明が解決しようとする課題は、
 従来のポリオキサミド樹脂と比較して、
 窒素雰囲気下、10℃/分の昇温速度で測定した示差走査熱量法により測定した融点Tm(℃)(以下、融点Tmともいう)と
 窒素雰囲気下、10℃/分の昇温速度で測定した熱重量分析における1%重量減少温度Td(℃)(熱分解温度)との温度差(Td-Tm)(℃)(以下、温度差(Td-Tm)ともいう)から見積もられる成形可能温度幅が広く、
 融点Tmから見積もられる耐熱性に優れ、
 適度な溶融粘度を有し溶融成形性に優れ、成形サイクルが低減でき、
 脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、離型性、耐熱性、耐衝撃性、耐燃料性、耐薬品性、耐加水分解性、燃料バリア性又は導電性に優れた成形体を成形できる、
 ポリアミド樹脂と離型剤とを含む、成形時における型と成形物との良好なすべり性及び/又は短い成形時間も達成できるポリアミド樹脂組成物、
 ポリアミド樹脂と耐熱剤とを含むポリアミド樹脂組成物、
 ポリアミド樹脂と衝撃改良材とを含むポリアミド樹脂組成物、
 ポリアミド樹脂と充填材とを含むポリアミド樹脂組成物、
 ポリアミド樹脂とその内部に分散している層状珪酸塩とを含むポリアミド樹脂組成物、及び
 ポリアミド樹脂と導電性付与剤
並びに、
 従来のポリオキサミド樹脂と比較して、
 窒素雰囲気下、10℃/分の昇温速度で測定した示差走査熱量法により測定した融点Tm(℃)(以下、融点Tmともいう)と
 窒素雰囲気下、10℃/分の昇温速度で測定した熱重量分析における1%重量減少温度Td(℃)(熱分解温度)との温度差(Td-Tm)(℃)(以下、温度差(Td-Tm)ともいう)から見積もられる成形可能温度幅が広く、
 融点Tmから見積もられる耐熱性に優れ、
 適度な溶融粘度を有し溶融成形性に優れ、成形サイクルが低減でき、
 脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、耐薬品性、耐加水分解性、燃料バリア性に優れた、
 金属被覆を形成できるポリアミド樹脂を含む金属被覆用ポリアミド樹脂組成物、
 成形体を射出成形できるポリアミド樹脂を含む射出成形用ポリアミド樹脂組成物、
 車両部品を成形できるポリアミド樹脂を含む車両部品成形用ポリアミド樹脂組成物、
 さらに、耐バイオディーゼル燃料性に優れた成形体を成形できるバイオディーゼル燃料と直接接触する成形体用ポリアミド樹脂組成物、
 燃料配管部品を成形できるポリアミド樹脂を含む燃料配管部品用ポリアミド樹脂組成物、
 プリント基板表面実装部品を成形できるポリアミド樹脂を含むプリント基板表面実装部品用ポリアミド樹脂組成物、
 電子写真装置部品を成形できるポリアミド樹脂を含む電子写真装置部品用ポリアミド樹脂組成物、
 ICトレイを成形できるポリアミド樹脂を含むICトレイ用ポリアミド樹脂組成物、及び
 産業用チューブを成形できるポリアミド樹脂を含む産業用チューブ用ポリアミド樹脂組成物
を提供することである。
The problem to be solved by the present invention is:
Compared with conventional polyoxamide resin,
Melting point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere and measurement at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere Moldable temperature estimated from temperature difference (Td-Tm) (° C) (hereinafter also referred to as temperature difference (Td-Tm)) from 1% weight loss temperature Td (° C) (thermal decomposition temperature) in the thermogravimetric analysis Wide,
Excellent heat resistance estimated from the melting point Tm,
It has a moderate melt viscosity and excellent melt moldability, and can reduce the molding cycle.
Compared to conventional aliphatic polyamide resins, without compromising the low water absorption found in aliphatic linear polyoxamide resins, release properties, heat resistance, impact resistance, fuel resistance, chemical resistance, hydrolysis resistance Can be molded with excellent properties, fuel barrier properties or conductivity,
A polyamide resin composition comprising a polyamide resin and a mold release agent, which can also achieve good sliding properties between the mold and the molded product during molding and / or a short molding time;
A polyamide resin composition comprising a polyamide resin and a heat-resistant agent,
A polyamide resin composition comprising a polyamide resin and an impact modifier,
A polyamide resin composition comprising a polyamide resin and a filler,
A polyamide resin composition comprising a polyamide resin and a layered silicate dispersed therein, a polyamide resin and a conductivity imparting agent, and
Compared with conventional polyoxamide resin,
Melting point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere and measurement at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere Moldable temperature estimated from temperature difference (Td-Tm) (° C) (hereinafter also referred to as temperature difference (Td-Tm)) from 1% weight loss temperature Td (° C) (thermal decomposition temperature) in the thermogravimetric analysis Wide,
Excellent heat resistance estimated from the melting point Tm,
It has a moderate melt viscosity and excellent melt moldability, and can reduce the molding cycle.
Without impairing the low water absorption seen in aliphatic linear polyoxamide resin, compared with conventional aliphatic polyamide resin, it was excellent in chemical resistance, hydrolysis resistance, fuel barrier property,
A polyamide resin composition for metal coating comprising a polyamide resin capable of forming a metal coating;
A polyamide resin composition for injection molding comprising a polyamide resin capable of injection molding a molded body,
A polyamide resin composition for molding vehicle parts, including a polyamide resin capable of molding vehicle parts;
Furthermore, a polyamide resin composition for a molded body that is in direct contact with a biodiesel fuel capable of molding a molded body having excellent resistance to biodiesel fuel,
A polyamide resin composition for fuel piping parts, including a polyamide resin capable of forming fuel piping parts;
A polyamide resin composition for a printed circuit board surface mount component, comprising a polyamide resin capable of forming a printed circuit board surface mount component;
A polyamide resin composition for an electrophotographic apparatus component comprising a polyamide resin capable of forming an electrophotographic apparatus component;
An object of the present invention is to provide a polyamide resin composition for an IC tray containing a polyamide resin capable of forming an IC tray, and a polyamide resin composition for an industrial tube containing a polyamide resin capable of forming an industrial tube.
 本発明は、
(1)ポリアミド樹脂(成分A)を含むポリアミド樹脂組成物であって、
 前記成分Aが、ジカルボン酸由来の単位とジアミン由来の単位とが結合してなり、
 前記ジカルボン酸が蓚酸(化合物a)を含み、
 前記ジアミンが1,6-ヘキサンジアミン(化合物b)及び2-メチル-1,5-ペンタンジアミン(化合物c)を含み、
 前記化合物bと前記化合物cのモル比が99:1~50:50であり、
 前記ポリアミド樹脂組成物が、さらに、
 離型剤(成分B1)、
 耐熱剤(成分B2)、
 衝撃改良材(成分B3)、
 充填材(成分B4)、
 前記成分A内に分散している層状珪酸塩(成分B5)及び
 導電性付与剤(成分B6)
からなる群から選ばれる少なくとも1種の添加剤を含むポリアミド樹脂組成物、
(2)ポリアミド樹脂(成分A)を含むポリアミド樹脂組成物であって、
 前記成分Aが、ジカルボン酸由来の単位とジアミン由来の単位とが結合してなり、
 前記ジカルボン酸が蓚酸(化合物a)を含み、
 前記ジアミンが1,6-ヘキサンジアミン(化合物b)及び2-メチル-1,5-ペンタンジアミン(化合物c)を含み、
 前記化合物bと前記化合物cのモル比が99:1~50:50であり、
 金属被覆用、
 射出成形用、
 押出成形用、
 車両部品成形用、
 バイオディーゼル燃料と直接接触する成形体用、
 燃料配管部品用、
 プリント基板表面実装部品用、
 電子写真装置部品用、
 ICトレイ用、又は、
 産業用チューブ用、
であるポリアミド樹脂組成物に関する。
The present invention
(1) A polyamide resin composition containing a polyamide resin (component A),
The component A is composed of a unit derived from a dicarboxylic acid and a unit derived from a diamine,
The dicarboxylic acid comprises oxalic acid (compound a);
The diamine comprises 1,6-hexanediamine (compound b) and 2-methyl-1,5-pentanediamine (compound c);
The molar ratio of the compound b to the compound c is 99: 1 to 50:50,
The polyamide resin composition further comprises
Release agent (component B1),
Heat-resistant agent (component B2),
Impact modifier (component B3),
Filler (component B4),
Layered silicate dispersed in component A (component B5) and conductivity imparting agent (component B6)
A polyamide resin composition comprising at least one additive selected from the group consisting of:
(2) A polyamide resin composition containing a polyamide resin (component A),
The component A is composed of a unit derived from a dicarboxylic acid and a unit derived from a diamine,
The dicarboxylic acid comprises oxalic acid (compound a);
The diamine comprises 1,6-hexanediamine (compound b) and 2-methyl-1,5-pentanediamine (compound c);
The molar ratio of the compound b to the compound c is 99: 1 to 50:50,
For metal coating,
For injection molding,
For extrusion,
For vehicle parts molding,
For compacts that are in direct contact with biodiesel fuel,
For fuel piping parts,
For printed circuit board surface mount parts,
For electrophotographic equipment parts,
For IC tray, or
For industrial tubes,
It is related with the polyamide resin composition which is.
 本発明によれば、
 従来のポリオキサミド樹脂と比較して、
 窒素雰囲気下、10℃/分の昇温速度で測定した示差走査熱量法により測定した融点Tm(℃)(以下、融点Tmともいう)と
 窒素雰囲気下、10℃/分の昇温速度で測定した熱重量分析における1%重量減少温度Td(℃)(熱分解温度)との温度差(Td-Tm)(℃)(以下、温度差(Td-Tm)ともいう)から見積もられる成形可能温度幅が広く、
 融点Tmから見積もられる耐熱性に優れ、
 適度な溶融粘度を有し溶融成形性に優れ、成形サイクルが低減でき、
 脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、離型性、耐熱性、耐衝撃性、耐燃料性、耐薬品性、耐加水分解性、燃料バリア性又は導電性に優れた成形体を成形できる、
 ポリアミド樹脂と離型剤とを含む、成形時における型と成形物との良好なすべり性及び/又は短い成形時間も達成できるポリアミド樹脂組成物、
 ポリアミド樹脂と耐熱剤とを含むポリアミド樹脂組成物、
 ポリアミド樹脂と衝撃改良材とを含むポリアミド樹脂組成物、
 ポリアミド樹脂と充填材とを含むポリアミド樹脂組成物、
 ポリアミド樹脂とその内部に分散している層状珪酸塩とを含むポリアミド樹脂組成物、及び
 ポリアミド樹脂と導電性付与剤
並びに、
 従来のポリオキサミド樹脂と比較して、
 窒素雰囲気下、10℃/分の昇温速度で測定した示差走査熱量法により測定した融点Tm(℃)(以下、融点Tmともいう)と
 窒素雰囲気下、10℃/分の昇温速度で測定した熱重量分析における1%重量減少温度Td(℃)(熱分解温度)との温度差(Td-Tm)(℃)(以下、温度差(Td-Tm)ともいう)から見積もられる成形可能温度幅が広く、
 融点Tmから見積もられる耐熱性に優れ、
 適度な溶融粘度を有し溶融成形性に優れ、成形サイクルが低減でき、
 脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、耐薬品性、耐加水分解性、燃料バリア性に優れた、
 金属被覆を形成できるポリアミド樹脂を含む金属被覆用ポリアミド樹脂組成物、
 成形体を射出成形できるポリアミド樹脂を含む射出成形用ポリアミド樹脂組成物、
 成形体を押出成形できるポリアミド樹脂を含む押出成形用ポリアミド樹脂組成物、
 車両部品を成形できるポリアミド樹脂を含む車両部品成形用ポリアミド樹脂組成物、
 さらに、耐バイオディーゼル燃料性に優れた成形体を成形できるバイオディーゼル燃料と直接接触する成形体用ポリアミド樹脂組成物、
 燃料配管部品を成形できるポリアミド樹脂を含む燃料配管部品用ポリアミド樹脂組成物、
 プリント基板表面実装部品を成形できるポリアミド樹脂を含むプリント基板表面実装部品用ポリアミド樹脂組成物、
 電子写真装置部品を成形できるポリアミド樹脂を含む電子写真装置部品用ポリアミド樹脂組成物、
 ICトレイを成形できるポリアミド樹脂を含むICトレイ用ポリアミド樹脂組成物、及び
 産業用チューブを成形できるポリアミド樹脂を含む産業用チューブ用ポリアミド樹脂組成物
を提供することができる。
According to the present invention,
Compared with conventional polyoxamide resin,
Melting point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere and measurement at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere Moldable temperature estimated from temperature difference (Td-Tm) (° C) (hereinafter also referred to as temperature difference (Td-Tm)) from 1% weight loss temperature Td (° C) (thermal decomposition temperature) in the thermogravimetric analysis Wide,
Excellent heat resistance estimated from the melting point Tm,
It has a moderate melt viscosity and excellent melt moldability, and can reduce the molding cycle.
Compared to conventional aliphatic polyamide resins, without compromising the low water absorption found in aliphatic linear polyoxamide resins, release properties, heat resistance, impact resistance, fuel resistance, chemical resistance, hydrolysis resistance Can be molded with excellent properties, fuel barrier properties or conductivity,
A polyamide resin composition comprising a polyamide resin and a mold release agent, which can also achieve good sliding properties between the mold and the molded product during molding and / or a short molding time;
A polyamide resin composition comprising a polyamide resin and a heat-resistant agent,
A polyamide resin composition comprising a polyamide resin and an impact modifier,
A polyamide resin composition comprising a polyamide resin and a filler,
A polyamide resin composition comprising a polyamide resin and a layered silicate dispersed therein, a polyamide resin and a conductivity imparting agent, and
Compared with conventional polyoxamide resin,
Melting point Tm (° C.) measured by differential scanning calorimetry measured at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere and measurement at a rate of temperature increase of 10 ° C./min under a nitrogen atmosphere Moldable temperature estimated from temperature difference (Td-Tm) (° C) (hereinafter also referred to as temperature difference (Td-Tm)) from 1% weight loss temperature Td (° C) (thermal decomposition temperature) in the thermogravimetric analysis Wide,
Excellent heat resistance estimated from the melting point Tm,
It has a moderate melt viscosity and excellent melt moldability, and can reduce the molding cycle.
Without impairing the low water absorption seen in aliphatic linear polyoxamide resin, compared with conventional aliphatic polyamide resin, it was excellent in chemical resistance, hydrolysis resistance, fuel barrier property,
A polyamide resin composition for metal coating comprising a polyamide resin capable of forming a metal coating;
A polyamide resin composition for injection molding comprising a polyamide resin capable of injection molding a molded body,
A polyamide resin composition for extrusion molding comprising a polyamide resin capable of extruding a molded body,
A polyamide resin composition for molding vehicle parts, including a polyamide resin capable of molding vehicle parts;
Furthermore, a polyamide resin composition for a molded body that is in direct contact with a biodiesel fuel capable of molding a molded body having excellent resistance to biodiesel fuel,
A polyamide resin composition for fuel piping parts, including a polyamide resin capable of forming fuel piping parts;
A polyamide resin composition for a printed circuit board surface mount component, comprising a polyamide resin capable of forming a printed circuit board surface mount component;
A polyamide resin composition for an electrophotographic apparatus component comprising a polyamide resin capable of forming an electrophotographic apparatus component;
There can be provided a polyamide resin composition for an IC tray containing a polyamide resin capable of forming an IC tray, and a polyamide resin composition for an industrial tube containing a polyamide resin capable of forming an industrial tube.
離型力を測定するために、表1の実施例1~12及び比較例2~3で使用した射出成形機の概略を示す断面図である。FIG. 2 is a cross-sectional view schematically showing an injection molding machine used in Examples 1 to 12 and Comparative Examples 2 to 3 in Table 1 in order to measure a releasing force. 表17の実施例1~7並びに比較例2及び4で得られたペレットを用いて成形した射出成形体であり、表19の実施例2-1~6並びに比較例2-2及び4で得られたペレットを用いて成形した射出成形体であり、表28の実施例5-1~4、6-1、7-1~5及び8-1~3並びに比較例1-1及び2-1において成形したICトレイ。It is an injection-molded article molded using the pellets obtained in Examples 1 to 7 and Comparative Examples 2 and 4 in Table 17, and obtained in Examples 2-1 to 6 and Comparative Examples 2-2 and 4 in Table 19. An injection-molded article molded using the obtained pellets, Examples 5-1 to 4, 6-1, 7-1 to 5, and 8-1 to 3 in Table 28 and Comparative Examples 1-1 and 2-1 IC tray molded in 1. クイックコネクターの例Quick connector example
〔成分A〕
(1)成分Aの構成
 本発明におけるポリアミド樹脂である成分Aは、
 ジカルボン酸成分が蓚酸であり、ジアミン成分が1,6-ヘキサンジアミン及び2-メチル-1,5-ペンタンジアミンからなる、即ち、
 ジカルボン酸由来の単位とジアミン由来の単位とが結合してなるポリアミド樹脂であって、
 前記ジカルボン酸が蓚酸(化合物a)を含み、
 前記ジアミンが1,6-ヘキサンジアミン(化合物b)及び2-メチル-1,5-ペンタンジアミン(化合物c)を含み、
 前記化合物bと前記化合物cのモル比が99:1~50:50であり、
 好ましくは、96%硫酸を溶媒とし、濃度が1.0g/dlの前記成分Aの溶液を用いて25℃で測定した相対粘度ηrが1.8~6.0である。
[Component A]
(1) Configuration of Component A Component A, which is a polyamide resin in the present invention,
The dicarboxylic acid component is succinic acid and the diamine component consists of 1,6-hexanediamine and 2-methyl-1,5-pentanediamine,
A polyamide resin formed by bonding a unit derived from a dicarboxylic acid and a unit derived from a diamine,
The dicarboxylic acid comprises oxalic acid (compound a);
The diamine comprises 1,6-hexanediamine (compound b) and 2-methyl-1,5-pentanediamine (compound c);
The molar ratio of the compound b to the compound c is 99: 1 to 50:50,
Preferably, the relative viscosity ηr measured at 25 ° C. using a solution of component A having a concentration of 1.0 g / dl in 96% sulfuric acid is 1.8 to 6.0.
 成分Aは、化合物a、b及びcを用いて、好ましくはこれらの混合物を用いて重縮合することで、高分子量で、高融点で、融点と熱分解温度の差が大きく溶融成形性に優れ、さらに直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来のポリアミドに比較して耐薬品性、耐加水分解性ならびに燃料バリア性に優れる。 Component A uses compounds a, b and c, preferably polycondensation using a mixture thereof, so that it has a high molecular weight, a high melting point, a large difference between the melting point and the thermal decomposition temperature, and excellent melt moldability. Furthermore, it is excellent in chemical resistance, hydrolysis resistance and fuel barrier properties as compared with conventional polyamides without impairing the low water absorption seen in linear polyoxamide resins.
 成分Aは、耐薬品性、耐加水分解性及び燃料バリア性を確保する観点から、化合物bと化合物cのモル比は、
 好ましくは、99:1~55:45モル%であり、
 より好ましくは、99:1~60:40モル%である。
 なお、以下、化合物b及び化合物cのモル比は、成分A中の化合物b由来の単位と化合物c由来の単位のモル比も意味する。
From the viewpoint of ensuring chemical resistance, hydrolysis resistance and fuel barrier properties, component A has a molar ratio of compound b to compound c:
Preferably, 99: 1 to 55:45 mol%,
More preferably, it is 99: 1 to 60:40 mol%.
Hereinafter, the molar ratio of compound b and compound c also means the molar ratio of the unit derived from compound b and the unit derived from compound c in component A.
 成分Aの製造で、化合物a(蓚酸)を直接原料として使用すると、化合物a(蓚酸)そのものは熱分解してしまい、成分Aの融点がその熱分解温度を超えることから、製造時には蓚酸源化合物(以下、蓚酸源ともいう)を用い、蓚酸源由来の蓚酸とジアミンとを重縮合して得る。この蓚酸は、蓚酸ジエステル等の蓚酸源由来のものであり、これらはアミノ基との反応性を有するものであればよい。
 蓚酸源として、重縮合反応における副反応を抑制する観点から蓚酸ジエステルが好ましく、蓚酸ジメチル、蓚酸ジエチル、蓚酸ジn-(またはi-)プロピル、蓚酸ジn-(またはi-、またはt-)ブチル等の脂肪族1価アルコールの蓚酸ジエステル、蓚酸ジシクロヘキシル等の脂環式アルコールの蓚酸ジエステル、蓚酸ジフェニル等の芳香族アルコールの蓚酸ジエステル等が挙げられる。
 蓚酸ジエステルの中でも炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル、芳香族アルコールの蓚酸ジエステルがさらに好ましく、
 その中でも蓚酸ジブチル及び蓚酸ジフェニルがさらに好ましく、
 蓚酸ジブチルがさらに好ましい。
When compound a (oxalic acid) is directly used as a raw material in the production of component A, compound a (succinic acid) itself is thermally decomposed, and the melting point of component A exceeds the thermal decomposition temperature. (Hereinafter also referred to as oxalic acid source), and obtained by polycondensation of oxalic acid derived from the oxalic acid source and diamine. This oxalic acid is derived from an oxalic acid source such as oxalic acid diester, and any oxalic acid may be used as long as it has reactivity with an amino group.
As the oxalic acid source, oxalic acid diesters are preferable from the viewpoint of suppressing side reactions in the polycondensation reaction. Dimethyl oxalate, diethyl oxalate, di-n- (or i-) propyl oxalate, di-n- (or i-, or t-) oxalate Examples thereof include oxalic acid diesters of aliphatic monohydric alcohols such as butyl, oxalic acid diesters of alicyclic alcohols such as dicyclohexyl oxalate, and oxalic acid diesters of aromatic alcohols such as diphenyl oxalate.
Among the oxalic acid diesters, oxalic acid diesters of aliphatic monohydric alcohols having more than 3 carbon atoms, oxalic acid diesters of alicyclic alcohols, and oxalic acid diesters of aromatic alcohols are more preferable,
Among them, dibutyl oxalate and diphenyl oxalate are more preferable,
More preferred is dibutyl oxalate.
(2)成分Aの相対粘度
 成分Aは、
 カルボン酸成分として化合物aである蓚酸を用い、
 ジアミン成分として、化合物bである1,6-ヘキサンジアミンと、化合物cである2-メチル-1,5-ペンタンジアミンを重縮合することで、融点が好ましくは200~330℃の範囲にすることができ、融点が330℃を超える化合物aと化合物bとを重縮合して得られるポリアミド樹脂(以下、比較成分A2ともいう)に比べ、後述する成分Aの後重合工程での溶融重合において、副反応が起こり高分子量化を阻害するような過度の高温条件にする必要がないため、高分子量化(相対粘度を増加させること)が可能である。
 従って、成分Aは、従来のポリアミド樹脂に比べて相対粘度を増大できるので、優れた溶融成形性を有する。
 溶融成形後の成形物が脆くなり物性が低下する傾向を避けることと、溶融成形時の溶融粘度が高くなり成形加工性が悪くなる傾向を避ける観点と、相対粘度ηrと溶融粘度が一定以上に高く、過度に高くないことが好ましいとされる自動車部材や電気・電子部品のような用途に好適であるという観点から、成分Aの濃度が1.0g/dlの96%濃硫酸溶液を用い、25℃で測定した相対粘度ηrは、好ましくは1.8~6.0であり、より好ましくは1.8~4.5であり、より好ましくは1.8~3.0であり、更に好ましくは1.85~2.5、更に好ましくは1.85~2.2であるようにすることができる。
 なお、後述する成分Aの後重合工程での溶融重合において、減圧度を上げることで、相対粘度ηrを増大することができる。
(2) Relative viscosity of component A
Using oxalic acid as compound a as the carboxylic acid component,
As the diamine component, 1,6-hexanediamine, which is compound b, and 2-methyl-1,5-pentanediamine, which is compound c, are polycondensed so that the melting point is preferably in the range of 200 to 330 ° C. Compared to a polyamide resin obtained by polycondensation of compound a and compound b with a melting point exceeding 330 ° C. (hereinafter also referred to as comparative component A2), in the melt polymerization in the post-polymerization step of component A described later, Since it is not necessary to use an excessively high temperature condition in which a side reaction occurs and inhibits high molecular weight, high molecular weight (increase relative viscosity) is possible.
Therefore, Component A has an excellent melt moldability because it can increase the relative viscosity as compared with the conventional polyamide resin.
From the viewpoint of avoiding the tendency for the molded product after melt molding to become brittle and lowering the physical properties, to avoid the tendency to increase the melt viscosity at the time of melt molding and to deteriorate the molding processability, the relative viscosity ηr and the melt viscosity are above a certain level. From the viewpoint of being suitable for uses such as automobile parts and electrical / electronic parts that are preferably high and not excessively high, a 96% concentrated sulfuric acid solution having a concentration of component A of 1.0 g / dl is used. The relative viscosity ηr measured at 25 ° C. is preferably 1.8 to 6.0, more preferably 1.8 to 4.5, more preferably 1.8 to 3.0, and still more preferably May be 1.85 to 2.5, more preferably 1.85 to 2.2.
In the melt polymerization in the post-polymerization step of component A described later, the relative viscosity ηr can be increased by increasing the degree of vacuum.
 また、同様の観点から、成分Aの溶融粘度は、好ましくは100~700Pa・s、より好ましくは110~600Pa・s、更に好ましくは120~500Pa・s、更に好ましくは130~400Pa・s、更に好ましくは150~300Pa・s、更に好ましくは160~220Pa・s、更に好ましくは170~200Pa・sである。 From the same viewpoint, the melt viscosity of component A is preferably 100 to 700 Pa · s, more preferably 110 to 600 Pa · s, still more preferably 120 to 500 Pa · s, still more preferably 130 to 400 Pa · s, and further The pressure is preferably 150 to 300 Pa · s, more preferably 160 to 220 Pa · s, and still more preferably 170 to 200 Pa · s.
 さらに、同様の観点から、成分Aの数平均分子量(Mn)は、好ましくは10000~50000であり、より好ましくは11000~40000であり、更に好ましくは11000~35000である。 Furthermore, from the same viewpoint, the number average molecular weight (Mn) of component A is preferably 10,000 to 50,000, more preferably 11,000 to 40,000, and still more preferably 11,000 to 35,000.
 数平均分子量(Mn)は、1H-NMRスペクトルから求めたシグナル強度をもとに、例えば、蓚酸源として蓚酸ジブチル、ジアミン成分として1,6-ヘキサンジアミン(化合物b)と2-メチル-1,5-ペンタンジアミン(化合物c)を90:10のモル%比で用いて製造したポリアミド〔以下、PX6-2(化合物b/化合物c=90/10)と略称する〕の場合は下式により算出した。
 Mn=np×170.21+n(NH)×115.20+n(OBu)×129.13+n(NHCHO)×29.14
 なお、1H-NMRの測定条件は以下の通りである。
・使用機種:ブルカー・バイオスピン社製 AVANCE500
・溶媒:重硫酸
・積算回数:1024回
 また、前記式中の各項は以下のように規定される。
・np=Np/[(N(NH)+N(NHCHO)+N(OBu))/2]
・n(NH
 =N(NH)/[(N(NH)+N(NHCHO)+N(OBu))/2]
・n(NHCHO)
 =N(NHCHO)/[(N(NH)+N(NHCHO)+N(OBu))/2]
・n(OBu)
 =N(OBu)/[(N(NH)+N(NHCHO)+N(OBu))/2]
・Np=Sp/sp-N(NHCHO)
・N(NH)=S(NH)/s(NH
・N(NHCHO)=S(NHCHO)/s(NHCHO)
・N(OBu)=S(OBu)/s(OBu)
 但し、各項は以下の意味を有する。
・Np:PA62(化合物B/化合物C=90/10)の末端ユニットを除いた、分子鎖中の繰り返しユニット総数。
・np:分子1本当たりの分子鎖中の繰り返しユニット数。
・Sp:PX6-2(化合物b/化合物c=90/10)の末端を除いた、分子鎖中の繰り返しユニット中のオキサミド基に隣接するメチレン基のプロトンに基づくシグナル(3.1ppm付近)の積分値。
・sp:積分値Spにカウントされる水素数(4個)。
・N(NH):PX6-2(化合物b/化合物c=90/10)の末端アミノ基の総数。
・n(NH):分子1本当たりの末端アミノ基の数。
・S(NH):PX6-2(化合物b/化合物c=90/10)の末端アミノ基に隣接するメチレン基のプロトンに基づくシグナル(2.6ppm付近)の積分値。
・s(NH):積分値S(NH)にカウントされる水素数(2個)。
・N(NHCHO):PX6-2(化合物b/化合物c=90/10)の末端ホルムアミド基の総数。
・n(NHCHO):分子1本当たりの末端ホルムアミド基の数。
・S(NHCHO):PX6-2(化合物b/化合物c=90/10)のホルムアミド基のプロトンに基づくシグナル(7.8ppm)の積分値。
・s(NHCHO):積分値S(NHCHO)にカウントされる水素数(1個)。
・N(OBu):PX6-2(化合物b/化合物c=90/10)の末端ブトキシ基の総数。
・n(OBu):分子1本当たりの末端ブトキシ基の数。
・S(OBu):PX6-2(化合物b/化合物c=90/10)の末端ブトキシ基の酸素原子に隣接するメチレン基のプロトンに基づくシグナル(4.1ppm付近)の積分値。
・s(OBu):積分値S(OBu)にカウントされる水素数(2個)。
The number average molecular weight (Mn) is based on the signal intensity obtained from the 1H-NMR spectrum, for example, dibutyl oxalate as the oxalic acid source, 1,6-hexanediamine (compound b) and 2-methyl-1, In the case of a polyamide produced using 5-pentanediamine (compound c) at a molar ratio of 90:10 [hereinafter abbreviated as PX6-2 (compound b / compound c = 90/10)] did.
Mn = np × 170.21 + n (NH 2 ) × 115.20 + n (OBu) × 129.13 + n (NHCHO) × 29.14
The measurement conditions for 1H-NMR are as follows.
・ Model used: Bruker Biospin AVANCE500
-Solvent: Bisulfuric acid-Integration frequency: 1024 times Each term in the above formula is defined as follows.
Np = Np / [(N (NH 2 ) + N (NHCHO) + N (OBu)) / 2]
・ N (NH 2 )
= N (NH 2 ) / [(N (NH 2 ) + N (NHCHO) + N (OBu)) / 2]
・ N (NHCHO)
= N (NHCHO) / [(N (NH 2 ) + N (NHCHO) + N (OBu)) / 2]
・ N (OBu)
= N (OBu) / [(N (NH 2 ) + N (NHCHO) + N (OBu)) / 2]
・ Np = Sp / sp-N (NHCHO)
N (NH 2 ) = S (NH 2 ) / s (NH 2 )
N (NHCHO) = S (NHCHO) / s (NHCHO)
N (OBu) = S (OBu) / s (OBu)
However, each term has the following meaning.
Np: Total number of repeating units in the molecular chain excluding terminal units of PA62 (compound B / compound C = 90/10).
Np: the number of repeating units in the molecular chain per molecule.
Sp: A signal based on the proton of the methylene group adjacent to the oxamide group in the repeating unit in the molecular chain excluding the end of PX6-2 (compound b / compound c = 90/10) (around 3.1 ppm) Integration value.
Sp: The number of hydrogens (4) counted in the integral value Sp.
N (NH 2 ): Total number of terminal amino groups of PX6-2 (compound b / compound c = 90/10).
N (NH 2 ): number of terminal amino groups per molecule.
S (NH 2 ): Integral value of a signal (around 2.6 ppm) based on the proton of the methylene group adjacent to the terminal amino group of PX6-2 (compound b / compound c = 90/10).
S (NH 2 ): The number of hydrogens (2) counted in the integrated value S (NH 2 ).
N (NHCHO): total number of terminal formamide groups of PX6-2 (compound b / compound c = 90/10).
N (NHCHO): number of terminal formamide groups per molecule.
S (NHCHO): the integrated value of the signal (7.8 ppm) based on the proton of the formamide group of PX6-2 (compound b / compound c = 90/10).
S (NHCHO): The number of hydrogens (one) counted in the integral value S (NHCHO).
N (OBu): the total number of terminal butoxy groups of PX6-2 (compound b / compound c = 90/10).
N (OBu): number of terminal butoxy groups per molecule.
S (OBu): integral value of a signal (around 4.1 ppm) based on the proton of the methylene group adjacent to the oxygen atom of the terminal butoxy group of PX6-2 (compound b / compound c = 90/10).
S (OBu): The number of hydrogens (two) counted in the integral value S (OBu).
(3)成分Aの物性
 成分Aは、さらに、化合物b及びcの重縮合比率を変更することで、
 温度差(Td-Tm)を、比較成分A2に比べて大きく、化合物aと化合物cとを重縮合して得られるポリアミド樹脂(以下、比較成分A1ともいう)に比べて小さく、
 融点Tmを、比較成分A2に比べて低く、比較成分A1に比べて高く、
 1%重量減少温度Tdを、比較成分A1に比べて高く、
 飽和吸水率を、比較成分A2に比べて小さく、比較成分A1に比べて大きくすることができる。
(3) Physical properties of component A Component A further changes the polycondensation ratio of compounds b and c,
The temperature difference (Td−Tm) is larger than that of the comparative component A2, and smaller than the polyamide resin obtained by polycondensation of the compound a and the compound c (hereinafter also referred to as the comparative component A1).
The melting point Tm is low compared to the comparative component A2, high compared to the comparative component A1,
1% weight loss temperature Td is higher than the comparative component A1,
The saturated water absorption rate can be smaller than the comparative component A2 and larger than the comparative component A1.
 即ち、成分Aは、従来のポリオキサミド樹脂と比較して、
 相対粘度ηr(高分子量化)、
 温度差(Td-Tm)から見積もられる成形可能温度幅、
 融点Tmから見積もられる耐熱性、
 溶融粘度から見積もられる溶融成形性、及び
 低吸水性のいずれをも十分に確保することができる。
That is, the component A is compared with the conventional polyoxamide resin,
Relative viscosity ηr (high molecular weight),
Moldable temperature range estimated from temperature difference (Td-Tm),
Heat resistance estimated from melting point Tm,
Both the melt moldability estimated from the melt viscosity and the low water absorption can be sufficiently secured.
 成分Aは、成形可能温度幅、耐熱性、溶融成形性及び低吸水性のいずれをも十分に確保した上で、化合物bの重合比率(モル比)の高さに由来する耐薬品性、耐加水分解性及び燃料バリア性に特に寄与する。 Component A has sufficient chemical resistance, resistance to resistance due to the high polymerization ratio (molar ratio) of compound b after sufficiently ensuring the moldable temperature range, heat resistance, melt moldability and low water absorption. Particularly contributes to hydrolyzability and fuel barrier properties.
 成分Aは、成形可能温度幅、耐熱性、溶融成形性及び低吸水性のいずれをも十分に確保する観点から、
 Tmは、好ましくは260~330℃であり、より好ましくは265~330℃であり、
 Tdは、好ましくは341~370℃、より好ましくは345~370℃、更に好ましくは350~365℃であり、
 温度差(Td-Tm)は、好ましくは10~95℃、より好ましくは20~95℃、更に好ましくは25~95℃であり、
 飽和吸水率は、好ましくは0~2.4、より好ましくは1~2.4、更に好ましくは2~2.4、更に好ましくは2.3~2.4である。
From the viewpoint of sufficiently ensuring all of the moldable temperature range, heat resistance, melt moldability and low water absorption,
Tm is preferably 260 to 330 ° C., more preferably 265 to 330 ° C.,
Td is preferably 341 to 370 ° C, more preferably 345 to 370 ° C, and still more preferably 350 to 365 ° C.
The temperature difference (Td−Tm) is preferably 10 to 95 ° C., more preferably 20 to 95 ° C., still more preferably 25 to 95 ° C.,
The saturated water absorption is preferably 0 to 2.4, more preferably 1 to 2.4, still more preferably 2 to 2.4, and still more preferably 2.3 to 2.4.
(4)成分Aの製造
 成分Aは、ポリアミドを製造する方法として知られている任意の方法を用いて製造することができるが、高分子量化および生産性の観点から、
 好ましくは、ジアミン及び蓚酸ジエステルをバッチ式又は連続式で重縮合反応させることにより得ることであり、
 より好ましくは、ジアミン及び蓚酸ジエステルを前重縮合工程と後重縮合工程からなる二段重合法もしくは、WO2008-072754公報記載の加圧重合法によって得ることである。
 更に好ましい二段重合法及び加圧重合法としては、具体的には、以下の操作で示される。
(4) Production of Component A Component A can be produced using any method known as a method for producing polyamide, but from the viewpoint of high molecular weight and productivity,
Preferably, it is obtained by polycondensation reaction of diamine and oxalic acid diester batchwise or continuously.
More preferably, the diamine and oxalic acid diester are obtained by a two-stage polymerization method comprising a pre-polycondensation step and a post-polycondensation step, or a pressure polymerization method described in WO2008-072754.
More preferable two-stage polymerization method and pressure polymerization method are specifically shown by the following operations.
(4-1)二段重合法
(i)前重縮合工程:まず反応器内を窒素置換した後、ジアミン(化合物b及びc)及び化合物aの蓚酸源である蓚酸ジエステルを混合する。混合する場合にジアミン及び蓚酸ジエステルが共に可溶な溶媒を用いても良い。ジアミン成分及び蓚酸源成分が共に可溶な溶媒としては、トルエン、キシレン、トリクロロベンゼン、フェノール、トリフルオロエタノールなどを用いることができ、特にトルエンを好ましく用いることができる。例えば、ジアミンを溶解したトルエン溶液を50℃に加熱した後、これに対して蓚酸ジエステルを加える。
 このとき、蓚酸ジエステルと上記ジアミンの仕込み比は、高分子量化の観点から、蓚酸ジエステル/上記ジアミンで、0.8~1.5(モル比)、好ましくは0.91~1.1(モル比)、更に好ましくは0.99~1.01(モル比)である。
(4-1) Two-stage polymerization method (i) Pre-polycondensation step: First, the inside of the reactor is purged with nitrogen, and then the diamine (compounds b and c) and the oxalic acid diester which is the oxalic acid source of the compound a are mixed. When mixing, a solvent in which both the diamine and the oxalic acid diester are soluble may be used. As a solvent in which both the diamine component and the oxalic acid source component are soluble, toluene, xylene, trichlorobenzene, phenol, trifluoroethanol, and the like can be used, and particularly, toluene can be preferably used. For example, after heating the toluene solution which melt | dissolved diamine to 50 degreeC, oxalic acid diester is added with respect to this.
At this time, the charging ratio between the oxalic acid diester and the diamine is 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1 (molar ratio) of oxalic acid diester / the diamine from the viewpoint of increasing the molecular weight. Ratio), more preferably 0.99 to 1.01 (molar ratio).
 このように仕込んだ反応器内を攪拌及び/又は窒素バブリングしながら、常圧下で昇温する。反応温度は、最終到達温度が80~150℃、好ましくは100~140℃の範囲になるように制御するのが好ましい。最終到達温度での反応時間は3時間~6時間である。 The temperature inside the reactor charged in this way is increased under normal pressure while stirring and / or nitrogen bubbling. The reaction temperature is preferably controlled so that the final temperature reaches 80 to 150 ° C., preferably 100 to 140 ° C. The reaction time at the final temperature reached is 3-6 hours.
(ii)後重縮合工程:更に高分子量化を図るために、前重縮合工程で生成した重合物を常圧下において反応器内で徐々に昇温する。昇温過程において前重縮合工程の最終到達温度、すなわち好ましくは80~150℃から、最終的に、
 好ましくは295℃以上350℃以下、より好ましくは298℃以上345℃以下、更に好ましくは298℃以上340℃以下の温度範囲にまで到達させる。
 昇温時間を含めて好ましくは1~8時間、より好ましくは2~6時間保持して反応を行うことが好ましい。さらに後重合工程において、必要に応じて減圧下での重合を行うこともできる。減圧重合を行う場合の好ましい最終到達圧力は13.3Pa~0.1MPaである。
(Ii) Post-polycondensation step: In order to further increase the molecular weight, the polymer produced in the pre-polycondensation step is gradually heated in the reactor under normal pressure. From the final temperature reached in the pre-polycondensation step, that is, preferably 80 to 150 ° C.
The temperature is preferably 295 ° C. or higher and 350 ° C. or lower, more preferably 298 ° C. or higher and 345 ° C. or lower, more preferably 298 ° C. or higher and 340 ° C. or lower.
The reaction is preferably carried out while maintaining the temperature raising time, preferably 1 to 8 hours, more preferably 2 to 6 hours. Furthermore, in the post-polymerization step, polymerization can be performed under reduced pressure as necessary. A preferable final ultimate pressure in the case of carrying out the vacuum polymerization is 13.3 Pa to 0.1 MPa.
(4-2)加圧重合法
 まずジアミンを耐圧容器内に入れ窒素置換した後、封圧下において反応温度まで昇温する。その後、反応温度において封圧状態を保ったまま蓚酸化合物を耐圧容器内に注入し、重縮合反応を開始させる。反応温度は、ジアミンと蓚酸化合物の反応によって生じるポリアミドが、スラリー状、もしくは溶液状態を維持でき、かつ熱分解しない温度であれば特に制限されない。例えば、成分aの場合、上記反応温度は、150℃から250℃が好ましい。ここで、蓚酸ジブチルとジアミンの仕込み比は、蓚酸ジブチルのモル量/ジアミンの総モル量で、0.8~1.5(モル比)、好ましくは0.91~1.1(モル比)、更に好ましくは0.99~1.01(モル比)である。
 次に耐圧容器内を封圧状態に保ちながらポリアミド樹脂の融点以上かつ熱分解しない温度以下に昇温する。例えば、成分aの場合、融点は245~300℃であることから、250℃以上350℃以下、好ましくは255℃以上340℃以下、更に好ましくは260℃以上335℃以下に昇温する。所定温度に到達するまでの耐圧容器内の圧力は、およそ生成するアルコールの飽和蒸気圧から0.1MPa、好ましくは1MPaから0.2MPaに調整する。所定温度に到達後は、生成したアルコールを留去しながら放圧し、必要に応じて常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。減圧重合を行う場合の好ましい最終到達圧力は13.3Pa~0.1MPaである。
(4-2) Pressurized polymerization method First, diamine is placed in a pressure-resistant vessel and purged with nitrogen, and then heated to the reaction temperature under a sealing pressure. Thereafter, the oxalic acid compound is injected into the pressure vessel while maintaining the sealed pressure state at the reaction temperature, and the polycondensation reaction is started. The reaction temperature is not particularly limited as long as the polyamide produced by the reaction of the diamine and the oxalic acid compound can maintain a slurry or solution state and does not thermally decompose. For example, in the case of Component a, the reaction temperature is preferably 150 ° C. to 250 ° C. Here, the charging ratio of dibutyl oxalate and diamine is 0.8 to 1.5 (molar ratio), preferably 0.91 to 1.1 (molar ratio), in terms of molar amount of dibutyl oxalate / total molar amount of diamine. More preferably, it is 0.99 to 1.01 (molar ratio).
Next, while maintaining the inside of the pressure vessel in a sealed pressure state, the temperature is raised to a temperature not lower than the melting point of the polyamide resin and not pyrolyzed. For example, in the case of Component a, since the melting point is 245 to 300 ° C., the temperature is raised to 250 to 350 ° C., preferably 255 to 340 ° C., more preferably 260 to 335 ° C. The pressure in the pressure vessel until reaching the predetermined temperature is adjusted to approximately 0.1 MPa, preferably 1 MPa to 0.2 MPa, from the saturated vapor pressure of the alcohol to be generated. After reaching the predetermined temperature, the pressure is released while distilling off the produced alcohol, and the polycondensation reaction is continued under an atmospheric pressure of nitrogen or reduced pressure as necessary. A preferable final ultimate pressure in the case of carrying out the vacuum polymerization is 13.3 Pa to 0.1 MPa.
(5)成分Aにおけるジカルボン酸として使用できる成分
 成分Aにおいて、本発明の効果を損なわない範囲で化合物a以外の他のジカルボン酸成分を使用する事が出来る。
 化合物a(蓚酸)以外の他のジカルボン酸成分としては、
 マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸などの脂肪族ジカルボン酸、
 また、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、
 さらに、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,4-フェニレンジオキシジ酢酸、1,3-フェニレンジオキシジ酢酸、ジ安息香酸、4,4’-オキシジ安息香酸、ジフェニルメタン-4,4’-ジカルボン酸、ジフェニルスルホン-4,4’-ジカルボン酸、4,4’-ビフェニルジカルボン酸などの芳香族ジカルボン酸
などを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。
 さらに、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。
 他のジカルボン酸成分を使用する場合、その割合は、化合物a(蓚酸)に対して、25モル%以下であり、15モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下がさらに好ましく、0モル%(即ち、ジカルボン酸成分が化合物aだけからなること)がさらに好ましい。なお、化合物a(蓚酸)に対する他のジカルボン酸成分のモル比は、成分A中の、化合物a由来の単位と他のジカルボン酸成分由来の単位のモル比も意味する。
(5) Component which can be used as dicarboxylic acid in component A In component A, other dicarboxylic acid components other than compound a can be used within a range not impairing the effects of the present invention.
As other dicarboxylic acid components other than compound a (oxalic acid),
Malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid , Aliphatic dicarboxylic acids such as suberic acid,
In addition, alicyclic dicarboxylic acids such as 1,3-cyclopentanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid,
Further, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,4-phenylenedioxydiacetic acid, 1,3-phenylenedioxydi Aromatic dicarboxylic acids such as acetic acid, dibenzoic acid, 4,4′-oxydibenzoic acid, diphenylmethane-4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboxylic acid, 4,4′-biphenyldicarboxylic acid These may be added singly or any mixture thereof may be added during the polycondensation reaction.
Furthermore, polyvalent carboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid can be used as long as melt molding is possible.
When other dicarboxylic acid components are used, the proportion thereof is 25 mol% or less, preferably 15 mol% or less, more preferably 10 mol% or less, and more preferably 5 mol% or less with respect to compound a (oxalic acid). More preferably, it is more preferably 0 mol% (that is, the dicarboxylic acid component consists only of compound a). The molar ratio of the other dicarboxylic acid component to the compound a (succinic acid) also means the molar ratio of the unit derived from the compound a and the unit derived from the other dicarboxylic acid component in the component A.
 成分Aにおいて、本発明の効果を損なわない範囲で、化合物b及びc以外の他のジアミン成分を使用する事が出来る。
 1,6-ヘキサンジアミン及び2-メチル-1,5-ペンタンジアミン以外の他のジアミン成分としては、エチレンジアミン、プロピレンジアミン、1,4-ブタンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン、1,8-オクタンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミンなどの脂肪族ジアミン、
 さらに、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、
 さらにp-フェニレンジアミン、m-フェニレンジアミン、p-キシレンジアミン、m-キシレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテルなどの芳香族ジアミン、
などを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。
 他のジアミン成分を使用する場合、その割合は、化合物b及びcに対して25モル%以下であり、15モル%以下が好ましく、10モル%以下がより好ましく、5モル%以下がさらに好ましく、0モル%(即ち、ジアミン成分が化合物b及びcだけからなること)がさらに好ましい。なお、化合物b及びcに対する他のジアミン成分のモル比は、成分A中の、化合物b及びc由来の単位と他のジアミン成分由来の単位のモル比も意味する。
In component A, other diamine components other than compounds b and c can be used within the range not impairing the effects of the present invention.
Other diamine components other than 1,6-hexanediamine and 2-methyl-1,5-pentanediamine include ethylenediamine, propylenediamine, 1,4-butanediamine, 1,9-nonanediamine, 2-methyl-1, 8-octanediamine, 1,8-octanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 3-methyl-1,5-pentanediamine, 2,2,4- Aliphatic diamines such as trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, and 5-methyl-1,9-nonanediamine;
Furthermore, alicyclic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine,
Further aromatic diamines such as p-phenylenediamine, m-phenylenediamine, p-xylenediamine, m-xylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl ether ,
These may be added alone, or any mixture thereof may be added during the polycondensation reaction.
When other diamine components are used, the proportion thereof is 25 mol% or less, preferably 15 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, with respect to compounds b and c. More preferably, it is 0 mol% (that is, the diamine component consists only of compounds b and c). In addition, the molar ratio of the other diamine component with respect to the compounds b and c also means the molar ratio of the units derived from the compounds b and c and the units derived from the other diamine components in the component A.
(6)成分Aの成形加工
 成分Aの成形方法としては、射出、押出、中空、プレス、ロール、発泡、真空・圧空、延伸などポリアミドに適用できる公知の成形加工法はすべて可能であるが、成形サイクル性を短縮する観点から、これらの成形法によってフィルム、シート、成形品、繊維などに加工することができる。
 中でも、
 金属被覆加工において好適であり、金属物品を適切かつ効率よく被覆することができ、 射出成形による成形加工において好適であり、これらの成形法によってフィルム、シート、成形品、繊維などに加工することができ、
 押出成形による成形加工において好適であり、これらの成形法によってフィルム、シート、成形品、繊維などに加工することができ、
 成形サイクル性を短縮する観点から、車両部品、バイオディーゼル燃料と直接接触する成形体、燃料配管部品、プリント基板表面実装部品、電子写真装置部品、ICトレイ、産業用チューブの成形加工において好適である。
(6) Molding of component A As the molding method of component A, all known molding methods applicable to polyamide such as injection, extrusion, hollow, press, roll, foaming, vacuum / pressure air, and stretching can be used. From the viewpoint of shortening the molding cycle property, the film can be processed into a film, a sheet, a molded product, a fiber and the like by these molding methods.
Above all,
It is suitable for metal coating processing, can coat metal articles appropriately and efficiently, is suitable for molding processing by injection molding, and can be processed into films, sheets, molded articles, fibers, etc. by these molding methods Can
Suitable for molding by extrusion, can be processed into films, sheets, molded products, fibers, etc. by these molding methods,
From the viewpoint of shortening the molding cycle performance, it is suitable for molding of vehicle parts, molded bodies that are in direct contact with biodiesel fuel, fuel piping parts, printed circuit board surface mounting parts, electrophotographic apparatus parts, IC trays, and industrial tubes. .
〔成分B1〕
 離型剤である成分B1は、ポリアルキレングリコールの末端変性物、リン酸エステル類、亜リン酸エステル類、高級脂肪酸モノエステル類、高級脂肪酸、高級脂肪酸金属塩、エチレンビスアミド化合物、低分子量ポリエチレン、珪酸マグネシウム及び置換ベンジリデンソルビトール類からなる群から選ばれる少なくとも1以上の化合物であり、
 成形時における型と成形物との良好なすべり性及び/又は成形時間の抑制を安定に確保する観点から選択される。
[Component B1]
Component B1, which is a mold release agent, is a polyalkylene glycol end-modified product, phosphate ester, phosphite ester, higher fatty acid monoester, higher fatty acid, higher fatty acid metal salt, ethylene bisamide compound, low molecular weight polyethylene, At least one compound selected from the group consisting of magnesium silicate and substituted benzylidene sorbitols,
It is selected from the viewpoint of stably ensuring good slipperiness between the mold and the molded product during molding and / or suppression of molding time.
 好ましいポリアルキレングリコールの末端変性物の例としては、ポリエチレングリコールの末端変性物、ポリプロピレングリコールの末端変性物などが挙げられる。末端変性は、アミノ基、カルボキシル基又はメチル基でなされていることが好ましい。より具体的な例としては、下記式(1):
X-R-(O-CH-CH)n-O-R-X   (1)
(式中、XはNH、又はCOOH、又はHを表し、R及びRは、各々独立に炭素数1~10の直鎖状又は分岐状のアルキレン基を表し、nは4~1200の数である)
又は下記式(2):
X-R-(O-CH-C(CH)H)-O-R-X   (2)
(式中、XはNH、又はCOOH、又はHを表し、R及びRは、各々独立に炭素数1~10の直鎖状又は分岐状のアルキレン基を表し、nは1~200の数である)で表されるものが挙げられる。
Examples of preferable terminal modified products of polyalkylene glycol include terminal modified products of polyethylene glycol and terminal modified products of polypropylene glycol. The terminal modification is preferably performed with an amino group, a carboxyl group or a methyl group. As a more specific example, the following formula (1):
X—R 1 — (O—CH 2 —CH 2 ) n—O—R 2 —X (1)
(In the formula, X represents NH 2 , COOH, or H, R 1 and R 2 each independently represents a linear or branched alkylene group having 1 to 10 carbon atoms, and n represents 4 to 1200. Is the number of
Or the following formula (2):
X—R 3 — (O—CH 2 —C (CH 3 ) H) n —O—R 4 —X (2)
(Wherein X represents NH 2 , COOH, or H, R 3 and R 4 each independently represents a linear or branched alkylene group having 1 to 10 carbon atoms, and n represents 1 to 200 It is a number represented by this.
 好ましいリン酸エステル類の例としては、下記式:
(RO)PO(OH)3-n
(式中、nは1又は2であり、Rは炭素数1~10のアルキル基である)で表されるものが挙げられる。上記式中、n=2である場合の2個のRO基は同一でも異なっていてもよい。Rとしては、エチル基、ブチル基、オクチル基、エチルヘキシル基などが挙げられる。
Examples of preferred phosphate esters include the following formula:
(R 5 O) n PO (OH) 3-n
(Wherein n is 1 or 2, and R 5 is an alkyl group having 1 to 10 carbon atoms). In the above formula, the two RO groups when n = 2 may be the same or different. Examples of R include an ethyl group, a butyl group, an octyl group, and an ethylhexyl group.
 好ましい亜リン酸エステル類の例としては、下記式:
(RO)
(式中、Rは、水素、又は炭素数10~25、より好ましくは12~20のアルキル基、もしくはフェニル基、もしくはそれらの基の一部が炭化水素基で置換されている基を表す)で表されるものが挙げられる。上記式中の3個のRO基は同一でも異なっていてもよい。Rとしては、デシル基、ラウリル基、トリデシル基、ステアリル基、オレイル基などの脂肪族基;フェニル基、ビフェニル基などの芳香族基;エチル基、プロピル基、t-ブチル基、ノニル基などの置換基を有する芳香族基などが挙げられる。
Examples of preferred phosphites include the following formula:
(R 6 O) 3 P
(Wherein R 6 represents hydrogen or an alkyl group having 10 to 25 carbon atoms, more preferably 12 to 20 carbon atoms, or a phenyl group, or a group in which a part of these groups is substituted with a hydrocarbon group. ). The three RO groups in the above formula may be the same or different. R is an aliphatic group such as a decyl group, a lauryl group, a tridecyl group, a stearyl group or an oleyl group; an aromatic group such as a phenyl group or a biphenyl group; an ethyl group, a propyl group, a t-butyl group, or a nonyl group. Examples thereof include an aromatic group having a substituent.
 上記のリン酸エステル及び亜リン酸エステルのより具体的な例としては、ジ(2-エチルヘキシル)ホスフェート、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリステアリルホスファイトなどの脂肪族リン酸エステル及び脂肪族亜リン酸エステル、トリフェニルホスファイト、ジフェニルモノデシルホスファイトなどの芳香族亜リン酸エステルなどが挙げられる。 More specific examples of the above-mentioned phosphate esters and phosphite esters include aliphatic phosphate esters such as di (2-ethylhexyl) phosphate, tridecyl phosphite, tris (tridecyl) phosphite, and tristearyl phosphite. And aromatic phosphites such as aliphatic phosphites, triphenyl phosphites and diphenyl monodecyl phosphites.
 好ましい高級脂肪酸モノエステル類としては、下記式:
-CO-O-R
(式中、R及びRは、各々独立に炭素数8~32、好ましくは10~30のアルキル基を表す)
で表されるもの、すなわち高級脂肪酸と高級脂肪族1価アルコールとのエステル化合物が挙げられる。上記式中のR1及びR2としては、デシル基、ラウリル基、トリデシル基、ステアリル基、オレイル基などの脂肪族基などが挙げられる。
Preferred higher fatty acid monoesters include the following formula:
R 7 —CO—O—R 8
(Wherein R 7 and R 8 each independently represents an alkyl group having 8 to 32 carbon atoms, preferably 10 to 30 carbon atoms)
, That is, an ester compound of a higher fatty acid and a higher aliphatic monohydric alcohol. Examples of R 1 and R 2 in the above formula include aliphatic groups such as a decyl group, a lauryl group, a tridecyl group, a stearyl group, and an oleyl group.
 また、上記高級脂肪酸としては、ミリスチン酸、パルミチン酸、ベヘニン酸、オレイン酸、アラギジン酸などが挙げられる。また、高級脂肪族アルコールとしては、ミリスチルアルコール、ベヘニルアルコール、オレイルアルコール、ステアリルアルコール、ヘキシルデシルアルコールなどを挙げることができる。 In addition, examples of the higher fatty acid include myristic acid, palmitic acid, behenic acid, oleic acid, and alginic acid. Examples of higher aliphatic alcohols include myristyl alcohol, behenyl alcohol, oleyl alcohol, stearyl alcohol, hexyldecyl alcohol, and the like.
 高級脂肪酸モノエステル類のより具体的な例としては、高級脂肪酸モノアルキルエステル、例えばミリスチン酸ミリスチル、ステアリン酸ステアリル、ベヘニン酸ベヘニル、オレイン酸オレイル、ミリスチン酸ヘキシルデシルなどが挙げられる。 More specific examples of higher fatty acid monoesters include higher fatty acid monoalkyl esters such as myristyl myristate, stearyl stearate, behenyl behenate, oleyl oleate, hexyldecyl myristate, and the like.
