WO2017115699A1 - Polyamide resin composition - Google Patents

Polyamide resin composition Download PDF

Info

Publication number
WO2017115699A1
WO2017115699A1 PCT/JP2016/088062 JP2016088062W WO2017115699A1 WO 2017115699 A1 WO2017115699 A1 WO 2017115699A1 JP 2016088062 W JP2016088062 W JP 2016088062W WO 2017115699 A1 WO2017115699 A1 WO 2017115699A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
resin composition
polyamide resin
acid
unit
Prior art date
Application number
PCT/JP2016/088062
Other languages
French (fr)
Japanese (ja)
Inventor
剛 田崎
長谷川 敏明
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2017115699A1 publication Critical patent/WO2017115699A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/06Hoses, i.e. flexible pipes made of rubber or flexible plastics with homogeneous wall

Definitions

  • the present invention relates to a polyamide resin composition.
  • Polyamide resins are excellent in strength, heat resistance, chemical resistance, and the like, and have been conventionally used in automobile mechanism parts such as automobile fuel pipes and fuel pipe joints (connectors).
  • a polyamide resin composition is also used for the innermost layer of various chemical liquid transport tubes such as a long life coolant (hereinafter referred to as “LLC”) used for cooling an automobile engine and a tube for circulating a refrigerant for cooling an air conditioner.
  • LLC long life coolant
  • the innermost layer of the tube is hydrolyzed by a carboxylic acid generated by hydrolysis of a lubricant such as ester oil in the refrigerant, or a phosphate ester additive in the refrigerant.
  • the innermost layer of the tube is composed of a polyamide resin composition, it is also exposed to an acid derived from a terminal carboxyl group in the polyamide or a carboxyl group generated by hydrolysis of the polyamide. Accordingly, the material constituting the innermost layer of the chemical solution transport tube is required to have high acid hydrolysis resistance.
  • Polyamide resin compositions in which a polycarbodiimide compound is added to polyamide to improve the hydrolysis resistance of polyamide are known (see Patent Documents 1 to 4).
  • Patent Documents 1 to 4 Polyamide resin compositions in which a polycarbodiimide compound is added to polyamide to improve the hydrolysis resistance of polyamide are known (see Patent Documents 1 to 4).
  • the polyamide resin composition used for the innermost layer of the chemical solution transporting tube does not deteriorate even if it is brought into contact with the chemical solution for a long time.
  • it is desired to further improve hydrolysis resistance since the tube used in an automobile becomes a high temperature during use, high durability is required so that the mechanical strength does not decrease even when the tube is brought into contact with a LLC or air conditioner refrigerant for a long time under a high temperature condition.
  • an object of the present invention is to provide a polyamide resin composition which is excellent in chemical resistance and suitable for forming various chemical transport tubes, connectors and the like.
  • a polyamide resin composition comprising a polyamide (A), a monocarbodiimide (B1), and a polycarbodiimide (B2).
  • the amount of the monocarbodiimide (B1) and the polycarbodiimide (B2) in the polyamide resin composition is 0.5 to 25 parts by mass with respect to 100 parts by mass of the polyamide (A).
  • Polyamide resin composition is 0.5 to 25 parts by mass with respect to 100 parts by mass of the polyamide (A).
  • the polyamide (A) includes a dicarboxylic acid unit containing 50 to 100 mol% of an aromatic dicarboxylic acid unit and a diamine unit containing 60 to 100 mol% of an aliphatic diamine unit having 6 to 13 carbon atoms.
  • the aromatic dicarboxylic acid unit is a terephthalic acid unit and / or a naphthalene dicarboxylic acid unit
  • the aliphatic diamine unit is a 1,9-nonanediamine unit, a 2-methyl-1,8-octanediamine unit, and 1
  • the polyamide resin composition according to the above [8] or [9] which is at least one selected from the group consisting of 10-decanediamine units.
  • the elastomer (C) is an ⁇ -olefin copolymer, (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer, ionomer, It is at least one selected from the group consisting of an aromatic vinyl compound / conjugated diene compound block copolymer, and a polymer obtained by modifying these with an unsaturated compound having a carboxyl group and / or an acid anhydride group. 12] polyamide resin composition.
  • a polyamide resin composition having excellent chemical resistance can be provided.
  • the polyamide resin composition is a selective catalytic reduction (hereinafter also referred to as “SCR”) system for purifying nitrogen oxides in exhaust gas from engine cooling refrigerant, air conditioner refrigerant, diesel engine exhaust, etc. It is suitably used for tubes for transporting various chemicals such as reducing agent solutions, oils, fuels, connectors, intake pipes, blow-by tubes, and the like.
  • SCR selective catalytic reduction
  • the polyamide resin composition of the present invention is a composition formed by blending polyamide (A), monocarbodiimide (B1), and polycarbodiimide (B2).
  • the resin composition exhibits high chemical resistance by using two types of carbodiimides (B1) and (B2) in combination.
  • Carbodiimide enhances hydrolysis resistance of polyamide by sealing or capturing acid derived from components in chemicals or acid derived from polyamide, and bonding the ends of the molecular chain of polyamide to increase molecular weight. It is considered that chemical resistance is improved.
  • carbodiimide is known as a hydrolysis resistance improver for thermoplastic resins such as polyamide.
  • thermoplastic resin having a low melting point for example, less than 180 ° C.
  • monocarbodiimide having low thermal stability as a hydrolysis resistance improver.
  • polyamide has a high melting point, so generally, monocarbodiimide with low thermal stability is not applied as a hydrolysis resistance improver used at the time of compounding polyamide, and polycarbodiimide is used. I came. However, the present inventors have found that a resin composition in which only polycarbodiimide is blended with polyamide is not always sufficient in improving chemical resistance, and that even better chemical resistance can be obtained by using monocarbodiimide in combination. .
  • polycarbodiimide is considered to have high thermal stability and a high molecular chain extension effect without using monocarbodiimide. It would be advantageous to use only.
  • the present inventors have confirmed that the chemical resistance is not sufficiently improved by simply increasing the amount of carbodiimide in the polyamide resin composition. The reason why the above effect is obtained by the present invention is not clear, but during the compounding process of the polyamide, monocarbodiimide having high reactivity and low thermal stability is suitably added to the terminal carboxyl of the polyamide prior to polycarbodiimide. It is conceivable that the chemical resistance is improved while the mechanical properties derived from the polyamide are maintained by sealing the group.
  • the polyamide (A) used in the present invention is not particularly limited, and examples thereof include aromatic polyamides and aliphatic polyamides.
  • the aromatic polyamide include wholly aromatic polyamides and semi-aromatic polyamides.
  • the polyamide (A) is preferably an aromatic polyamide, and from the viewpoint of chemical resistance, heat resistance, and moldability, a semi-aromatic polyamide is more preferable.
  • the semi-aromatic polyamide will be described.
  • the semi-aromatic polyamide means a polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit as a main component, or an aliphatic dicarboxylic acid unit as a main component.
  • main component refers to constituting 50 to 100 mol%, preferably 60 to 100 mol%, of all units.
  • a polyamide containing a dicarboxylic acid unit having an aromatic dicarboxylic acid unit as a main component and a diamine unit having an aliphatic diamine unit as a main component is preferable.
  • a semi-aromatic polyamide containing a dicarboxylic acid unit containing 50 to 100 mol% of an aromatic dicarboxylic acid unit and a diamine unit containing 60 to 100 mol% of an aliphatic diamine unit having 6 to 13 carbon atoms is more preferred.
  • the semi-aromatic polyamide will be described in more detail.
  • the dicarboxylic acid unit constituting the semiaromatic polyamide preferably contains 50 to 100 mol% of the aromatic dicarboxylic acid unit from the viewpoint of becoming a semiaromatic polyamide having good chemical resistance and heat resistance.
  • the content of the aromatic dicarboxylic acid unit in the dicarboxylic acid unit is more preferably in the range of 75 to 100 mol%, and further preferably in the range of 90 to 100 mol%.
  • Aromatic dicarboxylic acid units include terephthalic acid units, naphthalenedicarboxylic acid units, isophthalic acid units, 1,4-phenylenedioxydiacetic acid units, 1,3-phenylenedioxydiacetic acid units, diphenic acid units, diphenylmethane-4 4,4′-dicarboxylic acid unit, diphenylsulfone-4,4′-dicarboxylic acid unit, 4,4′-biphenyldicarboxylic acid unit, and the like.
  • naphthalenedicarboxylic acid unit examples include units derived from 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid, and the 2,6-naphthalenedicarboxylic acid unit includes preferable.
  • the aromatic dicarboxylic acid unit is preferably a terephthalic acid unit and / or a naphthalene dicarboxylic acid unit, and more preferably a terephthalic acid unit.
  • the dicarboxylic acid unit constituting the semi-aromatic polyamide may contain a dicarboxylic acid unit other than the aromatic dicarboxylic acid unit, preferably in the range of 50 mol% or less.
  • dicarboxylic acid units include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 2, Units derived from 2-diethylsuccinic acid, azelaic acid, sebacic acid, suberic acid and other aliphatic dicarboxylic acids; 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids; And one or more of these may be included.
  • the content of these other dicarboxylic acid units in the dicarboxylic acid unit is preferably 25 mol% or less, and more preferably 10 mol% or less.
  • the semi-aromatic polyamide used in the present invention may further contain a unit derived from a polyvalent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid within a range that allows melt molding.
  • the diamine unit constituting the semi-aromatic polyamide preferably contains 60 to 100 mol% of an aliphatic diamine unit having 6 to 13 carbon atoms.
  • a polyamide resin composition excellent in toughness, slidability, heat resistance, moldability, low water absorption and lightness can be obtained. can get.
  • the content of the aliphatic diamine unit having 6 to 13 carbon atoms in the diamine unit is more preferably in the range of 75 to 100 mol%, and further preferably in the range of 90 to 100 mol%.
  • Examples of the aliphatic diamine unit having 6 to 13 carbon atoms include 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, and 1,10-decanediamine.
  • Linear aliphatic diamines such as 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine; 2-methyl-1,5-pentanediamine, 3-methyl-1,5- Pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1, Examples thereof include units derived from branched aliphatic diamines such as 9-nonanediamine; and one or more of these units can be included.
  • the aliphatic diamine unit having 6 to 13 carbon atoms is at least one selected from the group consisting of a 1,9-nonanediamine unit, a 2-methyl-1,8-octanediamine unit, and a 1,10-decanediamine unit. More preferably, since a polyamide resin composition that is more excellent in heat resistance, low water absorption and chemical resistance can be obtained, it is possible to use 1,9-nonanediamine units and / or 2-methyl-1,8-octanediamine units. More preferred are 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units.
  • the diamine unit includes both a 1,9-nonanediamine unit and a 2-methyl-1,8-octanediamine unit
  • the diamine unit constituting the semi-aromatic polyamide may contain a diamine unit other than the aliphatic diamine unit having 6 to 13 carbon atoms, preferably in the range of 40 mol% or less.
  • diamine units include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, and 2-methyl-1,3-propanediamine.
  • Aliphatic diamines having 5 or less carbon atoms such as 2-methyl-1,4-butanediamine; cycloaliphatic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine; p-phenylenediamine, m-phenylenediamine, xylylenediamine Examples include units derived from aromatic diamines such as amines, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl ether, and one or two of these units. More than species can be included.
  • the content of these other diamine units in the diamine unit is preferably 25 mol% or less, and more preferably 10 mol% or less.
  • the semi-aromatic polyamide may further contain an aminocarboxylic acid unit and / or a lactam unit as long as the effects of the present invention are not impaired.
  • the aminocarboxylic acid unit include units derived from 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like, and two or more aminocarboxylic acid units may be included.
  • the content of aminocarboxylic acid units in the polyamide (A) is preferably 40 mol% or less, more preferably 20 mol% or less, based on 100 mol% of all monomer units constituting the polyamide (A). Preferably, it is 10 mol% or less.
  • lactam unit examples include units derived from ⁇ -caprolactam, enantolactam, undecane lactam, lauryl lactam, ⁇ -pyrrolidone, ⁇ -piperidone, etc., and two or more lactam units are included. It may be.
  • the content of lactam units in the semiaromatic polyamide is preferably 40 mol% or less, more preferably 20 mol% or less, with respect to 100 mol% of all monomer units constituting the semiaromatic polyamide, More preferably, it is 10 mol% or less.
  • polyhexamethylene terephthalamide As a typical semi-aromatic polyamide containing a dicarboxylic acid unit mainly composed of an aromatic dicarboxylic acid unit and a diamine unit mainly composed of an aliphatic diamine unit having 6 to 13 carbon atoms, polyhexamethylene terephthalamide may be used.
  • Polyamide 6T polynonamethylene terephthalamide (polyamide 9T), polydecamethylene terephthalamide (polyamide 10T), polyhexamethylene isophthalamide (polyamide 6I), a copolymer of polyamide 6I and polyamide 6T (polyamide 6I / 6T) ), And a copolymer of polyamide 6T and polyundecanamide (polyamide 11) (polyamide 6T / 11).
  • polyamide 6T / 11 polynonamethylene terephthalamide (polyamide 9T) and polydecamethylene terephthalamide (polyamide 10T) is preferable, and polynonamethylene terephthalamide (polyamide 9T) and At least one selected from the group consisting of polydecamethylene terephthalamide (polyamide 10T) is more preferable, and polynonamethylene terephthalamide (polyamide 9T) is more preferable.
  • an aliphatic dicarboxylic acid unit is used for the semi-aromatic polyamide containing a dicarboxylic acid unit having an aliphatic dicarboxylic acid unit as a main component and a diamine unit having an aromatic diamine unit as a main component.
  • an aromatic diamine unit the unit induced
  • Typical semi-aromatic polyamides containing a dicarboxylic acid unit having an aliphatic dicarboxylic acid unit as a main component and a diamine unit having an aromatic diamine unit as a main component include polymetaxylylene adipamide (MXD6), poly And paraxylylene sebacamide (PXD10).
  • the said semi-aromatic polyamide can use 1 type (s) or 2 or more types.
  • the polyamide (A) blended in the polyamide resin composition of the present invention is preferably composed only of a semi-aromatic polyamide, but a polyamide other than a semi-aromatic polyamide such as wholly aromatic polyamide or aliphatic polyamide is used in combination. May be.
  • the content of polyamide other than the semi-aromatic polyamide in the polyamide (A) is preferably 20% by mass or less, more preferably 10% by mass or less.
  • the wholly aromatic polyamide refers to a polyamide containing a dicarboxylic acid unit having an aromatic dicarboxylic acid unit as a main component and a diamine unit having an aromatic diamine unit as a main component.
  • Examples of the aromatic dicarboxylic acid unit and the aromatic diamine unit are the same as those exemplified in the aforementioned semi-aromatic polyamide.
  • polyparaphenylene terephthalamide polymetaphenylene isophthalamide, polymetaxylylene isophthalamide (MXDI), terephthalic acid component, 3,4'-diaminodiphenyl ether component and paraphenylenediamine component are copolymerized And poly (paraphenylene • 3,4′-oxydiphenylene terephthalamide).
  • the aliphatic polyamide is a polyamide composed of an aliphatic polyamide-forming unit. Specifically, a lactam, an aminocarboxylic acid, or a nylon salt composed of an aliphatic diamine and an aliphatic dicarboxylic acid as a raw material is used for melt polymerization, solution polymerization, It can be obtained by polymerization or copolymerization by a known method such as solid phase polymerization.
  • lactam examples include those similar to those exemplified in the aforementioned lactam unit, such as ⁇ -caprolactam, enantolactam, undecane lactam, lauryl lactam, ⁇ -pyrrolidone and ⁇ -piperidone.
  • aminocarboxylic acid examples include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. These can use 1 type (s) or 2 or more types.
  • Examples of the aliphatic diamine constituting the nylon salt include ethylenediamine, 1,3-propylenediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1, 8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15 -Pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 1,19-nonadecanediamine, 1,20-eicosanediamine, 2 / 3-methyl-1, 5-pentanediamine, 2-methyl-1,8-octanediamine, 2,2, / 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl-1,9-nonanedia
  • Examples of the aliphatic dicarboxylic acid constituting the nylon salt include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, tridecanedicarboxylic acid, tetradecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid.
  • An acid, octadecanedicarboxylic acid, eicosane dicarboxylic acid, etc. are mentioned. These can use 1 type (s) or 2 or more types.
  • aliphatic polyamides examples include polycaproamide (polyamide 6), polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polyethylene adipamide (polyamide 26), polytetramethylene adipamide (polyamide 46), Polyhexamethylene adipamide (Polyamide 66), Polyhexamethylene azelamide (Polyamide 69), Polyhexamethylene sebamide (Polyamide 610), Polyhexamethylene undecamide (Polyamide 611), Polyhexamethylene dodecamide (Polyamide) 612), polynonamethylene adipamide (polyamide 96), polynonamethylene azelamide (polyamide 99), polynonamethylene sebamide (polyamide 910), polynonamethylene undecamide (polyamide 911).
  • Polynonamethylene dodecamide (polyamide 912), polydecamethylene adipamide (polyamide 106), polydecamethylene azelamide (polyamide 109), polydecamethylene sebamide (polyamide 1010), polydecamethylene dodecamide (polyamide 1012) ), Polydodecamethylene adipamide (polyamide 126), polydodecamethylene azelamide (polyamide 129), polydodecamethylene sebamide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), and the like, Examples thereof include copolymers using several kinds of raw material monomers that form these.
  • polycaproamide polyamide 6
  • polyhexamethylene adipamide polyamide 66
  • polyundecanamide polyamide 11
  • polydodecanamide polyamide 12
  • polyhexamethylene dodecanamide polyamide 612
  • at least one homopolymer selected from the group consisting of polycaproamide (polyamide 6) and polydodecanamide (polyamide 12) is more preferable.
  • the polyamide (A) it is preferable that 10% or more of the end groups of the molecular chain are sealed with an end-capping agent.
  • a polyamide (A) having a terminal blocking rate of 10% or more a polyamide resin composition having more excellent physical properties such as melt stability and hot water resistance can be obtained.
  • an acid-modified elastomer is used as the elastomer (C) described later, from the viewpoint of reacting the acid-modified portion of the elastomer with the end group of the polyamide (A), the above-mentioned end capping rate is preferably 100%. Is less than.
  • the end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but from the viewpoint of reactivity and stability of the capping end, Carboxylic acid or monoamine is preferable, and monocarboxylic acid is more preferable from the viewpoint of easy handling.
  • monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like can also be used as the end-capping agent.
  • the monocarboxylic acid used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, laurin Aliphatic monocarboxylic acids such as acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid and isobutyric acid; cycloaliphatic monocarboxylic acids such as cyclohexanecarboxylic acid; benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid , ⁇ -naphthalene carboxylic acid, methyl naphthalene carboxylic acid, aromatic monocarboxylic acid such as phenyl acetic acid; any mixtures thereof.
  • Acid and benzoic acid are preferable, and benzoic acid is more preferable.
  • the monoamine used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group.
  • Aliphatic monoamines such as amine, dimethylamine, diethylamine, dipropylamine and dibutylamine
  • Cycloaliphatic monoamines such as cyclohexylamine and dicyclohexylamine
  • Aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; any mixtures thereof Can be mentioned.
  • butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are preferable from the viewpoints of reactivity, boiling point, sealing end stability, price, and the like.
  • the terminal blocking rate of the polyamide (A) was determined by measuring the number of terminal carboxyl groups, terminal amino groups, and terminal groups blocked by the terminal blocking agent present in the polyamide (A), respectively, by the following formula ( It is obtained according to 1).
  • the number of each end group is preferably determined from the integral value of the characteristic signal corresponding to each end group by 1 H-NMR in terms of accuracy and simplicity.
  • Terminal sealing rate (%) [(TS) / T] ⁇ 100 (1) [Wherein T represents the total number of terminal groups of the molecular chain of the polyamide (A) (this is usually equal to twice the number of polyamide molecules), and S is the terminal carboxyl group and terminal remaining unblocked. Represents the total number of amino groups. ]
  • Polyamide (A) can be produced using any method known as a method for producing polyamide.
  • a method for producing polyamide for example, in the case of a polyamide containing a dicarboxylic acid unit and a diamine unit, a solution polymerization method or an interfacial polymerization method using an acid chloride and a diamine as raw materials, a melt polymerization method using a dicarboxylic acid and a diamine as raw materials, a solid phase polymerization method, a melting method It can be produced by a method such as extrusion polymerization.
  • phosphoric acid, phosphorous acid, hypophosphorous acid, their salts or esters can be added as a catalyst.
  • the salt or ester include phosphoric acid, phosphorous acid or hypophosphorous acid, potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony, and the like.
  • Salt with metal ammonium salt of phosphoric acid, phosphorous acid or hypophosphorous acid; ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, decyl of phosphoric acid, phosphorous acid or hypophosphorous acid
  • esters stearyl esters, and phenyl esters.
  • sodium hypophosphite and phosphorous acid are preferable because they are inexpensive and have a small amount of triamine.
  • the polyamide (A) preferably has an intrinsic viscosity [ ⁇ ] measured in concentrated sulfuric acid at 30 ° C. in the range of 0.6 to 2.0 dL / g, 0.7 to 1.9 dL / g More preferably, it is in the range of g, more preferably in the range of 0.8 to 1.8 dL / g. If the polyamide (A) having an intrinsic viscosity of 0.6 dL / g or more is used, the mechanical properties are improved. Moreover, if polyamide (A) whose intrinsic viscosity is 2.0 dL / g or less is used, the moldability of the obtained polyamide resin composition is favorable.
  • the polyamide (A) has a terminal amino group content ([NH 2 ]) of preferably 5 to 60 ⁇ mol / g, more preferably 5 to 50 ⁇ mol / g, and more preferably 5 to 30 ⁇ mol. More preferably, it is in the range of / g.
  • the terminal amino group content ([NH 2 ]) is 5 ⁇ mol / g or more, the compatibility between the polyamide (A) and the elastomer (C) described later is good.
  • terminal amino group content is 60 ⁇ mol / g or less
  • an acid-modified elastomer described later is used as the elastomer (C)
  • the terminal amino group and the modified part of the elastomer are excessively reacted and gelled. Can be avoided.
  • the terminal amino group content ([NH 2 ]) as used herein refers to the amount of terminal amino groups (unit: ⁇ mol) contained in 1 g of the polyamide (A), and is based on the neutralization titration method using an indicator. Can be sought.
  • a polyamide (A) containing a dicarboxylic acid unit and a diamine unit and having a terminal amino group content ([NH 2 ]) in the above-described range can be produced, for example, as follows. First, a dicarboxylic acid, a diamine, and optionally an aminocarboxylic acid, a lactam, a catalyst, and a terminal blocking agent are mixed to produce a nylon salt.
  • the number of moles (X) of all carboxyl groups and the number of moles (Y) of all amino groups contained in the reaction raw material are represented by the following formula (2) ⁇ 0.5 ⁇ [(Y ⁇ X) / Y] ⁇ 100 ⁇ 2.0 (2) Is satisfied, it is easy to produce a polyamide (A) having a terminal amino group content ([NH 2 ]) of 5 to 60 ⁇ mol / g, which is preferable.
  • the produced nylon salt is heated to a temperature of 200 to 250 ° C. to obtain a prepolymer having an intrinsic viscosity [ ⁇ ] at 30 ° C. in concentrated sulfuric acid of 0.10 to 0.60 dL / g, and the degree of polymerization is further increased.
  • the polyamide (A) used in the present invention can be obtained.
  • the intrinsic viscosity [ ⁇ ] of the prepolymer is in the range of 0.10 to 0.60 dL / g, there is little shift in the molar balance of carboxyl groups and amino groups and a decrease in polymerization rate at the stage of increasing the degree of polymerization.
  • polyamide (A) excellent in various performance and moldability with a small molecular weight distribution can be obtained.
  • the polymerization degree is increased by the solid phase polymerization method, it is preferably performed under reduced pressure or under an inert gas flow.
  • the polymerization temperature is in the range of 200 to 280 ° C., the polymerization rate is high and the productivity is increased.
  • the polymerization temperature is preferably 370 ° C. or less.
  • polyamide is hardly decomposed and polyamide (A) having little deterioration. Is obtained.
  • the terminal amino group content ([NH 2]) is also by combining a plurality of different kinds of polyamides, it may be polyamide (A) having a terminal amino group content of the desired ([NH 2]).
  • the blending amount of the polyamide (A) in the polyamide resin composition of the present invention is preferably 50% by mass or more, more preferably 55% by mass or more from the viewpoint of imparting chemical resistance, heat resistance and mechanical strength. More preferably, it is 60% by mass or more, more preferably 70% by mass or more. Further, from the viewpoint of improving the chemical resistance by blending the monocarbodiimide (B1) and the polycarbodiimide (B2), the blending amount of the polyamide (A) in the polyamide resin composition is preferably 99.5% by mass or less. More preferably, it is 99 mass% or less.
  • the monocarbodiimide (B1) used in the present invention is a compound having one carbodiimide group represented by —N ⁇ C ⁇ N— in the molecule, and examples thereof include compounds represented by the following general formula (I). .
  • R 1 and R 2 each independently represent a monovalent hydrocarbon group.
  • the hydrocarbon group include a chain aliphatic group, an alicyclic structure-containing aliphatic group, and an aromatic ring-containing group.
  • the chain aliphatic group and the alicyclic structure-containing aliphatic group are preferably saturated aliphatic groups.
  • the chain aliphatic group preferably has 3 or more carbon atoms, more preferably 3 to 20, more preferably 3 to 12, and the alicyclic structure-containing aliphatic group and aromatic ring-containing group preferably have 5 carbon atoms. More preferably, it is 6-20, and more preferably 6-12.
  • the said hydrocarbon group may have substituents, such as an amino group, a hydroxyl group, and an alkoxy group.
  • R 1 and R 2 may be different from each other but are preferably the same.
  • Examples of the monocarbodiimide (B1) include aliphatic monocarbodiimides, aromatic monocarbodiimides, and mixtures thereof.
  • the aliphatic monocarbodiimide is preferably a carbodiimide in which R 1 and R 2 are both a chain aliphatic group or an alicyclic structure-containing aliphatic group in the general formula (I).
  • the chain aliphatic group and the alicyclic structure-containing aliphatic group are preferably saturated aliphatic groups, and more preferably at least one selected from the group consisting of alkyl groups and cycloalkyl groups.
  • the alkyl group preferably has 3 or more carbon atoms, more preferably 3 to 20, more preferably 3 to 12, and the cycloalkyl group preferably 5 or more carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 carbon atoms. ⁇ 12.
  • aliphatic monocarbodiimide examples include diisopropylcarbodiimide, diisobutylcarbodiimide, t-butylisopropylcarbodiimide, di-t-butylcarbodiimide, dioctylcarbodiimide, N, N′-dioctyldecylcarbodiimide, N, N′-dicyclohexylcarbodiimide and the like. Can be mentioned.
  • a carbodiimide in which at least one of R 1 and R 2 in the general formula (I) is an aryl group is preferable, and a carbodiimide in which both R 1 and R 2 are aryl groups is more preferable.
  • the aryl group preferably has 5 or more carbon atoms, more preferably 6 to 20, and still more preferably 6 to 12.
  • aromatic monocarbodiimide examples include N, N′-di-2,6-diisopropylphenylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, N, N'-di-2,6-di-tert-butylphenylcarbodiimide, N-tolyl-N'-phenylcarbodiimide, N, N'-di-p-nitrophenylcarbodiimide, N, N'-di-p-amino Phenylcarbodiimide, N, N′-di-p-hydroxyphenylcarbodiimide, N-octadecyl-N′-phenylcarbodiimide, N-benzyl-N′-phenylcarbodiimide, N, N′-di-o-ethylphenylcarbodiimide, N , N n