 好ましい高級脂肪酸と高級脂肪酸金属塩の例としては、下記式:
CH-(CH-COOX
(式中、nは9~25、好ましくは11~20の数を表し、XはH又は周期律表第I~III族の金属を表す)で表されるものが挙げられる。
Examples of preferred higher fatty acids and higher fatty acid metal salts include:
CH 3 — (CH 2 ) n —COOX
(Wherein n represents a number of 9 to 25, preferably 11 to 20, and X represents a metal of H or Group I to III of the periodic table).
 高級脂肪酸としては、ステアリン酸、パルミチン酸、オレイン酸、アラギジン酸、ベヘニン酸などが挙げられる。また高級脂肪酸の金属塩としては、ステアリン酸亜鉛、ステアリン酸リチウム、ステアリン酸カルシウム、パルミチン酸アルミニウムなどが挙げられる。 Examples of higher fatty acids include stearic acid, palmitic acid, oleic acid, aragydic acid, and behenic acid. Examples of the metal salt of higher fatty acid include zinc stearate, lithium stearate, calcium stearate, aluminum palmitate and the like.
 好ましいエチレンビスアミド化合物の例としては、下記式:
CH(CHCONH(CHNHCO(CHCH
(式中、m及びnは各々独立に9~25、好ましくは10~20の数である)で表されるものが挙げられる。
Examples of preferred ethylene bisamide compounds include:
CH 3 (CH 2 ) m CONH (CH 2 ) 2 NHCO (CH 2 ) n CH 3
(Wherein, m and n are each independently a number of 9 to 25, preferably 10 to 20).
 エチレンビスアミド化合物のより具体的な例としては、エチレンビスステアリルアミド、エチレンビスパルミチルアミドなどが挙げられる。 More specific examples of the ethylene bisamide compound include ethylene bisstearylamide and ethylene bispalmitylamide.
 好ましい低分子量ポリエチレンとしては、粘度平均分子量が500~5000の範囲内であるものが挙げられ、粘度平均分子量が1000~3000の範囲のものがより好ましい。
 粘度平均分子量の測定は、粘度平均分子量の測定は、ウベローデ型粘度計を用いた溶液粘度測定による。
Preferred low molecular weight polyethylene includes those having a viscosity average molecular weight in the range of 500 to 5000, and those having a viscosity average molecular weight in the range of 1000 to 3000 are more preferred.
The viscosity average molecular weight is measured by measuring the solution viscosity using an Ubbelohde viscometer.
 好ましい珪酸マグネシウムの例としては、平均粒径1~10μmのものが挙げられる。平均粒径が1μm以上である場合、成形物表面における白いむらが発生しにくく、10μm以下である場合、成形物の機械的物性、特に引張り破断点伸び及び衝撃強さが低下しにくい。ポリアミド樹脂との密着性を改良する目的で、珪酸マグネシウムにアミノシランなどによる表面処理を行ってもよい。
 平均粒径の測定は、動的散乱法による。
Preferred examples of magnesium silicate include those having an average particle diameter of 1 to 10 μm. When the average particle size is 1 μm or more, white unevenness is hardly generated on the surface of the molded product, and when the average particle size is 10 μm or less, the mechanical properties of the molded product, in particular, the tensile elongation at break and the impact strength are difficult to decrease. For the purpose of improving the adhesion with the polyamide resin, the magnesium silicate may be subjected to a surface treatment with aminosilane or the like.
The average particle diameter is measured by a dynamic scattering method.
 好ましい置換ベンジリデンソルビトール類の例としては、ソルビトールと置換ベンズアルデヒドとの酸触媒下での脱水縮合により合成される置換ベンジリデンソルビトールが挙げられる。置換ベンズアルデヒドのソルビトールへの縮合割合は、ソルビトール1モルに対して1モル又は2モルが好ましい。従って、これらの置換ベンジリデンソルビトール類は、下記式: Examples of preferable substituted benzylidene sorbitols include substituted benzylidene sorbitols synthesized by dehydration condensation of sorbitol and substituted benzaldehyde under an acid catalyst. The condensation ratio of substituted benzaldehyde to sorbitol is preferably 1 mol or 2 mol with respect to 1 mol of sorbitol. Accordingly, these substituted benzylidene sorbitols have the following formula:
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、H又はヒドロキシル基又はハロゲン又は炭素数1~200のアルキル基を表す)
又は、下記式:
Figure JPOXMLDOC01-appb-C000001
(Wherein R 9 represents H, a hydroxyl group, a halogen, or an alkyl group having 1 to 200 carbon atoms)
Or the following formula:
Figure JPOXMLDOC01-appb-C000002
(式中、R10及びR11は、各々独立に、H又はヒドロキシル基又はハロゲン又は炭素数1~200のアルキル基を表す)で表される。
Figure JPOXMLDOC01-appb-C000002
(Wherein R 10 and R 11 each independently represent H, a hydroxyl group, a halogen, or an alkyl group having 1 to 200 carbon atoms).
 置換ベンジリデンソルビトール類としては、例えば、1,3-ベンジリデンソルビトール、1,3,2,4-ジベンジリデンソルビトール、1,3-モノ(p-ヒドロキシベンジリデン)ソルビトール、1,3,2,4-ジ(p-ヒドロキシベンジリデン)ソルビトール、1,3-モノ(p-クロロベンジリデン)ソルビトール、1,3,2,4-ジ(p-クロロベンジリデン)ソルビトール、1,3-モノ(m-ニトロベンジリデン)ソルビトール、1,3,2,4-ジ(m-ニトロベンジリデン)ソルビトール、1,3-(p-クロロベンジリデン)2,4-(p-エチルベンジリデン)-d-ソルビトールなどが挙げられる。 Examples of the substituted benzylidene sorbitols include 1,3-benzylidene sorbitol, 1,3,4,4-dibenzylidene sorbitol, 1,3-mono (p-hydroxybenzylidene) sorbitol, 1,3,2,4-di (P-hydroxybenzylidene) sorbitol, 1,3-mono (p-chlorobenzylidene) sorbitol, 1,3,2,4-di (p-chlorobenzylidene) sorbitol, 1,3-mono (m-nitrobenzylidene) sorbitol 1,3,2,4-di (m-nitrobenzylidene) sorbitol, 1,3- (p-chlorobenzylidene) 2,4- (p-ethylbenzylidene) -d-sorbitol and the like.
〔成分A及びB1を含むポリアミド樹脂組成物〕
 本発明のポリアミド樹脂組成物は、成形可能温度幅が広く、耐熱性、及び溶融成形性に優れ、脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、耐薬品性、耐加水分解性、燃料バリア性、さらに、成形時における型と成形物との良好なすべり性及び/又は成形時間の抑制を安定に確保する観点から、
 成分B1を除くポリアミド樹脂組成物中の成分Aの含有量は、好ましくは50~100質量%、より好ましくは55~100質量%、更に好ましくは60~100質量%、更に好ましくは70~100質量%、更に好ましくは80~100質量%、更に好ましくは90~100質量%、更に好ましくは92~100質量%、更に好ましくは95~100質量%であり、
 成分B1の含有量は、成分A100質量部に対して、好ましくは0.01~5質量部、より好ましくは0.05~3質量部、更に好ましくは0.1~1.5質量部、更に好ましくは0.1~1質量部、更に好ましくは0.1~0.5質量部である。
[Polyamide resin composition containing components A and B1]
The polyamide resin composition of the present invention has a wide moldable temperature range, is excellent in heat resistance and melt moldability, and does not impair the low water absorption seen in aliphatic linear polyoxamide resins, and can be used in conventional aliphatic polyamide resins. In comparison with chemical resistance, hydrolysis resistance, fuel barrier properties, and from the viewpoint of stably ensuring good slippage between the mold and the molded product and / or suppression of molding time during molding,
The content of component A in the polyamide resin composition excluding component B1 is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, still more preferably 60 to 100% by mass, and still more preferably 70 to 100% by mass. %, More preferably 80 to 100% by mass, more preferably 90 to 100% by mass, still more preferably 92 to 100% by mass, still more preferably 95 to 100% by mass,
The content of component B1 is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 3 parts by mass, still more preferably 0.1 to 1.5 parts by mass, and more preferably 100 parts by mass of component A. The amount is preferably 0.1 to 1 part by mass, more preferably 0.1 to 0.5 part by mass.
 ポリアルキレングリコールの末端変性物の場合、成形時の冷却時間の短縮による成形時間の短縮効果と機械的物性の安定性の観点から、
 リン酸エステル及び亜リン酸エステルの場合、成形時における型と成形物とのすべり性と成形サイクル時間の短縮効果、リン酸エステル及び亜リン酸エステルとポリアミド樹脂との相溶性、成形物表面における銀状(シルバーマーク)の発生の抑制及び成形物の機械的物性の安定性の観点から、
 高級脂肪酸モノエステル類の場合、成形時における型と成形物とのすべり性、高級脂肪酸モノエステル類とポリアミド樹脂との相溶性、成形物表面における銀状の発生の抑制及び成形物の機械的物性の安定性の観点から、
 高級脂肪酸及びその金属塩の場合、成形時における型と成形物とのすべり性、高級脂肪酸モノエステル類とポリアミド樹脂との相溶性、成形物表面における銀状の発生の抑制や成形物の機械的物性、特に引張り破断点伸び、衝撃強さの安定性の観点から、
 エチレンビスアミド化合物の場合、成形時における型と成形物とのすべり性、成形時間の短縮効果、成形物の表面外観及び機械的物性の安定性の観点から、
 低分子量ポリエチレンの場合、成形時における型と成形物とのすべり性、低分子量ポリエチレンとポリアミド樹脂との相溶性、成形物表面における銀状の発生の抑制及び成形物の機械的物性の安定性の観点から、
 珪酸マグネシウムの場合、成形性の向上効果、成形物の機械的物性、特に引張り破断点伸び、衝撃強さの安定性の観点から、
 置換ベンジリデンソルビトール類の場合、成形時の冷却時間の短縮による成形時間の短縮効果、成形物表面における銀状の発生の抑制、成形物の機械的物性の安定性の観点から、
 成分B1は、上記の好適含有量の範囲であることが好ましい。
In the case of polyalkylene glycol end-modified products, from the viewpoint of the effect of shortening the molding time by shortening the cooling time at the time of molding and the stability of mechanical properties,
In the case of phosphate ester and phosphite ester, the slipperiness between the mold and the molded product during molding and the effect of shortening the molding cycle time, the compatibility of phosphate ester and phosphite ester with polyamide resin, on the surface of the molded product From the viewpoint of suppressing the occurrence of silver (silver mark) and the stability of the mechanical properties of the molded product,
In the case of higher fatty acid monoesters, the slip between the mold and the molded product during molding, the compatibility between the higher fatty acid monoesters and the polyamide resin, the suppression of the occurrence of silver on the molded product surface, and the mechanical properties of the molded product From the viewpoint of stability of
In the case of higher fatty acids and their metal salts, the slippage between the mold and the molded product during molding, the compatibility between higher fatty acid monoesters and polyamide resin, the suppression of the occurrence of silver on the molded product surface and the mechanical properties of the molded product From the viewpoint of physical properties, especially elongation at break at break, stability of impact strength,
In the case of an ethylene bisamide compound, from the viewpoint of the sliding property between the mold and the molded product during molding, the effect of shortening the molding time, the surface appearance of the molded product and the stability of the mechanical properties,
In the case of low molecular weight polyethylene, the slipperiness between the mold and the molded product during molding, the compatibility between the low molecular weight polyethylene and the polyamide resin, the suppression of silver formation on the molded product surface, and the stability of the mechanical properties of the molded product From the point of view
In the case of magnesium silicate, from the viewpoint of the effect of improving the formability, the mechanical properties of the molded product, particularly the elongation at break at break, the stability of the impact strength,
In the case of substituted benzylidene sorbitols, from the viewpoint of shortening the molding time by shortening the cooling time at the time of molding, suppressing the occurrence of silver on the surface of the molded product, the stability of the mechanical properties of the molded product,
It is preferable that component B1 is the range of said suitable content.
〔成分B2〕
 耐熱剤である成分B2は、ポリアミド樹脂の耐熱性を向上できるものが使用でき、有機系、無機系の耐熱剤をその目的に応じて使用でき、好ましくは、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、燐系化合物、硫黄系化合物及びベンゾトリアゾール系化合物からなる群から選ばれる少なくとも1種の化合物である。より好ましくは、ヒンダードフェノール系化合物、及び/又は燐系化合物である。
[Component B2]
Component B2, which is a heat-resistant agent, can be used to improve the heat resistance of the polyamide resin, and an organic or inorganic heat-resistant agent can be used depending on the purpose, preferably a hindered phenol compound or a hindered amine compound. And at least one compound selected from the group consisting of phosphorus compounds, sulfur compounds and benzotriazole compounds. More preferred are hindered phenol compounds and / or phosphorus compounds.
 具体的には、好ましくは、
 3,9-ビス[2-[3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ(5.5)ウンデカン、
 トリエチレングリコール-ビス[3-(3t-ブチル5メチル4ヒドロキシフェニル)プロピオネート、
 ペンタエリスリチル-テトラキス[3-(3,5ジt-ブチル4ヒドロキシフェニル)プロピオネート]、
 N,N’-ヘキサメチレンビス(3,5ジt-ブチル4ヒドロキシ-ヒドロキシンナマミド)、
 トリス(2,4ジt-ブチルフェニル)フォスファイト、
 トリスノニルフェニルフォスファイト、
 ペンタエリスリトリテトラキス(3-ラウリルチオプロピオネート)、
 2-(3,5-ジt-ブチル2ヒドロキシフェニル)5クロロベンゾトリアゾール、
 2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、及び
 コハク酸ジメチル1(2-ヒドロキシエチル)4ヒドロキシ2,2,6,6テトラメチルピリミジン重縮合物
からなる群から選ばれる少なくとも1種の化合物、より好ましくは、
 3,9-ビス[2-[3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ(5.5)ウンデカン、
 トリエチレングリコール-ビス[3-(3t-ブチル5メチル4ヒドロキシフェニル)プロピオネート、
 ペンタエリスリチル-テトラキス[3-(3,5ジt-ブチル4ヒドロキシフェニル)プロピオネート]、
 N,N’-ヘキサメチレンビス(3,5ジt-ブチル4ヒドロキシ-ヒドロキシンナマミド)、
 トリス(2,4ジt-ブチルフェニル)フォスファイト、
 トリスノニルフェニルフォスファイト、及び
 ペンタエリスリトリテトラキス(3-ラウリルチオプロピオネート)
 からなる群から選ばれる少なくとも1種の化合物、更に好ましくは、
 3,9-ビス[2-[3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ(5.5)ウンデカン、
 トリエチレングリコール-ビス[3-(3t-ブチル5メチル4ヒドロキシフェニル)プロピオネート、
 ペンタエリスリチル-テトラキス[3-(3,5ジt-ブチル4ヒドロキシフェニル)プロピオネート]、及び
 N,N’-ヘキサメチレンビス(3,5ジt-ブチル4ヒドロキシ-ヒドロキシンナマミド)からなる群から選ばれる少なくとも1種の化合物である。
Specifically, preferably,
3,9-bis [2- [3- (t-butyl-4-hydroxy-5-methylphenyl) propoxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro (5. 5) Undecane,
Triethylene glycol-bis [3- (3t-butyl-5methyl 4-hydroxyphenyl) propionate,
Pentaerythrityl-tetrakis [3- (3,5 di-t-butyl 4-hydroxyphenyl) propionate],
N, N′-hexamethylene bis (3,5 di-t-butyl 4-hydroxy-hydroxynamamide),
Tris (2,4di-t-butylphenyl) phosphite,
Trisnonylphenyl phosphite,
Pentaerythritritetrakis (3-laurylthiopropionate),
2- (3,5-di-t-butyl 2-hydroxyphenyl) 5 chlorobenzotriazole,
2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, and dimethyl succinate 1 (2-hydroxyethyl) 4hydroxy 2,2,6,6 tetramethyl At least one compound selected from the group consisting of pyrimidine polycondensates, more preferably,
3,9-bis [2- [3- (t-butyl-4-hydroxy-5-methylphenyl) propoxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro (5. 5) Undecane,
Triethylene glycol-bis [3- (3t-butyl-5methyl 4-hydroxyphenyl) propionate,
Pentaerythrityl-tetrakis [3- (3,5 di-t-butyl 4-hydroxyphenyl) propionate],
N, N′-hexamethylene bis (3,5 di-t-butyl 4-hydroxy-hydroxynamamide),
Tris (2,4di-t-butylphenyl) phosphite,
Trisnonylphenyl phosphite and pentaerythritol tetrakis (3-laurylthiopropionate)
At least one compound selected from the group consisting of:
3,9-bis [2- [3- (t-butyl-4-hydroxy-5-methylphenyl) propoxy] -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro (5. 5) Undecane,
Triethylene glycol-bis [3- (3t-butyl-5methyl 4-hydroxyphenyl) propionate,
Consists of pentaerythrityl-tetrakis [3- (3,5 di-t-butyl 4-hydroxyphenyl) propionate] and N, N′-hexamethylene bis (3,5 di-t-butyl 4-hydroxy-hydroxynnamamide) It is at least one compound selected from the group.
 成分B2の無機系耐熱剤の種類としては、
 一つとして、第I族遷移系列元素に属する金属化合物(塩)であり、例えば、
 この金属のハロゲン化物、硫酸塩、酢酸塩、サリチル酸塩、ニコチン酸塩又はステアリン酸塩が挙げられる。
 また、アルカリ金属のハロゲン化塩を単独又は上記第I族遷移系列元素に属する金属化合物(塩)と併用してもよい。
 その具体例としては、ヨウ化カリウム、ヨウ化ナトリウム又は臭化カリウムである。
 更に、メラミン、ベングアナミン、ジメチロール尿素又はシアヌール酸などの含窒素化合物を併用するとより効果的である。
As a kind of inorganic heat-resistant agent of component B2,
One is a metal compound (salt) belonging to Group I transition series elements, for example,
The metal halides, sulfates, acetates, salicylates, nicotinates or stearates are mentioned.
Further, alkali metal halide salts may be used alone or in combination with metal compounds (salts) belonging to the above Group I transition series elements.
Specific examples thereof are potassium iodide, sodium iodide or potassium bromide.
Furthermore, it is more effective when a nitrogen-containing compound such as melamine, benguanamine, dimethylolurea or cyanuric acid is used in combination.
〔成分A及びB2を含むポリアミド樹脂組成物〕
 本発明のポリアミド樹脂組成物は、成形可能温度幅が広く、耐熱性、及び溶融成形性に優れ、
 脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、耐薬品性、耐加水分解性、燃料バリア性、さらに、耐熱性を安定に確保する観点から、
 ポリアミド樹脂組成物中の成分Aの含有量は、好ましくは50~99.99質量%、より好ましくは70~99.99質量%、更に好ましくは97.0~99.99質量%、更に好ましくは98.0~99.99質量%、更に好ましくは98.0~99.9質量%である。
[Polyamide resin composition containing components A and B2]
The polyamide resin composition of the present invention has a wide moldable temperature range, excellent heat resistance, and melt moldability,
Ensures stable chemical resistance, hydrolysis resistance, fuel barrier properties, and heat resistance compared to conventional aliphatic polyamide resins without compromising the low water absorption found in aliphatic linear polyoxamide resins From the point of view
The content of component A in the polyamide resin composition is preferably 50 to 99.99% by mass, more preferably 70 to 99.99% by mass, still more preferably 97.0 to 99.99% by mass, and still more preferably. It is 98.0 to 99.99% by mass, more preferably 98.0 to 99.9% by mass.
 ポリアミド樹脂組成物及びそれから成形される成形体の着色やブツの発生を抑止しつつ耐熱剤の効果を安定に発現させる観点から、成分B2の含有量は、成分A100質量部に対して、好ましくは0.01~3.0質量部、より好ましくは、0.01~2.0質量部であり、更に好ましくは、0.1~2.0質量部である。 The content of component B2 is preferably based on 100 parts by mass of component A from the viewpoint of stably expressing the effect of the heat resisting agent while suppressing the occurrence of coloring and unevenness of the polyamide resin composition and the molded product molded therefrom. The amount is 0.01 to 3.0 parts by weight, more preferably 0.01 to 2.0 parts by weight, and still more preferably 0.1 to 2.0 parts by weight.
 本発明のポリアミド樹脂組成物では、その他の成分として以下を含むことが好ましい。
(1)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
The polyamide resin composition of the present invention preferably contains the following as other components.
(1) Polymers other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、好ましくは0.1~100質量部、より好ましくは0.1~50質量部、更に好ましくは0.5~30質量部である。 The polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of Component A. Part, more preferably 0.5 to 30 parts by weight.
〔成分B3〕
 衝撃改良材(成分B3)は、ポリアミド樹脂(成分A)の耐衝撃性を改良する成分である。
 衝撃改良材(成分B3)としては、ポリアミド樹脂(成分A)の耐衝撃性を改良するものであれば特に制限されないが、例えば、エラストマーを挙げることができる。当該エラストマーとしては、ASTM D-790に準拠して測定した曲げ弾性率が500MPa以下であることが好ましい。曲げ弾性率がこの値を超えると、衝撃改良効果が不十分となる場合がある。
[Component B3]
The impact modifier (component B3) is a component that improves the impact resistance of the polyamide resin (component A).
The impact modifier (component B3) is not particularly limited as long as it improves the impact resistance of the polyamide resin (component A), and examples thereof include an elastomer. The elastomer preferably has a flexural modulus of 500 MPa or less as measured in accordance with ASTM D-790. If the flexural modulus exceeds this value, the impact improvement effect may be insufficient.
 衝撃改良材(成分B3)としては、(エチレン及び/又はプロピレン)・α-オレフィン系共重合体、(エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、アイオノマ-重合体、芳香族ビニル化合物・共役ジエン化合物系ブロック共重合体を挙げることができ、これらを単独又は混合して使用する事ができる。 As the impact modifier (component B3), (ethylene and / or propylene) · α-olefin copolymer, (ethylene and / or propylene) · (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid) Ester) -based copolymers, ionomer polymers, aromatic vinyl compound / conjugated diene compound-based block copolymers, and these can be used alone or in admixture.
 上記の(エチレン及び/又はプロピレン)・α-オレフィン系共重合体とは、エチレン及び/又はプロピレンと炭素数3以上のα-オレフィンを共重合した重合体であり、炭素数3以上のα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセン及びこれらの組み合わせが挙げられる。 The (ethylene and / or propylene) · α-olefin copolymer is a polymer obtained by copolymerizing ethylene and / or propylene and an α-olefin having 3 or more carbon atoms, and α-olefin having 3 or more carbon atoms. Examples of olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-butene, 3-methyl-1-pentene, 3- Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl- - pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-ethyl-1-tetradecene and combinations thereof.
 また、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、ジシクロオクタジエン、メチレンノルボルネン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペンル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,2-ノルボルナジエンなどの非共役ジエンのポリエンを共重合してもよい。 In addition, 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, 2-methyl-1, 5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 4,8-dimethyl-1,4,8- Decatriene (DMDT), dicyclopentadiene, cyclohexadiene, dicyclooctadiene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl-5-isopropylene-2-norbornene, 2,3-diisopropylidene 5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene may be copolymerized non-conjugated diene polyene such as 2-propenyl-2,2-norbornadiene.
 上記の(エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体とは、エチレン及び/又はプロピレンとα,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル単量体を共重合した重合体であり、α,β-不飽和カルボン酸単量体とはしては、アクリル酸、メタクリル酸が挙げられ、α,β-不飽和カルボン酸エステル単量体としては、これら不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等、あるいはこれらの混合物が挙げられる。これらの中でも吸水時の強度を維持しながら耐衝撃性を改良する観点から、マレイン酸変性エチレン-ブテン共重合体及び/又はマレイン酸変性エチレン-プロピレン共重合体が好ましい。 The above (ethylene and / or propylene) · (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer is ethylene and / or propylene and α, β-unsaturated carboxylic acid and And / or a polymer obtained by copolymerizing unsaturated carboxylic acid ester monomers. Examples of α, β-unsaturated carboxylic acid monomers include acrylic acid and methacrylic acid, and α, β-unsaturated monomers. Examples of saturated carboxylic acid ester monomers include methyl esters, ethyl esters, propyl esters, butyl esters, pentyl esters, hexyl esters, heptyl esters, octyl esters, nonyl esters, decyl esters, and the like of these unsaturated carboxylic acids. A mixture is mentioned. Among these, a maleic acid-modified ethylene-butene copolymer and / or a maleic acid-modified ethylene-propylene copolymer is preferable from the viewpoint of improving impact resistance while maintaining the strength during water absorption.
 上記のアイオノマ-重合体とは、オレフィンとα,β-不飽和カルボン酸共重合体のカルボキシル基の少なくとも一部が金属イオンの中和によりイオン化されたものである。オレフィンとしてはエチレンが好ましく用いられ、α,β-不飽和カルボン酸としてはアクリル酸、メタクリル酸が好ましく用いられるが、ここに例示したものに限定されるものではなく、不飽和カルボン酸エステル単量体が共重合されていても構わない。また、金属イオンはLi、Na、K、Mg、Ca、Sr、Baなどのアルカリ金属、アルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cd等を挙げることできる。 The above-mentioned ionomer polymer is obtained by ionizing at least part of the carboxyl group of the olefin and the α, β-unsaturated carboxylic acid copolymer by neutralization of metal ions. Ethylene is preferably used as the olefin, and acrylic acid and methacrylic acid are preferably used as the α, β-unsaturated carboxylic acid. However, the olefin is not limited to those exemplified here. The body may be copolymerized. In addition, metal ions include alkali metals and alkaline earth metals such as Li, Na, K, Mg, Ca, Sr, Ba, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc. Can be mentioned.
 また、芳香族ビニル化合物・共役ジエン化合物系ブロック共重合体とは、芳香族ビニル化合物系重合体ブロックと共役ジエン系重合体ブロックからなるブロック共重合体であり、芳香族ビニル化合物系重合体ブロックを少なくとも1個と、共役ジエン系重合体ブロックを少なくとも1個有するブロック共重合体が用いられる。また、上記のブロック共重合体では、共役ジエン系重合体ブロックにおける不飽和結合が水素添加されていてもよい。 The aromatic vinyl compound / conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene polymer block, and the aromatic vinyl compound polymer block. And a block copolymer having at least one conjugated diene polymer block. In the block copolymer, the unsaturated bond in the conjugated diene polymer block may be hydrogenated.
 芳香族ビニル化合物系重合体ブロックは、芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックである。その場合の芳香族ビニル化合物としては、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、2,6-ジメチルスチレン、ビニルナフタレン、ビニルアントラセン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレンなどを挙げることができ、芳香族ビニル化合物系重合体ブロックは前記した単量体の1種又は2種以上からなる構造単位を有していることができる。また、芳香族ビニル化合物系重合体ブロックは、場合により少量の他の不飽和単量体からなる構造単位を有していてもよい。 The aromatic vinyl compound polymer block is a polymer block mainly composed of structural units derived from an aromatic vinyl compound. In this case, the aromatic vinyl compound includes styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, 2,6-dimethylstyrene, vinylnaphthalene, vinyl Anthracene, 4-propyl styrene, 4-cyclohexyl styrene, 4-dodecyl styrene, 2-ethyl-4-benzyl styrene, 4- (phenyl butyl) styrene, etc. can be mentioned. It may have a structural unit consisting of one or more of the monomers. In addition, the aromatic vinyl compound-based polymer block may optionally have a structural unit composed of a small amount of other unsaturated monomer.
 共役ジエン系重合体ブロックは、1,3-ブタジエン、クロロプレン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエンなどの共役ジエン系化合物の1種又は2種以上から形成された重合体ブロックであり、水素添加した芳香族ビニル化合物/共役ジエンブロック共重合体では、その共役ジエン系重合体ブロックにおける不飽和結合部分の一部又は全部が水素添加により飽和結合になっている。ここで共役ジエンを主体とする重合体ブロック中の分布は、ランダム、テーパー、一部ブロック状又はこれら任意の組み合わせであってもよい。 Conjugated diene polymer blocks include 1,3-butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3- A polymer block formed from one or more conjugated diene compounds such as hexadiene, and hydrogenated aromatic vinyl compound / conjugated diene block copolymer is unsaturated in the conjugated diene polymer block. A part or all of the bonding portion is saturated by hydrogenation. Here, the distribution in the polymer block mainly composed of conjugated diene may be random, tapered, partially blocky, or any combination thereof.
 芳香族ビニル化合物/共役ジエンブロック共重合体及びその水素添加物の分子構造は、直鎖状、分岐状、放射状、又はそれら任意の組み合わせのいずれであってもよい。そのうちでも、本発明では芳香族ビニル化合物/共役ジエンブロック共重合体及び/又はその水素添加物として、1個の芳香族ビニル化合物重合体ブロックと1個の共役ジエン重合体ブロックが直鎖状に結合したジブロック共重合体、芳香族ビニル化合物重合体ブロック-共役ジエン重合体ブロック-芳香族ビニル化合物重合体ブロックの順に3つの重合体ブロックが直鎖状に結合しているトリブロック共重合体、及びそれらの水素添加物の1種又は2種以上が好ましく用いられ、未水添又は水添スチレン/ブタジエン共重合体、未水添又は水添スチレン/イソプレン共重合体未水添又は水添スチレン/イソプレン/スチレン共重合体、未水添又は水添スチレン/ブタジエン/スチレン共重合体、未水添又は水添スチレン/(イソプレン/ブタジエン)/スチレン共重合体などが挙げられる。 The molecular structure of the aromatic vinyl compound / conjugated diene block copolymer and its hydrogenated product may be any of linear, branched, radial, or any combination thereof. Among them, in the present invention, as an aromatic vinyl compound / conjugated diene block copolymer and / or a hydrogenated product thereof, one aromatic vinyl compound polymer block and one conjugated diene polymer block are linear. Triblock copolymer in which three polymer blocks are linearly bonded in the order of bonded diblock copolymer, aromatic vinyl compound polymer block-conjugated diene polymer block-aromatic vinyl compound polymer block And one or more of these hydrogenated products are preferably used, and unhydrogenated or hydrogenated styrene / butadiene copolymer, unhydrogenated or hydrogenated styrene / isoprene copolymer, unhydrogenated or hydrogenated. Styrene / isoprene / styrene copolymer, unhydrogenated or hydrogenated styrene / butadiene / styrene copolymer, unhydrogenated or hydrogenated styrene / (isoprene / butylene) Diene) / styrene copolymer, and the like.
 また、衝撃改良材(成分B3)として用いられる(エチレン及び/又はプロピレン)・α-オレフィン系共重合体、(エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、アイオノマ-重合体、芳香族ビニル化合物と共役ジエン化合物のブロック共重合体は、カルボン酸及び/又はその誘導体で変性された重合体が好ましく使用される。このような成分により変性することにより、ポリアミド樹脂に対して親和性を有する官能基をその分子中に含むこととなる。 Further, (ethylene and / or propylene) · α-olefin copolymer, (ethylene and / or propylene) · (α, β-unsaturated carboxylic acid and / or unsaturated) used as an impact modifier (component B3) Carboxylic acid ester) -based copolymers, ionomer polymers, and block copolymers of aromatic vinyl compounds and conjugated diene compounds are preferably polymers modified with carboxylic acids and / or derivatives thereof. By modifying with such a component, a functional group having affinity for the polyamide resin is included in the molecule.
 ポリアミド樹脂に対して親和性を有する官能基としては、カルボン酸基、カルボン酸無水物基、カルボン酸エステル基、カルボン酸金属塩基、カルボン酸イミド基、カルボン酸アミド基、エポキシ基などが挙げられる。これらの官能基を含む化合物の例として、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メチルマレイン酸、メチルフマル酸、メサコン酸、シトラコン酸、グルタコン酸、シス-4-シクロヘキセン-1,2-ジカルボン酸、エンドビシクロ[2.2.1]-5-ヘプテン-2,3-ジカルボン酸及びこれらカルボン酸の金属塩、マレイン酸モノメチル、イタコン酸モノメチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸メチル、メタクリル酸2-エチルヘキシル、メタクリル酸ヒドロキシエチル、メタクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチル、無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ-[2.2.1]-5-ヘプテン-2,3-ジカルボン酸無水物、マレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-フェニルマレイミド、アクリルアミド、メタクリルアミド、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジルなどが挙げられる。
 吸水時の強度を維持しながら耐衝撃性を改良する観点から、成分B3は、(エチレン及び/又はプロピレン)・α-オレフィン系共重合体、(エチレン及び/又はプロピレン)・(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体及びアイオノマ-からなる群より選ばれる1種以上の重合体が好ましく、マレイン酸変性エチレン-ブテン共重合体及、マレイン酸変性エチレン-プロピレン共重合体、エポキシ変性スチレンブロック共重合及びアイオノマ-からなる群より選ばれる1種以上の重合体がより好ましい。
Examples of functional groups having an affinity for polyamide resin include carboxylic acid groups, carboxylic anhydride groups, carboxylic acid ester groups, carboxylic acid metal bases, carboxylic acid imide groups, carboxylic acid amide groups, and epoxy groups. . Examples of compounds containing these functional groups include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, methylmaleic acid, methyl fumaric acid, mesaconic acid, citraconic acid, glutaconic acid, cis-4- Cyclohexene-1,2-dicarboxylic acid, endobicyclo [2.2.1] -5-heptene-2,3-dicarboxylic acid and metal salts of these carboxylic acids, monomethyl maleate, monomethyl itaconate, methyl acrylate, acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, hydroxyethyl methacrylate, aminoethyl methacrylate, dimethyl maleate, dimethyl itaconate, maleic anhydride, Itaconic anhydride, no Citraconic acid, Endobicyclo- [2.2.1] -5-heptene-2,3-dicarboxylic anhydride, maleimide, N-ethylmaleimide, N-butylmaleimide, N-phenylmaleimide, acrylamide, methacrylamide, acrylic Examples thereof include glycidyl acid, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, and glycidyl citraconic acid.
From the viewpoint of improving impact resistance while maintaining the strength at the time of water absorption, the component B3 is composed of (ethylene and / or propylene) · α-olefin copolymer, (ethylene and / or propylene) · (α, β- One or more polymers selected from the group consisting of (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) type copolymer and ionomer are preferred, maleic acid-modified ethylene-butene copolymer and maleic acid-modified ethylene One or more polymers selected from the group consisting of a propylene copolymer, an epoxy-modified styrene block copolymer and an ionomer are more preferable.
〔成分A及びB3を含むポリアミド樹脂組成物〕
 本発明のポリアミド樹脂組成物は、ポリアミド樹脂(成分A)と衝撃改良材(成分B3)とを含む。
 本発明のポリアミド樹脂組成物において、衝撃改良材(成分B3)の量は、ポリアミド樹脂(成分A)の耐衝撃性が改良される範囲であれば、特に制限されないが、例えば、ポリアミド樹脂(成分A)100質量部に対する衝撃改良材(成分B3)の量は、好ましくは10~100質量部である。衝撃改良材(成分B3)の量が少なくなると耐衝撃性が向上せず、一方衝撃改良材(成分B3)が多くなると、ポリアミド樹脂組成物の広い成形可能温度幅の効果が認められなくなる。耐衝撃性及び成形可能温度幅の観点から、ポリアミド樹脂組成物中の成分Aの含有量は、好ましくは50~95質量%、より好ましくは60~90質量%、更に好ましくは70~90質量%であり、ポリアミド樹脂(成分A)100質量部に対する衝撃改良材(成分B3)の量は、好ましくは、10~100質量部であり、より好ましくは10~50質量部であり、特に好ましくは10~30質量部である。
[Polyamide resin composition containing components A and B3]
The polyamide resin composition of the present invention contains a polyamide resin (component A) and an impact modifier (component B3).
In the polyamide resin composition of the present invention, the amount of the impact modifier (component B3) is not particularly limited as long as the impact resistance of the polyamide resin (component A) is improved. A) The amount of the impact modifier (component B3) with respect to 100 parts by mass is preferably 10 to 100 parts by mass. When the amount of the impact modifier (component B3) decreases, the impact resistance does not improve. On the other hand, when the impact modifier (component B3) increases, the effect of the wide moldable temperature range of the polyamide resin composition is not recognized. From the viewpoint of impact resistance and moldable temperature range, the content of component A in the polyamide resin composition is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and still more preferably 70 to 90% by mass. The amount of the impact modifier (component B3) with respect to 100 parts by mass of the polyamide resin (component A) is preferably 10 to 100 parts by mass, more preferably 10 to 50 parts by mass, and particularly preferably 10 To 30 parts by mass.
〔成分B4〕
 充填材(成分B4)は、無機及び/又は有機の充填材が使用でき、無機充填材が好ましい。充填材(成分B4)の形状は任意であり、繊維状、粒子状などが含まれる。充填材(成分B4)は、たとえば、補強繊維及び/又は無機粒子が挙げられる。充填材の配合量は、用途に応じて適宜設定されるが、例えば、ポリアミド樹脂全体100質量部に対して2~500質量部である。
 上記補強繊維としては、格別に限定されず、ガラス繊維、炭素繊維、金属繊維、鉱物繊維などの無機繊維、ポリアミド樹脂より強靭なアラミド繊維などの有機繊維を挙げることができる。補強繊維を配合することで、組成物の強度、耐クリープ性などの物性が改良される効果が顕著である。特にガラス繊維と炭素繊維が好ましい。
[Component B4]
As the filler (component B4), an inorganic and / or organic filler can be used, and an inorganic filler is preferable. The shape of the filler (component B4) is arbitrary, and includes fibrous, particulate and the like. Examples of the filler (component B4) include reinforcing fibers and / or inorganic particles. The blending amount of the filler is appropriately set depending on the application, and is, for example, 2 to 500 parts by mass with respect to 100 parts by mass of the entire polyamide resin.
The reinforcing fiber is not particularly limited, and examples thereof include inorganic fibers such as glass fibers, carbon fibers, metal fibers, and mineral fibers, and organic fibers such as aramid fibers that are tougher than polyamide resins. By blending the reinforcing fibers, the effect of improving the physical properties such as the strength and creep resistance of the composition is remarkable. Glass fiber and carbon fiber are particularly preferable.
 ガラス繊維も、特に制限されない。ガラス繊維径も限定されないが、5~15μmのものが好ましい。繊維長は、用途により短繊維のもののほか、長繊維でもよいが、5~1000μmが好ましい。ガラス繊維は、ブレンドや加工により破砕される場合があるが、破砕されたガラス繊維が前記の繊維長を有することが好ましい。 Glass fiber is not particularly limited. The diameter of the glass fiber is not limited, but is preferably 5 to 15 μm. The fiber length may be a short fiber or a long fiber depending on the application, but is preferably 5 to 1000 μm. The glass fiber may be crushed by blending or processing, but the crushed glass fiber preferably has the fiber length.
 ガラス繊維の配合割合は、ポリアミド樹脂全体100質量部に対して2~40質量部が好適であり、2~38質量部がより好ましく、3~35質量部が好ましい。ガラス繊維の配合量が少ないと、剛性、耐クリープ性の改善が低くなり、またチューブなどとの結合が悪くなるおそれがある。一方、ガラス繊維の配合量が多くなると、組成物の流動性が悪くなり、ショートショットの原因になったり表面状態が悪くなる恐れがある。 The compounding ratio of the glass fiber is preferably 2 to 40 parts by mass, more preferably 2 to 38 parts by mass, and preferably 3 to 35 parts by mass with respect to 100 parts by mass of the entire polyamide resin. If the blending amount of the glass fiber is small, the improvement in rigidity and creep resistance is lowered, and the bonding with a tube or the like may be deteriorated. On the other hand, when the compounding amount of the glass fiber is increased, the fluidity of the composition is deteriorated, which may cause a short shot or the surface state.
 炭素繊維も、ピッチ系、PAN系など、特に制限されないが、物性、導電性などの性能からPAN系の炭素繊維が好ましい。
 炭素繊維の混練前の繊維長は、用途により短繊維のもののほか、1000mmに及ぶ長繊維でもよいが、ペレット製造を目的とする溶融混錬の場合は、
 好ましくは0.1~12mmであり、より好ましくは1~8mmであり、
 炭素繊維の混練前の繊維径は、好ましくは5~15μmであり、さらに微細な繊維径の炭素繊維も用いることができる。
The carbon fibers are not particularly limited, such as pitch-based and PAN-based, but PAN-based carbon fibers are preferable in terms of properties such as physical properties and conductivity.
The fiber length before kneading of the carbon fiber may be a long fiber extending up to 1000 mm in addition to that of the short fiber depending on the use, but in the case of melt kneading for the purpose of pellet production,
Preferably it is 0.1-12 mm, more preferably 1-8 mm,
The fiber diameter before kneading of the carbon fibers is preferably 5 to 15 μm, and carbon fibers having a finer fiber diameter can also be used.
 炭素繊維の配合割合は、ポリアミド樹脂全体100質量部に対して2~40質量部が好適であり、2~38質量部がより好ましく、3~35質量部が好ましい。炭素繊維の配合量が少ないと、剛性、耐クリープ性、導電性の改善が低くなるおそれがあるので、5質量部以上が好ましい。一方、炭素繊維の配合量が40質量部を超えると、組成物の流動性が悪くなり、ショートショットの原因になったり、表面状態が悪くなる恐れがあるので好ましくない。 The blending ratio of the carbon fiber is preferably 2 to 40 parts by mass, more preferably 2 to 38 parts by mass, and preferably 3 to 35 parts by mass with respect to 100 parts by mass of the entire polyamide resin. If the blending amount of carbon fiber is small, the improvement in rigidity, creep resistance, and conductivity may be lowered, so 5 parts by mass or more is preferable. On the other hand, when the blending amount of the carbon fiber exceeds 40 parts by mass, the fluidity of the composition is deteriorated, which may cause a short shot and the surface state may be deteriorated.
 本発明に用いるポリアミド樹脂が有する、機械的強度、耐薬品性、低吸水性、耐加水分解性などに優れ、かつ成形可能温度幅が広く、溶融成形性に優れた特性は、ポリアミドに補強繊維を配合した場合にも、基本的にそのまま保持されるとともに、補強繊維の配合により機械的強度や耐熱性などの一定の特性が顕著に向上する。 The polyamide resin used in the present invention has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability. In the case of blending, basically, it is held as it is, and certain properties such as mechanical strength and heat resistance are remarkably improved by blending the reinforcing fibers.
 本発明で使用できる無機粒子としては、金属、金属酸化物、無機化合物などの粒子が挙げられ、用途に応じて適宜選択できる。無機粒子の粒径は、特別に限定されず、用途に応じて適宜選択できる。無機粒子としては、具体的には、例えばタングステン、鉄、亜鉛、錫、鉛、銅などの金属、タングステン銅、タングステン銀などの金属合金、酸化鉄、酸化亜鉛などの金属酸化物、更に、硫化モリブデン等の硫化物、などの粒子が挙げられる。 Examples of inorganic particles that can be used in the present invention include particles of metals, metal oxides, inorganic compounds, and the like, which can be appropriately selected depending on the application. The particle size of the inorganic particles is not particularly limited and can be appropriately selected depending on the application. Specific examples of inorganic particles include metals such as tungsten, iron, zinc, tin, lead and copper, metal alloys such as tungsten copper and tungsten silver, metal oxides such as iron oxide and zinc oxide, and sulfides. Examples of the particles include sulfides such as molybdenum.
 例えば、本発明のポリアミド樹脂組成物を用いた高比重の成形物の用途においては、密度が5g/cm以上の無機粒子、例えばタングステン粒子などを好ましく使用できる。また、例えば本発明のポリアミド樹脂組成物を用いた樹脂磁石の用途においては、バリウムフェライト、ストロンチウムフェライトなどのフェライト、サマリウム-コバルト系、ネオジウム-鉄-ボロン系などの希土類磁性材料などの磁性粒子を好ましく使用できる。 For example, in the use of a molded article having a high specific gravity using the polyamide resin composition of the present invention, inorganic particles having a density of 5 g / cm 3 or more, such as tungsten particles, can be preferably used. For example, in the application of a resin magnet using the polyamide resin composition of the present invention, magnetic particles such as ferrite such as barium ferrite and strontium ferrite, and rare earth magnetic materials such as samarium-cobalt and neodymium-iron-boron are used. It can be preferably used.
 無機粒子は1種でも2種以上の併用でもよく、また表面処理などが施されていてもよい。表面処理としては、チタネート系カップリング剤による表面処理、シラン系表面処理剤による表面処理などが挙げられる。チタネート系カップリング剤による表面処理については例えば前述の特開平2-255760号公報に記載される公知の手法、シラン系表面処理剤による表面処理については例えば前述の特開平10-158507号公報に記載される公知の方法を採用できる。 The inorganic particles may be used alone or in combination of two or more, and may be subjected to surface treatment. Examples of the surface treatment include surface treatment with a titanate coupling agent, surface treatment with a silane surface treatment agent, and the like. For surface treatment with a titanate coupling agent, for example, a known method described in the above-mentioned JP-A-2-255760, and for surface treatment with a silane-based surface treatment agent, for example, in the above-mentioned JP-A-10-158507. Any known method can be employed.
〔成分A及びB4を含むポリアミド樹脂組成物〕
 本発明において、上述のポリアミド樹脂と無機粒子との質量比は、ポリアミド樹脂/無機粒子が50/50~5/95、更に好ましくは20/80~5/95の範囲内であることができ、この場合、高比重化、磁性化などの特性付与をより簡便に実現できる。
[Polyamide resin composition containing components A and B4]
In the present invention, the mass ratio of the above-mentioned polyamide resin and inorganic particles can be within the range of 50/50 to 5/95, more preferably 20/80 to 5/95 for polyamide resin / inorganic particles, In this case, it is possible to more easily provide characteristics such as higher specific gravity and magnetism.
〔成分B5〕
 層状珪酸塩(成分B5)は、高分子材料に機械的特性及び耐熱性を付与する成分である。
 層状珪酸塩は、一辺の長さが0.002~1μmで、厚さが6~20Åである平板状のものを用いることが好ましい。また、上記層状珪酸塩は、ポリアミド樹脂中に分散した際に、各層が約18Å以上の層間距離を保ち、均一に分散されるものであることが好ましい。
 ここで、「層間距離」とは、平板状をなす層状珪酸塩の各重心の間の距離をいい、「均一に分散する」とは、各層が主にランダムな状態で存在し、層状珪酸塩の50質量%以上、好ましくは70質量%以上が、複層物を形成することなく単層に分散していることをいうものとする。
[Component B5]
The layered silicate (component B5) is a component that imparts mechanical properties and heat resistance to the polymer material.
The layered silicate is preferably a flat plate having a side length of 0.002 to 1 μm and a thickness of 6 to 20 mm. Moreover, when the said layered silicate is disperse | distributed in a polyamide resin, it is preferable that each layer maintains the interlayer distance of about 18 mm or more, and is disperse | distributed uniformly.
Here, “interlayer distance” refers to the distance between the centroids of the layered silicate in the form of a plate, and “uniformly dispersed” means that each layer exists mainly in a random state, and the layered silicate 50% by mass or more, preferably 70% by mass or more is dispersed in a single layer without forming a multilayer.
 上記層状珪酸塩としては、珪酸マグネシウム又は珪酸アルミニウムの層から構成される層状フィロ珪酸鉱物、すなわち、珪酸アルミニウム質フィロ珪酸塩又は珪酸マグネシウム質フィロ珪酸塩を例示することができる。具体的には、モンモリロナイト、サポナイト、バイデライト、ノントロナイト、ヘクトライト、スティブンサイト等のスメクタイト系粘土鉱物やバーミキュライト、ハロイサイト等を例示することができ、これらは天然のものであっても、合成されたものであってもよい。 Examples of the layered silicate include layered phyllosilicate minerals composed of magnesium silicate or aluminum silicate layers, that is, aluminum silicate phyllosilicate or magnesium silicate phyllosilicate. Specific examples include smectite clay minerals such as montmorillonite, saponite, beidellite, nontronite, hectorite, and stevensite, vermiculite, and halloysite. It may be what was done.
 また、上記層状珪酸塩をポリアミド樹脂に分散させるために、通常、有機アミン、有機アンモニウム等の膨潤化剤が用いられる。当該膨潤化剤は、粘土鉱物の層間を拡げる役割と、粘土鉱物に層間ポリマーを取り込む力を与える役割とを有するものである。上記膨潤化剤としては、本発明の場合には、1,6-ヘキサンジアミン及び2-メチル-1,5-ペンタンジアミンを用いることが好ましい。 Moreover, in order to disperse the layered silicate in the polyamide resin, a swelling agent such as organic amine or organic ammonium is usually used. The swelling agent has a role of expanding the interlayer of the clay mineral and a role of giving the clay mineral a force for taking up the interlayer polymer. In the present invention, it is preferable to use 1,6-hexanediamine and 2-methyl-1,5-pentanediamine as the swelling agent.
 また、上記層状珪酸塩を成分Aに分散させるために、通常、膨潤化剤が用いられる。当該膨潤化剤は、粘土鉱物の層間を拡げる役割と、粘土鉱物に層間ポリマーを取り込む力を与える役割とを有するものである。上記膨潤化剤としては、本発明の場合には、1,6-ヘキサンジアミン及び2-メチル-1,5-ペンタンジアミンを用いることが好ましい。 In order to disperse the layered silicate in component A, a swelling agent is usually used. The swelling agent has a role of expanding the interlayer of the clay mineral and a role of giving the clay mineral a force for taking up the interlayer polymer. In the present invention, it is preferable to use 1,6-hexanediamine and 2-methyl-1,5-pentanediamine as the swelling agent.
 なお、上記層状珪酸塩は、ミキサー、ボールミル、振動ミル、ピンミル、ジェットミル、叩解機等を用いて粉砕し、予め所望の形状及びサイズのものとしておくことが好ましい。 The layered silicate is preferably pulverized using a mixer, a ball mill, a vibration mill, a pin mill, a jet mill, a beating machine, or the like and previously set in a desired shape and size.
 上記層状珪酸塩を添加する方法は、上記層状珪酸塩が成分Aに均一に分散し得る方法である限り、特に制限はない。例えば、層状珪酸塩の原料が多層状粘土鉱物である場合には、特開昭62-74957号に開示されるように、層状珪酸塩を塩酸等によりイオン化し、ここに膨潤化剤、例えば、1,6-ヘキサンジアミン及び2-メチル-1,5-ペンタンジアミンを添加して、あらかじめ層状珪酸塩の各層の間隔を広げる。次いで、当該層の間に成分Aの原料を導入し、さらに当該層の間で上記原料を重合させることができる。 The method for adding the layered silicate is not particularly limited as long as the layered silicate can be uniformly dispersed in the component A. For example, when the raw material of the layered silicate is a multilayered clay mineral, as disclosed in JP-A-62-74957, the layered silicate is ionized with hydrochloric acid or the like, and a swelling agent such as, for example, 1,6-Hexanediamine and 2-methyl-1,5-pentanediamine are added to widen the space between the layers of the layered silicate in advance. Subsequently, the raw material of component A can be introduce | transduced between the said layers, and also the said raw material can be polymerized between the said layers.
 また、膨潤化剤として有機化合物を用いて層間を約100Å以上に予め広げ、これを成分Aと溶融混合して、各層をポリアミド樹脂に分散させてもよい。 Alternatively, an organic compound may be used as a swelling agent, and the layers may be spread in advance to about 100 mm or more and melt-mixed with component A to disperse each layer in a polyamide resin.
〔成分A及びB5を含むポリアミド樹脂組成物〕
 本発明のポリアミド樹脂組成物は、上記ポリアミド樹脂(成分A)と、当該ポリアミド樹脂内に分散している層状珪酸塩(成分B5)とを含む複合材料である。
 本発明の複合材料中の上記層状珪酸塩の量は、本発明の複合材料の機械的特性及び耐熱性が向上する量であれば、特に制限されるものではないが、上記ポリアミド樹脂100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.05~8質量部、特に好ましくは0.05~5質量部である。層状珪酸塩の割合が低くなると、機械強度及び耐熱性の向上が小さくなる傾向があり、上記割合が高くなると、複合材料の物性、特に流動性が低下し、成形加工性が悪化したり、衝撃強度が低下する傾向がある。
[Polyamide resin composition containing components A and B5]
The polyamide resin composition of the present invention is a composite material containing the polyamide resin (component A) and the layered silicate (component B5) dispersed in the polyamide resin.
The amount of the layered silicate in the composite material of the present invention is not particularly limited as long as the mechanical properties and heat resistance of the composite material of the present invention are improved. Is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, and particularly preferably 0.05 to 5 parts by mass. When the proportion of the layered silicate is lowered, the mechanical strength and heat resistance tend to be reduced, and when the proportion is increased, the physical properties of the composite material, particularly the fluidity is lowered, the molding processability is deteriorated, There is a tendency for strength to decrease.
〔成分B6〕
 本発明に用いる導電性付与剤(成分B6)は、特に限定されず、ポリアミド樹脂に配合して導電性を付与できるものであればよい。
[Component B6]
The conductivity-imparting agent (component B6) used in the present invention is not particularly limited as long as it can be added to the polyamide resin to impart conductivity.
 粒状フィラーとしては、カーボンブラック、グラファイト等が好適に使用できる。フレーク状フィラーとしては、アルミフレーク、ニッケルフレーク、ニッケルコートマイカ等が好適に使用できる。
 また、繊維状フィラーとしては、カーボンナノチューブ、カーボンナノファイバー、炭素繊維、炭素被覆セラミック繊維、カーボンウィスカー、アルミ繊維、銅繊維、黄銅繊維、ステンレス繊維といった金属繊維等が好適に使用できる。
 繊維状フィラーは、本発明のポリアミド樹脂組成物を成形して得られる成形体の機械的物性を向上する観点からも好ましい。
As the particulate filler, carbon black, graphite or the like can be suitably used. As the flaky filler, aluminum flakes, nickel flakes, nickel-coated mica and the like can be suitably used.
As the fibrous filler, metal fibers such as carbon nanotubes, carbon nanofibers, carbon fibers, carbon-coated ceramic fibers, carbon whiskers, aluminum fibers, copper fibers, brass fibers, and stainless fibers can be suitably used.
The fibrous filler is also preferable from the viewpoint of improving the mechanical properties of a molded product obtained by molding the polyamide resin composition of the present invention.
 導電性付与剤の量は、ポリアミド樹脂全体100質量部に対して、2~150質量部が好ましく、2~100質量部が好ましく、2~50質量部がより好ましい。 The amount of the conductivity imparting agent is preferably 2 to 150 parts by mass, more preferably 2 to 100 parts by mass, and more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the entire polyamide resin.
 本発明で用いることができるカーボンブラックとしては、導電性付与に一般的に使用されているカーボンブラックがすべて包含され、好ましいカーボンブラックとしては、アセチレンガスを不完全燃焼して得られるアセチレンブラックや、原油を原料にファーネス式不完全燃焼によって製造されるケッチェンブラック、オイルブラック、ナフタリンブラック、サーマルブラック、ランプブラック、チャンネルブラック、ロールブラック、ディスクブラック等が挙げられるが、これらに限定されるものではない。これらの中でもアセチレンブラック及び/又はファーネスブラック(ケッチェンブラック)が好適に用いられる。 The carbon black that can be used in the present invention includes all carbon blacks commonly used for imparting conductivity, and preferred carbon blacks include acetylene black obtained by incomplete combustion of acetylene gas, Examples include, but are not limited to, ketjen black, oil black, naphthalene black, thermal black, lamp black, channel black, roll black, disc black, etc., which are manufactured from crude crude oil by furnace-type incomplete combustion. Absent. Among these, acetylene black and / or furnace black (Ketjen black) are preferably used.
 カーボンブラックは、その粒子径、表面積、DBP吸油量、灰分等の特性の異なる種々のカーボン粉末が製造されている。該カーボンブラックの特性に制限は無いが、良好な鎖状構造を有し、凝集密度の大きいものが好ましい。カーボンブラックの多量配合は耐衝撃性の面で好ましくなく、より少量で優れた電気伝導度を得る観点から、平均粒径は500nm以下であることが好ましく、5~100nmであることがより好ましく、10~70nmであることがさらに好ましく、また表面積(BET法)は10m/g以上であることが好ましく、300m/g以上であることがより好ましく、500~1500m/gであることがさらに好ましく、更にDBP(ジブチルフタレート)吸油量は50ml/100g以上であることが好ましく、100ml/100gであることがより好ましく、300ml/100g以上であることがさらに好ましい。また、カーボンブラックの灰分は0.5質量%以下であることが好ましく、0.3質量%以下であることがさらに好ましい。ここでいうDBP吸油量は、ASTM D-2414に定められた方法で測定した値である。また、カーボンブラックは、揮発分含量が1.0質量%未満であることがより好ましい。 Carbon black is produced in various carbon powders having different characteristics such as particle diameter, surface area, DBP oil absorption, and ash content. Although there is no restriction | limiting in the characteristic of this carbon black, What has a favorable chain structure and a high aggregation density is preferable. A large amount of carbon black is not preferable in terms of impact resistance, and from the viewpoint of obtaining excellent electrical conductivity with a smaller amount, the average particle size is preferably 500 nm or less, more preferably 5 to 100 nm, More preferably, it is 10 to 70 nm, and the surface area (BET method) is preferably 10 m 2 / g or more, more preferably 300 m 2 / g or more, and 500 to 1500 m 2 / g. Further, the DBP (dibutyl phthalate) oil absorption is preferably 50 ml / 100 g or more, more preferably 100 ml / 100 g, and further preferably 300 ml / 100 g or more. The ash content of carbon black is preferably 0.5% by mass or less, and more preferably 0.3% by mass or less. The DBP oil absorption referred to here is a value measured by a method defined in ASTM D-2414. Further, the carbon black preferably has a volatile content of less than 1.0% by mass.