  • Monocarbodiimide (B1) can also be used individually by 1 type or in combination of 2 or more types.
  • aromatic monocarbodiimides are preferable from the viewpoint of reactivity and chemical resistance, and aromatic monocarbodiimides in which R 1 and R 2 in the general formula (I) are aryl groups having 6 to 12 carbon atoms.
  • N, N′-di-2,6-diisopropylphenylcarbodiimide N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, and N, N′-di- At least one selected from the group consisting of 2,6-di-tert-butylphenylcarbodiimide is more preferable, and N, N′-di-2,6-diisopropylphenylcarbodiimide is more preferable.
  • the polycarbodiimide (B2) used in the present invention is a compound having two or more carbodiimide groups represented by —N ⁇ C ⁇ N— in the molecule.
  • the degree of polymerization of the polycarbodiimide is not particularly limited as long as it is 2 or more, but is preferably 2 to 50, more preferably 2 to 40, still more preferably 3 to 30, and still more preferably 5 to 20. More specifically, the polycarbodiimide (B2) is preferably a compound having a repeating unit represented by the following general formula (II).
  • X 1 represents a divalent hydrocarbon group.
  • the hydrocarbon group include a chain aliphatic group, an alicyclic structure-containing aliphatic group, and an aromatic ring-containing group.
  • the chain aliphatic group has 1 or more carbon atoms, preferably 1 to 20, more preferably 6 to 18, and the alicyclic structure-containing aliphatic group and aromatic ring-containing group preferably have 5 or more carbon atoms. More preferably, it is 6-20, and more preferably 6-18.
  • the hydrocarbon group may have a substituent such as an amino group, a hydroxyl group, or an alkoxy group.
  • polycarbodiimide (B2) examples include aliphatic polycarbodiimide, aromatic polycarbodiimide, or a mixture thereof.
  • aliphatic polycarbodiimide a polycarbodiimide having a repeating unit represented by the general formula (II) and having X 1 as a chain aliphatic group or an alicyclic structure-containing aliphatic group is preferable.
  • X 1 is a group selected from the group consisting of an alkylene group having 3 to 18 carbon atoms, a divalent group represented by the following general formula (1), and a divalent group represented by the following general formula (2) It is more preferable that it is a divalent group represented by the following general formula (2).
  • R a1 to R a5 are each independently a single bond or an alkylene group having 1 to 8 carbon atoms.
  • R a1 and R a2 in the general formula (1) are preferably single bonds.
  • R a3 and R a5 in the general formula (2) are preferably single bonds, and
  • R a4 is preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
  • the aromatic polycarbodiimide has a repeating unit represented by the above general formula (II), and X 1 is represented by a divalent group represented by the following general formula (3) and the following general formula (4).
  • the divalent group is more preferably a group selected from the group consisting of divalent groups, and more preferably a divalent group represented by the following general formula (3).
  • R b1 to R b3 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R b4 is a single bond, an alkylene group having 1 to 8 carbon atoms, or an arylene group having 6 to 8 carbon atoms.
  • R b1 to R b3 in the general formula (3) are preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a t-butyl group. It is more preferable that all of b1 to Rb3 are isopropyl groups.
  • R b4 in the general formula (4) is preferably a single bond, an alkylene group having 1 to 6 carbon atoms, or a phenylene group.
  • Polycarbodiimide (B2) can also be used individually by 1 type or in combination of 2 or more types. Among these, aliphatic polycarbodiimide is preferable from the viewpoint of the flexibility of the obtained molded body. In view of reactivity and chemical resistance, aromatic polycarbodiimide is preferable, and aromatic polycarbodiimide having a repeating unit represented by the following formula (II-3) is more preferable.
  • Polycarbodiimide can be produced by various methods. For example, a method for producing a polycarbodiimide having an isocyanate terminal by a condensation reaction involving decarbonization of an organic diisocyanate can be mentioned.
  • organic diisocyanates that are raw materials for polycarbodiimides include 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, and 2,4-triisocyanate.
  • the terminal isocyanate groups of the isocyanate-terminated polycarbodiimide can be sealed with all or part of the remaining terminal isocyanate groups using a terminal blocking agent.
  • the end-capping agent is preferably a monoisocyanate compound, and examples thereof include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, diisopropylphenyl isocyanate, cyclohexyl isocyanate, and butyl isocyanate.
  • X 1 is the same as described above.
  • R ′ and R ′′ are residues other than the isocyanate group of the monoisocyanate compound.
  • R ′ and R ′′ may be the same as or different from each other.
  • n is the number of ⁇ degree of polymerization of polycarbodiimide-1 ⁇ .
  • the blending amount of monocarbodiimide (B1) and polycarbodiimide (B2) in the polyamide resin composition of the present invention is preferably 0.5 to 25 parts by mass, more preferably 1 to 100 parts by mass of the polyamide (A). It is ⁇ 10 parts by mass, more preferably 1 to 5 parts by mass, and further preferably 1 to 3 parts by mass. If the total amount of monocarbodiimide (B1) and polycarbodiimide (B2) to 100 parts by mass of polyamide (A) is 0.5 parts by mass or more, the chemical resistance is good. Moreover, if the said compounding quantity is 25 mass parts or less in total, the heat resistance and mechanical strength originating in a polyamide (A) can be maintained.
  • the mass ratio (B1) / (B2) of the monocarbodiimide (B1) to the polycarbodiimide (B2) is preferably 1: 0.1 to 1:10, more preferably 1: 0.2 to 1: 5. More preferably, it is in the range of 1: 0.5 to 1: 2. If mass ratio (B1) / (B2) is the said range, since the reaction balance with the terminal group of polyamide (A) and the acid-modified part of elastomer (C) mentioned later is good, chemical-resistant property improves. To do.
  • an elastomer (C) is further blended from the viewpoint of imparting impact resistance and elongation characteristics to a molded article such as a chemical solution transporting tube and a connector composed of the resin composition. Is preferred.
  • the elastomer (C) used in the present invention include rubbery polymers, and those having a flexural modulus of 500 MPa or less as measured in accordance with ASTM D-790 are preferred.
  • ⁇ -olefin copolymer (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer, ionomer, aromatic vinyl compound / Conjugated diene compound-based block copolymer.
  • denatured these with the unsaturated compound which has a carboxyl group and / or an acid anhydride group may be sufficient.
  • These elastomers (C) can be used alone or in combination of two or more.
  • Examples of the ⁇ -olefin copolymer include a copolymer of ethylene and an ⁇ -olefin having 3 or more carbon atoms, and a copolymer of propylene and an ⁇ -olefin having 4 or more carbon atoms.
  • the ⁇ -olefin copolymer is preferably a copolymer of ethylene and an ⁇ -olefin having 3 or more carbon atoms.
  • Examples of the ⁇ -olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene.
  • the ⁇ -olefin having 3 or more carbon atoms is preferably at least one selected from the group consisting of propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene. Is more preferable.
  • the above (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) -based copolymer includes ethylene and / or propylene and ⁇ , ⁇ -unsaturated carboxylic acid and / or Or a polymer obtained by copolymerizing an unsaturated carboxylic acid ester monomer.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid monomer include acrylic acid and methacrylic acid, and ⁇ , ⁇ -unsaturated carboxylic acid.
  • ester monomer examples include methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, nonyl ester, and decyl ester of these unsaturated carboxylic acids. These can use 1 type (s) or 2 or more types.
  • the above ionomer is obtained by ionizing at least part of the carboxyl group of the olefin and the ⁇ , ⁇ -unsaturated carboxylic acid copolymer by neutralization of metal ions.
  • the olefin ethylene is preferably used, and as the ⁇ , ⁇ -unsaturated carboxylic acid, acrylic acid and methacrylic acid are preferably used.
  • the olefin is not limited to those exemplified here.
  • the monomer may be copolymerized.
  • Metal ions include alkali metals such as Li, Na, K, Mg, Ca, Sr, Ba, alkaline earth metals, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc. Is mentioned. These can use 1 type (s) or 2 or more types.
  • the aromatic vinyl compound / conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene polymer block.
  • a block copolymer having at least one and at least one conjugated diene polymer block is used.
  • the unsaturated bond in the conjugated diene polymer block may be hydrogenated.
  • the aromatic vinyl compound polymer block is a polymer block mainly composed of structural units derived from an aromatic vinyl compound.
  • the aromatic vinyl compound includes styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propylstyrene, Examples include 4-cyclohexyl styrene, 4-dodecyl styrene, 2-ethyl-4-benzyl styrene, 4- (phenylbutyl) styrene, and the like, and one or more of them can be used.
  • the aromatic vinyl compound-based polymer block may optionally have a structural unit composed of a small amount of other unsaturated monomer.
  • Conjugated diene polymer blocks are conjugated such as butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, etc.
  • a polymer block formed from one or more diene compounds.
  • one of unsaturated bonds in the conjugated diene polymer block Part or all is hydrogenated.
  • the molecular structure of the aromatic vinyl compound / conjugated diene compound block copolymer and the hydrogenated product thereof may be any of linear, branched, radial, or any combination thereof.
  • an aromatic vinyl compound / conjugated diene compound block copolymer and / or a hydrogenated product thereof one aromatic vinyl compound polymer block and one conjugated diene polymer block are linear.
  • the three polymer blocks are linearly bonded in this order: diblock copolymer, aromatic vinyl compound polymer block-conjugated diene polymer block-aromatic vinyl compound polymer block.
  • One or more of triblock copolymers and hydrogenated products thereof are preferably used.
  • Unhydrogenated or hydrogenated styrene / butadiene block copolymer unhydrogenated or hydrogenated styrene / isoprene block copolymer Copolymer, unhydrogenated or hydrogenated styrene / isoprene / styrene block copolymer, unhydrogenated or hydrogenated styrene / butadiene / styrene Block copolymers, unhydrogenated or hydrogenated styrene / isoprene / butadiene / styrene block copolymer.
  • ⁇ -olefin copolymers used as elastomers (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acids and / or unsaturated carboxylic esters) copolymers, ionomers, aromatic vinyls
  • the compound / conjugated diene compound block copolymer is preferably a polymer modified with an unsaturated compound having a carboxyl group and / or an acid anhydride group.
  • the terminal amino group of the polyamide (A) reacts with the carboxyl group and / or the acid anhydride group of the polymer as the component (C), and the (A) phase ( C)
  • the affinity of the interface with the phase is increased, and the impact resistance and elongation characteristics are improved.
  • a polymer obtained by modifying an ⁇ -olefin copolymer with an unsaturated compound having a carboxyl group and / or an acid anhydride group is preferable, and a polymer obtained by modifying an ethylene-butene copolymer with the unsaturated compound. Is more preferable.
  • Examples of the unsaturated compound having a carboxyl group in a modified polymer modified with an unsaturated compound having a carboxyl group and / or an acid anhydride group include acrylic acid, methacrylic acid, and the like. Examples include ⁇ , ⁇ -unsaturated carboxylic acids such as acid, maleic acid, fumaric acid, and itaconic acid. Examples of the unsaturated compound having an acid anhydride group include dicarboxylic anhydrides having an ⁇ , ⁇ -unsaturated bond such as maleic anhydride and itaconic anhydride.
  • the unsaturated compound having a carboxyl group and / or an acid anhydride group is preferably a dicarboxylic acid anhydride having an ⁇ , ⁇ -unsaturated bond, and more preferably maleic anhydride.
  • the content of carboxyl groups and acid anhydride groups in the modified polymer is preferably in the range of 25 to 200 ⁇ mol / g, and more preferably in the range of 50 to 100 ⁇ mol / g. If the content of the functional group is 25 ⁇ mol / g or more, the effect of improving the impact resistance is sufficient. On the other hand, if the content is 200 ⁇ mol / g or less, the fluidity of the resulting polyamide resin composition decreases. Thus, it is possible to avoid a decrease in moldability.
  • Examples of the modification method using an unsaturated compound having a carboxyl group and / or an acid anhydride group include the above-mentioned ⁇ -olefin copolymer, (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or Unsaturated carboxylic acid ester) type copolymer, ionomer, aromatic vinyl compound / conjugated diene compound type block copolymer (hereinafter also referred to as “base resin”), carboxyl group and / or acid anhydride group
  • base resin aromatic vinyl compound / conjugated diene compound type block copolymer
  • carboxyl group and / or acid anhydride group grafted to the above base resin.
  • a method in which an unsaturated compound having a carboxyl group and / or an acid anhydride group is grafted to the above base resin is preferable.
  • elastomer (C) a commercially available product manufactured industrially can be used, and examples thereof include “Tuffmer” manufactured by Mitsui Chemicals.
  • the blending ratio of the elastomer (C) in the polyamide resin composition of the present invention is preferably 1.0 part by mass or more with respect to 100 parts by mass of the polyamide (A) from the viewpoint of imparting impact resistance and elongation characteristics.
  • it is 5.0 parts by mass or more, more preferably 15 parts by mass or more, and from the viewpoint of maintaining heat resistance and chemical resistance, it is preferably 80 parts by mass or less, more preferably 60 parts by mass or less, and still more preferably 40 parts by mass. It is below mass parts.
  • the blending ratio of the elastomer (C) is 23 ° C.
  • the polyamide resin composition of the present invention includes components other than the components (A) to (C) as necessary.
  • Other components such as a resin, a filler, a crystal nucleating agent, an antioxidant, a colorant, an antistatic agent, a plasticizer, a lubricant, a flame retardant, and a flame retardant aid may be blended.
  • Examples of the resin other than the components (A) to (C) include polyether resins such as polyacetal and polyphenylene oxide; polysulfone resins such as polysulfone and polyethersulfone; polythioether resins such as polyphenylene sulfide and polythioether sulfone; Polyketone resins such as ether ether ketone and polyallyl ether ketone; such as polyacrylonitrile, polymethacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, methacrylonitrile-butadiene-styrene copolymer Polynitrile resins; polymethacrylate resins such as polymethyl methacrylate and polyethyl methacrylate; polyvinyl ester resins such as polyvinyl acetate; polyvinylidene chloride, polychlorinated Polyvinyl chloride resins such
  • filler examples include fibrous fillers such as glass fibers, powder fillers such as calcium carbonate, wollastonite, silica, silica alumina, alumina, titanium dioxide, potassium titanate, magnesium hydroxide, and molybdenum disulfide.
  • a flaky filler such as hydrotalcite, glass flakes, mica, clay, montmorillonite and kaolin;
  • the crystal nucleating agent is not particularly limited as long as it is generally used as a crystal nucleating agent for polyamide.
  • talc calcium stearate, aluminum stearate, barium stearate, zinc stearate, antimony oxide, oxidation Magnesium, any mixture thereof and the like can be mentioned. Of these, talc is preferred because of its great effect of increasing the crystallization rate of polyamide.
  • the crystal nucleating agent may be treated with a silane coupling agent, a titanium coupling agent or the like for the purpose of improving the compatibility with the polyamide.
  • the antioxidant is not particularly limited as long as it is generally used as an antioxidant for polyamide.
  • a phenol-based antioxidant a benzotriazole-based antioxidant, a sulfur-based antioxidant, a phosphorus-based antioxidant Antioxidants, copper-based antioxidants, amine-based antioxidants and the like can be mentioned.
  • a phenolic antioxidant is preferable, and a hindered phenolic compound is more preferable.
  • the blending amount of the antioxidant in the polyamide resin composition is usually 0.1 to 10% by mass, preferably 0.2 to 5.0% by mass.
  • the colorant is not particularly limited, and can be appropriately selected from inorganic or organic pigments and dyes according to the use of the polyamide resin composition.
  • black inorganic pigments such as carbon black, lamp black, acetylene black, bone black, thermal black, channel black, furnace black, titanium black and the like are preferable.
  • the antistatic agent is not particularly limited, and may be organic or inorganic.
  • examples of the organic antistatic agent include ionic compounds such as lithium ion salts, quaternary ammonium salts, and ionic liquids; and electron conductive polymer compounds such as polythiophene, polyaniline, polypyrrole, and polyacetylene.
  • the inorganic antistatic agent examples include metal oxide conductive agents such as ATO, ITO, PTO, GZO, antimony pentoxide, and zinc oxide; and carbon conductive agents such as carbon nanotubes and fullerenes. From the viewpoint of heat resistance, an inorganic antistatic agent is preferred. Note that carbon black, which is a colorant, may also function as an antistatic agent.
  • the plasticizer is not particularly limited as long as it is generally used as a plasticizer for polyamides.
  • benzenesulfonic acid alkylamide compounds for example, benzenesulfonic acid alkylamide compounds, toluenesulfonic acid alkylamide compounds, hydroxybenzoic acid alkylester compounds Etc.
  • the lubricant is not particularly limited as long as it is generally used as a lubricant for polyamide.
  • ester compounds, metal soap compounds, and polyolefin waxes include ester compounds, metal soap compounds, and polyolefin waxes.
  • Fatty acid amide compounds such as stearic acid amide, palmitic acid amide, methylene bisstearyl amide, ethylene bisstearyl amide and the like are preferable because of their excellent external lubricity effect.
  • the content of these other components in the polyamide resin composition is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.
  • the manufacturing method in particular of the polyamide resin composition of this invention is not restrict
  • a polyamide resin composition was prepared by melt-kneading a mixture obtained by dry blending polyamide (A), monocarbodiimide (B1), polycarbodiimide (B2), and elastomer (C) blended as necessary and other components. Thereafter, a method of pelletizing is mentioned. By using the pellets for various moldings, a molded body containing the polyamide resin composition can be obtained.
  • the method for producing a polyamide resin composition of the present invention includes a step of melt-kneading the above-mentioned mixture containing polyamide (A), monocarbodiimide (B1), and polycarbodiimide (B2).
  • the terminal group, the monocarbodiimide (B1), the polycarbodiimide (B2), and the modified portion of the elastomer (C) react with each other, and the resulting resin composition has excellent chemical resistance.
  • the temperature and time during the melt-kneading can be appropriately adjusted according to the melting point of the polyamide (A) used.
  • the polyamide resin composition of the present invention is excellent in chemical resistance, it is used for transportation of various chemicals such as engine cooling refrigerant such as LLC, refrigerant for air conditioner, reducing agent solution for SCR system, oil, fuel, and connector. It is suitably used for intake pipes, blow-by tubes and the like.
  • the tube for transporting a chemical solution of the present invention is characterized by having at least one layer composed of the polyamide resin composition of the present invention described above.
  • the chemical solution transport tube of the present invention may be a single-layer tube or a multi-layer tube, and from the viewpoint of chemical resistance, at least a single-layer tube made of the polyamide resin composition or a layer made of the polyamide resin composition.
  • a multilayer tube in the innermost layer is preferable.
  • Examples of the chemical solution to which the chemical solution transport tube of the present invention can be applied include aromatic hydrocarbon solvents such as benzene, toluene, xylene, methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, diethylene glycol, and phenol.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, diethylene glycol, and phenol.
  • Alcohols such as cresol, polyethylene glycol and polypropylene glycol, phenol solvents, dimethyl ether, dipropyl ether, methyl-t-butyl ether, dioxane, tetrahydrofuran and other ether solvents, chloroform, methylene chloride, trichloroethylene, ethylene dichloride, perchlor Halogen solvents such as ethylene, monochloroethane, dichloroethane, tetrachloroethane, perchloroethane, chlorobenzene, acetone, Ketone solvents such as tilethyl ketone, diethyl ketone, acetophenone, urea solution, gasoline, kerosene, diesel gasoline, alcohol-containing gasoline, oxygen-containing gasoline, amine-containing gasoline, sour gasoline, castor oil base brake fluid, glycol ether brake fluid, Boric ester brake fluid, brake fluid for extremely cold regions, silicone oil brake fluid, mineral oil brake fluid, power steering oil
  • the chemical solution is at least one selected from the group consisting of an engine cooling refrigerant such as LLC, an air conditioner refrigerant, and a reducing agent solution for a selective catalytic reduction system. It is preferable that Examples of the reducing agent solution for the selective catalytic reduction system include a urea solution.
  • the outer diameter of the chemical solution transport tube is designed in consideration of the chemical flow rate.
  • the tube thickness does not increase the permeability of the chemical solution, it is a thickness that can maintain the normal breaking pressure of the tube, and the tube is easy to assemble and has good vibration resistance during use. Designed to a thickness that can maintain flexibility.
  • the outer diameter of the tube is 2.5 to 200 mm and the wall thickness is 0.5 to 20 mm.
  • the thickness of the innermost layer constituted by the polyamide resin composition is preferably in the range of 0.01 to 1 mm, more preferably in the range of 0.02 to 0.7 mm. A range of 0.03 to 0.5 mm is more preferable. If the thickness of the innermost layer is 0.01 mm or more, chemical resistance and impact resistance are good. Moreover, if the layer thickness of the innermost layer is 1 mm or less, the flexibility is good, which is advantageous from the viewpoint of economy. The thickness of the innermost layer of the tube can be measured from an actual image obtained by observing the tube cross section with a microscope.
  • the number of layers constituting the multilayer tube is 2 to 2 from the viewpoints of excellent chemical resistance and impact resistance, hardly cracking when inserted into other members, excellent elongation characteristics, and productivity. 7 layers are preferable, and 3 to 6 layers are more preferable.
  • the chemical solution transport tube of the present invention may have two or more layers composed of the polyamide resin composition of the present invention.
  • the layers other than the innermost layer are not particularly limited, but from the viewpoint of the moldability of the tube Is preferably a thermoplastic resin.
  • the thermoplastic resin can be appropriately selected in consideration of the use of the tube and the adhesion with an adjacent layer.
  • polyester resins such as polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate; ethylene-tetrafluoroethylene copolymer (ETFE), vinylidene fluoride polymer ( PVDF), polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, etc .; Polyolefin resins such as polyethylene, polypropylene, polystyrene, saponified ethylene-vinyl acetate copolymer (EVOH); polyacetal, polyphenylenesulfite Polyether resin
  • the production of the chemical solution transport tube of the present invention can be performed using a molding method such as injection molding or extrusion molding.
  • a molding method combining the above molding methods can also be employed.
  • the connector of the present invention is characterized by including the above-described polyamide resin composition of the present invention. Since the polyamide resin composition of the present invention is excellent in chemical resistance, it is suitable for a connector for a tube that comes into contact with the chemical. In addition, examples of the connector of the present invention include a quick connector for an automobile fuel pipe.
  • the intrinsic viscosity ( ⁇ inh ) of a sample solution having a concentration of 0.05, 0.1, 0.2, 0.4 g / dL was measured in concentrated sulfuric acid at 30 ° C., and this was extrapolated to a concentration of 0. The value was defined as the intrinsic viscosity [ ⁇ ].
  • ⁇ inh [ln (t1 / t0)] / c [ Wherein ⁇ inh represents the intrinsic viscosity (dL / g), t0 represents the flow time (second) of the solvent, t1 represents the flow time (second) of the sample solution, and c represents the concentration of the sample in the solution (G / dL). ]
  • the melting point of the polyamide was measured using a differential scanning calorimeter “DSC822” manufactured by METTLER TOLEDO. In a nitrogen atmosphere, the sample (polyamide) was heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min, held at 340 ° C. for 2 minutes to completely melt the sample, and then at a rate of 10 ° C./min. Cool to 30 ° C and hold at 30 ° C for 2 minutes. The peak temperature of the melting peak that appears when the temperature is again raised to 360 ° C. at a rate of 10 ° C./min is defined as the melting point (° C.). did.
  • Terminal amino group content 1 g of polyamide was dissolved in 35 mL of phenol, and 2 mL of methanol was mixed therewith to obtain a sample solution. Timol blue was used as an indicator, and titration was performed using a 0.01 N aqueous hydrochloric acid solution, and the terminal amino group content ([NH 2 ], unit: ⁇ mol / g) of the polyamide was measured.
  • Terminal carboxyl group content 0.2 g of polyamide was added to 15 mL of o-cresol and heated to 110 ° C. to dissolve. After cooling to near room temperature, 10 mL of benzyl alcohol, 50 mL of o-cresol and 50 ⁇ L of formaldehyde were added.
  • the terminal carboxyl group content ([COOH], unit: ⁇ mol / g) of the polyamide was measured with a potentiometric titrator using 0.05N ethanolic potassium hydroxide as a titrant.
  • Production Example 1 (Production of polyamide 1) 9870.6 g (59.42 mol) of terephthalic acid, a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine [50/50 (molar ratio)] 9497.4 g (60.00 mol), benzoic acid 142.9 g (1.17 mol) of acid, 19.5 g of sodium hypophosphite monohydrate (0.1% by mass with respect to the total mass of the raw material) and 5 liters of distilled water in an autoclave having an internal volume of 40 liters And replaced with nitrogen. The mixture was stirred at 100 ° C. for 30 minutes, and the temperature inside the autoclave was increased to 220 ° C. over 2 hours.
  • the pressure inside the autoclave was increased to 2 MPa.
  • the reaction was continued as it was for 2 hours, then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours, and the reaction was carried out while gradually removing water vapor and keeping the pressure at 2 MPa.
  • the pressure was reduced to 1 MPa over 30 minutes, and the reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [ ⁇ ] of 0.2 dL / g. This was pulverized to a particle size of 2 mm or less using a flake crusher manufactured by Hosokawa Micron Corporation, dried at 100 ° C.
  • the melting point is 265 ° C.
  • the intrinsic viscosity [ ⁇ ] is 1.30 dL / g
  • the terminal amino group content ([NH 2 ]) is 15 ⁇ mol / g
  • the terminal carboxyl group content ([COOH]) was 60 ⁇ mol / g.
  • Example 1 (Production of polyamide resin composition) Polyamide, carbodiimide and elastomer shown in Table 1, and a phenolic antioxidant were premixed at a predetermined mass ratio. The mixing ratio of polyamide, carbodiimide and elastomer is as shown in Table 1. The phenolic antioxidant was added in an amount of 1 part by mass based on 100 parts by mass of the total of polyamide, carbodiimide and elastomer. The obtained mixture was supplied to a twin-screw extruder (manufactured by Pla Giken Co., Ltd.) and melt-kneaded under conditions of a cylinder temperature of 300 to 320 ° C. to obtain a polyamide resin composition as pellets. Test pieces for evaluating various physical properties were prepared using the pellets, and various evaluations were performed by the methods described above. The results are shown in Table 1.
  • Example 2 and Comparative Examples 1-7 A polyamide resin composition was prepared in the same manner as in Example 1 except that the composition of the polyamide resin composition was changed as shown in Table 1, and various evaluations were performed. The results are shown in Table 1.
  • each component shown in Table 1 is as follows.
  • the polyamide resin composition of the present invention has little change in mechanical properties even when kept in contact with high temperature LLC for a long time, and is excellent in chemical resistance.
  • chemical resistance is not improved as the amount of carbodiimide groups in the polyamide resin composition increases. It turns out that the effect of this invention is show
  • a polyamide resin composition having excellent chemical resistance can be provided.
  • This polyamide resin composition is particularly suitable for engine cooling refrigerants such as LLC, refrigerants for air conditioners, reducing agent solutions for SCR systems, tubes for transporting various chemicals such as oil, fuel, connectors, intake pipes, blow-by tubes, etc. Used for.

Abstract

A polyamide resin composition which, even when kept in contact with a liquid chemical for a long time under high-temperature conditions, suffers no decrease in mechanical strength and has high durability and which is suitable for forming tubes, connectors, and the like for conveying various liquid chemicals. The polyamide resin composition is obtained by compounding a polyamide, a monocarbodiimide, and a polycarbodiimide.

Description

ポリアミド樹脂組成物Polyamide resin composition
 本発明は、ポリアミド樹脂組成物に関する。 The present invention relates to a polyamide resin composition.
 ポリアミド樹脂は、強度、耐熱性、耐薬品性等に優れており、従来から自動車用の燃料配管や燃料配管継手(コネクター)等、自動車の機構部品に使用されている。例えば、自動車用エンジン冷却に用いられるロングライフクーラント(以下「LLC」)やエアコン冷却用の冷媒を循環させるためのチューブなど、各種薬液輸送用チューブの最内層にもポリアミド樹脂組成物が用いられる。
 エアコン用冷媒に使用するチューブの場合、該チューブの最内層は、冷媒中のエステル系オイル等の潤滑剤が加水分解することによって生じるカルボン酸や、冷媒中のリン酸エステル系添加剤が加水分解することにより生じるリン酸等に曝される。さらに該チューブの最内層がポリアミド樹脂組成物で構成されたものであると、ポリアミド中の末端カルボキシル基や、ポリアミドの加水分解により生じるカルボキシル基に由来する酸にも曝される。したがって、上記薬液輸送用チューブの最内層を構成する材料には高い耐酸加水分解性が求められる。
Polyamide resins are excellent in strength, heat resistance, chemical resistance, and the like, and have been conventionally used in automobile mechanism parts such as automobile fuel pipes and fuel pipe joints (connectors). For example, a polyamide resin composition is also used for the innermost layer of various chemical liquid transport tubes such as a long life coolant (hereinafter referred to as “LLC”) used for cooling an automobile engine and a tube for circulating a refrigerant for cooling an air conditioner.
In the case of a tube used as a refrigerant for an air conditioner, the innermost layer of the tube is hydrolyzed by a carboxylic acid generated by hydrolysis of a lubricant such as ester oil in the refrigerant, or a phosphate ester additive in the refrigerant. It is exposed to phosphoric acid etc. which arise by doing. Further, when the innermost layer of the tube is composed of a polyamide resin composition, it is also exposed to an acid derived from a terminal carboxyl group in the polyamide or a carboxyl group generated by hydrolysis of the polyamide. Accordingly, the material constituting the innermost layer of the chemical solution transport tube is required to have high acid hydrolysis resistance.
 ポリアミドの耐加水分解性を向上するため、ポリアミドに対しポリカルボジイミド化合物を添加したポリアミド樹脂組成物が知られている(特許文献1~4を参照)。しかしながら、上記薬液輸送用チューブの最内層に用いるポリアミド樹脂組成物は薬液と長時間接触させても劣化しないことが必要であり、そのためには耐加水分解性をさらに向上させることが望まれる。特に、自動車内で用いられる上記チューブは使用時に高温になるため、高温条件下でLLCやエアコン用冷媒などと長時間接触させても機械的強度が低下しないような高い耐久性が要求される。 Polyamide resin compositions in which a polycarbodiimide compound is added to polyamide to improve the hydrolysis resistance of polyamide are known (see Patent Documents 1 to 4). However, it is necessary that the polyamide resin composition used for the innermost layer of the chemical solution transporting tube does not deteriorate even if it is brought into contact with the chemical solution for a long time. For this purpose, it is desired to further improve hydrolysis resistance. In particular, since the tube used in an automobile becomes a high temperature during use, high durability is required so that the mechanical strength does not decrease even when the tube is brought into contact with a LLC or air conditioner refrigerant for a long time under a high temperature condition.
特開平6-16933号公報Japanese Unexamined Patent Publication No. 6-16933 特開平9-328609号公報JP-A-9-328609 特開平11-343408号公報JP 11-343408 A 特開2011-38607号公報JP 2011-38607 A
 以上の事情を鑑み、本発明は耐薬液性に優れ、各種薬液輸送用チューブ、コネクター等の形成に好適なポリアミド樹脂組成物を提供することを課題とする。 In view of the above circumstances, an object of the present invention is to provide a polyamide resin composition which is excellent in chemical resistance and suitable for forming various chemical transport tubes, connectors and the like.
 本発明者らは、ポリアミドに所定のカルボジイミドを配合したポリアミド樹脂組成物を用いることにより、上記課題を解決できることを見出した。
 すなわち本発明は、下記[1]~[18]に関する。
[1]ポリアミド(A)、モノカルボジイミド(B1)、およびポリカルボジイミド(B2)を配合してなるポリアミド樹脂組成物。
[2]前記ポリアミド樹脂組成物中の前記モノカルボジイミド(B1)およびポリカルボジイミド(B2)の配合量が、前記ポリアミド(A)100質量部に対し0.5~25質量部である、上記[1]のポリアミド樹脂組成物。
[3]前記モノカルボジイミド(B1)とポリカルボジイミド(B2)の質量比(B1)/(B2)が、1:0.1~1:10である、上記[1]又は[2]のポリアミド樹脂組成物。
[4]前記モノカルボジイミド(B1)が芳香族モノカルボジイミドである、上記[1]~[3]のいずれか1項のポリアミド樹脂組成物。
[5]前記ポリカルボジイミド(B2)が芳香族ポリカルボジイミドである、上記[1]~[4]のいずれか1項のポリアミド樹脂組成物。
[6]前記ポリカルボジイミド(B2)が脂肪族ポリカルボジイミドである、上記[1]~[4]のいずれか1項のポリアミド樹脂組成物。
[7]前記ポリアミド(A)の末端アミノ基含量が5~60μモル/gである、上記[1]~[6]のいずれか1項のポリアミド樹脂組成物。
[8]前記ポリアミド(A)が芳香族ジカルボン酸単位を50~100モル%含有するジカルボン酸単位と、炭素数6~13の脂肪族ジアミン単位を60~100モル%含有するジアミン単位とを含む半芳香族ポリアミドである、上記[1]~[7]のいずれか1項のポリアミド樹脂組成物。
[9]前記半芳香族ポリアミドがさらにアミノカルボン酸単位および/またはラクタム単位を含む、上記[8]のポリアミド樹脂組成物。
[10]前記芳香族ジカルボン酸単位がテレフタル酸単位および/またはナフタレンジカルボン酸単位であり、前記脂肪族ジアミン単位が1,9-ノナンジアミン単位、2-メチル-1,8-オクタンジアミン単位および1,10-デカンジアミン単位からなる群から選ばれる少なくとも1種である、上記[8]又は[9]のポリアミド樹脂組成物。
[11]前記脂肪族ジアミン単位が1,9-ノナンジアミン単位および/または2-メチル-1,8-オクタンジアミン単位である、上記[10]のポリアミド樹脂組成物。
[12]さらに、エラストマー(C)を配合してなる、上記[1]~[11]のいずれか1項のポリアミド樹脂組成物。
[13]前記エラストマー(C)がα-オレフィン系共重合体、(エチレンおよび/またはプロピレン)/(α,β-不飽和カルボン酸および/または不飽和カルボン酸エステル)系共重合体、アイオノマー、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体、並びにこれらをカルボキシル基および/または酸無水物基を有する不飽和化合物で変性した重合体からなる群から選ばれる少なくとも1種である、上記[12]のポリアミド樹脂組成物。
[14]前記ポリアミド(A)、モノカルボジイミド(B1)、およびポリカルボジイミド(B2)を含む混合物を溶融混練する工程を有する、上記[1]~[13]のいずれか1項のポリアミド樹脂組成物の製造方法。
[15]上記[1]~[13]のいずれか1項のポリアミド樹脂組成物により構成された層を少なくとも1層有する薬液輸送用チューブ。
[16]前記薬液輸送用チューブが前記ポリアミド樹脂組成物により構成された単層チューブ、または前記ポリアミド樹脂組成物により構成された層を少なくとも最内層に有する多層チューブである、上記[15]の薬液輸送用チューブ。
[17]前記薬液がエンジン冷却用冷媒、エアコン用冷媒、および、選択触媒還元システム用還元剤溶液からなる群から選ばれる少なくとも1種である、上記[15]又は[16]の薬液輸送用チューブ。
[18]上記[1]~[13]のいずれか1項のポリアミド樹脂組成物を含むコネクター。
The present inventors have found that the above problems can be solved by using a polyamide resin composition in which a predetermined carbodiimide is blended with polyamide.
That is, the present invention relates to the following [1] to [18].
[1] A polyamide resin composition comprising a polyamide (A), a monocarbodiimide (B1), and a polycarbodiimide (B2).
[2] The amount of the monocarbodiimide (B1) and the polycarbodiimide (B2) in the polyamide resin composition is 0.5 to 25 parts by mass with respect to 100 parts by mass of the polyamide (A). ] Polyamide resin composition.
[3] The polyamide resin according to [1] or [2], wherein the mass ratio (B1) / (B2) of the monocarbodiimide (B1) to the polycarbodiimide (B2) is 1: 0.1 to 1:10. Composition.
[4] The polyamide resin composition according to any one of the above [1] to [3], wherein the monocarbodiimide (B1) is an aromatic monocarbodiimide.
[5] The polyamide resin composition according to any one of [1] to [4], wherein the polycarbodiimide (B2) is an aromatic polycarbodiimide.
[6] The polyamide resin composition according to any one of [1] to [4], wherein the polycarbodiimide (B2) is an aliphatic polycarbodiimide.
[7] The polyamide resin composition according to any one of [1] to [6], wherein the polyamide (A) has a terminal amino group content of 5 to 60 μmol / g.
[8] The polyamide (A) includes a dicarboxylic acid unit containing 50 to 100 mol% of an aromatic dicarboxylic acid unit and a diamine unit containing 60 to 100 mol% of an aliphatic diamine unit having 6 to 13 carbon atoms. 8. The polyamide resin composition according to any one of [1] to [7], which is a semi-aromatic polyamide.
[9] The polyamide resin composition according to [8], wherein the semiaromatic polyamide further contains an aminocarboxylic acid unit and / or a lactam unit.
[10] The aromatic dicarboxylic acid unit is a terephthalic acid unit and / or a naphthalene dicarboxylic acid unit, and the aliphatic diamine unit is a 1,9-nonanediamine unit, a 2-methyl-1,8-octanediamine unit, and 1, The polyamide resin composition according to the above [8] or [9], which is at least one selected from the group consisting of 10-decanediamine units.
[11] The polyamide resin composition according to the above [10], wherein the aliphatic diamine unit is a 1,9-nonanediamine unit and / or a 2-methyl-1,8-octanediamine unit.
[12] The polyamide resin composition according to any one of [1] to [11], further comprising an elastomer (C).
[13] The elastomer (C) is an α-olefin copolymer, (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer, ionomer, It is at least one selected from the group consisting of an aromatic vinyl compound / conjugated diene compound block copolymer, and a polymer obtained by modifying these with an unsaturated compound having a carboxyl group and / or an acid anhydride group. 12] polyamide resin composition.
[14] The polyamide resin composition according to any one of [1] to [13], further comprising a step of melt-kneading a mixture containing the polyamide (A), the monocarbodiimide (B1), and the polycarbodiimide (B2). Manufacturing method.
[15] A chemical transport tube having at least one layer composed of the polyamide resin composition according to any one of [1] to [13].
[16] The chemical solution according to [15], wherein the chemical solution transport tube is a single-layer tube made of the polyamide resin composition or a multilayer tube having at least an innermost layer made of the polyamide resin composition. Transport tube.
[17] The chemical solution transport tube according to [15] or [16], wherein the chemical solution is at least one selected from the group consisting of an engine cooling refrigerant, an air conditioner refrigerant, and a reducing agent solution for a selective catalytic reduction system. .
[18] A connector comprising the polyamide resin composition according to any one of [1] to [13].
 本発明によれば、耐薬液性に優れるポリアミド樹脂組成物を提供することができる。当該ポリアミド樹脂組成物は、特にLLCなどのエンジン冷却用冷媒やエアコン用冷媒、ディーゼルエンジンの排気中の窒素酸化物を浄化するための選択触媒還元(Selective Catalytic Reduction、以下「SCR」ともいう)システム用の還元剤溶液、オイル、燃料など各種薬液の輸送用チューブや、コネクター、インテークパイプ、ブローバイチューブ等に好適に用いられる。 According to the present invention, a polyamide resin composition having excellent chemical resistance can be provided. The polyamide resin composition is a selective catalytic reduction (hereinafter also referred to as “SCR”) system for purifying nitrogen oxides in exhaust gas from engine cooling refrigerant, air conditioner refrigerant, diesel engine exhaust, etc. It is suitably used for tubes for transporting various chemicals such as reducing agent solutions, oils, fuels, connectors, intake pipes, blow-by tubes, and the like.
[ポリアミド樹脂組成物]
 本発明のポリアミド樹脂組成物は、ポリアミド(A)、モノカルボジイミド(B1)、およびポリカルボジイミド(B2)を配合してなる組成物であることを特徴とする。当該樹脂組成物は2種のカルボジイミド(B1)及び(B2)を併用することにより、高い耐薬液性を発現する。
 カルボジイミドは、薬液中の成分由来の酸、またはポリアミド由来の酸を封止または捕捉すること、およびポリアミドの分子鎖の末端同士を結合し、分子量を増大させることによりポリアミドの耐加水分解性を高め、耐薬液性を向上させるものと考えられる。従来、カルボジイミドはポリアミド等の熱可塑性樹脂の耐加水分解性向上剤として知られている。低融点(例えば180℃未満)の熱可塑性樹脂であれば、耐加水分解性向上剤として、熱安定性の低いモノカルボジイミドを用いることも可能である。しかしながら熱可塑性樹脂の中でもポリアミドは高融点であることから、一般的には、ポリアミドのコンパウンド時に用いられる耐加水分解性向上剤として熱安定性の低いモノカルボジイミドは適用されず、ポリカルボジイミドが使用されてきた。
 しかしながら本発明者らは、ポリアミドにポリカルボジイミドのみを配合した樹脂組成物では耐薬液性の向上が必ずしも十分ではなく、モノカルボジイミドを併用することで一層優れた耐薬液性が得られることを見出した。
 なお、単純にポリアミドに配合するカルボジイミド量を増やすことで耐薬液性が向上するのであれば、モノカルボジイミドを併用せず、熱安定性が高く、ポリアミドの分子鎖延長効果も高いと考えられるポリカルボジイミドのみを用いる方が有利であるはずである。しかしながら、ポリアミド樹脂組成物中のカルボジイミド量を単純に増やすだけでは耐薬液性の向上は十分でないことが本発明者らにより確認された。
 本発明により上記効果が得られる理由については定かではないが、ポリアミドのコンパウンド工程の間に、ポリカルボジイミドよりも先に、反応性が高くかつ熱安定性の低いモノカルボジイミドが適度にポリアミドの末端カルボキシル基を封止することで、ポリアミドに由来する機械的物性を維持しつつ、耐薬液性を向上させていることが考えられる。
[Polyamide resin composition]
The polyamide resin composition of the present invention is a composition formed by blending polyamide (A), monocarbodiimide (B1), and polycarbodiimide (B2). The resin composition exhibits high chemical resistance by using two types of carbodiimides (B1) and (B2) in combination.
Carbodiimide enhances hydrolysis resistance of polyamide by sealing or capturing acid derived from components in chemicals or acid derived from polyamide, and bonding the ends of the molecular chain of polyamide to increase molecular weight. It is considered that chemical resistance is improved. Conventionally, carbodiimide is known as a hydrolysis resistance improver for thermoplastic resins such as polyamide. In the case of a thermoplastic resin having a low melting point (for example, less than 180 ° C.), it is also possible to use monocarbodiimide having low thermal stability as a hydrolysis resistance improver. However, among thermoplastic resins, polyamide has a high melting point, so generally, monocarbodiimide with low thermal stability is not applied as a hydrolysis resistance improver used at the time of compounding polyamide, and polycarbodiimide is used. I came.
However, the present inventors have found that a resin composition in which only polycarbodiimide is blended with polyamide is not always sufficient in improving chemical resistance, and that even better chemical resistance can be obtained by using monocarbodiimide in combination. .
If the chemical resistance is improved by simply increasing the amount of carbodiimide added to the polyamide, polycarbodiimide is considered to have high thermal stability and a high molecular chain extension effect without using monocarbodiimide. It would be advantageous to use only. However, the present inventors have confirmed that the chemical resistance is not sufficiently improved by simply increasing the amount of carbodiimide in the polyamide resin composition.
The reason why the above effect is obtained by the present invention is not clear, but during the compounding process of the polyamide, monocarbodiimide having high reactivity and low thermal stability is suitably added to the terminal carboxyl of the polyamide prior to polycarbodiimide. It is conceivable that the chemical resistance is improved while the mechanical properties derived from the polyamide are maintained by sealing the group.
 なお、ポリアミド樹脂組成物の加水分解を低減する方法として、ポリアミドの末端カルボキシル基含量を減らし末端アミノ基含量を増やす方法も考えられる。しかしながら、例えばポリアミド樹脂組成物に、エラストマー(C)として後述する酸変性エラストマーを配合する場合、ポリアミドの末端アミノ基量を増やしすぎると、該末端アミノ基とエラストマーの酸変性部分とが反応して架橋しすぎてしまい、ゲル化してしまうという懸念もあった。しかしながら本発明によれば、このような不具合が生じる可能性を回避することもできる。 As a method for reducing the hydrolysis of the polyamide resin composition, a method of reducing the terminal carboxyl group content of the polyamide and increasing the terminal amino group content is also conceivable. However, for example, when the acid-modified elastomer described later as the elastomer (C) is blended with the polyamide resin composition, if the amount of terminal amino groups of the polyamide is excessively increased, the terminal amino groups react with the acid-modified portion of the elastomer. There was also a concern that it would be too cross-linked and gelled. However, according to the present invention, it is possible to avoid the possibility of such a problem.
 以下、本発明のポリアミド樹脂組成物に用いられる各成分について説明する。
<ポリアミド(A)>
 本発明に用いるポリアミド(A)としては、特に制限なく、例えば、芳香族ポリアミド、脂肪族ポリアミドなどが挙げられる。芳香族ポリアミドとしては、全芳香族ポリアミド、半芳香族ポリアミドが挙げられる。
 なかでも、高い耐薬液性および耐熱性を付与する観点から、ポリアミド(A)は芳香族ポリアミドが好ましく、耐薬液性および耐熱性、並びに成形性の観点から、半芳香族ポリアミドがより好ましい。以下、半芳香族ポリアミドについて説明する。
Hereinafter, each component used for the polyamide resin composition of this invention is demonstrated.
<Polyamide (A)>
The polyamide (A) used in the present invention is not particularly limited, and examples thereof include aromatic polyamides and aliphatic polyamides. Examples of the aromatic polyamide include wholly aromatic polyamides and semi-aromatic polyamides.
Among these, from the viewpoint of imparting high chemical resistance and heat resistance, the polyamide (A) is preferably an aromatic polyamide, and from the viewpoint of chemical resistance, heat resistance, and moldability, a semi-aromatic polyamide is more preferable. Hereinafter, the semi-aromatic polyamide will be described.
(半芳香族ポリアミド)
 本発明において半芳香族ポリアミドとは、芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、脂肪族ジアミン単位を主成分とするジアミン単位とを含むポリアミド、又は、脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含むポリアミドをいう。ここで「主成分とする」とは、全単位中の50~100モル%、好ましくは60~100モル%を構成することをいう。
 本発明に用いるポリアミド(A)としては、半芳香族ポリアミドの中でも、芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、脂肪族ジアミン単位を主成分とするジアミン単位とを含むポリアミドが好ましく、芳香族ジカルボン酸単位を50~100モル%含有するジカルボン酸単位と、炭素数6~13の脂肪族ジアミン単位を60~100モル%含有するジアミン単位とを含む半芳香族ポリアミドがより好ましい。以下、当該半芳香族ポリアミドについてより詳細に説明する。
(Semi-aromatic polyamide)
In the present invention, the semi-aromatic polyamide means a polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit as a main component, or an aliphatic dicarboxylic acid unit as a main component. Polyamide containing a dicarboxylic acid unit as a component and a diamine unit having an aromatic diamine unit as a main component. Here, “main component” refers to constituting 50 to 100 mol%, preferably 60 to 100 mol%, of all units.
As the polyamide (A) used in the present invention, among semi-aromatic polyamides, a polyamide containing a dicarboxylic acid unit having an aromatic dicarboxylic acid unit as a main component and a diamine unit having an aliphatic diamine unit as a main component is preferable. A semi-aromatic polyamide containing a dicarboxylic acid unit containing 50 to 100 mol% of an aromatic dicarboxylic acid unit and a diamine unit containing 60 to 100 mol% of an aliphatic diamine unit having 6 to 13 carbon atoms is more preferred. Hereinafter, the semi-aromatic polyamide will be described in more detail.
 半芳香族ポリアミドを構成するジカルボン酸単位は、耐薬品性および耐熱性が良好な半芳香族ポリアミドとなる観点から、芳香族ジカルボン酸単位を50~100モル%含有することが好ましい。ジカルボン酸単位における芳香族ジカルボン酸単位の含有率は、75~100モル%の範囲にあることがより好ましく、90~100モル%の範囲にあることがさらに好ましい。
 芳香族ジカルボン酸単位としては、テレフタル酸単位、ナフタレンジカルボン酸単位、イソフタル酸単位、1,4-フェニレンジオキシジ酢酸単位、1,3-フェニレンジオキシジ酢酸単位、ジフェン酸単位、ジフェニルメタン-4,4’-ジカルボン酸単位、ジフェニルスルホン-4,4’-ジカルボン酸単位、4,4’-ビフェニルジカルボン酸単位等が挙げられる。上記ナフタレンジカルボン酸単位としては、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、及び1,4-ナフタレンジカルボン酸から誘導される単位が挙げられ、2,6-ナフタレンジカルボン酸単位が好ましい。
 これらの中でも、芳香族ジカルボン酸単位はテレフタル酸単位および/またはナフタレンジカルボン酸単位であることが好ましく、テレフタル酸単位であることがより好ましい。
The dicarboxylic acid unit constituting the semiaromatic polyamide preferably contains 50 to 100 mol% of the aromatic dicarboxylic acid unit from the viewpoint of becoming a semiaromatic polyamide having good chemical resistance and heat resistance. The content of the aromatic dicarboxylic acid unit in the dicarboxylic acid unit is more preferably in the range of 75 to 100 mol%, and further preferably in the range of 90 to 100 mol%.
Aromatic dicarboxylic acid units include terephthalic acid units, naphthalenedicarboxylic acid units, isophthalic acid units, 1,4-phenylenedioxydiacetic acid units, 1,3-phenylenedioxydiacetic acid units, diphenic acid units, diphenylmethane-4 4,4′-dicarboxylic acid unit, diphenylsulfone-4,4′-dicarboxylic acid unit, 4,4′-biphenyldicarboxylic acid unit, and the like. Examples of the naphthalenedicarboxylic acid unit include units derived from 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid, and the 2,6-naphthalenedicarboxylic acid unit includes preferable.
Among these, the aromatic dicarboxylic acid unit is preferably a terephthalic acid unit and / or a naphthalene dicarboxylic acid unit, and more preferably a terephthalic acid unit.
 半芳香族ポリアミドを構成するジカルボン酸単位は、好ましくは50モル%以下の範囲で、芳香族ジカルボン酸単位以外の他のジカルボン酸単位を含んでもよい。かかる他のジカルボン酸単位としては、例えば、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、2,2-ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;などに由来する単位を挙げることができ、これらのうちの1種または2種以上を含むことができる。ジカルボン酸単位におけるこれらの他のジカルボン酸単位の含有率は、25モル%以下であることが好ましく、10モル%以下であることがより好ましい。本発明で用いる半芳香族ポリアミドはさらに、トリメリット酸、トリメシン酸、ピロメリット酸等の多価カルボン酸に由来する単位を溶融成形が可能な範囲内で含んでいてもよい。 The dicarboxylic acid unit constituting the semi-aromatic polyamide may contain a dicarboxylic acid unit other than the aromatic dicarboxylic acid unit, preferably in the range of 50 mol% or less. Examples of such other dicarboxylic acid units include malonic acid, dimethylmalonic acid, succinic acid, glutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 2, Units derived from 2-diethylsuccinic acid, azelaic acid, sebacic acid, suberic acid and other aliphatic dicarboxylic acids; 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid and other alicyclic dicarboxylic acids; And one or more of these may be included. The content of these other dicarboxylic acid units in the dicarboxylic acid unit is preferably 25 mol% or less, and more preferably 10 mol% or less. The semi-aromatic polyamide used in the present invention may further contain a unit derived from a polyvalent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid within a range that allows melt molding.
 また、半芳香族ポリアミドを構成するジアミン単位は、炭素数6~13の脂肪族ジアミン単位を60~100モル%含有することが好ましい。炭素数6~13の脂肪族ジアミン単位をこの割合で含有するポリアミド(A)を使用すると、靭性、摺動性、耐熱性、成形性、低吸水性、軽量性に優れたポリアミド樹脂組成物が得られる。ジアミン単位における炭素数6~13の脂肪族ジアミン単位の含有率は、75~100モル%の範囲にあることがより好ましく、90~100モル%の範囲にあることがさらに好ましい。 The diamine unit constituting the semi-aromatic polyamide preferably contains 60 to 100 mol% of an aliphatic diamine unit having 6 to 13 carbon atoms. When the polyamide (A) containing an aliphatic diamine unit having 6 to 13 carbon atoms in this proportion is used, a polyamide resin composition excellent in toughness, slidability, heat resistance, moldability, low water absorption and lightness can be obtained. can get. The content of the aliphatic diamine unit having 6 to 13 carbon atoms in the diamine unit is more preferably in the range of 75 to 100 mol%, and further preferably in the range of 90 to 100 mol%.
 上記の炭素数6~13の脂肪族ジアミン単位としては、例えば、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン等の直鎖状脂肪族ジアミン;2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等の分岐鎖状脂肪族ジアミン;などに由来する単位を挙げることができ、これらのうちの1種または2種以上を含むことができる。 Examples of the aliphatic diamine unit having 6 to 13 carbon atoms include 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, and 1,10-decanediamine. Linear aliphatic diamines such as 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine; 2-methyl-1,5-pentanediamine, 3-methyl-1,5- Pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1, Examples thereof include units derived from branched aliphatic diamines such as 9-nonanediamine; and one or more of these units can be included.