 更に詳しくは、またカーボンブラックは、その平均粒径、比表面積、DBP吸油量、灰分などの特性の異なる種々のカーボン粉末が製造されている。
 そのカーボンブラックの特性に特に制限は無いが、良好な鎖状構造を有し、凝集密度の大きいものが好ましい。
 カーボンブラックの大きさは、耐衝撃性を安定に確保しつつ、より少量で優れた電気伝導度を得る観点から、
 平均粒径が、
 500nm以下であることが好ましく、
 5~100nmであることがより好ましく、
 10~70nmであることがさらに好ましく、
 比表面積(BET法)が、
 10~1500m/g以上であることが好ましく、
 300~1500m/g以上であることがより好ましく、
 500~1500m/gであることがさらに好ましく、
 DBP(ジブチルフタレ-ト)吸油量が、
 50~500ml/100g以上であることが好ましく、
 100~500ml/100gであることがより好ましく、
 300~500ml/100g以上であることがさらに好ましい。
 平均粒径は、電子顕微鏡法により、任意の100粒を選び、それらの粒径の算術平均値とした。
 DBP吸油量は、ASTM-D2414に定められた方法で測定する。
More specifically, as for carbon black, various carbon powders having different characteristics such as average particle diameter, specific surface area, DBP oil absorption, and ash content are produced.
There is no particular limitation on the characteristics of the carbon black, but those having a good chain structure and a high aggregation density are preferred.
From the viewpoint of obtaining excellent electrical conductivity with a smaller amount, while ensuring the impact resistance stably, the size of the carbon black,
Average particle size is
Preferably it is 500 nm or less,
More preferably, it is 5 to 100 nm,
More preferably, it is 10 to 70 nm,
Specific surface area (BET method)
It is preferably 10-1500 m 2 / g or more,
More preferably, it is 300-1500 m 2 / g or more,
More preferably, it is 500-1500 m 2 / g,
DBP (dibutyl phthalate) oil absorption is
It is preferably 50 to 500 ml / 100 g or more,
More preferably, it is 100 to 500 ml / 100 g,
More preferably, it is 300 to 500 ml / 100 g or more.
As the average particle size, 100 arbitrary particles were selected by electron microscopy, and the arithmetic average value of these particle sizes was used.
The DBP oil absorption is measured by the method defined in ASTM-D2414.
 カーボンブラックの配合割合は、ポリアミド樹脂全体100質量部に対して、2~50質量部が好ましい。カーボンブラックの配合割合が2質量部未満になると十分な導電性が得られないため好ましくなく、配合割合が50質量部を超えると、溶融粘性が高く流動性が低下し成型加工性が著しく損なわれるため好ましくない。2~15質量部が好ましい。また、カーボンブラックは、ポリアミド樹脂組成物全体に対して、2~40質量%が好ましく、2~30質量%がより好ましく、2~15質量%がさらに好ましく、3~15質量%が特に好ましい。 The blending ratio of carbon black is preferably 2 to 50 parts by mass with respect to 100 parts by mass of the entire polyamide resin. When the blending ratio of the carbon black is less than 2 parts by mass, it is not preferable because sufficient conductivity cannot be obtained. When the blending ratio exceeds 50 parts by weight, the melt viscosity is high, the fluidity is lowered, and the molding processability is significantly impaired. Therefore, it is not preferable. 2 to 15 parts by mass is preferred. Carbon black is preferably 2 to 40% by mass, more preferably 2 to 30% by mass, still more preferably 2 to 15% by mass, and particularly preferably 3 to 15% by mass with respect to the entire polyamide resin composition.
 炭素繊維としては、ピッチ系、PAN系などの炭素繊維が制限なく用いられるが、物性・導電性などの性能からPAN系の炭素繊維のほうが好ましい。 As the carbon fiber, pitch-based or PAN-based carbon fibers are used without limitation, but PAN-based carbon fibers are more preferable in view of properties such as physical properties and conductivity.
 炭素繊維長は、用途により短繊維のもののほか、1000mmに及ぶ長繊維でもよいが、混練前の繊維長が0.1~12mmのものが好ましく、1~8mmのものが特に好ましい。 The carbon fiber length may be 1000 mm long fiber as well as short fiber depending on the application, but the fiber length before kneading is preferably 0.1 to 12 mm, particularly preferably 1 to 8 mm.
 また、炭素繊維の繊維径は、5~15μmのものが好ましいが、微細炭素繊維も用いることができる。 The fiber diameter of the carbon fiber is preferably 5 to 15 μm, but fine carbon fiber can also be used.
 炭素繊維の配合割合は、ポリアミド樹脂全体100質量部に対して、2~40質量部が好ましい。配合割合が40質量部を超えると、剛性が高く耐衝撃性が劣るとともに、成形品表面の平滑性が悪く摺動性が低下するおそれがある。炭素繊維の配合割合は、3質量部以上が好ましく、5質量部以上がより好ましく、7質量部以上がさらに好ましい。配合割合が少ないと、導電性が低下し静電気を帯び易くなり、ホコリや粉塵が付着し精密製品に不具合を生じる恐れがある。
 炭素繊維の配合割合は、樹脂組成物全体に対して、2~40質量%が好ましく、2~35質量%がより好ましく、2~15質量%がさらに好ましく、2~10質量%が特に好ましい。
The blending ratio of the carbon fibers is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the entire polyamide resin. When the blending ratio exceeds 40 parts by mass, the rigidity is high and the impact resistance is inferior, the smoothness of the surface of the molded product is poor, and the slidability may be lowered. The blending ratio of the carbon fiber is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and further preferably 7 parts by mass or more. If the blending ratio is small, the electrical conductivity is lowered and it is easy to be charged with static electricity.
The blending ratio of the carbon fiber is preferably 2 to 40% by mass, more preferably 2 to 35% by mass, still more preferably 2 to 15% by mass, and particularly preferably 2 to 10% by mass with respect to the entire resin composition.
 これら、導電性付与剤は、チタネート系、アルミ系、シラン系などの表面処理剤で表面処理を施されていても良い。
 また溶融混練作業性を向上させるために造粒されたものを用いることも可能である。
These conductivity-imparting agents may be surface-treated with a surface treatment agent such as titanate, aluminum, or silane.
It is also possible to use a granulated product for improving melt kneading workability.
 本発明のポリアミド樹脂組成物に求められる導電性は、用途に応じて異なってよく、特に限定されない。ポリアミド樹脂の導電率は、1015Ωcm程度である。導電性付与剤を配合することで、たとえば、1012~10Ωcm程度あるいはそれ以下にすることができるが、用途に応じて、ポリアミド樹脂製品に求められる物性と帯電防止の目的のバランスから決定すればよい。一般的には10~10Ωcm程度の導電性は1つの好ましい範囲であると考えられる。 The conductivity required for the polyamide resin composition of the present invention may vary depending on the application, and is not particularly limited. The conductivity of the polyamide resin is about 10 15 Ωcm. By adding a conductivity-imparting agent, it can be reduced to, for example, about 10 12 to 10 1 Ωcm or less. do it. In general, a conductivity of about 10 3 to 10 6 Ωcm is considered to be one preferable range.
〔成分A及びB6を含むポリアミド樹脂組成物〕
 成形体の具体例として、導電性ケーブルハウジングが挙げられる。以下、これについて説明する。本発明のケーブルハウジング用のポリアミド樹脂組成物は、ポリアミド樹脂(成分A)、導電性付与剤(成分B6)、及び衝撃改良材(成分B3)を含有する。このポリアミド組成物は、前記したその他の成分を含むことができる。
[Polyamide resin composition containing components A and B6]
A specific example of the molded body is a conductive cable housing. This will be described below. The polyamide resin composition for a cable housing of the present invention contains a polyamide resin (component A), a conductivity imparting agent (component B6), and an impact modifier (component B3). This polyamide composition can contain the above-mentioned other components.
 ケーブルハウジング用のポリアミド樹脂組成物は、ポリアミド樹脂(成分A)65~75質量%、導電性付与剤(成分B6)として炭素繊維3~15質量%及びカーボンブラック2~10質量%、並びに衝撃改良材(成分B3)10~20質量%から実質的になるのが特に好ましい。 Polyamide resin composition for cable housing is composed of 65 to 75% by mass of polyamide resin (component A), 3 to 15% by mass of carbon fiber and 2 to 10% by mass of carbon black as conductivity imparting agent (component B6), and impact improvement. It is particularly preferable that the material (component B3) consists essentially of 10 to 20% by mass.
 ケーブルハウジング製造用に用いられるポリアミド樹脂組成物の製造方法は特定の方法に限定されないが、具体的かつ効率的な例として原料の混合物を単軸あるいは2軸の押出機、バンバリーミキサー、ニーダー、ミキシングロ-ルなど通常公知の溶融混合機に供給して混練する方法などを例として挙げることができる。また、原料の混合順序にも特に制限はなく、全ての原材料を配合後上記の方法により溶融混練する方法、一部の原材料を配合後上記の方法により溶融混練しさらに残りの原材料を配合し溶融混練する方法、あるいは一部の原材料を配合後単軸あるいは二軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法など、いずれの方法を用いてもよい。 The manufacturing method of the polyamide resin composition used for manufacturing the cable housing is not limited to a specific method, but as a specific and efficient example, a mixture of raw materials is used as a single or twin screw extruder, Banbury mixer, kneader, and mixing. An example is a method of supplying to a generally known melt mixer such as a roll and kneading. In addition, there is no particular limitation on the mixing order of the raw materials, a method in which all the raw materials are blended and then melt-kneaded by the above method, a part of the raw materials are blended and then melt-kneaded by the above method, and the remaining raw materials are blended and melted Any method may be used, such as a method of kneading or a method of mixing a part of raw materials and mixing the remaining raw materials using a side feeder during melt-kneading with a single or twin screw extruder.
 ポリアミド樹脂組成物からケーブルハウジングを成形する方法については特に制限はなく、射出成形機を用いて、ポリアミド樹脂組成物を射出成形するか、プレス成形機を用いてプレス成形することができる。 The method for molding the cable housing from the polyamide resin composition is not particularly limited, and the polyamide resin composition can be injection molded using an injection molding machine or press molded using a press molding machine.
 本発明のケーブルハウジングは、ポリアミド樹脂に、炭素繊維及び/又はカーボンブラックなどの導電性付与剤、酸変性エチレン共重合体などの衝撃改良材を配合してなるポリアミド樹脂組成物を用いることにより、摺動性、機械的強度、導電性に優れるとともに、低吸水性、成形加工性、耐薬品性等に優れる。 The cable housing of the present invention uses a polyamide resin composition obtained by blending a polyamide resin with a conductivity imparting agent such as carbon fiber and / or carbon black, and an impact modifier such as an acid-modified ethylene copolymer. In addition to excellent slidability, mechanical strength, and electrical conductivity, it is also excellent in low water absorption, molding processability, chemical resistance, and the like.
〔その他の成分〕
 本発明のポリアミド樹脂組成物では、その他の成分として以下を含むことが好ましい。
(1)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
[Other ingredients]
The polyamide resin composition of the present invention preferably contains the following as other components.
(1) Polymers other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、好ましくは0.1~100質量部、より好ましくは0.1~50質量部、更に好ましくは0.5~30質量部である。 The polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of Component A. Part, more preferably 0.5 to 30 parts by weight.
(2)本発明の樹脂組成物は、本発明の効果を損なわない範囲において、その他の添加剤を含むことができる。添加剤として、例えば、顔料、染料、着色剤、酸化防止剤、耐候剤、紫外線吸収剤、光安定化剤、滑剤、結晶核剤、結晶化促進剤、耐熱剤、帯電防止剤、可塑剤、銅化合物等の安定剤、帯電防止剤、難燃剤、ガラス繊維、潤滑剤、フィラー、補強繊維、補強粒子、発泡剤等を挙げることができる。 (2) The resin composition of this invention can contain another additive in the range which does not impair the effect of this invention. Examples of additives include pigments, dyes, colorants, antioxidants, weathering agents, UV absorbers, light stabilizers, lubricants, crystal nucleating agents, crystallization accelerators, heat resistance agents, antistatic agents, plasticizers, Examples thereof include stabilizers such as copper compounds, antistatic agents, flame retardants, glass fibers, lubricants, fillers, reinforcing fibers, reinforcing particles, and foaming agents.
〔成分Aと成分B1~B6を含むポリアミド樹脂組成物の成形体〕
(1)ポリアミド樹脂組成物から成形体への成形加工
 本発明は、上述した本発明のポリアミド樹脂組成物から成形された成形体も提供する。
 本発明のポリアミド樹脂組成物から成形体への成形方法としては、射出、押出、中空、プレス、ロール、発泡、真空・圧空、延伸などポリアミドに適用できる公知の成形加工法は全て使用可能であり、これらの成形法によってフィルム、シート、成形品、繊維などの成形物に加工することができる。
[Molded body of polyamide resin composition containing component A and components B1 to B6]
(1) Molding process from polyamide resin composition to molded body The present invention also provides a molded body molded from the above-described polyamide resin composition of the present invention.
As the molding method from the polyamide resin composition of the present invention to a molded body, all known molding methods applicable to polyamide such as injection, extrusion, hollow, press, roll, foaming, vacuum / pressure air, and stretching can be used. These can be processed into molded products such as films, sheets, molded products, and fibers.
 具体的には、例えば、ポリアミド樹脂、離型剤及び必要に応じて用いる各種添加剤の所定量を、V型ブレンダー、タンブラーなどの低速回転混合機やヘンシェルミキサーなどの高速回転混合機を用いてあらかじめ混合した後、射出成形機や押出成形機を用いて、成形物を直接成形する方法を適用できる。 Specifically, for example, predetermined amounts of polyamide resin, mold release agent and various additives used as necessary are reduced using a low-speed rotary mixer such as a V-type blender or tumbler or a high-speed rotary mixer such as a Henschel mixer. After mixing in advance, a method of directly molding a molded product using an injection molding machine or an extrusion molding machine can be applied.
(2)成形物の用途
 本発明によって得られる成形体は、従来ポリアミド成形体が用いられてきた各種押出成形品、各種射出成形品、シート、フィルム、パイプ、チューブ、モノフィラメント、繊維、容器などの成形物として、自動車部材、コンピューター及び関連機器、光学機器部材、電気・電子機器、情報・通信機器、精密機器、土木・建築用品、医療用品、家庭用品など広範な用途に好適に使用できる。
(2) Use of molded product The molded product obtained by the present invention includes various extruded products, various injection molded products, sheets, films, pipes, tubes, monofilaments, fibers, containers, etc. for which polyamide molded products have been conventionally used. The molded article can be suitably used for a wide range of applications such as automobile parts, computers and related equipment, optical equipment parts, electrical / electronic equipment, information / communication equipment, precision equipment, civil engineering / building equipment, medical supplies, and household goods.
〔金属被覆用ポリアミド樹脂組成物〕
(成分Aの含有量)
 本発明の金属被覆用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、被覆加工時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、金属被覆材又は金属被覆物品の被覆対象との接着力と耐薬品性を両立する確保する観点から、
 樹脂組成物中の成分Aの含有量が、好ましくは50~100質量%、より好ましくは55~100質量%、更に好ましくは60~100質量%、更に好ましくは70~100質量%、更に好ましくは80~100質量%、更に好ましくは80~95質量%である。
[Polyamide resin composition for metal coating]
(Content of component A)
The polyamide resin composition for metal coating of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and melt moldability (hereinafter referred to as thermal characteristics) for improving productivity during coating processing. From the viewpoint of ensuring both the adhesive strength and chemical resistance of the metal coating material or metal coated article to be coated,
The content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, still more preferably 60 to 100% by mass, still more preferably 70 to 100% by mass, and still more preferably. 80 to 100% by mass, more preferably 80 to 95% by mass.
(その他の成分)
 本発明の金属被覆材を金属基材上に例えばプライマーを介さずに形成する場合、金属被覆材は接着性改良を目的とする成分を更に含むことが好ましい。
 接着性改良を目的とする成分としては、例えば、熱可塑性エラストマー(成分C1)及び/又はシランカップリング剤(成分C2)が好ましく挙げられる。
 成分C1としては、エポキシ化スチレン系エラストマー(成分C1’)及び/又は変性ポリオレフィンが好ましい。
(Other ingredients)
When the metal coating material of the present invention is formed on a metal substrate without using a primer, for example, it is preferable that the metal coating material further includes a component for improving adhesion.
As a component aiming at adhesiveness improvement, a thermoplastic elastomer (component C1) and / or a silane coupling agent (component C2) are mentioned preferably, for example.
Component C1 is preferably an epoxidized styrene elastomer (component C1 ′) and / or a modified polyolefin.
 成分C1は、本発明のポリアミド樹脂組成物の金属基材に対する接着性、機械的特性及び表面特性を安定に確保する観点から、ポリアミド樹脂100質量部に対して
 好ましくは3~30質量部、より好ましくは3~28質量部、更に好ましくは3~25質量部である。
Component C1 is preferably 3 to 30 parts by mass with respect to 100 parts by mass of the polyamide resin, from the viewpoint of stably securing the adhesion, mechanical characteristics and surface characteristics of the polyamide resin composition of the present invention to the metal substrate. The amount is preferably 3 to 28 parts by mass, more preferably 3 to 25 parts by mass.
 成分C2の含有量は、本発明のポリアミド樹脂組成物の金属基材に対する接着性、流動性及び表面特性を安定に確保する観点から、成分A100質量部に対し、
 好ましくは0.01~0.5質量部、より好ましくは0.1~0.3質量部である。
The content of component C2 is based on 100 parts by mass of component A from the viewpoint of stably securing the adhesion, fluidity and surface characteristics of the polyamide resin composition of the present invention to the metal substrate.
The amount is preferably 0.01 to 0.5 parts by mass, more preferably 0.1 to 0.3 parts by mass.
 本発明のポリアミド樹脂組成物の金属基材に対する接着性をさらに安定に確保する観点から、成分C1及びCは併用することが好ましい。 From the viewpoint of ensuring more stable adhesion of the polyamide resin composition of the present invention to a metal substrate, it is preferable to use components C1 and C in combination.
(1)エポキシ化スチレン系エラストマー(成分C1’)
 エポキシ化スチレン系エラストマーである成分C1’としては、例えば前述の特開2004-346255号公報に記載されるような、
 スチレン系化合物重合体ブロックと共役ジエン系化合物重合体ブロックとからなるブロック共重合体の、共役ジエン系化合物に由来する二重結合をエポキシ化したエポキシ化スチレン系熱可塑性エラストマーが好ましい。
(1) Epoxidized styrene-based elastomer (component C1 ′)
As the component C1 ′ which is an epoxidized styrene-based elastomer, for example, as described in JP-A-2004-346255 described above,
An epoxidized styrene thermoplastic elastomer obtained by epoxidizing a double bond derived from a conjugated diene compound in a block copolymer comprising a styrene compound polymer block and a conjugated diene compound polymer block is preferred.
 ここで、スチレン系化合物重合体ブロック、共役ジエン系化合物及び共役ジエン系化合物重合体ブロックは以下を意味する。
 スチレン系化合物重合体ブロックとは、スチレン系化合物由来の基を主体とする重合体ブロックであり、重合体ブロック中、スチレン系化合物由来の構成単位は、被覆対象との接着力、機械的物性を安定に確保する観点から、
 好ましくは、50~80質量%、より好ましくは、50~70質量%、更に好ましくは、50~60質量%である。
 共役ジエン系化合物とは、共役ジエン化合物又はその部分水添物である。
 共役ジエン系化合物重合体ブロックとは、共役ジエン系化合物由来の基を主体とする重合体ブロックであり、重合体ブロック中、共役ジエン系化合物由来の構成単位は、柔軟性の観点から、
 好ましくは、20~50質量%、より好ましくは、30~50質量%、更に好ましくは、40~50質量%である。
Here, the styrene compound polymer block, the conjugated diene compound, and the conjugated diene compound polymer block mean the following.
A styrene compound polymer block is a polymer block mainly composed of a group derived from a styrene compound. In the polymer block, a structural unit derived from a styrene compound has an adhesive force with a coating object and mechanical properties. From the viewpoint of ensuring stability,
The content is preferably 50 to 80% by mass, more preferably 50 to 70% by mass, and still more preferably 50 to 60% by mass.
The conjugated diene compound is a conjugated diene compound or a partially hydrogenated product thereof.
The conjugated diene compound polymer block is a polymer block mainly composed of a group derived from a conjugated diene compound, and in the polymer block, the structural unit derived from a conjugated diene compound is from the viewpoint of flexibility,
The amount is preferably 20 to 50% by mass, more preferably 30 to 50% by mass, and still more preferably 40 to 50% by mass.
 成分C1’に使用されるスチレン系化合物としては、被覆対象との接着力、機械的物性を安定に確保する観点から、スチレン、α-メチルスチレン、ビニルトルエン、p-第3級ブチルスチレン、ジビニルベンゼン、p-メチルスチレン、1,1-ジフェニルスチレン、ビニルナフタレン及びビニルアントラセンからなる群から選択される少なくとも1種の化合物が好ましく、スチレンがより好ましい。 Styrenic compounds used for component C1 ′ include styrene, α-methylstyrene, vinyltoluene, p-tertiary butylstyrene, divinyl from the viewpoint of stably securing adhesive strength with the object to be coated and mechanical properties. At least one compound selected from the group consisting of benzene, p-methylstyrene, 1,1-diphenylstyrene, vinylnaphthalene and vinylanthracene is preferred, and styrene is more preferred.
 成分C1’に使用される共役ジエン化合物としては、柔軟性の観点から、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、ピペリレン、3-ブチル-1,3-オクタジエン及びフェニル-1,3-ブタジエンからなる群から選択される少なくとも1種の化合物が好ましく、ブタジエン及び/又はイソプレンがより好ましい。 Conjugated diene compounds used for component C1 ′ include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3 from the viewpoint of flexibility. -At least one compound selected from the group consisting of octadiene and phenyl-1,3-butadiene is preferred, and butadiene and / or isoprene are more preferred.
 成分C1’の重量平均分子量は、被覆対象との接着力、機械的物性を安定に確保する観点から、好ましくは、5,000~600,000であり、より好ましくは10,000~500,000であり、
 分子量分布[重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)]は、好ましくは1~10、より好ましくは1~8、更に好ましくは1~5である。
 Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により、以下の条件で測定できる。
・装置:Waters製ゲルパーミエーションクロマトグラフ(品番:GPC/V2000)
・カラム:Shodex AT-G+AT-806×2
・溶離液:オルトジクロルベンゼン
・溶離液流量:1.0mL/分
・カラム温度:145℃
・検出方法:示差屈折計(RI)
・検量線:標準ポリスチレン物質を用いて作成。
 Mnは、前述の条件で測定される。
The weight average molecular weight of component C1 ′ is preferably from 5,000 to 600,000, more preferably from 10,000 to 500,000, from the viewpoint of stably securing the adhesive force and mechanical properties with the coating target. And
The molecular weight distribution [ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw / Mn)] is preferably 1 to 10, more preferably 1 to 8, and further preferably 1 to 5.
Mw can be measured by gel permeation chromatography (GPC) under the following conditions.
-Apparatus: Waters gel permeation chromatograph (product number: GPC / V2000)
Column: Shodex AT-G + AT-806 × 2
-Eluent: Orthodichlorobenzene-Eluent flow rate: 1.0 mL / min-Column temperature: 145 ° C
・ Detection method: Differential refractometer (RI)
-Calibration curve: Prepared using standard polystyrene material.
Mn is measured under the aforementioned conditions.
 成分C1’の分子構造は、直鎖状であることが好ましい。また上記スチレン系化合物(P)と上記共役系ジエン化合物(Q)とが、例えばP-Q-P、Q-P-Q-P、P-Q-P-Q-Pなどの構造をとるスチレン系化合物-共役ジエン系化合物ブロック共重合体が好ましい。また上記ブロック共重合体は、分子末端に多官能のカップリング剤残基を有していてもよい。 The molecular structure of component C1 'is preferably linear. In addition, the styrene compound (P) and the conjugated diene compound (Q) have a structure such as PQP, QPQP, PQPPP, or the like. A compound-conjugated diene compound block copolymer is preferred. The block copolymer may have a polyfunctional coupling agent residue at the molecular end.
 成分C1’の製造方法は、上述のような構造を有するものが得られればどのような製造方法でもよい。
 例えば、特公昭40-23798号、特公昭43-17979号、特公昭46-32415号、特公昭56-28925号公報に記載された方法により、
 リチウム触媒等を用いて不活性溶媒中でスチレン系化合物-共役ジエン系化合物ブロック共重合体を製造することができる。
 更に、特公昭42-8704号、特公昭43-6636号、又は特開昭59-133203号公報に記載された方法により、
 不活性溶媒中で水素添加触媒の存在下に水素添加して、成分C1’の原料である部分的に水素添加したブロック共重合体を製造することができる。
 なお、水添の程度は、水添前及び水添後のブロック共重合体をNMR分析することによって知ることができる。
 水添率は、未水添・未エポキシ化の原料ブロック共重合体の共役ジエン化合物に由来する二重結合のうち、水添されたものの百分率として定義する。
 成分C1’の耐熱性、凝集性を安定に確保する観点から、水添率0~80%の範囲であることが好ましく、10~70%の範囲であることがより好ましい。
The manufacturing method of component C1 ′ may be any manufacturing method as long as a material having the structure as described above is obtained.
For example, according to the methods described in Japanese Patent Publication No. 40-23798, Japanese Patent Publication No. 43-171979, Japanese Patent Publication No. 46-32415, Japanese Patent Publication No. 56-28925,
A styrene compound-conjugated diene compound block copolymer can be produced in an inert solvent using a lithium catalyst or the like.
Further, according to the method described in JP-B-42-8704, JP-B-43-6636, or JP-A-59-133203,
Hydrogenation in the presence of a hydrogenation catalyst in an inert solvent can produce a partially hydrogenated block copolymer that is a raw material for component C1 ′.
The degree of hydrogenation can be determined by NMR analysis of the block copolymer before and after hydrogenation.
The hydrogenation rate is defined as the percentage of hydrogenated double bonds derived from the conjugated diene compound of the unhydrogenated / epoxidized raw material block copolymer.
From the viewpoint of stably securing the heat resistance and cohesiveness of component C1 ′, the hydrogenation rate is preferably in the range of 0 to 80%, more preferably in the range of 10 to 70%.
 上記ブロック共重合体をエポキシ化することにより、エポキシ化スチレン系熱可塑性エラストマーを得ることができる。
 例えば、上記ブロック共重合体を不活性溶媒中でハイドロパーオキサイド類、過酸類等のエポキシ化剤と反応させることにより得ることができる。
Epoxidized styrene thermoplastic elastomer can be obtained by epoxidizing the block copolymer.
For example, it can be obtained by reacting the block copolymer with an epoxidizing agent such as hydroperoxides and peracids in an inert solvent.
 不活性溶媒は、原料粘度の低下、エポキシ化剤の希釈による安定化等の目的で使用し、例えばヘキサン、シクロヘキサン、トルエン、ベンゼン、酢酸エチル、四塩化炭素、クロロホルム等を用いることができる。 The inert solvent is used for the purpose of reducing the viscosity of the raw material, stabilizing by dilution of the epoxidizing agent, and for example, hexane, cyclohexane, toluene, benzene, ethyl acetate, carbon tetrachloride, chloroform and the like can be used.
 エポキシ化剤の内、ハイドロパーオキサイド類として、過酸化水素、ターシャリブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等が例示できる。また、「過酸類」として、過ギ酸、過酢酸、過安息香酸、トリフルオロ過酢酸等が例示できる。中でも、工業的に大量に製造され、安価に入手でき、安定度も高い点で過酢酸が好ましい。エポキシ化剤の使用量には厳密な制限がなく、使用する個々のエポキシ化剤、所望されるエポキシ化度、使用する個々のブロック共重合体の性状の違いによって変更することができる。 Examples of hydroperoxides among epoxidizing agents include hydrogen peroxide, tertiary butyl hydroperoxide, cumene hydroperoxide, and the like. Examples of “peracids” include performic acid, peracetic acid, perbenzoic acid, trifluoroperacetic acid and the like. Among them, peracetic acid is preferred because it is produced industrially in large quantities, can be obtained at low cost, and has high stability. The amount of the epoxidizing agent is not strictly limited, and can be changed depending on the individual epoxidizing agent used, the desired degree of epoxidation, and the difference in the properties of the individual block copolymers used.
 エポキシ化の際には必要に応じて触媒を用いることができる。例えば過酸類の場合、炭酸ソーダ等のアルカリや硫酸等の酸を触媒として用いることができる。一方、ハイドロパーオキサイド類の場合、タングステン酸と苛性ソーダの混合物を過酸化水素と、あるいは有機酸を過酸化水素と、あるいはモリブデンヘキサカルボニルをターシャリブチルハイドロパーオキサイドとそれぞれ併用して触媒効果を得ることができる。 In the case of epoxidation, a catalyst can be used as necessary. For example, in the case of peracids, an alkali such as sodium carbonate or an acid such as sulfuric acid can be used as a catalyst. On the other hand, in the case of hydroperoxides, a catalytic effect is obtained by using a mixture of tungstic acid and caustic soda with hydrogen peroxide, organic acid with hydrogen peroxide, or molybdenum hexacarbonyl with tertiary butyl hydroperoxide. be able to.
 エポキシ化反応の条件には厳密な制限はないが、例えば、過酢酸についていえば0~70℃が好ましい。70℃を越えると過酢酸の分解が起こるからである。反応混合物の特別な操作は必要なく、例えば原料の混合物を2~10時間攪拌すればよい。エポキシ化の反応温度は、常法に従い、用いるエポキシ化剤の反応性によって変更することができる。 The conditions for the epoxidation reaction are not strictly limited, but for example, peracetic acid is preferably 0 to 70 ° C. This is because decomposition of peracetic acid occurs when the temperature exceeds 70 ° C. No special operation of the reaction mixture is required, for example, the raw material mixture may be stirred for 2 to 10 hours. The reaction temperature of epoxidation can be changed according to the reactivity of the epoxidizing agent used in accordance with a conventional method.
 得られたエポキシ化スチレン系熱可塑性エラストマーの単離は、例えば貧溶媒で沈殿させる方法、エポキシ化スチレン系熱可塑性エラストマーを熱水中に攪拌の下で投入し溶媒を蒸留除去する方法、加熱及び/又は減圧操作によって溶媒を直接乾燥させる方法等で行うことができる。また、最終的に溶液形態で利用する場合には、単離せずに用いることもできる。 Isolation of the obtained epoxidized styrenic thermoplastic elastomer includes, for example, a method of precipitating with a poor solvent, a method of adding the epoxidized styrenic thermoplastic elastomer into hot water with stirring and distilling off the solvent, heating and The solvent can be directly dried by a decompression operation or the like. Moreover, when finally utilizing by a solution form, it can also be used without isolating.
 成分C1’のエポキシ化率は、成分C1’のゲル化を抑制し、本発明のポリアミド樹脂組成物の耐熱性を安定に確保する観点から、好ましくは10~40%、より好ましくは15~35%であることが好ましい。
 また、特に熱安定性が要求される場合には、水素添加もエポキシ化もされずに不飽和のまま残存する共役ジエン化合物に由来する二重結合が全体の90%未満であることが好ましく、40%以下であることがより好ましい。
The epoxidation rate of component C1 ′ is preferably 10 to 40%, more preferably 15 to 35, from the viewpoint of suppressing the gelation of component C1 ′ and stably ensuring the heat resistance of the polyamide resin composition of the present invention. % Is preferred.
In addition, particularly when thermal stability is required, it is preferable that the double bond derived from the conjugated diene compound remaining unsaturated without being hydrogenated or epoxidized is less than 90% of the total, More preferably, it is 40% or less.
 エポキシ化スチレン系熱可塑性エラストマーのエポキシ化率は、未水素添加・未エポキシ化の原料ブロック共重合体の共役ジエン化合物に由来する二重結合のうち、エポキシ化されたものの百分率であり、エポキシ当量(N)から、式:
 エポキシ化率
={10000×D+2×H×(100-S)}/{(N-16)×(100-S)}
で示すことができる(Dは共役ジエン化合物の分子量、Hは水添率(%)、Sはスチレン系化合物の含有量(質量%)を示す)。
 エポキシ化スチレン系熱可塑性エラストマーのエポキシ当量(N)は、0.1規定の臭化水素酸で滴定し、式:エポキシ当量(N)=10000×W/(f×V)(Wは、滴定に用いたエポキシ化スチレン系熱可塑性エラストマーの重量(g)、Vは、臭化水素酸の滴定量(ml)、fは、臭化水素酸のファクターを示す)で示すことができる。
The epoxidation rate of the epoxidized styrene thermoplastic elastomer is the percentage of epoxidized double bonds derived from the conjugated diene compound of the raw hydrogenated / non-epoxidized raw material block copolymer, and the epoxy equivalent From (N), the formula:
Epoxidation rate = {10000 × D + 2 × H × (100−S)} / {(N−16) × (100−S)}
(D represents the molecular weight of the conjugated diene compound, H represents the hydrogenation rate (%), and S represents the content (mass%) of the styrene compound).
The epoxy equivalent (N) of the epoxidized styrenic thermoplastic elastomer is titrated with 0.1 N hydrobromic acid, and the formula: epoxy equivalent (N) = 10000 × W / (f × V) (W is titration The weight (g) of the epoxidized styrenic thermoplastic elastomer used in the above, V is a titration amount (ml) of hydrobromic acid, and f is a factor of hydrobromic acid).
(3)成分C2
 シランカップリング剤である成分C2は、無機材料に対して親和性又は反応性を有する加水分解性のシリル基に、有機樹脂に対して親和性又は反応性を有する有機官能性基を化学的に結合させた構造を持つシラン化合物である。
(3) Component C2
Component C2, which is a silane coupling agent, chemically converts an organic functional group having affinity or reactivity with an organic resin to a hydrolyzable silyl group having affinity or reactivity with an inorganic material. It is a silane compound having a bonded structure.
 ケイ素に結合した加水分解性基としては、アルコキシ基、ハロゲン、アセトキシ基が挙げられるが、通常、アルコキシ基、特にメトキシ基、エトキシ基が好ましく用いられる。1個のケイ素原子につく加水分解性基の数は、1~3個の間で選択される。有機官能性基としては、アミノ基、エポキシ基、ビニル基、カルボキシル基、メルカプト基、ハロゲン基、メタクリロキシ基、イソシアネート基等を挙げることができ、好ましくは、アミノ基又はエポキシ基である。 Examples of the hydrolyzable group bonded to silicon include an alkoxy group, a halogen, and an acetoxy group. Usually, an alkoxy group, particularly a methoxy group and an ethoxy group are preferably used. The number of hydrolyzable groups attached to one silicon atom is selected between 1 and 3. Examples of the organic functional group include an amino group, an epoxy group, a vinyl group, a carboxyl group, a mercapto group, a halogen group, a methacryloxy group, and an isocyanate group, and preferably an amino group or an epoxy group.
 成分C2の具体例としては、
 α-アミノエチルトリエトキシラン、α-アミノプロピルトリエトキシシラン、α-アミノブチルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン等のアミノ基含有シラン類;
 γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリソドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン等のビニル基含有シラン類;
 β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-β-(N-カルボキシルメチルアミノエチル)-γ-アミノプロピルトリメトキシシランなどのカルボキシル基含有シラン類;
 γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有シラン類;
 γ-クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;
 γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-アクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリル基含有シラン類;
 γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン等のイソシアネート基含有シラン類等が挙げられる。
Specific examples of component C2 include
α-aminoethyltriethoxysilane, α-aminopropyltriethoxysilane, α-aminobutyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ- Aminopropylmethyldiethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β- (aminoethyl)- γ-aminopropyltriethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N- Vinylbenzyl-γ-amino Amino group-containing silane such as Russia pills triethoxysilane;
γ-Glycidoxypropyltrimethoxysilane, γ-Glycidoxypropylmethyldimethoxysilane, γ-Glysoxypropyltriethoxysilane, γ-Glycidoxypropylmethyldiethoxysilane, β- (3,4 Epoxycyclohexyl) Epoxy group-containing silanes such as ethyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltriethoxysilane; vinyl group-containing silanes such as vinyltrimethoxysilane, vinyltriethoxysilane and vinylmethyldimethoxysilane;
carboxyl group-containing silanes such as β-carboxyethyltriethoxysilane, β-carboxyethylphenylbis (2-methoxyethoxy) silane, N-β- (N-carboxylmethylaminoethyl) -γ-aminopropyltrimethoxysilane;
Mercapto group-containing silanes such as γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane;
halogen-containing silanes such as γ-chloropropyltrimethoxysilane;
(Meth) such as γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane Acrylic group-containing silanes;
Isocyanate group-containing silanes such as γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, and γ-isocyanatopropylmethyldimethoxysilane.
 成分C2の含有量は、本発明のポリアミド樹脂組成物の金属基材に対する接着性、流動性及び表面特性を安定に確保する観点から、成分A100質量部に対し、
 0.01~0.5質量部が好ましく、0.1~0.3質量部がより好ましい。
The content of component C2 is based on 100 parts by mass of component A from the viewpoint of stably securing the adhesion, fluidity and surface characteristics of the polyamide resin composition of the present invention to the metal substrate.
0.01 to 0.5 parts by mass is preferable, and 0.1 to 0.3 parts by mass is more preferable.
 金属被覆用途では、その他の成分として、さらに、以下を含めることができる。 In metal coating applications, the following can be further included as other components.
(4)成分A及びB以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A及びB以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(4) Polymers other than components A and B In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than components A and B, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers outside the polyamide, such as heat Plastic polymers and elastomers can be included.
〔金属被覆材及び金属被覆物品〕
 本発明のポリアミド樹脂組成物は、アルミニウムなどの非鉄金属及び鉄といった幅広い金属基材を被覆でき、被覆されたポリアミド樹脂組成物は被覆材を形成する場合があり、被膜されたポリアミド樹脂組成物と金属基材とは金属被覆物品を形成する。
 金属被覆の用途としては、一般工業用の流体金属配管の防錆コーティング、自動車用の燃料・オイル・ブレーキ液などの鋼管・アルミ配管といった金属管に対する防錆用コーティング、金属ワイヤーのコーティング、水槽タンクなど水回りプレートのコーティングなどが挙げられ、自動車用金属管に対して好ましく適用できる。
[Metal coating materials and metal coated articles]
The polyamide resin composition of the present invention can coat a wide range of metal substrates such as non-ferrous metals such as aluminum and iron, and the coated polyamide resin composition may form a coating material, and the coated polyamide resin composition and A metal substrate forms a metal coated article.
Applications of metal coating include anti-rust coating for fluid metal pipes for general industrial use, anti-corrosion coating for metal pipes such as steel pipes and aluminum pipes for automobile fuel, oil, brake fluid, etc., metal wire coatings, tank tanks For example, it is possible to apply to a metal pipe for automobiles.
 本発明のポリアミド樹脂組成物で金属基材を被覆する方法としては、例えば、
 押出しによる鋼管被覆などのように、既に溶融状態にあるポリアミド樹脂組成物で被着物である金属基材を被覆する方法、
 粉体塗装のように、被着物である金属基材を加熱しておき、その熱により固体状のポリアミド樹脂組成物を溶融させて金属基材を被覆する方法、及び、
 金属基材と固体状態のポリアミド樹脂組成物を接触させたものを共に加熱して被覆する方法などが挙げられる。
 金属基材には本発明のポリアミド樹脂組成物による被覆に先立って金属用の従来公知のプライマーを用いたプライマー処理を施してもよい。
As a method of coating a metal substrate with the polyamide resin composition of the present invention, for example,
A method of coating a metal substrate which is an adherend with a polyamide resin composition already in a molten state, such as a steel pipe coating by extrusion,
As in powder coating, a method of coating a metal substrate by heating a metal substrate that is an adherend, melting the solid polyamide resin composition by the heat, and
For example, a method in which a metal substrate and a polyamide resin composition in a solid state in contact with each other are heated and coated may be used.
Prior to coating with the polyamide resin composition of the present invention, the metal substrate may be subjected to primer treatment using a conventionally known primer for metal.
 なお、金属被覆材の形成時において、本発明のポリアミド樹脂組成物の温度は、本発明のポリアミド樹脂組成物を変質させない温度に維持することが好ましい。 In forming the metal coating material, the temperature of the polyamide resin composition of the present invention is preferably maintained at a temperature that does not denature the polyamide resin composition of the present invention.
〔射出成形用ポリアミド樹脂組成物〕
(1)成分Aの含有量
 本発明の射出成形用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、射出成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、射出成形品の低吸水性、耐薬品性、耐加水分解性及び燃料バリア性及び寸法安定性(特に、反りの抑制)を確保する観点から、
 樹脂組成物中の成分Aの含有量が、好ましくは、50~100質量%、より好ましくは、55~100質量%、更に好ましくは、60~100質量%である。
[Polyamide resin composition for injection molding]
(1) Content of Component A The polyamide resin composition for injection molding of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during injection molding. The viewpoint of ensuring melt moldability (hereinafter also referred to as thermal characteristics) and ensuring low water absorption, chemical resistance, hydrolysis resistance, fuel barrier properties and dimensional stability (especially suppression of warpage) of injection molded products. From
The content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
(2)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(2) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、好ましくは0~50質量部、より好ましくは0~40質量部、更に好ましくは0~30質量部である。 The polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
(3)層状珪酸塩(成分B5)
 本発明の樹脂組成物は、成分Aのみで、反りが少なく寸法安定性に優れる射出成形体を作製することができるが、さらに高精度の寸法安定性が求められる用途においては、本発明の樹脂組成物に上述の層状珪酸塩(成分B5)をさらに含ませることができる。
 また、層状珪酸塩を添加することにより、本発明の樹脂組成物から作製した射出成形体の剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させることができる。
(3) Layered silicate (component B5)
The resin composition of the present invention can produce an injection-molded body with little warpage and excellent dimensional stability with only component A. However, in applications where high-precision dimensional stability is required, the resin of the present invention The composition may further include the above-described layered silicate (component B5).
Further, by adding a layered silicate, it is possible to improve the rigidity, weather resistance and / or heat resistance, and barrier property against liquid or vapor of an injection-molded body produced from the resin composition of the present invention.
 上記層状珪酸塩の量は、当該層状珪酸塩の効果が発揮される量であれば、特に制限されるものではないが、射出成形体の剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させる観点と、樹脂組成物の成形加工性と耐衝撃性を確保する観点とから、成分A100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.05~8質量部、更に好ましくは0.05~5質量部である。 The amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited, but the rigidity, weather resistance and / or heat resistance of the injection-molded product, and liquid or vapor From the viewpoint of improving the barrier property against the above and from the viewpoint of securing the molding processability and impact resistance of the resin composition, it is preferably 0.05 to 10 parts by mass, more preferably 0. 05 to 8 parts by mass, more preferably 0.05 to 5 parts by mass.
(4)射出成形体
 本発明の射出成形体(以下、射出成形体ともいう)は、樹脂組成物を、射出成形だけでなく、例えば、押出成形、ブロー成形、圧縮成形、射出成形等と組合せて成形することにより作製することができる。
 射出成形体としては、特に制限はないが、反りが少なく寸法安定性に優れることが求められる成形体、例えば、複雑な形状の部品、例えば、二輪及び四輪自動車のオイルタンク、吸気系部品、及びその集積部品、電装品ケース、その他容器類等の製造に適した成形体が挙げられる。
 射出成形体には、溶着接合用部材も含まれる。
(4) Injection-molded body The injection-molded body of the present invention (hereinafter also referred to as injection-molded body) is a combination of not only injection molding but also, for example, extrusion molding, blow molding, compression molding, injection molding and the like. Can be produced by molding.
The injection molded product is not particularly limited, but a molded product that is required to have low warpage and excellent dimensional stability, for example, a component having a complicated shape, such as an oil tank for two-wheeled and four-wheeled vehicles, an intake system component, And molded articles suitable for the manufacture of integrated parts, electrical component cases, and other containers.
The injection-molded body also includes a welding joint member.
 さらに具体的には、射出成形体としては、例えば、高度の強度、耐久性が要求される自動車のインテークマニホールド等の吸気系部品、シリンダーヘッドカバー、インテークマニホールド及びエアクリーナー等を統合した吸気系モジュール部品、ウォーターインレット、ウォーターアウトレット等の冷却系部品、フューエルインジェクション、フューエルデリバリーパイプ等の燃料系部品、オイルタンク等の容器類、スイッチ等の電装品ケース類が挙げられる。 More specifically, as an injection-molded body, for example, an intake system module component that integrates an intake system component such as an intake manifold of an automobile that requires high strength and durability, a cylinder head cover, an intake manifold, an air cleaner, and the like. Cooling system parts such as water inlets and water outlets, fuel system parts such as fuel injection and fuel delivery pipes, containers such as oil tanks, and electrical equipment cases such as switches.
〔押出成形用ポリアミド樹脂組成物〕
(1)成分Aの含有量
 本発明の押出成形用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、押出成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、押出成形品の低吸水性、耐薬品性、耐加水分解性、並びに、機械的強度及び伸度及び/又はバリア性を確保する観点から、
 樹脂組成物中の成分Aの含有量が、好ましくは50~100質量%、より好ましくは70~100質量%、更に好ましくは90~100質量%、更に好ましくは92~100質量%、更に好ましくは95~100質量%である。
[Polyamide resin composition for extrusion molding]
(1) Content of Component A The polyamide resin composition for extrusion molding of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during extrusion molding. From the viewpoint of ensuring melt moldability (hereinafter also referred to as thermal characteristics), and ensuring low water absorption, chemical resistance, hydrolysis resistance, and mechanical strength and elongation and / or barrier properties of the extruded product. ,
The content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 70 to 100% by mass, still more preferably 90 to 100% by mass, still more preferably 92 to 100% by mass, and still more preferably. 95 to 100% by mass.
(2)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(2) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、好ましくは0.1~100質量部、より好ましくは0.1~50質量部、更に好ましくは0.5~30質量部である。 The polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of Component A. Part, more preferably 0.5 to 30 parts by weight.
(3)層状珪酸塩(成分B5)
 本発明の樹脂組成物は、成分Aのみで、機械的強度及び伸度及び/又はバリア性に優れる押出成形体を作製することができるが、さらに安定した機械的強度及び伸度及び/又はバリア性が求められる用途においては、本発明の樹脂組成物に上述の層状珪酸塩(成分B5)をさらに含ませることが好ましい。
(3) Layered silicate (component B5)
The resin composition of the present invention can produce an extrusion-molded body excellent in mechanical strength and elongation and / or barrier properties only with Component A, but more stable mechanical strength and elongation and / or barrier. In applications where properties are required, it is preferable to further include the above-mentioned layered silicate (component B5) in the resin composition of the present invention.
 層状珪酸塩は、補強剤として、本発明のフィラメントの伸度を損なうことなく、良好な剛性、高弾性、高引き抜き力などにより得られる優れた機械的強度、及び優れた風合を付与することができる。 The layered silicate as a reinforcing agent imparts excellent mechanical strength obtained by good rigidity, high elasticity, high pulling force, etc., and excellent texture without impairing the elongation of the filament of the present invention. Can do.
 層状珪酸塩は、バリア性改良成分として、本発明のポリアミドフィルムの機械的強度、耐熱性、液体(特にアルコール、水など)及び気体(特に酸素やガソリンなど)に対するバリア性を向上させることができる。 The layered silicate can improve the mechanical strength, heat resistance, barrier properties against liquids (especially alcohol, water, etc.) and gases (especially oxygen, gasoline, etc.) as a barrier property improving component. .
 上記層状珪酸塩の量は、機械的強度や風合の向上効果が得られる量であれば特に制限されるものではないが、本発明で用いる成分A100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.05~8質量部、特に好ましくは0.05~5質量部である。層状珪酸塩の割合が低くなると、上記向上効果が小さくなる傾向があり、上記割合が高くなると、樹脂組成物の流動性や得られる成形物の物性、特に衝撃強度が低くなる傾向がある。 The amount of the layered silicate is not particularly limited as long as the effect of improving mechanical strength and texture is obtained, but is preferably 0.05 with respect to 100 parts by mass of Component A used in the present invention. It is ˜10 parts by mass, more preferably 0.05 to 8 parts by mass, and particularly preferably 0.05 to 5 parts by mass. When the ratio of the layered silicate decreases, the improvement effect tends to decrease, and when the ratio increases, the fluidity of the resin composition and the physical properties of the obtained molded product, particularly the impact strength, tend to decrease.
(4)押出成形体
 本発明の押出成形用ポリアミド樹脂組成物は、成形の方法として、単軸、二軸などの各種の押出機を用いた成形加工が好ましく用いられ、溶融成形加工が特に好ましく用いられる。本発明の押出成形用ポリアミド樹脂組成物は、溶融成形加工法により、各種のフィラメント、フィルムなどを加工するのに好適な材料である。
(4) Extrusion Molded The polyamide resin composition for extrusion molding of the present invention is preferably molded using various types of extruders such as single screw and biaxial as the molding method, and melt molding is particularly preferable. Used. The polyamide resin composition for extrusion molding of the present invention is a material suitable for processing various filaments, films and the like by a melt molding method.
(4-1)フィラメント
 本発明のフィラメントは、各種のモノフィラメント及びマルチフィラメントとして用ることができ、用途としては、ブラシ用ブリッスル、釣糸、面ファスナー、タイヤコード人工芝、絨毯、自動車座席用シート、魚網、ロープ、ザイル、フィルター用糸、芝刈り機用フィラメント、歯ブラシ、自動車用フロアマットなどが挙げられる。
(4-1) Filament The filament of the present invention can be used as various monofilaments and multifilaments. Examples of applications include brush bristle, fishing line, hook-and-loop fastener, tire cord artificial turf, carpet, seat for automobile seats, Examples include fish nets, ropes, sills, filter threads, lawn mower filaments, toothbrushes, and automobile floor mats.
 本発明のフィラメントを形成する方法としては、これらに限定するものではないが、例えば、成分Aを含む押出成形用ポリアミド樹脂組成物を単軸などの溶融押出機にて溶融状態とし、吐出量を定量的に制御するギアポンプなどを介して溶融物を紡糸口金から押出し、空気又は水などで冷却しながら、所定の引取速度で引取ることなどによって製造することができる。このようにして得たフィラメントは、用途に応じて種々の倍率で更に延伸してもよい。また、溶融紡糸と延伸とを同時に行ってもよい。 The method for forming the filament of the present invention is not limited to these. For example, the polyamide resin composition for extrusion molding containing component A is melted in a melt extruder such as a single screw, and the discharge amount is set. The melt can be produced by extruding the melt from a spinneret through a gear pump that is controlled quantitatively and taking it at a predetermined take-up speed while cooling with air or water. The filaments thus obtained may be further stretched at various magnifications depending on the application. Also, melt spinning and stretching may be performed simultaneously.
 フィラメントは、モノフィラメント、マルチフィラメントのいずれでもよく、撚り合せていても撚り合せていなくてもよい。フィラメント断面は、円形でも、例えば中空、星型などの異形断面でもよい。 The filament may be either a monofilament or a multifilament, and may or may not be twisted. The cross section of the filament may be circular, or may be an irregular cross section such as a hollow shape or a star shape.
(4-2)フィルム
 本発明のフィルムは延伸フィルムでも未延伸フィルムでもよく、フィルムの分野で公知の任意の成形加工法を用いて成形できる。
(4-2) Film The film of the present invention may be a stretched film or an unstretched film, and can be molded using any molding process known in the field of films.
 より具体的には、例えば、成分A、及び必要に応じて用いる各種の他の成分の所定量を押出機で溶融混練し、混練物をTダイからフィルム状に押出し、キャスティングロール面上にキャスティングしたフィルムを冷却するTダイ法や、該混練物をリング状ダイから筒状に押出した後に空冷又は水冷するチューブラー法などを適用して未延伸フィルムを成形できる。また、該未延伸フィルムを一軸延伸又は二軸延伸し、未延伸フィルムを構成するポリマーの融点以下で必要に応じて熱固定する方法などにより、延伸フィルムを成形できる。 More specifically, for example, a predetermined amount of component A and various other components used as necessary is melt-kneaded with an extruder, the kneaded product is extruded into a film form from a T-die, and cast on the casting roll surface. An unstretched film can be formed by applying a T-die method for cooling the film, a tubular method in which the kneaded product is extruded from a ring die into a cylindrical shape, and then air-cooled or water-cooled. In addition, the stretched film can be formed by a method of stretching the unstretched film uniaxially or biaxially and heat-setting as necessary below the melting point of the polymer constituting the unstretched film.
 本発明のポリアミドフィルムは多層の積層フィルムのうちの1層以上を構成するものとして用いてもよい。この場合、本発明のフィルム以外の層としては、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなどからなるポリオレフィンフィルム、ポリエステルフィルム、エチレン-酢酸ビニル共重合体などからなる共重合体フィルム、アイオノマー樹脂フィルムなどを目的に応じて採用できる。 The polyamide film of the present invention may be used as one or more layers in a multilayer laminated film. In this case, the layers other than the film of the present invention include, for example, a polyolefin film made of low density polyethylene, high density polyethylene, polypropylene, etc., a polyester film, a copolymer film made of ethylene-vinyl acetate copolymer, and an ionomer resin. A film or the like can be used depending on the purpose.
 積層フィルムは、接着法、共押出法などの公知の方法を用いて成形できる。接着法においては、本発明のポリアミドフィルムと1層以上の他のフィルムとを接着剤で接着すればよい。また共押出法においては、本発明のポリアミドフィルム及び1層以上の他のフィルムのそれぞれの原料ポリマー溶融物を、必要に応じて接着性樹脂を介して多層口金から溶融共押出しすればよい。 The laminated film can be formed using a known method such as an adhesion method or a coextrusion method. In the bonding method, the polyamide film of the present invention and one or more other films may be bonded with an adhesive. In the co-extrusion method, the raw material polymer melts of the polyamide film of the present invention and one or more other films may be melt-coextruded from a multilayer die via an adhesive resin as necessary.
 本発明のフィルムは、産業資材、工業材料、家庭用品などの用途、より具体的には、食品包装、特にレトルト用など内容物が液体の用途に対して好適に使用でき、金属被覆に用いて防錆効果などを付与することもできる。 The film of the present invention can be suitably used for applications such as industrial materials, industrial materials, household goods, and more specifically for food packaging, especially for retort, where the contents are liquid, and used for metal coating. An antirust effect can also be imparted.
〔車両部品成形用ポリアミド樹脂組成物〕
(1)成分Aの含有量
 本発明の車両部品成形用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、車両部品成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、車両部品の部品強度の耐候性を確保する観点から、
 樹脂組成物中の成分Aの含有量が、
 好ましくは50~100質量%、好ましくは、70~100質量%、好ましくは、90~100質量%、より好ましくは、92~100質量%、更に好ましくは、95~100質量%である。
[Polyamide resin composition for molding vehicle parts]
(1) Content of Component A The polyamide resin composition for molding vehicle parts of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range and heat resistance for improving productivity during molding of vehicle parts. From the viewpoint of securing the weather resistance of the component strength of the vehicle parts, ensuring the properties, melt moldability (hereinafter also referred to as thermal characteristics),
The content of component A in the resin composition is
It is preferably 50 to 100% by mass, preferably 70 to 100% by mass, preferably 90 to 100% by mass, more preferably 92 to 100% by mass, and still more preferably 95 to 100% by mass.
(2)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(2) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、
 好ましくは0.1~100質量部、より好ましくは0.1~50質量部、更に好ましくは0.5~30質量部である。
The polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
The amount is preferably 0.1 to 100 parts by mass, more preferably 0.1 to 50 parts by mass, and still more preferably 0.5 to 30 parts by mass.
(3)紫外線吸収剤(成分C3)
 紫外線吸収剤としては、従来から、ポリアミド樹脂に使用されている紫外線吸収剤を用いることができる。上記紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、トリアゾ-ル系、イミダゾ-ル系、オキサゾ-ル系、レゾルシノ-ル系、サリシレート系、シアノアクリレート系、トリアジン系、金属錯塩系等を挙げることができ、ベンゾトリアゾール系が好ましい。
(3) UV absorber (component C3)
As an ultraviolet absorber, the ultraviolet absorber conventionally used for the polyamide resin can be used. Examples of the ultraviolet absorber include benzophenone, benzotriazole, triazole, imidazole, oxazole, resorcinol, salicylate, cyanoacrylate, triazine, metal complex, and the like. The benzotriazole type is preferable.