 上記の炭素数6~13の脂肪族ジアミン単位は、1,9-ノナンジアミン単位、2-メチル-1,8-オクタンジアミン単位および1,10-デカンジアミン単位からなる群から選ばれる少なくとも1種であることがより好ましく、耐熱性、低吸水性および耐薬液性により一層優れるポリアミド樹脂組成物が得られることから、1,9-ノナンジアミン単位および/または2-メチル-1,8-オクタンジアミン単位であることがより好ましく、1,9-ノナンジアミン単位および2-メチル-1,8-オクタンジアミン単位であることがさらに好ましい。ジアミン単位が1,9-ノナンジアミン単位および2-メチル-1,8-オクタンジアミン単位をともに含む場合には、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位のモル比は、1,9-ノナンジアミン単位/2-メチル-1,8-オクタンジアミン単位=95/5~40/60の範囲にあることが好ましく、90/10~40/60の範囲にあることがより好ましく、80/20~40/60の範囲にあることがさらに好ましい。 The aliphatic diamine unit having 6 to 13 carbon atoms is at least one selected from the group consisting of a 1,9-nonanediamine unit, a 2-methyl-1,8-octanediamine unit, and a 1,10-decanediamine unit. More preferably, since a polyamide resin composition that is more excellent in heat resistance, low water absorption and chemical resistance can be obtained, it is possible to use 1,9-nonanediamine units and / or 2-methyl-1,8-octanediamine units. More preferred are 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units. When the diamine unit includes both a 1,9-nonanediamine unit and a 2-methyl-1,8-octanediamine unit, the molar ratio of the 1,9-nonanediamine unit to the 2-methyl-1,8-octanediamine unit is 1,9-nonanediamine unit / 2-methyl-1,8-octanediamine unit = preferably in the range of 95/5 to 40/60, more preferably in the range of 90/10 to 40/60. 80/20 to 40/60 is more preferable.
 半芳香族ポリアミドを構成するジアミン単位は、好ましくは40モル%以下の範囲で、炭素数6~13の脂肪族ジアミン単位以外の他のジアミン単位を含んでもよい。かかる他のジアミン単位としては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、2-メチル-1,3-プロパンジアミン、2-メチル-1,4-ブタンジアミン等の炭素数5以下の脂肪族ジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等の脂環式ジアミン;p-フェニレンジアミン、m-フェニレンジアミン、キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンなどに由来する単位を挙げることができ、これらのうちの1種または2種以上を含むことができる。ジアミン単位におけるこれらの他のジアミン単位の含有率は25モル%以下であることが好ましく、10モル%以下であることがより好ましい。 The diamine unit constituting the semi-aromatic polyamide may contain a diamine unit other than the aliphatic diamine unit having 6 to 13 carbon atoms, preferably in the range of 40 mol% or less. Examples of such other diamine units include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, and 2-methyl-1,3-propanediamine. Aliphatic diamines having 5 or less carbon atoms such as 2-methyl-1,4-butanediamine; cycloaliphatic diamines such as cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine; p-phenylenediamine, m-phenylenediamine, xylylenediamine Examples include units derived from aromatic diamines such as amines, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl ether, and one or two of these units. More than species can be included. The content of these other diamine units in the diamine unit is preferably 25 mol% or less, and more preferably 10 mol% or less.
 半芳香族ポリアミドは、本発明の効果を阻害しない範囲内で、さらにアミノカルボン酸単位および/またはラクタム単位を含んでいてもよい。
 当該アミノカルボン酸単位としては、例えば、11-アミノウンデカン酸、12-アミノドデカン酸などに由来する単位を挙げることができ、アミノカルボン酸単位は、2種以上含まれていてもよい。ポリアミド(A)におけるアミノカルボン酸単位の含有率は、ポリアミド(A)を構成する全モノマー単位100モル%に対して、40モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。
The semi-aromatic polyamide may further contain an aminocarboxylic acid unit and / or a lactam unit as long as the effects of the present invention are not impaired.
Examples of the aminocarboxylic acid unit include units derived from 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like, and two or more aminocarboxylic acid units may be included. The content of aminocarboxylic acid units in the polyamide (A) is preferably 40 mol% or less, more preferably 20 mol% or less, based on 100 mol% of all monomer units constituting the polyamide (A). Preferably, it is 10 mol% or less.
 また、当該ラクタム単位としては、例えば、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ラウリルラクタム、α-ピロリドン、α-ピペリドン等などに由来する単位を挙げることができ、ラクタム単位は2種以上含まれていてもよい。半芳香族ポリアミドにおけるラクタム単位の含有率は、半芳香族ポリアミドを構成する全モノマー単位100モル%に対して、40モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。 Examples of the lactam unit include units derived from ε-caprolactam, enantolactam, undecane lactam, lauryl lactam, α-pyrrolidone, α-piperidone, etc., and two or more lactam units are included. It may be. The content of lactam units in the semiaromatic polyamide is preferably 40 mol% or less, more preferably 20 mol% or less, with respect to 100 mol% of all monomer units constituting the semiaromatic polyamide, More preferably, it is 10 mol% or less.
 芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、炭素数6~13の脂肪族ジアミン単位を主成分とするジアミン単位とを含む代表的な半芳香族ポリアミドとしては、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリアミド6Iとポリアミド6Tとの共重合体(ポリアミド6I/6T)、およびポリアミド6Tとポリウンデカンアミド(ポリアミド11)との共重合体(ポリアミド6T/11)などが挙げられる。これらの中でも、ポリアミド6T/11、ポリノナメチレンテレフタルアミド(ポリアミド9T)およびポリデカメチレンテレフタルアミド(ポリアミド10T)からなる群から選ばれる少なくとも1種が好ましく、ポリノナメチレンテレフタルアミド(ポリアミド9T)およびポリデカメチレンテレフタルアミド(ポリアミド10T)からなる群から選ばれる少なくとも1種がより好ましく、ポリノナメチレンテレフタルアミド(ポリアミド9T)がさらに好ましい。 As a typical semi-aromatic polyamide containing a dicarboxylic acid unit mainly composed of an aromatic dicarboxylic acid unit and a diamine unit mainly composed of an aliphatic diamine unit having 6 to 13 carbon atoms, polyhexamethylene terephthalamide may be used. (Polyamide 6T), polynonamethylene terephthalamide (polyamide 9T), polydecamethylene terephthalamide (polyamide 10T), polyhexamethylene isophthalamide (polyamide 6I), a copolymer of polyamide 6I and polyamide 6T (polyamide 6I / 6T) ), And a copolymer of polyamide 6T and polyundecanamide (polyamide 11) (polyamide 6T / 11). Among these, at least one selected from the group consisting of polyamide 6T / 11, polynonamethylene terephthalamide (polyamide 9T) and polydecamethylene terephthalamide (polyamide 10T) is preferable, and polynonamethylene terephthalamide (polyamide 9T) and At least one selected from the group consisting of polydecamethylene terephthalamide (polyamide 10T) is more preferable, and polynonamethylene terephthalamide (polyamide 9T) is more preferable.
 一方、半芳香族ポリアミドのうち、脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含む半芳香族ポリアミドについては、脂肪族ジカルボン酸単位として、前述した脂肪族ジカルボン酸から誘導される単位を挙げることができ、これらのうちの1種または2種以上を含むことができる。また、芳香族ジアミン単位としては、前述した芳香族ジアミンから誘導される単位を挙げることができ、これらのうちの1種または2種以上を含むことができる。また、本発明の効果を阻害しない範囲内で、他の単位を含んでもよい。
 脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含む代表的な半芳香族ポリアミドとしては、ポリメタキシリレンアジパミド(MXD6)、ポリパラキシリレンセバカミド(PXD10)などが挙げられる。
 上記半芳香族ポリアミドは、1種または2種以上を用いることができる。
On the other hand, among the semi-aromatic polyamides, for the semi-aromatic polyamide containing a dicarboxylic acid unit having an aliphatic dicarboxylic acid unit as a main component and a diamine unit having an aromatic diamine unit as a main component, an aliphatic dicarboxylic acid unit is used. Can include units derived from the aforementioned aliphatic dicarboxylic acids, and can include one or more of these units. Moreover, as an aromatic diamine unit, the unit induced | guided | derived from the aromatic diamine mentioned above can be mentioned, The 1 type (s) or 2 or more types of these can be included. In addition, other units may be included within the range not impairing the effects of the present invention.
Typical semi-aromatic polyamides containing a dicarboxylic acid unit having an aliphatic dicarboxylic acid unit as a main component and a diamine unit having an aromatic diamine unit as a main component include polymetaxylylene adipamide (MXD6), poly And paraxylylene sebacamide (PXD10).
The said semi-aromatic polyamide can use 1 type (s) or 2 or more types.
 本発明のポリアミド樹脂組成物に配合されるポリアミド(A)は半芳香族ポリアミドのみで構成されることが好ましいが、全芳香族ポリアミドや脂肪族ポリアミドなどの、半芳香族ポリアミド以外のポリアミドを併用してもよい。ポリアミド(A)中の半芳香族ポリアミド以外のポリアミドの含有率は、好ましくは20質量%以下、より好ましくは10質量%以下である。 The polyamide (A) blended in the polyamide resin composition of the present invention is preferably composed only of a semi-aromatic polyamide, but a polyamide other than a semi-aromatic polyamide such as wholly aromatic polyamide or aliphatic polyamide is used in combination. May be. The content of polyamide other than the semi-aromatic polyamide in the polyamide (A) is preferably 20% by mass or less, more preferably 10% by mass or less.
(全芳香族ポリアミド)
 全芳香族ポリアミドとは、芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含むポリアミドをいう。芳香族ジカルボン酸単位および芳香族ジアミン単位は、前述の半芳香族ポリアミドにおいて例示したものと同様のものが挙げられる。
 全芳香族ポリアミドとしては、ポリパラフェニレンテレフタルアミド、ポリメタフェニレンイソフタルアミド、ポリメタキシリレンイソフタラミド(MXDI)、テレフタル酸成分と3,4’-ジアミノジフェニルエーテル成分およびパラフェニレンジアミン成分とが共重合されたポリ(パラフェニレン・3,4’-オキシジフェニレンテレフタルアミド)などが挙げられる。
(Totally aromatic polyamide)
The wholly aromatic polyamide refers to a polyamide containing a dicarboxylic acid unit having an aromatic dicarboxylic acid unit as a main component and a diamine unit having an aromatic diamine unit as a main component. Examples of the aromatic dicarboxylic acid unit and the aromatic diamine unit are the same as those exemplified in the aforementioned semi-aromatic polyamide.
As fully aromatic polyamides, polyparaphenylene terephthalamide, polymetaphenylene isophthalamide, polymetaxylylene isophthalamide (MXDI), terephthalic acid component, 3,4'-diaminodiphenyl ether component and paraphenylenediamine component are copolymerized And poly (paraphenylene • 3,4′-oxydiphenylene terephthalamide).
(脂肪族ポリアミド)
 脂肪族ポリアミドは、脂肪族ポリアミド形成単位よりなるポリアミドであり、具体的にはラクタム、アミノカルボン酸、または脂肪族ジアミンと脂肪族ジカルボン酸とからなるナイロン塩を原料として、溶融重合、溶液重合や固相重合等の公知の方法で重合、または共重合することにより得られる。
(Aliphatic polyamide)
The aliphatic polyamide is a polyamide composed of an aliphatic polyamide-forming unit. Specifically, a lactam, an aminocarboxylic acid, or a nylon salt composed of an aliphatic diamine and an aliphatic dicarboxylic acid as a raw material is used for melt polymerization, solution polymerization, It can be obtained by polymerization or copolymerization by a known method such as solid phase polymerization.
 ラクタムとしては、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ラウリルラクタム、α-ピロリドン、α-ピペリドン等、前述のラクタム単位において例示したものと同様のものが挙げられる。アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、9-アミノノナン酸、11-アミノウンデカン酸、12-アミノドデカン酸等が挙げられる。これらは1種または2種以上を用いることができる。 Examples of the lactam include those similar to those exemplified in the aforementioned lactam unit, such as ε-caprolactam, enantolactam, undecane lactam, lauryl lactam, α-pyrrolidone and α-piperidone. Examples of the aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 9-aminononanoic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. These can use 1 type (s) or 2 or more types.
 ナイロン塩を構成する脂肪族ジアミンとしては、エチレンジアミン、1,3-プロピレンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン、1,14-テトラデカンジアミン、1,15-ペンタデカンジアミン、1,16-ヘキサデカンジアミン、1,17-ヘプタデカンジアミン、1,18-オクタデカンジアミン、1,19-ノナデカンジアミン、1,20-エイコサンジアミン、2/3-メチル-1,5-ペンタンジアミン、2-メチル-1,8-オクタンジアミン、2,2,4/2,4,4-トリメチル-1,6-ヘキサンジアミン、5-メチル-1,9-ノナンジアミン等が挙げられる。これらは1種または2種以上を用いることができる。 Examples of the aliphatic diamine constituting the nylon salt include ethylenediamine, 1,3-propylenediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1, 8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine, 1,14-tetradecanediamine, 1,15 -Pentadecanediamine, 1,16-hexadecanediamine, 1,17-heptadecanediamine, 1,18-octadecanediamine, 1,19-nonadecanediamine, 1,20-eicosanediamine, 2 / 3-methyl-1, 5-pentanediamine, 2-methyl-1,8-octanediamine, 2,2, / 2,4,4-trimethyl-1,6-hexanediamine, 5-methyl-1,9-nonanediamine or the like. These can use 1 type (s) or 2 or more types.
 ナイロン塩を構成する脂肪族ジカルボン酸としては、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、トリデカンジカルボン酸、テトラデカンジカルボン酸、ペンタデカンジカルボン酸、ヘキサデカンジカルボン酸、オクタデカンジカルボン酸、エイコサンジカルボン酸等が挙げられる。これらは1種または2種以上を用いることができる。 Examples of the aliphatic dicarboxylic acid constituting the nylon salt include adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, tridecanedicarboxylic acid, tetradecanedicarboxylic acid, pentadecanedicarboxylic acid, hexadecanedicarboxylic acid. An acid, octadecanedicarboxylic acid, eicosane dicarboxylic acid, etc. are mentioned. These can use 1 type (s) or 2 or more types.
 脂肪族ポリアミドとしては、ポリカプロアミド(ポリアミド6)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリエチレンアジパミド(ポリアミド26)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリヘキサメチレンアゼラミド(ポリアミド69)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンウンデカミド(ポリアミド611)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンアジパミド(ポリアミド96)、ポリノナメチレンアゼラミド(ポリアミド99)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンウンデカミド(ポリアミド911)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンアジパミド(ポリアミド106)、ポリデカメチレンアゼラミド(ポリアミド109)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンアジパミド(ポリアミド126)、ポリドデカメチレンアゼラミド(ポリアミド129)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)などの単独重合体や、これらを形成する原料モノマーを数種用いた共重合体などが挙げられる。 Examples of aliphatic polyamides include polycaproamide (polyamide 6), polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), polyethylene adipamide (polyamide 26), polytetramethylene adipamide (polyamide 46), Polyhexamethylene adipamide (Polyamide 66), Polyhexamethylene azelamide (Polyamide 69), Polyhexamethylene sebamide (Polyamide 610), Polyhexamethylene undecamide (Polyamide 611), Polyhexamethylene dodecamide (Polyamide) 612), polynonamethylene adipamide (polyamide 96), polynonamethylene azelamide (polyamide 99), polynonamethylene sebamide (polyamide 910), polynonamethylene undecamide (polyamide 911). Polynonamethylene dodecamide (polyamide 912), polydecamethylene adipamide (polyamide 106), polydecamethylene azelamide (polyamide 109), polydecamethylene sebamide (polyamide 1010), polydecamethylene dodecamide (polyamide 1012) ), Polydodecamethylene adipamide (polyamide 126), polydodecamethylene azelamide (polyamide 129), polydodecamethylene sebamide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), and the like, Examples thereof include copolymers using several kinds of raw material monomers that form these.
 これらの中でも、ポリカプロアミド(ポリアミド6)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリヘキサメチレンドデカミド(ポリアミド612)から選ばれる少なくとも1種の単独重合体が好ましく、ポリカプロアミド(ポリアミド6)およびポリドデカンアミド(ポリアミド12)からなる群から選ばれる少なくとも1種の単独重合体がより好ましい。 Among these, it is selected from polycaproamide (polyamide 6), polyhexamethylene adipamide (polyamide 66), polyundecanamide (polyamide 11), polydodecanamide (polyamide 12), and polyhexamethylene dodecanamide (polyamide 612). And at least one homopolymer selected from the group consisting of polycaproamide (polyamide 6) and polydodecanamide (polyamide 12) is more preferable.
 ポリアミド(A)は、その分子鎖の末端基の10%以上が末端封止剤により封止されていることが好ましい。末端封止率が10%以上のポリアミド(A)を使用すると、溶融安定性、耐熱水性などの物性がより優れたポリアミド樹脂組成物が得られる。一方、後述するエラストマー(C)として酸変性エラストマーを用いる場合には、該エラストマーの酸変性部分とポリアミド(A)の末端基とを反応させる観点から、上記末端封止率は、好ましくは100%未満である。 In the polyamide (A), it is preferable that 10% or more of the end groups of the molecular chain are sealed with an end-capping agent. When a polyamide (A) having a terminal blocking rate of 10% or more is used, a polyamide resin composition having more excellent physical properties such as melt stability and hot water resistance can be obtained. On the other hand, when an acid-modified elastomer is used as the elastomer (C) described later, from the viewpoint of reacting the acid-modified portion of the elastomer with the end group of the polyamide (A), the above-mentioned end capping rate is preferably 100%. Is less than.
 末端封止剤としては、ポリアミド末端のアミノ基またはカルボキシル基との反応性を有する単官能性の化合物であれば特に制限はないが、反応性および封止末端の安定性などの点から、モノカルボン酸またはモノアミンが好ましく、取り扱いの容易さなどの点から、モノカルボン酸がより好ましい。その他、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類などを末端封止剤として使用することもできる。 The end capping agent is not particularly limited as long as it is a monofunctional compound having reactivity with the amino group or carboxyl group at the end of the polyamide, but from the viewpoint of reactivity and stability of the capping end, Carboxylic acid or monoamine is preferable, and monocarboxylic acid is more preferable from the viewpoint of easy handling. In addition, monoisocyanates, monoacid halides, monoesters, monoalcohols, and the like can also be used as the end-capping agent.
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものであれば特に制限はなく、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;これらの任意の混合物などを挙げることができる。これらのなかでも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、安息香酸が好ましく、安息香酸がより好ましい。 The monocarboxylic acid used as the end-capping agent is not particularly limited as long as it has reactivity with an amino group. For example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, laurin Aliphatic monocarboxylic acids such as acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid and isobutyric acid; cycloaliphatic monocarboxylic acids such as cyclohexanecarboxylic acid; benzoic acid, toluic acid, α-naphthalenecarboxylic acid , Β-naphthalene carboxylic acid, methyl naphthalene carboxylic acid, aromatic monocarboxylic acid such as phenyl acetic acid; any mixtures thereof. Among these, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearin, etc. Acid and benzoic acid are preferable, and benzoic acid is more preferable.
 末端封止剤として使用されるモノアミンとしては、カルボキシル基との反応性を有するものであれば特に制限はなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;これらの任意の混合物などを挙げることができる。これらの中でも、反応性、沸点、封止末端の安定性、価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、アニリンが好ましい。 The monoamine used as the end-capping agent is not particularly limited as long as it has reactivity with a carboxyl group. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearyl Aliphatic monoamines such as amine, dimethylamine, diethylamine, dipropylamine and dibutylamine; Cycloaliphatic monoamines such as cyclohexylamine and dicyclohexylamine; Aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; any mixtures thereof Can be mentioned. Among these, butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline are preferable from the viewpoints of reactivity, boiling point, sealing end stability, price, and the like.
 ポリアミド(A)の末端封止率は、ポリアミド(A)に存在している末端カルボキシル基、末端アミノ基および末端封止剤によって封止された末端基の数をそれぞれ測定し、下記の式(1)に従って求められる。各末端基の数は、H-NMRにより各末端基に対応する特性シグナルの積分値より求めるのが精度、簡便さの点で好ましい。
  末端封止率(%)=[(T-S)/T]×100   (1)
[式中、Tはポリアミド(A)の分子鎖の末端基の総数(これは通常、ポリアミド分子の数の2倍に等しい)を表し、Sは封止されずに残った末端カルボキシル基および末端アミノ基の合計数を表す。]
The terminal blocking rate of the polyamide (A) was determined by measuring the number of terminal carboxyl groups, terminal amino groups, and terminal groups blocked by the terminal blocking agent present in the polyamide (A), respectively, by the following formula ( It is obtained according to 1). The number of each end group is preferably determined from the integral value of the characteristic signal corresponding to each end group by 1 H-NMR in terms of accuracy and simplicity.
Terminal sealing rate (%) = [(TS) / T] × 100 (1)
[Wherein T represents the total number of terminal groups of the molecular chain of the polyamide (A) (this is usually equal to twice the number of polyamide molecules), and S is the terminal carboxyl group and terminal remaining unblocked. Represents the total number of amino groups. ]
 ポリアミド(A)は、ポリアミドを製造する方法として知られている任意の方法を用いて製造できる。例えば、ジカルボン酸単位とジアミン単位とを含むポリアミドであれば、酸クロライドとジアミンを原料とする溶液重合法または界面重合法、ジカルボン酸とジアミンを原料とする溶融重合法、固相重合法、溶融押出重合法などの方法により製造できる。 Polyamide (A) can be produced using any method known as a method for producing polyamide. For example, in the case of a polyamide containing a dicarboxylic acid unit and a diamine unit, a solution polymerization method or an interfacial polymerization method using an acid chloride and a diamine as raw materials, a melt polymerization method using a dicarboxylic acid and a diamine as raw materials, a solid phase polymerization method, a melting method It can be produced by a method such as extrusion polymerization.
 ポリアミド(A)を製造する際に、触媒として、リン酸、亜リン酸、次亜リン酸、それらの塩またはエステルなどを添加することができる。上記の塩またはエステルとしては、例えば、リン酸、亜リン酸または次亜リン酸と、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属との塩;リン酸、亜リン酸または次亜リン酸のアンモニウム塩;リン酸、亜リン酸または次亜リン酸の、エチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどが挙げられる。中でも次亜リン酸ナトリウムと亜リン酸が、安価でかつトリアミン量が少なく好ましい。 When producing the polyamide (A), phosphoric acid, phosphorous acid, hypophosphorous acid, their salts or esters can be added as a catalyst. Examples of the salt or ester include phosphoric acid, phosphorous acid or hypophosphorous acid, potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony, and the like. Salt with metal; ammonium salt of phosphoric acid, phosphorous acid or hypophosphorous acid; ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, decyl of phosphoric acid, phosphorous acid or hypophosphorous acid Examples thereof include esters, stearyl esters, and phenyl esters. Of these, sodium hypophosphite and phosphorous acid are preferable because they are inexpensive and have a small amount of triamine.
 ポリアミド(A)は、濃硫酸中、30℃の条件下で測定した極限粘度[η]が、0.6~2.0dL/gの範囲にあることが好ましく、0.7~1.9dL/gの範囲にあることがより好ましく、0.8~1.8dL/gの範囲にあることがさらに好ましい。極限粘度が0.6dL/g以上のポリアミド(A)を使用すれば、機械的物性が良好になる。また極限粘度が2.0dL/g以下のポリアミド(A)を使用すれば、得られるポリアミド樹脂組成物の成形性が良好である。 The polyamide (A) preferably has an intrinsic viscosity [η] measured in concentrated sulfuric acid at 30 ° C. in the range of 0.6 to 2.0 dL / g, 0.7 to 1.9 dL / g More preferably, it is in the range of g, more preferably in the range of 0.8 to 1.8 dL / g. If the polyamide (A) having an intrinsic viscosity of 0.6 dL / g or more is used, the mechanical properties are improved. Moreover, if polyamide (A) whose intrinsic viscosity is 2.0 dL / g or less is used, the moldability of the obtained polyamide resin composition is favorable.
 ポリアミド(A)は、その末端アミノ基含量([NH])が5~60μモル/gであることが好ましく、5~50μモル/gの範囲内にあることがより好ましく、5~30μモル/gの範囲内にあることがさらに好ましい。末端アミノ基含量([NH])が5μモル/g以上であれば、ポリアミド(A)と、後述するエラストマー(C)との相容性が良好である。また、該末端アミノ基含量が60μモル/g以下であれば、エラストマー(C)として後述する酸変性エラストマーを用いる場合、該末端アミノ基とエラストマーの変性部分とが反応しすぎてゲル化するのを避けることができる。
 本明細書でいう末端アミノ基含量([NH])は、ポリアミド(A)が1g中に含有する末端アミノ基の量(単位:μモル)を指し、指示薬を用いた中和滴定法より求めることができる。
The polyamide (A) has a terminal amino group content ([NH 2 ]) of preferably 5 to 60 μmol / g, more preferably 5 to 50 μmol / g, and more preferably 5 to 30 μmol. More preferably, it is in the range of / g. When the terminal amino group content ([NH 2 ]) is 5 μmol / g or more, the compatibility between the polyamide (A) and the elastomer (C) described later is good. Further, when the terminal amino group content is 60 μmol / g or less, when an acid-modified elastomer described later is used as the elastomer (C), the terminal amino group and the modified part of the elastomer are excessively reacted and gelled. Can be avoided.
The terminal amino group content ([NH 2 ]) as used herein refers to the amount of terminal amino groups (unit: μmol) contained in 1 g of the polyamide (A), and is based on the neutralization titration method using an indicator. Can be sought.
 ジカルボン酸単位とジアミン単位とを含み、末端アミノ基含量([NH])が上記した範囲にあるポリアミド(A)は、例えば、以下のようにして製造できる。
 まず、ジカルボン酸、ジアミン、および必要に応じてアミノカルボン酸、ラクタム、触媒、末端封止剤を混合し、ナイロン塩を製造する。この際、上記の反応原料に含まれる全てのカルボキシル基のモル数(X)と全てのアミノ基のモル数(Y)が下記の式(2)
  -0.5≦[(Y-X)/Y]×100≦2.0   (2)
を満足するようにすると、末端アミノ基含量([NH])が5~60μモル/gであるポリアミド(A)を製造し易くなり好ましい。次に、生成したナイロン塩を200~250℃の温度に加熱し、濃硫酸中30℃における極限粘度[η]が0.10~0.60dL/gのプレポリマーとし、さらに高重合度化することにより、本発明において使用されるポリアミド(A)を得ることができる。プレポリマーの極限粘度[η]が0.10~0.60dL/gの範囲内にあると、高重合度化の段階においてカルボキシル基とアミノ基のモルバランスのずれや重合速度の低下が少なく、さらに分子量分布の小さい、各種性能や成形性により優れたポリアミド(A)が得られる。高重合度化の段階を固相重合法により行う場合、減圧下または不活性ガス流通下に行うことが好ましく、重合温度が200~280℃の範囲内であれば、重合速度が大きく、生産性に優れ、着色およびゲル化を有効に抑制することができる。また、高重合度化の段階を溶融押出機により行う場合、重合温度は370℃以下であることが好ましく、かかる条件で重合を行うと、ポリアミドの分解がほとんどなく、劣化の少ないポリアミド(A)が得られる。
A polyamide (A) containing a dicarboxylic acid unit and a diamine unit and having a terminal amino group content ([NH 2 ]) in the above-described range can be produced, for example, as follows.
First, a dicarboxylic acid, a diamine, and optionally an aminocarboxylic acid, a lactam, a catalyst, and a terminal blocking agent are mixed to produce a nylon salt. At this time, the number of moles (X) of all carboxyl groups and the number of moles (Y) of all amino groups contained in the reaction raw material are represented by the following formula (2)
−0.5 ≦ [(Y−X) / Y] × 100 ≦ 2.0 (2)
Is satisfied, it is easy to produce a polyamide (A) having a terminal amino group content ([NH 2 ]) of 5 to 60 μmol / g, which is preferable. Next, the produced nylon salt is heated to a temperature of 200 to 250 ° C. to obtain a prepolymer having an intrinsic viscosity [η] at 30 ° C. in concentrated sulfuric acid of 0.10 to 0.60 dL / g, and the degree of polymerization is further increased. Thus, the polyamide (A) used in the present invention can be obtained. When the intrinsic viscosity [η] of the prepolymer is in the range of 0.10 to 0.60 dL / g, there is little shift in the molar balance of carboxyl groups and amino groups and a decrease in polymerization rate at the stage of increasing the degree of polymerization. Furthermore, polyamide (A) excellent in various performance and moldability with a small molecular weight distribution can be obtained. When the polymerization degree is increased by the solid phase polymerization method, it is preferably performed under reduced pressure or under an inert gas flow. When the polymerization temperature is in the range of 200 to 280 ° C., the polymerization rate is high and the productivity is increased. And can effectively suppress coloring and gelation. Further, when the polymerization degree is increased by a melt extruder, the polymerization temperature is preferably 370 ° C. or less. When polymerization is performed under such conditions, polyamide is hardly decomposed and polyamide (A) having little deterioration. Is obtained.
 また、末端アミノ基含量([NH])が異なる複数種のポリアミドを併用することによっても、所望とする末端アミノ基含量([NH])を有するポリアミド(A)とすることができる。 Also, the terminal amino group content ([NH 2]) is also by combining a plurality of different kinds of polyamides, it may be polyamide (A) having a terminal amino group content of the desired ([NH 2]).
 本発明のポリアミド樹脂組成物中におけるポリアミド(A)の配合量は、耐薬液性、耐熱性および機械的強度を付与する観点から、好ましくは50質量%以上であり、より好ましくは55質量%以上、さらに好ましくは60質量%以上、さらに好ましくは70質量%以上である。また、モノカルボジイミド(B1)およびポリカルボジイミド(B2)を配合して耐薬液性を向上させる観点から、ポリアミド樹脂組成物中のポリアミド(A)の配合量は、好ましくは99.5質量%以下、より好ましくは99質量%以下である。 The blending amount of the polyamide (A) in the polyamide resin composition of the present invention is preferably 50% by mass or more, more preferably 55% by mass or more from the viewpoint of imparting chemical resistance, heat resistance and mechanical strength. More preferably, it is 60% by mass or more, more preferably 70% by mass or more. Further, from the viewpoint of improving the chemical resistance by blending the monocarbodiimide (B1) and the polycarbodiimide (B2), the blending amount of the polyamide (A) in the polyamide resin composition is preferably 99.5% by mass or less. More preferably, it is 99 mass% or less.
<モノカルボジイミド(B1)>
 本発明に用いるモノカルボジイミド(B1)は、-N=C=N-で示されるカルボジイミド基を分子内に1つ有する化合物であり、例えば、下記一般式(I)で表される化合物が挙げられる。
   R-N=C=N-R    (I)
 一般式(I)中、RおよびRは、それぞれ独立に1価の炭化水素基を示す。該炭化水素基としては、鎖状脂肪族基、脂環式構造含有脂肪族基、および芳香環含有基が挙げられる。該鎖状脂肪族基および脂環式構造含有脂肪族基は、飽和脂肪族基が好ましい。鎖状脂肪族基の炭素数は好ましくは3以上、より好ましくは3~20、さらに好ましくは3~12であり、脂環式構造含有脂肪族基および芳香環含有基の炭素数は好ましくは5以上、より好ましくは6~20、さらに好ましくは6~12である。また当該炭化水素基は、アミノ基、水酸基、アルコキシ基などの置換基を有していてもよい。RおよびRは互いに異なっていてもよいが、同一であることが好ましい。
 当該モノカルボジイミド(B1)としては、脂肪族モノカルボジイミド、芳香族モノカルボジイミド、またはこれらの混合物が挙げられる。
<Monocarbodiimide (B1)>
The monocarbodiimide (B1) used in the present invention is a compound having one carbodiimide group represented by —N═C═N— in the molecule, and examples thereof include compounds represented by the following general formula (I). .
R 1 —N═C═N—R 2 (I)
In general formula (I), R 1 and R 2 each independently represent a monovalent hydrocarbon group. Examples of the hydrocarbon group include a chain aliphatic group, an alicyclic structure-containing aliphatic group, and an aromatic ring-containing group. The chain aliphatic group and the alicyclic structure-containing aliphatic group are preferably saturated aliphatic groups. The chain aliphatic group preferably has 3 or more carbon atoms, more preferably 3 to 20, more preferably 3 to 12, and the alicyclic structure-containing aliphatic group and aromatic ring-containing group preferably have 5 carbon atoms. More preferably, it is 6-20, and more preferably 6-12. Moreover, the said hydrocarbon group may have substituents, such as an amino group, a hydroxyl group, and an alkoxy group. R 1 and R 2 may be different from each other but are preferably the same.
Examples of the monocarbodiimide (B1) include aliphatic monocarbodiimides, aromatic monocarbodiimides, and mixtures thereof.
 脂肪族モノカルボジイミドとしては、上記一般式(I)においてRおよびRがともに鎖状脂肪族基または脂環式構造含有脂肪族基であるカルボジイミドが好ましい。該鎖状脂肪族基および脂環式構造含有脂肪族基は、飽和脂肪族基が好ましく、アルキル基およびシクロアルキル基からなる群から選ばれる少なくとも1種がより好ましい。アルキル基の炭素数は好ましくは3以上、より好ましくは3~20、さらに好ましくは3~12であり、シクロアルキル基の炭素数は好ましくは5以上、より好ましくは6~20、さらに好ましくは6~12である。
 脂肪族モノカルボジイミドの具体例としては、ジイソプロピルカルボジイミド、ジイソブチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジ-t-ブチルカルボジイミド、ジオクチルカルボジイミド、N,N’-ジオクチルデシルカルボジイミド、N,N’-ジシクロヘキシルカルボジイミド等が挙げられる。
The aliphatic monocarbodiimide is preferably a carbodiimide in which R 1 and R 2 are both a chain aliphatic group or an alicyclic structure-containing aliphatic group in the general formula (I). The chain aliphatic group and the alicyclic structure-containing aliphatic group are preferably saturated aliphatic groups, and more preferably at least one selected from the group consisting of alkyl groups and cycloalkyl groups. The alkyl group preferably has 3 or more carbon atoms, more preferably 3 to 20, more preferably 3 to 12, and the cycloalkyl group preferably 5 or more carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 carbon atoms. ~ 12.
Specific examples of the aliphatic monocarbodiimide include diisopropylcarbodiimide, diisobutylcarbodiimide, t-butylisopropylcarbodiimide, di-t-butylcarbodiimide, dioctylcarbodiimide, N, N′-dioctyldecylcarbodiimide, N, N′-dicyclohexylcarbodiimide and the like. Can be mentioned.
 芳香族モノカルボジイミドとしては、上記一般式(I)においてRおよびRの少なくとも一方がアリール基であるカルボジイミドが好ましく、RおよびRがともにアリール基であるカルボジイミドがより好ましい。該アリール基の炭素数は好ましくは5以上、より好ましくは6~20、さらに好ましくは6~12である。
 芳香族モノカルボジイミドの具体例としては、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド、N,N’-ジフェニルカルボジイミド、N,N’-ジ-2,6-ジメチルフェニルカルボジイミド、N,N’-ジ-2,6-ジ-tert-ブチルフェニルカルボジイミド、N-トリル-N’-フェニルカルボジイミド、N,N’-ジ-p-ニトロフェニルカルボジイミド、N,N’-ジ-p-アミノフェニルカルボジイミド、N,N’-ジ-p-ヒドロキシフェニルカルボジイミド、N-オクタデシル-N’-フェニルカルボジイミド、N-ベンジル-N’-フェニルカルボジイミド、N,N’-ジ-o-エチルフェニルカルボジイミド、N,N’-ジ-p-エチルフェニルカルボジイミド、N,N’-ジ-o-イソプロピルフェニルカルボジイミド、N,N’-ジ-p-イソプロピルフェニルカルボジイミド、N,N’-ジ-o-イソブチルフェニルカルボジイミド、N,N’-ジ-p-イソブチルフェニルカルボジイミド、N,N’-ジ-2,6-ジエチルフェニルカルボジイミド、N,N’-ジ-2-エチル-6-イソプロピルフェニルカルボジイミド、N,N’-ジ-2-イソブチル-6-イソプロピルフェニルカルボジイミド、N,N’-ジ-2,4,6-トリメチルフェニルカルボジイミド、N,N’-ジ-2,4,6-トリイソプロピルフェニルカルボジイミド、N,N’-ジ-2,4,6-トリイソブチルフェニルカルボジイミド、ジ-β-ナフチルカルボジイミド、N,N’-ジ-o-トリルカルボジイミド、N-トリル-N’-シクロヘキシルカルボジイミド、N,N’-ジ-p-トリルカルボジイミド、N-オクタデシル-N’-トリルカルボジイミド、N-シクロヘキシル-N’-トリルカルボジイミド、N-ベンジル-N’-トリルカルボジイミド等が挙げられる。
As the aromatic monocarbodiimide, a carbodiimide in which at least one of R 1 and R 2 in the general formula (I) is an aryl group is preferable, and a carbodiimide in which both R 1 and R 2 are aryl groups is more preferable. The aryl group preferably has 5 or more carbon atoms, more preferably 6 to 20, and still more preferably 6 to 12.
Specific examples of the aromatic monocarbodiimide include N, N′-di-2,6-diisopropylphenylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, N, N'-di-2,6-di-tert-butylphenylcarbodiimide, N-tolyl-N'-phenylcarbodiimide, N, N'-di-p-nitrophenylcarbodiimide, N, N'-di-p-amino Phenylcarbodiimide, N, N′-di-p-hydroxyphenylcarbodiimide, N-octadecyl-N′-phenylcarbodiimide, N-benzyl-N′-phenylcarbodiimide, N, N′-di-o-ethylphenylcarbodiimide, N , N′-di-p-ethylphenylcarbodiimide, N, N′-di-o-isopropylphenylcarbodiimide N, N'-di-p-isopropylphenylcarbodiimide, N, N'-di-o-isobutylphenylcarbodiimide, N, N'-di-p-isobutylphenylcarbodiimide, N, N'-di-2, 6-diethylphenylcarbodiimide, N, N′-di-2-ethyl-6-isopropylphenylcarbodiimide, N, N′-di-2-isobutyl-6-isopropylphenylcarbodiimide, N, N′-di-2,4 , 6-trimethylphenylcarbodiimide, N, N′-di-2,4,6-triisopropylphenylcarbodiimide, N, N′-di-2,4,6-triisobutylphenylcarbodiimide, di-β-naphthylcarbodiimide, N, N'-di-o-tolylcarbodiimide, N-tolyl-N'-cyclohexylcarbodiimide, N, N'-di-p- Lil carbodiimide, N- octadecyl -N'- tolyl carbodiimide, N- cyclohexyl -N'- tolyl carbodiimide, N- benzyl -N'- tolyl carbodiimide, and the like.
 モノカルボジイミド(B1)は、1種を単独で、又は2種以上を組み合わせて用いることもできる。
 上記モノカルボジイミドの中でも、反応性、耐薬液性の観点からは芳香族モノカルボジイミドが好ましく、前記一般式(I)においてRおよびRが炭素数6~12のアリール基である芳香族モノカルボジイミドがより好ましく、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド、N,N’-ジフェニルカルボジイミド、N,N’-ジ-2,6-ジメチルフェニルカルボジイミド、およびN,N’-ジ-2,6-ジ-tert-ブチルフェニルカルボジイミドからなる群から選ばれる少なくとも1種がさらに好ましく、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドがさらに好ましい。
Monocarbodiimide (B1) can also be used individually by 1 type or in combination of 2 or more types.
Among the above monocarbodiimides, aromatic monocarbodiimides are preferable from the viewpoint of reactivity and chemical resistance, and aromatic monocarbodiimides in which R 1 and R 2 in the general formula (I) are aryl groups having 6 to 12 carbon atoms. N, N′-di-2,6-diisopropylphenylcarbodiimide, N, N′-diphenylcarbodiimide, N, N′-di-2,6-dimethylphenylcarbodiimide, and N, N′-di- At least one selected from the group consisting of 2,6-di-tert-butylphenylcarbodiimide is more preferable, and N, N′-di-2,6-diisopropylphenylcarbodiimide is more preferable.
<ポリカルボジイミド(B2)>
 本発明に用いるポリカルボジイミド(B2)は、-N=C=N-で示されるカルボジイミド基を分子内に2つ以上有する化合物である。ポリカルボジイミドの重合度は2以上であれば特に制限はないが、好ましくは2~50、より好ましくは2~40、さらに好ましくは3~30、よりさらに好ましくは5~20である。
 ポリカルボジイミド(B2)は、より具体的には、下記一般式(II)で表される繰り返し単位を有する化合物が好ましい。
<Polycarbodiimide (B2)>
The polycarbodiimide (B2) used in the present invention is a compound having two or more carbodiimide groups represented by —N═C═N— in the molecule. The degree of polymerization of the polycarbodiimide is not particularly limited as long as it is 2 or more, but is preferably 2 to 50, more preferably 2 to 40, still more preferably 3 to 30, and still more preferably 5 to 20.
More specifically, the polycarbodiimide (B2) is preferably a compound having a repeating unit represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(II)中、Xは、2価の炭化水素基を示す。該炭化水素基としては、鎖状脂肪族基、脂環式構造含有脂肪族基、および芳香環含有基が挙げられる。鎖状脂肪族基の炭素数は1以上であり、好ましくは1~20、より好ましくは6~18であり、脂環式構造含有脂肪族基および芳香環含有基の炭素数は好ましくは5以上、より好ましくは6~20、さらに好ましくは6~18である。該炭化水素基は、アミノ基、水酸基、アルコキシ基などの置換基を有していてもよい。 In the general formula (II), X 1 represents a divalent hydrocarbon group. Examples of the hydrocarbon group include a chain aliphatic group, an alicyclic structure-containing aliphatic group, and an aromatic ring-containing group. The chain aliphatic group has 1 or more carbon atoms, preferably 1 to 20, more preferably 6 to 18, and the alicyclic structure-containing aliphatic group and aromatic ring-containing group preferably have 5 or more carbon atoms. More preferably, it is 6-20, and more preferably 6-18. The hydrocarbon group may have a substituent such as an amino group, a hydroxyl group, or an alkoxy group.
 ポリカルボジイミド(B2)としては、脂肪族ポリカルボジイミド、芳香族ポリカルボジイミド、またはこれらの混合物が挙げられる。
 脂肪族ポリカルボジイミドとしては、上記一般式(II)で表される繰り返し単位を有し、Xが鎖状脂肪族基または脂環式構造含有脂肪族基であるポリカルボジイミドが好ましい。Xは、炭素数3~18のアルキレン基、下記一般式(1)で表される2価の基、および下記一般式(2)で表される2価の基からなる群から選ばれる基であることがより好ましく、下記一般式(2)で表される2価の基であることがさらに好ましい。
Examples of the polycarbodiimide (B2) include aliphatic polycarbodiimide, aromatic polycarbodiimide, or a mixture thereof.
As the aliphatic polycarbodiimide, a polycarbodiimide having a repeating unit represented by the general formula (II) and having X 1 as a chain aliphatic group or an alicyclic structure-containing aliphatic group is preferable. X 1 is a group selected from the group consisting of an alkylene group having 3 to 18 carbon atoms, a divalent group represented by the following general formula (1), and a divalent group represented by the following general formula (2) It is more preferable that it is a divalent group represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(1)および一般式(2)中、Ra1~Ra5は、それぞれ独立に、単結合、または炭素数1~8のアルキレン基である。一般式(1)中のRa1およびRa2は、好ましくは単結合である。一般式(2)中のRa3およびRa5は、好ましくは単結合であり、Ra4は、好ましくは炭素数1~6のアルキレン基、より好ましくは炭素数1~3のアルキレン基である。 In the general formulas (1) and (2), R a1 to R a5 are each independently a single bond or an alkylene group having 1 to 8 carbon atoms. R a1 and R a2 in the general formula (1) are preferably single bonds. R a3 and R a5 in the general formula (2) are preferably single bonds, and R a4 is preferably an alkylene group having 1 to 6 carbon atoms, more preferably an alkylene group having 1 to 3 carbon atoms.
 芳香族ポリカルボジイミドとしては、上記一般式(II)で表される繰り返し単位を有し、Xが下記一般式(3)で表される2価の基、および下記一般式(4)で表される2価の基からなる群から選ばれる基であることがより好ましく、下記一般式(3)で表される2価の基であることがさらに好ましい。 The aromatic polycarbodiimide has a repeating unit represented by the above general formula (II), and X 1 is represented by a divalent group represented by the following general formula (3) and the following general formula (4). The divalent group is more preferably a group selected from the group consisting of divalent groups, and more preferably a divalent group represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)中、Rb1~Rb3は、それぞれ独立に、水素原子、または炭素数1~6のアルキル基である。一般式(4)中、Rb4は、単結合、炭素数1~8のアルキレン基、または炭素数6~8のアリーレン基である。一般式(3)中のRb1~Rb3は、好ましくは水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、またはt-ブチル基であり、Rb1~Rb3がいずれもイソプロピル基であることがより好ましい。一般式(4)中のRb4は、好ましくは単結合、炭素数1~6のアルキレン基、またはフェニレン基である。 In the general formula (3), R b1 to R b3 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. In the general formula (4), R b4 is a single bond, an alkylene group having 1 to 8 carbon atoms, or an arylene group having 6 to 8 carbon atoms. R b1 to R b3 in the general formula (3) are preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a t-butyl group. It is more preferable that all of b1 to Rb3 are isopropyl groups. R b4 in the general formula (4) is preferably a single bond, an alkylene group having 1 to 6 carbon atoms, or a phenylene group.
 ポリカルボジイミド(B2)は、1種を単独で、または2種以上を組み合わせて用いることもできる。
 上記の中でも、得られる成形体の柔軟性の観点からは脂肪族ポリカルボジイミドが好ましい。また、反応性、耐薬液性の観点からは芳香族ポリカルボジイミドが好ましく、下記式(II-3)で表される繰り返し単位を有する芳香族ポリカルボジイミドがより好ましい。
Polycarbodiimide (B2) can also be used individually by 1 type or in combination of 2 or more types.
Among these, aliphatic polycarbodiimide is preferable from the viewpoint of the flexibility of the obtained molded body. In view of reactivity and chemical resistance, aromatic polycarbodiimide is preferable, and aromatic polycarbodiimide having a repeating unit represented by the following formula (II-3) is more preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ポリカルボジイミドは、種々の方法で製造することができる。例えば、有機ジイソシアネートの脱二酸化炭素を伴う縮合反応により、イソシアネート末端を有するポリカルボジイミドを製造する方法が挙げられる。ポリカルボジイミドの原料である有機ジイソシアネートとしては、例えば、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,5-ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート、メチレンビス(4,1-シクロへキシレン)ジイソシアネート等を挙げることができる。有機ジイソシアネートは、1種または2種以上を用いることができる。 Polycarbodiimide can be produced by various methods. For example, a method for producing a polycarbodiimide having an isocyanate terminal by a condensation reaction involving decarbonization of an organic diisocyanate can be mentioned. Examples of organic diisocyanates that are raw materials for polycarbodiimides include 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, and 2,4-triisocyanate. Diisocyanate, 2,6-tolylene diisocyanate, 1,5-naphthalene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4-diisocyanate, methylcyclohexane diisocyanate, Tetramethylxylylene diisocyanate, 2,6-diisopropylphenyl isocyanate, 1,3,5-triisopropyl Pirubenzen-2,4-diisocyanate, can be mentioned methylenebis (4,1-cyclohexylene) diisocyanate. 1 type (s) or 2 or more types can be used for organic diisocyanate.
 さらに、上記イソシアネート末端ポリカルボジイミドの末端イソシアネート基を、末端封止剤を用いて、残存する末端イソシアネート基の全て、または、一部を封止することもできる。末端封止剤としては、モノイソシアネート化合物が好ましく、例えば、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、ジイソプロピルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート等が挙げられる。
 イソシアネート末端ポリカルボジイミドの末端イソシアネート基をモノイソシアネート化合物で封止した場合、下記一般式(II-a)で表されるポリカルボジイミドを得ることができる。
Furthermore, the terminal isocyanate groups of the isocyanate-terminated polycarbodiimide can be sealed with all or part of the remaining terminal isocyanate groups using a terminal blocking agent. The end-capping agent is preferably a monoisocyanate compound, and examples thereof include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, diisopropylphenyl isocyanate, cyclohexyl isocyanate, and butyl isocyanate.
When the terminal isocyanate group of the isocyanate-terminated polycarbodiimide is sealed with a monoisocyanate compound, a polycarbodiimide represented by the following general formula (II-a) can be obtained.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(II-a)中、Xは前記と同じである。R’およびR”は、モノイソシアネート化合物のイソシアネート基を除く残基である。R’およびR”は互いに同一でも異なっていてもよい。nは{ポリカルボジイミドの重合度-1}の数である。 In the general formula (II-a), X 1 is the same as described above. R ′ and R ″ are residues other than the isocyanate group of the monoisocyanate compound. R ′ and R ″ may be the same as or different from each other. n is the number of {degree of polymerization of polycarbodiimide-1}.
 本発明のポリアミド樹脂組成物中のモノカルボジイミド(B1)およびポリカルボジイミド(B2)の配合量は、前記ポリアミド(A)100質量部に対し、好ましくは0.5~25質量部、より好ましくは1~10質量部、さらに好ましくは1~5質量部、さらに好ましくは1~3質量部である。ポリアミド(A)100質量部に対するモノカルボジイミド(B1)およびポリカルボジイミド(B2)の配合量が合計で0.5質量部以上であれば、耐薬液性が良好である。また当該配合量が合計で25質量部以下であれば、ポリアミド(A)に由来する耐熱性や機械的強度を維持できる。
 また、前記モノカルボジイミド(B1)とポリカルボジイミド(B2)の質量比(B1)/(B2)は、好ましくは1:0.1~1:10、より好ましくは1:0.2~1:5、さらに好ましくは1:0.5~1:2の範囲である。質量比(B1)/(B2)が上記範囲であれば、ポリアミド(A)の末端基、および、後述するエラストマー(C)の酸変性部分との反応バランスが良好であるため耐薬液性が向上する。
The blending amount of monocarbodiimide (B1) and polycarbodiimide (B2) in the polyamide resin composition of the present invention is preferably 0.5 to 25 parts by mass, more preferably 1 to 100 parts by mass of the polyamide (A). It is ˜10 parts by mass, more preferably 1 to 5 parts by mass, and further preferably 1 to 3 parts by mass. If the total amount of monocarbodiimide (B1) and polycarbodiimide (B2) to 100 parts by mass of polyamide (A) is 0.5 parts by mass or more, the chemical resistance is good. Moreover, if the said compounding quantity is 25 mass parts or less in total, the heat resistance and mechanical strength originating in a polyamide (A) can be maintained.
The mass ratio (B1) / (B2) of the monocarbodiimide (B1) to the polycarbodiimide (B2) is preferably 1: 0.1 to 1:10, more preferably 1: 0.2 to 1: 5. More preferably, it is in the range of 1: 0.5 to 1: 2. If mass ratio (B1) / (B2) is the said range, since the reaction balance with the terminal group of polyamide (A) and the acid-modified part of elastomer (C) mentioned later is good, chemical-resistant property improves. To do.
<エラストマー(C)>
 本発明のポリアミド樹脂組成物には、該樹脂組成物により構成される薬液輸送用チューブ、コネクターなどの成形体に耐衝撃性および伸び特性を付与する観点から、さらにエラストマー(C)を配合することが好ましい。本発明に用いるエラストマー(C)としては、例えばゴム状重合体が挙げられ、ASTM D-790に準拠して測定した曲げ弾性率が500MPa以下であるものが好ましい。
 具体的には、α-オレフィン系共重合体、(エチレンおよび/またはプロピレン)/(α,β-不飽和カルボン酸および/または不飽和カルボン酸エステル)系共重合体、アイオノマー、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体などが挙げられる。また、これらをカルボキシル基および/または酸無水物基を有する不飽和化合物で変性した重合体でもよい。これらのエラストマー(C)は、1種を単独で、または2種以上を組み合わせて用いることができる。
<Elastomer (C)>
In the polyamide resin composition of the present invention, an elastomer (C) is further blended from the viewpoint of imparting impact resistance and elongation characteristics to a molded article such as a chemical solution transporting tube and a connector composed of the resin composition. Is preferred. Examples of the elastomer (C) used in the present invention include rubbery polymers, and those having a flexural modulus of 500 MPa or less as measured in accordance with ASTM D-790 are preferred.
Specifically, α-olefin copolymer, (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer, ionomer, aromatic vinyl compound / Conjugated diene compound-based block copolymer. Moreover, the polymer which modified | denatured these with the unsaturated compound which has a carboxyl group and / or an acid anhydride group may be sufficient. These elastomers (C) can be used alone or in combination of two or more.