 具体的には、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3,5-ジ-tert-ペンチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2,2’-メチレンビス〔6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール〕、2,2’-メチレンビス〔4-tert-ブチル-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-エチルヘキシル-3-〔3-tert-ブチル-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネート、オクチル-3-〔3-tert-ブチル-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネート、メチル-3-〔3-tert-ブチル-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネート、3-〔3-tert-ブチル-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオン酸を挙げることができる。 Specifically, for example, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octyloxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-) Methoxyphenyl) methane, 2,2 ′, 4,4′-tetrahydroxybenzophenone, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- [2-hydroxy-3- (3,4,5, 6-tetrahydrophthalimidomethyl) -5-methylphenyl] benzotriazole, 2- (3-tert-butyl-2-hydroxy-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-5-tert -Octylphenyl) benzotriazole, 2- (3,5-di-tert- Til-2-hydroxyphenyl) benzotriazole, 2- (3,5-di-tert-pentyl-2-hydroxyphenyl) benzotriazole, 2- (3,5-di-tert-butyl-2-hydroxyphenyl)- 5-chlorobenzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2,2′-methylenebis [6- (2H-benzotriazole-2) -Yl) -4- (1,1,3,3-tetramethylbutyl) phenol], 2,2′-methylenebis [4-tert-butyl-6- (2H-benzotriazol-2-yl) phenol], 2-Ethylhexyl-3- [3-tert-butyl-5- (5-chloro-2H-benzotriazol-2-yl) -4-hydroxy Phenyl] propionate, octyl-3- [3-tert-butyl-5- (5-chloro-2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate, methyl-3- [3-tert-butyl- 5- (5-Chloro-2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate, 3- [3-tert-butyl-5- (5-chloro-2H-benzotriazol-2-yl)- 4-hydroxyphenyl] propionic acid.
 紫外線吸収剤の商品名としては、例えば、Tinuvin327(チバ・スペシャルティ・ケミカルズ(株)製ベンゾトリアゾール系)、Tinuvin234(チバ・スペシャルティ・ケミカルズ(株)製ベンゾトリアゾール系)、SanduvorVSU(クラリアント(株)製蓚酸アニリド系)を挙げることができる。
 紫外線吸収剤は、樹脂100質量部に対し、0.01~5質量部が好ましく、0.01~3.0質量部がより好ましく、0.01~2.0質量部が、より好ましく、0.1~2.0質量部がさらに好ましい。
As a trade name of an ultraviolet absorber, for example, Tinuvin 327 (Ciba Specialty Chemicals benzotriazole), Tinuvin 234 (Ciba Specialty Chemicals benzotriazole), Sanduvor VSU (Clariant) Oxalic acid anilide type).
The ultraviolet absorber is preferably from 0.01 to 5 parts by weight, more preferably from 0.01 to 3.0 parts by weight, more preferably from 0.01 to 2.0 parts by weight, based on 100 parts by weight of the resin. More preferably, the content is 1 to 2.0 parts by mass.
(4)光安定化剤(成分C4)
 光安定化剤としては、ヒンダードアミン系を挙げることができる。具体的には、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、ビス(1-アクリロイル-2,2,6,6-テトラメチル-4-ピペリジル)-2,2-ビス(3,5-ジ-tertブチル-4-ヒドロキシベンジル)マロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)デカンジオエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)サクシネート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-1-〔2-{3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}エチル〕-2,2,6,6-テトラメチルピペリジン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび1-トリデカノールとの混合エステル化物、1,2,3,4-ブタンテトラカルボン酸と2,2,6,6-テトラメチル-4-ピペリジノールおよび1-トリデカノールとの混合エステル化物、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカンとの混合エステル化物、1,2,3,4-ブタンテトラカルボン酸と2,2,6,6-テトラメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカンとの混合エステル化物、ジメチルサクシネートと1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジンとの重縮合物、ポリ〔(6-モルホリノ-1,3,5-トリアジン-2,4-ジイル){(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、ポリ〔{6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}〕、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレンジアミンと1,2-ジブロモエタンとの重縮合物、N,N’,4,7-テトラキス〔4,6-ビス{N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ}-1,3,5-トリアジン-2-イル〕-4,7-ジアザデカン-1,10-ジアミン、N,N’,4-トリス〔4,6-ビス{N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ}-1,3,5-トリアジン-2-イル〕-4,7-ジアザデカン-1,10-ジアミン、N,N’,4,7-テトラキス〔4,6-ビス{N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ}-1,3,5-トリアジン-2-イル〕-4,7-ジアザデカン-1,10-ジアミン、N,N’,4-トリス〔4,6-ビス{N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ}-1,3,5-トリアジン-2-イル〕-4,7-ジアザデカン-1,10-ジアミンが挙げられる。
(4) Light stabilizer (component C4)
Examples of the light stabilizer include hindered amines. Specifically, for example, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3, 5-di-tert-butyl-4-hydroxybenzyl) -2-butylmalonate, bis (1-acryloyl-2,2,6,6-tetramethyl-4-piperidyl) -2,2-bis (3 5-di-tertbutyl-4-hydroxybenzyl) malonate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) decanedioate, bis (2,2,6,6-tetramethyl-4 -Piperidyl) succinate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 4- [3- (3,5-di- t rt-butyl-4-hydroxyphenyl) propionyloxy] -1- [2- {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy} ethyl] -2,2,6,6 -Tetramethylpiperidine, 2-methyl-2- (2,2,6,6-tetramethyl-4-piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, Tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl)- 1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 1-to Mixed esterified product of decanol, mixed esterified product of 1,2,3,4-butanetetracarboxylic acid and 2,2,6,6-tetramethyl-4-piperidinol and 1-tridecanol, 1,2,3, 4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-hydroxy-1,1-dimethylethyl) -2,4,8,10-tetra Mixed esterified product with oxaspiro [5.5] undecane, 1,2,3,4-butanetetracarboxylic acid and 2,2,6,6-tetramethyl-4-piperidinol and 3,9-bis (2- Hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane mixed ester, dimethyl succinate and 1- (2-hydroxy (Ciethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [(6-morpholino-1,3,5-triazine-2,4-diyl) {(2,2 , 6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}], poly [{6- (1,1,3,3 -Tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6 6-tetramethyl-4-piperidyl) imino}], N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) hexamethylenediamine and 1,2-dibromoethane polycondensate , N, N ′, 4,7-tetrakis [4,6 Bis {N-butyl-N- (2,2,6,6-tetramethyl-4-piperidyl) amino} -1,3,5-triazin-2-yl] -4,7-diazadecane-1,10- Diamine, N, N ′, 4-tris [4,6-bis {N-butyl-N- (2,2,6,6-tetramethyl-4-piperidyl) amino} -1,3,5-triazine 2-yl] -4,7-diazadecane-1,10-diamine, N, N ′, 4,7-tetrakis [4,6-bis {N-butyl-N- (1,2,2,6,6) -Pentamethyl-4-piperidyl) amino} -1,3,5-triazin-2-yl] -4,7-diazadecane-1,10-diamine, N, N ', 4-tris [4,6-bis { N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino} -1,3,5 -Triazin-2-yl] -4,7-diazadecane-1,10-diamine.
 光安定化剤の商品名としては、例えば、Tinuvin123(チバ・スペシャルティ・ケミカルズ(株)製、ヒンダードアミン系)Chimassorb944(チバ・スペシャルティ・ケミカルズ(株)製、ヒンダードアミン系)、Chimassorb119(チバ・スペシャルティ・ケミカルズ(株)製、ヒンダードアミン系)を挙げることができる。
 上記光安定化剤は、成分A100質量部に対し、0.01~5質量部が好ましく、0.01~3.0質量部がより好ましく、0.01~2.0質量部が、より好ましく、0.1~2.0質量部がさらに好ましい。
Trade names of light stabilizers include, for example, Tinuvin 123 (Ciba Specialty Chemicals Co., Ltd., hindered amine series) Chimassorb 944 (Ciba Specialty Chemicals Co., Ltd., hindered amine series), Chimassorb 119 (Ciba Specialty Chemicals Co., Ltd.) Hindered amine system).
The light stabilizer is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 3.0 parts by weight, and more preferably 0.01 to 2.0 parts by weight with respect to 100 parts by weight of Component A. 0.1 to 2.0 parts by mass is more preferable.
(5)層状珪酸塩(成分B5)
 本発明の車両部品は、成分Aのみで低吸水性であり寸法安定性に優れるが、より低吸水性及び寸法安定性が求められる用途においては、上述の層状珪酸塩(成分B5)を成分Aに添加することができる。
 また、層状珪酸塩を添加することにより、本発明の車両部品の剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させることができる。
(5) Layered silicate (component B5)
The vehicle parts of the present invention have low water absorption and excellent dimensional stability with only component A, but in applications where lower water absorption and dimensional stability are required, the layered silicate (component B5) is used as component A. Can be added.
Further, by adding a layered silicate, it is possible to improve the rigidity, weather resistance and / or heat resistance, and barrier property against liquid or vapor of the vehicle component of the present invention.
 上記層状珪酸塩の量は、機械的強度や風合の向上効果が得られる量であれば特に制限されるものではないが、本発明で用いる成分A100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.05~8質量部、特に好ましくは0.05~5質量部である。層状珪酸塩の割合が低くなると、上記向上効果が小さくなる傾向があり、上記割合が高くなると、樹脂組成物の流動性や得られる成形物の物性、特に衝撃強度が低くなる傾向がある。 The amount of the layered silicate is not particularly limited as long as the effect of improving mechanical strength and texture is obtained, but is preferably 0.05 with respect to 100 parts by mass of Component A used in the present invention. It is ˜10 parts by mass, more preferably 0.05 to 8 parts by mass, and particularly preferably 0.05 to 5 parts by mass. When the ratio of the layered silicate decreases, the improvement effect tends to decrease, and when the ratio increases, the fluidity of the resin composition and the physical properties of the obtained molded product, particularly the impact strength, tend to decrease.
〔車両部品〕
 本発明の車両部品成形用ポリアミド樹脂組成物を成形して得られる車両部品としては、車両内装部品、車両外装部品や自動車エンジンルーム内部品等がある。
[Vehicle parts]
Examples of vehicle parts obtained by molding the polyamide resin composition for molding vehicle parts of the present invention include vehicle interior parts, vehicle exterior parts, automobile engine room interior parts, and the like.
(1)車両内装部品
 本明細書において、用語「車両内装部品」の用語は、車両の内装に用いられる部品を意味する。車両には、自動車、例えば、乗用車、バス、トラック、特殊自動車、例えば、トラクター、ロードローラー、雪上車、フォークリフト、ホイールクレーン、特殊用途自動車、例えば、救急車、消防車、テレビジョン中継車、冷凍車が含まれるが、これらに限定されるものではない。
(1) Vehicle interior part In this specification, the term "vehicle interior part" means a part used for interior of a vehicle. Vehicles include automobiles such as passenger cars, buses, trucks, special automobiles such as tractors, road rollers, snow vehicles, forklifts, wheel cranes, special purpose automobiles such as ambulances, fire trucks, television relay cars, and refrigerated cars. However, it is not limited to these.
 本発明の車両内装部品は、例えば、レジスター・ブレード、ウォッシャー・レバー、ウィンドレギュレータハンドル、ウィンドレギュレータハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、インストルメンタルパネル、コンソールボックス、グローブボックス、ステアリングホイール、トリム、シートレール等のシート部材、シートベルトアンカー、電動シート部品、シートヒータ部品、シート送風部品、HVAC部品,ステアリングスイッチ部品等の用途に使用することができる。 The vehicle interior parts of the present invention include, for example, a register blade, a washer lever, a window regulator handle, a knob of a window regulator handle, a passing light lever, a sun visor bracket, an instrument panel, a console box, a glove box, a steering wheel, and a trim. It can be used for applications such as seat members such as seat rails, seat belt anchors, electric seat parts, seat heater parts, seat blowing parts, HVAC parts, steering switch parts, and the like.
(2)車両外装部品
 本明細書において、用語「車両外装部品」の用語は、車両の外装に用いられる部品を意味する。当該車両には、自動車、例えば、乗用車、バス、トラック、自動二輪車、特殊自動車、例えば、トラクター、ロードローラー、雪上車、フォークリフト、ホイールクレーン、特殊用途自動車、例えば、救急車、消防車、テレビジョン中継車、冷凍車、原動機付自転車が含まれるが、これらに限定されるものではない。
(2) Vehicle exterior parts In this specification, the term "vehicle exterior parts" means the parts used for the exterior of vehicles. Such vehicles include automobiles such as passenger cars, buses, trucks, motorcycles, special automobiles such as tractors, road rollers, snow trucks, forklifts, wheel cranes, special purpose automobiles such as ambulances, fire trucks and television relays. Examples include, but are not limited to, cars, refrigerators, and motorbikes.
 当該車両外装部品の例としては、例えば、モール、ランプハウジング、フロントグリル、マッドガード、サイドバンパー、バンパー、フェンダーが挙げられるが、これらに限定されるものではない。 Examples of the vehicle exterior parts include, but are not limited to, a mall, a lamp housing, a front grille, a mud guard, a side bumper, a bumper, and a fender.
(3)自動車エンジンルーム内部品
 本発明の自動車エンジンルーム内部品としては、インテークマニホールド、エアクリーナー、レゾネーター、フューエルレール、スロットルボディおよびバルブ、エアフローメーター、EGR部品、ハーネスコネクター、エンジンカバー、シリンダーヘッドカバー、タイミングベルト(チェーンカバー)、タイミングチェーン(ベルト)テンショナーおよびガイド、アルタネーターカバー、ディストリビューターカバー、ブレーキマスターシリンダー、オイルポンプ、オイルフィルター、エンジンマウント、ペーパーキャニスター、パワーステアリングオイルリザーバー、フューエルストレーナー、ラジエタータンク、スイッチブーツ、ランプ防水カバー、コネクタカバー、ラバーフック、サスペンションブーツ、サスペンションアッパーマウント、サスペンションブッシュ、スタビライザーブッシュ、ステアリングラックブーツ、ステアリングラックブッシュ、リザーバータンクキャップ、プラグコードキャップ、成形パッキン、バッテリー端子カバーなどがある。
(3) Automotive engine compartment components The automotive engine compartment components of the present invention include intake manifolds, air cleaners, resonators, fuel rails, throttle bodies and valves, air flow meters, EGR components, harness connectors, engine covers, cylinder head covers, Timing belt (chain cover), timing chain (belt) tensioner and guide, alternator cover, distributor cover, brake master cylinder, oil pump, oil filter, engine mount, paper canister, power steering oil reservoir, fuel strainer, radiator tank , Switch boots, lamp waterproof cover, connector cover, rubber hook, suspension There are boots, suspension upper mounts, suspension bushings, stabilizer bushings, steering rack boots, steering rack bushings, reservoir tank caps, plug cord caps, molded packing, battery terminal covers, and the like.
〔バイオディーゼル燃料と直接接触する成形体用ポリアミド樹脂組成物〕
(1)成分Aの含有量
 本発明のバイオディーゼル燃料と直接接触する成形体用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、相対粘度ηrを十分に確保でき、成形可能温度幅が広く、耐熱性、及び溶融成形性に優れ、
 脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、耐薬品性、耐加水分解性、燃料バリア性、さらに、耐バイオディーゼル燃料性を安定に確保する観点から、樹脂組成物中の成分Aの含有量が、
 好ましくは50~100質量%、より好ましくは55~100質量%、更に好ましくは60~100質量%、更に好ましくは70~100質量%、更に好ましくは80~100質量%、更に好ましくは90~100質量%、更に好ましくは、92~100質量%、更に好ましくは、95~100質量%である。
[Polyamide resin composition for molded articles in direct contact with biodiesel fuel]
(1) Content of Component A The polyamide resin composition for molded bodies (hereinafter also referred to as resin composition) that is in direct contact with the biodiesel fuel of the present invention can sufficiently ensure the relative viscosity ηr and has a moldable temperature range. Widely excellent in heat resistance and melt moldability,
Stable chemical resistance, hydrolysis resistance, fuel barrier properties, and biodiesel fuel resistance compared to conventional aliphatic polyamide resins without compromising the low water absorption found in aliphatic linear polyoxamide resins From the viewpoint of ensuring the content of the component A in the resin composition,
Preferably 50 to 100% by mass, more preferably 55 to 100% by mass, still more preferably 60 to 100% by mass, still more preferably 70 to 100% by mass, still more preferably 80 to 100% by mass, still more preferably 90 to 100%. % By mass, more preferably 92 to 100% by mass, and still more preferably 95 to 100% by mass.
(2)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(2) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、
 好ましくは0.1~100質量部、より好ましくは0.1~50質量部、更に好ましくは0.5~30質量部である。
The polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
The amount is preferably 0.1 to 100 parts by mass, more preferably 0.1 to 50 parts by mass, and still more preferably 0.5 to 30 parts by mass.
(3)層状珪酸塩(成分B5)
 本発明の樹脂組成物は、成分Aのみで、相対粘度ηrを十分に確保でき、成形可能温度幅が広く、耐熱性、及び溶融成形性に優れ、脂肪族直鎖ポリオキサミド樹脂に見られる低吸水性を損なうことなく、従来の脂肪族ポリアミド樹脂に比較して、耐薬品性、耐加水分解性、燃料バリア性、さらに、耐バイオディーゼル燃料性を安定に確保した成形体を製造することができるが、さらに耐バイオディーゼル燃料性が求められる用途においては、本発明の樹脂組成物に上述の層状珪酸塩をさらに含ませることが好ましい。
 また、層状珪酸塩を添加することにより、本発明の樹脂組成物から製造した成形体の耐バイオディーゼル燃料性をはじめ、剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させることができる。
(3) Layered silicate (component B5)
The resin composition of the present invention can sufficiently secure the relative viscosity ηr with only component A, has a wide moldable temperature range, is excellent in heat resistance and melt moldability, and has low water absorption as seen in aliphatic linear polyoxamide resins. It is possible to produce a molded article that stably secures chemical resistance, hydrolysis resistance, fuel barrier properties, and biodiesel fuel resistance as compared with conventional aliphatic polyamide resins without impairing properties. However, in applications where biodiesel fuel resistance is further required, it is preferable to further include the above-mentioned layered silicate in the resin composition of the present invention.
In addition, by adding layered silicate, the molded body produced from the resin composition of the present invention improves the biodiesel fuel resistance, rigidity, weather resistance and / or heat resistance, and barrier property against liquid or vapor. Can be made.
 上記層状珪酸塩の量は、当該層状珪酸塩の効果が発揮される量であれば、特に制限されるものではないが、射出成形体の剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させる観点と、樹脂組成物の成形加工性と耐衝撃性を確保する観点とから、成分A100質量部に対して、好ましくは0.05~10質量部、より好ましくは0.05~8質量部、更に好ましくは0.05~5質量部である。 The amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited, but the rigidity, weather resistance and / or heat resistance of the injection-molded product, and liquid or vapor From the viewpoint of improving the barrier property against the above and from the viewpoint of securing the molding processability and impact resistance of the resin composition, it is preferably 0.05 to 10 parts by mass, more preferably 0. 05 to 8 parts by mass, more preferably 0.05 to 5 parts by mass.
(4)可塑剤(成分C5)
 本発明の樹脂組成物の耐バイオディーゼル燃料性をさらに安定に確保する観点から、可塑剤を添加することが好ましい。
 可塑剤としては、たとえば、ベンゼンスルホン酸ブチルアミド、p-ヒドロキシ安息鉱酸と炭素数6~21の直鎖又は分岐鎖アルコールとのエステル(たとえば、2-エチルヘキシルp-ヒドロキシベンゾエート)等を挙げることができる。
 可塑剤の配合量は、ブリードアウトを抑制する観点から、ポリアミド樹脂100質量部に対して、
 好ましくは、0.1~30質量部、より好ましくは、0.5~30質量部、更に好ましくは、1~30質量部である。
(4) Plasticizer (component C5)
From the viewpoint of securing the biodiesel fuel resistance of the resin composition of the present invention more stably, it is preferable to add a plasticizer.
Examples of the plasticizer include benzenesulfonic acid butyramide, esters of p-hydroxybenzoic acid and linear or branched alcohols having 6 to 21 carbon atoms (for example, 2-ethylhexyl p-hydroxybenzoate). it can.
From the viewpoint of suppressing bleed out, the compounding amount of the plasticizer is based on 100 parts by mass of the polyamide resin.
The amount is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 30 parts by mass, and still more preferably 1 to 30 parts by mass.
(5)バイオディーゼル燃料と直接接触する成形体
 本発明の耐バイオディーゼル燃料性に優れるバイオディーゼル燃料と直接接触する成形体(以下、成形体ともいう)は、本発明の樹脂組成物を射出、押出、中空、プレス、ロール、発泡、真空・圧空、延伸などポリアミドに適用できる公知の成形加工法はすべて可能であり、これらの成形法によってフィルム、シート、成形品、繊維などに加工することができる。
(5) Molded body in direct contact with biodiesel fuel The molded body in direct contact with the biodiesel fuel excellent in biodiesel fuel resistance of the present invention (hereinafter also referred to as molded body) is injected with the resin composition of the present invention, All known molding methods applicable to polyamide, such as extrusion, hollow, press, roll, foaming, vacuum / pressure air, and stretching, are possible, and these molding methods can be used to process films, sheets, molded products, fibers, etc. it can.
 本発明によって得られる耐バイオディーゼル燃料性に優れる成形体は、従来のポリアミド樹脂製燃料部品が用いられてきた各種成形体のいずれにも用いることが可能である。
 バイオディーゼル燃料と接触する成形体としては、たとえば、燃料タンク、燃料チューブ、燃料パイプ、燃料搬送ユニット、燃料ポンプモジュール、バルブなどがある。
The molded article excellent in biodiesel fuel resistance obtained by the present invention can be used for any of various molded articles for which conventional polyamide resin fuel parts have been used.
Examples of the molded body that comes into contact with the biodiesel fuel include a fuel tank, a fuel tube, a fuel pipe, a fuel transfer unit, a fuel pump module, and a valve.
〔燃料配管部品用ポリアミド樹脂組成物〕
(1)成分Aの含有量
 本発明の燃料配管部品用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、燃料配管部品品の耐低温衝撃性等の環境耐性、耐薬品性及び液体、蒸気及び/又は気体の不透過性を確保する観点から、
 樹脂組成物中の成分Aの含有量が、好ましくは、50~100質量%、より好ましくは、55~100質量%、更に好ましくは、60~100質量%である。
[Polyamide resin composition for fuel piping parts]
(1) Content of Component A The polyamide resin composition for fuel pipe parts of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during molding. From the viewpoint of ensuring melt moldability (hereinafter also referred to as thermal characteristics), environmental resistance such as low temperature impact resistance of fuel pipe parts, chemical resistance, and liquid, vapor and / or gas impermeability,
The content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
(2)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(2) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、
 好ましくは0~50質量部、より好ましくは0~40質量部、更に好ましくは0~30質量部である。
The polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
The amount is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass, and still more preferably 0 to 30 parts by mass.
(3)層状珪酸塩(成分B5)
 本発明の樹脂組成物は、成分Aのみで、耐低温衝撃性等の環境耐性、耐薬品性及び液体、蒸気及び/又は気体の不透過性に優れる燃料配管部品を作製することができるが、さらに高精度の寸法安定性が求められる用途においては、本発明の樹脂組成物に層状珪酸塩(成分B5)をさらに含ませることができる。
 また、層状珪酸塩を添加することにより、本発明の樹脂組成物から作製した燃料配管部品の剛性、耐低温衝撃性等の環境耐性、耐薬品性及び液体、蒸気及び/又は気体の不透過性を向上させることができる。
(3) Layered silicate (component B5)
The resin composition of the present invention can produce a fuel piping component that is excellent in environmental resistance such as low-temperature impact resistance, chemical resistance and liquid, vapor and / or gas impermeability only with Component A. In applications where high-precision dimensional stability is required, the resin composition of the present invention can further contain a layered silicate (component B5).
Moreover, by adding layered silicate, the rigidity of fuel pipe parts prepared from the resin composition of the present invention, environmental resistance such as low temperature impact resistance, chemical resistance and impermeability of liquid, vapor and / or gas Can be improved.
 上記層状珪酸塩の量は、当該層状珪酸塩の効果が発揮される量であれば、特に制限されるものではないが、燃料配管部品の剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させる観点と、樹脂組成物の成形加工性と耐衝撃性を確保する観点とから、成分A100質量部に対して、
 好ましくは0.05~10質量部、
 より好ましくは0.05~8質量部、
 更に好ましくは0.05~5質量部である。
The amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited. However, the rigidity, weather resistance and / or heat resistance of the fuel pipe component, and liquid or vapor are not limited. From the viewpoint of improving the barrier properties against and from the viewpoint of securing the molding processability and impact resistance of the resin composition,
Preferably 0.05 to 10 parts by weight,
More preferably 0.05 to 8 parts by mass,
More preferably, it is 0.05 to 5 parts by mass.
(4)可塑剤(成分C5)
 本発明のポリアミド樹脂組成物には、低温における耐衝撃性、および柔軟性付与の観点から、上述した可塑剤(成分C5)を配合することが好ましい。
(4) Plasticizer (component C5)
From the viewpoint of impact resistance at low temperature and imparting flexibility, the above-described plasticizer (component C5) is preferably blended with the polyamide resin composition of the present invention.
 可塑剤の配合量は、燃料配管部品の安定な破壊圧力を確保し、ブリードアウトを抑制する観点から、本発明のポリアミド樹脂組成物中の樹脂成分100質量部に対して、
 好ましくは1~30質量部、より好ましくは5~20質量部、更に好ましくは10~15質量部である。
From the viewpoint of ensuring stable breakdown pressure of the fuel pipe parts and suppressing bleed out, the compounding amount of the plasticizer is based on 100 parts by mass of the resin component in the polyamide resin composition of the present invention.
The amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
(5)導電性付与剤(成分B6)
 本発明のポリアミド樹脂組成物には、燃料配管部品が電気運搬回路を形成することにより、燃料等の流体の搬送時に発生する静電気の散逸が可能になり、スパークによる部品の破損や爆発防止が可能となるという観点から、上述した導電性付与剤(成分B6)を配合することが好ましい。
 例えば、燃料配管部品が導電化された継手と導電化されたチューブを接合されて電気運搬回路を形成するような場合が好ましい。
(5) Conductivity imparting agent (component B6)
The polyamide resin composition of the present invention can dissipate static electricity generated when transporting fluids such as fuel by forming fuel transportation parts in the fuel piping parts, and can prevent parts from being damaged or exploding due to sparks. From the viewpoint of becoming, it is preferable to blend the above-described conductivity-imparting agent (component B6).
For example, it is preferable that a fuel pipe component is joined to a conductive joint and a conductive tube to form an electric transportation circuit.
 導電性とは、たとえば、ガソリンのような引火性の流体が樹脂のような絶縁体に連続的に接触した場合、静電気が蓄積してスパークが発生し、燃料が引火する可能性があるが、この静電気が蓄積しない程度の電気特性をいう。これにより、燃料等の流体の搬送時に発生する静電気によるスパークの発生を防止可能になる。 With conductivity, for example, when a flammable fluid such as gasoline is continuously in contact with an insulator such as resin, static electricity accumulates and sparks may occur, which may ignite the fuel. Electrical characteristics that do not accumulate static electricity. As a result, it is possible to prevent the occurrence of a spark due to static electricity generated when a fluid such as fuel is conveyed.
 導電性付与剤としては、樹脂に導電性能を付与するために添加されるすべての充填材が包含され、粒状、フレーク状及び繊維状フィラーなどが挙げられる。 Examples of the conductivity imparting agent include all fillers added to impart conductive performance to the resin, and examples thereof include granular, flaky and fibrous fillers.
 粒状フィラーとしては、カーボンブラック、グラファイト等が好適に使用できる。フレーク状フィラーとしては、アルミフレーク、ニッケルフレーク、ニッケルコートマイカ等が好適に使用できる。
 また、繊維状フィラーとしては、カーボンナノチューブ、カーボンナノファイバー、炭素繊維、炭素被覆セラミック繊維、カーボンウィスカー、アルミ繊維、銅繊維、黄銅繊維、ステンレス繊維といった金属繊維等が好適に使用できる。
 繊維状フィラーは、本発明のポリアミド樹脂組成物を成形して得られる燃料配管部品の機械的物性を向上する観点からも好ましい。
As the particulate filler, carbon black, graphite or the like can be suitably used. As the flaky filler, aluminum flakes, nickel flakes, nickel-coated mica and the like can be suitably used.
As the fibrous filler, metal fibers such as carbon nanotubes, carbon nanofibers, carbon fibers, carbon-coated ceramic fibers, carbon whiskers, aluminum fibers, copper fibers, brass fibers, and stainless fibers can be suitably used.
The fibrous filler is also preferable from the viewpoint of improving the mechanical properties of fuel piping parts obtained by molding the polyamide resin composition of the present invention.
 これらの中では、炭素繊維並びにカーボンブラック好適に使用できる。 Among these, carbon fiber and carbon black can be used suitably.
 導電性付与剤の配合量は、用いる導電性付与剤の種類により異なるため、一概に規定はできないが、導電性と流動性、機械的強度などとのバランスの観点から、
 ポリアミド樹脂を含む樹脂全体100質量部に対して、2~30重量部が好ましく選択される。
Since the blending amount of the conductivity imparting agent varies depending on the type of the conductivity imparting agent to be used, it cannot be specified unconditionally, but from the viewpoint of balance between conductivity, fluidity, mechanical strength, etc.
2 to 30 parts by weight is preferably selected with respect to 100 parts by mass of the entire resin including the polyamide resin.
 またかかる導電性付与剤は、十分な帯電防止性能を得る意味で、
 それを配合したポリアミド樹脂組成物を溶融押出して得られる燃料配管部品の体積抵抗が、好ましくは10Ωcm以下、より好ましくは10Ωcm以下となる程度の量を配合する。
In addition, such a conductivity imparting agent is intended to obtain sufficient antistatic performance,
The amount of the fuel pipe component obtained by melt-extruding the polyamide resin composition blended therewith is preferably 10 9 Ωcm or less, more preferably 10 6 Ωcm or less.
(6)有機繊維及び無機充填材(成分C6)
 本発明のポリアミド樹脂組成物には、本発明のポリアミド樹脂組成物を成形して得られる燃料配管部品の機械的物性を向上する観点から、好ましくは燃料配管用継手の用途において、有機繊維及び/又は無機充填材(但し、導電性付与剤は除く)(成分C6)を配合することが好ましい。
(6) Organic fiber and inorganic filler (component C6)
From the viewpoint of improving the mechanical properties of the fuel piping component obtained by molding the polyamide resin composition of the present invention, the polyamide resin composition of the present invention is preferably used in a joint for fuel piping, Or it is preferable to mix | blend an inorganic filler (however, except an electroconductivity imparting agent) (component C6).
 有機繊維としては、アラミド繊維等が挙げられる。 Examples of organic fibers include aramid fibers.
 無機充填材としては、ガラス繊維や炭素繊維、ワラストナイトやチタン酸カリウムウイスカー等の無機繊維、
 モンモリロナイト、タルク、マイカ、炭酸カルシウム、シリカ、クレイ、カオリン、ガラスパウダー、ガラスビーズ等の無機フィラーが用いられる。
As the inorganic filler, inorganic fibers such as glass fiber, carbon fiber, wollastonite and potassium titanate whisker,
Inorganic fillers such as montmorillonite, talc, mica, calcium carbonate, silica, clay, kaolin, glass powder, and glass beads are used.
 無機繊維としては、
 繊維径が、好ましくは0.01~50μm、より好ましくは0.03~30μm、更に好ましくは0.05~20μm、
 繊維長が、好ましくは0.1~15mm、より好ましくは0.5~15mm、更に好ましくは0.5~10mm、
のものを使用することが好ましい。
 但し、本発明のポリアミド樹脂組成物を溶融混錬して燃料配管部品を成形する際に、無機繊維が切断等して、本発明のポリアミド樹脂組成物又は燃料配管部品内では、
 無機繊維の繊維径が0.01~50μm、好ましくは0.03~30μm、
 無機繊維の繊維長が、0.5~10mm、好ましくは0.7~5mm程度になっている場合がある。
As inorganic fiber,
The fiber diameter is preferably 0.01 to 50 μm, more preferably 0.03 to 30 μm, still more preferably 0.05 to 20 μm,
The fiber length is preferably 0.1 to 15 mm, more preferably 0.5 to 15 mm, still more preferably 0.5 to 10 mm,
Are preferably used.
However, when the polyamide resin composition of the present invention is melt-kneaded to form a fuel pipe part, the inorganic fibers are cut and the like, and within the polyamide resin composition or the fuel pipe part of the present invention,
The fiber diameter of the inorganic fiber is 0.01 to 50 μm, preferably 0.03 to 30 μm,
The fiber length of the inorganic fiber may be about 0.5 to 10 mm, preferably about 0.7 to 5 mm.
 無機繊維では、ガラス繊維が、補強効果が高く好適に使用される。
 ガラス強化することにより、本発明の燃料配管部品の締結部のクリープ耐性が高く変形が発生しなくなり、永続的なシールが可能となる。
Among inorganic fibers, glass fibers are preferably used because of their high reinforcing effect.
By tempering the glass, the creep resistance of the fastening portion of the fuel pipe component of the present invention is high and deformation does not occur, and permanent sealing becomes possible.
 本発明の燃料配管部品、好ましくは燃料配管用継手を成形するための本発明の燃料配管部品用ポリアミド樹脂組成物において、有機繊維及び/又は無機充填材の使用量は、本発明の燃料配管部品の成形性、表面状態及び機械的強度を安定に確保する観点から、本発明の燃料配管部品用ポリアミド樹脂組成物中で、好ましくは5~65重量%、より好ましくは10~60重量%、更に好ましくは10~50重量%である。 In the polyamide resin composition for a fuel pipe part of the present invention for molding a fuel pipe part of the present invention, preferably a fuel pipe joint, the amount of organic fiber and / or inorganic filler used is the fuel pipe part of the present invention. From the viewpoint of stably securing the moldability, surface state and mechanical strength of the polyamide resin composition for fuel pipe parts of the present invention, preferably 5 to 65% by weight, more preferably 10 to 60% by weight, The amount is preferably 10 to 50% by weight.
(7)燃料配管部品
 本発明の燃料配管部品は、本発明の燃料配管部品用ポリアミド樹脂組成物を成形して得られる、液体又は蒸気態様の燃料のバリア性を必要とする各種用途に適用することができる。
 適用可能な用途としては、例えば、ガソリンタンク、アルコールタンク、フユーエルチューブ、ブレーキオイルタンク、クラッチオイルタンク、パワーステアリングオイルタンク等の燃料タンクそのもの、また、
 フユーエルストレーナー、クーラー用フルオロカーボンチューブ、フルオロカーボンタンク、キャニスター、エアークリーナー、吸気系部品、タイヤインナーライナー、タンクバルブ、フューエルデリバリーパイプ、クイックコネクター、EGR部品、オイルストレーナー等の燃料タンク用部品、燃料チューブ、燃料配管用継手が好ましく、
 燃料タンク用部品、燃料チューブ、燃料配管用継手がより好ましい。
(7) Fuel piping component The fuel piping component of the present invention is applied to various applications that require barrier properties of liquid or vapor fuel obtained by molding the polyamide resin composition for fuel piping components of the present invention. be able to.
Applicable uses include, for example, fuel tanks such as gasoline tanks, alcohol tanks, fuel tubes, brake oil tanks, clutch oil tanks, power steering oil tanks,
Fuel strainer, fluorocarbon tube for cooler, fluorocarbon tank, canister, air cleaner, intake system parts, tire inner liner, tank valve, fuel delivery pipe, quick connector, EGR parts, parts for fuel tanks such as oil strainer, fuel tube, Fuel pipe fittings are preferred,
Fuel tank parts, fuel tubes, and fuel pipe joints are more preferred.
(7-1)燃料タンク用部品
 本発明の燃料タンク用部品は、本発明の燃料配管部品用ポリアミド樹脂組成物を、射出、押出、中空、プレス、ロール、発泡、真空・圧空、延伸など、その用途に応じた従来公知の成形方法を用いて成形し、振動溶着工法、ダイスライドインジェクション、ダイロータリーインジェクションや二色成形といった射出溶着工法、超音波溶着工法、スピン溶着工法、熱板溶着工法、熱線溶着工法、レーザー溶着工法、高周波誘導加熱溶着工法などを用いて対象物に適用できる。なお、燃料タンク用部品の形成時において、ポリアミド樹脂の温度は、該ポリアミド樹脂を変質させない温度に維持することが好ましい。
(7-1) Fuel tank parts The fuel tank parts of the present invention are prepared by injecting, extruding, hollowing, pressing, rolls, foaming, vacuum / pressure air, stretching, etc. Molded using a conventionally known molding method according to its application, vibration welding method, die slide injection, injection welding method such as die rotary injection and two-color molding, ultrasonic welding method, spin welding method, hot plate welding method, It can be applied to an object using a hot wire welding method, a laser welding method, a high frequency induction heating welding method, or the like. In forming the fuel tank component, the temperature of the polyamide resin is preferably maintained at a temperature that does not alter the polyamide resin.
(7-2)燃料チューブ
 本発明の燃料配管部品は、本発明のポリアミド樹脂を成形して得られ、好ましくは、本発明の燃料配管部品用ポリアミド樹脂組成物をからなる層(以下、層1ともいう)を有することが好ましい。
(7-2) Fuel Tube The fuel pipe component of the present invention is obtained by molding the polyamide resin of the present invention, and preferably comprises a layer comprising the polyamide resin composition for fuel pipe components of the present invention (hereinafter referred to as layer 1). It is preferable to have (also called).
 本発明の燃料配管部品は、層1だけからなる単層チューブでもよいが、層1と層1以外の層を1以上積層した多層チューブとして用いることが好ましい。
 実用の燃料配管部品では多層チューブが多く用いられている。
The fuel pipe component of the present invention may be a single-layer tube composed of only layer 1, but is preferably used as a multilayer tube in which one or more layers other than layer 1 and layer 1 are laminated.
In practical fuel piping parts, multi-layer tubes are often used.
 本発明の燃料配管部品を多層チューブとする場合、燃料の不透過性を安定に確保し、燃料配管部品に求められる多くの要求特性を同時に満たす観点から、層1の厚さは、燃料チューブの肉厚の20~80%が好ましく、30~70%がより好ましい。 When the fuel piping component of the present invention is a multilayer tube, the thickness of the layer 1 is determined from the viewpoint of stably ensuring the fuel impermeability and simultaneously satisfying many required characteristics required for the fuel piping component. The thickness is preferably 20 to 80%, more preferably 30 to 70%.
 燃料配管部品の外径は、種々の燃料の流量を考慮して設計でき、肉厚は、種々の燃料の透過性が増大せず、また燃料チューブの破壊圧力を維持できる厚さであり、かつ燃料チューブの組み付け作業容易性及び使用時の耐振動性が良好な程度の柔軟性を維持することができる薄さで設計することができるが、
 外径は、好ましくは4~15mm、より好ましくは3~13mm、
 肉厚は、好ましくは0.5~2mm、より好ましくは0.7~1.8mmである。
The outer diameter of the fuel piping component can be designed in consideration of the flow rate of various fuels, and the wall thickness is a thickness that does not increase the permeability of various fuels and can maintain the breaking pressure of the fuel tube, and Although it can be designed with a thinness that can maintain flexibility with a good degree of ease of assembly of the fuel tube and vibration resistance during use,
The outer diameter is preferably 4 to 15 mm, more preferably 3 to 13 mm,
The wall thickness is preferably 0.5 to 2 mm, more preferably 0.7 to 1.8 mm.
 本発明の燃料配管部品の層1以外の層としては、成形性やバリア性の観点から、
 好ましくは、フッ素樹脂、高密度ポリエチレン樹脂、PA11樹脂及びPA12からなる群から選ばれる少なくとも1種の樹脂、
 より好ましくはPA11樹脂及びPA12からなる群から選ばれる少なくとも1種の樹脂と可塑剤(好ましくは、前述の好適可塑剤)とを含む樹脂組成物からなることが好ましい。
 可塑剤の含有量は、燃料配管部品の安定な破壊圧力を確保し、ブリードアウトを抑制する観点から、層1以外の層の樹脂成分100質量部に対して、
 好ましくは1~30質量部、より好ましくは5~20質量部、更に好ましくは10~15質量部である。
As layers other than the layer 1 of the fuel piping component of the present invention, from the viewpoint of moldability and barrier properties,
Preferably, at least one resin selected from the group consisting of fluororesin, high-density polyethylene resin, PA11 resin and PA12,
More preferably, it consists of a resin composition containing at least one resin selected from the group consisting of PA11 resin and PA12 and a plasticizer (preferably, the above-mentioned suitable plasticizer).
The content of the plasticizer ensures a stable breaking pressure of the fuel pipe component and suppresses bleed out, with respect to 100 parts by mass of the resin component of the layer other than the layer 1.
The amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
 本発明の燃料配管部品を構成する少なくとも1つの層には、導電性向上の観点から、導電性付与剤(成分B6)(好ましくは、前述の好適な導電性付与剤(成分B6))を、前述の好適配合量で配合されていることが好ましい。 In at least one layer constituting the fuel piping component of the present invention, from the viewpoint of improving conductivity, a conductivity imparting agent (component B6) (preferably, the above-described suitable conductivity imparting agent (component B6)) is added. It is preferable to mix | blend with the above-mentioned suitable compounding quantity.
 フッ素樹脂としては、ポリテトラフルオロエチレン(PTEF)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等を挙げることができる。また、ポリクロロフルオロエチレン(PCTFE)のように一部に塩素を含んだ樹脂や、エチレン等との共重合体であってもよい。 Examples of the fluororesin include polytetrafluoroethylene (PTEF), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF). Further, it may be a resin partially containing chlorine, such as polychlorofluoroethylene (PCTFE), or a copolymer with ethylene or the like.
 高密度ポリエチレン樹脂としては、力学特性を考慮すると平均分子量が20万~30万前後のものが好ましい。高密度ポリエチレン樹脂は、低温脆化温度が-80℃以下であり、耐低温衝撃性が優れる。 As the high density polyethylene resin, those having an average molecular weight of about 200,000 to 300,000 are preferable in consideration of mechanical properties. The high-density polyethylene resin has a low-temperature embrittlement temperature of −80 ° C. or lower and excellent low-temperature impact resistance.
 また、層1以外の層は、上記組成物層との接着性が悪い場合には、接着層を介して設けてもよい。 Further, layers other than the layer 1 may be provided via an adhesive layer when the adhesiveness to the composition layer is poor.
 本発明の燃料配管部品を製造する方法としては、押出成形が好ましく用いられ、多層燃料配管部品を製造する方法としては、例えば、構成する層の数又は材料の数に対応する数の押出機より押し出された溶融樹脂を、一つの多層チューブ用ダイスに導入し、ダイス内又はダイスを出た直後に各層を接着させ、その後通常のチューブ成形と同様にして製造する方法、また、一旦単層チューブを成形した後、そのチューブの外側又は内側に他の層をコーティングする方法等を挙げることができる。 Extrusion molding is preferably used as a method for producing the fuel pipe component of the present invention, and as a method for producing a multilayer fuel pipe component, for example, from the number of extruders corresponding to the number of constituent layers or the number of materials. A method in which the extruded molten resin is introduced into one multi-layer tube die, each layer is bonded in the die or immediately after the die is removed, and then manufactured in the same manner as normal tube molding. After molding, a method of coating another layer on the outside or inside of the tube can be exemplified.
 多層燃料チューブ等の多層チューブを製造する方法としては、例えば、
 構成する層の数または材料の数に対応する数の押出機より押出された溶融樹脂を、1つの多層チューブ用ダイスに導入し、
 ダイス内またはダイスを出た直後に各層を接着させ、
 その後通常のチューブ成形と同様にして製造する方法、また、
 一旦単層チューブを成形した後、
 そのチューブの外側に他の層をコーティングする方法等を挙げることができる。
 チューブの形状は直管であってもいいし、蛇腹状に加工されていても構わない。
 直管の多層チューブに対しては、その外側に保護層を設けるようにしてもよく、
 その形成材料としては、例えば、クロロプレンゴム、エチレンプロピレンジエン三元共重合体、エピクロルヒドリンゴム、塩素化ポリエチレン、アクリルゴム、クロロスルホン化ポリエチレン、シリコンゴム等のゴムを挙げることができる。
As a method of manufacturing a multilayer tube such as a multilayer fuel tube, for example,
The molten resin extruded from a number of extruders corresponding to the number of constituent layers or the number of materials is introduced into one multilayer tube die,
Bond each layer in the die or immediately after exiting the die,
After that, the method of manufacturing in the same way as normal tube molding,
Once the single layer tube is formed,
Examples include a method of coating another layer on the outside of the tube.
The shape of the tube may be a straight tube or may be processed into a bellows shape.
For straight multilayer tubes, a protective layer may be provided on the outside,
Examples of the forming material include rubbers such as chloroprene rubber, ethylene propylene diene terpolymer, epichlorohydrin rubber, chlorinated polyethylene, acrylic rubber, chlorosulfonated polyethylene, and silicon rubber.
 例えば、Plabor(プラスチック工学研究所(株)製)の成形機を用いて、
 本発明の樹脂組成物を押出温度340℃にて別々に溶融させ、吐出された溶融樹脂を積層管状体に成形し、寸法制御するサイジングダイにより冷却し、引き取りを行い、
 本発明の樹脂組成物を成形してなる単層チューブを製造できる。
For example, using a molding machine of Plabor (Plastics Engineering Laboratory Co., Ltd.)
The resin composition of the present invention is melted separately at an extrusion temperature of 340 ° C., the discharged molten resin is molded into a laminated tubular body, cooled by a sizing die that controls dimensions, and taken up.
A single-layer tube formed by molding the resin composition of the present invention can be produced.
 例えば、Plabor(プラスチック工学研究所(株)製)の成形機を用いて、
 本発明の樹脂組成物を押出温度340℃、
 PA11を押出温度260℃にて別々に溶融させ、吐出された溶融樹脂をアダプターによって合流させ、積層管状体に成形し、寸法制御するサイジングダイにより冷却し、引き取りを行い、
 本発明の樹脂組成物を成形してなる層1(内層)、
 PA6を成形してなる層2(外層)とする2層ホースを製造できる。
For example, using a molding machine of Plabor (Plastics Engineering Laboratory Co., Ltd.)
Extrusion temperature of the resin composition of the present invention is 340 ° C,
PA11 is melted separately at an extrusion temperature of 260 ° C., and the discharged molten resin is joined by an adapter, formed into a laminated tubular body, cooled by a sizing die that controls dimensions, and taken up.
Layer 1 (inner layer) formed by molding the resin composition of the present invention,
A two-layer hose can be manufactured as layer 2 (outer layer) formed by molding PA6.
 例えば、Plabor(プラスチック工学研究所(株)製)の成形機にて、
 本発明の樹脂組成物を押出温度340℃、
 PA11を押出温度260℃、
 PA12を押出温度260℃にて別々に溶融させ、吐出された溶融樹脂をアダプタ-によって合流させ、積層管状体に成形し、寸法制御するサイジングダイにより冷却し、引き取りを行い、
 本発明の樹脂組成物を成形してなる層1(最内層)、
 PA6を成形してなる層2(中間層)、
 PA12を成形してなる層3(最外層)とする3層チューブを製造できる。
For example, in a molding machine of Plabor (Plastics Engineering Laboratory Co., Ltd.)
Extrusion temperature of the resin composition of the present invention is 340 ° C,
PA11 was extruded at 260 ° C,
PA12 is melted separately at an extrusion temperature of 260 ° C., and the discharged molten resin is joined by an adapter, formed into a laminated tubular body, cooled by a sizing die that controls dimensions, and taken off.
Layer 1 (innermost layer) formed by molding the resin composition of the present invention,
Layer 2 (intermediate layer) formed by molding PA6,
A three-layer tube having a layer 3 (outermost layer) formed by molding PA12 can be produced.
 例えば、多層チューブ成形用装置として、最内層用押出機、内層用押出機、中間層用押出機および外層用押出機を備え、この4台の押出機から吐出された樹脂をアダプターによって集めチューブ状に成形するダイス、チューブを冷却し寸法制御するサイジングダイおよび引取り機等からなる装置を用いることができる。
 この場合、例えば、
 最内層(層4)用押出機のホッパーに本発明のPA11を含む樹脂組成物を、
 内層用(層3)押出機のホッパーにPA12を含む樹脂組成物を、
 中間層(層1)用押出機のホッパーに本発明の樹脂組成物を、
 外層用押出機のホッパーにその他の樹脂組成物を投入して多層チューブを作製できる。
For example, as an apparatus for forming a multilayer tube, an innermost layer extruder, an inner layer extruder, an intermediate layer extruder and an outer layer extruder are provided, and the resin discharged from these four extruders is collected by an adapter into a tube shape. It is possible to use an apparatus comprising a die to be formed, a sizing die that cools the tube and controls its dimensions, and a take-up machine.
In this case, for example,
A resin composition containing PA11 of the present invention in the hopper of the innermost layer (layer 4) extruder,
A resin composition containing PA12 in the hopper of the inner layer (layer 3) extruder,
The resin composition of the present invention is applied to the hopper of the intermediate layer (layer 1) extruder.
A multilayer tube can be produced by introducing another resin composition into the hopper of the outer layer extruder.
 例えば、高温薬液及び/又はガス搬送用積層ホース製造法としては、
 層の数もしくは材料の数に対応する押出機を用いて、溶融押出し、ダイ内あるいは外において同時に積層する方法(共押出法)、
 あるいは、一旦、単層ホースあるいは、上記の方法により製造された高温薬液及び/又はガス搬送用積層ホースを予め製造しておき、外側に順次、必要に応じては接着剤を使用し、樹脂を一体化せしめ積層する方法(コーティング法)が挙げられる。
For example, as a method for producing a high-temperature chemical solution and / or a laminated hose for gas transportation
A method of melt extrusion using an extruder corresponding to the number of layers or the number of materials, and a method of simultaneously laminating inside or outside the die (coextrusion method),
Alternatively, once a single layer hose or a laminated hose for high temperature chemicals and / or gas transport manufactured by the above method is manufactured in advance, an adhesive is used on the outside sequentially, if necessary, A method of laminating and laminating (coating method) is mentioned.
 燃料配管部品としては、自動車燃料配管系用のチューブ等の燃料配管部品が好ましく挙げられる。 As fuel pipe parts, fuel pipe parts such as tubes for automobile fuel pipe systems are preferably mentioned.
(7-3)燃料配管用継手
 本発明の燃料配管用継手の製造は、本発明の燃料配管部品用ポリアミド樹脂組成物を射出成形法その他、樹脂製継手の製造方法として公知のいずれの方法によってもよい。
(7-3) Fuel Piping Joint The fuel pipe joint of the present invention can be produced by any of the injection molding methods and other known methods for producing resin joints of the present invention. Also good.
 本発明の燃料配管用継手の具体例としては、
 好ましくは、燃料配管用クイックコネクターであり、
 より好ましくは、燃料配管用クイックコネクターの筒状本体部が、本発明の燃料配管部品用ポリアミド樹脂組成物を成形して得られる燃料配管用クイックコネクターが挙げられる。
As a specific example of the joint for fuel piping of the present invention,
Preferably, a fuel pipe quick connector,
More preferably, the quick connector for fuel pipes obtained by molding the polyamide resin composition for fuel pipe parts of the present invention in the cylindrical main body portion of the quick connector for fuel pipes may be mentioned.
 図3には、代表的なクイックコネクター1の断面を示す。
 本図に示すクイックコネクター1は、スチールチューブ2の端部とプラスチックチューブ3の端部を相互結合している。スチールチューブ2の端部から離れた位置にあるフランジ形状部4とコネクター1のリテーナー5により着脱可能に係合し、O-リング6の列によって燃料を封止する。また、プラスチックチューブ3とコネクター1の接合部では、コネクター端部は径方向へ突出した複数のあご部8を有する細長いニップル7を形成している。
 プラスチックチューブ3の端部はニップル7の外面に密着嵌合し、あご部8との機械的な接合とチューブとニップル間に備えたO-リング9により燃料を封止する。
FIG. 3 shows a cross section of a typical quick connector 1.
In the quick connector 1 shown in this figure, the end of the steel tube 2 and the end of the plastic tube 3 are connected to each other. The flange-shaped portion 4 located away from the end of the steel tube 2 is detachably engaged by the retainer 5 of the connector 1, and the fuel is sealed by the row of O-rings 6. Further, at the joint portion between the plastic tube 3 and the connector 1, the connector end portion forms an elongated nipple 7 having a plurality of jaw portions 8 protruding in the radial direction.
The end portion of the plastic tube 3 is closely fitted to the outer surface of the nipple 7 and the fuel is sealed by mechanical joining with the jaw portion 8 and an O-ring 9 provided between the tube and the nipple.
 クイックコネクターの製造法としては、筒状本体やリテーナー、O-リング等各パーツを射出成形などで作成した後、所定の場所にアッセンブリーして組みたてる方法が挙げられる。 As a manufacturing method of the quick connector, there is a method in which each part such as a cylindrical main body, a retainer and an O-ring is formed by injection molding and then assembled and assembled at a predetermined place.
上記クイックコネクターはチューブ、好ましくは樹脂を含む樹脂組成物から成形されるチューブ(以下、樹脂チューブともいう)と係合した形のアッセンブリーに組みたてられ、燃料配管部品として用いられる。 The quick connector is assembled into an assembly that is engaged with a tube, preferably a tube formed from a resin composition containing a resin (hereinafter also referred to as a resin tube), and used as a fuel piping component.
 クイックコネクターと樹脂チューブとは、嵌合により機械的に接合してもよいが、スピン溶着、振動溶着、レーザー溶着、超音波溶着等の溶着方法により接合することが好ましい。これにより気密性を向上させることができる。 The quick connector and the resin tube may be mechanically joined by fitting, but are preferably joined by a welding method such as spin welding, vibration welding, laser welding, or ultrasonic welding. Thereby, airtightness can be improved.
 また、挿入後、オーバーラップする部分に十分締めつけ力をかけられる、厚肉の樹脂チューブや熱収縮チューブ、クリップ等を用い気密性を向上させることもできる。 In addition, after insertion, airtightness can be improved by using a thick resin tube, heat-shrinkable tube, clip or the like that can apply a sufficient tightening force to the overlapping part.
 樹脂チューブは、その途中に波形領域を有するものであってもよい。このような波形領域とは、チューブ本体途中の適宜の領域を、波形形状、蛇腹形状、アコーディオン形状、またはコルゲート形状等に形成した領域である。かかる波形の折り目が複数個環状に配設されている領域を有することにより、その領域において環状の一側を圧縮し、他側を外方に伸張することができるので、応力疲労や層間の剥離を伴うことなく容易に任意の角度で曲げることが可能になる。 The resin tube may have a corrugated area in the middle. Such a corrugated region is a region in which an appropriate region in the middle of the tube body is formed into a corrugated shape, a bellows shape, an accordion shape, a corrugated shape, or the like. By having a region in which a plurality of such wavy folds are annularly arranged, one side of the annular shape can be compressed and the other side can be extended outwardly in that region, so stress fatigue and delamination It is possible to easily bend at any angle without accompanying.
 樹脂チューブは、ナイロン11、ナイロン12等のポリアミド樹脂を含むポリアミド樹脂組成物からなる層を含むことが好ましく、他にバリア層を含む多層構造をとることが好ましく、PBT、PBN、フッソ樹脂、PA92、クレーがナノ分散したナイロン、EVOHなどがバリア層を形成する樹脂として使用できる。 The resin tube preferably includes a layer made of a polyamide resin composition including a polyamide resin such as nylon 11 or nylon 12, and preferably has a multilayer structure including a barrier layer. PBT, PBN, fluorine resin, PA92 Nylon in which clay is nano-dispersed, EVOH, or the like can be used as a resin for forming the barrier layer.
 また、液体燃料が流動するラインでは導電層が最内層に含まれている構成が静電気による破損防止のため好ましい。 Also, in a line where liquid fuel flows, a configuration in which a conductive layer is included in the innermost layer is preferable for preventing damage due to static electricity.
 上記樹脂チューブの外周の全部または一部には、石ハネ、他部品との摩耗、耐炎性を考慮して、
 エピクロルヒドリンゴム、NBR、NBRとポリ塩化ビニルの混合物、
 クロロスルホン化ポリエチレンゴム、塩素化ポリエチレンゴム、アクリルゴム(ACM)、クロロプレンゴム(CR)、エチレン-プロピレンゴム(EPR)、エチレン-プロピレン-ジエンゴム(EPDM)、NBRとEPDMの混合物ゴム、
 塩化ビニル系、オレフィン系、エステル系、アミド系等の熱可塑性エラストマー等
から構成されるソリッドまたはスポンジ状の保護部材(プロテクター)を配設することができる。
 保護部材は既知の手法によりスポンジ状の多孔体としてもよい。多孔体とすることにより、軽量で断熱性に優れた保護部を形成できる。また、材料コストも低減できる。
 あるいは、ガラス繊維などを添加してその強度を改善してもよい。
 保護部材の形状は特に限定されないが、通常は、筒状部材または多層チューブを受け入れる凹部を有するブロック状部材である。
 筒状部材の場合は、予め作製した筒状部材に多層チューブを後で挿入したり、あるいは多層チューブの上に筒状部材を被覆押出しして両者を密着して作ることができる。
 両者を接着させるには、保護部材内面あるいは前記凹面に必要に応じ接着剤を塗布し、これに多層チューブを挿入または嵌着し、両者を密着することにより、多層チューブと保護部材の一体化された構造体を形成する。
All or a part of the outer periphery of the resin tube, in consideration of stone shaving, wear with other parts, flame resistance,
Epichlorohydrin rubber, NBR, a mixture of NBR and polyvinyl chloride,
Chlorosulfonated polyethylene rubber, chlorinated polyethylene rubber, acrylic rubber (ACM), chloroprene rubber (CR), ethylene-propylene rubber (EPR), ethylene-propylene-diene rubber (EPDM), rubber mixture of NBR and EPDM,
A solid or sponge-like protective member (protector) made of a thermoplastic elastomer such as vinyl chloride, olefin, ester or amide can be provided.
The protective member may be a sponge-like porous body by a known method. By using a porous body, a protective part that is lightweight and excellent in heat insulation can be formed. Moreover, material cost can also be reduced.
Alternatively, the strength may be improved by adding glass fiber or the like.
Although the shape of a protection member is not specifically limited, Usually, it is a block-shaped member which has a recessed part which receives a cylindrical member or a multilayer tube.
In the case of a cylindrical member, a multilayer tube can be inserted later into a cylindrical member prepared in advance, or the cylindrical member can be coated and extruded on the multilayer tube to adhere both together.
In order to bond the two, the adhesive is applied to the inner surface of the protective member or the concave surface as necessary, and the multilayer tube is inserted or fitted into the inner surface, and the multilayer tube and the protective member are integrated with each other. Forming a structure.
 本発明におけるクイックコネクターは、O-リングや溶着等の気密性向上技術と合わせることにより、燃料ガソリン混合燃料等の壁面透過量が少なく、クリープ変形耐性等の特性に優れたものとすることができる。
 したがって、本発明におけるクイックコネクターは、燃料バリア性に優れた樹脂チューブ、好ましくは本発明の燃料チューブと組み合わせて、厳しい燃料放出規制に対して柔軟に対応できる優れた燃料ラインシステムとして有用である。
The quick connector according to the present invention, when combined with an airtightness improving technique such as O-ring or welding, has a small amount of wall permeation of fuel / gasoline mixed fuel and the like, and has excellent characteristics such as creep deformation resistance. .
Therefore, the quick connector according to the present invention is useful as an excellent fuel line system capable of flexibly responding to strict fuel emission regulations in combination with a resin tube excellent in fuel barrier properties, preferably a fuel tube according to the present invention.
〔プリント基板表面実装部品用ポリアミド樹脂組成物〕
 以下、電子部品をプリント基板表面に実装する方式を表面実装技術(以下、SMT)といい、SMTにより、プリント基板表面に実装される電子部品を表面実装部品(以下、SMD)ともいう。
[Polyamide resin composition for printed circuit board surface mount parts]
Hereinafter, a method of mounting an electronic component on a printed circuit board surface is referred to as a surface mounting technology (hereinafter, SMT), and an electronic component mounted on the printed circuit board surface by SMT is also referred to as a surface mounted component (hereinafter, SMD).
(1)成分Aの含有量
 本発明のSMD用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、SMDの成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、SMDの高温度下での耐熱性、各種薬品に対する耐薬品性を安定に確保する観点から、
 樹脂組成物中の成分Aの含有量が、好ましくは、50~100質量%、より好ましくは、55~100質量%、更に好ましくは、60~100質量%、更に好ましくは、70~90質量%である。
(2)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(1) Content of Component A The polyamide resin composition for SMD of the present invention (hereinafter also referred to as a resin composition) is a good moldable temperature range, heat resistance, and the like for improving the productivity at the time of molding SMD. From the viewpoint of ensuring melt moldability (hereinafter also referred to as thermal characteristics), ensuring stable heat resistance at high temperatures of SMD, and stable chemical resistance to various chemicals,
The content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, still more preferably 60 to 100% by mass, and still more preferably 70 to 90% by mass. It is.
(2) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、好ましくは0~50質量部、より好ましくは0~40質量部、更に好ましくは0~30質量部である。 The polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
(3)無機粒子(成分C7)
 本発明の樹脂組成物には、低線膨張の観点から、無機粒子である成分C7を含めることが好ましく、
 SMDがプリント配線基板の部品として使用されることを考慮すると導電性を有さない金属酸化物、無機化合物などの無機粒子がより好ましく、
 酸化鉄、酸化亜鉛などの金属酸化物、硫化モリブデン等の硫化物が更に好ましい。
(3) Inorganic particles (component C7)
From the viewpoint of low linear expansion, the resin composition of the present invention preferably contains component C7 that is inorganic particles,
Considering that SMD is used as a component of a printed wiring board, inorganic particles such as metal oxides and inorganic compounds having no conductivity are more preferable.
More preferred are metal oxides such as iron oxide and zinc oxide, and sulfides such as molybdenum sulfide.
 例えば、本発明の樹脂組成物を用いた高比重の成形物の用途においては、密度が5g/cm以上の無機粒子を好ましく使用できる。また、例えば、本発明の樹脂組成物を用いた樹脂磁石の用途においては、バリウムフェライト、ストロンチウムフェライトなどのフェライト、サマリウム-コバルト系、ネオジウム-鉄-ボロン系などの希土類磁性材料などの磁性粒子を好ましく使用できる。 For example, in the use of a molded product having a high specific gravity using the resin composition of the present invention, inorganic particles having a density of 5 g / cm 3 or more can be preferably used. Further, for example, in the application of a resin magnet using the resin composition of the present invention, magnetic particles such as ferrites such as barium ferrite and strontium ferrite, rare earth magnetic materials such as samarium-cobalt and neodymium-iron-boron are used. It can be preferably used.
 無機粒子は1種でも2種以上の併用でもよく、また表面処理などが施されていてもよい。
 表面処理としては、チタネート系カップリング剤による表面処理、シラン系表面処理剤による表面処理などが挙げられる。
 チタネート系カップリング剤による表面処理については、例えば、前述の特開平2-255760号公報に記載される公知の手法、
 シラン系表面処理剤による表面処理については例えば前述の特開平10-158507号公報に記載される公知の方法を採用できる。
The inorganic particles may be used alone or in combination of two or more, and may be subjected to surface treatment.
Examples of the surface treatment include surface treatment with a titanate coupling agent, surface treatment with a silane surface treatment agent, and the like.
As for the surface treatment with a titanate coupling agent, for example, a known method described in the above-mentioned JP-A-2-255760,
For the surface treatment with the silane-based surface treatment agent, for example, a known method described in the above-mentioned JP-A-10-158507 can be employed.
 本発明において、成分Aと成分C7との質量比は、高比重化、磁性化などの特性付与を効率よく付加する観点から、成分Aと成分C7との重量比(成分A/成分C7)は、
 好ましくは、50/50~5/95、より好ましくは、20/80~5/95である。
In the present invention, the mass ratio of component A and component C7 is such that the weight ratio of component A and component C7 (component A / component C7) is from the viewpoint of efficiently adding properties such as higher specific gravity and magnetism. ,
The ratio is preferably 50/50 to 5/95, more preferably 20/80 to 5/95.
(4)補強繊維(成分8)
 本発明の樹脂組成物は、高温下において受ける変形負荷の耐性を確保する観点から、補強繊維を配合することが好ましく、SMDがプリント配線基板の部品として使用されることを考慮すると導電性を有さないことが好ましい。
(4) Reinforcing fiber (component 8)
The resin composition of the present invention preferably contains a reinforcing fiber from the viewpoint of ensuring the resistance to deformation load received under high temperature, and has conductivity when considering that SMD is used as a component of a printed wiring board. Preferably not.
 補強繊維としては、ガラス繊維、鉱物繊維などの無機繊維、ポリアミド樹脂より強靭なアラミド繊維などの有機繊維を挙げることができ、入手し易さの観点から、ガラス繊維が好ましい。
 補強繊維を配合することで、組成物の強度、耐クリープ性などの物性が改良される。
Examples of reinforcing fibers include inorganic fibers such as glass fibers and mineral fibers, and organic fibers such as aramid fibers that are tougher than polyamide resins. Glass fibers are preferred from the viewpoint of availability.
By blending the reinforcing fiber, physical properties such as strength and creep resistance of the composition are improved.
 無機繊維としては、
 繊維径が、好ましくは0.01~50μm、より好ましくは0.03~30μm、
 繊維長が、好ましくは1~50mm、より好ましくは1~30mm、更に好ましくは1~20mm、
のものを使用することが好ましい。
 但し、本発明のポリアミド樹脂組成物を溶融混錬してSMDを成形する際に、無機繊維が切断等して、本発明のポリアミド樹脂組成物又はSMD内では、
 無機繊維の繊維径が、0.01~50μm、好ましくは0.03~30μm、
 無機繊維の繊維長が、0.5~10mm、好ましくは0.7~5mm程度になっている場合がある。
As inorganic fiber,
The fiber diameter is preferably 0.01 to 50 μm, more preferably 0.03 to 30 μm,
The fiber length is preferably 1 to 50 mm, more preferably 1 to 30 mm, still more preferably 1 to 20 mm,
Are preferably used.
However, when the SMD is formed by melt-kneading the polyamide resin composition of the present invention, the inorganic fibers are cut and the like, and within the polyamide resin composition or SMD of the present invention,
The fiber diameter of the inorganic fiber is 0.01 to 50 μm, preferably 0.03 to 30 μm,
The fiber length of the inorganic fiber may be about 0.5 to 10 mm, preferably about 0.7 to 5 mm.
 ガラス繊維の配合割合は、本発明の樹脂組成物による成形体の剛性、耐クリープ性改善効果を安定に確保し、本発明の樹脂組成物の流動性を安定に確保してショートショットを抑制し表面状態を良好に確保する観点から、本発明の樹脂組成物の樹脂全体100質量部に対して、好ましくは2~40質量部、より好ましくは2~38質量部、更に好ましくは3~35質量部である。 The blending ratio of the glass fiber ensures the effect of improving the rigidity and creep resistance of the molded body by the resin composition of the present invention stably, and stably secures the fluidity of the resin composition of the present invention to suppress short shots. From the viewpoint of ensuring a good surface condition, the amount is preferably 2 to 40 parts by weight, more preferably 2 to 38 parts by weight, and still more preferably 3 to 35 parts by weight with respect to 100 parts by weight of the total resin of the resin composition of the present invention. Part.
 成分Aが有する、機械的強度、耐薬品性、低吸水性、耐加水分解性などに優れ、かつ成形可能温度幅が広く、溶融成形性に優れた特性は、ポリアミドに補強繊維を配合した場合にも、基本的にそのまま保持されるとともに、補強繊維の配合により機械的強度や耐熱性などの一定の特性が向上する。 Component A has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability. In addition, it is basically maintained as it is, and certain characteristics such as mechanical strength and heat resistance are improved by the addition of the reinforcing fiber.
(5)プリント基板表面実装部品
 本発明のSMDは、本発明の樹脂組成物を、例えば、射出成形、押出成形、ブロー成形、(プレス、ロール)圧縮成形、中空成形、発泡、真空・圧空、延伸発泡、延伸等を組合せて成形することにより作製することができる。
 補強繊維や無機粒子を配合する場合、
 成分A等の本発明の樹脂組成物に配合する樹脂と補強繊維を予めブレンドし、あるいは
 成形機の途中で溶融混錬している樹脂中に補強繊維を投入することも可能である。
(5) Printed circuit board surface mount component The SMD of the present invention is obtained by, for example, injection molding, extrusion molding, blow molding, (press, roll) compression molding, hollow molding, foaming, vacuum / compressed air, It can be produced by molding by combining stretch foaming, stretching and the like.
When compounding reinforcing fibers and inorganic particles,
It is also possible to add the reinforcing fibers into the resin that is blended in advance with the resin and the reinforcing fibers blended in the resin composition of the present invention, such as component A, or melted and kneaded in the middle of the molding machine.
 本発明の樹脂組成物を成形して得られるSMDとしては、フレキシブル配線基板、ハーネス・ケーブル、SMTコネクタ等が好ましく、SMTコネクタがより好ましい。 As the SMD obtained by molding the resin composition of the present invention, a flexible wiring board, a harness / cable, an SMT connector and the like are preferable, and an SMT connector is more preferable.
〔電子写真装置部品用ポリアミド樹脂組成物〕
(1)成分Aの含有量
  本発明の電子写真装置部品用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、電子写真装置部品の成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性を確保し、電子写真装置部品が導電性、表面平滑性及び機械的物性を高温下で安定に確保する観点から、
 樹脂組成物中の成分Aの含有量が、好ましくは、50~100質量%、より好ましくは、55~100質量%、更に好ましくは、60~100質量%である。
[Polyamide resin composition for electrophotographic apparatus parts]
(1) Content of Component A The polyamide resin composition for an electrophotographic apparatus component (hereinafter also referred to as a resin composition) of the present invention can be molded well to improve productivity during molding of the electrophotographic apparatus component. From the viewpoint of ensuring the temperature range, heat resistance, melt moldability, and ensuring that the electrophotographic apparatus parts stably maintain conductivity, surface smoothness and mechanical properties at high temperatures,
The content of component A in the resin composition is preferably 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
(2)導電性付与剤(成分B6)
 本発明のポリアミド樹脂組成物には、電子写真装置部品が静電気が発生し易い環境で作動するため、電子写真装置部品の帯電を抑制する観点から、導電性付与剤(成分B6)を配合する。
(2) Conductivity imparting agent (component B6)
The polyamide resin composition of the present invention is blended with a conductivity-imparting agent (component B6) from the viewpoint of suppressing the charging of the electrophotographic apparatus component because the electrophotographic apparatus component operates in an environment where static electricity is likely to be generated.
 導電性とは、たとえば、電子写真装置部品が電子装置内で作動するに際して、樹脂のような絶縁体に静電気が蓄積しない程度の電気特性をいう。これにより、電子写真装置部品が電子装置内で作動するに際して、発生する静電気の散逸が可能になる。 “Conductivity” means, for example, an electrical characteristic such that static electricity does not accumulate in an insulator such as a resin when an electrophotographic apparatus component operates in the electronic apparatus. Thereby, it is possible to dissipate static electricity generated when the electrophotographic apparatus component operates in the electronic apparatus.
 導電性付与剤の配合量は、用いる導電性付与剤の種類により異なるため、一概に規定はできないが、導電性と流動性、機械的強度などとのバランスの観点から、
 ポリアミド樹脂を含む樹脂全体100質量部に対して、好ましくは2~40質量部である。
Since the blending amount of the conductivity imparting agent varies depending on the type of the conductivity imparting agent to be used, it cannot be specified unconditionally, but from the viewpoint of balance between conductivity, fluidity, mechanical strength, etc.
The amount is preferably 2 to 40 parts by mass with respect to 100 parts by mass of the entire resin including the polyamide resin.
 カーボンブラックの場合では、導電性と流動性のバランスの観点から、ポリアミド樹脂を含む樹脂全体100質量部に対して、
 より好ましくは2~30重量部、更に好ましくは2~15重量部である。
 炭素繊維の場合では、導電性、耐衝撃性及び成形品表面の平滑性(摺動性)のバランスの観点から、ポリアミド樹脂を含む樹脂全体100質量部に対して、
 より好ましくは3~40質量部、更に好ましくは5~35質量部、更に好ましくは7~35質量部である。
In the case of carbon black, from the viewpoint of the balance between conductivity and fluidity, with respect to 100 parts by mass of the entire resin including the polyamide resin,
The amount is more preferably 2 to 30 parts by weight, still more preferably 2 to 15 parts by weight.
In the case of carbon fiber, from the viewpoint of the balance of conductivity, impact resistance and the smoothness (slidability) of the surface of the molded product, with respect to 100 parts by mass of the entire resin including the polyamide resin,
The amount is more preferably 3 to 40 parts by mass, still more preferably 5 to 35 parts by mass, and still more preferably 7 to 35 parts by mass.
 本発明の電子写真装置部品用材料に求められる導電性は、用途に応じて異なってよいが、ポリアミド樹脂の表面抵抗が1015Ω程度であることを考慮すると、本発明の樹脂組成物に導電性付与剤を配合することで、好ましくは10~1012Ω程度、より好ましくは10~1010Ω程度である。 The conductivity required for the material for an electrophotographic apparatus component of the present invention may vary depending on the application, but considering that the surface resistance of the polyamide resin is about 10 15 Ω, the conductivity of the resin composition of the present invention is By adding a property-imparting agent, it is preferably about 10 1 to 10 12 Ω, more preferably about 10 3 to 10 10 Ω.
(3)層状珪酸塩(成分B5)
 本発明の樹脂組成物は、成分A及びB6のみで、導電性、表面平滑性及び機械的物性の高温下での安定性に優れる電子写真装置部品を製造することができるが、さらに強靭な機械的物性求められる用途においては、本発明の樹脂組成物に上述の層状珪酸塩(成分B5)をさらに含ませることが好ましい。
 また、層状珪酸塩を添加することにより、本発明の樹脂組成物から作製した電子写真装置部品の剛性及び機械的物性を向上させることができる。
 上記層状珪酸塩の量は、電子写真装置部品の剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させる観点と、樹脂組成物の成形加工性と耐衝撃性を確保する観点とから、成分A100質量部に対して、
 好ましくは0.05~10質量部、より好ましくは0.05~8質量部、更に好ましくは0.05~5質量部である。
(3) Layered silicate (component B5)
The resin composition of the present invention can produce an electrophotographic apparatus component that is excellent only in components A and B6 and has excellent conductivity, surface smoothness, and mechanical properties at high temperatures. In applications where specific physical properties are required, it is preferable to further include the above-mentioned layered silicate (component B5) in the resin composition of the present invention.
Moreover, the addition of layered silicate can improve the rigidity and mechanical properties of the electrophotographic apparatus parts produced from the resin composition of the present invention.
The amount of the above-mentioned layered silicate ensures the viewpoint of improving the rigidity, weather resistance and / or heat resistance of the parts of the electrophotographic apparatus, and the barrier property against liquid or vapor, and the molding processability and impact resistance of the resin composition. From the viewpoint, with respect to 100 parts by mass of component A,
The amount is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, and still more preferably 0.05 to 5 parts by mass.
(4)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(4) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、好ましくは0~50質量部、より好ましくは0~40質量部、更に好ましくは0~30質量部である。 The polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
(5)補強繊維(成分C8)
 本発明の樹脂組成物は、高温下において受ける変形負荷の耐性を確保する観点から、導電性を有さない上述の補強繊維(成分C8)を配合してもよい。
(5) Reinforcing fiber (component C8)
The resin composition of this invention may mix | blend the above-mentioned reinforcing fiber (component C8) which does not have electroconductivity from a viewpoint of ensuring the tolerance of the deformation load received under high temperature.
 ガラス繊維の配合割合は、本発明の樹脂組成物による成形体の剛性、耐クリープ性改善効果を安定に確保し、本発明の樹脂組成物の流動性を安定に確保してショートショットを抑制し表面状態を良好に確保する観点から、本発明の樹脂組成物の樹脂全体100質量部に対して、好ましくは2~40質量部、より好ましくは2~38質量部、更に好ましくは3~35質量部である。 The blending ratio of the glass fiber ensures the effect of improving the rigidity and creep resistance of the molded body by the resin composition of the present invention stably, and ensures the fluidity of the resin composition of the present invention to suppress short shots. From the viewpoint of ensuring a good surface condition, the amount is preferably 2 to 40 parts by weight, more preferably 2 to 38 parts by weight, and still more preferably 3 to 35 parts by weight with respect to 100 parts by weight of the total resin of the resin composition of the present invention. Part.
 成分Aが有する、機械的強度、耐薬品性、低吸水性、耐加水分解性などに優れ、かつ成形可能温度幅が広く、溶融成形性に優れた特性は、ポリアミドに補強繊維を配合した場合にも、基本的にそのまま保持されるとともに、補強繊維の配合により機械的強度や耐熱性などの一定の特性が向上する。 Component A has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability. In addition, it is basically maintained as it is, and certain characteristics such as mechanical strength and heat resistance are improved by the addition of the reinforcing fiber.
(6)電子写真装置部品
 本発明の電子写真装置部品は、本発明の樹脂組成物を、例えば、射出成形、押出成形、ブロー成形、(プレス、ロール)圧縮成形、中空成形、発泡、真空・圧空、延伸発泡、延伸等を組合せて成形することにより作製することができる。
 補強繊維や無機粒子を配合する場合、
 成分A等の本発明の樹脂組成物に配合する樹脂と成分B6、必要であれば成分C8を予めブレンドし、あるいは
 成形機の途中で溶融混錬している樹脂中に成分B、必要であれば補強繊維を投入することも可能である。
(6) Electrophotographic apparatus component The electrophotographic apparatus component of the present invention is obtained by, for example, injection molding, extrusion molding, blow molding, (press, roll) compression molding, hollow molding, foaming, vacuum- It can be produced by molding by combining compressed air, stretched foaming, stretching and the like.
When compounding reinforcing fibers and inorganic particles,
Ingredients such as component A and the resin to be blended with the resin composition of the present invention and component B6, if necessary, component C8 are blended in advance, or component B is necessary in the resin melt-kneaded in the middle of the molding machine. For example, reinforcing fibers can be introduced.
 電子写真用部品は、本発明の電子写真装置部品を、例えば、射出成形、押出成形、ブロー成形、圧縮成形等により成形することにより製造することができる。 The electrophotographic component can be produced by molding the electrophotographic apparatus component of the present invention by, for example, injection molding, extrusion molding, blow molding, compression molding or the like.
 本発明電子写真装置部品は、生産性の観点からインフレーション押出成形により得ることが好ましい。
 この方法で任意の直径を有する円筒状で、厚み30~1000μm、より好ましくは30~500μm、更に好ましくは30~300μmの成形品が得られる。
 このように成形された電子写真装置部品は継ぎ目を有さないものであり、電子写真装置である電子写真方式の複写機、プリンター、ファックス等に使用される中間転写ベルト、転写搬送ベルト等の電子写真装置用ベルトとして有用である。
 さらに同様に円筒状に成形された電子写真装置部品を導電性支持体上に被覆し加熱、融着させることにより電子写真装置用導電性ロールとすることができる。
 あるいは、押出し機で導電性支持体上に導電性ポリアミド組成物を連続的に溶融被覆することにより導電性ロールとすることもできる。
 導電性ロールは例えばクリーニングロール、帯電ロール、現像ロール、転写ロールとして有用である。
The electrophotographic apparatus component of the present invention is preferably obtained by inflation extrusion from the viewpoint of productivity.
By this method, a molded product having a cylindrical shape having an arbitrary diameter and a thickness of 30 to 1000 μm, more preferably 30 to 500 μm, still more preferably 30 to 300 μm is obtained.
The parts of the electrophotographic apparatus formed in this way have no seams, and the electrophotographic apparatus such as an electrophotographic copying machine, an intermediate transfer belt used for a printer, a fax machine, a transfer conveying belt, etc. It is useful as a belt for photographic devices.
Similarly, a conductive roll for an electrophotographic apparatus can be obtained by coating an electrophotographic apparatus part formed into a cylindrical shape on a conductive support, and heating and fusing it.
Or it can also be set as an electroconductive roll by carrying out melt coating of the electroconductive polyamide composition continuously on an electroconductive support body with an extruder.
The conductive roll is useful as, for example, a cleaning roll, a charging roll, a developing roll, or a transfer roll.
 さらに前記した厚みで、円筒状に成形された本発明の電子写真装置部品は、平均表面粗さRaが1μm以下であり、同一面内における表面抵抗率の最大値と最小値との比が10倍以下であることが望ましい。
 Raが1μm以下であることにより本発明の電子写真装置部品を中間転写ベルト、帯電ロール、現像ロール、転写ロール等に使用した場合、生成画像の鮮明さが格段に向上する。
 また、同一面内における表面抵抗率の最大値と最小値との比が10倍以下であることにより本発明の電子写真装置部品はトナーや紙を引き付ける力が均一となり、中間転写ベルト、転写搬送ベルト、クリーニングロール、帯電ロール、現像ロール、転写ロール等の電子写真装置部品としてより好適に用いることができるようになる。
 電子写真装置部品のRaを1μm以下とするためには、成形時の環状ダイスの温度をやや高めに設定するのが有効である。また、電子写真装置部品の同一面内における体積抵抗率の最大値と最小値との比を10倍以下に抑えるには、導電性付与剤の凝集物サイズを小さく抑えるのが効果的であり、具体的には凝集物の平均径を3μm以下、より好ましくは2μm以下となるように成形する方法が有効である。
Furthermore, the electrophotographic apparatus component of the present invention formed into a cylindrical shape with the above-described thickness has an average surface roughness Ra of 1 μm or less, and the ratio between the maximum value and the minimum value of the surface resistivity in the same plane is 10. It is desirable to be less than double.
When the electrophotographic apparatus component of the present invention is used for an intermediate transfer belt, a charging roll, a developing roll, a transfer roll, and the like because Ra is 1 μm or less, the sharpness of the generated image is remarkably improved.
Further, since the ratio of the maximum value and the minimum value of the surface resistivity in the same plane is 10 times or less, the parts of the electrophotographic apparatus of the present invention have a uniform attractive force for attracting toner and paper, and the intermediate transfer belt, transfer conveyance It can be used more suitably as an electrophotographic apparatus component such as a belt, a cleaning roll, a charging roll, a developing roll, and a transfer roll.
In order to set the Ra of the electrophotographic apparatus component to 1 μm or less, it is effective to set the temperature of the annular die at the time of molding slightly higher. Further, in order to suppress the ratio of the maximum value and the minimum value of the volume resistivity in the same plane of the electrophotographic apparatus component to 10 times or less, it is effective to suppress the aggregate size of the conductivity imparting agent to be small. Specifically, a method of forming the aggregate so that the average diameter thereof is 3 μm or less, more preferably 2 μm or less is effective.
〔ICトレイ用ポリアミド樹脂組成物〕
(1)成分Aの含有量
  本発明のICトレイ用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、ICトレイの成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、SDMの高温度下での耐熱性、各種薬品に対する耐薬品性を安定に確保する観点から、
 樹脂組成物中の成分Aの含有量が、好ましくは50~99質量%、より好ましくは55~99質量%、更に好ましくは60~98質量%である。
[Polyamide resin composition for IC tray]
(1) Content of Component A The polyamide resin composition for IC tray of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range and heat resistance for improving the productivity at the time of molding an IC tray. From the viewpoint of ensuring the heat resistance and melt moldability (hereinafter, also referred to as thermal characteristics), and ensuring stable heat resistance at high temperatures of SDM and chemical resistance to various chemicals,
The content of component A in the resin composition is preferably 50 to 99% by mass, more preferably 55 to 99% by mass, and still more preferably 60 to 98% by mass.
(2)導電性付与剤(成分B6)
 本発明のポリアミド樹脂組成物には、ICトレイが集積回路部品の運搬又は包装に際して、発生する静電気の散逸が可能になり、集積回路部品の破損防止が可能となるという観点から、上述の導電性付与剤(成分B6)を配合する。
(2) Conductivity imparting agent (component B6)
The polyamide resin composition of the present invention has the above-mentioned conductivity from the viewpoint that the IC tray can dissipate static electricity generated when the integrated circuit component is transported or packaged, and the integrated circuit component can be prevented from being damaged. An imparting agent (component B6) is blended.
 導電性とは、たとえば、ICトレイが集積回路部品の運搬又は包装に際して、樹脂のような絶縁体に静電気が蓄積しない程度の電気特性をいう。これにより、ICトレイが集積回路部品の運搬又は包装に際して、発生する静電気の散逸が可能になる。 “Conductivity” means, for example, an electrical characteristic such that static electricity does not accumulate in an insulator such as a resin when an IC tray transports or packages an integrated circuit component. As a result, it is possible to dissipate static electricity generated when the IC tray carries or packages integrated circuit components.
 導電性付与剤の配合量は、用いる導電性付与剤の種類により異なるため、一概に規定はできないが、導電性と流動性、機械的強度などとのバランスの観点から、
 ポリアミド樹脂を含む樹脂全体100質量部に対して、好ましくは1~50質量部、より好ましくは2~40質量部、更に好ましくは5~40質量部、である。
 カーボンブラックの場合では、導電性と流動性のバランスの観点から、ポリアミド樹脂を含む樹脂全体100質量部に対して、
 より好ましくは2~30重量部、更に好ましくは2~15重量部である。
 炭素繊維の場合では、導電性、耐衝撃性及び成形品表面の平滑性(摺動性)のバランスの観点から、ポリアミド樹脂を含む樹脂全体100質量部に対して、
 より好ましくは3~40質量部、更に好ましくは5~35質量部、更に好ましくは7~35質量部である。
Since the blending amount of the conductivity imparting agent varies depending on the type of the conductivity imparting agent to be used, it cannot be specified unconditionally, but from the viewpoint of balance between conductivity, fluidity, mechanical strength, etc.
The amount is preferably 1 to 50 parts by mass, more preferably 2 to 40 parts by mass, and further preferably 5 to 40 parts by mass with respect to 100 parts by mass of the entire resin including the polyamide resin.
In the case of carbon black, from the viewpoint of the balance between conductivity and fluidity, with respect to 100 parts by mass of the entire resin including the polyamide resin,
The amount is more preferably 2 to 30 parts by weight, still more preferably 2 to 15 parts by weight.
In the case of carbon fiber, from the viewpoint of the balance of conductivity, impact resistance and the smoothness (slidability) of the surface of the molded product, with respect to 100 parts by mass of the entire resin including the polyamide resin,
The amount is more preferably 3 to 40 parts by mass, still more preferably 5 to 35 parts by mass, and still more preferably 7 to 35 parts by mass.
 本発明のICトレイ用材料に求められる導電性は、用途に応じて異なってよいが、ポリアミド樹脂の表面抵抗が1015Ω程度であることを考慮すると、本発明の樹脂組成物に導電性付与剤を配合することで、好ましくは10~1012Ω程度、より好ましくは10~1010Ω程度である。 The conductivity required for the IC tray material of the present invention may vary depending on the application, but considering that the surface resistance of the polyamide resin is about 10 15 Ω, imparting conductivity to the resin composition of the present invention. By blending the agent, it is preferably about 10 0 to 10 12 Ω, more preferably about 10 0 to 10 10 Ω.
(3)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(3) Polymers other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、好ましくは0~50質量部、より好ましくは0~40質量部、更に好ましくは0~30質量部である。 The polymer other than component A is not particularly limited as long as it does not impair the effects of the present invention, but is preferably 0 to 50 parts by weight, more preferably 0 to 40 parts by weight, and still more preferably with respect to 100 parts by weight of component A. Is 0 to 30 parts by mass.
(4)補強繊維(成分C8)
 本発明の樹脂組成物は、高温下において受ける変形負荷の耐性を確保する観点から、導電性を有さない上述の補強繊維(成分C8)を配合してもよい。
(4) Reinforcing fiber (component C8)
The resin composition of this invention may mix | blend the above-mentioned reinforcing fiber (component C8) which does not have electroconductivity from a viewpoint of ensuring the tolerance of the deformation load received under high temperature.
 ガラス繊維の配合割合は、本発明の樹脂組成物による成形体の剛性、耐クリープ性改善効果を安定に確保し、本発明の樹脂組成物の流動性を安定に確保してショートショットを抑制し表面状態を良好に確保する観点から、本発明の樹脂組成物の樹脂全体100質量部に対して、好ましくは2~40質量部、より好ましくは2~38質量部、更に好ましくは3~35質量部である。 The blending ratio of the glass fiber ensures the effect of improving the rigidity and creep resistance of the molded body by the resin composition of the present invention stably, and stably secures the fluidity of the resin composition of the present invention to suppress short shots. From the viewpoint of ensuring a good surface condition, the amount is preferably 2 to 40 parts by weight, more preferably 2 to 38 parts by weight, and still more preferably 3 to 35 parts by weight with respect to 100 parts by weight of the total resin of the resin composition of the present invention. Part.
 成分Aが有する、機械的強度、耐薬品性、低吸水性、耐加水分解性などに優れ、かつ成形可能温度幅が広く、溶融成形性に優れた特性は、ポリアミドに補強繊維を配合した場合にも、基本的にそのまま保持されるとともに、補強繊維の配合により機械的強度や耐熱性などの一定の特性が向上する。 Component A has excellent mechanical strength, chemical resistance, low water absorption, hydrolysis resistance, etc., has a wide moldable temperature range, and excellent melt moldability. In addition, it is basically maintained as it is, and certain characteristics such as mechanical strength and heat resistance are improved by the addition of the reinforcing fiber.
(5)ICトレイ
 本発明のICトレイは、本発明の樹脂組成物を、例えば、射出成形、押出成形、ブロー成形、(プレス、ロール)圧縮成形、中空成形、発泡、真空・圧空、延伸発泡、延伸等を組合せて成形することにより作製することができる。
 補強繊維や無機粒子を配合する場合、
 成分A等の本発明の樹脂組成物に配合する樹脂と成分B、必要であれば補強繊維を予めブレンドし、あるいは
 成形機の途中で溶融混錬している樹脂中に成分B、必要であれば補強繊維を投入することも可能である。
(5) IC tray The IC tray of the present invention is obtained by subjecting the resin composition of the present invention to, for example, injection molding, extrusion molding, blow molding, (press, roll) compression molding, hollow molding, foaming, vacuum / pressure air, stretched foaming. It can be produced by molding by combining stretching and the like.
When compounding reinforcing fibers and inorganic particles,
Ingredients such as component A and the resin to be blended with the resin composition of the present invention and component B, and if necessary, component B in the resin that is pre-blended with reinforcing fibers or melt-kneaded in the middle of the molding machine For example, reinforcing fibers can be introduced.
 本発明の樹脂組成物を成形して得られるICトレイとしては、好ましくはIC搬送トレイ、IC保管用トレイ、ベーキング処理などの熱処理工程用トレイ、IC基板洗浄用トレイ等が挙げられる。 Preferred IC trays obtained by molding the resin composition of the present invention include IC transport trays, IC storage trays, trays for heat treatment processes such as baking treatment, IC substrate cleaning trays, and the like.
〔産業用チューブ用ポリアミド樹脂組成物〕
(1)成分Aの含有量
 本発明の産業用チューブ用ポリアミド樹脂組成物(以下、樹脂組成物ともいう)は、成形時の生産性を向上するための良好な成形可能温度幅、耐熱性、溶融成形性(以下、熱特性ともいう)を確保し、産業用チューブ品の耐低温衝撃性等の環境耐性、耐薬品性及び液体、蒸気及び/又は気体の不透過性を確保する観点から、
 樹脂組成物中の成分Aの含有量が、
 好ましくは、50~100質量%、より好ましくは、55~100質量%、更に好ましくは、60~100質量%である。
[Polyamide resin composition for industrial tubes]
(1) Content of Component A The polyamide resin composition for industrial tubes of the present invention (hereinafter also referred to as a resin composition) has a good moldable temperature range, heat resistance, and the like for improving productivity during molding. From the viewpoint of ensuring melt formability (hereinafter also referred to as thermal characteristics), environmental resistance such as low temperature impact resistance of industrial tube products, chemical resistance and impermeability of liquid, vapor and / or gas,
The content of component A in the resin composition is
Preferably, it is 50 to 100% by mass, more preferably 55 to 100% by mass, and still more preferably 60 to 100% by mass.
(2)成分A以外のポリマー
 本発明の樹脂組成物には、必要に応じて、各ポリマーの特性を利用するために、
 成分A以外の他のポリアミド類、例えば、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド及び脂環式ポリアミドからなる群から選ばれる少なくとも1種のポリアミド、及び/又はポリアミド外のポリマー、例えば、熱可塑性ポリマー、エラストマーを含めることができる。
(2) Polymer other than Component A In the resin composition of the present invention, if necessary, in order to utilize the characteristics of each polymer,
Other polyamides other than component A, such as at least one polyamide selected from the group consisting of polyoxamides, aromatic polyamides, aliphatic polyamides and alicyclic polyamides, and / or polymers other than polyamides, such as thermoplastic polymers An elastomer can be included.
 成分A以外のポリマーは、本発明の効果を損なわない範囲であれば特に限定されないが、成分A100質量部に対して、
 好ましくは0~50質量部、より好ましくは0~40質量部、更に好ましくは0~30質量部である。
The polymer other than Component A is not particularly limited as long as it does not impair the effects of the present invention, but with respect to 100 parts by mass of Component A,
The amount is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass, and still more preferably 0 to 30 parts by mass.
(3)層状珪酸塩(成分B5)
 本発明の樹脂組成物は、成分Aのみで、耐低温衝撃性等の環境耐性、耐薬品性及び液体、蒸気及び/又は気体の不透過性に優れる産業用チューブを作製することができるが、さらに高精度の寸法安定性が求められる用途においては、本発明の樹脂組成物に上述の層状珪酸塩(成分A)をさらに含ませることができる。
 また、層状珪酸塩を添加することにより、本発明の樹脂組成物から作製した産業用チューブの剛性、耐低温衝撃性等の環境耐性、耐薬品性及び液体、蒸気及び/又は気体の不透過性を向上させることができる。
(3) Layered silicate (component B5)
The resin composition of the present invention can produce an industrial tube excellent in environmental resistance such as low-temperature impact resistance, chemical resistance and liquid, vapor and / or gas impermeability only with Component A. Furthermore, in the use for which highly accurate dimensional stability is calculated | required, the above-mentioned layered silicate (component A) can further be included in the resin composition of this invention.
Moreover, by adding layered silicate, the rigidity of the industrial tube produced from the resin composition of the present invention, environmental resistance such as low temperature impact resistance, chemical resistance and impermeability of liquid, vapor and / or gas Can be improved.
 上記層状珪酸塩の量は、当該層状珪酸塩の効果が発揮される量であれば、特に制限されるものではないが、産業用チューブの剛性、耐候性及び/又は耐熱性、並びに液体又は蒸気に対するバリア性を向上させる観点と、樹脂組成物の成形加工性と耐衝撃性を確保する観点とから、成分A100質量部に対して、
 好ましくは0.05~10質量部、より好ましくは0.05~8質量部、更に好ましくは0.05~5質量部である。
The amount of the layered silicate is not particularly limited as long as the effect of the layered silicate is exhibited, but the rigidity, weather resistance and / or heat resistance of the industrial tube, and liquid or vapor are not limited. From the viewpoint of improving the barrier properties against and from the viewpoint of securing the molding processability and impact resistance of the resin composition,
The amount is preferably 0.05 to 10 parts by mass, more preferably 0.05 to 8 parts by mass, and still more preferably 0.05 to 5 parts by mass.
(4)可塑剤(成分C)
 本発明のポリアミド樹脂組成物には、低温における耐衝撃性の向上の観点から、上述の可塑剤(成分C)を配合することが好ましい。
(4) Plasticizer (component C)
From the viewpoint of improving impact resistance at low temperatures, the above-mentioned plasticizer (component C) is preferably blended with the polyamide resin composition of the present invention.
 可塑剤の配合量は、産業用チューブの安定な破壊圧力を確保し、ブリードアウトを抑制する観点から、本発明のポリアミド樹脂組成物中の樹脂成分100質量部に対して、
 好ましくは1~30質量部、より好ましくは5~20質量部、更に好ましくは10~15質量部である。
(5)導電性付与剤(成分B6)
From the viewpoint of ensuring a stable breaking pressure of the industrial tube and suppressing bleed out, the compounding amount of the plasticizer is based on 100 parts by mass of the resin component in the polyamide resin composition of the present invention.
The amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
(5) Conductivity imparting agent (component B6)
 本発明のポリアミド樹脂組成物には、静電気防止の観点から、上述の導電性付与剤(成分B6)を配合することが好ましく、
 導電性付与剤としては、導電性カーボンブラックが好ましい。
From the viewpoint of preventing static electricity, the polyamide resin composition of the present invention preferably contains the above-described conductivity-imparting agent (component B6),
As the conductivity imparting agent, conductive carbon black is preferable.
 導電性付与剤の配合量は、導電性、耐衝撃性及び成形品表面の平滑性をバランスする観点から、本発明のポリアミド樹脂組成物に対して、
 好ましくは1~40質量部、より好ましくは3~35質量部、更に好ましくは3~20質量部である。
From the viewpoint of balancing the conductivity, impact resistance and the smoothness of the surface of the molded product, the blending amount of the conductivity imparting agent is based on the polyamide resin composition of the present invention.
The amount is preferably 1 to 40 parts by mass, more preferably 3 to 35 parts by mass, and still more preferably 3 to 20 parts by mass.
 導電性カーボンブラックとしては、アセチレンブラック、ケッチェンブラック等を挙げることができ、中でも良好な鎖状構造を有し、凝集密度が大きいものが好ましい。 Examples of the conductive carbon black include acetylene black and ketjen black. Among them, those having a good chain structure and a high aggregation density are preferable.
(6)産業用チューブ
 本発明の産業用チューブは、本発明のポリアミド樹脂を成形して得られ、好ましくは、本発明の産業用チューブ用ポリアミド樹脂組成物をからなる層(以下、層1ともいう)を有することが好ましい。
 なお、ホースは樹脂などの柔らかい材料で作られた、液体や気体などの流体を送るための中空の管であり、随時任意に曲げて利用するやや肉厚なるチューブをいうが、以下では、区別なくチューブと称する。
(6) Industrial tube The industrial tube of the present invention is obtained by molding the polyamide resin of the present invention, and is preferably a layer comprising the industrial tube polyamide resin composition of the present invention (hereinafter also referred to as layer 1). It is preferable to have.
A hose is a hollow tube made of a soft material such as resin and used to send fluids such as liquids and gases. It is a slightly thick tube that can be bent at any time and used. It is called a tube.
 本発明の産業用チューブは、層1だけからなる単層チューブでもよいが、層1と層1以外の層を1以上積層した多層チューブとして用いることが好ましい。
 実用の産業用チューブでは多層チューブが多く用いられている。
The industrial tube of the present invention may be a single-layer tube composed of only the layer 1, but is preferably used as a multilayer tube in which one or more layers other than the layer 1 and the layer 1 are laminated.
In practical industrial tubes, multilayer tubes are often used.
 本発明の産業用チューブを多層チューブとする場合、液体、蒸気及び/又は気体の不透過性を安定に確保し、産業用チューブに求められる多くの要求特性を同時に満たす観点から、層1の厚さは、チューブの肉厚の20~80%が好ましく、30~70%がより好ましい。 When the industrial tube of the present invention is a multilayer tube, the thickness of the layer 1 is ensured from the viewpoint of stably ensuring the impermeability of liquid, vapor and / or gas, and simultaneously satisfying many required characteristics required for an industrial tube. The thickness is preferably 20 to 80% of the wall thickness of the tube, and more preferably 30 to 70%.
 産業用チューブの外径は、種々の液体、蒸気及び/又は気体の流量を考慮して設計でき、肉厚は、種々の液体、蒸気及び/又は気体の透過性が増大せず、また通常のチューブの破壊圧力を維持できる厚さであり、かつチューブの組み付け作業容易性及び使用時の耐振動性が良好な程度の柔軟性を維持することができる薄さで設計することができるが、
 外径は、好ましくは4~15mm、より好ましくは5~15mm、
 肉厚は、好ましくは0.5~2mm、より好ましくは0.5~1.8mmである。
The outer diameter of the industrial tube can be designed taking into account the flow rates of various liquids, vapors and / or gases, and the wall thickness does not increase the permeability of various liquids, vapors and / or gases, and is normal It can be designed with a thickness that can maintain the breaking pressure of the tube, and a thickness that can maintain flexibility with a satisfactory degree of ease of assembly work and vibration resistance during use.
The outer diameter is preferably 4 to 15 mm, more preferably 5 to 15 mm,
The wall thickness is preferably 0.5 to 2 mm, more preferably 0.5 to 1.8 mm.
 本発明の産業用チューブの層1以外の層としては、水及び、または水蒸気の透過抑制、低温における衝撃特性の観点から、
 好ましくは、フッ素樹脂、高密度ポリエチレン樹脂、PA11樹脂及びPA12からなる群から選ばれる少なくとも1種の樹脂、
 より好ましくはPA11樹脂及びPA12からなる群から選ばれる少なくとも1種の樹脂と可塑剤(好ましくは、前述の好適可塑剤)とを含む樹脂組成物からなることが好ましい。
 可塑剤の含有量は、産業用チューブの安定な破壊圧力を確保し、ブリードアウトを抑制する観点から、層1以外の層の樹脂成分100質量部に対して、
 好ましくは1~30質量部、より好ましくは5~20質量部、更に好ましくは10~15質量部である。
As a layer other than the layer 1 of the industrial tube of the present invention, water and / or water vapor permeation suppression, from the viewpoint of impact properties at low temperatures,
Preferably, at least one resin selected from the group consisting of fluororesin, high-density polyethylene resin, PA11 resin and PA12,
More preferably, it consists of a resin composition containing at least one resin selected from the group consisting of PA11 resin and PA12 and a plasticizer (preferably, the above-mentioned suitable plasticizer).
From the viewpoint of securing a stable breaking pressure of the industrial tube and suppressing bleed out, the content of the plasticizer is relative to 100 parts by mass of the resin component of the layer other than the layer 1.
The amount is preferably 1 to 30 parts by mass, more preferably 5 to 20 parts by mass, and still more preferably 10 to 15 parts by mass.
 本発明の産業用チューブを構成する少なくとも1つの層には、静電気防止の観点から、導電性付与剤(前述の好適な導電性付与剤)を、前述の好適配合量で配合されていることが好ましい。 In at least one layer constituting the industrial tube of the present invention, from the viewpoint of preventing static electricity, a conductivity-imparting agent (the above-mentioned suitable conductivity-imparting agent) may be blended in the above-mentioned suitable blending amount. preferable.
 フッ素樹脂としては、ポリテトラフルオロエチレン(PTEF)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等を挙げることができる。また、ポリクロロフルオロエチレン(PCTFE)のように一部に塩素を含んだ樹脂や、エチレン等との共重合体であってもよい。 Examples of the fluororesin include polytetrafluoroethylene (PTEF), polyvinylidene fluoride (PVDF), and polyvinyl fluoride (PVF). Further, it may be a resin partially containing chlorine, such as polychlorofluoroethylene (PCTFE), or a copolymer with ethylene or the like.
 高密度ポリエチレン樹脂としては、力学特性を考慮すると平均分子量が20万~30万前後のものが好ましい。高密度ポリエチレン樹脂は、低温脆化温度が-80℃以下であり、耐低温衝撃性が優れる。 As the high density polyethylene resin, those having an average molecular weight of about 200,000 to 300,000 are preferable in consideration of mechanical properties. The high-density polyethylene resin has a low-temperature embrittlement temperature of −80 ° C. or lower and excellent low-temperature impact resistance.
 また、層1以外の層は、上記組成物層との接着性が悪い場合には、接着層を介して設けてもよい。 Further, layers other than the layer 1 may be provided via an adhesive layer when the adhesiveness to the composition layer is poor.
 本発明の産業用チューブを製造する方法としては、押出成形が好ましく用いられ、多層産業用チューブを製造する方法としては、例えば、構成する層の数又は材料の数に対応する数の押出機より押し出された溶融樹脂を、一つの多層チューブ用ダイスに導入し、ダイス内又はダイスを出た直後に各層を接着させ、その後通常のチューブ成形と同様にして製造する方法、また、一旦単層チューブを成形した後、そのチューブの外側又は内側に他の層をコーティングする方法等を挙げることができる。 As a method for producing the industrial tube of the present invention, extrusion molding is preferably used, and as a method for producing a multilayer industrial tube, for example, from the number of extruders corresponding to the number of constituent layers or the number of materials. A method in which the extruded molten resin is introduced into one multi-layer tube die, each layer is bonded in the die or immediately after the die is removed, and then manufactured in the same manner as normal tube molding. After molding, a method of coating another layer on the outside or inside of the tube can be exemplified.
 多層燃料チューブ等の多層チューブを製造する方法としては、例えば、
 構成する層の数または材料の数に対応する数の押出機より押出された溶融樹脂を、1つの多層チューブ用ダイスに導入し、
 ダイス内またはダイスを出た直後に各層を接着させ、
 その後通常のチューブ成形と同様にして製造する方法、また、
 一旦単層チューブを成形した後、
 そのチューブの外側に他の層をコーティングする方法等を挙げることができる。
 チューブの形状は直管であってもいいし、蛇腹状に加工されていても構わない。
 直管に対しては、その外側に保護層を設けるようにしてもよく、
 その形成材料としては、例えば、クロロプレンゴム、エチレンプロピレンジエン三元共重合体、エピクロルヒドリンゴム、塩素化ポリエチレン、アクリルゴム、クロロスルホン化ポリエチレン、シリコンゴム等のゴムを挙げることができる。
As a method of manufacturing a multilayer tube such as a multilayer fuel tube, for example,
The molten resin extruded from a number of extruders corresponding to the number of constituent layers or the number of materials is introduced into one multilayer tube die,
Bond each layer in the die or immediately after exiting the die,
After that, the method of manufacturing in the same way as normal tube molding,
Once the single layer tube is formed,
Examples include a method of coating another layer on the outside of the tube.
The shape of the tube may be a straight tube or may be processed into a bellows shape.
For straight pipes, a protective layer may be provided on the outside,
Examples of the forming material include rubbers such as chloroprene rubber, ethylene propylene diene terpolymer, epichlorohydrin rubber, chlorinated polyethylene, acrylic rubber, chlorosulfonated polyethylene, and silicon rubber.
 例えば、Plabor(プラスチック工学研究所(株)製)2層ホース成形機、3層チューブ成形機にて多層チューブを成形できる。 For example, multilayer tubes can be formed with a Plabor (Plastics Engineering Laboratory Co., Ltd.) 2-layer hose molding machine and a 3-layer tube molding machine.
 例えば、多層チューブ成形用装置として、最内層用押出機、内層用押出機、中間層用押出機および外層用押出機を備え、この4台の押出機から吐出された樹脂をアダプターによって集めチューブ状に成形するダイス、チューブを冷却し寸法制御するサイジングダイおよび引取り機等からなる装置を用いることができる。
 この場合、例えば、
 最内層(層4)用押出機のホッパーに本発明のPA11を含む樹脂組成物を、
 内層用(層3)押出機のホッパーにPA12を含む樹脂組成物を、
 中間層(層1)用押出機のホッパーに本発明の樹脂組成物を、
 外層用押出機のホッパーにその他の樹脂組成物を投入して多層チューブを作製できる。
For example, as an apparatus for forming a multilayer tube, an innermost layer extruder, an inner layer extruder, an intermediate layer extruder and an outer layer extruder are provided, and the resin discharged from these four extruders is collected by an adapter into a tube shape. It is possible to use an apparatus comprising a die to be formed, a sizing die that cools the tube and controls its dimensions, and a take-up machine.
In this case, for example,
A resin composition containing PA11 of the present invention in the hopper of the innermost layer (layer 4) extruder,
A resin composition containing PA12 in the hopper of the inner layer (layer 3) extruder,
The resin composition of the present invention is applied to the hopper of the intermediate layer (layer 1) extruder.
A multilayer tube can be produced by introducing another resin composition into the hopper of the outer layer extruder.
 例えば、高温薬液及び/又はガス搬送用積層ホース製造法としては、
 層の数もしくは材料の数に対応する押出機を用いて、溶融押出し、ダイ内あるいは外において同時に積層する方法(共押出法)、
 あるいは、一旦、単層ホースあるいは、上記の方法により製造された高温薬液及び/又はガス搬送用積層ホースを予め製造しておき、外側に順次、必要に応じては接着剤を使用し、樹脂を一体化せしめ積層する方法(コーティング法)が挙げられる。
For example, as a method for producing a high-temperature chemical solution and / or a laminated hose for gas transportation,
A method of melt extrusion using an extruder corresponding to the number of layers or the number of materials, and a method of simultaneously laminating inside or outside the die (coextrusion method),
Alternatively, once a single layer hose or a laminated hose for high temperature chemicals and / or gas transport manufactured by the above method is manufactured in advance, an adhesive is used on the outside sequentially, if necessary, A method of laminating and laminating (coating method) is mentioned.
 産業用チューブとしては、空圧チューブ、油圧チューブ、ペイントスプレーチューブ、自動車配管(吸気系、冷却系、燃料系等)用のチューブ、カテーテルなどの医療用チューブが好ましく挙げられる。 Industrial tubes are preferably pneumatic tubes, hydraulic tubes, paint spray tubes, tubes for automobile piping (intake systems, cooling systems, fuel systems, etc.), and medical tubes such as catheters.
〔各成分〕
(成分A)
 製造例1~5において、本発明のポリアミド樹脂組成物に使用する成分A(PX6-1~5)を製造した。
[Each component]
(Component A)
In Production Examples 1-5, Component A (PX6-1-5) used in the polyamide resin composition of the present invention was produced.
(1)製造例1(成分A:PX6-1)
 攪拌機、温度計、トルクメーター、圧力計、ダイアフラムポンプを直結した原料投入口、窒素ガス導入口、放圧口、圧力調節装置及びポリマー抜出し口を備えた内容積が約150リットルの圧力容器に、
 化合物a(1,6-ヘキサンジアミン)15.407kg(132.58モル)と
 化合物b(2-メチル-1,5-ペンタンジアミン)811.1g(6.98モル)の混合物(化合物aと化合物bのモル比が95:5)を仕込み、
 圧力容器の内部を純度が99.9999%の窒素ガスで0.5MPaに加圧した後、
 次に常圧まで窒素ガスを放出する操作を5回繰り返し、窒素置換を行った後、
 封圧下、攪拌しながら系内を昇温した。
 約30分間かけてシュウ酸ジブチルの温度を80℃にした後、
 シュウ酸ジブチル28.230kg(139.56モル)をダイアフラムフポンプにより流速1.49リットル/分で約17分間かけて反応容器内に供給すると同時に昇温した。
 供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaまで上昇し、重縮合物の温度は約170℃まで上昇した。
 その後、2時間かけて温度を330℃まで昇温した。
 その間、生成したブタノールを放圧口より抜き出しながら、内圧を0.75MPaに調節した。重縮合物の温度が330℃に達した直後から放圧口よりブタノールを約20分間かけて抜き出し、内圧を常圧にした。
 常圧にしたところから、1.5リットル/分で窒素ガスを流しながら昇温を開始し、4.5時間反応させた。
 その後、攪拌を止めて系内を窒素で1MPaに加圧して約10分間静置した後、内圧0.1MPaまで放圧し、重縮合物を圧力容器下部抜出口より紐状に抜き出した。
 紐状の重合物は直ちに水冷し、水冷した紐状の樹脂はペレタイザーによってペレット化した。
 得られたポリアミドは白色の強靭なポリマーであり、ηr=1.95であった。
(1) Production Example 1 (Component A: PX6-1)
In a pressure vessel with an internal volume of about 150 liters equipped with a stirrer, thermometer, torque meter, pressure gauge, raw material inlet directly connected with a diaphragm pump, nitrogen gas inlet, pressure outlet, pressure regulator and polymer outlet.
A mixture of 15.407 kg (132.58 mol) of compound a (1,6-hexanediamine) and 811.1 g (6.98 mol) of compound b (2-methyl-1,5-pentanediamine) (compound a and compound) the molar ratio of b is 95: 5),
After pressurizing the interior of the pressure vessel to 0.5 MPa with nitrogen gas having a purity of 99.9999%,
Next, the operation of releasing nitrogen gas to normal pressure was repeated 5 times, and after nitrogen replacement,
The system was heated while stirring under a sealing pressure.
After bringing the temperature of dibutyl oxalate to 80 ° C. over about 30 minutes,
At the same time, 28.230 kg (139.56 mol) of dibutyl oxalate was supplied into the reaction vessel over about 17 minutes at a flow rate of 1.49 liters / minute by means of a diaphragm pump.
The internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPa by butanol generated by the polycondensation reaction, and the temperature of the polycondensate increased to about 170 ° C.
Thereafter, the temperature was raised to 330 ° C. over 2 hours.
Meanwhile, the internal pressure was adjusted to 0.75 MPa while extracting the generated butanol from the pressure relief port. Immediately after the temperature of the polycondensate reached 330 ° C., butanol was extracted from the pressure relief port over about 20 minutes, and the internal pressure was brought to normal pressure.
From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 liters / minute, and the reaction was carried out for 4.5 hours.
Thereafter, the stirring was stopped and the system was pressurized to 1 MPa with nitrogen and allowed to stand for about 10 minutes. Then, the pressure was released to an internal pressure of 0.1 MPa, and the polycondensate was extracted in a string form from the lower outlet of the pressure vessel.
The string-like polymer was immediately cooled with water, and the water-cooled string-like resin was pelletized with a pelletizer.
The obtained polyamide was a white tough polymer with ηr = 1.95.
(2)製造例2(成分A:PX6-2)
 化合物a14.717kg(126.64モル)と化合物b1.635kg(14.07モル)の混合物(化合物aと化合物bのモル比が90:10)を仕込み、
 シュウ酸ジブチル28.462kg(140.71モル)を仕込んだほかは、
 実施例1と同様に反応を行ってポリアミドを得た。
 得られたポリアミドは白色の強靭なポリマーで、ηr=2.05であった。
(2) Production Example 2 (Component A: PX6-2)
A mixture of 14.717 kg (126.64 mol) of compound a and 1.635 kg (14.07 mol) of compound b (molar ratio of compound a and compound b is 90:10) is charged.
Except for charging 28.462 kg (140.71 mol) of dibutyl oxalate,
Reaction was carried out in the same manner as in Example 1 to obtain polyamide.
The obtained polyamide was a white tough polymer with ηr = 2.05.
(3)製造例3(成分A:PX6-3)
 化合物a12.16kg(104.64モル)と化合物b5.212kg(44.85モル)の混合物(化合物aと化合物bのモル比が70:30)を仕込み、
 シュウ酸ジブチル30.238kg(149.49モル)をダイアフラムフポンプにより流速1.49リットル/分で約17分間かけて反応容器内に供給すると同時に昇温した。
 供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaまで上昇し、重縮合物の温度は約170℃まで上昇した。
 その後、1.5時間かけて温度を290℃まで昇温した。
 その間、生成したブタノールを放圧口より抜き出しながら、内圧を0.5MPaに調節した。重縮合物の温度が290℃に達した直後から放圧口よりブタノールを約20分間かけて抜き出し、内圧を常圧にした。
 常圧にしたところから、1.5リットル/分で窒素ガスを流しながら昇温を開始し、約1時間かけて重縮合物の温度を310℃にし、310℃において1.5時間反応させた。
 その後、攪拌を止めて系内を窒素で1MPaに加圧して約10分間静置した後、内圧0.1MPaまで放圧し、重縮合物を圧力容器下部抜出口より紐状に抜き出した。
 紐状の重合物は直ちに水冷し、水冷した紐状の樹脂はペレタイザーによってペレット化した。
 得られたポリアミドは白色の強靭なポリマーであり、ηr=2.40であった。
(3) Production Example 3 (Component A: PX6-3)
A mixture of 12.16 kg (104.64 mol) of compound a and 5.212 kg (44.85 mol) of compound b (the molar ratio of compound a to compound b is 70:30) is charged.
At the same time, 30.238 kg (149.49 mol) of dibutyl oxalate was supplied into the reaction vessel by a diaphragm pump at a flow rate of 1.49 liters / minute over about 17 minutes.
The internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPa by butanol generated by the polycondensation reaction, and the temperature of the polycondensate increased to about 170 ° C.
Thereafter, the temperature was raised to 290 ° C. over 1.5 hours.
Meanwhile, the internal pressure was adjusted to 0.5 MPa while extracting the generated butanol from the pressure relief port. Immediately after the temperature of the polycondensate reached 290 ° C., butanol was extracted from the pressure relief port over about 20 minutes, and the internal pressure was brought to normal pressure.
From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 liters / minute, the temperature of the polycondensate was brought to 310 ° C. over about 1 hour, and the reaction was carried out at 310 ° C. for 1.5 hours. .
Thereafter, the stirring was stopped and the system was pressurized to 1 MPa with nitrogen and allowed to stand for about 10 minutes. Then, the pressure was released to an internal pressure of 0.1 MPa, and the polycondensate was extracted in a string form from the lower outlet of the pressure vessel.
The string-like polymer was immediately cooled with water, and the water-cooled string-like resin was pelletized with a pelletizer.
The obtained polyamide was a white tough polymer with ηr = 2.40.
(4)製造例4(成分A:PX6-4)
 化合物a10.294kg(88.583モル)と化合物b6.863kg(59.057モル)の混合物(化合物aと化合物bのモル比が60:40)を仕込み、
 シュウ酸ジブチル29.864kg(147.64モル)をダイアフラムフポンプにより流速1.49リットル/分で約17分間かけて反応容器内に供給すると同時に昇温した。
 供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaまで上昇し、重縮合物の温度は約170℃まで上昇した。
 その後、1.5時間かけて温度を275℃まで昇温した。
 その間、生成したブタノールを放圧口より抜き出しながら、内圧を0.5MPaに調節した。
 重縮合物の温度が270℃に達した直後から放圧口よりブタノールを約20分間かけて抜き出し、内圧を常圧にした。
 常圧にしたところから、1.5リットル/分で窒素ガスを流しながら昇温を開始し、約1時間かけて重縮合物の温度を290℃にし、290℃において2時間反応させた。
 その後、攪拌を止めて系内を窒素で1MPaに加圧して約10分間静置した後、内圧0.1MPaまで放圧し、重縮合物を圧力容器下部抜出口より紐状に抜き出した。
 紐状の重合物は直ちに水冷し、水冷した紐状の樹脂はペレタイザーによってペレット化した。
 得られたポリアミドは白色の強靭なポリマーであり、ηr=2.68であった。
(4) Production Example 4 (Component A: PX6-4)
A mixture of 10.294 kg (88.583 mol) of compound a and 6.863 kg (59.057 mol) of compound b (molar ratio of compound a to compound b is 60:40) is charged.
29.864 kg (147.64 mol) of dibutyl oxalate was supplied into the reaction vessel at a flow rate of 1.49 liter / min by a diaphragm pump over about 17 minutes, and the temperature was raised.
The internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPa by butanol generated by the polycondensation reaction, and the temperature of the polycondensate increased to about 170 ° C.
Thereafter, the temperature was raised to 275 ° C. over 1.5 hours.
Meanwhile, the internal pressure was adjusted to 0.5 MPa while extracting the generated butanol from the pressure relief port.
Immediately after the temperature of the polycondensate reached 270 ° C., butanol was extracted from the pressure release port over about 20 minutes, and the internal pressure was brought to normal pressure.
From the normal pressure, the temperature was raised while flowing nitrogen gas at 1.5 liters / minute, the temperature of the polycondensate was changed to 290 ° C. over about 1 hour, and the reaction was carried out at 290 ° C. for 2 hours.
Thereafter, the stirring was stopped and the system was pressurized to 1 MPa with nitrogen and allowed to stand for about 10 minutes. Then, the pressure was released to an internal pressure of 0.1 MPa, and the polycondensate was extracted in a string form from the lower outlet of the pressure vessel.
The string-like polymer was immediately cooled with water, and the water-cooled string-like resin was pelletized with a pelletizer.
The obtained polyamide was a white tough polymer, and ηr = 2.68.
(5)製造例5(成分A:PX6-5)
 化合物a8.361kg(71.947モル)と化合物b8.361kg(71.947モル)の混合物(化合物aと化合物bのモル比が50:50)を仕込み、
 シュウ酸ジブチル29.107kg(143.89モル)をダイアフラムフポンプにより流速1.49リットル/分で約17分間かけて反応容器内に供給すると同時に昇温した。
 供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaまで上昇し、重縮合物の温度は約170℃まで上昇した。
 その後、1.5時間かけて温度を260℃まで昇温した。
 その間、生成したブタノールを放圧口より抜き出しながら、内圧を0.5MPaに調節した。
 重縮合物の温度が260℃に達した直後から放圧口よりブタノールを約20分間かけて抜き出し、内圧を常圧にした。
 常圧にしたところから、1.5リットル/分で窒素ガスを流しながら昇温を開始し、約1時間かけて重縮合物の温度を275℃にし、275℃において3時間反応させた。
 その後、攪拌を止めて系内を窒素で1MPaに加圧して約10分間静置した後、内圧0.1MPaまで放圧し、重縮合物を圧力容器下部抜出口より紐状に抜き出した。
 紐状の重合物は直ちに水冷し、水冷した紐状の樹脂はペレタイザーによってペレット化した。
 得られたポリアミドは白色の強靭なポリマーであり、ηr=2.61であった。
(5) Production Example 5 (Component A: PX6-5)
A mixture of 8.361 kg (71.947 mol) of compound a and 8.361 kg (71.947 mol) of compound b (molar ratio of compound a and compound b is 50:50),
At the same time, 29.107 kg (143.89 mol) of dibutyl oxalate was supplied into the reaction vessel at a flow rate of 1.49 liters / minute over about 17 minutes by a diaphragm pump.
The internal pressure in the pressure vessel immediately after the supply increased to 0.35 MPa by butanol generated by the polycondensation reaction, and the temperature of the polycondensate increased to about 170 ° C.
Thereafter, the temperature was raised to 260 ° C. over 1.5 hours.
Meanwhile, the internal pressure was adjusted to 0.5 MPa while extracting the generated butanol from the pressure relief port.
Immediately after the temperature of the polycondensate reached 260 ° C., butanol was extracted from the pressure release port over about 20 minutes, and the internal pressure was brought to normal pressure.
The temperature was raised from normal pressure while flowing nitrogen gas at 1.5 liters / minute, and the temperature of the polycondensate was changed to 275 ° C. over about 1 hour, and the reaction was carried out at 275 ° C. for 3 hours.
Thereafter, the stirring was stopped and the system was pressurized to 1 MPa with nitrogen and allowed to stand for about 10 minutes. Then, the pressure was released to an internal pressure of 0.1 MPa, and the polycondensate was extracted in a string form from the lower outlet of the pressure vessel.
The string-like polymer was immediately cooled with water, and the water-cooled string-like resin was pelletized with a pelletizer.
The obtained polyamide was a white tough polymer, and ηr = 2.61.
(比較樹脂)
(1)比較樹脂1(ポリアミド樹脂:PX6-6、比較製造例1)
(i)前重縮合工程:撹拌機、還流冷却器、窒素導入管、原料投入口を備えた内容積が1Lのセパラブルフラスコの内部を純度が99.9999%の窒素ガスで置換し、
 脱水済みトルエン500ml、
 1,6-ヘキサンジアミン58.7209g(0.5053モル)を仕込んだ。
 このセパラブルフラスコをオイルバス中に設置して50℃に昇温した後、
 シュウ酸ジブチル102.1956g(0.5053モル)を仕込んだ。
 次にオイルバスの温度を130℃まで昇温し、還流下、5時間反応を行った。
 なお、原料仕込みから反応終了までの全ての操作は50ml/分の窒素気流下で行った。
(ii)後重縮合工程:上記操作によって得られた前重合物を撹拌機、空冷管、窒素導入管を備えた直径約35mmφのガラス製反応管に仕込み、反応管内を13.3Pa以下の減圧下に保ち、次に常圧まで窒素ガスを導入する操作を5回繰り返した後、50ml/分の窒素気流下290℃に保った塩浴に移し、直ちに昇温を開始した。1時間かけて塩浴の温度を340℃とした後、容器内を約66.5Paまで減圧し、さらに2時間反応させた。
 続いて常圧まで窒素ガスを導入したのち、塩浴から取り出し50ml/分の窒素気流下で室温まで冷却してポリアミド樹脂を得た。
 得られたポリマーは黄色のポリマーであり、ηr=1.65であった。
(Comparative resin)
(1) Comparative resin 1 (polyamide resin: PX6-6, comparative production example 1)
(I) Pre-polycondensation step: The inside of a 1 L separable flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a raw material inlet is replaced with nitrogen gas having a purity of 99.9999%.
500 ml of dehydrated toluene,
1,6-Hexanediamine 58.7209 g (0.5053 mol) was charged.
After this separable flask was placed in an oil bath and heated to 50 ° C,
Dibutyl oxalate (102.1956 g, 0.5053 mol) was charged.
Next, the temperature of the oil bath was raised to 130 ° C., and the reaction was carried out for 5 hours under reflux.
Note that all operations from preparation of raw materials to completion of the reaction were performed under a nitrogen stream of 50 ml / min.
(Ii) Post-polycondensation step: The prepolymer obtained by the above operation is charged into a glass reaction tube having a diameter of about 35 mmφ equipped with a stirrer, an air cooling tube, and a nitrogen introduction tube, and the pressure inside the reaction tube is reduced to 13.3 Pa or less. Then, the operation of introducing nitrogen gas to normal pressure was repeated 5 times, and then the mixture was transferred to a salt bath maintained at 290 ° C. under a nitrogen stream of 50 ml / min. After the temperature of the salt bath was set to 340 ° C. over 1 hour, the pressure in the container was reduced to about 66.5 Pa, and the reaction was further continued for 2 hours.
Subsequently, after introducing nitrogen gas to normal pressure, it was removed from the salt bath and cooled to room temperature under a nitrogen stream of 50 ml / min to obtain a polyamide resin.
The obtained polymer was a yellow polymer, and ηr = 1.65.
(2)比較樹脂2~4
 以下の各樹脂のペレットを使用した。
 ナイロン6(宇部興産製、UBEナイロン1015B:PA6)(比較樹脂2)
 ナイロン66(宇部興産製、UBEナイロン2020B:PA66)(比較樹脂3)
 ナイロン12(宇部興産製、UBESTA3020U:PA12)(比較樹脂4)
(2) Comparative resins 2-4
The following pellets of each resin were used.
Nylon 6 (Ube Industries, UBE nylon 1015B: PA6) (Comparative resin 2)
Nylon 66 (Ube Industries, UBE nylon 2020B: PA66) (Comparative resin 3)
Nylon 12 (Ube Industries, UBESTA3020U: PA12) (Comparative resin 4)
(成分B1(離型剤))
 化合物p:ポリプロピレングリコールの末端変性物(PPGA)
 化合物q:トリス(トリデシルフォスファイト)
 化合物r:ミリスチル酸ミリスチル
 化合物s:ステアリン酸亜鉛
 化合物t:エチレンビスステアリルアミド
 化合物u:低分子量PE
 化合物v:タルク(珪酸マグネシウム)
 化合物w:1,3,2,4-ジベンジリデンソルビトール
(Component B1 (release agent))
Compound p: terminal modified product of polypropylene glycol (PPGA)
Compound q: Tris (tridecyl phosphite)
Compound r: Myristyl myristyl Compound s: Zinc stearate Compound t: Ethylene bisstearyl amide Compound u: Low molecular weight PE
Compound v: Talc (magnesium silicate)
Compound w: 1,3,2,4-dibenzylidenesorbitol
(成分B2(耐熱剤))
 化合物x:3,9-ビス[2―(3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン
 化合物y:トリエチレングリコール-ビス[3-(3t-ブチル5メチル4ヒドロキシフェニル)プロピオネート]
(Component B2 (heat-resistant agent))
Compound x: 3,9-bis [2- (3- (t-butyl-4-hydroxy-5-methylphenyl) propoxy) -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro (5,5) Undecane Compound y: Triethylene glycol-bis [3- (3t-butyl-5methyl-4-hydroxyphenyl) propionate]
(成分B3(衝撃改良材))
 B3-1:三井デュポン製、ハイミラン1706ペレット(アイオノマー)
 B3-2:三井デュポン製、ハイミラン1855ペレット(アイオノマー)
 B3-3:エクソンケミカルス製、Exxelor VA1801(マレイン酸変性エチレン-プロピレン樹脂)
 B3-4:三井化学製、タフマーMH5020(マレイン酸変性エチレン-ブテン樹脂)
 B3-5:三井化学製、タフマ-MH7020(マレイン酸変性エチレン-ブテン樹脂)
 B3-6衝撃改良材:旭化成製、タフテックM1943(エポキシ変性スチレンブロック共重合樹脂)
(Component B3 (impact modifier))
B3-1: Made by Mitsui DuPont, High Milan 1706 pellets (Ionomer)
B3-2: Made by Mitsui DuPont, High Milan 1855 pellets (Ionomer)
B3-3: Exxor Chemical VA1801, manufactured by Exxon Chemicals (maleic acid-modified ethylene-propylene resin)
B3-4: Tafmer MH5020 (maleic acid-modified ethylene-butene resin) manufactured by Mitsui Chemicals
B3-5: manufactured by Mitsui Chemicals, Toughma-MH7020 (maleic acid-modified ethylene-butene resin)
B3-6 impact modifier: Asahi Kasei, Tuftec M1943 (epoxy-modified styrene block copolymer resin)
(成分B4(充填材))
 B4-1:ガラス繊維(日本電気硝子製ECST-289(繊維径13μm)
 B4-2:炭素繊維(東邦テナックス(株)ベスファイトHTA-C6NR(繊維径7μm)
 B4-3:黄銅繊維(繊維径80μm)
 B4-4:アミノシランカップリング剤で表面処理した平均粒径10μmのストロンチウムフェライト粉末
 B4-5:アミノシランカップリング剤で表面処理した平均粒径10μmのタングステン粉末
(成分B5(層状珪酸塩))
 有機化モンモリロナイト(Nanocor社製、ナノマー30TC)
(成分B6(導電性付与剤))
 B6-1:カーボンブラック(エボニック デグサ ジャパン株式会社とHIBLACK 890B)
 B6-2:炭素繊維(東邦テナックス(株)ベスファイトHTA-C6NR(繊維径7μm)
 B6-3:黄銅繊維(繊維径80μm)、ケッチェンブラック(ケッチェンブラックインテーナショナル製EC600JD)
(Component B4 (filler))
B4-1: Glass fiber (ECST-289 manufactured by Nippon Electric Glass (fiber diameter 13 μm)
B4-2: Carbon fiber (Toho Tenax Co., Ltd. Besphite HTA-C6NR (fiber diameter 7 μm)
B4-3: Brass fiber (fiber diameter 80 μm)
B4-4: Strontium ferrite powder with an average particle diameter of 10 μm surface-treated with an aminosilane coupling agent B4-5: Tungsten powder with an average particle diameter of 10 μm surface-treated with an aminosilane coupling agent (component B5 (layered silicate))
Organized montmorillonite (Nanocor, Nanomer 30TC)
(Component B6 (conductivity imparting agent))
B6-1: Carbon black (Evonik Degussa Japan Co., Ltd. and HIBLACK 890B)
B6-2: Carbon fiber (Toho Tenax Co., Ltd. Besphite HTA-C6NR (fiber diameter 7 μm)
B6-3: Brass fiber (fiber diameter 80 μm), Ketjen black (EC600JD made by Ketjen Black International)
〔樹脂組成物〕
(1)表1(実施例1~12及び比較例2~3)
 製造例1~5、比較樹脂例2(PA6)及び3(PA66)のポリアミド樹脂と離型剤(化合物p~w)を使用して、表1に示す組成で、下記射出条件で射出成形した本発明の箱型成形体を製造した。
(1-1)射出成形機(図1)
 図1は、離型力を測定するための射出成形機の概略を示す断面図であり、射出成形機のシリンダー1、箱型成形体又はキャビティー2、固定金型3、エジェクターピン4、コア5、移動金型6、エジェクタープレート7、圧力センサー8、圧力センサー固定板9、ノックアウト棒10、記録計11を有する。
 図1に示す、離型力測定装置を取付けた金型及び射出成形機を用い、後述の射出条件で成形して得られる箱型成形体の離型力及び変形を測定した。
(Resin composition)
(1) Table 1 (Examples 1 to 12 and Comparative Examples 2 to 3)
Using the polyamide resins of Production Examples 1 to 5 and Comparative Resin Examples 2 (PA6) and 3 (PA66) and a release agent (compounds p to w), injection molding was performed under the following injection conditions with the compositions shown in Table 1. A box-shaped molded product of the present invention was produced.
(1-1) Injection molding machine (Fig. 1)
FIG. 1 is a cross-sectional view showing an outline of an injection molding machine for measuring a mold release force. A cylinder 1, a box-shaped molded body or cavity 2, a fixed mold 3, an ejector pin 4, and a core of the injection molding machine. 5, a movable mold 6, an ejector plate 7, a pressure sensor 8, a pressure sensor fixing plate 9, a knockout bar 10, and a recorder 11.
Using a mold and an injection molding machine equipped with a release force measuring device shown in FIG. 1, the release force and deformation of a box-shaped molded body obtained by molding under the injection conditions described later were measured.
 図1において、固定金型3、移動金型6は横80mm、縦100mm、深さ30mm、肉厚2.3mmで内側に十字のリブが入っている箱を成形するように加工されている。 In FIG. 1, the fixed mold 3 and the movable mold 6 are processed so as to form a box having a width of 80 mm, a length of 100 mm, a depth of 30 mm, a wall thickness of 2.3 mm, and a cross rib inside.
(1-2)実施例3~5、実施例9~12、比較例2~3の成形条件
 射出成形機:(株)日本製鋼所製 N140BII
 シリンダー設定温度:
 C1 290℃、C2 295℃、C3 300℃、C4 300℃、
 NH(ノズルヘッド) 300℃
 射出圧力:1次圧 650kg/cm
 金型温度:移動金型 90℃、固定金型 85℃
 射出時間:10秒
 冷却時間:15秒、30秒
(1-2) Molding conditions of Examples 3 to 5, Examples 9 to 12, and Comparative Examples 2 to 3 Injection molding machine: N140BII manufactured by Nippon Steel Works
Cylinder set temperature:
C1 290 ° C, C2 295 ° C, C3 300 ° C, C4 300 ° C,
NH (nozzle head) 300 ° C
Injection pressure: primary pressure 650 kg / cm 2
Mold temperature: Moving mold 90 ℃, Fixed mold 85 ℃
Injection time: 10 seconds Cooling time: 15 seconds, 30 seconds
(1-3)実施例1~2、実施例6~8の成形条件
 射出成形機:(株)日本製鋼所製 N140BII
 シリンダー設定温度:
 C1 330℃、C2 335℃、C3 340℃、C4 340℃、
 NH(ノズルヘッド) 340℃
 射出圧力:1次圧 650kg/cm
 金型温度:移動金型 90℃、固定金型 85℃
 射出時間:10秒
 冷却時間:15秒、30秒
(1-3) Molding conditions of Examples 1 to 2 and Examples 6 to 8 Injection molding machine: N140BII manufactured by Nippon Steel Works
Cylinder set temperature:
C1 330 ° C, C2 335 ° C, C3 340 ° C, C4 340 ° C,
NH (nozzle head) 340 ° C
Injection pressure: primary pressure 650 kg / cm 2
Mold temperature: Moving mold 90 ℃, Fixed mold 85 ℃
Injection time: 10 seconds Cooling time: 15 seconds, 30 seconds
 製造例1~5、比較製造例1、比較樹脂例2(PA6)及び3(PA66)のポリアミド樹脂、並びに、実施例1-1~12及び比較例1-2~3のポリアミド樹脂組成物について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を後述する条件で測定し、
 実施例1~12及び比較例2~3で製造した本発明の成形体について、離型力及び成形体の変形を後述する条件で測定し、
 表1に結果を示した。
Polyamide resins of Production Examples 1 to 5, Comparative Production Example 1, Comparative Resin Example 2 (PA6) and 3 (PA66), and Polyamide Resin Compositions of Examples 1-1 to 12 and Comparative Examples 1-2 to 3 , Relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, dry and wet properties measured under the conditions described below,
For the molded bodies of the present invention produced in Examples 1 to 12 and Comparative Examples 2 to 3, the mold release force and the deformation of the molded body were measured under the conditions described later,
Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から、本発明のポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、耐熱性に優れた耐熱性成形体を製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Table 1, the polyamide resin composition of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, is excellent in chemical resistance and hydrolysis resistance, and has mechanical properties under wet conditions. Excellent polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, has a wider moldable temperature range, better melt moldability, higher molecular weight, and better heat resistance It turns out that a heat-resistant molded object can be manufactured.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(2)表2(実施例1~7及び比較例2~3)
 製造例1~5において製造した成分Aと成分B2(化合物x又はy)を使用して実施例1~7の本発明のポリアミド樹脂組成物及びそれらを射出成形して耐熱性成形体を製造した。
(2) Table 2 (Examples 1 to 7 and Comparative Examples 2 to 3)
Using the component A and component B2 (compound x or y) produced in Production Examples 1 to 5, the polyamide resin compositions of the invention of Examples 1 to 7 and injection molding them to produce heat-resistant molded articles .
(実施例1~7及び比較例2~3)
 製造例1~5、比較樹脂例2(PA6)及び3(PA66)のポリアミド樹脂と耐熱剤(化合物a及びb)を含む樹脂組成物について、表1に示す組成で、
 池貝鉄工(株)製2軸混練機PCM-45にて、シリンダー設定温度を
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA6を含む場合は260℃、
 ポリアミド樹脂としてPA66を含む場合は290℃、
 金型温度80℃の射出成形により成形して本発明の耐熱性成形体を得た。
(Examples 1 to 7 and Comparative Examples 2 to 3)
For the resin compositions containing the polyamide resins of Production Examples 1 to 5 and Comparative Resin Examples 2 (PA6) and 3 (PA66) and heat-resistant agents (compounds a and b), the compositions shown in Table 1
In a twin-screw kneader PCM-45 manufactured by Ikekai Tekko Co., Ltd., set the cylinder temperature to 340 ° C when PA6-1-2 and 6 are included as polyamide resin.
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
260 ° C when PA6 is included as the polyamide resin,
When PA66 is included as a polyamide resin,
The heat-resistant molded article of the present invention was obtained by injection molding at a mold temperature of 80 ° C.
 製造例1~5、比較製造例1、比較樹脂例2(PA6)及び3(PA66)のポリアミド樹脂について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を後述する条件で測定し、
 実施例1~7及び比較例2~3で製造した耐熱性成形体について、耐熱性(クラックの有無及び引張強度保持率を測定し、
 表2に結果を示した。
For the polyamide resins of Production Examples 1 to 5, Comparative Production Example 1, Comparative Resin Example 2 (PA6) and 3 (PA66), relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, Hydrolysis resistance, physical properties in dry and wet are measured under the conditions described below,
About the heat-resistant molded products produced in Examples 1 to 7 and Comparative Examples 2 to 3, heat resistance (measured the presence or absence of cracks and the tensile strength retention rate,
Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2から、本発明のポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、耐熱性に優れた耐熱性成形体を製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
(3)表3~4(実施例1~8及び比較例1~2)
 製造例1~5、比較樹脂であるポリアミドPX6-1~PX6-6、並びにナイロン6(宇部興産製、UBEナイロン1015B:PA6)及びナイロン66(宇部興産製、UBEナイロン2020B:PA66)について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける機械的特性を測定した。結果を表3に示す。
From Table 2, the polyamide resin composition of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, is excellent in chemical resistance and hydrolysis resistance, and has mechanical properties under wet conditions. Excellent polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, has a wider moldable temperature range, better melt moldability, higher molecular weight, and better heat resistance It turns out that a heat-resistant molded object can be manufactured.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(3) Tables 3-4 (Examples 1-8 and Comparative Examples 1-2)
Production Examples 1-5, polyamides PX6-1 to PX6-6 as comparative resins, nylon 6 (Ube Industries, UBE nylon 1015B: PA6) and nylon 66 (Ube Industries, UBE nylon 2020B: PA66) Viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, and mechanical properties in dry and wet were measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3から、本発明に用いられるポリアミド樹脂は、ナイロン6及びナイロン66と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で強靭な成形体を製造することができることが分かる。
 なお、本発明のポリアミド樹脂組成物には、ポリアミド樹脂(成分A)に加え、衝撃改良材(成分B)とが含まれるが、当該ポリアミド樹脂組成物は、基本的に、ポリアミド樹脂(成分A)の特性を保持している。
From Table 3, the polyamide resin used in the present invention has low water absorption compared to nylon 6 and nylon 66, excellent chemical resistance, hydrolysis resistance, excellent mechanical properties under wet conditions, and It can be seen that it is possible to produce a tough molded body having a wider moldable temperature range and better melt moldability than the polyamide resin using 1,6-hexanediamine alone as the diamine component, and capable of increasing the molecular weight.
The polyamide resin composition of the present invention includes an impact modifier (component B) in addition to the polyamide resin (component A). The polyamide resin composition basically includes a polyamide resin (component A). ) Characteristics.
(実施例1)
 PX6-1ペレット100質量部、三井デュポン製、ハイミラン1706ペレット(アイオノマー)(B3-1)40質量部をあらかじめブレンドし、この混合ペレットを日本製綱製TEX44二軸押出機に供給し、溶融混練し、ストランドを冷却水槽にて冷却固化した後、ペレタイザーにてペレット状試料を得た。ペレットを減圧乾燥にて乾燥し、このペレットを評価に供した。
Example 1
100 parts by weight of PX6-1 pellets, 40 parts by weight of Mitsui DuPont Himiran 1706 pellets (Ionomer) (B3-1) were blended in advance, and the resulting mixed pellets were fed to a Japanese-made TEX44 twin screw extruder for melt kneading. The strand was cooled and solidified in a cooling water tank, and then a pellet-like sample was obtained with a pelletizer. The pellet was dried under reduced pressure, and the pellet was subjected to evaluation.
(実施例2)
 表4の配合に従った以外は、実施例1と同様にペレットを作製し、当該ペレットを評価に供した。
(Example 2)
Except for following the formulation in Table 4, pellets were prepared in the same manner as in Example 1, and the pellets were subjected to evaluation.
(実施例3)
 衝撃改良材(B)を、三井デュポン製、ハイミラン1855ペレット(アイオノマー)(B3-2)とし、表4の配合に従った以外は、実施例1と同様にペレットを作製し、当該ペレットを評価に供した。
(Example 3)
The impact improving material (B) was made by Mitsui DuPont, made by HiMilan 1855 pellets (ionomer) (B3-2), and the pellets were prepared in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellets were evaluated. It was used for.
(実施例4)
 衝撃改良材(B)を、エクソンケミカルス製、Exxelor VA1801(マレイン酸変性エチレン-プロピレン樹脂)(B3-3)とし、表4の配合に従った以外は、実施例1と同様にペレットを作製し、当該ペレットを評価に供した。
(Example 4)
Except for the impact modifier (B), Exxelor VA1801 (maleic acid-modified ethylene-propylene resin) (B3-3), manufactured by Exxon Chemicals, the pellets were prepared in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellet was subjected to evaluation.
(実施例5)
 表4の配合に従った以外は、実施例4と同様にペレットを作製し、当該ペレットを評価に供した。
(実施例6)
 衝撃改良材(B)を、三井化学製、タフマーMH5020(マレイン酸変性エチレン-ブテン樹脂)(B3-4)とし、表4の配合に従った以外は、実施例1と同様にペレットを作製し、当該ペレットを評価に供した。
(Example 5)
Except for following the formulation in Table 4, pellets were prepared in the same manner as in Example 4, and the pellets were subjected to evaluation.
(Example 6)
The impact modifier (B) was Tafmer MH5020 (maleic acid-modified ethylene-butene resin) (B3-4) manufactured by Mitsui Chemicals, and pellets were prepared in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellet was subjected to evaluation.
(実施例7)
 衝撃改良材(B)を、三井化学製、タフマ-MH7020(マレイン酸変性エチレン-ブテン樹脂)(B3-5)とし、表4の配合に従った以外は、実施例6と同様にペレットを作製し、当該ペレットを評価に供した。
(実施例8)
 衝撃改良材(B)を、旭化成製、タフテックM1943(エポキシ変性スチレンブロック共重合樹脂)(B3-6)とし、表4の配合に従った以外は、実施例1と同様にペレットを作製し、当該ペレットを評価に供した。
(Example 7)
A pellet was prepared in the same manner as in Example 6 except that the impact modifier (B) was Tafuma-MH7020 (maleic acid-modified ethylene-butene resin) (B3-5) manufactured by Mitsui Chemicals and the formulation shown in Table 4 was followed. The pellet was used for evaluation.
(Example 8)
The impact modifier (B) was manufactured by Asahi Kasei Corporation, Tuftec M1943 (epoxy-modified styrene block copolymer resin) (B3-6), and pellets were produced in the same manner as in Example 1 except that the formulation shown in Table 4 was followed. The pellet was subjected to evaluation.
(比較例1)
 宇部興産製1015Bペレット(ナイロン6)100質量部、B3-3 18質量部を用いた以外は、実施例1と同様にペレットを作製し、当該ペレットを評価に供した。
(Comparative Example 1)
A pellet was prepared in the same manner as in Example 1 except that 100 parts by mass of Ube Industries 1015B pellet (nylon 6) and 18 parts by mass of B3-3 were used, and the pellet was subjected to evaluation.
(比較例2)
 宇部興産製2020Bペレット(ナイロン66)100質量部、B3-4 25質量部を用いた以外は、実施例1と同様にペレットを作製し、当該ペレットを評価に供した。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
(Comparative Example 2)
A pellet was prepared in the same manner as in Example 1 except that 100 parts by mass of Ube Industries 2020B pellet (nylon 66) and 25 parts by mass of B3-4 were used, and the pellet was subjected to evaluation.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(4)表5~8(実施例1~22及び比較例1~4)
(試験例1)
 製造例1~5、比較製造例1で製造したポリアミドPX6-1~PX6-6、並びにナイロン6(宇部興産製、UBEナイロン1015B:PA6)及びナイロン66(宇部興産製、UBEナイロン2020B:PA66)について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける機械的特性を測定した。結果を表5に示す。
(4) Tables 5 to 8 (Examples 1 to 22 and Comparative Examples 1 to 4)
(Test Example 1)
Production Examples 1-5, Polyamides PX6-1 to PX6-6 produced in Comparative Production Example 1, nylon 6 (Ube Industries, UBE nylon 1015B: PA6) and nylon 66 (Ube Industries, UBE nylon 2020B: PA66) The relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, and mechanical properties in dry and wet conditions were measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(実施例1~12、比較例1~2)
 製造例1~5で製造したポリアミドPX6-1~PX6-5、並びにナイロン6(宇部興産製、UBEナイロン1015B)及びナイロン66(宇部興産製、UBEナイロン2020B)と、ガラス繊維(日本電気硝子製ECST-289(繊維径13μm)、炭素繊維(東邦テナックス(株)ベスファイトHTA-C6NR(繊維径7μm)、黄銅繊維(繊維径80μm)を用いて、表6に示した割合の混合物を作成した。
(Examples 1 to 12, Comparative Examples 1 and 2)
Polyamides PX6-1 to PX6-5 produced in Production Examples 1 to 5, nylon 6 (Ube Industries, UBE nylon 1015B) and nylon 66 (Ube Industries, UBE nylon 2020B), and glass fiber (manufactured by Nippon Electric Glass) Using ECST-289 (fiber diameter 13 μm), carbon fiber (Toho Tenax Co., Ltd., Besphite HTA-C6NR (fiber diameter 7 μm), brass fiber (fiber diameter 80 μm), a mixture having the ratio shown in Table 6 was prepared. .
 さらに、それらの混合物をシリンダー径40mmの二軸混練機を用い、樹脂温度300℃(実施例5~9)、340℃(実施例1~4と実施例10~12)、ナイロン6を用いた場合は260℃、ナイロン66を用いた場合は290℃で溶融混練して、ストランド状に押出、水槽で冷却した後ペレタイザーを用いペレットを作成した。得られたペレットを用いて射出成形により所定の試験片を作成した。 Further, the mixture was used in a biaxial kneader having a cylinder diameter of 40 mm, using resin temperatures of 300 ° C. (Examples 5 to 9), 340 ° C. (Examples 1 to 4 and Examples 10 to 12), and nylon 6. In this case, the mixture was melt-kneaded at 260 ° C. and nylon 266 at 290 ° C., extruded into a strand, cooled in a water tank, and then pelletized using a pelletizer. A predetermined test piece was prepared by injection molding using the obtained pellet.
(実施例13~22、比較例3~4)
 製造例1~5で製造したポリアミドPX6-1~PX6-5、並びにナイロン6(宇部興産製、UBEナイロン1015B)と、アミノシランカップリング剤で表面処理した平均粒径10μmのストロンチウムフェライト、アミノシランカップリング剤で表面処理した平均粒径10μmのタングステン粉末を用いて、表7および8に示した割合の混合物を作成した。
(Examples 13 to 22, Comparative Examples 3 to 4)
Polyamides PX6-1 to PX6-5 produced in Production Examples 1 to 5 and Nylon 6 (manufactured by Ube Industries, UBE nylon 1015B), strontium ferrite having an average particle diameter of 10 μm and an aminosilane coupling treated with an aminosilane coupling agent Mixtures having the ratios shown in Tables 7 and 8 were prepared using tungsten powder having an average particle size of 10 μm and surface-treated with an agent.
 さらに、それらの混合物をシリンダー径40mmの二軸混練機を用い、樹脂温度300℃(実施例14、19、21)、340℃(実施例13、15、16,17、18,20,22)、ナイロン6を用いた場合は260℃で溶融混練して、ストランド状に押出、水槽で冷却した後ペレタイザーを用いペレットを作成した。得られたペレットを用いて射出成形により所定の試験片を作成した。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
Furthermore, these mixtures were mixed using a biaxial kneader having a cylinder diameter of 40 mm, and the resin temperature was 300 ° C. (Examples 14, 19, 21), 340 ° C. (Examples 13, 15, 16, 17, 18, 20, 22). When nylon 6 was used, it was melt-kneaded at 260 ° C., extruded into a strand shape, cooled in a water tank, and then pelletized using a pelletizer. A predetermined test piece was prepared by injection molding using the obtained pellet.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(試験例2)
 上記で得られた樹脂組成物及び試験片を用いて、引張強度、耐酸化ガソリン処理後の引張強度、飽和吸水性、耐塩化カルシウム性を評価した。
 その評価結果を表6に示す。
(Test Example 2)
Using the resin composition and test piece obtained above, tensile strength, tensile strength after oxidation-resistant gasoline treatment, saturated water absorption, and calcium chloride resistance were evaluated.
The evaluation results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記で得られた樹脂組成物及び試験片を用いて、密度、飽和吸水率、耐塩化カルシウム性(サイクル)、耐塩化亜鉛性(サイクル)、メタノール浸漬時の質量変化を評価した。その結果を表7及び表8に示す。 Using the resin composition and the test piece obtained above, density, saturated water absorption, calcium chloride resistance (cycle), zinc chloride resistance (cycle), and mass change during methanol immersion were evaluated. The results are shown in Tables 7 and 8.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(5)表9~11(実施例1~14及び比較例1~4)
(試験例1)
 製造例1~5及び比較製造例1で製造したポリアミドPX6-1~PX6-6、並びにナイロン6(宇部興産製、UBEナイロン1015B:PA6)及びナイロン66(宇部興産製、UBEナイロン2020B:PA66)について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける機械的特性を測定した。結果を表9に示す。
(5) Tables 9 to 11 (Examples 1 to 14 and Comparative Examples 1 to 4)
(Test Example 1)
Polyamides PX6-1 to PX6-6 produced in Production Examples 1 to 5 and Comparative Production Example 1, nylon 6 (Ube Industries, UBE nylon 1015B: PA6) and nylon 66 (Ube Industries, UBE nylon 2020B: PA66) The relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, and mechanical properties in dry and wet conditions were measured. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
(実施例1)
 製造例1で製造したPX6-1を100質量部に対し、有機化モンモリロナイト(Nanocor社製、ナノマー30TC)を0.5質量部添加し、340℃で二軸混練機を用いて溶融混練し、ペレット状の本発明の複合材料を得た。
Example 1
To 100 parts by mass of PX6-1 produced in Production Example 1, 0.5 parts by mass of organic montmorillonite (Nanocor, Nanomer 30TC) was added, and melt-kneaded using a twin-screw kneader at 340 ° C. A composite material of the present invention in the form of pellets was obtained.
(実施例2~7)
 表10の配合に従った他は実施例1と同様にして、ペレット状の本発明の複合材料を得た。なお、実施例5~7の混練温度は300℃、実施例2~4の混練温度は340℃で行なった。
(Examples 2 to 7)
A composite material of the present invention in the form of a pellet was obtained in the same manner as in Example 1 except that the composition in Table 10 was followed. The kneading temperature of Examples 5 to 7 was 300 ° C., and the kneading temperature of Examples 2 to 4 was 340 ° C.
(比較例1)
 ポリアミド樹脂の代わりにPA6(宇部興産製、UBEナイロン1015B)を用い、実施例1と同様にして複合材料を得た。混練温度は260℃で行なった。
(Comparative Example 1)
A composite material was obtained in the same manner as in Example 1 using PA6 (manufactured by Ube Industries, UBE nylon 1015B) instead of the polyamide resin. The kneading temperature was 260 ° C.
(試験例2)
 実施例1~7、比較例1の複合材料について、ドライ及びウェットにおける機械的特性、耐塩化カルシウム性、エタノール蒸気透過係数を測定し、その結果を表10に示す。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
(Test Example 2)
The composite materials of Examples 1 to 7 and Comparative Example 1 were measured for dry and wet mechanical properties, calcium chloride resistance, and ethanol vapor permeability coefficient. The results are shown in Table 10.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
(実施例8)
 製造例1で製造したPX6-1を100質量部に対し、有機化モンモリロナイト(Nanocor社製、ナノマー30TC)を1.5質量部添加し、340℃で二軸混練機を用いて溶融混練し、ペレット状の本発明の複合材料を得た。
(Example 8)
To 100 parts by mass of PX6-1 produced in Production Example 1, 1.5 parts by mass of organic montmorillonite (Nanocor, Nanomer 30TC) was added, and melt-kneaded at 340 ° C. using a biaxial kneader. A composite material of the present invention in the form of pellets was obtained.
(実施例9~14)
 表11の配合に従った他は実施例8と同様にして、ペレット状の本発明の複合材料を得た。なお、実施例12~14の混練温度は300℃、実施例9~11の混練温度は340℃で行なった。
(Examples 9 to 14)
A composite material of the present invention in the form of a pellet was obtained in the same manner as in Example 8 except that the composition in Table 11 was followed. The kneading temperature of Examples 12 to 14 was 300 ° C., and the kneading temperature of Examples 9 to 11 was 340 ° C.
(比較例3,4)
 ポリアミド樹脂の代わりにPA6(宇部興産製、UBEナイロン1030B)を用い、実施例8と同様にして複合材料を得た。混練温度は260℃で行なった。
(Comparative Examples 3 and 4)
A composite material was obtained in the same manner as in Example 8 using PA6 (manufactured by Ube Industries, UBE nylon 1030B) instead of the polyamide resin. The kneading temperature was 260 ° C.
 表11に実施例8~14及び比較例3~4の測定結果を示す。 Table 11 shows the measurement results of Examples 8 to 14 and Comparative Examples 3 to 4.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
(6)表12~14(実施例1~20及び比較例1~3)
 製造例1~5、比較製造例1で製造したポリアミドPX6-1~PX6-6、並びにナイロン6(宇部興産製、UBEナイロン1015B:PA6)及びナイロン66(宇部興産製、UBEナイロン2020B:PA66)について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける機械的特性を測定した。結果を表12に示す。
(6) Tables 12 to 14 (Examples 1 to 20 and Comparative Examples 1 to 3)
Production Examples 1-5, Polyamides PX6-1 to PX6-6 produced in Comparative Production Example 1, nylon 6 (Ube Industries, UBE nylon 1015B: PA6) and nylon 66 (Ube Industries, UBE nylon 2020B: PA66) The relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, and mechanical properties in dry and wet conditions were measured. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
(実施例1~15、比較例1~2)
 製造例1~5で製造したポリアミドPX6-1~PX6-5、並びに市販のナイロン6(宇部興産製UBEナイロン1015B;PA6)及びナイロン66(宇部興産製UBEナイロン2020B;PA66)と、カーボンブラック(エボニック デグサ ジャパン株式会社とHIBLACK 890B)、炭素繊維(東邦テナックス(株)ベスファイトHTA-C6NR(繊維径7μm)、黄銅繊維(繊維径80μm)、ケッチェンブラック(ケッチェンブラックインテーナショナル製EC600JD)を用いて、表13に示した割合の混合物を作成した。
(Examples 1 to 15, Comparative Examples 1 and 2)
Polyamides PX6-1 to PX6-5 produced in Production Examples 1 to 5, commercially available nylon 6 (UBE Nylon 1015B; PA6) and nylon 66 (UBE Nylon 2020B; PA66), carbon black ( Evonik Degussa Japan Co., Ltd. and HIBLACK 890B), carbon fiber (Toho Tenax Co., Ltd. Besfight HTA-C6NR (fiber diameter 7 μm), brass fiber (fiber diameter 80 μm), Ketjen Black (EC600JD manufactured by Ketjen Black International) Was used to prepare a mixture having the ratio shown in Table 13.
 さらに、それらの混合物をシリンダー径40mmの二軸混練機を用い、実施例1~9と14~15ではシリンダー設定温度340℃、実施例10~13では300℃(ナイロン6を用いた場合は260℃、PA66では290℃)で溶融混練して、ストランド状に押出、水槽で冷却した後ペレタイザーを用いペレットを作成しポリアミド樹脂組成物を得た。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため溶融混練できず、成形もできなかった。
 得られたペレットから射出成形により各種の試験片を作成した。
Further, these mixtures were mixed using a twin-screw kneader having a cylinder diameter of 40 mm, the cylinder set temperature was 340 ° C. in Examples 1 to 9 and 14 to 15, and 300 ° C. in Examples 10 to 13 (260 when nylon 6 was used). At a temperature of 290 ° C. for PA66, extruded into a strand, cooled in a water bath, and then pelletized using a pelletizer to obtain a polyamide resin composition.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded and molded because Td-Tm was small.
Various test pieces were prepared from the obtained pellets by injection molding.
 上記で得られた試験片を用いて、体積固有抵抗値、機械的特性、耐燃料性などを評価した。その評価結果を表13に示す。 The volume resistivity, mechanical properties, fuel resistance, etc. were evaluated using the test pieces obtained above. The evaluation results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(実施例16~20、比較例3)
 表14に示す組成で、池貝鉄工(株)製2軸混練機PCM-45にて、実施例16~17ではシリンダー設定温度340℃、実施例18~20では300℃(PA6においては260℃)、回転速度150rpmで溶融混練し、実施例16~17では樹脂温度340℃、実施例18~20では300℃(PA6においては260℃)、金型温度80℃の射出成形により成形して得た試験片を用い、上述の方法で表14中に示す評価を行った。衝撃改良材として使用したU-BOND Z488は、宇部丸善ポリエチレン社製の酸変性ポリエチレンであり、タフマーMC1307は、三井化学社製のポリオレフィン系のエラストマーであり、タフマーMH5010は、三井化学社製の酸変性エチレン・ブタジエン共重合体である。
(Examples 16 to 20, Comparative Example 3)
In the composition shown in Table 14, in a biaxial kneader PCM-45 manufactured by Ikekai Tekko Co., Ltd., a cylinder set temperature of 340 ° C. in Examples 16 to 17 and 300 ° C. in Examples 18 to 20 (260 ° C. in PA6) The resin temperature was 340 ° C. in Examples 16 to 17, the resin temperature was 300 ° C. in Examples 18 to 20 (260 ° C. in PA6), and the mold temperature was 80 ° C. Using the test piece, the evaluation shown in Table 14 was performed by the method described above. U-BOND Z488 used as an impact modifier is acid-modified polyethylene manufactured by Ube Maruzen Polyethylene, Tuffmer MC1307 is a polyolefin elastomer manufactured by Mitsui Chemicals, and Tuffmer MH5010 is an acid manufactured by Mitsui Chemicals. It is a modified ethylene / butadiene copolymer.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
(6)表15~16(実施例1-1~5、2-1-1~3及び2-2~5、比較例1-1~3及び比較例2-3-2)
(実施例1-1~5、実施例2-1-1~3及び実施例2-2~5)
 本発明の金属被覆用ポリアミド樹脂組成物及び金属被覆材を製造した。
(6) Tables 15 to 16 (Examples 1-1 to 5, 2-1-1 to 3 and 2-2 to 5, Comparative Examples 1-1 to 3 and Comparative Example 2-3-2)
(Examples 1-1 to 5, Examples 2-1-1 to 3, and Examples 2-2 to 5)
A polyamide resin composition for metal coating and a metal coating material of the present invention were produced.
(実施例2-1-1~3及び実施例2-2~5)
 本発明の金属被覆材及び金属被覆物品を製造した。
(Examples 2-1-1 to 3 and Examples 2-2 to 5)
The metal coating material and metal-coated article of the present invention were produced.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較例1-1:比較樹脂1(PX6-6)
 比較例1-2:比較樹脂2(PA6)
 比較例1-3:比較樹脂4(PA12)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Example 1-2: Comparative Resin 2 (PA6)
Comparative Example 1-3: Comparative Resin 4 (PA12)
(実施例2-1-1~3、実施例2-2~5及び比較例2-3-1~2)
 実施例1-1~5において製造したポリアミド樹脂とPA12と、
 エポキシ化スチレン系熱可塑性エラストマーとして、ダイセル化学製エポフレンドA1010とを用い、
 表16に示す組成で、池貝鉄工(株)製2軸混練機PCM-45にて、シリンダー設定温度
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA12を含む場合は230℃、
回転速度150rpmで溶融混練して金属被覆材を調製した。
上記溶融混練した金属被覆ポリアミド樹脂組成物を金属基材(亜鉛メッキ鋼板及びアルミプレート)間に挟んだ金属被覆物品を作製した。
 また、上記溶融混練した試料から上記(5)の条件で成形したフィルムを用いて、それらの飽和吸水率および耐薬品性を、後述の方法により評価した。
(Examples 2-1-1 to 3, Examples 2-2 to 5, and Comparative Examples 2-3-1 to 2)
The polyamide resin produced in Examples 1-1 to 5 and PA12,
As an epoxidized styrenic thermoplastic elastomer, Daicel Chemical Epofriend A1010 is used,
In the composition shown in Table 16, in a biaxial kneader PCM-45 manufactured by Ikekai Tekko Co., Ltd., the cylinder set temperature is 340 ° C. when PA 6-1 to 2 and 6 are included as the polyamide resin.
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
230 ° C when PA12 is included as the polyamide resin,
A metal coating material was prepared by melt-kneading at a rotational speed of 150 rpm.
A metal-coated article was produced by sandwiching the melt-kneaded metal-coated polyamide resin composition between metal substrates (galvanized steel sheet and aluminum plate).
Moreover, the saturation water absorption rate and chemical resistance were evaluated by the methods described later using films formed under the conditions of (5) above from the melt-kneaded samples.
 実施例1-1~5、比較例1-1~3、実施例2-1-1~3、実施例2-2~5及び比較例2-3-1~2におけるポリアミド樹脂又はポリアミド樹脂組成物について、相対粘度、溶融粘度、融点、1%重量減少温度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を、
 実施例2-1-1~3、実施例2-2~5及び比較例2-3-1~2において接着力を確認した。
 結果を表15及び16に示す。
Polyamide resins or polyamide resin compositions in Examples 1-1 to 5, Comparative Examples 1-1 to 3, Examples 2-1-1 to 3, Examples 2-2 to 5, and Comparative Examples 2-3-1 to 2 About physical properties, relative viscosity, melt viscosity, melting point, 1% weight loss temperature, saturated water absorption, chemical resistance, hydrolysis resistance, physical properties in dry and wet,
Adhesive strength was confirmed in Examples 2-1-1 to 3, Examples 2-2 to 5, and Comparative Examples 2-3-1 to 2.
The results are shown in Tables 15 and 16.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表15~16から、本発明の金属被覆用ポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、それを成形して、被覆対象との接着力と耐薬品性に優れる金属被覆材及び金属皮膜物品を製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Tables 15 to 16, the polyamide resin composition for metal coating of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, has excellent melt moldability, and can have a higher molecular weight. It turns out that it can shape | mold and can manufacture the metal-coating material and metal-coated article which are excellent in the adhesive force and chemical-resistance with a coating object.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(7)表17(実施例1~8及び比較例1~4)
(実施例1~7、比較例1~4)
 実施例1~7において、本発明の射出成形用ポリアミド樹脂組成物を製造した。
 実施例1~5は成分Aからなる射出成形用ポリアミド樹脂組成物で、実施例6及び7は成分Aとガラス繊維からなる射出成形用ポリアミド樹脂組成物である。
(7) Table 17 (Examples 1 to 8 and Comparative Examples 1 to 4)
(Examples 1 to 7, Comparative Examples 1 to 4)
In Examples 1 to 7, the polyamide resin composition for injection molding of the present invention was produced.
Examples 1 to 5 are polyamide resin compositions for injection molding composed of Component A, and Examples 6 and 7 are polyamide resin compositions for injection molding composed of Component A and glass fibers.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1~5:製造例1~5(PX6-1~5)
 比較例1:比較樹脂1(PX6-6)
 比較例2:比較樹脂2(PA6)
 比較例3:比較樹脂3(PA66)
 比較例4:実施例7のPX6-5をPA6に置き換えて、実施例7と同じ条件でガラス繊維を含む射出成形用ポリアミド樹脂組成物であるペレットを作成した。
The production conditions and the comparative resin correspond as follows.
Examples 1 to 5: Production Examples 1 to 5 (PX6-1 to 5)
Comparative Example 1: Comparative Resin 1 (PX6-6)
Comparative Example 2: Comparative resin 2 (PA6)
Comparative Example 3: Comparative Resin 3 (PA66)
Comparative Example 4: PX6-5 of Example 7 was replaced with PA6, and pellets that were polyamide resin compositions for injection molding containing glass fibers were prepared under the same conditions as in Example 7.
(実施例6及び7)
 PX6-1及びPX6-5ペレット100質量部をそれぞれバレル温度340および300℃に設定した44mmφベント付2軸押出機で混練した。
 このポリアミド樹脂を混練する際、ポリアミド樹脂100質量部に対し、ガラス繊維(繊維径11μm、繊維カット長3mm)を43質量部となるように押出機の途中から供給し、目的とする固体の射出成形用ポリアミド樹脂組成物であるペレットを作成した。
(Examples 6 and 7)
100 parts by mass of PX6-1 and PX6-5 pellets were kneaded in a twin screw extruder with a 44 mmφ vent set to a barrel temperature of 340 and 300 ° C., respectively.
When this polyamide resin is kneaded, glass fiber (fiber diameter 11 μm, fiber cut length 3 mm) is supplied from the middle of the extruder to 43 parts by mass with respect to 100 parts by mass of the polyamide resin, and the desired solid injection is performed. Pellets that were polyamide resin compositions for molding were prepared.
 実施例1~7及び比較例1~4におけるポリアミド樹脂及び樹脂組成物について、相対粘度、溶融粘度、融点、1%重量減少温度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を、
 実施例1~7及び比較例2及び4について、反りを、後述する条件で測定した。
 結果を表17に示す。
For the polyamide resins and resin compositions in Examples 1 to 7 and Comparative Examples 1 to 4, relative viscosity, melt viscosity, melting point, 1% weight loss temperature, saturated water absorption, chemical resistance, hydrolysis resistance, dry and wet The physical properties of
For Examples 1 to 7 and Comparative Examples 2 and 4, warpage was measured under the conditions described later.
The results are shown in Table 17.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
(実施例8)
 実施例1~7及び比較例1~4の樹脂組成物を用いて、射出成形により、インテークマニホールド及びフューエルインジェクションを製造した。
 実施例1~7の射出成形用ポリアミド樹脂組成物は、PA6及びPA66と同等以上の成形性を有していた。
(Example 8)
Intake manifolds and fuel injections were produced by injection molding using the resin compositions of Examples 1 to 7 and Comparative Examples 1 to 4.
The polyamide resin compositions for injection molding of Examples 1 to 7 had moldability equal to or higher than that of PA6 and PA66.
 表17から、本発明の射出成形用ポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、成形時の反りが大きく寸法安定性が低いといわれているガラス繊維を添加した場合でも反りが抑制された強靭な射出成形体を製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Table 17, the polyamide resin composition for injection molding of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, is excellent in chemical resistance and hydrolysis resistance, and is a machine under wet conditions. Excellent physical properties, wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine as a diamine component, excellent melt moldability, and higher molecular weight. It can be seen that a tough injection-molded product with reduced warpage can be produced even when glass fiber, which is said to have a large warpage and low dimensional stability, is added.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(8)表18(実施例1-1~5、2-1~5及び3-1~5、比較例2-2及び3-2)
(実施例1-1~5)
 本発明の押出成形用ポリアミド樹脂組成物を製造した。
(実施例2-1~5)
 本発明の押出成形用ポリアミド樹脂組成物を用いたフィラメント(モノフィラメント)を製造した。
(実施例3-1~5)
 本発明の押出成形用ポリアミド樹脂組成物を用いた単層チューブを製造した。
(8) Table 18 (Examples 1-1 to 5, 2-1 to 5 and 3-1 to 5, Comparative Examples 2-2 and 3-2)
(Examples 1-1 to 5)
The polyamide resin composition for extrusion molding of the present invention was produced.
(Examples 2-1 to 5)
A filament (monofilament) using the polyamide resin composition for extrusion molding of the present invention was produced.
(Examples 3-1 to 5)
A single-layer tube using the polyamide resin composition for extrusion molding of the present invention was produced.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較例1-1:比較樹脂1(PX6-6)
 比較例1-2:比較樹脂2(PA6)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Example 1-2: Comparative Resin 2 (PA6)
(実施例2-1~5及び比較例2-2)
 実施例1-1~5及び比較例1-2のポリアミド樹脂組成物のそれぞれを、
 スクリュー径30mmの押出機を使用して、シリンダー設定温度
 実施例2-3~5及び比較例2-2の場合280~310℃、
 実施例2-1~2の場合340℃
において投入し、
 直径1.47mm8穴のノズルから溶融押出し、
 7℃の冷水中で冷却し、
 第1ローラーで引張り、さらに第2ローラーの引き取り速度を第1ローラーの3.9倍として延伸し(延伸温度310℃)、
 さらに第3ローラーの引き取り速度を、第1ローラーの5倍とし、さらに延伸し(延伸温度300℃)、
 最後に第4ローラーを第3ローラーと同一の引き取り速度で引き取り、その間を雰囲気温度230~260℃とし、熱固定して、それぞれ実施例2-1~5及び比較例2-2のモノフィラメントを得た。
(Examples 2-1 to 5 and Comparative Example 2-2)
Each of the polyamide resin compositions of Examples 1-1 to 5 and Comparative Example 1-2 was
Using an extruder with a screw diameter of 30 mm, the cylinder set temperature was 280 to 310 ° C. in Examples 2-3 to 5 and Comparative Example 2-2.
In the case of Examples 2-1 and 340 ° C.
In
Melt extrusion from a nozzle with a diameter of 1.47 mm and 8 holes,
Cool in cold water at 7 ℃,
Stretching with the first roller, and stretching the second roller with a take-up speed of 3.9 times that of the first roller (stretching temperature 310 ° C.)
Furthermore, the take-up speed of the third roller is 5 times that of the first roller, and further stretched (stretching temperature 300 ° C.),
Finally, the fourth roller is taken up at the same take-off speed as the third roller, and the temperature is set between 230 ° C. and 260 ° C. and heat-fixed to obtain monofilaments of Examples 2-1 to 5 and Comparative Example 2-2, respectively. It was.
(実施例3-1~5及び比較例3-2)
 実施例1~5で製造したポリアミド樹脂及びPA6について、(株)日本製鋼所製のスクリュー径30mmの押出機(シリンダー温度250~340℃)を用いて、外径1/2インチ、厚み1mmの単層チューブを製造した。
(Examples 3-1 to 5 and Comparative Example 3-2)
For the polyamide resin and PA6 produced in Examples 1 to 5, using an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., the outer diameter is 1/2 inch and the thickness is 1 mm. Single layer tubes were produced.
 実施例1―1~5及び比較例1-1~2における成分A又はポリアミド樹脂について、
 相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性、エタノール透過係数、酸素透過係数並びに透湿度を、
 実施例2-1~5及び比較例2-2におけるモノフィラメントについて、繊度、耐薬品性、引張強度、引張伸度、引張弾性率及び熱水収縮力を、
 実施例3-1~5及び比較例3-2における単層チューブについて、エタノール透過係数及び透湿度を、
 後述する条件で測定した。
 結果を表18に示す。
Regarding component A or polyamide resin in Examples 1-1 to 5 and Comparative Examples 1-1 to 1-2,
Relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, physical properties in dry and wet conditions, ethanol permeability coefficient, oxygen permeability coefficient and moisture permeability,
For the monofilaments in Examples 2-1 to 5 and Comparative Example 2-2, the fineness, chemical resistance, tensile strength, tensile elongation, tensile elastic modulus and hot water shrinkage force were determined.
For the single-layer tubes in Examples 3-1 to 5 and Comparative Example 3-2, the ethanol permeability coefficient and moisture permeability were
It measured on the conditions mentioned later.
The results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
(9)表19(実施例1-1~5、2-1~6及び3-1~5、比較例1-1~3、2-2、2-4及び3-2~3)
(実施例1-1~5)
 成分Aからなる本発明の車両部品成形用ポリアミド樹脂組成物を製造した。
(実施例2-1~6)
 成分A及びガラス繊維からなる本発明の車両部品成形用ポリアミド樹脂組成物を製造した。
(実施例3-1~5)
 成分A、紫外線吸収剤及び光安定化剤からなる本発明の車両部品成形用ポリアミド樹脂組成物を製造した。
(実施例4)
 本発明の車両部品成形用ポリアミド樹脂組成物を用いた車両内装部品を製造した。
(実施例5)
 本発明の車両部品成形用ポリアミド樹脂組成物を用いた車両外装部品を製造した。
(9) Table 19 (Examples 1-1 to 5, 2-1 to 6, and 3-1 to 5, Comparative Examples 1-1 to 3, 2-2, 2-4, and 3-2 to 3)
(Examples 1-1 to 5)
A polyamide resin composition for molding vehicle parts of the present invention comprising Component A was produced.
(Examples 2-1 to 6)
A polyamide resin composition for molding vehicle parts according to the present invention comprising component A and glass fiber was produced.
(Examples 3-1 to 5)
A polyamide resin composition for molding vehicle parts of the present invention comprising Component A, an ultraviolet absorber and a light stabilizer was produced.
(Example 4)
Vehicle interior parts were produced using the polyamide resin composition for molding vehicle parts of the present invention.
(Example 5)
A vehicle exterior part using the polyamide resin composition for molding vehicle parts of the present invention was produced.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較例1-1:比較樹脂1(PX6-6)
 比較例1-2:比較樹脂2(PA6)
 比較例1-3:比較樹脂3(PA66)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Example 1-2: Comparative Resin 2 (PA6)
Comparative Example 1-3: Comparative Resin 3 (PA66)
(実施例2-1~6、比較例2-2及び4)
 実施例2-1~6、比較例2-2及び4のポリアミド樹脂組成物について、バレル温度を
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA6を含む場合は260℃、
に設定した44mmφベント付き二軸押出機で混練した。
 このポリアミド樹脂に混練する際、ポリアミド樹脂100質量部に対し、ガラス繊維(平均径11μm、平均繊維長さ3mm)を43質量部となるように押出機の途中から供給し、目的とする実施例2-1~6、比較例2-2及び4の車両部品成形用ポリアミド樹脂組成物のペレットを作成した。
(Examples 2-1 to 6 and Comparative Examples 2-2 and 4)
For the polyamide resin compositions of Examples 2-1 to 6 and Comparative Examples 2-2 and 4, the barrel temperature is 340 ° C. when PA 6-1 to 2 and 6 are included as the polyamide resin.
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
260 ° C when PA6 is included as the polyamide resin,
Were kneaded with a 44 mmφ vented twin screw extruder set to
When kneading into this polyamide resin, glass fiber (average diameter 11 μm, average fiber length 3 mm) is supplied from the middle of the extruder to 43 parts by mass with respect to 100 parts by mass of the polyamide resin. Pellets of polyamide resin compositions for molding vehicle parts of 2-1 to 6 and Comparative Examples 2-2 and 4 were prepared.
(実施例3-1~5、比較例3-2~3)
 実施例1-1~5及び比較例1-2~3で製造したポリアミド樹脂組成物のペレットに、紫外線吸収剤としてのTinuvin327と、光安定剤のTinuvin123とを、ポリアミド樹脂100質量部に対して、それぞれ、0.25質量部及び0.25質量部加え、二軸混練機を用いて、
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は310℃、
 ポリアミド樹脂としてPA6を含む場合は260℃、
 ポリアミド樹脂としてPA66を含む場合は290℃、
で混練してそれぞれ実施例3-1~5、比較例3-2~3のペレットを製造した。
(Examples 3-1 to 5 and Comparative Examples 3-2 to 3)
Into the polyamide resin composition pellets produced in Examples 1-1 to 5 and Comparative Examples 1-2 to 3, Tinuvin 327 as an ultraviolet absorber and Tinuvin 123 as a light stabilizer were added to 100 parts by mass of the polyamide resin. 0.25 parts by mass and 0.25 parts by mass, respectively, using a biaxial kneader,
340 ° C when PA 6-1 to 2 and 6 are included as polyamide resin,
When PA6-3-5 is included as a polyamide resin, 310 ° C,
260 ° C when PA6 is included as the polyamide resin,
When PA66 is included as a polyamide resin,
Were mixed to produce pellets of Examples 3-1 to 5 and Comparative Examples 3-2 to 3 respectively.
(実施例4:車両内装部品の製造)
 実施例1-1~5、紫外線吸収剤及び光安定化剤を含む実施例3-1~5及び比較例3-2~3のポリアミド樹脂組成物を用いて、射出成形によりサンバイザーブラケット及びインストルメンタルパネルを製造した。
 実施例1-1~5及び3-1~5は、PA6又はPA66を含む比較例3-2~3と同等以上の成形性を有していた。
(Example 4: Production of vehicle interior parts)
Examples 1-1 to 5, sun visor brackets and instruments by injection molding using the polyamide resin compositions of Examples 3-1 to 5 and Comparative Examples 3-2 to 3 containing an ultraviolet absorber and a light stabilizer A mental panel was manufactured.
Examples 1-1 to 5 and 3-1 to 5 had a moldability equal to or higher than that of Comparative Examples 3-2 to 3 including PA6 or PA66.
(実施例5:車両外装部品の製造)
 実施例1-1~5及び比較例1-2~3のポリアミド樹脂を用いて、射出成形によりフロントグリル及びマッドガードを製造した。実施例1-1~5のポリアミド樹脂は、PA6又はPA66を含む比較例1-2~3と同等以上の成形性を有していた。
(Example 5: Manufacture of vehicle exterior parts)
Using the polyamide resins of Examples 1-1 to 5 and Comparative Examples 1-2 to 3, front grills and mudguards were manufactured by injection molding. The polyamide resins of Examples 1-1 to 5 had a moldability equal to or higher than that of Comparative Examples 1-2 to 3 including PA6 or PA66.
 実施例1-1~5及び比較例1-1~3におけるポリアミド樹脂組成物について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を後述する条件で測定した。
 実施例2-1~6並びに比較例2-2及び4におけるポリアミド樹脂組成物について、射出成形体から各種試験片を作成し、反り、曲げ弾性率(ドライ及びウェット)、荷重たわみ温度、吸水率、耐塩化カルシウム性を後述する条件で測定した。
 実施例3-1~5及び比較例3-2~3におけるポリアミド樹脂組成物について、耐候性を後述する条件で測定した。
 結果を表19に示す。
For the polyamide resin compositions in Examples 1-1 to 5 and Comparative Examples 1-1 to 3, relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, dry And the physical properties in wet were measured under the conditions described later.
For the polyamide resin compositions in Examples 2-1 to 6 and Comparative Examples 2-2 and 4, various test pieces were prepared from injection-molded bodies, and warpage, flexural modulus (dry and wet), deflection temperature under load, and water absorption rate. The calcium chloride resistance was measured under the conditions described later.
With respect to the polyamide resin compositions in Examples 3-1 to 5 and Comparative Examples 3-2 to 3, the weather resistance was measured under the conditions described later.
The results are shown in Table 19.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
(10)表20(実施例1~5、比較例1-1~4)
 実施例1~5において、本発明の樹脂組成物を製造した。
(10) Table 20 (Examples 1 to 5, Comparative Examples 1-1 to 4)
In Examples 1 to 5, the resin composition of the present invention was produced.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1~5:製造例1~5(PX6-1~5)
 比較例1:比較樹脂1(PX6-6)
 比較例2:比較樹脂2(PA6)
 比較例3:比較樹脂3(PA66)
 比較例4:比較樹脂4(PA12)
The production conditions and the comparative resin correspond as follows.
Examples 1 to 5: Production Examples 1 to 5 (PX6-1 to 5)
Comparative Example 1: Comparative Resin 1 (PX6-6)
Comparative Example 2: Comparative resin 2 (PA6)
Comparative Example 3: Comparative Resin 3 (PA66)
Comparative Example 4: Comparative resin 4 (PA12)
 実施例1~5及び比較例1~4におけるポリアミド樹脂及び樹脂組成物について、相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性を、
 実施例1~5及び比較例2~4について、耐バイオディーゼル燃料性、引張強度保持率及び引張伸度保持率を、後述する条件で測定した。
 結果を表20に示す。
For the polyamide resins and resin compositions in Examples 1 to 5 and Comparative Examples 1 to 4, the relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, and hydrolysis resistance were
For Examples 1 to 5 and Comparative Examples 2 to 4, the resistance to biodiesel, tensile strength retention, and tensile elongation retention were measured under the conditions described below.
The results are shown in Table 20.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表20から、本発明の樹脂組成物及び本発明の樹脂組成物を成形して得た成形体は、ナイロン6、ナイロン66及びナイロン12等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能であり、耐バイオディーゼル燃料性が優れていることがわかる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Table 20, the molded product obtained by molding the resin composition of the present invention and the resin composition of the present invention has low water absorption compared to materials such as nylon 6, nylon 66 and nylon 12, and has chemical resistance. Excellent hydrolysis resistance, excellent mechanical properties, and has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, and excellent melt moldability. It can be seen that high molecular weight is possible and that the biodiesel fuel resistance is excellent.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(11)表21~23(実施例1-1~5、2-1~4、3-1~2、3-5、4-1~4、5-1~5及び6-1~7、比較例1-1~4、2-4、3-3~4、4-4、5-2及び5-4)
 実施例1-1~5、実施例2-1~4、実施例3-1、2及び5、実施例4-1~4、
 実施例6-1~6の中間層及び外層並びに実施例6-7の外層
において、本発明の燃料配管部品用ポリアミド樹脂組成物を製造した。
 実施例3-1、2及び5、実施例4-1~4において、本発明の燃料配管部品である燃料配管部用継手を製造し、
 実施例5-1~5において、本発明の燃料配管部品である単層燃料チューブを製造し、
 実施例6-1~5において、本発明の燃料配管部品である3層燃料チューブを製造し、
 実施例7において、本発明の燃料配管部品であるガソリンタンク及びフューエルチューブを製造した。
(11) Tables 21 to 23 (Examples 1-1 to 5, 2-1 to 4, 3-1 to 2, 3-5, 4-1 to 4, 5-1 to 5, and 6-1 to 7, Comparative Examples 1-1 to 4, 2-4, 3-3 to 4, 4-4, 5-2 and 5-4)
Examples 1-1 to 5, Examples 2-1 to 4, Examples 3-1, 2, and 5, Examples 4-1 to 4,
The polyamide resin composition for fuel pipe parts of the present invention was produced in the intermediate layer and outer layer of Examples 6-1 to 6 and the outer layer of Example 6-7.
In Examples 3-1, 2 and 5, and Examples 4-1 to 4, a joint for a fuel pipe part which is a fuel pipe part of the present invention was manufactured.
In Examples 5-1 to 5, a single-layer fuel tube that is a fuel piping component of the present invention was manufactured,
In Examples 6-1 to 5, a three-layer fuel tube that is a fuel piping component of the present invention was manufactured,
In Example 7, a gasoline tank and a fuel tube, which are fuel piping parts of the present invention, were manufactured.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較例1-1:比較樹脂1(PX6-6)
 比較例1-2:比較樹脂2(PA6)
 比較例1-3:比較樹脂3(PA66)
 比較例1-4:比較樹脂4(PA12)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Example 1-2: Comparative Resin 2 (PA6)
Comparative Example 1-3: Comparative Resin 3 (PA66)
Comparative Example 1-4: Comparative resin 4 (PA12)
(実施例2-1~4並びに比較例4~4)
 表21に示される組成で、実施例1-1で製造したPX6-1に、
 ガラスファイバー(日東紡績株式会社製CS-3J-265S)及び/又は
 カーボンファイバー(三菱化学製K223SE)を
 日本製綱製TEX44二軸押出機にて混練し、
 ストランドを冷却水槽にて冷却固化した後、ペレタイザーにて実施例2-1のペレットを得た。表21中では、ガラスファイバーをGF、カーボンファイバーをCFと記載した。
 実施例2-1において、PX6-1を実施例1-4で製造したPX6-4に置き換えた以外は同じ条件で実施例2-4のペレットを得た。
 実施例1-2で製造したPX6-2に、
 ガラスファイバー(日東紡績株式会社製CS-3J-265S)30質量%を
 日本製綱製TEX44二軸押出機にて混練し、
 ストランドを冷却水槽にて冷却固化した後、ペレタイザーにて実施例2-2のペレットを得た。
 実施例2-2において、PX6-2を実施例1-3及び4で製造したPX6-3及び4、PA12にそれぞれ置き換えた以外は同じ条件で実施例2-3~4及び比較例2-4のペレットを得た。
(Examples 2-1 to 4 and Comparative Examples 4 to 4)
PX6-1 produced in Example 1-1 with the composition shown in Table 21
Glass fiber (CS-3J-265S manufactured by Nitto Boseki Co., Ltd.) and / or carbon fiber (K223SE manufactured by Mitsubishi Chemical) was kneaded in a TEX44 twin screw extruder manufactured by Nippon Steel,
The strand was cooled and solidified in a cooling water tank, and then a pellet of Example 2-1 was obtained with a pelletizer. In Table 21, glass fiber was described as GF and carbon fiber as CF.
A pellet of Example 2-4 was obtained under the same conditions as in Example 2-1, except that PX6-1 was replaced with PX6-4 produced in Example 1-4.
To PX6-2 produced in Example 1-2,
30% by mass of glass fiber (CS-3J-265S manufactured by Nitto Boseki Co., Ltd.) was kneaded in a TEX44 twin-screw extruder manufactured by Nippon Steel,
The strand was cooled and solidified in a cooling water tank, and then a pellet of Example 2-2 was obtained with a pelletizer.
In Examples 2-2, Examples 2-3 to 4 and Comparative Example 2-4 were performed under the same conditions except that PX6-2 was replaced with PX6-3 and 4 prepared in Examples 1-3 and 4, respectively, and PA12. Pellets were obtained.
(実施例3-1、2及び5、比較例3~4、実施例4-1~4、比較例4-4、実施例4-1~4並びに比較例4-4)
 (株)日本製鋼所製のスクリュー径30mmの押出機(シリンダー温度250~340℃)を用いて、外径8mm、肉厚2mm、長さ100mmのプラスチック状の燃料配管用継手を製造した。
(Examples 3-1, 2 and 5, Comparative Examples 3 to 4, Examples 4-1 to 4, Comparative Example 4-4, Examples 4-1 to 4 and Comparative Example 4-4)
Using a 30 mm screw extruder (Cylinder temperature: 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., a plastic joint for fuel piping having an outer diameter of 8 mm, a wall thickness of 2 mm, and a length of 100 mm was manufactured.
(実施例5-1~5並びに比較例2及び4)
 実施例1-1~5で製造したポリアミド樹脂、PA6及びPA66について、(株)日本製鋼所製のスクリュー径30mmの押出機(シリンダー温度250~340℃)を用いて、外径1/2インチ、厚み1mmの単層チューブを製造した。
(Examples 5-1 to 5 and Comparative Examples 2 and 4)
For the polyamide resins PA6 and PA66 produced in Examples 1-1 to 5, using an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., an outer diameter of 1/2 inch. A single-layer tube having a thickness of 1 mm was manufactured.
(実施例6-1~7並びに比較例6-2及び3)
 多層チューブ成形用装置として、内層用押出機、中間層用押出機および外層用押出機を備え、この3台の押出機から吐出された樹脂をアダプターによって集めチューブ状に成形するダイス、チューブを冷却し寸法を制御するサイジングダイおよび引き取り機などからなる装置(品名Plabor、プラスチック工学研究所(株)製)を用い、チューブ断面の内径6mm、外径8mmの3層チューブを作製した。
 チューブの内層、中間層および外層の樹脂組成物の組成と厚さは表3に示した。
 なお、原料として以下を使用した。
 樹脂r1:フッ化ビニリデン樹脂(セフラルソフト、セントラル硝子製)
 樹脂r2:高密度ポリエチレン樹脂(8600A、東ソー製)
 可塑剤:
  ベンゼンスルホン酸ブチルアミド(BBSA、Proviron社製)
  (表23中では、BSBAと記載されている)
 接着剤:マレイン酸変性ポリエチレン(UボンドF1100、宇部興産製)
(Examples 6-1 to 7 and Comparative Examples 6-2 and 3)
Multi-layer tube forming equipment includes an inner layer extruder, an intermediate layer extruder and an outer layer extruder. Resin discharged from these three extruders is collected by an adapter and molded into a tube, and the tube is cooled. A three-layer tube having an inner diameter of 6 mm and an outer diameter of 8 mm was prepared using an apparatus (product name: Platform, manufactured by Plastic Engineering Laboratory Co., Ltd.) consisting of a sizing die and a take-up machine for controlling the size.
Table 3 shows the composition and thickness of the resin composition of the inner layer, intermediate layer, and outer layer of the tube.
In addition, the following was used as a raw material.
Resin r1: Vinylidene fluoride resin (cefal soft, manufactured by Central Glass)
Resin r2: High density polyethylene resin (8600A, manufactured by Tosoh Corporation)
Plasticizer:
Benzenesulfonic acid butyramide (BBSA, manufactured by Proviron)
(In Table 23, it is described as BSBA)
Adhesive: Maleic acid-modified polyethylene (U Bond F1100, manufactured by Ube Industries)
(実施例7)
 実施例1~5で製造したPX6-1~PX6-5、PA6、PA66及びPA12を用いて、射出成形により、燃料配管部品であるガソリンタンク及びガソリン燃料を輸送するためのフューエルチューブを製造した。
 射出成形条件は、
 ポリアミド樹脂としてPX6-1~3を使用する場合では300℃、
 ポリアミド樹脂としてPX6-4~6を使用する場合では340℃、
 ポリアミド樹脂としてPA6を使用する場合では260℃、
 ポリアミド樹脂としてPA66を使用する場合では290℃
ポリアミド樹脂としてPA12を使用する場合では230℃
 金型温度80℃の電子写真装置部品により成形して試験用プレートを得た。
 射出成形条件は、射出圧力:一次圧650kg/cm、射出時間:11秒、冷却時間:20秒とした。
 本発明の燃料配管部品であるガソリンタンク及びフューエルチューブは、PA6、PA66及びPA12と同等以上の成形性を有していた。
(Example 7)
Using PX6-1 to PX6-5, PA6, PA66, and PA12 manufactured in Examples 1 to 5, a fuel tank for transporting a gasoline tank and gasoline fuel, which are fuel pipe components, was manufactured by injection molding.
Injection molding conditions are
When using PX6-1-3 as polyamide resin,
When using PX6-4-6 as polyamide resin,
When PA6 is used as a polyamide resin,
290 ° C when PA66 is used as the polyamide resin
23 ° C when PA12 is used as polyamide resin
A test plate was obtained by molding with an electrophotographic apparatus part having a mold temperature of 80 ° C.
The injection molding conditions were: injection pressure: primary pressure 650 kg / cm 2 , injection time: 11 seconds, cooling time: 20 seconds.
The gasoline tank and the fuel tube, which are fuel piping parts of the present invention, had a formability equal to or higher than that of PA6, PA66, and PA12.
 下記の条件で製造又は使用した実施例1-1~5及び比較例1~4におけるポリアミド樹脂又はポリアミド樹脂組成物について、相対粘度、溶融粘度、融点、1%重量減少温度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性、液体又は蒸気バリア性(エタノール蒸気透過性、E10透過係数、耐カルシウム性)、機械的物性の耐燃料浸漬性を、
 実施例1-1、2及び5、比較例1-3~4、実施例2-1~4及び比較例2-4において、アイゾット衝撃強度及び電気抵抗を測定することで、ポリアミド樹脂組成物におけるガラス繊維(無機繊維)と炭素繊維(導電性充填材)の添加効果を確認した。
 結果を表21に示す。
For the polyamide resins or polyamide resin compositions in Examples 1-1 to 5 and Comparative Examples 1 to 4 manufactured or used under the following conditions, the relative viscosity, melt viscosity, melting point, 1% weight loss temperature, saturated water absorption, Chemical properties, hydrolysis resistance, physical properties in dry and wet, liquid or vapor barrier properties (ethanol vapor permeability, E10 permeability coefficient, calcium resistance), mechanical properties, fuel immersion resistance,
In Examples 1-1, 2 and 5, Comparative Examples 1-3 to 4, Examples 2-1 to 4 and Comparative Example 2-4, the Izod impact strength and the electrical resistance were measured, so that the polyamide resin composition The addition effect of glass fiber (inorganic fiber) and carbon fiber (conductive filler) was confirmed.
The results are shown in Table 21.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 実施例3-1、2及び5、比較例3-3~4、実施例4-1~4並びに比較例4-4において、本発明の燃料配管部品である燃料配管用継手について、燃料バリア性(燃料透過量(全透過量及びHC透過量)を測定し、
 実施例5-1~5並びに比較例5-2及び4において、単層燃料チューブの蒸気バリア性(透湿度)を測定した。
 結果を表22に示す。
In Examples 3-1, 2 and 5, Comparative Examples 3-3 to 4, Examples 4-1 to 4 and Comparative Example 4-4, the fuel barrier properties of the joint for fuel piping which is a fuel piping component of the present invention (Measure fuel permeation (total permeation and HC permeation)
In Examples 5-1 to 5 and Comparative Examples 5-2 and 4, the vapor barrier properties (moisture permeability) of the single-layer fuel tubes were measured.
The results are shown in Table 22.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 実施例6-1~7及び比較例6-2~3において、3層燃料チューブの低温衝撃性、燃料バリア性(燃料透過性)及び耐燃料性を測定した。
 結果を表23に示す。
In Examples 6-1 to 7 and Comparative Examples 6-2 to 6-2, the low temperature impact property, fuel barrier property (fuel permeability) and fuel resistance of the three-layer fuel tube were measured.
The results are shown in Table 23.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表21~23から、本発明の燃料配管部品用ポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、それを成形して、耐低温衝撃性等の環境耐性、耐薬品性及び燃料の不透過性に優れる燃料配管部品を製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Tables 21 to 23, the polyamide resin composition for fuel pipe parts of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, and has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, and it has excellent melt moldability and can have a higher molecular weight. It can be seen that a fuel piping component having excellent environmental resistance such as low temperature impact resistance, chemical resistance, and fuel impermeability can be produced by molding it.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(12)表24(実施例1-1~5、2-1-1~2、2-2~3、2-4-1~2及び2-5、比較例1-1~3及び2-3-1~2) (12) Table 24 (Examples 1-1 to 5, 2-1-1 to 2, 2-2 to 3, 2-4-1 to 2 and 2-5, Comparative Examples 1-1 to 3 and 2- 3-1 to 2)
 実施例1-1~5、2-1-1~2、2-2~3、2-4-1~2、2-5において、本発明のプリント基板表面実装部品用ポリアミド樹脂組成物を製造した。
 実施例1-1~5においては、成分Aからなるプリント基板表面実装部品用ポリアミド樹脂組成物であり、
 実施例2-1-1~2、2-2~3、2-2-4-1~2、2-5においては、成分Aとガラス繊維(無機粒子)とからなるプリント基板表面実装部品用ポリアミド樹脂組成物である。
In Examples 1-1 to 5, 2-1-1 to 2, 2-2 to 3, 2-4-1 to 2, and 2-5, the polyamide resin composition for a printed circuit board surface mount component of the present invention is manufactured. did.
In Examples 1-1 to 5, it is a polyamide resin composition for printed circuit board surface-mount components comprising component A,
In Examples 2-1-1 to 2, 2-2 to 3, 2-2-4-1 to 2, and 2-5, printed circuit board surface-mount components comprising component A and glass fibers (inorganic particles) It is a polyamide resin composition.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較例1-1:比較樹脂1(PX6-6)
 比較例1-2:比較樹脂2(PA6)
 比較例1-3:比較樹脂2(PA66)
 比較例1-4:比較樹脂2(PA12)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Example 1-2: Comparative Resin 2 (PA6)
Comparative Example 1-3: Comparative Resin 2 (PA66)
Comparative Example 1-4: Comparative resin 2 (PA12)
(実施例2-1-1~2、2-2~3、2-4-1~2、2-5及び比較例2-3-1~2)
 実施例1-1~5及び比較例1-1で製造したポリアミド樹脂並びにPA66と、
 ガラス繊維(日本電気硝子製ECST-289(繊維径13μm)とを用いて、
 表2に示した割合の混合物を作成した。
 さらに、これらの混合物をそれぞれ、シリンダー径40mmの二軸混練機を用い、
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA66を含む場合は290℃、
で溶融混練して、ストランド状に押出、水槽で冷却した後ペレタイザーを用いペレットを作成した。
(Examples 2-1-1 to 2, 2-2 to 3, 2-4-1 to 2, 2-5 and Comparative Examples 2-3-1 to 2)
The polyamide resin and PA66 produced in Examples 1-1 to 5 and Comparative Example 1-1;
Using glass fiber (ECST-289 manufactured by Nippon Electric Glass (fiber diameter 13 μm))
A mixture having the ratio shown in Table 2 was prepared.
Furthermore, each of these mixtures was used using a biaxial kneader with a cylinder diameter of 40 mm,
340 ° C when PA 6-1 to 2 and 6 are included as polyamide resin,
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
When PA66 is included as a polyamide resin,
The mixture was melt kneaded and extruded into a strand shape, cooled in a water tank, and then pelleted using a pelletizer.
 実施例1-1~5、比較例1-1~3におけるポリアミド樹脂について、
 相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を、
 実施例2-1-1~2、2-2~3、2-4-1~2、2-5及び比較例2-3-1~2におけるポリアミド樹脂ついて、
 半田浸漬処理前後の引張強度及び耐カルシウム性(クラックの有無)を後述する条件で測定した。
 結果を表24に示す。
Regarding the polyamide resins in Examples 1-1 to 5 and Comparative Examples 1-1 to 3,
Relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, physical properties in dry and wet,
Regarding the polyamide resins in Examples 2-1-1 to 2, 2-2 to 3, 2-4-1 to 2, 2-5 and Comparative Examples 2-3-1 to 2,
The tensile strength and calcium resistance (presence or absence of cracks) before and after the solder immersion treatment were measured under the conditions described later.
The results are shown in Table 24.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表24から、本発明のプリント基板表面実装部品用ポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、高温度下での耐熱性、各種薬品に対する耐薬品性に優れるプリント基板表面実装部品を製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Table 24, the polyamide resin composition for a printed circuit board surface mount component of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, and has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, and it has excellent melt moldability and can have a higher molecular weight. It can be seen that a printed circuit board surface mount component having excellent heat resistance under high temperature and chemical resistance against various chemicals can be produced.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(13)表25~26(実施例1-1~4、2-1、3-1~5、4-1~4、5-1及び6-1~5、比較例1-1、2-1、4-1及び5-1)
 製造例1-1~5において、成分Aを製造した。
 実施例1-1~4、2-1、3-1~5及び4-1~3において、本発明の電子写真装置部品用ポリアミド樹脂組成物を製造した。
 実施例5-1~4、6-1、7-1~5及び8-1~3において、本発明の電子写真装置部品を製造した。
(13) Tables 25 to 26 (Examples 1-1 to 4, 2-1, 3-1 to 5, 4-1 to 4, 5-1, and 6-1 to 5, Comparative Examples 1-1, 2- 1, 4-1 and 5-1)
In Production Examples 1-1 to 5, component A was produced.
In Examples 1-1 to 4, 2-1, 3-1 to 5, and 4-1 to 3, the polyamide resin composition for electrophotographic apparatus parts of the present invention was produced.
In Examples 5-1 to 4, 6-1, 7-1 to 5 and 8-1 to 3, the electrophotographic apparatus parts of the present invention were produced.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較樹脂例1-1:比較樹脂1(PX6-6)
 比較樹脂例1-2:比較樹脂2(PA6)
 比較樹脂例1-3:比較樹脂3(PA66)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Resin Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Resin Example 1-2: Comparative Resin 2 (PA6)
Comparative Resin Example 1-3: Comparative Resin 3 (PA66)
(実施例1-1~4、2-1、3-1~5、比較例1-1及び2-1、実施例4-1~4、5-1、6-1~5並びに比較例4-1及び5-1)
(i)実施例1-1~5で製造したポリアミド樹脂、PA6及びPA66と、導電性充填剤及び層状珪酸塩として、
 カーボンブラック(ケッチェンブラックインテーナショナル製EC600JD)、
 炭素繊維(東邦テナックス(株)製ベスファイトHTA-C6NR(繊維径7μm)、
 有機化モンモリロナイト(Nanocor社製、ナノマー30TC)
とを用いて、表26に示した割合の混合物を作成した(カーボンブラックはCBと記されている)。
 さらに、これらの混合物をそれぞれ、シリンダー径40mmの二軸混練機(日本製綱製TEX44二軸押出機)を用い、
 ポリアミド樹脂としてPX6-1~3を使用した場合では340℃、
 ポリアミド樹脂としてPX6-4~5を使用した場合では300℃、
 ポリアミド樹脂としてPA6を使用した場合ではでは260℃、
 ポリアミド樹脂としてPA66を使用した場合ではでは290℃
で溶融混練して、ストランド状に押出、水槽で冷却した後ペレタイザーを用い本発明の樹脂組成物であるペレットを作成した。
(ii)上記(i)で製造したペレットを用いて、インフレーション押出成形法により厚みが200μmのシームレスベルト状フィルムを作成した。
インフレーション押出成形法は、(株)日本製鋼所製のスクリュー径30mmの押出機(シリンダー温度250~340℃)を用いて、引取速度40m/分、ダイリップ幅2mm、ブロー比1.2で外径150mmのシームレスベルト状フィルムを製造した。
Examples 1-1 to 4, 2-1, 3-1 to 5, Comparative Examples 1-1 and 2-1, Examples 4-1 to 4, 5-1, 6-1 to 5, and Comparative Example 4 -1 and 5-1)
(I) Polyamide resins produced in Examples 1-1 to 5, PA6 and PA66, conductive fillers and layered silicates,
Carbon black (EC600JD made by Ketjen Black International),
Carbon fiber (Besfight HTA-C6NR manufactured by Toho Tenax Co., Ltd. (fiber diameter 7 μm),
Organized montmorillonite (Nanocor, Nanomer 30TC)
Were used to make a mixture of the proportions shown in Table 26 (carbon black is labeled CB).
Furthermore, each of these mixtures was used using a twin-screw kneader with a cylinder diameter of 40 mm (Tex44 twin-screw extruder manufactured by Nippon Steel).
In the case of using PX6-1 to 3 as the polyamide resin,
When PX6-4-5 is used as the polyamide resin,
In the case of using PA6 as the polyamide resin,
290 ° C when PA66 is used as the polyamide resin
The mixture was melt kneaded and extruded into strands, cooled in a water tank, and then pelletized as a resin composition of the present invention using a pelletizer.
(Ii) Using the pellets produced in (i) above, a seamless belt-like film having a thickness of 200 μm was prepared by an inflation extrusion molding method.
The inflation extrusion molding method uses an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel, Ltd., with a take-off speed of 40 m / min, a die lip width of 2 mm, and a blow ratio of 1.2. A seamless belt-like film of 150 mm was produced.
 製造例1~5、比較製造例1、比較樹脂例2~3、
 実施例1-1~4、2-1、3-1~5、比較例1-1及び2-1、
 実施例4-1~4、5-1、6-1~5並びに比較例4-1及び5-1
におけるポリアミド樹脂について、
 相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性、150℃12時間処理前後の表面抵抗値及び引張強度を、
 実施例1-1~4、2-1、3-1~5、比較例1-1及び2-1、
 実施例4-1~4、5-1、6-1~5並びに比較例4-1及び5-1におけるシームレスベルト状フィルムについて、表面の平滑性を測定した。
 結果を表25及び26に示す。
Production Examples 1 to 5, Comparative Production Example 1, Comparative Resin Examples 2 to 3,
Examples 1-1 to 4, 2-1, 3-1 to 5, Comparative Examples 1-1 and 2-1,
Examples 4-1 to 4, 5-1, 6-1 to 5 and Comparative Examples 4-1 and 5-1
About polyamide resin in
Relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, physical properties in dry and wet conditions, surface resistance value and tensile strength before and after treatment at 150 ° C. for 12 hours,
Examples 1-1 to 4, 2-1, 3-1 to 5, Comparative Examples 1-1 and 2-1,
The smoothness of the surface was measured for the seamless belt-like films in Examples 4-1 to 4, 5-1, 6-1 to 5 and Comparative Examples 4-1 and 5-1.
The results are shown in Tables 25 and 26.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表25及び26から、本発明の電子写真装置部品用ポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、それを成形して、導電性、表面平滑性及び機械的物性の高温下での安定性に優れる電子写真装置部品を製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Tables 25 and 26, the polyamide resin composition for electrophotographic apparatus parts of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and wet conditions. Excellent mechanical properties at lower temperatures, wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as diamine component, and excellent melt moldability, and higher molecular weight Thus, it can be seen that it is possible to produce an electrophotographic apparatus component that is excellent in electrical conductivity, surface smoothness, and mechanical property stability at high temperatures.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(14)表27~28(実施例1-1~4、2-1、3-1~5、4-1~3、5-1~4、6-1、7-1~5、8-1~3比較例1-1及び2-1)
 製造例1-1~5において、成分Aを製造した。
 実施例1-1~4、2-1、3-1~5及び4-1~3において、本発明のICトレイ用ポリアミド樹脂組成物を製造した。
 実施例5-1~4、6-1、7-1~5及び8-1~3において、本発明のICトレイを製造した。
(14) Tables 27 to 28 (Examples 1-1 to 4, 2-1, 3-1 to 5, 4-1 to 3, 5-1 to 4, 6-1, 7-1 to 5, 8- 1-3 Comparative Examples 1-1 and 2-1)
In Production Examples 1-1 to 5, component A was produced.
In Examples 1-1 to 4, 2-1, 3-1 to 5, and 4-1 to 3, the polyamide resin composition for IC tray of the present invention was produced.
In Examples 5-1 to 4, 6-1, 7-1 to 5 and 8-1 to 3, IC trays of the present invention were produced.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較製造例1-1:比較樹脂1(PX6-6)
 比較樹脂例1-2:比較樹脂2(PA6)
 比較樹脂例1-3:比較樹脂2(PA66)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Production Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Resin Example 1-2: Comparative Resin 2 (PA6)
Comparative Resin Example 1-3: Comparative Resin 2 (PA66)
(実施例1-1~4、2-1、3-1~5及び4-1~3並びに比較例1-1及び2-1)
 実施例1-1~5で製造したポリアミド樹脂、PA6及びPA66と、導電性充填剤として、
 カーボンブラック(ケッチェンブラックインテーナショナル製EC600JD)、
 炭素繊維(東邦テナックス(株)ベスファイトHTA-C6NR(繊維径7μm)、
 黄銅繊維(繊維径80μm)
とを用いて、表28に示した割合の混合物を作成した(カーボンブラックはCBと記されている)。
 さらに、これらの混合物をそれぞれ、シリンダー径40mmの二軸混練機(日本製綱製TEX44二軸押出機)を用い、
 ポリアミド樹脂としてPX6-1~3を使用した場合では340℃、
 ポリアミド樹脂としてPX6-4~5を使用した場合では300℃、
 ポリアミド樹脂としてPA6を使用した場合ではでは260℃、
 ポリアミド樹脂としてPA66を使用した場合ではでは290℃
で溶融混練して、ストランド状に押出、水槽で冷却した後ペレタイザーを用いペレットを作成した。
(Examples 1-1 to 4, 2-1, 3-1 to 5, and 4-1 to 3 and Comparative Examples 1-1 and 2-1)
Polyamide resins produced in Examples 1-1 to 5, PA6 and PA66, and conductive fillers,
Carbon black (EC600JD made by Ketjen Black International),
Carbon fiber (Toho Tenax Co., Ltd. Besfight HTA-C6NR (fiber diameter 7 μm),
Brass fiber (fiber diameter 80μm)
Were used to make a mixture of the proportions shown in Table 28 (carbon black is labeled CB).
Furthermore, each of these mixtures was used using a twin-screw kneader with a cylinder diameter of 40 mm (Tex44 twin-screw extruder manufactured by Nippon Steel).
In the case of using PX6-1 to 3 as the polyamide resin,
When PX6-4-5 is used as the polyamide resin,
In the case of using PA6 as the polyamide resin,
290 ° C when PA66 is used as the polyamide resin
The mixture was melt kneaded and extruded into a strand shape, cooled in a water tank, and then pelleted using a pelletizer.
(実施例5-1~4、6-1、7-1~5及び8-1~3並びに比較例1-1及び2-1)
 実施例1-1~4、2-1、3-1~5及び4-1~3並びに比較例1-1及び2-1で製したペレットを用いて、本発明のICトレイを、図1に示す箱形の形状に以下の射出条件にて射出成形して得た。
・射出成形機:東芝機械(株)製 IS-80
・シリンダー設定温度:
 ポリアミド樹脂としてPX6-1とPX6-2を含む場合
  C1 310℃;C2 340℃;C3 340℃;C4 340℃;
  ノズルヒーター340℃
 ポリアミド樹脂としてPX6-3~5を含む場合
  C1 280℃;C2 300℃;C3 300℃;C4 300℃;
  ノズルヒーター300℃
 ポリアミド樹脂としてPA6を含む場合
  C1 210℃;C2 260℃;C3 260℃;C4 260℃;
 ノズルヒーター260℃
 ポリアミド樹脂としてPA66を含む場合
  C1 240℃;C2 290℃;C3 290℃;C4 290℃;
 ノズルヒーター290℃
・射出圧力:一次圧 650kg/cm
・金型温度:移動金型40℃;固定金型40℃
・射出時間:11秒
・冷却時間:20秒
(Examples 5-1 to 4, 6-1, 7-1 to 5, and 8-1 to 3 and Comparative Examples 1-1 and 2-1)
Using the pellets produced in Examples 1-1 to 2, 2-1, 3-1 to 5, and 4-1 to 3 and Comparative Examples 1-1 and 2-1, the IC tray of the present invention is shown in FIG. Was obtained by injection molding under the following injection conditions.
・ Injection molding machine: IS-80 manufactured by Toshiba Machine Co., Ltd.
・ Cylinder set temperature:
When PX6-1 and PX6-2 are included as polyamide resins C1 310 ° C; C2 340 ° C; C3 340 ° C; C4 340 ° C;
Nozzle heater 340 ° C
When PX6-3 to 5 are included as polyamide resin C1 280 ° C; C2 300 ° C; C3 300 ° C; C4 300 ° C;
Nozzle heater 300 ° C
When PA6 is included as a polyamide resin C1 210 ° C; C2 260 ° C; C3 260 ° C; C4 260 ° C;
Nozzle heater 260 ° C
When PA66 is included as a polyamide resin C1 240 ° C; C2 290 ° C; C3 290 ° C; C4 290 ° C;
Nozzle heater 290 ° C
Injection pressure: Primary pressure 650 kg / cm 2
-Mold temperature: Moving mold 40 ° C; Fixed mold 40 ° C
・ Injection time: 11 seconds ・ Cooling time: 20 seconds
 製造例1~5、比較製造例1、比較樹脂例2~3におけるポリアミド樹脂について、
 相対粘度、融点、1%重量減少温度、溶融粘度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を、
 実施例1-1~5、比較例1-1~3におけるポリアミド樹脂組成物について、
 飽和吸水率、150℃12時間処理前後の表面抵抗値及び引張強度を、
 実施例5-1~4、6-1、7-1~5及び8-1~3並びに比較例1-1及び2-1について、
 反り及び成形品平滑性を測定した。
 結果を表27及び28に示す。
Regarding polyamide resins in Production Examples 1 to 5, Comparative Production Example 1 and Comparative Resin Examples 2 to 3,
Relative viscosity, melting point, 1% weight loss temperature, melt viscosity, saturated water absorption, chemical resistance, hydrolysis resistance, physical properties in dry and wet,
For the polyamide resin compositions in Examples 1-1 to 5 and Comparative Examples 1-1 to 3,
Saturated water absorption, surface resistance value and tensile strength before and after treatment at 150 ° C. for 12 hours,
Examples 5-1 to 4, 6-1, 7-1 to 5 and 8-1 to 3 and Comparative Examples 1-1 and 2-1,
Warpage and smoothness of the molded product were measured.
The results are shown in Tables 27 and 28.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表27及び28から、本発明のICトレイ用ポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、表面が平滑で、高温下でも機械的物性と導電性が安定なICトレイを製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Tables 27 and 28, the polyamide resin composition for IC trays of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, has excellent melt moldability, and can have a higher molecular weight. It can be seen that an IC tray having a smooth surface and stable mechanical properties and conductivity even at high temperatures can be produced.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
(15)表29~30(実施例1-1~5、2-1~5及び3-1~7、比較例1-1~3、2-2及び3-2~3)
 実施例1-1~5、実施例2-1~5、
 実施例3-1~5の内層、中間層及び外層、
 実施例3-6の中間層、並びに
 実施例3-6及び7の外層において、本発明の産業用チューブ用ポリアミド樹脂組成物を製造した。
 実施例2-1~5及び実施例3-1~7において本発明の産業用チューブを製造した。
(15) Tables 29 to 30 (Examples 1-1 to 5, 2-1 to 5 and 3-1 to 7, Comparative Examples 1-1 to 3, 2-2 and 3-2 to 3)
Examples 1-1 to 5, Examples 2-1 to 5,
Inner layer, intermediate layer and outer layer of Examples 3-1 to 5,
The polyamide resin composition for industrial tubes of the present invention was produced in the intermediate layer of Example 3-6 and the outer layers of Examples 3-6 and 7.
In Examples 2-1 to 5 and Examples 3-1 to 7, industrial tubes of the present invention were produced.
 なお、製造条件と比較樹脂は以下のように対応する。
 実施例1-1~5:製造例1~5(PX6-1~5)
 比較例1-1:比較樹脂1(PX6-6)
 比較例1-2:比較樹脂2(PA6)
 比較例1-3:比較樹脂4(PA12)
The production conditions and the comparative resin correspond as follows.
Examples 1-1 to 5: Production examples 1 to 5 (PX6-1 to 5)
Comparative Example 1-1: Comparative Resin 1 (PX6-6)
Comparative Example 1-2: Comparative Resin 2 (PA6)
Comparative Example 1-3: Comparative Resin 4 (PA12)
(実施例2-1~5及び比較例1-2)
 実施例1~5で製造したポリアミド樹脂及びPA6について、(株)日本製鋼所製のスクリュー径30mmの押出機(シリンダー温度250~340℃)を用いて、外径1/2インチ、厚み1mmの単層チューブを製造した。
(Examples 2-1 to 5 and Comparative Example 1-2)
For the polyamide resin and PA6 produced in Examples 1 to 5, using an extruder with a screw diameter of 30 mm (cylinder temperature 250 to 340 ° C.) manufactured by Nippon Steel Co., Ltd., the outer diameter is 1/2 inch and the thickness is 1 mm. Single layer tubes were produced.
(実施例3-1~7及び比較例3-2~3)
 多層チューブ成形用装置として、内層用押出機、中間層用押出機および外層用押出機を備え、この3台の押出機から吐出された樹脂をアダプターによって集めチューブ状に成形するダイス、チューブを冷却し寸法を制御するサイジングダイおよび引き取り機などからなる装置(Plabor(プラスチック工学研究所(株)製))を用い、チューブ断面の内径6mm、外径8mmの多層チューブを作製した。
 チューブの内層、中間層および外層の樹脂組成物の組成と厚さは表2に示した。
 なお、原料として以下を使用した。
 樹脂r1:フッ化ビニリデン樹脂(セフラルソフト(セントラル硝子製))
 樹脂r2:高密度ポリエチレン樹脂(8600A、東ソー製)
 可塑剤:ベンゼンスルホン酸ブチルアミド(BBSA(Proviron製)
 接着剤:マレイン酸変性ポリエチレン(UボンドF1100、宇部興産製)
(Examples 3-1 to 7 and Comparative Examples 3-2 to 3)
Multi-layer tube forming equipment includes an inner layer extruder, an intermediate layer extruder and an outer layer extruder. Resin discharged from these three extruders is collected by an adapter and molded into a tube, and the tube is cooled. A multilayer tube having an inner diameter of 6 mm and an outer diameter of 8 mm was prepared using an apparatus (Plabor (manufactured by Plastic Engineering Laboratory Co., Ltd.)) consisting of a sizing die and a take-up machine for controlling the size.
The composition and thickness of the resin composition of the inner layer, intermediate layer and outer layer of the tube are shown in Table 2.
In addition, the following was used as a raw material.
Resin r1: Vinylidene fluoride resin (cefural soft (manufactured by Central Glass))
Resin r2: High density polyethylene resin (8600A, manufactured by Tosoh Corporation)
Plasticizer: Benzenesulfonic acid butyramide (BBSA (Proviron)
Adhesive: Maleic acid-modified polyethylene (U Bond F1100, manufactured by Ube Industries)
 実施例1-1~5及び比較例1~2におけるポリアミド樹脂について、相対粘度、溶融粘度、融点、1%重量減少温度、飽和吸水率、耐薬品性、耐加水分解性、ドライ及びウェットにおける物性を、
 実施例2-1~5及び比較例2-1について、エタノール透過性及び透湿度を、
 実施例3-1~7及び比較例3-2~3について、チューブ低温衝撃性、熱処理後の表面性、エタノール透過性、チューブの耐薬品性を、後述する条件で測定した。
 結果を表29及び30に示す。
For the polyamide resins in Examples 1-1 to 5 and Comparative Examples 1 to 2, relative viscosity, melt viscosity, melting point, 1% weight loss temperature, saturated water absorption, chemical resistance, hydrolysis resistance, physical properties in dry and wet conditions The
For Examples 2-1 to 5 and Comparative Example 2-1, the ethanol permeability and moisture permeability were
For Examples 3-1 to 7 and Comparative Examples 3-2 to 3, the tube low temperature impact property, the surface property after heat treatment, the ethanol permeability, and the chemical resistance of the tube were measured under the conditions described later.
The results are shown in Tables 29 and 30.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表29及び30から、本発明の産業用チューブ用ポリアミド樹脂組成物は、ナイロン6及びナイロン66等の材料と比較して低吸水であり、耐薬品性、耐加水分解性に優れ、wet条件下での機械的物性に優れ、そしてジアミン成分として1,6-ヘキサンジアミン単体を用いたポリアミド樹脂(PX6-6)よりも成形可能温度幅が広く溶融成形性に優れ、さらに高分子量化が可能で、それを成形して、耐低温衝撃性等の環境耐性、耐薬品性及び液体、蒸気及び/又は気体の不透過性に優れる産業用チューブを製造することができることが分かる。
 なお、PX6-6を使用したポリアミド樹脂組成物は、Td-Tmが小さいため、溶融混練できず、成形もできなかった。
From Tables 29 and 30, the polyamide resin composition for industrial tubes of the present invention has low water absorption compared to materials such as nylon 6 and nylon 66, excellent chemical resistance and hydrolysis resistance, and under wet conditions. It has excellent mechanical properties, and has a wider moldable temperature range than polyamide resin (PX6-6) using 1,6-hexanediamine alone as a diamine component, and it has excellent melt moldability and can have a higher molecular weight. It can be seen that an industrial tube excellent in environmental resistance such as low-temperature impact resistance, chemical resistance and liquid, vapor and / or gas impermeability can be produced by molding it.
Note that the polyamide resin composition using PX6-6 could not be melt kneaded nor molded because of its small Td-Tm.
〔物性測定、成形、評価条件〕 [Physical property measurement, molding, evaluation conditions]
(1)ポリアミド樹脂の相対粘度ηr
 ηrは製造例1~5、比較樹脂1及び2の各ポリアミド樹脂の96%硫酸溶液(濃度:1.0g/dl)を使用してオストワルド型粘度計を用いて25℃で測定した。
(1) Relative viscosity ηr of polyamide resin
ηr was measured at 25 ° C. using an Ostwald viscometer using a 96% sulfuric acid solution (concentration: 1.0 g / dl) of each polyamide resin of Production Examples 1 to 5 and Comparative Resins 1 and 2.
(2)ポリアミド樹脂の溶融粘度
 製造例1~5、比較樹脂1及び2の各ポリアミド樹脂の溶融粘度はティー・エイ・インスツルメント・ジャパン社製溶融粘弾性測定装置ARESに25mmのコーン・プレートを装着して、窒素中、
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA6を含む場合は260℃、
 せん断速度0.1s-1の条件で測定した。
(2) Melt viscosity of polyamide resin The melt viscosity of each polyamide resin of Production Examples 1 to 5 and Comparative Resins 1 and 2 is a 25 mm cone plate in a melt viscoelasticity measuring device ARES manufactured by TA Instruments Japan. In the nitrogen,
340 ° C when PA 6-1 to 2 and 6 are included as polyamide resin,
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
260 ° C when PA6 is included as the polyamide resin,
The measurement was performed under the condition of a shear rate of 0.1 s-1.
(3)ポリアミド樹脂の融点(Tm)
 製造例1~5、比製樹脂1及び比較樹脂1~4の各ポリアミド樹脂のTmは、PerkinELmer社製PYRIS Diamond DSC用いて窒素雰囲気下で測定した。
 ポリアミド樹脂としてPA6-1~2及び6を含む場合のTmは、
 30℃から350℃まで10℃/分の速度で昇温し(昇温ファーストランと呼ぶ)、
 350℃で3分保持したのち、
 -100℃まで10℃/分の速度で降温し(降温ファーストランと呼ぶ)、
 次に350℃まで10℃/分の速度で昇温した(昇温セカンドランと呼ぶ)。
 ポリアミド樹脂としてPA6-3~5、PA6、PA66及びPA12を含む場合のTmは、
 30℃から310℃まで10℃/分の速度で昇温し(昇温ファーストランと呼ぶ)、
 310℃で3分保持したのち、
 -100℃まで10℃/分の速度で降温し(降温ファーストランと呼ぶ)、
 次に310℃まで10℃/分の速度で昇温した(昇温セカンドランと呼ぶ)。
 昇温セカンドランの吸熱ピーク温度をTmとした。
(3) Melting point of polyamide resin (Tm)
Tm of each polyamide resin of Production Examples 1 to 5, Specific Resin 1 and Comparative Resins 1 to 4 was measured under a nitrogen atmosphere using PYRIS Diamond DSC manufactured by PerkinELmer.
Tm when PA 6-1 to 2 and 6 are included as the polyamide resin is
The temperature is raised from 30 ° C. to 350 ° C. at a rate of 10 ° C./min (referred to as a temperature rise first run),
After holding at 350 ° C for 3 minutes,
Decrease the temperature to -100 ° C at a rate of 10 ° C / min (referred to as the first temperature drop)
Next, the temperature was raised to 350 ° C. at a rate of 10 ° C./min (referred to as a temperature raised second run).
Tm when PA6-3-5, PA6, PA66 and PA12 are included as the polyamide resin is
The temperature is increased from 30 ° C. to 310 ° C. at a rate of 10 ° C./min (referred to as a temperature rising first run),
After holding at 310 ° C for 3 minutes,
Decrease the temperature to -100 ° C at a rate of 10 ° C / min (referred to as the first temperature drop)
Next, the temperature was raised to 310 ° C. at a rate of 10 ° C./min (referred to as a temperature rise second run).
The endothermic peak temperature of the elevated temperature second run was defined as Tm.
(4)ポリアミド樹脂の1%重量減少温度Td
 製造例1~5、比較樹脂1~4の各ポリアミド樹脂のTdは島津製作所社製THERMOGRAVIMETRIC ANALYZER TGA-50を用い、熱重量分析(TGA)により測定した。
 20ml/分の窒素気流下室温から500℃まで10℃/分の昇温速度で昇温し、Tdを測定した。
(4) 1% weight loss temperature Td of polyamide resin
Td of each polyamide resin of Production Examples 1 to 5 and Comparative Resins 1 to 4 was measured by thermogravimetric analysis (TGA) using THERMOGRAVIMETRIC ANALYZER TGA-50 manufactured by Shimadzu Corporation.
The temperature was raised from room temperature to 500 ° C. at a rate of 10 ° C./min under a nitrogen stream of 20 ml / min, and Td was measured.
(5)試験用フィルム及びプレートの成形条件
(5-1)飽和吸水率、耐薬品性、耐加水分解性、吸水率及び耐塩化カルシウム性の試験用フィルム
 東邦マシナリー社製真空プレス機TMB-10を用いてフィルム成形して製造例1~5及び比較樹脂1~4の各ポリアミド樹脂の飽和吸水率、耐薬品性、耐加水分解性及び吸水率の試験用フィルムを得た。
 500~700Paの減圧雰囲気下、
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA6を含む場合は260℃、
 ポリアミド樹脂としてPA66を含む場合は290℃、
 ポリアミド樹脂としてPA12を含む場合は230℃、
で5分間加熱溶融させた後、
 5MPaで1分間プレスを行いフィルム成形した。
 次に減圧雰囲気を常圧まで戻したのち室温5MPaで1分間冷却結晶化させて試験用フィルムを得た。
(5) Test film and plate molding conditions (5-1) Saturated water absorption rate, chemical resistance, hydrolysis resistance, water absorption rate and calcium chloride resistance test film Vacuum press machine TMB-10 manufactured by Toho Machinery Co., Ltd. Was used to obtain films for testing the saturated water absorption, chemical resistance, hydrolysis resistance and water absorption of each polyamide resin of Production Examples 1 to 5 and Comparative Resins 1 to 4.
Under a reduced pressure atmosphere of 500 to 700 Pa,
340 ° C when PA 6-1 to 2 and 6 are included as polyamide resin,
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
260 ° C when PA6 is included as the polyamide resin,
When PA66 is included as a polyamide resin,
230 ° C when PA12 is included as the polyamide resin,
After 5 minutes of heating and melting,
The film was formed by pressing at 5 MPa for 1 minute.
Next, the reduced-pressure atmosphere was returned to normal pressure, and then cooled and crystallized at room temperature of 5 MPa for 1 minute to obtain a test film.
(5-2)機械的物性の試験用プレート
 樹脂温度
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA6を含む場合は260℃、
 ポリアミド樹脂としてPA66を含む場合は290℃、
 ポリアミド樹脂としてPA12を含む場合は230℃、
 金型温度80℃の射出成形により成形して試験用プレートを得た。
 射出成形条件は、射出圧力:一次圧650kg/cm、射出時間:11秒、冷却時間:20秒とした。
(5-2) Plate for testing mechanical properties Resin temperature 340 ° C. when PA6-1-2 and 6 are included as polyamide resin,
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
260 ° C when PA6 is included as the polyamide resin,
When PA66 is included as a polyamide resin,
230 ° C when PA12 is included as the polyamide resin,
A test plate was obtained by injection molding at a mold temperature of 80 ° C.
The injection molding conditions were: injection pressure: primary pressure 650 kg / cm 2 , injection time: 11 seconds, cooling time: 20 seconds.
(6)ポリアミド樹脂及びポリアミド樹脂組成物の飽和吸水率
 試験用フィルム(寸法:20mm×10mm、厚さ0.25mm;質量約0.05g)を23℃のイオン交換水に浸漬し、
 所定時間ごとに試験用フィルムを取り出し、フィルムの質量を測定した。
 試験用フィルムの質量の増加率が0.2%の範囲内で3回続いた場合に試験用フィルムへの水分の吸収が飽和に達したと判断して、
 水に浸漬する前の試験用フィルムの質量(Xg)と飽和に達した時の試験用フィルムの質量(Yg)から下記式(1)により飽和吸水率(%)を算出した。
 飽和吸水率(%)=100×(Y-X)/X   (1)
(6) Saturated water absorption rate of polyamide resin and polyamide resin composition A test film (dimensions: 20 mm × 10 mm, thickness 0.25 mm; mass about 0.05 g) is immersed in ion-exchanged water at 23 ° C.,
The test film was taken out every predetermined time, and the mass of the film was measured.
When the rate of increase in the mass of the test film lasts 3 times within the range of 0.2%, it is judged that the absorption of moisture into the test film has reached saturation,
The saturated water absorption (%) was calculated by the following formula (1) from the mass (Xg) of the test film before being immersed in water and the mass (Yg) of the test film when saturation was reached.
Saturated water absorption (%) = 100 × (Y−X) / X (1)
(7)ポリアミド樹脂及びポリアミド樹脂組成物の耐薬品性
 試験用フィルム(寸法:20mm×10mm、厚さ0.25mm;質量約0.05g)を以下に列挙する薬品中に7日間浸漬した後に、フィルムの重量残存率(%)及び外観の変化を観測した。濃塩酸、64%硫酸、30%NaOH水溶液、5%KMnOのそれぞれの溶液においては23℃、ベンジルアルコールでは50℃において浸漬した試料について試験を行った。
(7) Chemical resistance of polyamide resin and polyamide resin composition After immersing a test film (dimensions: 20 mm × 10 mm, thickness 0.25 mm; mass about 0.05 g) in the chemicals listed below for 7 days, The weight residual ratio (%) of the film and the change in appearance were observed. Tests were conducted on samples immersed in concentrated hydrochloric acid, 64% sulfuric acid, 30% NaOH aqueous solution, and 5% K 2 MnO 4 at 23 ° C. and benzyl alcohol at 50 ° C.
(8)ポリアミド樹脂の耐加水分解性
 試験用フィルム(寸法:20mm×10mm、厚さ0.25mm;質量約0.05g)を、オートクレーブに入れ、水(pH=7)、0.5mol/l硫酸(pH=1)又は1mol/l水酸化ナトリウム水溶液(pH=14)内で、121℃、60分間処理した後の重量残存率(%)及び外観変化を調べた。
(8) Hydrolysis resistance of polyamide resin A test film (dimensions: 20 mm × 10 mm, thickness 0.25 mm; mass about 0.05 g) was placed in an autoclave, and water (pH = 7), 0.5 mol / l The weight residual ratio (%) and appearance change after treatment for 60 minutes at 121 ° C. in sulfuric acid (pH = 1) or 1 mol / l sodium hydroxide aqueous solution (pH = 14) were examined.
(9)ポリアミド樹脂の機械的物性
 試験用プレートを、
 成形後直ちに調湿せずに23℃で評価したものをドライ、
 成形後に湿度65%、温度23℃で調湿した後に23℃で評価したものをウェットとして表中に記載した。
(9) Mechanical properties of polyamide resin
What was evaluated at 23 ° C. without conditioning immediately after molding was dried,
What was evaluated at 23 ° C. after conditioning at a humidity of 65% and a temperature of 23 ° C. after molding was described in the table as wet.
(9-1)引張強度:ASTM D638に記載のTypeIの試験片のダンベル形状に成形した試験用プレートを用いてASTM D638に準拠して測定した。
(9-2)曲げ弾性率:試験用プレートを用いてASTM D790に準拠し測定した。
(9-3)荷重たわみ温度(熱変形温度):試験用プレートを用いてASTM D648に準拠し、荷重1.82MPaで測定した。
(9-1) Tensile strength: Measured according to ASTM D638 using a test plate formed in a dumbbell shape of a Type I test piece described in ASTM D638.
(9-2) Flexural modulus: measured in accordance with ASTM D790 using a test plate.
(9-3) Deflection temperature under load (thermal deformation temperature): Measured with a load of 1.82 MPa in accordance with ASTM D648 using a test plate.
(10)ポリアミド樹脂の吸水率
 試験用フィルム(寸法:20mm×10mm、厚さ0.25mm;質量約0.05g)を使用して、23℃及び湿度65%RHの条件下に置いた以外は、(6)飽和吸水率の測定方法に従って、吸水率(平衡吸水率)(%)を算出した。
(10) Water absorption rate of polyamide resin Except that it was placed under conditions of 23 ° C. and humidity 65% RH using a test film (dimensions: 20 mm × 10 mm, thickness 0.25 mm; mass about 0.05 g). (6) The water absorption rate (equilibrium water absorption rate) (%) was calculated according to the method for measuring the saturated water absorption rate.
(11)離型力と成形品の変形(表1)
 箱型成形体を射出成形後、移動金型6を後退させ、ノックアウト棒10を圧力センサー8に押し付け、エジェクタープレート7及びエジェクターピン4を介して箱を移動金型6から離す際に圧力センサー8にかかる力(離型力)を記録計11によって測定した。また取出された成形品の変形をチェックした。
(11) Mold release force and deformation of molded product (Table 1)
After injection molding the box mold, the moving mold 6 is retracted, the knockout rod 10 is pressed against the pressure sensor 8, and the pressure sensor 8 is moved away from the moving mold 6 via the ejector plate 7 and the ejector pin 4. The force applied to the film (release force) was measured by a recorder 11. Also, the deformation of the removed molded product was checked.
(12)耐熱性成形体の耐熱性(表2)
(12-1)クラックの有無
 耐熱性成形体を140℃のオーブン中に放置し、0~20日後に取り出し、90°折り曲げた時のクラックの発生の有無を目視で観察した。
(12) Heat resistance of heat-resistant molded product (Table 2)
(12-1) Presence or absence of cracks The heat resistant molded product was left in an oven at 140 ° C., taken out after 0 to 20 days, and visually observed for occurrence of cracks when bent at 90 °.
(12-2)引張強度保持率
 ASTM D638に記載のTypeIの試験片のダンベル形状に成形した耐熱性成形体を140℃のオーブン中に放置し、14日後に取り出し、破断強度を測定した。加熱処理をしていない試験片の測定を行い、下記(2)式より破断強度保持率を計算した。
 引張強度保持率(%)
 =〔(加熱処理試料の破断強度)/(未処理試料の破断強度)〕×100   (2)
(13)アイゾット衝撃値(表2、表4、表13、表14、表21)
 試験用プレート(試験片寸法3.2mm×12.7mm×127mm)を用いてASTM D256に準拠し、23℃で測定した。
(12-2) Tensile Strength Retention Rate A heat-resistant molded article formed into a dumbbell shape of a Type I test piece described in ASTM D638 was left in an oven at 140 ° C., taken out after 14 days, and the breaking strength was measured. The test piece which was not heat-processed was measured and the fracture strength retention was computed from the following (2) formula.
Tensile strength retention rate (%)
= [(Break strength of heat-treated sample) / (Break strength of untreated sample)] × 100 (2)
(13) Izod impact value (Table 2, Table 4, Table 13, Table 14, Table 21)
Measurement was performed at 23 ° C. in accordance with ASTM D256 using a test plate (test piece dimensions: 3.2 mm × 12.7 mm × 127 mm).
(14)耐塩化カルシウム性(表4、表6、表10、表13、表21、表24)
 試験用フィルムを、23℃の飽和塩化カルシウム水溶液に浸漬した。一日後、試験用フィルムの外観を目視で観察し、クラックの有無を評価した。
(14) Calcium chloride resistance (Table 4, Table 6, Table 10, Table 13, Table 21, Table 24)
The test film was immersed in a saturated calcium chloride aqueous solution at 23 ° C. After one day, the appearance of the test film was visually observed to evaluate the presence or absence of cracks.
(15)耐酸化ガソリン性(表6)
 600mlのトルエンと600mlのイソオクタンの混合溶液に0.1gのターシャルブチルパーオキサイドと0.01gのステアリン酸銅を加えた酸化ガソリン溶液を60℃とし、その中に30本の引張試験用試験片を浸漬し、一週間毎に溶液を替え、30日間の物性(引張強度)変化を測定した。
(15) Resistance to oxidation gasoline (Table 6)
An oxidized gasoline solution obtained by adding 0.1 g of tert-butyl peroxide and 0.01 g of copper stearate to a mixed solution of 600 ml of toluene and 600 ml of isooctane is adjusted to 60 ° C., and 30 specimens for tensile testing are contained therein. The solution was changed every week, and the change in physical properties (tensile strength) for 30 days was measured.
(16)添加剤の密度(表7)
 ASTM1号片を用いて、ASTMのD792に従い測定した。
(16) Additive density (Table 7)
Measurement was performed according to ASTM D792 using ASTM No. 1 piece.
(17)耐塩化カルシウム性(サイクル)(表7、表8、表19)
 ASTM1号試験片を用い、前処理として80℃の水中に8時間浸漬した。次に、80℃85%RH恒温恒湿槽中に1時間調湿処理した後、飽和塩化カルシウム水溶液を試験片に塗布し、100℃オーブン中にて1時間熱処理した。調湿処理と熱処理を1サイクルとして30サイクルまで繰り返し、試験片にクラックが入るサイクル数を指標とした。
(17) Calcium chloride resistance (cycle) (Table 7, Table 8, Table 19)
An ASTM No. 1 test piece was used and immersed in water at 80 ° C. for 8 hours as a pretreatment. Next, after conditioning for 1 hour in an 80 ° C. and 85% RH constant temperature and humidity chamber, a saturated calcium chloride aqueous solution was applied to the test piece and heat treated in a 100 ° C. oven for 1 hour. The humidity control and heat treatment were repeated as one cycle up to 30 cycles, and the number of cycles in which the test piece cracked was used as an index.
(18)耐塩化亜鉛性(サイクル)(表7、表8)
 ASTM1号試験片を用い、前処理として80℃の水中に8時間浸漬した。次に、80℃85%RH恒温恒湿槽中に1時間調湿処理した後、飽和塩化亜鉛水溶液を試験片に塗布し、100℃オーブン中にて1時間熱処理した。調湿処理と熱処理を1サイクルとして30サイクルまで繰り返し、試験片にクラックが入るサイクル数を指標とした。
(18) Zinc chloride resistance (cycle) (Table 7, Table 8)
An ASTM No. 1 test piece was used and immersed in water at 80 ° C. for 8 hours as a pretreatment. Next, after conditioning for 1 hour in an 80 ° C. and 85% RH constant temperature and humidity chamber, a saturated zinc chloride aqueous solution was applied to the test piece and heat treated in a 100 ° C. oven for 1 hour. The humidity control and heat treatment were repeated as one cycle up to 30 cycles, and the number of cycles in which the test piece cracked was used as an index.
(19)耐メタノール性(メタノール浸漬時の質量変化)(表7、表8)
 ASTM1号片を用いて、メタノール中に21日間浸漬し、浸漬前後の質量から質量変化を算出した。
(19) Methanol resistance (mass change when immersed in methanol) (Table 7, Table 8)
Using ASTM No. 1 piece, it was immersed in methanol for 21 days, and the mass change was calculated from the mass before and after the immersion.
(20)エタノール蒸気透過係数(表10)
 ステンレス製の容器にエタノールを50ml入れ、(5)の条件で成形したフィルムを用いて、PTFE製のガスケットをかませた容器に蓋をし、ねじ圧力にて締め付けた。カップを60℃恒温槽に入れ、槽内は窒素を50ml/minで流した。重量の経時変化を測定し、時間当たりの重量変化率が安定した時点で、燃料透過係数を次式から計算した。
 試料の透過面積は78.5cmである。
 エタノール透過係数(g・mm/m・day)=[透過重量(g)×フィルム厚さ(mm)]/[透過面積(mm)×日数(day)×圧力(atom)]
(20) Ethanol vapor transmission coefficient (Table 10)
50 ml of ethanol was put into a stainless steel container, and the film formed under the condition (5) was covered with a PTFE gasket and covered with a screw pressure. The cup was placed in a constant temperature bath at 60 ° C., and nitrogen was allowed to flow at 50 ml / min in the bath. The change in weight over time was measured, and when the rate of change in weight per hour was stabilized, the fuel permeability coefficient was calculated from the following equation.
The transmission area of the sample is 78.5 cm 2 .
Ethanol permeability coefficient (g · mm / m 2 · day) = [permeation weight (g) × film thickness (mm)] / [permeation area (mm 2 ) × days (day) × pressure (atom)]
(21)表面平滑性(表11)
 下記の条件にて試料から、220mm×120mm×50mm、内厚1.5mmの中空ボックスを作成し、その内面の平滑性を測定した。
(中空成形条件)
 ・中空成形機:押出機 宇部興産(株)製、径50mm
 ・パリソンコントローラー 日本ムーグ製
 ・樹脂温度:260℃
 ・金型温度:80℃
 ・ブロー圧力:6kg/cm
 ・ダイ径:90mm
(平滑性測定法)
 ・表面荒さ計を用い下記の方法にて、平滑性を測定した。
 ・装置:小坂研究所(株)製万能表面形状測定器SE-3C
 ・方法:上記装置にて、荒さ曲線を測定し、曲線の波の幅により、表面平滑性(粗さ)
を求めた。
(21) Surface smoothness (Table 11)
A hollow box having a size of 220 mm × 120 mm × 50 mm and an inner thickness of 1.5 mm was prepared from the sample under the following conditions, and the smoothness of the inner surface was measured.
(Hollow molding conditions)
・ Hollow molding machine: Extruder Ube Industries, Ltd., diameter 50mm
・ Parison controller Made by Nippon Moog ・ Resin temperature: 260 ℃
・ Mold temperature: 80 ℃
・ Blow pressure: 6kg / cm 2 G
・ Die diameter: 90mm
(Smoothness measurement method)
-Smoothness was measured by the following method using a surface roughness meter.
・ Device: Universal surface shape measuring instrument SE-3C manufactured by Kosaka Laboratory Co., Ltd.
・ Method: Measure roughness curve with the above equipment, and surface smoothness (roughness) by the wave width of the curve
Asked.
(22)中空成形特性(表11)
 下記の中空成形機及び、成形条件にて、中空成形を行い、押出時間10秒、20秒、30秒後のそれぞれのパリソン長さを測定し、中空成形特性(ドローダウン性)を評価した。
 この試験は、パリソンのドローダウン性を評価したもので、時間に対し、パリソン長さが直線的に変化するものが、好ましい。
(22) Hollow molding characteristics (Table 11)
Hollow molding was performed with the following hollow molding machine and molding conditions, and the respective parison lengths after extrusion time of 10 seconds, 20 seconds, and 30 seconds were measured, and the hollow molding characteristics (drawdown property) were evaluated.
This test evaluated the drawdown property of a parison, and it is preferable that the parison length changes linearly with respect to time.
(23)耐酸化ガソリン性(表13)
 600mlのトルエンと600mlのイソオクタンの混合溶液に0.1gのターシャルブチルパーオキサイドと0.01gのステアリン酸銅を加えた酸化ガソリン溶液を60℃とし、その中に30本の引張試験用試験片を浸漬し、一週間毎に溶液を替え、30日間の物性(引張強度)及び体積固有抵抗値の変化を測定した。
(23) Resistance to oxidation gasoline (Table 13)
An oxidized gasoline solution obtained by adding 0.1 g of tert-butyl peroxide and 0.01 g of copper stearate to a mixed solution of 600 ml of toluene and 600 ml of isooctane is adjusted to 60 ° C., and 30 specimens for tensile testing are contained therein. The solution was changed every week, and the changes in physical properties (tensile strength) and volume resistivity value for 30 days were measured.
(24)体積固有抵抗(表14)
 ASTM D-638に記載のTypeIの試験片を用いて、ASTM D-257に準拠して測定した。酸化処理ガソリン処理後の体積固有抵抗は、(11)で調整した酸化ガソリン溶液を60℃とし、その中に試験片を72時間浸漬した後、測定した。
(25)引張破断点伸び(表14)
 ASTM D638に記載のTypeIの試験片を用いてASTM D638に準拠して測定した。
(24) Volume resistivity (Table 14)
Measurement was performed in accordance with ASTM D-257 using a Type I test piece described in ASTM D-638. The volume resistivity after the oxidation treatment gasoline treatment was measured after the oxidation gasoline solution adjusted in (11) was set to 60 ° C. and the test piece was immersed in the solution for 72 hours.
(25) Tensile elongation at break (Table 14)
Measurement was performed according to ASTM D638 using a Type I test piece described in ASTM D638.
(26)磨耗量(表14)
 株式会社オリエンテック製摩擦摩耗試験機EFM-III-ENを使用し、リングオンプレート方式(プレート寸法:幅30mm、厚み3mm、長さ100mm、プレート材質:S45C、リングはプレートと同材)で以下の条件で評価した。
 荷重:0.5MPa、周速:50cm/sec、時間8hr
(26) Amount of wear (Table 14)
Using the Orientec Co., Ltd. friction and wear tester EFM-III-EN, the ring-on-plate method (plate size: width 30mm, thickness 3mm, length 100mm, plate material: S45C, ring is the same material as the plate) Evaluation was performed under the conditions of
Load: 0.5 MPa, peripheral speed: 50 cm / sec, time 8 hr
(27)金属被覆物品の接着力(表16)
 金属被覆材である試験用フィルム(寸法:150mm×100mm、厚さ0.1mm)を、
 亜鉛メッキ鋼板(JIS G3302 SPGC Z22、寸法:150mm×150mm、厚さ0.5mm)及び
 アルミプレート(JIS1100番、寸法:150mm×150mm、厚さ0.5mm)ではさみ、
 東邦マシナリー社製真空プレス機TMB-10を用いて、
 500~700Paの減圧雰囲気下において
 ポリアミド樹脂としてPA6-1~2及び6を含む場合は340℃、
 ポリアミド樹脂としてPA6-3~5を含む場合は300℃、
 ポリアミド樹脂としてPA12を含む場合は230℃、
で5分間加熱溶融させた後、10MPaで1分間プレスを行い金属被覆物品であるフィルム成形した。
 次に減圧雰囲気を常圧まで戻したのち室温5MPaで1分間冷却させて試料を得た。
 その試料を25mm幅で切り、JIS K-6853に準じてT型剥離試験を行った。
 接着力はピーク強度と幅25mm×100mmを完全に剥離するまでに要したエネルギーで評価した。
(27) Adhesive strength of metal-coated articles (Table 16)
A test film (dimensions: 150 mm × 100 mm, thickness 0.1 mm) which is a metal coating material,
Scissors between galvanized steel sheet (JIS G3302 SPGC Z22, dimensions: 150 mm x 150 mm, thickness 0.5 mm) and aluminum plate (JIS No. 1100, dimensions: 150 mm x 150 mm, thickness 0.5 mm),
Using the Toyo Machinery vacuum press TMB-10,
In a reduced pressure atmosphere of 500 to 700 Pa, when PA 6-1 to 2 and 6 are included as a polyamide resin, 340 ° C.
300 ° C when PA 6-3 to 5 is included as a polyamide resin,
230 ° C when PA12 is included as the polyamide resin,
After being melted by heating for 5 minutes, pressing was performed at 10 MPa for 1 minute to form a metal coated article film.
Next, after returning the reduced pressure atmosphere to normal pressure, the sample was cooled at room temperature of 5 MPa for 1 minute to obtain a sample.
The sample was cut at a width of 25 mm, and a T-type peel test was conducted according to JIS K-6853.
The adhesive strength was evaluated by the energy required to completely peel the peak strength and the width of 25 mm × 100 mm.
(28)射出成形体の反り(表17、表19、表28)
 表17の実施例1~7及び比較例2及び4で得られたペレット、及び
 表19の実施例2-1~6及び比較例2-2及び4で得られたペレット、
 表28実施例5-1~4、6-1、7-1~5及び8-1~3並びに比較例1-1及び2-1で得られたペレットを用いて図2の射出成形体を以下の射出条件で製造し、その後、23℃、相対湿度65%で保管し、製造から10日後の反りを測定した。
(28) Warpage of injection molded body (Table 17, Table 19, Table 28)
Pellets obtained in Examples 1 to 7 and Comparative Examples 2 and 4 in Table 17, and pellets obtained in Examples 2-1 to 6 and Comparative Examples 2-2 and 4 in Table 19,
Table 28 Examples 5-1 to 4, 6-1, 7-1 to 5 and 8-1 to 3 and the pellets obtained in Comparative Examples 1-1 and 2-1 were used to produce the injection molded article of FIG. Manufactured under the following injection conditions, and then stored at 23 ° C. and 65% relative humidity, the warpage 10 days after production was measured.
(28-1)射出成形条件
・射出成形機:東芝機械(株)製 IS-80
・シリンダー設定温度
 ポリアミド樹脂としてPA6-1~2及び6を含む場合
 C1 300℃;C2 340℃;C3 340℃;C4 340℃
 ノズルヒーター設定温度 340℃
 ポリアミド樹脂としてPA6-3~5及び6並びにPA6を含む場合
 C1 260℃;C2 300℃;C3 300℃;C4 300℃
 ノズルヒーター設定温度 300℃
・射出圧力:一次圧 650kg/cm
・金型温度:移動金型40℃;固定金型40℃
・射出時間:11秒
・冷却時間:20秒
(28-1) Injection molding conditions / Injection molding machine: IS-80 manufactured by Toshiba Machine Co., Ltd.
・ Cylinder set temperature When PA6-1-2 and 6 are included as polyamide resin C1 300 ° C; C2 340 ° C; C3 340 ° C; C4 340 ° C
Nozzle heater set temperature 340 ℃
When PA6-3 to 5 and 6 and PA6 are included as the polyamide resin C1 260 ° C; C2 300 ° C; C3 300 ° C; C4 300 ° C
Nozzle heater set temperature 300 ℃
Injection pressure: Primary pressure 650 kg / cm 2
-Mold temperature: Moving mold 40 ° C; Fixed mold 40 ° C
・ Injection time: 11 seconds ・ Cooling time: 20 seconds
(28-2)反りの評価条件
 図1の寸法AおよびBを測定し、寸法Bを基準として、次式から求めた。
 反り(内倒れの反り)(%)=(Bの長さ-Aの長さ)/Bの長さ×100
(28-2) Evaluation condition of warpage Dimension A and B in FIG. 1 were measured, and were calculated from the following equation using dimension B as a reference.
Warpage (warping of inward tilt) (%) = (B length−A length) / B length × 100
(29)ポリアミド樹脂の酸素透過係数(表18)
 試験用フィルム(厚さ30μm)から切り出した試験片について、MOCON製試験機OX-TRAN2/20-MHを使用し、温度23℃、湿度97%RHの条件で、「ASTM D3985」に基づいて測定した。
(12)モノフィラメントの引張強度、引張伸度、引張弾性率
 モノフィラメントの引張強度、引張伸度、引張弾性率はJIS L1070、L1073に準じて測定した。
(29) Oxygen permeability coefficient of polyamide resin (Table 18)
Test piece cut out from test film (thickness 30 μm) is measured based on “ASTM D3985” using MOCON tester OX-TRAN 2 / 20-MH at a temperature of 23 ° C. and a humidity of 97% RH. did.
(12) Tensile strength, tensile elongation, and tensile modulus of monofilament The tensile strength, tensile elongation, and tensile modulus of the monofilament were measured according to JIS L1070 and L1073.
(30)モノフィラメントの熱水収縮力(表18)
 モノフィラメントを23℃で相対湿度65%中に質量が一定になるまで静置し、
 その後、長さ1000mmに切断し、これを100℃水中に15分間浸漬し、
 その直後の寸法を測定して、
 熱水収縮率(%)
=[(浸漬前の寸法)-(100℃15分浸漬後の寸法)]/(浸漬前の寸法)×100
により、熱水収縮力を百分率にて算出した。
(30) Hot water shrinkage force of monofilament (Table 18)
Let the monofilament stand at 23 ° C. in 65% relative humidity until the mass is constant,
Then, cut to a length of 1000 mm, soaked in 100 ° C. water for 15 minutes,
Measure the dimensions immediately after that,
Hot water shrinkage (%)
= [(Dimension before immersion) − (Dimension after immersion at 100 ° C. for 15 minutes)] / (Dimension before immersion) × 100
Thus, the hot water shrinkage force was calculated as a percentage.
(31)モノフィラメントの耐薬品性(表18)
 上記のモノフィラメントを以下の薬品中に7日間浸漬した後に、モノフィラメントの質量残存率(%)及び外観の変化を観測した。
 濃塩酸、64%硫酸、30%NaOH水溶液、5%KMnOのそれぞれの溶液においては23℃、ベンジルアルコールでは50℃において浸漬した試料について試験を行った。
(31) Chemical resistance of monofilament (Table 18)
After the above monofilament was immersed in the following chemicals for 7 days, changes in the residual mass (%) and appearance of the monofilament were observed.
Tests were conducted on samples immersed in concentrated hydrochloric acid, 64% sulfuric acid, 30% NaOH aqueous solution, and 5% K 2 MnO 4 at 23 ° C. and benzyl alcohol at 50 ° C.
(32)単層チューブのエタノール透過係数(表18)
 30cmにカットした単層チューブの片端を密栓し、内部にエタノールを入れ、残りの片端も密栓した後、全体の重量を測定し、次いで試験チューブを60℃のオーブンに入れ、槽内は窒素を50ml/minで流した。
 重量の経時変化を測定し、時間当たりの重量変化率が安定した時点で、燃料透過係数を次式から計算した。試料の透過面積は78.5cmである。
 エタノール透過係数(g・mm/m・day)
=[透過重量(g)×フィルム厚さ(mm)]/[透過面積(mm)×日数(day)]
(32) Ethanol permeability coefficient of single-layer tube (Table 18)
Seal one end of a single-layer tube cut to 30 cm, put ethanol inside, seal the other end, and then weigh the whole, then place the test tube in an oven at 60 ° C and nitrogen in the bath. It flowed at 50 ml / min.
The change in weight over time was measured, and when the rate of change in weight per hour was stabilized, the fuel permeability coefficient was calculated from the following equation. The transmission area of the sample is 78.5 cm 2 .
Ethanol permeability coefficient (g · mm / m 2 · day)
= [Permeation weight (g) × film thickness (mm)] / [permeation area (mm 2 ) × days (day)]
(33)単層チューブの透湿度(表18)
 単層チューブを300mmの長さに切断し、その中に水分吸収剤である塩化カルシウムを充満するまで充填し、密封した。次に、このチューブを40℃で相対湿度90%の雰囲気中に10日以上放置し、1日の平均的な単位面積当たりの透湿度を測定した。
(33) Moisture permeability of single-layer tube (Table 18)
The single-layer tube was cut into a length of 300 mm, filled with calcium chloride as a moisture absorbent, and sealed. Next, this tube was allowed to stand for 10 days or longer in an atmosphere at 40 ° C. and a relative humidity of 90%, and the average daily moisture permeability per unit area was measured.
(34)耐候性(表19)
 TypeIの試験片のダンベル形状に成形した試験用プレートを用い、JIS-A-1415に従い、ブラックパネル、温度83℃、雨なしの条件で評価した。
 目視評価を、
 ○(クラックなし)、△(若干クラックあり)、×(クラックあり)の基準に従って、
 50時間及び100時間の試験後に行った。
 また、50時間の耐候性試験後、試料の引張強度保持率(%)を評価した。当該引張強度保持率(%)は、50時間の耐候性試験後の引張強度を、耐候性試験前の引張強度で割り、100をかけて算出したものである。
 引張強度は、ASTM D638に記載のTypeIの試験片のダンベル形状に成形した試験用プレートを用いてASTM D638に準拠して測定した。
(34) Weather resistance (Table 19)
A test plate formed in a dumbbell shape of a Type I test piece was used and evaluated according to JIS-A-1415 under the conditions of a black panel, a temperature of 83 ° C., and no rain.
Visual evaluation
In accordance with the criteria of ○ (no crack), △ (some cracks), × (cracks)
The test was performed after 50 hours and 100 hours of testing.
Further, after the 50-hour weather resistance test, the tensile strength retention rate (%) of the sample was evaluated. The tensile strength retention rate (%) is calculated by dividing the tensile strength after the 50-hour weather resistance test by the tensile strength before the weather resistance test and multiplying by 100.
The tensile strength was measured in accordance with ASTM D638 using a test plate formed into a dumbbell shape of a Type I test piece described in ASTM D638.
(35)ポリアミド樹脂組成物の耐バイオディーゼル燃料性、引張強度保持率及び引張伸度保持率(表20)
 有限会社AKM製造のバイオディーゼル燃料を用いて、試験用プレートを140℃で100時間浸漬させた。
 用いたバイオディーゼル燃料の脂肪酸メチルエステル総量は90.2wt%、密度(15℃)は0.8864g/mL、酸価は0.09mgKOH/gであった。
 100時間後に取り出した試験片の表面のクラック発生状態を目視で観察した。
 また、燃料浸漬試験前および燃料浸漬100時間後の試験片の引張強度および引張伸度の保持率を評価した。
 引張強度(伸度)保持率(%)=[燃料浸漬100時間後の引張強度(伸度)]/[燃料浸漬前の引張強度(伸度)]×100で計算した。
(35) Biodiesel fuel resistance, tensile strength retention and tensile elongation retention of polyamide resin composition (Table 20)
The test plate was immersed at 140 ° C. for 100 hours using biodiesel fuel manufactured by AKM Co., Ltd.
The total amount of fatty acid methyl esters of the biodiesel fuel used was 90.2 wt%, the density (15 ° C.) was 0.8864 g / mL, and the acid value was 0.09 mg KOH / g.
The crack generation state on the surface of the test piece taken out after 100 hours was visually observed.
Further, the tensile strength and tensile elongation retention rate of the test piece before the fuel immersion test and after 100 hours of fuel immersion were evaluated.
Tensile strength (elongation) retention rate (%) = [tensile strength (elongation) after 100 hours of fuel immersion] / [tensile strength (elongation) before fuel immersion] × 100.
(36)ポリアミド樹脂のエタノール蒸気透過係数(表21)
 ステンレス製の容器にエタノールを50ml入れ、試験用フィルムを用いて、PTFE製のガスケットをかませた容器に蓋をし、ねじ圧力にて締め付けた。カップを60℃恒温槽に入れ、槽内は窒素を50ml/minで流した。重量の経時変化を測定し、時間当たりの重量変化率が安定した時点で、エタノール蒸気透過係数を次式から計算した。試料の透過面積は78.5cm2である。
 エタノール蒸気透過係数(g・mm/m・day)
 =[透過重量(g)×フィルム厚さ(mm)]
  /[透過面積(mm)×日数(day)×圧力(atom)]
(36) Ethanol vapor permeability coefficient of polyamide resin (Table 21)
50 ml of ethanol was put in a stainless steel container, and a test film was used to cover the container covered with a PTFE gasket and tightened with screw pressure. The cup was placed in a constant temperature bath at 60 ° C., and nitrogen was allowed to flow at 50 ml / min in the bath. The change in weight with time was measured, and when the weight change rate per hour was stabilized, the ethanol vapor transmission coefficient was calculated from the following equation. The transmission area of the sample is 78.5 cm2.
Ethanol vapor transmission coefficient (g · mm / m 2 · day)
= [Permeation weight (g) x film thickness (mm)]
/ [Permeation area (mm 2 ) × days (day) × pressure (atom)]
(37)ポリアミド樹脂のE10燃料透過係数(表21)
 JIS Z0208に従い、射出成形で成形したφ75mm、厚み1mmの試験片を用いて測定雰囲気温度60℃でのE10燃料透過試験を行った。
 燃料にはイソオクタンとトルエンを体積比で1:1としたFuelCにエタノールを10%混合して用いた。
 燃料透過測定試料面には常に燃料が接触するように透過面を下向きにして設置した。
 E10燃料透過係数(g・mm/m・day)
=[透過重量(g)×フィルム厚さ(mm)]
 /[透過面積(mm)×日数(day)×圧力(atom)]
 ポリアミド樹脂としてPX6-1~3を使用する場合では300℃、
 ポリアミド樹脂としてPX6-4~6を使用する場合では340℃、
 ポリアミド樹脂としてPA6を使用する場合では260℃、
 ポリアミド樹脂としてPA66を使用する場合では290℃
ポリアミド樹脂としてPA12を使用する場合では230℃
 金型温度80℃の電子写真装置部品により成形して試験用プレートを得た。
 射出成形条件は、射出圧力:一次圧650kg/cm、射出時間:11秒、冷却時間:20秒とした。
(37) E10 fuel permeability coefficient of polyamide resin (Table 21)
In accordance with JIS Z0208, an E10 fuel permeation test was performed at a measurement ambient temperature of 60 ° C. using a test piece of φ75 mm and thickness 1 mm molded by injection molding.
As a fuel, 10% ethanol was mixed with Fuel C in which isooctane and toluene were mixed at a volume ratio of 1: 1.
The fuel permeation measurement sample surface was placed with the permeation surface facing downward so that the fuel always contacted.
E10 fuel permeability coefficient (g · mm / m 2 · day)
= [Permeation weight (g) x film thickness (mm)]
/ [Permeation area (mm 2 ) × days (day) × pressure (atom)]
When using PX6-1 to 3 as polyamide resin,
340 ° C when using PX6-4 to 6 as polyamide resin
When PA6 is used as a polyamide resin,
290 ° C when PA66 is used as the polyamide resin
230 ° C when PA12 is used as the polyamide resin
A test plate was obtained by molding with an electrophotographic apparatus part having a mold temperature of 80 ° C.
The injection molding conditions were: injection pressure: primary pressure 650 kg / cm 2 , injection time: 11 seconds, cooling time: 20 seconds.
(38)ポリアミド樹脂の初期接着強度(表21)
 以下の方法でテストピース(ASTM D638に記載のTypeIの試験片)を作製した。
すなわち、TypeIの試験片製造用の金型の半分にした金属片をインサートし、金属片がインサートされていない部分に無水マレイン酸にて変性されたポリエチレンを射出充填する。
 次に、射出充填された無水マレイン酸にて変性されたポリエチレンが十分に冷却した後、金型内の金属片を除去して、金属片が除去された金型部分に評価対象の樹脂を射出充填する。このようにして、TypeIの試験片の上半分が無水マレイン酸にて変性されたポリエチレン樹脂と、TypeIの試験片の下半分が価対象の樹脂で、TypeIの試験片の中央部にこれらの樹脂の界面を有するテストピースを得る。
 射出成形条件は、
 ポリアミド樹脂としてPX6-1~3を使用する場合では300℃、
 ポリアミド樹脂としてPX6-4~6を使用する場合では340℃、
 ポリアミド樹脂としてPA6を使用する場合では260℃、
 ポリアミド樹脂としてPA66を使用する場合では290℃
ポリアミド樹脂としてPA12を使用する場合では230℃
無水マレイン酸にて変性されたポリエチレンを使用する場合では200℃
 金型温度80℃の電子写真装置部品により成形して試験用プレートを得た。
 射出成形条件は、射出圧力:一次圧650kg/cm、射出時間:11秒、冷却時間:20秒とした。
 このテストピースを用い、評価対象の樹脂が、引張速度毎分50mmで無水マレイン酸にて変性されたポリエチレンと金属片との境界面から剥離するか境界面以外の部分で破壊する(基材破壊)までの最大引張強度を測定し、初期接着強度とした。
(38) Initial adhesive strength of polyamide resin (Table 21)
Test pieces (Type I test pieces described in ASTM D638) were prepared by the following method.
That is, a metal piece made into a half of a mold for producing a Type I test piece is inserted, and polyethylene which has been modified with maleic anhydride is injected and filled into a portion where the metal piece is not inserted.
Next, after the injection-filled maleic anhydride-modified polyethylene is sufficiently cooled, the metal piece in the mold is removed, and the resin to be evaluated is injected into the mold part from which the metal piece has been removed. Fill. In this way, a polyethylene resin in which the upper half of the Type I test piece is modified with maleic anhydride, and the lower half of the Type I test piece is the target resin, and these resins are placed in the center of the Type I test piece. A test piece having the following interface is obtained.
Injection molding conditions are
When using PX6-1-3 as polyamide resin,
When using PX6-4-6 as polyamide resin,
When PA6 is used as a polyamide resin,
290 ° C when PA66 is used as the polyamide resin
23 ° C when PA12 is used as polyamide resin
20 ° C when polyethylene modified with maleic anhydride is used
A test plate was obtained by molding with an electrophotographic apparatus part having a mold temperature of 80 ° C.
The injection molding conditions were: injection pressure: primary pressure 650 kg / cm 2 , injection time: 11 seconds, cooling time: 20 seconds.
Using this test piece, the resin to be evaluated peels off from the boundary surface between polyethylene modified with maleic anhydride at a tensile speed of 50 mm / min and a metal piece or breaks at a portion other than the boundary surface (base material breakdown) ) Was measured as the initial adhesive strength.
(39)ポリアミド樹脂の燃料浸漬後接着強度(表21)
 初期接着強度の評価と同様の手順で成形された試験片をオートクレーブに入れ、FuelC+エタノール10%混合燃料を同試験片が完全に浸漬するまで封入した。そのオートクレーブを60℃温水槽内に350時間放置した。その後取出した試験片について上記と同様に最大引張強度を測定し、燃料浸漬後接着強度とした。
(39) Adhesive strength after immersion of polyamide resin in fuel (Table 21)
A test piece molded in the same procedure as the evaluation of the initial adhesive strength was put in an autoclave, and Fuel C + 10% ethanol mixed fuel was sealed until the test piece was completely immersed. The autoclave was left in a 60 ° C. hot water tank for 350 hours. Thereafter, the maximum tensile strength of the test piece taken out was measured in the same manner as described above, and was taken as the adhesive strength after immersion in fuel.
(40)電気抵抗(表21)
 試験用プレート(試験片寸法3.2mm×12.7mm×127mm)を用いて使用して、ASTMD-257に準拠して測定した。
(40) Electrical resistance (Table 21)
Measurement was performed according to ASTM D-257 using a test plate (test specimen dimensions: 3.2 mm × 12.7 mm × 127 mm).
(41)燃料配管用継手の燃料透過量(表22)
 燃料配管用継手の片端を密栓し、
 内部にFuelC(イソオクタン/トルエン=50/50体積比)と
 エタノールを90/10体積比に混合したエタノール/ガソリンを入れ、
 残りの端部も密栓した。
 その後、全体の重量を測定し、次いで継手を60℃のオ-ブンに入れ、
 重量変化を測定し、
 燃料透過量(全透過量とその内に含まれる炭化水素成分の透過量(HC透過量)の両者を示す)を評価した。
(41) Fuel permeation amount of fuel pipe joint (Table 22)
Seal one end of the joint for fuel piping,
Inside, put ethanol / gasoline mixed with Fuel C (isooctane / toluene = 50/50 volume ratio) and ethanol in 90/10 volume ratio,
The remaining end was also sealed.
Then weigh the whole, then put the joint into a 60 ° C oven,
Measure the weight change,
The fuel permeation amount (which indicates both the total permeation amount and the permeation amount of hydrocarbon components contained therein (HC permeation amount)) was evaluated.
(42)単層燃料チューブの透湿度(表22)
 単層燃料チューブを300mmの長さに切断し、その中に水分吸収剤である塩化カルシウムを充満するまで充填し、密封した。次に、このチューブを40℃で相対湿度90%の雰囲気中に10日以上放置し、1日の平均的な単位面積当たりの透湿度を測定した。
(42) Moisture permeability of single layer fuel tube (Table 22)
The single-layer fuel tube was cut to a length of 300 mm, filled with calcium chloride as a water absorbent, and sealed. Next, this tube was allowed to stand for 10 days or longer in an atmosphere at 40 ° C. and a relative humidity of 90%, and the average daily moisture permeability per unit area was measured.
(43)3層チューブの低温衝撃性(表23)
得られた多層チューブの低温衝撃性はSAE J844に準拠して測定した。
(43) Low temperature impact properties of three-layer tube (Table 23)
The low temperature impact property of the obtained multilayer tube was measured according to SAE J844.
(44)3層チューブの燃料透過性(表24)
 30cmにカットした3層チューブの片端を密栓し、
 内部に市販ガソリンとエチルアルコールを1:1に混合したアルコールガソリンを入れ、
 残りの片端も密栓した後、全体の重量を測定し、次いで試験チューブを60℃のオーブンに入れ、重量変化(g/24時間)を測定し燃料透過性を評価した。
(44) Fuel permeability of three-layer tube (Table 24)
Seal one end of a 3 layer tube cut to 30cm,
Put alcohol gasoline mixed with commercial gasoline and ethyl alcohol 1: 1 inside.
After sealing the remaining one end, the entire weight was measured, and then the test tube was placed in an oven at 60 ° C., and the change in weight (g / 24 hours) was measured to evaluate the fuel permeability.
(45)3層チューブの耐燃料性(表24)
 燃料透過試験後の3層チューブの表面を目視で観察して、クラックの有無を調べた。
(45) Fuel resistance of three-layer tube (Table 24)
The surface of the three-layer tube after the fuel permeation test was visually observed to check for cracks.
(46)表面抵抗値(表26、表28)
 試験用プレートを、横川ヒューレットパッカード社製の4261ALCRメーターを用いて、1cm間隔で任意の3箇所を測定し、平均値を求めた。
 150℃12時間処理前後の表面抵抗値は、TypeIの試験片のダンベル形状に成形した試験用プレートを150℃にセットしたオーブン中に試験片を12時間置き、ASTM D638に準拠して測定した。
(46) Surface resistance value (Table 26, Table 28)
Using the 4261ALCR meter made by Yokogawa Hewlett-Packard Co., the test plate was measured at any three locations at 1 cm intervals, and the average value was determined.
The surface resistance value before and after the treatment at 150 ° C. for 12 hours was measured in accordance with ASTM D638 by placing the test piece in an oven in which a test plate formed into a dumbbell shape of Type I test piece was set at 150 ° C. for 12 hours.
(47)シームレスベルト状フィルムの平滑性(表26)
 シームレスベルト状フィルムの平均表面粗さを以下の条件で測定した。
 東京精密社製サーフコム570A型表面形状測定装置を用いて、インフレーションフィルムの膜幅方向で同一の位置において、長さ5mmの平均表面粗さを垂直倍率50000倍で測定した。半径5μmの測定針を成形方向と平行方向に0.03mm/sの速度で操作した。平均表面粗さが1μm以下の場合を○とし、平均表面粗さが1μmより大きい場合を×と判定した。
(47) Smoothness of seamless belt-like film (Table 26)
The average surface roughness of the seamless belt-like film was measured under the following conditions.
Using a Surfcom 570A type surface shape measuring device manufactured by Tokyo Seimitsu Co., Ltd., the average surface roughness of 5 mm in length was measured at a vertical magnification of 50000 times at the same position in the film width direction of the inflation film. A measuring needle having a radius of 5 μm was operated at a speed of 0.03 mm / s in the direction parallel to the molding direction. A case where the average surface roughness was 1 μm or less was evaluated as “◯”, and a case where the average surface roughness was larger than 1 μm was determined as “X”.
(48)成形品平滑性(表28)
 試験用プレートの平滑性を目視観察して、
  成形品の表面に成形時のフローマーク(流れ模様)が見えなければ○、
  フローマークが見え場合を×
と判断した。
(48) Smoothness of molded product (Table 28)
Visually observe the smoothness of the test plate,
○ If the molding flow mark (flow pattern) is not visible on the surface of the molded product,
When the flow mark is visible x
It was judged.
(49)エタノール透過性(表29)
 表29の実施例2-1~5、比較例2-2、実施例3-1~7及び比較例3-2~3において製造したチューブについて以下の操作を行った。
 30cmにカットした上記チューブの片端を密栓し、内部にエタノールを入れ、残りの片端も密栓した後、全体の重量を測定し、次いで試験チューブを60℃のオーブンに入れ、重量変化(g/24時間)を測定しエタノール透過性を評価した。
(49) Ethanol permeability (Table 29)
The following operations were performed on the tubes manufactured in Examples 2-1 to 5, Comparative Example 2-2, Examples 3-1 to 7 and Comparative Examples 3-2 to 3 in Table 29.
One end of the tube cut to 30 cm was sealed, ethanol was put inside, the other end was also sealed, the whole weight was measured, and then the test tube was placed in an oven at 60 ° C. to change the weight (g / 24 Time) was measured and ethanol permeability was evaluated.
(50)透湿度(表29)
 表29の実施例2-1~5及び比較例2-2において製造したチューブについて以下の操作を行った。
 これらのチューブを300mmの長さに切断し、その中に水分吸収剤である塩化カルシウムを充満するまで充填し、密封した。次に、このチューブを40℃で相対湿度90%の雰囲気中に10日以上放置し、1日の平均的な単位面積当たりの透湿度を測定した。
(50) Moisture permeability (Table 29)
The following operations were performed on the tubes manufactured in Examples 2-1 to 5 and Comparative Example 2-2 in Table 29.
These tubes were cut to a length of 300 mm, filled in with calcium chloride as a moisture absorbent, and sealed. Next, this tube was allowed to stand for 10 days or longer in an atmosphere at 40 ° C. and a relative humidity of 90%, and the average daily moisture permeability per unit area was measured.
(51)チューブ低温衝撃性(表30)
 表30の実施例3-1~7及び比較例3-2~3において製造したチューブについて、低温衝撃性をSAE J844に準拠して測定した。
(51) Tube low temperature impact resistance (Table 30)
The tubes produced in Examples 3-1 to 7 and Comparative Examples 3-2 to 3 in Table 30 were measured for low temperature impact resistance according to SAE J844.
(52)熱処理後の表面性(表30)
 表30の実施例3-1~7及び比較例3-2~3において製造したチューブを80℃のオーブン中で100時間、熱処理を行なった後のチューブの表面状態を目視で観察し、製造直後のチューブの表面状態に比べて、可塑剤であるベンゼンスルホン酸ブチルアミドのブリードアウトが認められなければ良好と判断した。
(52) Surface properties after heat treatment (Table 30)
After the tubes manufactured in Examples 3-1 to 7 and Comparative Examples 3-2 to 3 in Table 30 were heat-treated in an oven at 80 ° C. for 100 hours, the surface condition of the tubes was visually observed and immediately after the production. As compared with the surface state of the tube, it was judged that the plasticizer benzenesulfonic acid butyramide bleedout was not found to be good.
(53)チューブの耐薬品性(表30)
 表30の実施例3-1~7及び比較例3-2~3において製造したチューブについて、表2に列挙する薬品中に7日間、23℃で浸漬した後に、チューブの質量残存率(%)及び外観の変化を観測した。
(53) Chemical resistance of the tube (Table 30)
The tubes manufactured in Examples 3-1 to 7 and Comparative Examples 3-2 to 3 in Table 30 were immersed in the chemicals listed in Table 2 for 7 days at 23 ° C., and then the mass residual ratio (%) of the tubes And changes in appearance were observed.

Claims (2)

  1.  ポリアミド樹脂(成分A)を含むポリアミド樹脂組成物であって、
     前記成分Aが、ジカルボン酸由来の単位とジアミン由来の単位とが結合してなり、
     前記ジカルボン酸が蓚酸(化合物a)を含み、
     前記ジアミンが1,6-ヘキサンジアミン(化合物b)及び2-メチル-1,5-ペンタンジアミン(化合物c)を含み、
     前記化合物bと前記化合物cのモル比が99:1~50:50であり、
     前記ポリアミド樹脂組成物が、さらに、
     離型剤(成分B1)、
     耐熱剤(成分B2)、
     衝撃改良材(成分B3)、
     充填材(成分B4)、
     前記成分A内に分散している層状珪酸塩(成分B5)及び
     導電性付与剤(成分B6)
    からなる群から選ばれる少なくとも1種の添加剤を含むポリアミド樹脂組成物。
    A polyamide resin composition comprising a polyamide resin (component A),
    The component A is composed of a unit derived from a dicarboxylic acid and a unit derived from a diamine,
    The dicarboxylic acid comprises oxalic acid (compound a);
    The diamine comprises 1,6-hexanediamine (compound b) and 2-methyl-1,5-pentanediamine (compound c);
    The molar ratio of the compound b to the compound c is 99: 1 to 50:50,
    The polyamide resin composition further comprises
    Release agent (component B1),
    Heat-resistant agent (component B2),
    Impact modifier (component B3),
    Filler (component B4),
    Layered silicate dispersed in component A (component B5) and conductivity imparting agent (component B6)
    A polyamide resin composition comprising at least one additive selected from the group consisting of:
  2.  ポリアミド樹脂(成分A)を含むポリアミド樹脂組成物であって、
     前記成分Aが、ジカルボン酸由来の単位とジアミン由来の単位とが結合してなり、
     前記ジカルボン酸が蓚酸(化合物a)を含み、
     前記ジアミンが1,6-ヘキサンジアミン(化合物b)及び2-メチル-1,5-ペンタンジアミン(化合物c)を含み、
     前記化合物bと前記化合物cのモル比が99:1~50:50であり、
     金属被覆用、
     射出成形用、
     押出成形用、
     車両部品成形用、
     バイオディーゼル燃料と直接接触する成形体用、
     燃料配管部品用、
     プリント基板表面実装部品用、
     電子写真装置部品用、
     ICトレイ用、又は、
     産業用チューブ用、
    であるポリアミド樹脂組成物。
    A polyamide resin composition comprising a polyamide resin (component A),
    The component A is composed of a unit derived from a dicarboxylic acid and a unit derived from a diamine,
    The dicarboxylic acid comprises oxalic acid (compound a);
    The diamine comprises 1,6-hexanediamine (compound b) and 2-methyl-1,5-pentanediamine (compound c);
    The molar ratio of the compound b to the compound c is 99: 1 to 50:50,
    For metal coating,
    For injection molding,
    For extrusion,
    For vehicle parts molding,
    For compacts that are in direct contact with biodiesel fuel,
    For fuel piping parts,
    For printed circuit board surface mount parts,
    For electrophotographic equipment parts,
    For IC tray, or
    For industrial tubes,
    A polyamide resin composition.
PCT/JP2012/065877 2011-10-28 2012-06-21 Polyamide resin composition WO2013061650A1 (en)

Applications Claiming Priority (32)

Application Number Priority Date Filing Date Title
JP2011-237722 2011-10-28
JP2011-237721 2011-10-28
JP2011-237374 2011-10-28
JP2011237361A JP2013095777A (en) 2011-10-28 2011-10-28 Polyamide resin composition for printed board surface mounting component and printed board surface mounting component obtained by molding the same
JP2011-237361 2011-10-28
JP2011-237957 2011-10-28
JP2011237957A JP2013095804A (en) 2011-10-28 2011-10-28 Polyamide resin composition for extrusion and extrusion molding obtained by extruding the same
JP2011237721A JP2013095791A (en) 2011-10-28 2011-10-28 Conductive polyamide resin composition and molded product thereof
JP2011237955A JP2013095802A (en) 2011-10-28 2011-10-28 Polyamide resin composition for industrial tube and industrial tube obtained by molding the same
JP2011-237954 2011-10-28
JP2011237722A JP2013095792A (en) 2011-10-28 2011-10-28 Filler-containing polyamide resin composition
JP2011-237713 2011-10-28
JP2011-237956 2011-10-28
JP2011237641A JP2013095788A (en) 2011-10-28 2011-10-28 Polyamide resin composition for molding vehicle component and vehicle component obtained by molding the same
JP2011237374A JP2013095778A (en) 2011-10-28 2011-10-28 Polyamide resin composition and molded product obtained by molding the same
JP2011-237916 2011-10-28
JP2011-237955 2011-10-28
JP2011237642A JP2013095789A (en) 2011-10-28 2011-10-28 Polyamide resin composition for molded product to be brought into direct contact with biodiesel fuel and molded product obtained by molding the same
JP2011237723A JP2013095793A (en) 2011-10-28 2011-10-28 Polyamide resin composition
JP2011237713A JP2013095790A (en) 2011-10-28 2011-10-28 Layer silicate-containing polyamide resin composition
JP2011237901A JP2013095798A (en) 2011-10-28 2011-10-28 Polyamide resin composition for metal coating, metal coating material obtained by molding the same, and metallic article coated with the same
JP2011237916A JP2013095800A (en) 2011-10-28 2011-10-28 Polyamide resin composition for fuel piping component and fuel piping component obtained by molding the same
JP2011237956A JP2013095803A (en) 2011-10-28 2011-10-28 Polyamide resin composition and heat-resistant molded product obtained by molding the same
JP2011-237901 2011-10-28
JP2011-237386 2011-10-28
JP2011237954A JP2013095801A (en) 2011-10-28 2011-10-28 Polyamide resin composition for electrophotographing device component and electrophotographing device component obtained by molding the same
JP2011-237641 2011-10-28
JP2011-237910 2011-10-28
JP2011237386A JP2013095780A (en) 2011-10-28 2011-10-28 Polyamide resin composition for injection molding and injection-molded product obtained by injection-molding the same
JP2011-237642 2011-10-28
JP2011237910A JP2013095799A (en) 2011-10-28 2011-10-28 Polyamide resin composition for ic tray and ic tray obtained by molding the same
JP2011-237723 2011-10-28

Publications (1)

Publication Number Publication Date
WO2013061650A1 true WO2013061650A1 (en) 2013-05-02

Family

ID=48167494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065877 WO2013061650A1 (en) 2011-10-28 2012-06-21 Polyamide resin composition

Country Status (1)

Country Link
WO (1) WO2013061650A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006318A1 (en) * 2013-06-03 2014-12-05 Rhodia Operations CHARGES AS AN AGENT FOR REDUCING THE DETERIORATION OF BARRIER PROPERTIES
JP2015034276A (en) * 2013-07-08 2015-02-19 宇部興産株式会社 Polyamide resin
JPWO2015093060A1 (en) * 2013-12-20 2017-03-16 三井化学株式会社 Semi-aromatic polyamide resin composition and molded product thereof
US9955562B2 (en) 2014-12-26 2018-04-24 Toyota Jidosha Kabushiki Kaisha Engine and method of production of engine
WO2018147315A1 (en) * 2017-02-09 2018-08-16 東洋紡株式会社 Conductive polyamide resin composition
EP3536477A4 (en) * 2016-11-04 2020-04-29 Sanpura Co., Ltd. Method for producing metal-imitating resin molded member, metal-imitating resin molded member and use of metal-imitating resin molded member
US10718299B2 (en) 2014-12-25 2020-07-21 Toyota Jidosha Kabushiki Kaisha Intake system of vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502671A (en) * 1990-11-20 1994-03-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Ternary and polyamides containing amide units of 2-methylpentamethylenediamine and products made therefrom
JP2006522208A (en) * 2003-04-01 2006-09-28 ハーキュリーズ・インコーポレーテッド Synthesis of high solids resins from amine-terminated polyamides.
WO2008123534A1 (en) * 2007-03-27 2008-10-16 Ube Industries, Ltd. Molding material for fuel component and fuel component using the same
WO2011136263A1 (en) * 2010-04-30 2011-11-03 宇部興産株式会社 Polyamide resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06502671A (en) * 1990-11-20 1994-03-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Ternary and polyamides containing amide units of 2-methylpentamethylenediamine and products made therefrom
JP2006522208A (en) * 2003-04-01 2006-09-28 ハーキュリーズ・インコーポレーテッド Synthesis of high solids resins from amine-terminated polyamides.
WO2008123534A1 (en) * 2007-03-27 2008-10-16 Ube Industries, Ltd. Molding material for fuel component and fuel component using the same
WO2011136263A1 (en) * 2010-04-30 2011-11-03 宇部興産株式会社 Polyamide resin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006318A1 (en) * 2013-06-03 2014-12-05 Rhodia Operations CHARGES AS AN AGENT FOR REDUCING THE DETERIORATION OF BARRIER PROPERTIES
WO2014195328A1 (en) * 2013-06-03 2014-12-11 Rhodia Operations Fillers used as an agent making it possible to reduce deterioration of barrier properties
JP2015034276A (en) * 2013-07-08 2015-02-19 宇部興産株式会社 Polyamide resin
JPWO2015093060A1 (en) * 2013-12-20 2017-03-16 三井化学株式会社 Semi-aromatic polyamide resin composition and molded product thereof
US10718299B2 (en) 2014-12-25 2020-07-21 Toyota Jidosha Kabushiki Kaisha Intake system of vehicle
US9955562B2 (en) 2014-12-26 2018-04-24 Toyota Jidosha Kabushiki Kaisha Engine and method of production of engine
EP3536477A4 (en) * 2016-11-04 2020-04-29 Sanpura Co., Ltd. Method for producing metal-imitating resin molded member, metal-imitating resin molded member and use of metal-imitating resin molded member
WO2018147315A1 (en) * 2017-02-09 2018-08-16 東洋紡株式会社 Conductive polyamide resin composition

Similar Documents

Publication Publication Date Title
WO2013061650A1 (en) Polyamide resin composition
WO2009151145A1 (en) Novel polyamide resin composition and polyamide resin-containing product
EP3192650B1 (en) Layered tube
JP4175942B2 (en) Laminated structure
JP5876402B2 (en) Polyamide hollow body with improved impact resistance
US10090077B2 (en) Resin composition and molded article containing the same
JP6423365B2 (en) Semi-aromatic polyamide resin composition and molded product thereof
US10906278B2 (en) Multilayered tube for transporting liquid medicine and polyamide resin composition
EP1695817A1 (en) Multilayer structure and multilayer formed article
WO2006098434A1 (en) Semi-aromatic polyamide resin
TW201728460A (en) Multi-layer structure
JP5577576B2 (en) Polyamide resin molded parts having liquid or vapor barrier properties, fuel tank parts, fuel tubes, joints for fuel piping, quick connectors, and fuel piping parts
JP4868699B2 (en) Thermoplastic polyamide resin composition
JP2011225872A (en) Polyamide resin composition for film
JP5167965B2 (en) Joints for fuel piping, quick connectors for fuel piping and fuel piping parts
JP2005178076A (en) Laminated tube
US20230174716A1 (en) Polymer compositions having improved mechanical properties at elevated temperatures and corresponding articles
WO2017115699A1 (en) Polyamide resin composition
US20220127458A1 (en) Tube, and polyamide resin composition
JPH05170990A (en) Resin composition
JP2013095800A (en) Polyamide resin composition for fuel piping component and fuel piping component obtained by molding the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12843461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12843461

Country of ref document: EP

Kind code of ref document: A1