 上記のα-オレフィン系共重合体としては、エチレンと炭素数3以上のα-オレフィンとの共重合体や、プロピレンと炭素数4以上のα-オレフィンとの共重合体などが挙げられる。α-オレフィン系共重合体としては、エチレンと炭素数3以上のα-オレフィンとの共重合体が好ましい。
 炭素数3以上のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンが挙げられる。これらは1種または2種以上を用いることができる。上記の中でも、炭素数3以上のα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテンおよび1-オクテンからなる群から選ばれる少なくとも1種が好ましく、1-ブテンがより好ましい。
Examples of the α-olefin copolymer include a copolymer of ethylene and an α-olefin having 3 or more carbon atoms, and a copolymer of propylene and an α-olefin having 4 or more carbon atoms. The α-olefin copolymer is preferably a copolymer of ethylene and an α-olefin having 3 or more carbon atoms.
Examples of the α-olefin having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene and 1-dodecene. 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene , 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, and 12-ethyl-1-tetradecene. These can use 1 type (s) or 2 or more types. Among these, the α-olefin having 3 or more carbon atoms is preferably at least one selected from the group consisting of propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene. Is more preferable.
 また、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン等の非共役ジエンのポリエンを共重合してもよい。これらは1種または2種以上を用いることができる。 In addition, 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, 2-methyl-1, 5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 4,8-dimethyl-1,4,8- Decatriene (DMDT), dicyclopentadiene, cyclohexadiene, cyclooctadiene, 5-vinylnorbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl -5-isopropenyl-2-norbornene, 2,3-diisopropylidene-5-norbornene, 2- Chiriden -3-isopropylidene-5-norbornene may be copolymerized non-conjugated diene polyene such as 2-propenyl-2,5-norbornadiene. These can use 1 type (s) or 2 or more types.
 上記の(エチレンおよび/またはプロピレン)/(α,β-不飽和カルボン酸および/または不飽和カルボン酸エステル)系共重合体は、エチレンおよび/またはプロピレンとα,β-不飽和カルボン酸および/または不飽和カルボン酸エステル単量体を共重合した重合体であり、α,β-不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸などが挙げられ、α,β-不飽和カルボン酸エステル単量体としては、これら不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等が挙げられる。これらは1種または2種以上を用いることができる。 The above (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) -based copolymer includes ethylene and / or propylene and α, β-unsaturated carboxylic acid and / or Or a polymer obtained by copolymerizing an unsaturated carboxylic acid ester monomer. Examples of the α, β-unsaturated carboxylic acid monomer include acrylic acid and methacrylic acid, and α, β-unsaturated carboxylic acid. Examples of the ester monomer include methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, nonyl ester, and decyl ester of these unsaturated carboxylic acids. These can use 1 type (s) or 2 or more types.
 上記のアイオノマーは、オレフィンとα,β-不飽和カルボン酸共重合体のカルボキシル基の少なくとも一部が金属イオンの中和によりイオン化されたものである。オレフィンとしては、エチレンが好ましく用いられ、α,β-不飽和カルボン酸としては、アクリル酸、メタクリル酸が好ましく用いられるが、ここに例示したものに限定されるものではなく、不飽和カルボン酸エステル単量体が共重合されていてもよい。また、金属イオンはLi、Na、K、Mg、Ca、Sr、Ba等のアルカリ金属、アルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cd等が挙げられる。これらは1種または2種以上を用いることができる。 The above ionomer is obtained by ionizing at least part of the carboxyl group of the olefin and the α, β-unsaturated carboxylic acid copolymer by neutralization of metal ions. As the olefin, ethylene is preferably used, and as the α, β-unsaturated carboxylic acid, acrylic acid and methacrylic acid are preferably used. However, the olefin is not limited to those exemplified here. The monomer may be copolymerized. Metal ions include alkali metals such as Li, Na, K, Mg, Ca, Sr, Ba, alkaline earth metals, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc. Is mentioned. These can use 1 type (s) or 2 or more types.
 また、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体は、芳香族ビニル化合物系重合体ブロックと共役ジエン系重合体ブロックからなるブロック共重合体であり、芳香族ビニル化合物系重合体ブロックを少なくとも1個と、共役ジエン系重合体ブロックを少なくとも1個有するブロック共重合体が用いられる。また、上記のブロック共重合体では、共役ジエン系重合体ブロックにおける不飽和結合が水素添加されていてもよい。 The aromatic vinyl compound / conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene polymer block. A block copolymer having at least one and at least one conjugated diene polymer block is used. In the block copolymer, the unsaturated bond in the conjugated diene polymer block may be hydrogenated.
 芳香族ビニル化合物系重合体ブロックは、芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックである。その場合の芳香族ビニル化合物としては、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン、ビニルアントラセン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン等が挙げられ、これらは1種または2種以上を用いることができる。また、芳香族ビニル化合物系重合体ブロックは、場合により少量の他の不飽和単量体からなる構造単位を有していてもよい。共役ジエン系重合体ブロックは、ブタジエン、クロロプレン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン化合物の1種または2種以上から形成された重合体ブロックであり、水素添加した芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体では、その共役ジエン重合体ブロックにおける不飽和結合部分の一部または全部が水素添加されている。 The aromatic vinyl compound polymer block is a polymer block mainly composed of structural units derived from an aromatic vinyl compound. In this case, the aromatic vinyl compound includes styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propylstyrene, Examples include 4-cyclohexyl styrene, 4-dodecyl styrene, 2-ethyl-4-benzyl styrene, 4- (phenylbutyl) styrene, and the like, and one or more of them can be used. In addition, the aromatic vinyl compound-based polymer block may optionally have a structural unit composed of a small amount of other unsaturated monomer. Conjugated diene polymer blocks are conjugated such as butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, etc. A polymer block formed from one or more diene compounds. In a hydrogenated aromatic vinyl compound / conjugated diene compound-based block copolymer, one of unsaturated bonds in the conjugated diene polymer block. Part or all is hydrogenated.
 芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体およびその水素添加物の分子構造は、直鎖状、分岐状、放射状、またはそれら任意の組み合わせのいずれであってもよい。これらの中でも、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体および/またはその水素添加物として、1個の芳香族ビニル化合物系重合体ブロックと1個の共役ジエン系重合体ブロックが直鎖状に結合したジブロック共重合体、芳香族ビニル化合物系重合体ブロック-共役ジエン系重合体ブロック-芳香族ビニル化合物系重合体ブロックの順に3つの重合体ブロックが直鎖状に結合しているトリブロック共重合体、およびそれらの水素添加物の1種または2種以上が好ましく用いられ、未水添または水添スチレン/ブタジエンブロック共重合体、未水添または水添スチレン/イソプレンブロック共重合体、未水添または水添スチレン/イソプレン/スチレンブロック共重合体、未水添または水添スチレン/ブタジエン/スチレンブロック共重合体、未水添または水添スチレン/イソプレン/ブタジエン/スチレンブロック共重合体等が挙げられる。 The molecular structure of the aromatic vinyl compound / conjugated diene compound block copolymer and the hydrogenated product thereof may be any of linear, branched, radial, or any combination thereof. Among these, as an aromatic vinyl compound / conjugated diene compound block copolymer and / or a hydrogenated product thereof, one aromatic vinyl compound polymer block and one conjugated diene polymer block are linear. The three polymer blocks are linearly bonded in this order: diblock copolymer, aromatic vinyl compound polymer block-conjugated diene polymer block-aromatic vinyl compound polymer block. One or more of triblock copolymers and hydrogenated products thereof are preferably used. Unhydrogenated or hydrogenated styrene / butadiene block copolymer, unhydrogenated or hydrogenated styrene / isoprene block copolymer Copolymer, unhydrogenated or hydrogenated styrene / isoprene / styrene block copolymer, unhydrogenated or hydrogenated styrene / butadiene / styrene Block copolymers, unhydrogenated or hydrogenated styrene / isoprene / butadiene / styrene block copolymer.
 また、エラストマーとして用いられるα-オレフィン系共重合体、(エチレンおよび/またはプロピレン)/(α,β-不飽和カルボン酸および/または不飽和カルボン酸エステル)系共重合体、アイオノマー、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体は、カルボキシル基および/または酸無水物基を有する不飽和化合物で変性された重合体であることが好ましい。このような成分で変性すると、ポリアミド(A)が有する末端アミノ基と、(C)成分である該重合体が有するカルボキシル基および/または酸無水物基とが反応し、(A)相と(C)相との界面の親和性が強くなり、耐衝撃性と伸び特性が向上する。上記の中でも、α-オレフィン系共重合体をカルボキシル基および/または酸無水物基を有する不飽和化合物で変性した重合体が好ましく、エチレン-ブテン共重合体を当該不飽和化合物で変性した重合体がより好ましい。 Further, α-olefin copolymers used as elastomers, (ethylene and / or propylene) / (α, β-unsaturated carboxylic acids and / or unsaturated carboxylic esters) copolymers, ionomers, aromatic vinyls The compound / conjugated diene compound block copolymer is preferably a polymer modified with an unsaturated compound having a carboxyl group and / or an acid anhydride group. When modified with such a component, the terminal amino group of the polyamide (A) reacts with the carboxyl group and / or the acid anhydride group of the polymer as the component (C), and the (A) phase ( C) The affinity of the interface with the phase is increased, and the impact resistance and elongation characteristics are improved. Among them, a polymer obtained by modifying an α-olefin copolymer with an unsaturated compound having a carboxyl group and / or an acid anhydride group is preferable, and a polymer obtained by modifying an ethylene-butene copolymer with the unsaturated compound. Is more preferable.
 カルボキシル基および/または酸無水物基を有する不飽和化合物により変性された変性重合体(以下、単に「変性重合体」ともいう)におけるカルボキシル基を有する不飽和化合物としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等のα,β-不飽和カルボン酸などが挙げられる。また、酸無水物基を有する不飽和化合物としては、無水マレイン酸、無水イタコン酸等のα,β-不飽和結合を有するジカルボン酸無水物などが挙げられる。カルボキシル基および/または酸無水物基を有する不飽和化合物としては、α,β-不飽和結合を有するジカルボン酸無水物が好ましく、無水マレイン酸がより好ましい。 Examples of the unsaturated compound having a carboxyl group in a modified polymer modified with an unsaturated compound having a carboxyl group and / or an acid anhydride group (hereinafter, also simply referred to as “modified polymer”) include acrylic acid, methacrylic acid, and the like. Examples include α, β-unsaturated carboxylic acids such as acid, maleic acid, fumaric acid, and itaconic acid. Examples of the unsaturated compound having an acid anhydride group include dicarboxylic anhydrides having an α, β-unsaturated bond such as maleic anhydride and itaconic anhydride. The unsaturated compound having a carboxyl group and / or an acid anhydride group is preferably a dicarboxylic acid anhydride having an α, β-unsaturated bond, and more preferably maleic anhydride.
 上記変性重合体における、カルボキシル基および酸無水物基の含有量は、25~200μモル/gの範囲内にあることが好ましく、50~100μモル/gの範囲内にあることがより好ましい。上記した官能基の含有量が25μモル/g以上であれば、耐衝撃性の改良効果が充分であり、一方200μモル/g以下であれば、得られるポリアミド樹脂組成物の流動性が低下して成形性が低下することを回避できる。 The content of carboxyl groups and acid anhydride groups in the modified polymer is preferably in the range of 25 to 200 μmol / g, and more preferably in the range of 50 to 100 μmol / g. If the content of the functional group is 25 μmol / g or more, the effect of improving the impact resistance is sufficient. On the other hand, if the content is 200 μmol / g or less, the fluidity of the resulting polyamide resin composition decreases. Thus, it is possible to avoid a decrease in moldability.
 カルボキシル基および/または酸無水物基を有する不飽和化合物による変性方法としては、上記のα-オレフィン系共重合体、(エチレンおよび/またはプロピレン)/(α,β-不飽和カルボン酸および/または不飽和カルボン酸エステル)系共重合体、アイオノマー、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体(以下「ベース樹脂」ともいう)を製造する際に、カルボキシル基および/または酸無水物基を有する不飽和化合物と共重合させる方法や、上記のベース樹脂にカルボキシル基および/または酸無水物基を有する不飽和化合物をグラフト化反応させる方法が挙げられる。なかでも、上記のベース樹脂にカルボキシル基および/または酸無水物基を有する不飽和化合物をグラフト化反応させる方法が好ましい。 Examples of the modification method using an unsaturated compound having a carboxyl group and / or an acid anhydride group include the above-mentioned α-olefin copolymer, (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or Unsaturated carboxylic acid ester) type copolymer, ionomer, aromatic vinyl compound / conjugated diene compound type block copolymer (hereinafter also referred to as “base resin”), carboxyl group and / or acid anhydride group And a method in which an unsaturated compound having a carboxyl group and / or an acid anhydride group is grafted to the above base resin. Of these, a method in which an unsaturated compound having a carboxyl group and / or an acid anhydride group is grafted to the above base resin is preferable.
 エラストマー(C)は工業的に製造されている市販品を用いることもでき、例えば三井化学(株)製「タフマー」などが挙げられる。 As the elastomer (C), a commercially available product manufactured industrially can be used, and examples thereof include “Tuffmer” manufactured by Mitsui Chemicals.
 本発明のポリアミド樹脂組成物中のエラストマー(C)の配合比は、耐衝撃性および伸び特性を付与する観点から、ポリアミド(A)100質量部に対し、好ましくは1.0質量部以上、より好ましくは5.0質量部以上、さらに好ましくは15質量部以上であり、耐熱性および耐薬液性を維持する観点から、好ましくは80質量部以下、より好ましくは60質量部以下、さらに好ましくは40質量部以下である。
 本発明のポリアミド樹脂組成物を薬液輸送用チューブに用いる場合には、該チューブの柔軟性を向上させる観点から、エラストマー(C)の配合比は、ISO 178に準じ、23℃、50%RHの条件下において測定されるポリアミド樹脂組成物の成形体の曲げ弾性率が2.0GPa以下となる量に調節することが好ましく、1.5GPa以下となる量に調節することがより好ましい。
The blending ratio of the elastomer (C) in the polyamide resin composition of the present invention is preferably 1.0 part by mass or more with respect to 100 parts by mass of the polyamide (A) from the viewpoint of imparting impact resistance and elongation characteristics. Preferably it is 5.0 parts by mass or more, more preferably 15 parts by mass or more, and from the viewpoint of maintaining heat resistance and chemical resistance, it is preferably 80 parts by mass or less, more preferably 60 parts by mass or less, and still more preferably 40 parts by mass. It is below mass parts.
When the polyamide resin composition of the present invention is used for a chemical solution transport tube, from the viewpoint of improving the flexibility of the tube, the blending ratio of the elastomer (C) is 23 ° C. and 50% RH according to ISO 178. It is preferable to adjust to the quantity from which the bending elastic modulus of the molded object of the polyamide resin composition measured on condition will be 2.0 GPa or less, and it is more preferable to adjust to the quantity which will be 1.5 GPa or less.
<その他の成分>
 本発明のポリアミド樹脂組成物には、ポリアミド(A)、モノカルボジイミド(B1)、ポリカルボジイミド(B2)、及びエラストマー(C)以外に、必要に応じて、(A)~(C)成分以外の樹脂、充填剤、結晶核剤、酸化防止剤、着色剤、帯電防止剤、可塑剤、滑剤、難燃剤、難燃助剤などの他の成分を配合してもよい。これらの中でも、薬液輸送用チューブの最内層に用いられるポリアミド樹脂組成物には、酸化防止剤、着色剤、および滑剤からなる群から選ばれる少なくとも1種を配合することが好ましい。また、該薬液輸送用チューブが燃料輸送用である場合、その最内層に用いるポリアミド樹脂組成物には、少なくとも帯電防止剤を配合することが好ましい。
<Other ingredients>
In addition to the polyamide (A), monocarbodiimide (B1), polycarbodiimide (B2), and elastomer (C), the polyamide resin composition of the present invention includes components other than the components (A) to (C) as necessary. Other components such as a resin, a filler, a crystal nucleating agent, an antioxidant, a colorant, an antistatic agent, a plasticizer, a lubricant, a flame retardant, and a flame retardant aid may be blended. Among these, it is preferable to mix | blend at least 1 sort (s) chosen from the group which consists of antioxidant, a coloring agent, and a lubrication agent in the polyamide resin composition used for the innermost layer of the chemical | medical solution transport tube. Further, when the chemical solution transport tube is used for fuel transportation, it is preferable to blend at least an antistatic agent in the polyamide resin composition used for the innermost layer.
 (A)~(C)成分以外の樹脂としては、例えば、ポリアセタール、ポリフェニレンオキシド等のポリエーテル樹脂;ポリスルホン、ポリエーテルスルホン等のポリスルホン樹脂;ポリフェニレンスルフィド、ポリチオエーテルスルホン等のポリチオエーテル系樹脂;ポリエーテルエーテルケトン、ポリアリルエーテルケトン等のポリケトン系樹脂;ポリアクリロニトリル、ポリメタクリロニトリル、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、メタクリロニトリル-ブタジエン-スチレン共重合体等のポリニトリル系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル等のポリメタクリレート系樹脂;ポリ酢酸ビニル等のポリビニルエステル系樹脂;ポリ塩化ビニリデン、ポリ塩化ビニル、塩化ビニル-塩化ビニリデン共重合体、塩化ビニリデン-メチルアクリレート共重合体等のポリ塩化ビニル系樹脂;酢酸セルロース、酪酸セルロース等のセルロース系樹脂;ポリフッ化ビニリデン、ポリフッ化ビニル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、エチレン-クロロトリフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体等のフッ素系樹脂;ポリカーボネート系樹脂;熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド系樹脂;熱可塑性ポリウレタン樹脂;などが挙げられる。 Examples of the resin other than the components (A) to (C) include polyether resins such as polyacetal and polyphenylene oxide; polysulfone resins such as polysulfone and polyethersulfone; polythioether resins such as polyphenylene sulfide and polythioether sulfone; Polyketone resins such as ether ether ketone and polyallyl ether ketone; such as polyacrylonitrile, polymethacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, methacrylonitrile-butadiene-styrene copolymer Polynitrile resins; polymethacrylate resins such as polymethyl methacrylate and polyethyl methacrylate; polyvinyl ester resins such as polyvinyl acetate; polyvinylidene chloride, polychlorinated Polyvinyl chloride resins such as nyl, vinyl chloride-vinylidene chloride copolymer, vinylidene chloride-methyl acrylate copolymer; cellulose resins such as cellulose acetate and cellulose butyrate; polyvinylidene fluoride, polyvinyl fluoride, ethylene-tetrafluoro Fluorine series such as ethylene copolymer, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer Resin; polycarbonate resin; polyimide resin such as thermoplastic polyimide, polyamideimide, and polyetherimide; thermoplastic polyurethane resin; and the like.
 充填剤としては、例えば、ガラス繊維などの繊維状充填剤、炭酸カルシウム、ウォラストナイト、シリカ、シリカアルミナ、アルミナ、二酸化チタン、チタン酸カリウム、水酸化マグネシウム、二硫化モリブデン等の粉末状充填剤;ハイドロタルサイト、ガラスフレーク、マイカ、クレー、モンモリロナイト、カオリン等のフレーク状充填剤などが挙げられる。 Examples of the filler include fibrous fillers such as glass fibers, powder fillers such as calcium carbonate, wollastonite, silica, silica alumina, alumina, titanium dioxide, potassium titanate, magnesium hydroxide, and molybdenum disulfide. A flaky filler such as hydrotalcite, glass flakes, mica, clay, montmorillonite and kaolin;
 結晶核剤としては、ポリアミドの結晶核剤として一般的に使用されるものであれば特に制限されず、例えば、タルク、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸亜鉛、酸化アンチモン、酸化マグネシウム、これらの任意の混合物などが挙げられる。これらのうちでも、ポリアミドの結晶化速度を増大させる効果が大きいことから、タルクが好ましい。結晶核剤は、ポリアミドとの相容性を向上させる目的で、シランカップリング剤、チタンカップリング剤などで処理されていてもよい。 The crystal nucleating agent is not particularly limited as long as it is generally used as a crystal nucleating agent for polyamide. For example, talc, calcium stearate, aluminum stearate, barium stearate, zinc stearate, antimony oxide, oxidation Magnesium, any mixture thereof and the like can be mentioned. Of these, talc is preferred because of its great effect of increasing the crystallization rate of polyamide. The crystal nucleating agent may be treated with a silane coupling agent, a titanium coupling agent or the like for the purpose of improving the compatibility with the polyamide.
 酸化防止剤としては、ポリアミドの酸化防止剤として一般的に使用されるものであれば特に制限されず、例えば、フェノール系酸化防止剤、ベンゾトリアゾール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤、銅系酸化防止剤、およびアミン系酸化防止剤等が挙げられる。これらの中でも、フェノール系酸化防止剤が好ましく、ヒンダードフェノール系化合物がより好ましい。
 ポリアミド樹脂組成物中の酸化防止剤の配合量は、通常0.1~10質量%、好ましくは0.2~5.0質量%の範囲である。
The antioxidant is not particularly limited as long as it is generally used as an antioxidant for polyamide. For example, a phenol-based antioxidant, a benzotriazole-based antioxidant, a sulfur-based antioxidant, a phosphorus-based antioxidant Antioxidants, copper-based antioxidants, amine-based antioxidants and the like can be mentioned. Among these, a phenolic antioxidant is preferable, and a hindered phenolic compound is more preferable.
The blending amount of the antioxidant in the polyamide resin composition is usually 0.1 to 10% by mass, preferably 0.2 to 5.0% by mass.
 着色剤としては、特に制限されず、無機または有機顔料、および染料の中からポリアミド樹脂組成物の用途に応じて適宜選択できる。薬液輸送用チューブに用いられるポリアミド樹脂組成物に配合する着色剤としては、カーボンブラック、ランプブラック、アセチレンブラック、ボーンブラック、サーマルブラック、チャンネルブラック、ファーネスブラック、チタンブラック等の黒色無機顔料が好ましいものとして挙げられる。
 帯電防止剤としては、特に制限されず、有機系のものであっても、無機系のものであってもよい。例えば、有機系帯電防止剤としては、リチウムイオン塩、4級アンモニウム塩、イオン性液体などのイオン性化合物;ポリチオフェン、ポリアニリン、ポリピロール、ポリアセチレン等の電子伝導性高分子化合物などが挙げられる。無機系帯電防止剤としては、ATO、ITO、PTO、GZO、五酸化アンチモン、酸化亜鉛などの金属酸化物系導電剤;カーボンナノチューブ、フラーレンなどの炭素系導電剤が挙げられる。耐熱性の観点からは、無機系帯電防止剤が好ましい。なお、着色剤であるカーボンブラックが帯電防止剤としての機能を兼ねていてもよい。
The colorant is not particularly limited, and can be appropriately selected from inorganic or organic pigments and dyes according to the use of the polyamide resin composition. As the colorant to be blended in the polyamide resin composition used for the chemical solution transport tube, black inorganic pigments such as carbon black, lamp black, acetylene black, bone black, thermal black, channel black, furnace black, titanium black and the like are preferable. As mentioned.
The antistatic agent is not particularly limited, and may be organic or inorganic. For example, examples of the organic antistatic agent include ionic compounds such as lithium ion salts, quaternary ammonium salts, and ionic liquids; and electron conductive polymer compounds such as polythiophene, polyaniline, polypyrrole, and polyacetylene. Examples of the inorganic antistatic agent include metal oxide conductive agents such as ATO, ITO, PTO, GZO, antimony pentoxide, and zinc oxide; and carbon conductive agents such as carbon nanotubes and fullerenes. From the viewpoint of heat resistance, an inorganic antistatic agent is preferred. Note that carbon black, which is a colorant, may also function as an antistatic agent.
 可塑剤としては、ポリアミドの可塑剤として一般的に使用されるものであれば特に制限されず、例えば、ベンゼンスルホン酸アルキルアミド系化合物、トルエンスルホン酸アルキルアミド系化合物、ヒドロキシ安息香酸アルキルエステル系化合物等が挙げられる。 The plasticizer is not particularly limited as long as it is generally used as a plasticizer for polyamides. For example, benzenesulfonic acid alkylamide compounds, toluenesulfonic acid alkylamide compounds, hydroxybenzoic acid alkylester compounds Etc.
 滑剤としては、ポリアミドの滑剤として一般的に使用されるものであれば特に制限されず、例えば、高級脂肪酸系化合物、オキシ脂肪酸系化合物、脂肪酸アミド系化合物、アルキレンビス脂肪酸アミド系化合物、脂肪酸低級アルコールエステル系化合物、金属石鹸系化合物、ポリオレフィンワックスなどが挙げられる。脂肪酸アミド系化合物、例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアリルアミド、エチレンビスステアリルアミドなどは、外部滑性効果に優れるため好ましい。 The lubricant is not particularly limited as long as it is generally used as a lubricant for polyamide. For example, higher fatty acid compounds, oxy fatty acid compounds, fatty acid amide compounds, alkylene bis fatty acid amide compounds, fatty acid lower alcohols. Examples thereof include ester compounds, metal soap compounds, and polyolefin waxes. Fatty acid amide compounds such as stearic acid amide, palmitic acid amide, methylene bisstearyl amide, ethylene bisstearyl amide and the like are preferable because of their excellent external lubricity effect.
 ポリアミド樹脂組成物中のこれらの他の成分の含有量は、50質量%以下であることが好ましく、20質量%以下がより好ましく、5質量%以下がさらに好ましい。 The content of these other components in the polyamide resin composition is preferably 50% by mass or less, more preferably 20% by mass or less, and further preferably 5% by mass or less.
[ポリアミド樹脂組成物の製造方法]
 本発明のポリアミド樹脂組成物の製造方法は特に制限されず、公知の方法を用いることができる。例えば、ポリアミド(A)、モノカルボジイミド(B1)、ポリカルボジイミド(B2)、および必要に応じ配合されるエラストマー(C)ならびにその他成分をドライブレンドした混合物を溶融混練してポリアミド樹脂組成物を調製した後、ペレット化する方法が挙げられる。該ペレットを各種成形に供することにより、ポリアミド樹脂組成物を含む成形体が得られる。
 本発明のポリアミド樹脂組成物の製造方法がポリアミド(A)、モノカルボジイミド(B1)、およびポリカルボジイミド(B2)を含む上記混合物を溶融混練する工程を有することで、溶融混練時にポリアミド(A)の末端基、モノカルボジイミド(B1)、ポリカルボジイミド(B2)、およびエラストマー(C)の変性部分が相互に反応し、得られる樹脂組成物は耐薬液性に優れるものとなる。該溶融混練時の温度および時間は、使用するポリアミド(A)の融点などに応じて適宜調整できる。
[Production Method of Polyamide Resin Composition]
The manufacturing method in particular of the polyamide resin composition of this invention is not restrict | limited, A well-known method can be used. For example, a polyamide resin composition was prepared by melt-kneading a mixture obtained by dry blending polyamide (A), monocarbodiimide (B1), polycarbodiimide (B2), and elastomer (C) blended as necessary and other components. Thereafter, a method of pelletizing is mentioned. By using the pellets for various moldings, a molded body containing the polyamide resin composition can be obtained.
The method for producing a polyamide resin composition of the present invention includes a step of melt-kneading the above-mentioned mixture containing polyamide (A), monocarbodiimide (B1), and polycarbodiimide (B2). The terminal group, the monocarbodiimide (B1), the polycarbodiimide (B2), and the modified portion of the elastomer (C) react with each other, and the resulting resin composition has excellent chemical resistance. The temperature and time during the melt-kneading can be appropriately adjusted according to the melting point of the polyamide (A) used.
 本発明のポリアミド樹脂組成物は、耐薬液性に優れることから、LLCなどのエンジン冷却用冷媒やエアコン用冷媒、SCRシステム用の還元剤溶液、オイル、燃料などの各種薬液の輸送用チューブ、コネクター、インテークパイプ、ブローバイチューブなどに好適に用いられる。 Since the polyamide resin composition of the present invention is excellent in chemical resistance, it is used for transportation of various chemicals such as engine cooling refrigerant such as LLC, refrigerant for air conditioner, reducing agent solution for SCR system, oil, fuel, and connector. It is suitably used for intake pipes, blow-by tubes and the like.
[薬液輸送用チューブ]
 本発明の薬液輸送用チューブは、前述した本発明のポリアミド樹脂組成物により構成された層を少なくとも1層有することを特徴とする。本発明の薬液輸送用チューブは単層チューブでも多層チューブでもよく、耐薬液性の観点から、前記ポリアミド樹脂組成物により構成された単層チューブ、または前記ポリアミド樹脂組成物により構成された層を少なくとも最内層に有する多層チューブであることが好ましい。
[Chemical solution transport tube]
The tube for transporting a chemical solution of the present invention is characterized by having at least one layer composed of the polyamide resin composition of the present invention described above. The chemical solution transport tube of the present invention may be a single-layer tube or a multi-layer tube, and from the viewpoint of chemical resistance, at least a single-layer tube made of the polyamide resin composition or a layer made of the polyamide resin composition. A multilayer tube in the innermost layer is preferable.
 本発明の薬液輸送用チューブを適用できる薬液としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶剤、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコール等のアルコール、フェノール系溶剤、ジメチルエーテル、ジプロピルエーテル、メチル-t-ブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル系溶剤、クロロホルム、塩化メチレン、トリクロロエチレン、二塩化エチレン、パークロルエチレン、モノクロルエタン、ジクロルエタン、テトラクロルエタン、パークロルエタン、クロルベンゼン等のハロゲン系溶剤、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノン等のケトン系溶剤、尿素溶液、ガソリン、灯油、ディーゼルガソリン、含アルコールガソリン、含酸素ガソリン、含アミンガソリン、サワーガソリン、ひまし油ベースブレーキ液、グリコールエーテル系ブレーキ液、ホウ酸エステル系ブレーキ液、極寒地用ブレーキ液、シリコーン油系ブレーキ液、鉱油系ブレーキ液、パワーステアリングオイル、含硫化水素オイル、エンジン冷却液、ウインドウォッシャ液、医薬剤、インク、塗料などが挙げられる。また、上記例示の薬液を成分とする水溶液も薬液に内包されるものとする。 Examples of the chemical solution to which the chemical solution transport tube of the present invention can be applied include aromatic hydrocarbon solvents such as benzene, toluene, xylene, methanol, ethanol, propanol, butanol, pentanol, ethylene glycol, propylene glycol, diethylene glycol, and phenol. , Alcohols such as cresol, polyethylene glycol and polypropylene glycol, phenol solvents, dimethyl ether, dipropyl ether, methyl-t-butyl ether, dioxane, tetrahydrofuran and other ether solvents, chloroform, methylene chloride, trichloroethylene, ethylene dichloride, perchlor Halogen solvents such as ethylene, monochloroethane, dichloroethane, tetrachloroethane, perchloroethane, chlorobenzene, acetone, Ketone solvents such as tilethyl ketone, diethyl ketone, acetophenone, urea solution, gasoline, kerosene, diesel gasoline, alcohol-containing gasoline, oxygen-containing gasoline, amine-containing gasoline, sour gasoline, castor oil base brake fluid, glycol ether brake fluid, Boric ester brake fluid, brake fluid for extremely cold regions, silicone oil brake fluid, mineral oil brake fluid, power steering oil, hydrogen sulfide oil, engine coolant, window washer fluid, pharmaceutical agent, ink, paint, etc. It is done. In addition, an aqueous solution containing the above exemplified chemical solution as a component is also included in the chemical solution.
 本発明の薬液輸送用チューブの用途の点からは、該薬液としては、LLCなどのエンジン冷却用冷媒、エアコン用冷媒、および、選択触媒還元システム用還元剤溶液からなる群から選ばれる少なくとも1種であることが好ましい。選択触媒還元システム用還元剤溶液としては、尿素溶液などが挙げられる。 From the point of use of the chemical solution transport tube of the present invention, the chemical solution is at least one selected from the group consisting of an engine cooling refrigerant such as LLC, an air conditioner refrigerant, and a reducing agent solution for a selective catalytic reduction system. It is preferable that Examples of the reducing agent solution for the selective catalytic reduction system include a urea solution.
 薬液輸送用チューブの外径は、薬液の流量を考慮して設計される。またチューブの肉厚は薬液の透過性が増大せず、また、通常のチューブの破壊圧力を維持できる厚さで、かつ、チューブの組み付け作業容易性および使用時の耐振動性が良好な程度の柔軟性を維持することができる厚さに設計される。好ましくは、チューブの外径は2.5~200mmであり、肉厚は0.5~20mmである。 The outer diameter of the chemical solution transport tube is designed in consideration of the chemical flow rate. In addition, the tube thickness does not increase the permeability of the chemical solution, it is a thickness that can maintain the normal breaking pressure of the tube, and the tube is easy to assemble and has good vibration resistance during use. Designed to a thickness that can maintain flexibility. Preferably, the outer diameter of the tube is 2.5 to 200 mm and the wall thickness is 0.5 to 20 mm.
 本発明の薬液輸送用チューブが多層チューブである場合、ポリアミド樹脂組成物により構成される最内層の厚みは、0.01~1mmの範囲が好ましく、0.02~0.7mmの範囲がより好ましく、0.03~0.5mmの範囲がさらに好ましい。最内層の厚みが0.01mm以上であれば、耐薬液性、および耐衝撃性が良好である。また最内層の層厚みが1mm以下であれば、柔軟性が良好であり、経済性の観点からも有利となる。チューブの最内層の厚みは、チューブ断面を顕微鏡で観察し、その実画像から測定することができる。
 多層チューブを構成する層の数は、耐薬液性、耐衝撃性に優れ、他の部材への挿入時にも割れが発生し難く、伸び特性に優れるという観点、および生産性の観点から、2~7層であることが好ましく、3~6層であることがより好ましい。多層チューブを構成する層の数が3層以上である場合、本発明の薬液輸送用チューブは、本発明のポリアミド樹脂組成物により構成される層を2層以上有していてもよい。
 薬液輸送用チューブが多層チューブである場合、最内層以外の層(最外層、および、最内層と最外層との間に位置する中間層)は、特に限定されないが、チューブの成形性の観点からは熱可塑性樹脂が好ましい。
 熱可塑性樹脂としては、チューブの用途や、隣接する層との密着性などを考慮して適宜選択することができる。具体的には、例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート等のポリエステル系樹脂;エチレン-テトラフルオロエチレン共重合体(ETFE)、ビニリデンフルオライド重合体(PVDF)、ポリクロロトリフルオロエチレン、エチレン-クロロトリフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体等のフッ素系樹脂;ポリエチレン、ポリプロピレン、ポリスチレン、エチレン-酢酸ビニル共重合体鹸化物(EVOH)などのポリオレフィン系樹脂;ポリアセタール、ポリフェニレンスルファイド等のポリエーテル樹脂;半芳香族ポリアミド、脂肪族ポリアミド等のポリアミド樹脂などが挙げられる。
When the chemical solution transport tube of the present invention is a multilayer tube, the thickness of the innermost layer constituted by the polyamide resin composition is preferably in the range of 0.01 to 1 mm, more preferably in the range of 0.02 to 0.7 mm. A range of 0.03 to 0.5 mm is more preferable. If the thickness of the innermost layer is 0.01 mm or more, chemical resistance and impact resistance are good. Moreover, if the layer thickness of the innermost layer is 1 mm or less, the flexibility is good, which is advantageous from the viewpoint of economy. The thickness of the innermost layer of the tube can be measured from an actual image obtained by observing the tube cross section with a microscope.
The number of layers constituting the multilayer tube is 2 to 2 from the viewpoints of excellent chemical resistance and impact resistance, hardly cracking when inserted into other members, excellent elongation characteristics, and productivity. 7 layers are preferable, and 3 to 6 layers are more preferable. When the number of layers constituting the multilayer tube is 3 or more, the chemical solution transport tube of the present invention may have two or more layers composed of the polyamide resin composition of the present invention.
When the chemical solution transport tube is a multilayer tube, the layers other than the innermost layer (the outermost layer and the intermediate layer located between the innermost layer and the outermost layer) are not particularly limited, but from the viewpoint of the moldability of the tube Is preferably a thermoplastic resin.
The thermoplastic resin can be appropriately selected in consideration of the use of the tube and the adhesion with an adjacent layer. Specifically, for example, polyester resins such as polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate; ethylene-tetrafluoroethylene copolymer (ETFE), vinylidene fluoride polymer ( PVDF), polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, etc .; Polyolefin resins such as polyethylene, polypropylene, polystyrene, saponified ethylene-vinyl acetate copolymer (EVOH); polyacetal, polyphenylenesulfite Polyether resins and the like; semiaromatic polyamide, polyamide resins such as aliphatic polyamides.
 本発明の薬液輸送用チューブの製造は、射出成形、押出成形などの成形方法を用いて行うことができる。また上記の成形方法を組み合わせた成形方法を採用することもできる。 The production of the chemical solution transport tube of the present invention can be performed using a molding method such as injection molding or extrusion molding. A molding method combining the above molding methods can also be employed.
[コネクター]
 本発明のコネクターは、前述した本発明のポリアミド樹脂組成物を含むことを特徴とする。本発明のポリアミド樹脂組成物は耐薬液性に優れるため、前記薬液と接触するチューブ用のコネクターに好適である。その他、本発明のコネクターとしては自動車用燃料配管用のクイックコネクター等が挙げられる。
[connector]
The connector of the present invention is characterized by including the above-described polyamide resin composition of the present invention. Since the polyamide resin composition of the present invention is excellent in chemical resistance, it is suitable for a connector for a tube that comes into contact with the chemical. In addition, examples of the connector of the present invention include a quick connector for an automobile fuel pipe.
 以下、実施例および比較例を用いて本発明をより詳細に説明するが、本発明は下記実施例に限定されるものではない。
 なお、実施例および比較例における各評価は、以下に示す方法に従って行った。
EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, this invention is not limited to the following Example.
In addition, each evaluation in an Example and a comparative example was performed in accordance with the method shown below.
(極限粘度[η])
 濃硫酸中、30℃にて、0.05,0.1,0.2,0.4g/dLの濃度の試料溶液の固有粘度(ηinh)を測定し、これを濃度0に外挿した値を極限粘度[η]とした。
  ηinh=[ln(t1/t0)]/c
〔式中、ηinhは固有粘度(dL/g)を表し、t0は溶媒の流下時間(秒)を表し、t1は試料溶液の流下時間(秒)を表し、cは溶液中の試料の濃度(g/dL)を表す。〕
(Intrinsic viscosity [η])
The intrinsic viscosity (η inh ) of a sample solution having a concentration of 0.05, 0.1, 0.2, 0.4 g / dL was measured in concentrated sulfuric acid at 30 ° C., and this was extrapolated to a concentration of 0. The value was defined as the intrinsic viscosity [η].
η inh = [ln (t1 / t0)] / c
[ Wherein η inh represents the intrinsic viscosity (dL / g), t0 represents the flow time (second) of the solvent, t1 represents the flow time (second) of the sample solution, and c represents the concentration of the sample in the solution (G / dL). ]
(融点)
 ポリアミドの融点は、メトラー・トレド(株)製の示差走査熱量分析装置「DSC822」を使用して測定した。窒素雰囲気下で、30℃から340℃へ10℃/分の速度で試料(ポリアミド)を加熱し、340℃で2分間保持して試料を完全に融解させた後、10℃/分の速度で30℃まで冷却し30℃で2分間保持した。再び10℃/分の速度で360℃まで昇温した時に現れる融解ピークのピーク温度を融点(℃)とし、融解ピークが複数ある場合は最も高温側の融解ピークのピーク温度を融点(℃)とした。
(Melting point)
The melting point of the polyamide was measured using a differential scanning calorimeter “DSC822” manufactured by METTLER TOLEDO. In a nitrogen atmosphere, the sample (polyamide) was heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min, held at 340 ° C. for 2 minutes to completely melt the sample, and then at a rate of 10 ° C./min. Cool to 30 ° C and hold at 30 ° C for 2 minutes. The peak temperature of the melting peak that appears when the temperature is again raised to 360 ° C. at a rate of 10 ° C./min is defined as the melting point (° C.). did.
(末端アミノ基含量)
 ポリアミド1gをフェノール35mLに溶解し、そこへメタノールを2mL混合し、試料溶液とした。チモールブルーを指示薬とし、0.01規定の塩酸水溶液を使用した滴定を実施し、ポリアミドの末端アミノ基含量([NH2]、単位:μモル/g)を測定した。
(Terminal amino group content)
1 g of polyamide was dissolved in 35 mL of phenol, and 2 mL of methanol was mixed therewith to obtain a sample solution. Timol blue was used as an indicator, and titration was performed using a 0.01 N aqueous hydrochloric acid solution, and the terminal amino group content ([NH 2 ], unit: μmol / g) of the polyamide was measured.
(末端カルボキシル基含量)
 ポリアミド0.2gをo-クレゾール15mLに加え、110℃に加熱して溶解させた。室温付近まで冷却後、ベンジルアルコール10mL、o-クレゾール50mLとホルムアルデヒド50μLを加えた。0.05規定のエタノール性水酸化カリウムを滴定液として、電位差滴定装置でポリアミドの末端カルボキシル基含量([COOH]、単位:μモル/g)を測定した。
(Terminal carboxyl group content)
0.2 g of polyamide was added to 15 mL of o-cresol and heated to 110 ° C. to dissolve. After cooling to near room temperature, 10 mL of benzyl alcohol, 50 mL of o-cresol and 50 μL of formaldehyde were added. The terminal carboxyl group content ([COOH], unit: μmol / g) of the polyamide was measured with a potentiometric titrator using 0.05N ethanolic potassium hydroxide as a titrant.
(引張破断強度および引張破断伸度)
 東芝機械(株)製の射出成形機(型締力:80トン、スクリュー径:φ32mm)を使用し、以下の実施例および比較例のポリアミド樹脂組成物(ペレット)を用いて、ポリアミドの融点よりも20~30℃高いシリンダー温度で、Tランナー金型を用いて射出成形(金型温度80℃)を行い、ISO多目的試験片A型ダンベルを作製した。得られた試験片を用いて、ISO527-1に準じて、オートグラフ((株)島津製作所製)を使用して、23℃における引張破断強度(MPa)および引張破断伸度(%)を測定した。
(Tensile breaking strength and tensile breaking elongation)
Using an injection molding machine manufactured by Toshiba Machine Co., Ltd. (clamping force: 80 tons, screw diameter: φ32 mm), and using the polyamide resin compositions (pellets) of the following examples and comparative examples, from the melting point of polyamide In addition, an ISO multipurpose test piece A-type dumbbell was produced by injection molding (mold temperature 80 ° C.) using a T-runner mold at a cylinder temperature 20 to 30 ° C. higher. Using the obtained test piece, the tensile strength at break (MPa) and the tensile elongation at break (%) at 23 ° C. were measured using an autograph (manufactured by Shimadzu Corporation) according to ISO 527-1. did.
(耐薬液性評価)
 上記と同様の方法で作製したISO多目的試験片A型ダンベルをLLC(トヨタ製スーパーロングライフクーラント(ピンク)を水で2倍希釈した水溶液)中に浸漬し、120℃、2000時間浸漬した後の引張破断強度および引張破断伸度をISO527に従って測定した。浸漬前の試験片の引張破断強度および引張破断伸度に対する、浸漬後の試験片の引張破断強度および引張破断伸度の割合(保持率、%)を算出し、耐薬液性を評価した。該保持率の値が高いほど、耐薬液性に優れることを示す。
(Evaluation of chemical resistance)
An ISO multi-purpose specimen A-type dumbbell produced by the same method as above was immersed in LLC (an aqueous solution in which Toyota Super Long Life Coolant (pink) was diluted twice with water) and immersed at 120 ° C. for 2000 hours. Tensile rupture strength and tensile rupture elongation were measured according to ISO 527. The ratio (retention rate,%) of the tensile rupture strength and tensile rupture elongation of the test piece after immersion to the tensile rupture strength and tensile rupture elongation of the test piece before immersion was calculated, and the chemical resistance was evaluated. The higher the retention value, the better the chemical resistance.
製造例1(ポリアミド1の製造)
 テレフタル酸9870.6g(59.42モル)、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンの混合物[50/50(モル比)]9497.4g(60.00モル)、安息香酸142.9g(1.17モル)、次亜リン酸ナトリウム一水和物19.5g(原料の総質量に対して0.1質量%)および蒸留水5リットルを内容積40リットルのオートクレーブに入れ、窒素置換した。100℃で30分間攪拌し、2時間かけてオートクレーブ内部の温度を220℃に昇温した。この時、オートクレーブ内部の圧力は2MPaまで昇圧した。そのまま2時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を2MPaに保ちながら反応させた。次に、30分かけて圧力を1MPaまで下げ、さらに1時間反応させて、極限粘度[η]が0.2dL/gのプレポリマーを得た。これをホソカワミクロン株式会社製フレーククラッシャーを使って2mm以下の粒径まで粉砕し、100℃、減圧下で12時間乾燥した後、230℃、13Pa(0.1mmHg)にて10時間固相重合し、白色のポリアミド樹脂(ポリアミド1)を得た。ポリアミド1はテレフタル酸単位と、1,9-ノナンジアミン単位および2-メチル-1,8-オクタンジアミン単位(1,9-ノナンジアミン単位/2-メチル-1,8-オクタンジアミン単位=50/50(モル比))とからなり、融点は265℃、極限粘度[η]は1.30dL/g、末端アミノ基含量([NH2])は15μモル/g、末端カルボキシル基含量([COOH])は60μモル/gであった。
Production Example 1 (Production of polyamide 1)
9870.6 g (59.42 mol) of terephthalic acid, a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine [50/50 (molar ratio)] 9497.4 g (60.00 mol), benzoic acid 142.9 g (1.17 mol) of acid, 19.5 g of sodium hypophosphite monohydrate (0.1% by mass with respect to the total mass of the raw material) and 5 liters of distilled water in an autoclave having an internal volume of 40 liters And replaced with nitrogen. The mixture was stirred at 100 ° C. for 30 minutes, and the temperature inside the autoclave was increased to 220 ° C. over 2 hours. At this time, the pressure inside the autoclave was increased to 2 MPa. The reaction was continued as it was for 2 hours, then the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours, and the reaction was carried out while gradually removing water vapor and keeping the pressure at 2 MPa. Next, the pressure was reduced to 1 MPa over 30 minutes, and the reaction was further continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [η] of 0.2 dL / g. This was pulverized to a particle size of 2 mm or less using a flake crusher manufactured by Hosokawa Micron Corporation, dried at 100 ° C. under reduced pressure for 12 hours, and then solid-phase polymerized at 230 ° C. and 13 Pa (0.1 mmHg) for 10 hours. A white polyamide resin (polyamide 1) was obtained. Polyamide 1 comprises terephthalic acid units, 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units (1,9-nonanediamine units / 2-methyl-1,8-octanediamine units = 50/50 ( The melting point is 265 ° C., the intrinsic viscosity [η] is 1.30 dL / g, the terminal amino group content ([NH 2 ]) is 15 μmol / g, and the terminal carboxyl group content ([COOH]). Was 60 μmol / g.
実施例1(ポリアミド樹脂組成物の製造)
 表1に示すポリアミド、カルボジイミドおよびエラストマー、並びに、フェノール系酸化防止剤を所定の質量比で予備混合した。なお、ポリアミド、カルボジイミドおよびエラストマーの混合比は表1に記載の通りであり、フェノール系酸化防止剤はポリアミド、カルボジイミドおよびエラストマーの合計100質量部に対して1質量部添加した。
 得られた混合物を二軸押出成形機((株)プラ技研製)に供給し、シリンダー温度300~320℃の条件下で溶融混練することによりポリアミド樹脂組成物をペレットとして得た。該ペレットを用いて各種物性評価用の試験片を作製し、前述の方法で各種評価を行った。結果を表1に示す。
Example 1 (Production of polyamide resin composition)
Polyamide, carbodiimide and elastomer shown in Table 1, and a phenolic antioxidant were premixed at a predetermined mass ratio. The mixing ratio of polyamide, carbodiimide and elastomer is as shown in Table 1. The phenolic antioxidant was added in an amount of 1 part by mass based on 100 parts by mass of the total of polyamide, carbodiimide and elastomer.
The obtained mixture was supplied to a twin-screw extruder (manufactured by Pla Giken Co., Ltd.) and melt-kneaded under conditions of a cylinder temperature of 300 to 320 ° C. to obtain a polyamide resin composition as pellets. Test pieces for evaluating various physical properties were prepared using the pellets, and various evaluations were performed by the methods described above. The results are shown in Table 1.
実施例2、比較例1~7
 ポリアミド樹脂組成物の配合を表1に示すとおり変更したこと以外は、実施例1と同様の方法でポリアミド樹脂組成物を調製し、各種評価を行った。結果を表1に示す。
Example 2 and Comparative Examples 1-7
A polyamide resin composition was prepared in the same manner as in Example 1 except that the composition of the polyamide resin composition was changed as shown in Table 1, and various evaluations were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、表1に示す各成分は下記のとおりである。
<ポリアミド(A)>
 製造例1で得られたポリアミド1
<モノカルボジイミド(B1)>
 下記構造で示される芳香族モノカルボジイミド(N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド)
In addition, each component shown in Table 1 is as follows.
<Polyamide (A)>
Polyamide 1 obtained in Production Example 1
<Monocarbodiimide (B1)>
Aromatic monocarbodiimide represented by the following structure (N, N'-di-2,6-diisopropylphenylcarbodiimide)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
<脂肪族ポリカルボジイミド(B2-1)>
 下記構造で示される脂肪族ポリカルボジイミド(分子量4,000、k=17)
<Aliphatic polycarbodiimide (B2-1)>
Aliphatic polycarbodiimide represented by the following structure (molecular weight 4,000, k = 17)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
<芳香族ポリカルボジイミド(B2-2)>
 下記構造で示される芳香族ポリカルボジイミド(分子量3,000、m=11)
<Aromatic polycarbodiimide (B2-2)>
Aromatic polycarbodiimide represented by the following structure (molecular weight 3,000, m = 11)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
<エラストマー(C)>
 エチレン-ブテン共重合体を無水マレイン酸で変性した変性重合体(三井化学(株)製「タフマー」)
<Elastomer (C)>
Modified polymer of ethylene-butene copolymer modified with maleic anhydride (“Tuffmer” manufactured by Mitsui Chemicals, Inc.)
 表1に示すとおり、本発明のポリアミド樹脂組成物は高温のLLCと長時間接触させても機械的特性の変化が少なく、耐薬液性に優れることがわかる。特に、実施例1と比較例4および5、実施例2と比較例6および7とを対比すると、ポリアミド樹脂組成物中のカルボジイミド基の量が多いほど耐薬液性が向上するものではなく、モノカルボジイミドとポリカルボジイミドとを併用することによって本発明の効果を奏するものであることがわかる。 As shown in Table 1, it can be seen that the polyamide resin composition of the present invention has little change in mechanical properties even when kept in contact with high temperature LLC for a long time, and is excellent in chemical resistance. In particular, when Example 1 is compared with Comparative Examples 4 and 5, and Example 2 is compared with Comparative Examples 6 and 7, chemical resistance is not improved as the amount of carbodiimide groups in the polyamide resin composition increases. It turns out that the effect of this invention is show | played by using together carbodiimide and polycarbodiimide.
 本発明によれば、耐薬液性に優れるポリアミド樹脂組成物を提供することができる。当該ポリアミド樹脂組成物は、特にLLCなどのエンジン冷却用冷媒やエアコン用冷媒、SCRシステム用の還元剤溶液、オイル、燃料など各種薬液の輸送用チューブや、コネクター、インテークパイプ、ブローバイチューブ等に好適に用いられる。
 
According to the present invention, a polyamide resin composition having excellent chemical resistance can be provided. This polyamide resin composition is particularly suitable for engine cooling refrigerants such as LLC, refrigerants for air conditioners, reducing agent solutions for SCR systems, tubes for transporting various chemicals such as oil, fuel, connectors, intake pipes, blow-by tubes, etc. Used for.

Claims (18)

  1.  ポリアミド(A)、モノカルボジイミド(B1)、およびポリカルボジイミド(B2)を配合してなるポリアミド樹脂組成物。 Polyamide resin composition formed by blending polyamide (A), monocarbodiimide (B1), and polycarbodiimide (B2).
  2.  前記ポリアミド樹脂組成物中の前記モノカルボジイミド(B1)およびポリカルボジイミド(B2)の配合量が、前記ポリアミド(A)100質量部に対し0.5~25質量部である、請求項1に記載のポリアミド樹脂組成物。 The amount of the monocarbodiimide (B1) and the polycarbodiimide (B2) in the polyamide resin composition is 0.5 to 25 parts by mass with respect to 100 parts by mass of the polyamide (A). Polyamide resin composition.
  3.  前記モノカルボジイミド(B1)とポリカルボジイミド(B2)の質量比(B1)/(B2)が、1:0.1~1:10である、請求項1又は2に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 1 or 2, wherein a mass ratio (B1) / (B2) of the monocarbodiimide (B1) to the polycarbodiimide (B2) is 1: 0.1 to 1:10.
  4.  前記モノカルボジイミド(B1)が芳香族モノカルボジイミドである、請求項1~3のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 3, wherein the monocarbodiimide (B1) is an aromatic monocarbodiimide.
  5.  前記ポリカルボジイミド(B2)が芳香族ポリカルボジイミドである、請求項1~4のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 4, wherein the polycarbodiimide (B2) is an aromatic polycarbodiimide.
  6.  前記ポリカルボジイミド(B2)が脂肪族ポリカルボジイミドである、請求項1~4のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 4, wherein the polycarbodiimide (B2) is an aliphatic polycarbodiimide.
  7.  前記ポリアミド(A)の末端アミノ基含量が5~60μモル/gである、請求項1~6のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 6, wherein the polyamide (A) has a terminal amino group content of 5 to 60 µmol / g.
  8.  前記ポリアミド(A)が芳香族ジカルボン酸単位を50~100モル%含有するジカルボン酸単位と、炭素数6~13の脂肪族ジアミン単位を60~100モル%含有するジアミン単位とを含む半芳香族ポリアミドである、請求項1~7のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide (A) is a semi-aromatic containing a dicarboxylic acid unit containing 50 to 100 mol% of an aromatic dicarboxylic acid unit and a diamine unit containing 60 to 100 mol% of an aliphatic diamine unit having 6 to 13 carbon atoms. The polyamide resin composition according to any one of claims 1 to 7, which is a polyamide.
  9.  前記半芳香族ポリアミドがさらにアミノカルボン酸単位および/またはラクタム単位を含む、請求項8に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 8, wherein the semi-aromatic polyamide further contains an aminocarboxylic acid unit and / or a lactam unit.
  10.  前記芳香族ジカルボン酸単位がテレフタル酸単位および/またはナフタレンジカルボン酸単位であり、前記脂肪族ジアミン単位が1,9-ノナンジアミン単位、2-メチル-1,8-オクタンジアミン単位および1,10-デカンジアミン単位からなる群から選ばれる少なくとも1種である、請求項8又は9に記載のポリアミド樹脂組成物。 The aromatic dicarboxylic acid unit is a terephthalic acid unit and / or a naphthalene dicarboxylic acid unit, and the aliphatic diamine unit is a 1,9-nonanediamine unit, a 2-methyl-1,8-octanediamine unit and 1,10-decane. The polyamide resin composition according to claim 8 or 9, which is at least one selected from the group consisting of diamine units.
  11.  前記脂肪族ジアミン単位が1,9-ノナンジアミン単位および/または2-メチル-1,8-オクタンジアミン単位である、請求項10に記載のポリアミド樹脂組成物。 The polyamide resin composition according to claim 10, wherein the aliphatic diamine unit is a 1,9-nonanediamine unit and / or a 2-methyl-1,8-octanediamine unit.
  12.  さらに、エラストマー(C)を配合してなる、請求項1~11のいずれか1項に記載のポリアミド樹脂組成物。 The polyamide resin composition according to any one of claims 1 to 11, further comprising an elastomer (C).
  13.  前記エラストマー(C)がα-オレフィン系共重合体、(エチレンおよび/またはプロピレン)/(α,β-不飽和カルボン酸および/または不飽和カルボン酸エステル)系共重合体、アイオノマー、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体、並びにこれらをカルボキシル基および/または酸無水物基を有する不飽和化合物で変性した重合体からなる群から選ばれる少なくとも1種である、請求項12に記載のポリアミド樹脂組成物。 The elastomer (C) is an α-olefin copolymer, (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer, ionomer, aromatic vinyl The compound / conjugated diene compound-based block copolymer and at least one selected from the group consisting of polymers obtained by modifying these with an unsaturated compound having a carboxyl group and / or an acid anhydride group. Polyamide resin composition.
  14.  前記ポリアミド(A)、モノカルボジイミド(B1)、およびポリカルボジイミド(B2)を含む混合物を溶融混練する工程を有する、請求項1~13のいずれか1項に記載のポリアミド樹脂組成物の製造方法。 The method for producing a polyamide resin composition according to any one of claims 1 to 13, further comprising a step of melt-kneading a mixture containing the polyamide (A), the monocarbodiimide (B1), and the polycarbodiimide (B2).
  15.  請求項1~13のいずれか1項に記載のポリアミド樹脂組成物により構成された層を少なくとも1層有する薬液輸送用チューブ。 A chemical transport tube having at least one layer composed of the polyamide resin composition according to any one of claims 1 to 13.
  16.  前記薬液輸送用チューブが前記ポリアミド樹脂組成物により構成された単層チューブ、または前記ポリアミド樹脂組成物により構成された層を少なくとも最内層に有する多層チューブである、請求項15に記載の薬液輸送用チューブ。 The chemical solution transport tube according to claim 15, wherein the chemical solution transport tube is a single-layer tube composed of the polyamide resin composition or a multilayer tube having at least an innermost layer composed of the polyamide resin composition. tube.
  17.  前記薬液がエンジン冷却用冷媒、エアコン用冷媒、および、選択触媒還元システム用還元剤溶液からなる群から選ばれる少なくとも1種である、請求項15又は16に記載の薬液輸送用チューブ。 The chemical liquid transport tube according to claim 15 or 16, wherein the chemical liquid is at least one selected from the group consisting of an engine cooling refrigerant, an air conditioner refrigerant, and a reducing agent solution for a selective catalytic reduction system.
  18.  請求項1~13のいずれか1項に記載のポリアミド樹脂組成物を含むコネクター。 A connector comprising the polyamide resin composition according to any one of claims 1 to 13.
PCT/JP2016/088062 2015-12-28 2016-12-21 Polyamide resin composition WO2017115699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256858 2015-12-28
JP2015-256858 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115699A1 true WO2017115699A1 (en) 2017-07-06

Family

ID=59225124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088062 WO2017115699A1 (en) 2015-12-28 2016-12-21 Polyamide resin composition

Country Status (1)

Country Link
WO (1) WO2017115699A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175290A1 (en) * 2019-02-25 2020-09-03 株式会社クラレ Tube, and polyamide resin composition
CN114585688A (en) * 2019-11-29 2022-06-03 东洋纺株式会社 Semi-aromatic polyamide resin composition and metal plating molded body

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179961A (en) * 1986-12-18 1988-07-23 ザ ダウ ケミカル カンパニー Polyesteramide having improved compression permanent strain
JP2000281887A (en) * 1999-04-01 2000-10-10 Du Pont Toray Co Ltd Thermoplastic copolyester resin composition
JP2001302910A (en) * 1999-12-14 2001-10-31 Toray Ind Inc Resin molding for gas and/or liquid barrier component and chemical or gas transportation and/or storage container and its accessory made thereof
US20070066727A1 (en) * 2005-09-21 2007-03-22 Raschig Gmbh Hydrolysis stabilizer formulations
JP2009035731A (en) * 1999-10-12 2009-02-19 Toray Ind Inc Resin structure
JP2011038607A (en) * 2009-08-12 2011-02-24 Yokohama Rubber Co Ltd:The Hose for transferring refrigerant
JP2012136579A (en) * 2010-12-24 2012-07-19 Mitsubishi Gas Chemical Co Inc Resin-made component excellent in hydrocarbon coolant barrier property
JP2013040346A (en) * 2005-03-18 2013-02-28 Kuraray Co Ltd Semi-aromatic polyamide resin
JP2014012771A (en) * 2012-07-04 2014-01-23 Kuraray Co Ltd Polyamide resin composition
JP2014037465A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179961A (en) * 1986-12-18 1988-07-23 ザ ダウ ケミカル カンパニー Polyesteramide having improved compression permanent strain
JP2000281887A (en) * 1999-04-01 2000-10-10 Du Pont Toray Co Ltd Thermoplastic copolyester resin composition
JP2009035731A (en) * 1999-10-12 2009-02-19 Toray Ind Inc Resin structure
JP2001302910A (en) * 1999-12-14 2001-10-31 Toray Ind Inc Resin molding for gas and/or liquid barrier component and chemical or gas transportation and/or storage container and its accessory made thereof
JP2013040346A (en) * 2005-03-18 2013-02-28 Kuraray Co Ltd Semi-aromatic polyamide resin
US20070066727A1 (en) * 2005-09-21 2007-03-22 Raschig Gmbh Hydrolysis stabilizer formulations
JP2011038607A (en) * 2009-08-12 2011-02-24 Yokohama Rubber Co Ltd:The Hose for transferring refrigerant
JP2012136579A (en) * 2010-12-24 2012-07-19 Mitsubishi Gas Chemical Co Inc Resin-made component excellent in hydrocarbon coolant barrier property
JP2014012771A (en) * 2012-07-04 2014-01-23 Kuraray Co Ltd Polyamide resin composition
JP2014037465A (en) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc Polyether polyamide composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175290A1 (en) * 2019-02-25 2020-09-03 株式会社クラレ Tube, and polyamide resin composition
KR20210132019A (en) 2019-02-25 2021-11-03 주식회사 쿠라레 Tube and polyamide resin composition
CN113631639A (en) * 2019-02-25 2021-11-09 株式会社可乐丽 Pipe and polyamide resin composition
CN114585688A (en) * 2019-11-29 2022-06-03 东洋纺株式会社 Semi-aromatic polyamide resin composition and metal plating molded body

Similar Documents

Publication Publication Date Title
JP4522406B2 (en) Laminated structure
JP5722018B2 (en) Semi-aromatic molding composition and method of use
JP6881618B2 (en) Manufacturing method of multi-layer tube for transporting chemicals
JP2004203012A (en) Laminated structure
JP2015104830A (en) Laminate tube
JP2014240149A (en) Laminate tube
WO2017115699A1 (en) Polyamide resin composition
JP6455075B2 (en) Laminated tube
JP6202253B2 (en) Conductive laminated tube
KR102472750B1 (en) Multilayer tube for fuel transportation, fuel pump module provided with same, use of same, and use of fuel pump module
JP6454182B2 (en) Ball seat for ball joint and ball joint having the same
JP2014240148A (en) Electroconductive laminate tube
JP6202254B2 (en) Conductive laminated tube
WO2021039661A1 (en) Method for producing composite molded body
JP5724541B2 (en) Laminated tube
WO2023282154A1 (en) Polyamide composition
JPWO2020175290A1 (en) Tube and polyamide resin composition
JP7444743B2 (en) Urea SCR system parts, kits and methods for manufacturing urea SCR system parts
JP2023039227A (en) Molded body, and method of using molded body
JP2014240138A (en) Laminate tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP