WO2013061420A1 - 内燃機関のセタン価判定装置 - Google Patents

内燃機関のセタン価判定装置 Download PDF

Info

Publication number
WO2013061420A1
WO2013061420A1 PCT/JP2011/074674 JP2011074674W WO2013061420A1 WO 2013061420 A1 WO2013061420 A1 WO 2013061420A1 JP 2011074674 W JP2011074674 W JP 2011074674W WO 2013061420 A1 WO2013061420 A1 WO 2013061420A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cetane number
amount
temperature
cylinder
Prior art date
Application number
PCT/JP2011/074674
Other languages
English (en)
French (fr)
Inventor
昌宏 南
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013540544A priority Critical patent/JP5556970B2/ja
Priority to PCT/JP2011/074674 priority patent/WO2013061420A1/ja
Priority to EP11874695.7A priority patent/EP2772635A4/en
Publication of WO2013061420A1 publication Critical patent/WO2013061420A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a cetane number determination device for a compression ignition type internal combustion engine represented by a diesel engine.
  • the present invention relates to measures for improving the cetane number determination accuracy.
  • diesel engines used as automobile engines and the like are required to improve exhaust emissions, secure required engine torque, improve fuel consumption rate, and the like.
  • One means for meeting these requirements is to optimize the combustion state of the fuel in the cylinder. In order to optimize the combustion state, it is necessary to appropriately set control values of control parameters such as fuel injection timing and fuel injection amount in accordance with the fuel properties.
  • a fuel property in light oil (hereinafter sometimes referred to as “fuel”) used as a fuel for a diesel engine includes a cetane number, and the ignitability of the fuel depends on the cetane number.
  • Cetane contained in fuel (linear molecular structure capable of low-temperature oxidation reaction such as n-cetane (C 16 H 34 ); hereinafter, the low-temperature oxidation reaction component may be referred to as “n-cetane etc.”) Is a component that can be ignited even when the in-cylinder pressure is relatively low or the in-cylinder temperature is relatively low.
  • the larger the amount of cetane the easier the low-temperature oxidation reaction in the cylinder proceeds, and the ignition delay. Will be suppressed. That is, the higher the cetane number, the better the ignitability and the smaller the ignition delay of premixed combustion. Conversely, a fuel with a low cetane number has poor ignitability and a large ignition delay in premixed combustion.
  • the cetane number of the fuel used is determined with high accuracy, and the control parameters (fuel injection such as fuel injection timing and fuel injection amount) are determined according to the determined cetane number. It is necessary to control the form).
  • Patent Document 1 and Patent Document 2 have been proposed as methods for determining the cetane number of fuel.
  • Patent Document 2 discloses that the cetane number of fuel is determined according to the exhaust temperature of the engine and the operating state (engine load). Specifically, in view of the fact that the lower the cetane number, the longer the ignition delay period of the fuel becomes, and accordingly there is a tendency that the unburned fuel increases and the exhaust temperature decreases, so the lower the exhaust temperature, the lower the cetane number of the fuel. Is determined to be low.
  • the determination accuracy of the cetane number is not sufficiently obtained, and the control value of the control parameter set according to the determined cetane number is an appropriate value. There was no actual situation.
  • Patent Document 1 discloses that cetane number determination is performed at the time of execution of pilot injection, and combustion of fuel injected by main injection starts after combustion of fuel injected by pilot injection starts. The period until the start is set as the sampling period. In this case, the sampling period changes greatly according to the injection timing of the main injection, and accordingly, the change state of the temperature in the combustion chamber (cylinder temperature) during this sampling period also changes greatly.
  • the cetane number determination method disclosed in the above-mentioned Patent Document 2 is also used. It was highly likely to cause a misjudgment of the price.
  • the inventor of the present invention separated the combustion period of the low-temperature oxidation reaction component such as n-cetane and the combustion period of the other fuel components as a measure for increasing the determination accuracy of the cetane number, It has already been proposed to determine the cetane number of fuel from the amount of torque equivalent to the combustion period of n-cetane or the like when fuel is injected (application number PCT / JP2011 / 74661).
  • the conversion rate converted into the engine torque with respect to the amount of fuel energy may vary depending on various parameters.
  • a determination method capable of further improvement is required.
  • the present invention has been made in view of the above points, and an object thereof is to provide a cetane number determination device for an internal combustion engine capable of further improving the cetane number determination accuracy of fuel. It is in.
  • the outline of the present invention taken to achieve the above object is that when the fuel injected into the cylinder burns, the in-cylinder gas temperature reaches the high temperature oxidation reaction start temperature from the low temperature oxidation reaction start temperature of the fuel.
  • the total amount of fuel injected into the cylinder (low temperature oxidation reaction component and high temperature oxidation reaction component) is utilized by utilizing the high correlation between the amount of energy generated by fuel combustion and the amount of cetane in the fuel until The amount of energy generated by the combustion of the low-temperature oxidation reaction components during the above period (during the period when the in-cylinder gas temperature reaches the high-temperature oxidation reaction start temperature)
  • the cetane number of the fuel is determined from the ratio of the amount of energy).
  • the present invention relates to a cetane number determination for determining a cetane number of a fuel used in a compression self-ignition internal combustion engine that performs combustion by self-ignition of fuel injected from a fuel injection valve into a cylinder. Assume equipment.
  • the total energy amount of fuel injected into the cylinder from the fuel injection valve is defined as the total fuel energy amount injected, and when the gas temperature in the cylinder reaches the low temperature oxidation reaction start temperature of the fuel
  • the cetane number of the fuel is determined based on the ratio of the low-temperature oxidation reaction energy amount to the injected fuel total energy amount. Specifically, the larger the ratio of the low-temperature oxidation reaction energy amount to the injected fuel total energy amount, the higher the cetane number of the fuel is determined.
  • the low-temperature oxidation reaction component such as n-cetane contained in the fuel is such that the gas temperature in the cylinder becomes the low-temperature oxidation reaction start temperature of the fuel. Combustion starts when it reaches. If the fuel injection from the fuel injection valve to the cylinder ends before the gas temperature in the cylinder reaches the high temperature oxidation reaction start temperature of the fuel, low-temperature oxidation of n-cetane or the like contained in the fuel is performed. All or most of the reaction components end combustion until the gas temperature in the cylinder reaches the high temperature oxidation reaction start temperature.
  • the ratio of the low-temperature oxidation reaction energy amount, which is the energy amount due to the combustion of fuel during this period, and the injected fuel total energy amount, which is the total energy amount of the fuel injected into the cylinder, is the cetane number of the fuel. Is obtained as a high value, and the cetane number of the fuel can be determined from this ratio.
  • the energy amount due to the combustion of the low temperature oxidation reaction component can be acquired with high accuracy, It becomes possible to improve the cetane number determination accuracy.
  • the low-temperature oxidation reaction energy amount As a method of calculating the low-temperature oxidation reaction energy amount, measurement of the energy amount due to fuel combustion is started from the time when the gas temperature in the cylinder reaches the low-temperature oxidation reaction start temperature of the fuel, and the gas temperature in the cylinder When the fuel reaches the high temperature oxidation reaction start temperature of the fuel, the measurement of the energy amount is finished, and the accumulated energy amount is acquired as the low temperature oxidation reaction energy amount.
  • the following conditions can be cited as execution conditions for the cetane number determination operation for further improving the accuracy of determining the cetane number. That is, the determination of the cetane number of the fuel based on the ratio of the low-temperature oxidation reaction energy amount to the injected fuel total energy amount is performed before the low-temperature oxidation reaction start temperature lower than the high-temperature oxidation reaction start temperature of the fuel is reached. This configuration is performed when fuel injection from the valve is completed.
  • the gas temperature in the cylinder reaches the high temperature oxidation reaction start temperature, it is very likely that all combustion of low temperature oxidation reaction components such as n-cetane contained in the fuel is completed.
  • the amount of low-temperature oxidation reaction energy corresponding to the amount of n-cetane or the like can be obtained with high accuracy. For this reason, it becomes possible to further improve the determination accuracy of the cetane number of the fuel based on the ratio of the low-temperature oxidation reaction energy amount to the injected fuel total energy amount.
  • the low temperature oxidation reaction start temperature is about 750K
  • the high temperature oxidation reaction start temperature is about 900K.
  • the cetane number determination operation is performed on the condition that at least the learning control of the amount of fuel injected from the fuel injection valve is completed and the in-cylinder temperature of the cylinder in the compression stroke is lower than the low temperature oxidation reaction start temperature. Like to do.
  • the reason that the learning control of the injected fuel amount is completed is to accurately calculate the total energy amount. Further, the condition that the in-cylinder temperature of the cylinder in the compression stroke is lower than the low-temperature oxidation reaction start temperature is that premixed combustion is performed on n-cetane or the like in the fuel injected from the fuel injection valve, This is to improve the calculation accuracy of the low-temperature oxidation reaction energy amount.
  • the learning control of the injected fuel amount the well-known minute fuel injection amount learning control (when the minute amount of fuel injection is performed when the internal combustion engine is not loaded, the amount of change in the engine operating state is changed to the specified amount of change. Control for learning whether or not there is a deviation in the fuel injection amount depending on whether or not they match.
  • the operation for determining the cetane number is performed by injecting fuel when the internal combustion engine is unloaded.
  • the cetane number of the fuel is determined based on the ratio of the low-temperature oxidation reaction energy amount to the injected fuel total energy amount.
  • FIG. 1 is a diagram illustrating a schematic configuration of an engine and a control system thereof according to the embodiment.
  • FIG. 2 is a cross-sectional view showing a combustion chamber of a diesel engine and its peripheral part.
  • FIG. 3 is a block diagram showing a configuration of a control system such as an ECU.
  • FIG. 4 is a flowchart showing the procedure of the cetane number determination operation and the engine control operation in the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a cetane number determination map.
  • FIG. 6 is a diagram showing changes in the heat generation rate, the in-cylinder gas temperature, the integrated heat generation amount, and the fuel injection rate when the minute fuel injection is executed when the in-cylinder temperature reaches 750 K before the fuel injection is completed. It is.
  • FIG. 1 is a diagram illustrating a schematic configuration of an engine and a control system thereof according to the embodiment.
  • FIG. 2 is a cross-sectional view showing a combustion chamber of a diesel engine and its peripheral part
  • FIG. 7 is a diagram showing changes in the heat generation rate, the in-cylinder gas temperature, the integrated heat generation amount, and the fuel injection rate when the minute fuel injection is executed when the fuel injection is finished before the in-cylinder temperature reaches 750K. is there.
  • FIG. 8 is a flowchart showing the procedure of the cetane number determination operation and the engine control operation in the second embodiment.
  • FIG. 1 is a schematic configuration diagram of an engine 1 and its control system according to the present embodiment.
  • FIG. 2 is sectional drawing which shows the combustion chamber 3 of a diesel engine, and its peripheral part.
  • the engine 1 is configured as a diesel engine system having a fuel supply system 2, a combustion chamber 3, an intake system 6, an exhaust system 7 and the like as main parts.
  • the fuel supply system 2 includes a supply pump 21, a common rail 22, an injector (fuel injection valve) 23, an engine fuel passage 27, and the like.
  • the supply pump 21 pumps fuel from the fuel tank, makes the pumped fuel high pressure, and supplies it to the common rail 22 via the engine fuel passage 27.
  • the common rail 22 has a function as a pressure accumulation chamber that holds (accumulates) high pressure fuel at a predetermined pressure, and distributes the accumulated fuel to the injectors 23, 23,.
  • the injector 23 includes a piezoelectric element (piezo element) therein, and is configured by a piezo injector that is appropriately opened to supply fuel into the combustion chamber 3.
  • the intake system 6 includes an intake manifold 63 connected to an intake port 15a formed in the cylinder head 15 (see FIG. 2), and an intake pipe 64 constituting an intake passage is connected to the intake manifold 63. Further, an air cleaner 65, an air flow meter 43, and a throttle valve (intake throttle valve) 62 are arranged in this intake passage in order from the upstream side.
  • the air flow meter 43 outputs an electrical signal corresponding to the amount of air flowing into the intake passage via the air cleaner 65.
  • the exhaust system 7 includes an exhaust manifold 72 connected to an exhaust port 71 formed in the cylinder head 15, and an exhaust pipe 73 constituting an exhaust passage is connected to the exhaust manifold 72.
  • An exhaust purification device 77 is disposed in the exhaust passage.
  • the exhaust gas purification device 77 includes a catalyst (NOx storage catalyst or oxidation catalyst) and a DPF (Diesel Particle Filter). Further, as the exhaust purification device 77, a DPNR catalyst (Diesel Particle-NOx Reduction catalyst) may be employed.
  • a cylinder block 11 constituting a part of the engine body is formed with a cylindrical cylinder bore 12 for each cylinder (four cylinders), and a piston 13 is formed inside each cylinder bore 12. Is accommodated so as to be slidable in the vertical direction.
  • the combustion chamber 3 is formed above the top surface 13 a of the piston 13. That is, the combustion chamber 3 is defined by the lower surface of the cylinder head 15 attached to the upper portion of the cylinder block 11, the inner wall surface of the cylinder bore 12, and the top surface 13 a of the piston 13. A cavity (concave portion) 13 b is formed in a substantially central portion of the top surface 13 a of the piston 13, and this cavity 13 b also constitutes a part of the combustion chamber 3.
  • the piston 13 is connected to a crankshaft that is an engine output shaft by a connecting rod 18.
  • a connecting rod 18 the reciprocating movement of the piston 13 in the cylinder bore 12 is transmitted to the crankshaft via the connecting rod 18, and the engine output is obtained by rotating the crankshaft.
  • the cylinder head 15 is formed with the intake port 15a and the exhaust port 71, respectively, and an intake valve 16 for opening and closing the intake port 15a and an exhaust valve 17 for opening and closing the exhaust port 71 are disposed.
  • the cylinder head 15 is provided with the injector 23 that directly injects fuel into the combustion chamber 3.
  • the injector 23 is disposed at a substantially upper center of the combustion chamber 3 in a standing posture along the cylinder center line P, and injects fuel introduced from the common rail 22 toward the combustion chamber 3 at a predetermined timing.
  • the engine 1 is provided with a supercharger (turbocharger) 5.
  • the turbocharger 5 includes a turbine wheel 52 and a compressor wheel 53 that are connected via a turbine shaft 51.
  • the compressor wheel 53 is disposed facing the intake pipe 64, and the turbine wheel 52 is disposed facing the exhaust pipe 73.
  • the turbocharger 5 performs a so-called supercharging operation in which the compressor wheel 53 is rotated using the exhaust flow (exhaust pressure) received by the turbine wheel 52 to increase the intake pressure.
  • the turbocharger 5 in the present embodiment is a variable nozzle type turbocharger, and a variable nozzle vane mechanism (not shown) is provided on the turbine wheel 52 side. By adjusting the opening of the variable nozzle vane mechanism, the engine 1 supercharging pressure can be adjusted.
  • the intake pipe 64 of the intake system 6 is provided with an intercooler 61 for forcibly cooling the intake air whose temperature has been raised by supercharging in the turbocharger 5.
  • the engine 1 is provided with an exhaust gas recirculation passage (EGR passage) 8 that connects the intake system 6 and the exhaust system 7.
  • the EGR passage 8 is configured to reduce the combustion temperature by recirculating a part of the exhaust gas to the intake system 6 and supplying it again to the combustion chamber 3, thereby reducing the amount of NOx generated.
  • the EGR passage 8 is opened and closed steplessly by electronic control, and the exhaust gas passing through the EGR passage 8 (recirculating) is cooled by an EGR valve 81 that can freely adjust the exhaust flow rate flowing through the passage.
  • An EGR cooler 82 is provided.
  • the EGR passage 8, the EGR valve 81, the EGR cooler 82, and the like constitute an EGR device (exhaust gas recirculation device).
  • the air flow meter 43 outputs a detection signal corresponding to the flow rate (intake air amount) of the intake air upstream of the throttle valve 62 in the intake system 6.
  • the intake air temperature sensor 49 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the temperature of the intake air.
  • the intake pressure sensor 48 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the intake air pressure.
  • the A / F (air-fuel ratio) sensor 44 outputs a detection signal that continuously changes in accordance with the oxygen concentration in the exhaust downstream of the exhaust purification device 77 of the exhaust system 7.
  • the exhaust temperature sensor 45 outputs a detection signal corresponding to the temperature of exhaust gas (exhaust temperature) downstream of the exhaust purification device 77 of the exhaust system 7.
  • the rail pressure sensor 41 outputs a detection signal corresponding to the fuel pressure stored in the common rail 22.
  • the throttle opening sensor 42 detects the opening of the throttle valve 62.
  • the ECU 100 includes a microcomputer including a CPU, a ROM, a RAM, and the like (not shown) and an input / output circuit.
  • the input circuit of the ECU 100 includes the rail pressure sensor 41, the throttle opening sensor 42, the air flow meter 43, the A / F sensor 44, the exhaust temperature sensor 45, the intake pressure sensor 48, and the intake temperature sensor 49. Is connected.
  • the input circuit includes a water temperature sensor 46 that outputs a detection signal corresponding to the cooling water temperature of the engine 1, an accelerator opening sensor 47 that outputs a detection signal corresponding to the depression amount of the accelerator pedal, and an output shaft (crank) of the engine 1.
  • a crank position sensor 40 that outputs a detection signal (pulse) every time the shaft rotates by a certain angle
  • an in-cylinder pressure sensor (CPS (Combustion Pressure Sensor)) 4A that detects in-cylinder pressure, and the like are connected.
  • the in-cylinder pressure sensor 4A is held in a sensor mounting hole 15b formed corresponding to each cylinder in the cylinder head 15 via a sensor adapter (not shown), and the pressure in the corresponding cylinder Is supposed to be detected.
  • the supply circuit 21, the injector 23, the throttle valve 62, the EGR valve 81, and the variable nozzle vane mechanism (actuator for adjusting the opening degree of the variable nozzle vane) 54 of the turbocharger 5 are connected to the output circuit of the ECU 100. ing.
  • the ECU 100 executes various controls of the engine 1 based on outputs from the various sensors described above, calculated values obtained by arithmetic expressions using the output values, or various maps stored in the ROM. .
  • the ECU 100 executes pilot injection (sub-injection) and main injection (main injection) as the fuel injection control of the injector 23.
  • the pilot injection is an operation for injecting a small amount of fuel in advance prior to the main injection from the injector 23.
  • the pilot injection is an injection operation for suppressing the ignition delay of fuel due to the main injection and leading to stable diffusion combustion, and is also referred to as sub-injection.
  • the main injection is an injection operation (torque generation fuel supply operation) for generating torque of the engine 1.
  • the injection amount in the main injection is basically determined so as to obtain the required torque according to the operation state such as the engine speed, the accelerator operation amount, the coolant temperature, the intake air temperature, and the like. For example, the higher the engine speed (the engine speed calculated based on the detection value of the crank position sensor 40), the larger the accelerator operation amount (the accelerator pedal depression amount detected by the accelerator opening sensor 47). As the accelerator opening becomes larger, the required torque value of the engine 1 is higher, and accordingly, the fuel injection amount in the main injection is also set higher.
  • the pilot injection fuel injection from a plurality of injection holes formed in the injector 23
  • the fuel injection is temporarily stopped.
  • the main injection is executed when the piston 13 reaches the vicinity of the compression top dead center after a predetermined interval.
  • the fuel is combusted by self-ignition, and energy generated by this combustion is kinetic energy for pushing the piston 13 toward the bottom dead center (energy serving as engine output), and heat energy for raising the temperature in the combustion chamber 3.
  • the heat energy is radiated to the outside (for example, cooling water) through the cylinder block 11 and the cylinder head 15.
  • the ECU 100 controls the opening degree of the EGR valve 81 according to the operating state of the engine 1 and adjusts the exhaust gas recirculation amount (EGR amount) toward the intake manifold 63.
  • This EGR amount is set in accordance with an EGR map that is created in advance by experiments, simulations, or the like and stored in the ROM.
  • This EGR map is a map for determining the EGR amount (EGR rate) using the engine speed and the engine load as parameters.
  • the fuel injection pressure when executing fuel injection is determined by the internal pressure of the common rail 22.
  • the target value of the fuel pressure supplied from the common rail 22 to the injector 23, that is, the target rail pressure increases as the engine load (engine load) increases and the engine speed (engine speed) increases. It will be expensive.
  • This target rail pressure is set according to a fuel pressure setting map stored in the ROM, for example. In this embodiment, the fuel pressure is adjusted between 30 MPa and 200 MPa according to the engine load and the like.
  • the ECU 100 determines the fuel injection amount and the fuel injection form based on the engine operating state. Specifically, the ECU 100 calculates the engine rotation speed based on the detection value of the crank position sensor 40, obtains the amount of depression of the accelerator pedal (accelerator opening) based on the detection value of the accelerator opening sensor 47, The total fuel injection amount (the sum of the injection amount in pilot injection and the injection amount in main injection) is determined based on the engine speed and the accelerator opening.
  • the engine 1 executes minute fuel injection amount learning control (also referred to as minute injection control or minute Q control) for correcting a deviation in fuel injection amount from the injector 23.
  • minute fuel injection amount learning control also referred to as minute injection control or minute Q control
  • an outline of the minute fuel injection amount learning control will be described.
  • This minute fuel injection amount learning control is a control for acquiring a learning value according to, for example, a change in fuel injection amount with time (change in injection characteristics) of the injector 23. That is, a learning value that does not cause a deviation between the target minute fuel injection amount (indicated value of the minute fuel injection amount: target fuel injection amount) and the actual minute fuel injection amount (actual fuel injection amount) is obtained. This is the control to acquire.
  • This fine fuel injection amount learning control is performed when the vehicle is running and the engine is not loaded. Specifically, a very small amount of fuel equivalent to the pilot injection amount is specified when there is no injection when the command injection amount to the injector 23 becomes zero (for example, when the accelerator opening becomes “0” during traveling). , And the amount of change in the engine speed (amount of change in the engine operating state) associated with this single injection is recognized.
  • the change amount data of the engine operation state when the single injection of a predetermined amount is executed accurately is compared with the change amount of the engine operation state when the single injection is actually performed, and according to the deviation amount
  • the learning value of the pilot injection amount setting map (the map in which the relationship between the pilot injection amount and the energization time (valve opening time) to the injector 23 is stored for each cylinder (each injector)) is corrected.
  • Such an operation is performed for each common rail pressure and each cylinder on the pilot injection amount setting map so that pilot injection can be performed with an appropriate pilot injection amount for all cylinders regardless of the common rail pressure. I have to.
  • the pilot injection amount and the piston injection amount when the position of the piston 13 of the cylinder in the compression stroke reaches the compression top dead center (TDC) are used.
  • An equivalent very small amount of fuel (for example, 2.0 mm 3 ) is injected.
  • the reason for injecting fuel at this timing is that fuel is injected at the time when the in-cylinder temperature becomes the highest (at the time when the air in the cylinder is compressed most), so that almost the entire amount of fuel is burned in a short period of time. It is.
  • This cetane number determination operation is to determine the cetane number of the fuel (light oil) currently used by the engine 1, that is, the fuel stored in the fuel tank, and to assist in engine control according to the cetane number. It is.
  • the light oil that is the fuel of the diesel engine 1 contains a low-temperature oxidation reaction component (such as a fuel having a linear single bond composition such as n-cetane (C 16 H 34 )).
  • a low-temperature oxidation reaction component such as a fuel having a linear single bond composition such as n-cetane (C 16 H 34 )
  • the n-cetane and the like are components that can be ignited even when the in-cylinder temperature is relatively low.
  • n-cetane or the like starts combustion (low temperature oxidation reaction) when the in-cylinder temperature reaches about 750K.
  • fuel components (high temperature oxidation reaction components) other than n-cetane do not start combustion (high temperature oxidation reaction) until the in-cylinder temperature reaches about 900K.
  • the amount of heat energy when it is assumed that all of the fuel injected from the injector 23 has burned is “total energy amount”, and the in-cylinder temperature becomes 900 K (high temperature oxidation temperature) after reaching 750 K (low temperature oxidation reaction start temperature).
  • the amount of thermal energy generated by combustion in the period until the oxidation reaction start temperature is defined as “low temperature oxidation reaction energy amount”
  • the ratio of the low temperature oxidation reaction energy amount to the total energy amount hereinafter referred to as “energy ratio”. Will be obtained as a value correlated with the cetane number.
  • the injection end timing of the fuel injected into the cylinder is before the in-cylinder temperature reaches 900K, more preferably before the in-cylinder temperature reaches 750K.
  • the combustion of all or most of the low temperature oxidation reaction components is completed when the combustion of the high temperature oxidation reaction components is started (when the in-cylinder temperature reaches 900 K).
  • the cetane number determination operation is performed on the condition that fuel injection is completed before the in-cylinder temperature reaches 900K.
  • the cetane number determination operation is performed on the condition that the fuel injection is completed before the in-cylinder temperature reaches 750K.
  • a case will be described in which the cetane number determination operation is performed when the vehicle is running and the engine is not loaded.
  • cetane is performed by performing a single injection of a very small amount of fuel equivalent to the pilot injection amount toward a specific cylinder (cylinder in the compression stroke) in the cylinder. It performs a price judgment operation.
  • the fuel injection amount in the cetane number determination operation is not limited to the above, and can be set as appropriate.
  • FIG. 4 is a flowchart showing the procedure of the cetane number determination operation and the engine control operation in the present embodiment. This operation is executed every time the travel distance of the vehicle reaches a predetermined distance (for example, 500 km). Alternatively, it is executed when the vehicle travels after the fuel tank is refueled.
  • a predetermined distance for example, 500 km.
  • step ST1 it is determined whether or not an execution condition for the cetane number determination operation is satisfied. For example, when the following conditions are both satisfied, it is determined that the execution condition for the cetane number determination operation is satisfied.
  • the condition that the in-cylinder temperature is less than 750 K is to increase the calculation accuracy of the low-temperature oxidation reaction energy amount by causing n-cetane or the like in the injected fuel to perform premix combustion.
  • These conditions are not limited to this, and can be set as appropriate.
  • the in-cylinder temperature of the cylinder in the compression stroke may reach 600K.
  • step ST1 When the execution condition of the cetane number determination operation is not satisfied and NO is determined in step ST1, that is, the minute fuel injection amount learning control is not completed and the accuracy of the fuel injection amount is not sufficiently obtained. In the case where the in-cylinder temperature is already 750 K or higher, the cetane number determination operation is returned as impossible.
  • step ST1 If the execution condition of the cetane number determination operation is established and YES is determined in step ST1, the process proceeds to step ST2 and fuel injection from the injector 23 is started.
  • the fuel amount injected here is set to be equal to the fuel injection amount in the minute fuel injection amount learning control. That is, in the minute fuel injection amount learning control, the fuel is injected when the piston 13 reaches the compression top dead center (TDC), whereas in the cetane number determination operation, the piston 13 is moved before the compression top dead center. (BTDC) When the angle reaches 20 °, fine injection is performed. As described above, since the minute fuel injection amount learning control has been completed as an execution condition of the cetane number determination operation, the minute injection here is the injection amount learning control (the difference in fuel injection amount). Is a fine injection specialized for cetane number determination.
  • step ST3 it is determined whether or not the in-cylinder gas temperature has reached 750K.
  • the in-cylinder volume (V) is determined by the engine specifications (cylinder bore, piston stroke, etc.) and the crank angle position.
  • the gas substance amount (n) and gas constant (R) are obtained based on the intake air amount detected by the air flow meter 43, the outside air temperature, the fuel injection amount from the injector 23, and the like.
  • step ST7 whether or not the fuel injection from the injector 23 has been completed, that is, whether or not the fuel injection (injection of minute fuel injection amount (for example, 2.0 mm 3 )) has been completed until the in-cylinder gas temperature reaches 750K. Determine whether or not.
  • step ST7 If the fuel injection has not been completed yet and NO is determined in step ST7, the process returns to step ST3 to determine whether or not the in-cylinder gas temperature has reached 750K.
  • step ST3 a YES determination is made in step ST3 and the process proceeds to step ST4.
  • Measurement of the amount of heat generated with the combustion of fuel in the engine is started.
  • the heat generation amount is measured by converting the output value of the in-cylinder pressure sensor 4A into a heat generation amount from a predetermined conversion formula or a heat generation amount calculation map stored in advance in the ROM, and measuring the heat generation amount.
  • the heat generation amount generated in the cylinder is integrated until the end timing is reached (YES is determined in step ST10 described later, and measurement of the heat generation amount is ended in step ST11).
  • This integrated value is a value corresponding to the low-temperature oxidation reaction energy amount.
  • step ST5 it is determined whether or not the fuel injection from the injector 23 is finished, that is, whether or not the injection of the minute fuel injection amount is finished. To do.
  • step ST5 If the fuel injection has not been completed yet and NO is determined in step ST5, the process waits for the fuel injection to end. At this time, since the in-cylinder gas temperature has already reached 750 K, n-cetane or the like contained in the fuel starts to combust while the fuel injection is continued. Will rise. If the fuel injection is completed and YES is determined in step ST5, the process proceeds to step ST6, whether the in-cylinder gas temperature is less than 900K, that is, the in-cylinder gas temperature at the time when the fuel injection is completed. Is less than 900K (high temperature oxidation reaction start temperature).
  • step ST6 when the in-cylinder gas temperature is 900K or higher when fuel injection is completed and NO is determined in step ST6, combustion of fuel components (high-temperature oxidation reaction components) other than n-cetane has already started. Therefore, it is determined that it is difficult to measure the amount of heat generated by combustion of only n-cetane or the like (low temperature oxidation reaction component), and the cetane number determination operation is stopped and the process returns.
  • step ST6 determines whether or not the in-cylinder gas temperature has reached 900K (whether or not it has reached a temperature at which combustion of the high-temperature oxidation reaction component has started).
  • the recognition of the in-cylinder gas temperature is also calculated based on the output of the in-cylinder pressure sensor 4A as in the case of step ST3.
  • step ST10 If the in-cylinder gas temperature has not yet reached 900K and NO is determined in step ST10, it waits for the in-cylinder gas temperature to reach 900K. In this case, the in-cylinder temperature is directed to 900K due to heat generation due to combustion of only n-cetane or the like (low-temperature oxidation reaction component) or air compression due to the piston 13 moving toward the compression top dead center. Will rise further. If the in-cylinder gas temperature reaches 900K and YES is determined in step ST10, the process proceeds to step ST11 and the measurement of the heat generation amount is ended.
  • step ST7 if the fuel injection (injection of the minute fuel injection amount) is completed before the in-cylinder gas temperature reaches 750K, YES is determined in step ST7 and the process proceeds to step ST8.
  • step ST8 it is determined whether or not the in-cylinder gas temperature has reached 750K. This determination is performed in the same manner as in step ST3.
  • step ST8 If the in-cylinder temperature is less than 750K and NO is determined in step ST8, the in-cylinder gas temperature is waited for to reach 750K. In this case, the in-cylinder temperature rises toward 750K due to the compression of air due to the piston 13 moving toward the compression top dead center. If the in-cylinder gas temperature reaches 750K and YES is determined in step ST8, the process proceeds to step ST9, and measurement of the amount of heat generated due to the combustion of fuel in the cylinder is started. The heat generation amount is measured in the same manner as in step ST4 described above.
  • step ST10 After the measurement of the heat generation amount is started in this way, the process proceeds to step ST10, and similarly to the above, whether or not the in-cylinder gas temperature has reached 900K (the temperature at which the combustion of the high-temperature oxidation reaction component is started). In the case where the in-cylinder gas temperature reaches 900K and a YES determination is made in step ST10, the process proceeds to step ST11 and the measurement of the heat generation amount is terminated.
  • step ST12 the energy ratio is calculated. That is, the low-temperature oxidation reaction energy amount with respect to the total energy amount, which is the heat energy amount assuming that all of the fuel injected from the injector 23 has burned (until the in-cylinder gas temperature reaches 750K and reaches 900K). (Corresponding to the amount of heat generation accumulated during the period) (low-temperature oxidation reaction energy amount / total energy amount) is calculated.
  • step ST13 the cetane number is determined from the calculated energy ratio.
  • a cetane number determination map is used for the determination of the cetane number.
  • FIG. 5 is a diagram showing an example of a cetane number determination map.
  • the cetane number determination map defines the correlation between the energy ratio and the cetane number, and is created in advance by experiments and simulations and stored in the ROM. As is clear from FIG. 5, the energy ratio and the cetane number are uniquely related, and the larger the energy ratio, the larger the cetane number. An example of the fuel determined by this cetane number determination map will be described.
  • a low heating value (corresponding to the total energy amount) is 323 J when the fuel injection amount is 10 mm 3 , and low temperature oxidation is performed.
  • the reaction energy amount is 32.3 J
  • 0.1 is obtained as the energy ratio, and the value of this energy ratio is applied to the cetane number determination map to obtain the cetane number (for example, cetane number 45).
  • step ST14 After determining the cetane number using this cetane number determination map, the process proceeds to step ST14, and control of control parameters such as the injection timing and the injection amount of the fuel injected from the injector 23 is performed according to the determined cetane number.
  • Engine control for adjusting the value is executed. For example, when the determined cetane number is relatively low, the lower the cetane number, the fuel injection timing (for example, the injection timing of the pilot injection) is corrected to the advance side, and the ignition delay is caused by the low cetane number. Make sure that the ignition timing is properly obtained even when the value of increases.
  • the lower the cetane number the more the fuel injection amount (for example, the injection amount in the above-described pilot injection) is corrected, and the lower the cetane number is sufficient for in-cylinder preheating even when the generated heat amount per unit fuel is small. Make sure that you get the right amount of heat.
  • the lower the cetane number the lower the fuel injection pressure is set to increase the density of n-cetane, etc. in the combustion field, or the EGR rate is decreased to increase the combustion temperature. Also good.
  • FIG. 6 is a diagram showing changes in the heat generation rate, the in-cylinder gas temperature, the integrated heat generation amount, and the fuel injection rate when the minute fuel injection is executed when the in-cylinder temperature reaches 750 K before the fuel injection is completed. It is.
  • the in-cylinder temperature reaches 750 K before the elapse of timing T1 at which fuel injection ends (timing T2 in the figure), and the measurement of the amount of heat generation is started from this point.
  • the measurement of the heat generation amount is finished at the timing T3 when the in-cylinder temperature reaches 900K, and the heat generation amount integrated during the period from the timing T2 to the timing T3 (the integrated heat generation amount Q1 in FIG. 6) is the above-mentioned. It is acquired as a low temperature oxidation reaction energy amount.
  • FIG. 7 shows changes in the heat generation rate, the in-cylinder gas temperature, the integrated heat generation amount, and the fuel injection rate when the minute fuel injection is executed when the fuel injection is finished before the in-cylinder temperature reaches 750K.
  • FIG. 7 the measurement of the amount of heat generation is started after the end of fuel injection and when the in-cylinder temperature reaches 750K (timing T4 in the figure). Then, the measurement of the heat generation amount is finished at the timing T5 when the in-cylinder temperature reaches 900K, and the heat generation amount integrated during the period from the timing T4 to the timing T5 (the integrated heat generation amount Q2 in FIG. 7) is the above-mentioned. It is acquired as a low temperature oxidation reaction energy amount.
  • the cetane number is obtained from the energy ratio that is the ratio of the low-temperature oxidation reaction energy amount to the total energy amount.
  • n-cetane or the like which is a low-temperature oxidation reaction component, starts combustion (low-temperature oxidation reaction) when the in-cylinder temperature reaches about 750 K, and most of the time until the in-cylinder temperature reaches 900 K. End combustion.
  • fuel components (high temperature oxidation reaction components) other than n-cetane do not start combustion (high temperature oxidation reaction) until the in-cylinder temperature reaches 900K. Therefore, the energy ratio can be obtained as a value having a high correlation with the cetane number of the fuel, and the cetane number of the fuel can be accurately determined from the energy ratio, and the cetane number determination accuracy can be improved. Improvements can be made.
  • the cetane number determination operation is executed on the condition that the fuel injection is completed before the in-cylinder temperature reaches 900K.
  • the cetane number determination operation is performed on the condition that the fuel injection is completed before the in-cylinder temperature reaches 750K.
  • FIG. 8 is a flowchart showing the procedure of the cetane number determination operation and the engine control operation in the present embodiment. This operation is also executed every time the travel distance of the vehicle reaches a predetermined distance (for example, 500 km). Alternatively, it is executed when the vehicle travels after the fuel tank is refueled.
  • a predetermined distance for example, 500 km.
  • step ST21 it is determined whether or not an execution condition for the cetane number determination operation is satisfied.
  • This determination condition is the same as in the case of the first embodiment described above.
  • step ST21 If the execution condition for the cetane number determination operation is not satisfied and NO is determined in step ST21, the cetane number determination operation is returned as impossible.
  • step ST21 If the execution condition of the cetane number determination operation is established and YES is determined in step ST21, the process proceeds to step ST22 and fuel injection from the injector 23 is started.
  • the form of injected fuel here is the same as in step ST2 of FIG. 4 in the first embodiment.
  • step ST23 it is determined whether or not the fuel injection from the injector 23 is completed, that is, whether or not the injection of the minute fuel injection amount is completed.
  • step ST23 the process waits for the fuel injection to end.
  • the in-cylinder temperature rises toward 750K due to the compression of air due to the piston 13 moving toward the compression top dead center.
  • step ST23 If the fuel injection is completed and YES is determined in step ST23, the process proceeds to step ST24, whether the in-cylinder gas temperature is less than 750K, that is, the in-cylinder gas temperature at the time when the fuel injection is completed. Is less than 750K (low temperature oxidation reaction start temperature).
  • the routine returns without executing the cetane number determination operation.
  • step ST24 if the in-cylinder gas temperature is less than 750K at the time when the fuel injection is completed and YES is determined in step ST24, the process proceeds to step ST25, and whether or not the in-cylinder gas temperature has reached 750K (low-temperature oxidation). It is determined whether or not the temperature at which the combustion of the reaction component has started has been reached.
  • step ST25 If the in-cylinder gas temperature has not yet reached 750K and a NO determination is made in step ST25, it waits for the in-cylinder gas temperature to reach 750K. In this case, the in-cylinder temperature further increases toward 750K due to the compression of the air due to the piston 13 further moving toward the compression top dead center. If the in-cylinder gas temperature reaches 750K and YES is determined in step ST25, the process proceeds to step ST26, and measurement of the amount of heat generated due to the combustion of fuel in the cylinder is started. The heat generation amount is measured in the same manner as in step ST4 described above.
  • step ST27 After the measurement of the heat generation amount is started in this way, the process proceeds to step ST27, and whether or not the in-cylinder gas temperature has reached 900K (whether or not the temperature at which combustion of the high-temperature oxidation reaction component has started has been reached). ) And the in-cylinder gas temperature reaches 900K, and YES is determined in step ST27, the process proceeds to step ST28, and the measurement of the heat generation amount is finished.
  • step ST29 the above-described energy ratio is calculated. That is, the ratio of the low-temperature oxidation reaction energy amount to the total energy amount (low-temperature oxidation reaction energy amount / total energy amount) is calculated as in step ST12 described above.
  • step ST30 the cetane number is determined from the calculated energy ratio.
  • a cetane number determination map is used as in the case of the first embodiment.
  • the description of the cetane number determination map is omitted.
  • step ST31 After determining the cetane number using the cetane number determination map, the process proceeds to step ST31, and in accordance with the determined cetane number, the control values of the control parameters such as the injection timing and the injection amount of the fuel injected from the injector 23
  • the engine control for adjusting the engine is executed. For example, when the determined cetane number is relatively low, the lower the cetane number, the fuel injection timing (for example, the injection timing of the pilot injection) is corrected to the advance side, and the ignition delay is caused by the low cetane number. Make sure that the ignition timing is properly obtained even when the value of increases.
  • the lower the cetane number the higher the fuel injection amount (for example, the injection amount in the above-described pilot injection) is corrected, and the low cetane number is sufficient for in-cylinder preheating even when the generated heat amount per unit fuel is small. Make sure that you get the right amount of heat.
  • the lower the cetane number the lower the fuel injection pressure is set to increase the density of n-cetane, etc. in the combustion field, or the EGR rate is decreased to increase the combustion temperature. Also good.
  • the cetane number of the fuel is obtained from the above-mentioned energy ratio having a high correlation with the cetane number of the fuel, it becomes possible to accurately determine the cetane number of the fuel, and the cetane number The determination accuracy can be improved.
  • the cetane number determination operation is executed on the condition that the fuel injection is completed before the in-cylinder temperature reaches 750K. For this reason, when the in-cylinder temperature reaches 900K, it becomes possible to burn the entire amount of n-cetane and the like, thereby further improving the cetane number determination accuracy.
  • the low-temperature oxidation reaction energy amount is obtained based on the in-cylinder pressure detected by the in-cylinder pressure sensor 4A.
  • the present invention is not limited to this, and the in-cylinder pressure may be estimated from the operating state of the engine 1 (engine speed or the like), and the low-temperature oxidation reaction energy amount may be obtained based on the estimated in-cylinder pressure.
  • the cetane number determination operation is performed when the in-cylinder gas temperature at the time when the fuel injection is finished is less than 900K.
  • the fuel injection is finished.
  • the cetane number determination operation is executed.
  • the present invention is not limited to this. By preliminarily defining the fuel injection timing and the fuel injection amount such that the in-cylinder gas temperature is less than 900K or less than 750K, the fuel is injected in the prescribed fuel injection mode.
  • the cetane number determination operation may be executed.
  • the cetane number of the fuel is determined by performing minute fuel injection when the engine is not loaded.
  • the present invention is not limited to this, and the cetane number of the fuel is determined from the amount of energy generated with the execution of the pilot injection, or generated with the execution of the main injection without the pilot injection (single main injection).
  • the cetane number of the fuel may be determined from the amount of energy to be used.
  • the execution condition of the cetane number determination operation is that the minute fuel injection amount learning control is completed.
  • the present invention is not limited to this, and the cetane number determination operation is performed to confirm that another inspection (for example, an inspection by a fuel flow sensor provided in the injector 23) is completed as an inspection that the fuel injection amount is appropriate. It is good also as conditions.
  • the present invention applies a variable injection rate injector. It can also be applied to the engine.
  • the present invention is applicable to the determination of the cetane number of a fuel used in a common rail in-cylinder direct injection multi-cylinder diesel engine mounted on an automobile.

Abstract

 ディーゼルエンジンの圧縮行程において、筒内温度が750Kに達するまでに燃料噴射が終了するように、インジェクタから気筒内に微小燃料噴射量の噴射を行う。筒内温度が750Kに達した時点から900Kに達するまでの期間中、燃料の燃焼に伴う熱エネルギ量を低温酸化反応エネルギ量として積算する。微小燃料噴射量での総燃料が燃焼した場合の熱エネルギ量を総エネルギ量とし、総エネルギ量に対する低温酸化反応エネルギ量の割合をエネルギ割合として求める。このエネルギ割合をセタン価判定マップに当て嵌め、このセタン価判定マップから燃料のセタン価を抽出する。

Description

内燃機関のセタン価判定装置
 本発明は、ディーゼルエンジンに代表される圧縮自着火式の内燃機関のセタン価判定装置に係る。特に、本発明は、セタン価判定精度の向上を図るための対策に関する。
 従来から周知のように、自動車用エンジン等として使用されるディーゼルエンジンでは、排気エミッションの改善、要求エンジントルクの確保、燃料消費率の改善等を実現することが要求されている。これら要求に応えるための手段の一つとして、気筒内における燃料の燃焼状態を適正化することが挙げられる。そして、この燃焼状態を適正化するためには、燃料性状に応じて燃料噴射タイミングや燃料噴射量等の制御パラメータの制御値を適切に設定する必要がある。
 ディーゼルエンジンの燃料として使用される軽油(以下「燃料」と呼ぶ場合もある)における燃料性状としてはセタン価が挙げられ、このセタン価によって燃料の着火性が左右される。
 燃料中に含まれるセタン(n-セタン(C1634)等の低温酸化反応が可能な直鎖の分子構造;以下では、低温酸化反応成分を「n-セタン等」と呼ぶ場合もある)は、筒内圧力が比較的低い場合や筒内温度が比較的低い場合であっても着火が可能な成分であって、このセタン量が多いほど気筒内での低温酸化反応が進み易く着火遅れが抑制されることになる。つまり、セタン価が高い燃料ほど着火性が良好であり、予混合燃焼の着火遅れが小さくなる。逆に、セタン価が低い燃料では、着火性が悪く、予混合燃焼の着火遅れが大きくなる。
 このため、上記要求に応えるためには、使用されている燃料のセタン価を高い精度で判定し、その判定されたセタン価に応じて上記制御パラメータ(燃料噴射タイミングや燃料噴射量等の燃料噴射形態)を制御することが必要となる。
 燃料のセタン価を判定する手法として、下記の特許文献1及び特許文献2が提案されている。
 特許文献1には、燃料を微小噴射量で噴射した場合の燃焼率に基づいてセタン価を判定することが開示されている。具体的には、燃料噴射後の所定サンプリング期間における燃焼率(=燃焼燃料量/燃料噴射量)に基づいてセタン価を特定するようにしている。
 また、特許文献2には、エンジンの排気温度と運転状態(エンジン負荷)とに応じて燃料のセタン価を判定することが開示されている。具体的には、セタン価が低いほど燃料の着火遅れ期間が長くなり、それに伴って未燃燃料が増加して排気温度が低くなる傾向があることに鑑み、排気温度が低いほど燃料のセタン価が低いと判定するようにしている。
特開2009-174322号公報 特開2010-127257号公報
 しかしながら、従来のセタン価判定方法では、セタン価の判定精度が十分に得られておらず、その判定されたセタン価に応じて設定される制御パラメータの制御値としても適切な値とはなっていないのが実状であった。
 例えば、上記特許文献1には、パイロット噴射の実行時にセタン価判定を行うことが開示されており、パイロット噴射で噴射された燃料の燃焼が開始してからメイン噴射で噴射された燃料の燃焼が開始するまでの期間をサンプリング期間として設定している。これでは、メイン噴射の噴射タイミングに応じてサンプリング期間が大きく変化することになり、それに応じて、このサンプリング期間における燃焼室内の温度(筒内温度)の変化状態も大きく変化することになる。このため、必ずしも上記燃焼率(=燃焼燃料量/燃料噴射量)が燃料のセタン価を反映した値とはならず(メイン噴射の噴射タイミングが遅角された場合にはn-セタン等の低温酸化反応成分以外の成分がメイン燃焼の開始前に燃焼してしまってサンプリング期間における燃焼率が大きく変化してしまう(セタン価に応じた燃焼率とはならない)ことになり)、セタン価の誤判定を招く可能性の高いものであった。
 また、エンジンの排気温度は、燃料のセタン価だけでなく、その他のパラメータ(EGR率や外気温度等)によっても大きく変化するため、上記特許文献2に開示されているセタン価判定方法においてもセタン価の誤判定を招く可能性の高いものであった。
 ところで、本願発明の発明者は、セタン価の判定精度を高めるための対策として、n-セタン等の低温酸化反応成分の燃焼期間とそれ以外の燃料成分の燃焼期間とを分離し、規定量の燃料噴射を行った際のn-セタン等の燃焼期間におけるトルク相当量から燃料のセタン価を判定することを既に提案している(出願番号PCT/JP2011/74661)。
 しかしながら、このトルク相当量から燃料のセタン価を判定するものの場合、燃料のエネルギ量に対してエンジントルクに変換される変換率は種々のパラメータによって変動する可能性があるため、セタン価判定精度の更なる向上が図れる判定手法が求められる。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、燃料のセタン価判定精度のよりいっそうの向上を図ることが可能な内燃機関のセタン価判定装置を提供することにある。
 -発明の概要-
 上記の目的を達成するために講じられた本発明の概要は、気筒内に噴射された燃料が燃焼する場合に、筒内ガス温度が燃料の低温酸化反応開始温度から高温酸化反応開始温度に達するまでの期間中での燃料の燃焼により発生したエネルギ量と燃料中のセタン量との相関が高いことを利用し、気筒内に噴射された燃料の総量(低温酸化反応成分及び高温酸化反応成分の総量)により得られるエネルギ量に対する上記期間中(筒内ガス温度が低温酸化反応開始温度から高温酸化反応開始温度に達するまでの期間中)で発生したエネルギ量(低温酸化反応成分の燃焼により発生したエネルギ量)の割合から燃料のセタン価を判定するようにしている。
 -解決手段-
 具体的に、本発明は、燃料噴射弁から気筒内に向けて噴射された燃料の自着火による燃焼を行う圧縮自着火式の内燃機関に使用されている燃料のセタン価を判定するセタン価判定装置を前提とする。このセタン価判定装置に対し、上記燃料噴射弁から気筒内に噴射された燃料の総エネルギ量を噴射燃料総エネルギ量とし、この気筒内のガス温度が燃料の低温酸化反応開始温度に達した時点から高温酸化反応開始温度に達した時点までの期間における燃料の燃焼によるエネルギ量を低温酸化反応エネルギ量とした場合に、上記気筒内のガス温度が上記高温酸化反応開始温度に達する前に燃料噴射弁からの燃料噴射が終了した場合における、上記噴射燃料総エネルギ量に対する上記低温酸化反応エネルギ量の割合に基づいて燃料のセタン価を判定する構成としている。具体的には、上記噴射燃料総エネルギ量に対する上記低温酸化反応エネルギ量の割合が大きいほど、燃料のセタン価が高いと判定するようにしている。
 この特定事項により、燃料(軽油)が気筒内に噴射された場合、この燃料に含まれているn-セタン等の低温酸化反応成分は、気筒内のガス温度が燃料の低温酸化反応開始温度に達した時点から燃焼を開始する。そして、気筒内のガス温度が燃料の高温酸化反応開始温度に達する前に燃料噴射弁から気筒内への燃料噴射が終了した場合には、この燃料に含まれているn-セタン等の低温酸化反応成分の全てまたは大部分が、気筒内のガス温度が高温酸化反応開始温度に達するまでに燃焼を終了する。つまり、この気筒内のガス温度が高温酸化反応開始温度に達するまでの期間は、燃料中の低温酸化反応成分のみが燃焼し、高温酸化反応成分の燃焼は未だ開始されていないことになる。このため、この期間中における燃料の燃焼によるエネルギ量である低温酸化反応エネルギ量と、気筒内に噴射された燃料の総エネルギ量である噴射燃料総エネルギ量との割合は、燃料のセタン価との相関が高い値として求まることになり、この割合から燃料のセタン価を判定することが可能である。このようにして気筒内のガス温度に応じてエネルギ量(低温酸化反応エネルギ量)を取得する期間を規定したことにより、高い精度で低温酸化反応成分の燃焼によるエネルギ量を取得することができ、セタン価判定精度の向上を図ることが可能となる。
 上記低温酸化反応エネルギ量の算出手法として具体的には、気筒内のガス温度が燃料の低温酸化反応開始温度に達した時点から燃料の燃焼によるエネルギ量の計測を開始し、気筒内のガス温度が燃料の高温酸化反応開始温度に達した時点で上記エネルギ量の計測を終了して、その積算したエネルギ量を上記低温酸化反応エネルギ量として取得するようにしている。
 このようにエネルギ量の計測期間を特定することにより、外乱(冷却水が有する熱エネルギ等)の影響を殆ど受けることなく、低温酸化反応エネルギ量を正確に求めることが可能となる。
 上記セタン価の判定精度をよりいっそう高めるためのセタン価判定動作の実行条件としては以下のものが挙げられる。つまり、上記噴射燃料総エネルギ量に対する上記低温酸化反応エネルギ量の割合に基づく燃料のセタン価の判定を、上記燃料の高温酸化反応開始温度よりも更に低い低温酸化反応開始温度に達する前に燃料噴射弁からの燃料噴射が終了した場合に行う構成としたものである。
 これによれば、気筒内のガス温度が高温酸化反応開始温度に達した時点において、燃料に含まれているn-セタン等の低温酸化反応成分の全ての燃焼が完了している可能性が非常に高くなり、n-セタン等の量に応じた上記低温酸化反応エネルギ量が高い精度で得られることになる。このため、上記噴射燃料総エネルギ量に対する低温酸化反応エネルギ量の割合に基づく燃料のセタン価の判定精度をいっそう高めることが可能となる。
 上記各温度の具体的な値として、上記低温酸化反応開始温度は約750Kであり、上記高温酸化反応開始温度は約900Kが挙げられる。
 また、少なくとも、燃料噴射弁からの噴射燃料量の学習制御が完了していること、圧縮行程にある気筒の筒内温度が低温酸化反応開始温度未満であることを条件としてセタン価判定動作を実行するようにしている。
 噴射燃料量の学習制御が完了していることを条件とするのは、上記総エネルギ量を正確に算出するためである。また、圧縮行程にある気筒の筒内温度が低温酸化反応開始温度未満であることを条件とするのは、燃料噴射弁から噴射された燃料中のn-セタン等に予混合燃焼を行わせ、低温酸化反応エネルギ量の算出精度を高めるためである。尚、噴射燃料量の学習制御としては、周知の微小燃料噴射量学習制御(内燃機関の無負荷時に微小量の燃料噴射を行った際に、エンジン運転状態の変化量が、規定する変化量に一致しているか否かによって燃料噴射量にズレが生じていないかを学習する制御)等が挙げられる。
 また、上記セタン価を判定する動作は、内燃機関の無負荷時に燃料噴射を行うことで実行するようにしている。
 これによれば、車両の走行性能に影響を与えることのないタイミングでの燃料噴射によるセタン価の判定が可能であり、このセタン価判定動作によってドライバビリティが悪化するといったことがなくなる。
 本発明では、上記噴射燃料総エネルギ量に対する上記低温酸化反応エネルギ量の割合に基づいて燃料のセタン価を判定するようにしている。このように気筒内のガス温度に応じて低温酸化反応エネルギ量を取得する期間を規定したことにより、高い精度で低温酸化反応成分の燃焼によるエネルギ量を取得することができ、セタン価判定精度の向上を図ることが可能となる。
図1は、実施形態に係るエンジン及びその制御系統の概略構成を示す図である。 図2は、ディーゼルエンジンの燃焼室及びその周辺部を示す断面図である。 図3は、ECU等の制御系の構成を示すブロック図である。 図4は、第1実施形態におけるセタン価判定動作及びエンジン制御動作の手順を示すフローチャート図である。 図5は、セタン価判定マップの一例を示す図である。 図6は、燃料噴射が終了する前に筒内温度が750Kに達した場合における微小燃料噴射実行時の熱発生率、筒内ガス温度、積算熱発生量、燃料噴射率それぞれの変化を示す図である。 図7は、筒内温度が750Kに達する前に燃料噴射が終了した場合における微小燃料噴射実行時の熱発生率、筒内ガス温度、積算熱発生量、燃料噴射率それぞれの変化を示す図である。 図8は、第2実施形態におけるセタン価判定動作及びエンジン制御動作の手順を示すフローチャート図である。
 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、自動車に搭載されたコモンレール式筒内直噴型多気筒(例えば直列4気筒)ディーゼルエンジン(圧縮自着火式内燃機関)に本発明を適用した場合について説明する。
 -エンジンの構成-
 先ず、本実施形態に係るディーゼルエンジン(以下、単にエンジンという)の概略構成について説明する。図1は本実施形態に係るエンジン1及びその制御系統の概略構成図である。また、図2は、ディーゼルエンジンの燃焼室3及びその周辺部を示す断面図である。
 図1に示すように、本実施形態に係るエンジン1は、燃料供給系2、燃焼室3、吸気系6、排気系7等を主要部とするディーゼルエンジンシステムとして構成されている。
 燃料供給系2は、サプライポンプ21、コモンレール22、インジェクタ(燃料噴射弁)23、機関燃料通路27等を備えて構成されている。
 上記サプライポンプ21は、燃料タンクから燃料を汲み上げ、この汲み上げた燃料を高圧にした後、機関燃料通路27を介してコモンレール22に供給する。コモンレール22は、高圧燃料を所定圧力に保持(蓄圧)する蓄圧室としての機能を有し、この蓄圧した燃料を各インジェクタ23,23,…に分配する。インジェクタ23は、その内部に圧電素子(ピエゾ素子)を備え、適宜開弁して燃焼室3内に燃料を噴射供給するピエゾインジェクタにより構成されている。
 吸気系6は、シリンダヘッド15(図2参照)に形成された吸気ポート15aに接続される吸気マニホールド63を備え、この吸気マニホールド63に、吸気通路を構成する吸気管64が接続されている。また、この吸気通路には、上流側から順にエアクリーナ65、エアフローメータ43、スロットルバルブ(吸気絞り弁)62が配設されている。上記エアフローメータ43は、エアクリーナ65を介して吸気通路に流入される空気量に応じた電気信号を出力する。
 排気系7は、シリンダヘッド15に形成された排気ポート71に接続される排気マニホールド72を備え、この排気マニホールド72に対して、排気通路を構成する排気管73が接続されている。また、この排気通路には排気浄化装置77が配設されている。この排気浄化装置77には、触媒(NOx吸蔵触媒または酸化触媒)及びDPF(Diesel Paticulate Filter)が備えられている。また、排気浄化装置77としてはDPNR触媒(Diesel Paticulate-NOx Reduction触媒)が採用されていてもよい。
 ここで、ディーゼルエンジンの燃焼室3及びその周辺部の構成について、図2を用いて説明する。この図2に示すように、エンジン本体の一部を構成するシリンダブロック11には、各気筒(4気筒)毎に円筒状のシリンダボア12が形成されており、各シリンダボア12の内部にはピストン13が上下方向に摺動可能に収容されている。
 ピストン13の頂面13aの上側には上記燃焼室3が形成されている。つまり、この燃焼室3は、シリンダブロック11の上部に取り付けられたシリンダヘッド15の下面と、シリンダボア12の内壁面と、ピストン13の頂面13aとにより区画形成されている。そして、ピストン13の頂面13aの略中央部には、キャビティ(凹陥部)13bが凹設されており、このキャビティ13bも燃焼室3の一部を構成している。
 上記ピストン13は、コネクティングロッド18によってエンジン出力軸であるクランクシャフトに連結されている。これにより、シリンダボア12内でのピストン13の往復移動がコネクティングロッド18を介してクランクシャフトに伝達され、このクランクシャフトが回転することでエンジン出力が得られるようになっている。
 上記シリンダヘッド15には、上記吸気ポート15a及び上記排気ポート71がそれぞれ形成されていると共に、吸気ポート15aを開閉する吸気バルブ16及び排気ポート71を開閉する排気バルブ17が配設されている。また、シリンダヘッド15には、燃焼室3の内部へ直接的に燃料を噴射する上記インジェクタ23が取り付けられている。このインジェクタ23は、シリンダ中心線Pに沿う起立姿勢で燃焼室3の略中央上部に配設されており、上記コモンレール22から導入される燃料を燃焼室3に向けて所定のタイミングで噴射する。
 更に、図1に示す如く、このエンジン1には、過給機(ターボチャージャ)5が設けられている。このターボチャージャ5は、タービンシャフト51を介して連結されたタービンホイール52及びコンプレッサホイール53を備えている。コンプレッサホイール53は吸気管64内部に臨んで配置され、タービンホイール52は排気管73内部に臨んで配置されている。このためターボチャージャ5は、タービンホイール52が受ける排気流(排気圧)を利用してコンプレッサホイール53を回転させ、吸気圧を高めるといった所謂過給動作を行うようになっている。本実施形態におけるターボチャージャ5は、可変ノズル式ターボチャージャであって、タービンホイール52側に可変ノズルベーン機構(図示省略)が設けられており、この可変ノズルベーン機構の開度を調整することにより、エンジン1の過給圧を調整することができる。
 吸気系6の吸気管64には、ターボチャージャ5での過給によって昇温した吸入空気を強制冷却するためのインタークーラ61が設けられている。
 また、エンジン1には、吸気系6と排気系7とを接続する排気還流通路(EGR通路)8が設けられている。このEGR通路8は、排気の一部を適宜吸気系6に還流させて燃焼室3へ再度供給することにより燃焼温度を低下させ、これによってNOx発生量を低減させるものである。また、このEGR通路8には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調整することができるEGRバルブ81と、EGR通路8を通過(還流)する排気を冷却するためのEGRクーラ82とが設けられている。これらEGR通路8、EGRバルブ81、EGRクーラ82等によってEGR装置(排気還流装置)が構成されている。
 -センサ類-
 エンジン1の各部位には、各種センサが取り付けられており、それぞれの部位の環境条件や、エンジン1の運転状態に関する信号を出力する。
 例えば、上記エアフローメータ43は、吸気系6内のスロットルバルブ62上流において吸入空気の流量(吸入空気量)に応じた検出信号を出力する。吸気温センサ49は、吸気マニホールド63に配置され、吸入空気の温度に応じた検出信号を出力する。吸気圧センサ48は、吸気マニホールド63に配置され、吸入空気圧力に応じた検出信号を出力する。A/F(空燃比)センサ44は、排気系7の排気浄化装置77の下流において排気中の酸素濃度に応じて連続的に変化する検出信号を出力する。排気温センサ45は、同じく排気系7の排気浄化装置77の下流において排気ガスの温度(排気温度)に応じた検出信号を出力する。レール圧センサ41はコモンレール22内に蓄えられている燃料の圧力に応じた検出信号を出力する。スロットル開度センサ42はスロットルバルブ62の開度を検出する。
 -ECU-
 ECU100は、図示しないCPU、ROM、RAM等からなるマイクロコンピュータと入出力回路とを備えている。図3に示すように、ECU100の入力回路には、上記レール圧センサ41、スロットル開度センサ42、エアフローメータ43、A/Fセンサ44、排気温センサ45、吸気圧センサ48、吸気温センサ49が接続されている。さらに、入力回路には、エンジン1の冷却水温に応じた検出信号を出力する水温センサ46、アクセルペダルの踏み込み量に応じた検出信号を出力するアクセル開度センサ47、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力するクランクポジションセンサ40、及び、筒内圧力を検出する筒内圧センサ(CPS(Combustion Pressure Sensor))4Aなどが接続されている。この筒内圧センサ4Aは、図2に示すように、上記シリンダヘッド15において各気筒毎に対応して形成されたセンサ装着孔15bに図示しないセンサアダプタを介して保持され、対応する気筒内の圧力を検出するようになっている。
 一方、ECU100の出力回路には、上記サプライポンプ21、インジェクタ23、スロットルバルブ62、EGRバルブ81、及び、上記ターボチャージャ5の可変ノズルベーン機構(可変ノズルベーンの開度を調整するアクチュエータ)54が接続されている。
 そして、ECU100は、上記した各種センサからの出力、その出力値を利用する演算式により求められた演算値、または、上記ROMに記憶された各種マップに基づいて、エンジン1の各種制御を実行する。
 例えば、ECU100は、インジェクタ23の燃料噴射制御として、パイロット噴射(副噴射)とメイン噴射(主噴射)とを実行する。
 上記パイロット噴射は、インジェクタ23からのメイン噴射に先立ち、予め少量の燃料を噴射する動作である。また、このパイロット噴射は、メイン噴射による燃料の着火遅れを抑制し、安定した拡散燃焼に導くための噴射動作であって、副噴射とも呼ばれる。
 上記メイン噴射は、エンジン1のトルク発生のための噴射動作(トルク発生用燃料の供給動作)である。このメイン噴射での噴射量は、基本的には、エンジン回転数、アクセル操作量、冷却水温度、吸気温度等の運転状態に応じ、要求トルクが得られるように決定される。例えば、エンジン回転数(クランクポジションセンサ40の検出値に基づいて算出されるエンジン回転数)が高いほど、また、アクセル操作量(アクセル開度センサ47により検出されるアクセルペダルの踏み込み量)が大きいほど(アクセル開度が大きいほど)エンジン1のトルク要求値としては高く得られ、それに応じてメイン噴射での燃料噴射量としても多く設定されることになる。
 具体的な燃料噴射形態の一例としては、ピストン13が圧縮上死点に達する前に上記パイロット噴射(インジェクタ23に形成された複数の噴孔からの燃料噴射)が実行され、燃料噴射が一旦停止された後、所定のインターバルを経て、ピストン13が圧縮上死点近傍に達した時点で上記メイン噴射が実行されることになる。これにより燃料が自己着火によって燃焼し、この燃焼により発生したエネルギは、ピストン13を下死点に向かって押し下げるための運動エネルギ(エンジン出力となるエネルギ)、燃焼室3内を温度上昇させる熱エネルギ、シリンダブロック11やシリンダヘッド15を経て外部(例えば冷却水)に放熱される熱エネルギとなる。
 尚、上述したパイロット噴射及びメイン噴射の他に、アフタ噴射やポスト噴射が必要に応じて行われる。これらの噴射の機能は周知であるため、ここでの説明は省略する。
 また、ECU100は、エンジン1の運転状態に応じてEGRバルブ81の開度を制御し、吸気マニホールド63に向けての排気還流量(EGR量)を調整する。このEGR量は、予め実験やシミュレーション等によって作成されて上記ROMに記憶されたEGRマップに従って設定される。このEGRマップは、エンジン回転数及びエンジン負荷をパラメータとしてEGR量(EGR率)を決定するためのマップである。
 燃料噴射を実行する際の燃料噴射圧は、コモンレール22の内圧により決定される。このコモンレール内圧として、一般に、コモンレール22からインジェクタ23へ供給される燃料圧力の目標値、即ち目標レール圧は、エンジン負荷(機関負荷)が高くなるほど、及び、エンジン回転数(機関回転数)が高くなるほど高いものとされる。この目標レール圧は例えば上記ROMに記憶された燃圧設定マップに従って設定される。尚、本実施形態では、エンジン負荷等に応じて燃料圧力が30MPa~200MPaの間で調整されるようになっている。
 また、ECU100はエンジン運転状態に基づいて燃料噴射量及び燃料噴射形態を決定する。具体的には、ECU100は、クランクポジションセンサ40の検出値に基づいてエンジン回転速度を算出するとともに、アクセル開度センサ47の検出値に基づいてアクセルペダルの踏み込み量(アクセル開度)を求め、このエンジン回転速度及びアクセル開度に基づいて総燃料噴射量(パイロット噴射での噴射量とメイン噴射での噴射量との和)を決定する。
 -微小燃料噴射量学習制御-
 本実施形態に係るエンジン1は、インジェクタ23からの燃料噴射量のずれを補正するための微小燃料噴射量学習制御(微小噴射制御または微小Q制御とも呼ばれる)が実行される。以下、この微小燃料噴射量学習制御の概略について説明する。
 この微小燃料噴射量学習制御は、例えばインジェクタ23の経時的な燃料噴射量の変化(噴射特性の変化)に応じた学習値を取得するための制御である。つまり、目標とする微小燃料噴射量(微小燃料噴射量の指示値:目標燃料噴射量)と実際の微小燃料噴射量(実燃料噴射量)との間にずれを生じさせることのない学習値を取得するための制御である。
 この微小燃料噴射量学習制御は、自動車の走行中であってエンジン無負荷時に行われる。具体的には、インジェクタ23への指令噴射量が零となる無噴射時(例えば走行中にアクセル開度が「0」となったときなど)にパイロット噴射量と同等の極少量の燃料を特定の気筒(ピストン13が圧縮上死点付近にある気筒)に向けて単発噴射を実行し、この単発噴射に伴うエンジン回転数の変化量など(エンジン運転状態の変化量)を認識する。そして、正確に所定量の単発噴射が実行された場合のエンジン運転状態の変化量データと、実際に単発噴射を行った場合のエンジン運転状態の変化量とを比較し、そのずれ量に応じてパイロット噴射量設定マップ(パイロット噴射量とインジェクタ23への通電時間(開弁時間)との関係が気筒別(インジェクタ別)にそれぞれ記憶されたマップ)の学習値を補正していく。このような動作を上記パイロット噴射量設定マップ上の各コモンレール圧毎に且つ各気筒毎に実行していき、全ての気筒に対してコモンレール圧に関わりなく適正なパイロット噴射量でパイロット噴射が行えるようにしている。
 この微小燃料噴射量学習制御が実行される際の気筒内への燃料噴射形態としては、圧縮行程にある気筒のピストン13の位置が圧縮上死点(TDC)に達した時点でパイロット噴射量と同等の極少量(例えば2.0mm3)の燃料を噴射する。このタイミングで燃料を噴射する理由は、筒内温度が最も高くなる時点(筒内の空気が最も圧縮された時点)で燃料噴射を行うことで、その燃料の略全量を短期間で燃焼させるためである。
 -セタン価判定動作-
 次に、本実施形態の特徴とする動作であるセタン価判定動作について説明する。
 このセタン価判定動作は、エンジン1が現在使用している燃料(軽油)、つまり、燃料タンクに貯留されている燃料のセタン価を判定し、そのセタン価に応じたエンジン制御に役立てるためのものである。
 先ず、このセタン価判定動作の概略について述べる。ディーゼルエンジン1の燃料である軽油中には、低温酸化反応成分(n-セタン(C1634)等の直鎖単結合組成の燃料等)が含まれている。このn-セタン等は、筒内温度が比較的低い場合であっても着火が可能な成分であって、このn-セタン等の量が多いほど(高セタン燃料であるほど)気筒内での低温酸化反応が進み易く着火遅れが抑制されることになる。具体的に、n-セタン等は、筒内温度が約750Kに達した時点で燃焼(低温酸化反応)を開始する。一方、n-セタン等以外の燃料成分(高温酸化反応成分)は筒内温度が約900Kに達するまで燃焼(高温酸化反応)を開始しない。
 このため、インジェクタ23から噴射された燃料の全てが燃焼したと仮定した場合の熱エネルギ量を「総エネルギ量」とし、筒内温度が750K(低温酸化反応開始温度)になってから900K(高温酸化反応開始温度)になるまでの期間で燃焼により生じた熱エネルギ量を「低温酸化反応エネルギ量」とした場合に、総エネルギ量に対する低温酸化反応エネルギ量の割合(以下、「エネルギ割合」と呼ぶ)がセタン価に相関のある値として求まることになる。
 また、セタン価に応じたエネルギ割合を正確に算出するためには、筒内温度が900Kに達した時点において略全てのn-セタン等(低温酸化反応成分)の燃焼が終了していることが必要となる。何故なら、筒内温度が900Kに達した時点において未燃焼のn-セタン等が残存していると、この筒内温度が900Kに達した以降にあっては、低温酸化反応成分(n-セタン等)の燃焼と、それ以外の成分である高温酸化反応成分の燃焼とが同時並行されることになって、低温酸化反応成分のみの燃焼によるエネルギ量が取得できなくなるからである。このため、本実施形態におけるセタン価判定動作にあっては、気筒内に噴射される燃料の噴射終了タイミングが、筒内温度が900Kに達する以前、より好ましくは、筒内温度が750Kに達する以前となるようにし、高温酸化反応成分の燃焼が開始された時点(筒内温度が900Kに達した時点)では低温酸化反応成分の全てまたは大部分の燃焼が完了されているようにする。
 以下、セタン価判定動作についての複数の実施形態を説明する。下記の第1実施形態は、筒内温度が900Kに達する以前に燃料の噴射が終了していることを条件としてセタン価判定動作を実行するものである。また、下記の第2実施形態は、筒内温度が750Kに達する以前に燃料の噴射が終了していることを条件としてセタン価判定動作を実行するものである。また、以下の各実施形態では、自動車の走行中であってエンジン無負荷時にセタン価判定動作を実行する場合について説明する。つまり、上述した微小燃料噴射量学習制御と同様に、気筒内に、パイロット噴射量と同等の極少量の燃料を特定の気筒(圧縮行程にある気筒)に向けて単発噴射を実行することでセタン価判定動作を行うものである。尚、セタン価判定動作における燃料噴射量は上記のものには限定されず適宜設定が可能である。
 (第1実施形態)
 先ず、第1実施形態について説明する。図4は、本実施形態におけるセタン価判定動作及びエンジン制御動作の手順を示すフローチャート図である。この動作は、車両の走行距離が所定距離(例えば500km)に達する毎に実行される。または、燃料タンクへの給油が行われた後の車両走行時に実行される。
 先ず、ステップST1において、セタン価判定動作の実行条件が成立したか否かが判定される。例えば以下の各条件が共に成立した場合にセタン価判定動作の実行条件が成立したと判定する。
 (a)上記微小燃料噴射量学習制御が完了していること、
 (b)圧縮行程にある気筒のピストン位置が圧縮上死点前(BTDC)20°になったこと、
 (c)筒内温度が750K未満であること、
 上記微小燃料噴射量学習制御が完了していることを条件とするのは、上記総エネルギ量を正確に算出するためである。また、圧縮行程にある気筒のピストン位置が圧縮上死点前(BTDC)20°になったことを条件とするのは、燃料の過拡散による着火性の悪化を抑制するためである。尚、この値(BTDC20°)はこれに限定されるものではない。また、筒内温度が750K未満であることを条件とするのは、噴射された燃料中のn-セタン等に予混合燃焼を行わせ、低温酸化反応エネルギ量の算出精度を高めるためである。尚、これら条件は、これに限定されるものではなく適宜設定可能である。例えば、上記条件(b),(c)に代えて、圧縮行程にある気筒の筒内温度が600Kに達したことを条件とするようにしてもよい。
 上記セタン価判定動作の実行条件が成立しておらずステップST1でNO判定された場合、つまり、微小燃料噴射量学習制御が完了しておらず、燃料噴射量の精度が十分に得られていない場合や、筒内温度が既に750K以上となっている場合等にあっては、セタン価判定動作は不能であるとしてリターンされる。
 上記セタン価判定動作の実行条件が成立しており、ステップST1でYES判定された場合には、ステップST2に移り、インジェクタ23からの燃料噴射を開始する。ここで噴射される燃料量は、上記微小燃料噴射量学習制御での燃料噴射量と同等に設定される。つまり、上記微小燃料噴射量学習制御ではピストン13が圧縮上死点(TDC)に達した際に燃料の微小噴射が行われるのに対し、このセタン価判定動作ではピストン13が圧縮上死点前(BTDC)20°に達した時点で微小噴射が行われる。尚、上述した如くセタン価判定動作の実行条件として、微小燃料噴射量学習制御が完了していることが挙げられているため、ここでの微小噴射は、噴射量学習制御(燃料噴射量のずれを補正するための制御)のものではなく、セタン価判定に特化された微小噴射となっている。
 この燃料の微小噴射が開始された後、ステップST3に移り、筒内ガス温度が750Kに達したか否かが判定される。この筒内ガス温度の認識は、上記筒内圧センサ4Aの出力に基づいて算出される。つまり、周知の気体状態方程式(PV=nRT)から筒内ガス温度(T)が算出される。ここで、筒内容積(V)はエンジンの諸元(シリンダボアやピストンのストローク等)とクランク角度位置とによって決定される。また、気体の物質量(n)及び気体定数(R)は、上記エアフローメータ43により検出される吸入空気量や、外気温度や、インジェクタ23からの燃料噴射量等に基づいて求められる。
 燃料噴射の開始時点にあっては、筒内ガス温度は750K未満であるため(上述した如く、筒内温度が750K未満であることをセタン価判定動作の実行条件としているため)ステップST3でNO判定されてステップST7に移る。ステップST7では、インジェクタ23からの燃料噴射が終了したか否か、つまり、筒内ガス温度が750Kに達するまでに燃料噴射(微小燃料噴射量(例えば2.0mm3)の噴射)が終了したか否かを判定する。
 未だ燃料噴射が終了しておらず、ステップST7でNO判定された場合には、ステップST3に戻り、筒内ガス温度は750Kに達したか否かを判定する。
 燃料噴射が終了するまでに筒内ガス温度が750Kに達した場合(空気の圧縮等により筒内ガス温度が750Kに達した場合)には、ステップST3でYES判定されてステップST4に移り、気筒内での燃料の燃焼に伴って発生する熱発生量の計測を開始する。この熱発生量の計測は、上記筒内圧センサ4Aの出力値を、所定の換算式または上記ROMに予め記憶された熱発生量算出マップから熱発生量に換算し、この熱発生量の計測の終了タイミングを迎えるまで(後述するステップST10でYES判定され、ステップST11で熱発生量の計測が終了するまで)、この筒内で発生した熱発生量を積算していく。この積算値が上記低温酸化反応エネルギ量に相当する値となる。
 このようにして熱発生量の計測が開始された後、ステップST5に移り、インジェクタ23からの燃料噴射が終了したか否か、つまり、上記微小燃料噴射量の噴射が終了したか否かを判定する。
 未だ燃料噴射が終了しておらず、ステップST5でNO判定された場合には、燃料噴射が終了するのを待つ。この際、筒内ガス温度は既に750Kに達しているため、燃料噴射が継続されている間に、この燃料中に含まれているn-セタン等は燃焼を開始し、それに伴って筒内温度は上昇していく。そして、燃料噴射が終了し、ステップST5でYES判定された場合には、ステップST6に移り、筒内ガス温度が900K未満であるか否か、つまり、燃料噴射が終了した時点における筒内ガス温度が900K(高温酸化反応開始温度)未満であるか否かを判定する。
 ここで、燃料噴射が終了した時点における筒内ガス温度が900K以上であり、ステップST6でNO判定された場合には、n-セタン等以外の燃料成分(高温酸化反応成分)の燃焼が既に開始されており、n-セタン等(低温酸化反応成分)のみの燃焼による熱発生量の計測は困難であると判断し、セタン価判定動作を中止してリターンされる。
 一方、燃料噴射が終了した時点における筒内ガス温度が900K未満であり、ステップST6でYES判定された場合には、現時点で燃焼している燃料成分はn-セタン等(低温酸化反応成分)のみであるとしてステップST10に移り、筒内ガス温度が900Kに達したか否か(高温酸化反応成分の燃焼が開始される温度に達したか否か)が判定される。この筒内ガス温度の認識も、上記ステップST3の場合と同様に上記筒内圧センサ4Aの出力に基づいて算出される。
 未だ筒内ガス温度が900Kに達しておらず、ステップST10でNO判定された場合には、筒内ガス温度が900Kに達するのを待つ。この場合、n-セタン等(低温酸化反応成分)のみの燃焼による熱量の発生や、ピストン13が圧縮上死点前に向かって移動していることによる空気の圧縮によって筒内温度は900Kに向けて更に上昇していくことになる。そして、筒内ガス温度が900Kに達し、ステップST10でYES判定された場合には、ステップST11に移って上記熱発生量の計測を終了する。
 一方、筒内ガス温度が750Kに達するまでに燃料噴射(微小燃料噴射量の噴射)が終了した場合には、上記ステップST7でYES判定され、ステップST8に移る。このステップST8では、筒内ガス温度が750Kに達したか否かが判定される。この判定は、上記ステップST3の場合と同様に行われる。
 筒内温度が750K未満であり、ステップST8でNO判定された場合には、筒内ガス温度が750Kに達するのを待つ。この場合、ピストン13が圧縮上死点前に向かって移動していることによる空気の圧縮によって筒内温度は750Kに向けて上昇していくことになる。そして、筒内ガス温度が750Kに達し、ステップST8でYES判定された場合には、ステップST9に移り、気筒内での燃料の燃焼に伴って発生する熱発生量の計測を開始する。この熱発生量の計測は、上述したステップST4の場合と同様に行われる。
 このようにして熱発生量の計測が開始された後、ステップST10に移り、上記と同様に、筒内ガス温度が900Kに達したか否か(高温酸化反応成分の燃焼が開始される温度に達したか否か)が判定され、筒内ガス温度が900Kに達してステップST10でYES判定された場合には、ステップST11に移って上記熱発生量の計測を終了する。
 以上のようにして熱発生量の計測を終了すると、ステップST12に移り、上記エネルギ割合の算出を行う。つまり、インジェクタ23から噴射された燃料の全てが燃焼したと仮定した場合の熱エネルギ量である上記総エネルギ量に対する上記低温酸化反応エネルギ量(筒内ガス温度が750Kに達してから900Kに達するまでの期間に積算された熱発生量に相当)の割合(低温酸化反応エネルギ量/総エネルギ量)を算出する。
 そして、ステップST13では、この算出されたエネルギ割合からセタン価を判定する。このセタン価の判定にはセタン価判定マップが利用される。図5はセタン価判定マップの一例を示す図である。このセタン価判定マップは、上記エネルギ割合とセタン価との相関を規定するものであって、予め実験やシミュレーションによって作成され、上記ROMに記憶されている。図5からも明らかなように、エネルギ割合とセタン価とは一義的な関係にあり、且つエネルギ割合が大きいほどセタン価も大きくなっている。このセタン価判定マップによって判定される燃料の一例について説明すると、例えば、ある軽油燃料において、燃料噴射量を10mm3とした場合の低位発熱量(上記総エネルギ量に相当)が323Jで、低温酸化反応エネルギ量が32.3Jであった場合には、エネルギ割合としては0.1が求められ、このエネルギ割合の値をセタン価判定マップに当て嵌めることでセタン価(例えばセタン価45)が求められることになる。
 このセタン価判定マップを利用してセタン価を判定した後、ステップST14に移り、この判定されたセタン価に応じて、インジェクタ23から噴射される燃料の噴射タイミングや噴射量等の制御パラメータの制御値を調整するエンジン制御が実行される。例えば、判定されたセタン価が比較的低い場合には、そのセタン価が低いほど、燃料噴射タイミング(例えば上記パイロット噴射の噴射タイミング)を進角側に補正し、セタン価が低いことで着火遅れが大きくなっても着火時期が適切に得られるようにする。また、セタン価が低いほど、燃料噴射量(例えば上記パイロット噴射での噴射量)を増量補正し、セタン価が低いことで単位燃料当たりの発生熱量が小さい場合であっても筒内予熱に十分な熱量が得られるようにする。その他、セタン価が低いほど燃料噴射圧を低く設定して燃焼場でのn-セタン等の密度を高めたり、EGR率を低くして燃焼温度を高めるようにするといった制御を実行するようにしてもよい。
 図6は、燃料噴射が終了する前に筒内温度が750Kに達した場合における微小燃料噴射実行時の熱発生率、筒内ガス温度、積算熱発生量、燃料噴射率それぞれの変化を示す図である。この場合、燃料噴射が終了するタイミングT1の経過前に筒内温度が750Kに達し(図中のタイミングT2)、この時点から熱発生量の計測が開始される。そして、筒内温度が900Kに達したタイミングT3で熱発生量の計測が終了され、このタイミングT2からタイミングT3の期間中に積算された熱発生量(図6における積算熱発生量Q1)が上記低温酸化反応エネルギ量として取得されることになる。
 また、図7は、筒内温度が750Kに達する前に燃料噴射が終了した場合における微小燃料噴射実行時の熱発生率、筒内ガス温度、積算熱発生量、燃料噴射率それぞれの変化を示す図である。この場合、燃料噴射が終了した後であって筒内温度が750Kに達した時点(図中のタイミングT4)から熱発生量の計測が開始される。そして、筒内温度が900Kに達したタイミングT5で熱発生量の計測が終了され、このタイミングT4からタイミングT5の期間中に積算された熱発生量(図7における積算熱発生量Q2)が上記低温酸化反応エネルギ量として取得されることになる。
 以上説明したように本実施形態では、上記総エネルギ量に対する低温酸化反応エネルギ量の割合であるエネルギ割合からセタン価を求めるようにしている。上述した如く、低温酸化反応成分であるn-セタン等は、筒内温度が約750Kに達した時点で燃焼(低温酸化反応)を開始し、筒内温度が900Kに達するまでの間に殆どが燃焼を終了する。また、n-セタン等以外の燃料成分(高温酸化反応成分)は筒内温度が900Kに達するまで燃焼(高温酸化反応)を開始しない。このため、上記エネルギ割合を、燃料のセタン価との相関が高い値として求めることが可能となり、このエネルギ割合から燃料のセタン価を正確に判定することが可能となって、セタン価判定精度の向上を図ることができる。
 (第2実施形態)
 次に、第2実施形態について説明する。上記第1実施形態は、筒内温度が900Kに達する以前に燃料の噴射が終了していることを条件としてセタン価判定動作を実行するものであった。これに対し、本実施形態は、筒内温度が750Kに達する以前に燃料の噴射が終了していることを条件としてセタン価判定動作を実行するものである。以下では、上述した第1実施形態との相違点について主に説明する。
 図8は、本実施形態におけるセタン価判定動作及びエンジン制御動作の手順を示すフローチャート図である。この動作も、車両の走行距離が所定距離(例えば500km)に達する毎に実行される。または、燃料タンクへの給油が行われた後の車両走行時に実行される。
 先ず、ステップST21において、セタン価判定動作の実行条件が成立したか否かが判定される。この判定条件としては上述した第1実施形態の場合と同様である。
 上記セタン価判定動作の実行条件が成立しておらずステップST21でNO判定された場合にはセタン価判定動作は不能であるとしてリターンされる。
 上記セタン価判定動作の実行条件が成立しており、ステップST21でYES判定された場合には、ステップST22に移り、インジェクタ23からの燃料噴射を開始する。ここでの噴射燃料形態は、第1実施形態における図4のステップST2の場合と同様である。
 燃料噴射が開始された後、ステップST23に移り、インジェクタ23からの燃料噴射が終了したか否か、つまり、上記微小燃料噴射量の噴射が終了したか否かを判定する。
 未だ燃料噴射が終了しておらず、ステップST23でNO判定された場合には、燃料噴射が終了するのを待つ。この場合、ピストン13が圧縮上死点に向かって移動していることによる空気の圧縮によって筒内温度は750Kに向けて上昇していくことになる。
 そして、燃料噴射が終了し、ステップST23でYES判定された場合には、ステップST24に移り、筒内ガス温度が750K未満であるか否か、つまり、燃料噴射が終了した時点における筒内ガス温度が750K(低温酸化反応開始温度)未満であるか否かを判定する。
 ここで、燃料噴射が終了した時点における筒内ガス温度が750K以上であり、ステップST24でNO判定された場合には、セタン価判定動作を実行することなくリターンされる。
 一方、燃料噴射が終了した時点における筒内ガス温度が750K未満であり、ステップST24でYES判定された場合には、ステップST25に移り、筒内ガス温度が750Kに達したか否か(低温酸化反応成分の燃焼が開始される温度に達したか否か)が判定される。
 未だ筒内ガス温度が750Kに達しておらず、ステップST25でNO判定された場合には、筒内ガス温度が750Kに達するのを待つ。この場合、ピストン13が圧縮上死点前に向かって更に移動していることによる空気の圧縮によって筒内温度は750Kに向けて更に上昇していくことになる。そして、筒内ガス温度が750Kに達し、ステップST25でYES判定された場合には、ステップST26に移って、気筒内での燃料の燃焼に伴って発生する熱発生量の計測を開始する。この熱発生量の計測は、上述したステップST4の場合と同様に行われる。
 このようにして熱発生量の計測が開始された後、ステップST27に移り、筒内ガス温度が900Kに達したか否か(高温酸化反応成分の燃焼が開始される温度に達したか否か)が判定され、筒内ガス温度が900Kに達してステップST27でYES判定された場合には、ステップST28に移って上記熱発生量の計測を終了する。
 以上のようにして熱発生量の計測を終了すると、ステップST29に移り、上記エネルギ割合の算出を行う。つまり、上述したステップST12の場合と同様に、総エネルギ量に対する低温酸化反応エネルギ量の割合(低温酸化反応エネルギ量/総エネルギ量)を算出する。
 そして、ステップST30では、この算出されたエネルギ割合からセタン価を判定する。このセタン価の判定には第1実施形態の場合と同様にセタン価判定マップが利用される。ここではセタン価判定マップについての説明は省略する。
 セタン価判定マップを利用してセタン価を判定した後、ステップST31に移り、この判定されたセタン価に応じて、インジェクタ23から噴射される燃料の噴射タイミングや噴射量等の制御パラメータの制御値を調整するエンジン制御が実行される。例えば、判定されたセタン価が比較的低い場合には、そのセタン価が低いほど、燃料噴射タイミング(例えば上記パイロット噴射の噴射タイミング)を進角側に補正し、セタン価が低いことで着火遅れが大きくなっても着火時期が適切に得られるようにする。また、セタン価が低いほど、燃料噴射量(例えば上記パイロット噴射での噴射量)を増量補正し、セタン価が低いことで単位燃料当たりの発生熱量が小さい場合であっても筒内予熱に十分な熱量が得られるようにする。その他、セタン価が低いほど燃料噴射圧を低く設定して燃焼場でのn-セタン等の密度を高めたり、EGR率を低くして燃焼温度を高めるようにするといった制御を実行するようにしてもよい。
 本実施形態においても、燃料のセタン価との相関が高い値である上記エネルギ割合により燃料のセタン価を求めるようにしているため、燃料のセタン価を正確に判定することが可能となり、セタン価判定精度の向上を図ることができる。特に、本実施形態の場合、筒内温度が750Kに達する以前に燃料の噴射が終了していることを条件としてセタン価判定動作を実行するようにしている。このため、筒内温度が900Kに達した時点ではn-セタン等の全量を燃焼させることが可能となり、これにより、セタン価判定精度をいっそう高めることができる。
 -他の実施形態-
 以上説明した各実施形態は、自動車に搭載される直列4気筒ディーゼルエンジンに本発明を適用した場合について説明した。本発明は、自動車用に限らず、その他の用途に使用されるエンジンにも適用可能である。また、気筒数やエンジン形式(直列型エンジン、V型エンジン、水平対向型エンジン等の別)についても特に限定されるものではない。
 また、上記各実施形態では、筒内圧センサ4Aによって検出される筒内圧力に基づいて低温酸化反応エネルギ量を求めるものとしていた。本発明はこれに限らず、エンジン1の運転状態(エンジン回転数等)から筒内圧力を推定し、この推定された筒内圧力に基づいて低温酸化反応エネルギ量を求めるようにしてもよい。
 また、上記第1実施形態では、燃料噴射が終了した時点での筒内ガス温度が900K未満であった場合にセタン価判定動作を実行するものとし、上記第2実施形態では、燃料噴射が終了した時点での筒内ガス温度が750K未満であった場合にセタン価判定動作を実行するものとしていた。本発明はこれに限らず、筒内ガス温度が900K未満または750K未満となるような燃料噴射タイミング及び燃料噴射量を予め規定しておき、その規定された燃料噴射形態で燃料噴射を行うことでセタン価判定動作を実行するものとしてもよい。
 また、上記各実施形態では、エンジン無負荷時に微小燃料噴射を行うことで燃料のセタン価を判定するようにしていた。本発明はこれに限らず、上記パイロット噴射の実行に伴って発生するエネルギ量から燃料のセタン価を判定するようにしたり、パイロット噴射を伴わないメイン噴射(単発メイン噴射)の実行に伴って発生するエネルギ量から燃料のセタン価を判定するようにしてもよい。ただし、このメイン噴射の実行に伴ってセタン価を判定する場合には、メイン噴射終了時点における筒内ガス温度が900K未満または750K未満となる燃料噴射形態とすることが必要となる。
 また、上記各実施形態では、微小燃料噴射量学習制御が完了していることをセタン価判定動作の実行条件としていた。本発明はこれに限らず、燃料噴射量が適正であることの検査として、他の検査(例えばインジェクタ23内部に設けた燃料流量センサによる検査)が完了していることをセタン価判定動作の実行条件としてもよい。
 更に、上記各実施形態では、通電期間においてのみ全開の開弁状態となることにより燃料噴射率を変更するピエゾインジェクタ23を適用したエンジン1について説明したが、本発明は、可変噴射率インジェクタを適用したエンジンへの適用も可能である。
 本発明は、自動車に搭載されるコモンレール式筒内直噴型多気筒ディーゼルエンジンにおいて、使用している燃料のセタン価の判定に適用可能である。
1   エンジン(内燃機関)
12  シリンダボア
13  ピストン
23  インジェクタ(燃料噴射弁)
3   燃焼室
4A  筒内圧センサ
100 ECU

Claims (7)

  1.  燃料噴射弁から気筒内に向けて噴射された燃料の自着火による燃焼を行う圧縮自着火式の内燃機関に使用されている燃料のセタン価を判定するセタン価判定装置において、
     上記燃料噴射弁から気筒内に噴射された燃料の総エネルギ量を噴射燃料総エネルギ量とし、この気筒内のガス温度が燃料の低温酸化反応開始温度に達した時点から高温酸化反応開始温度に達した時点までの期間における燃料の燃焼によるエネルギ量を低温酸化反応エネルギ量とした場合に、
     上記気筒内のガス温度が上記高温酸化反応開始温度に達する前に燃料噴射弁からの燃料噴射が終了した場合における、上記噴射燃料総エネルギ量に対する上記低温酸化反応エネルギ量の割合に基づいて燃料のセタン価を判定する構成とされていることを特徴とする内燃機関のセタン価判定装置。
  2.  請求項1記載の内燃機関のセタン価判定装置において、
     上記噴射燃料総エネルギ量に対する上記低温酸化反応エネルギ量の割合が大きいほど、燃料のセタン価が高いと判定するよう構成されていることを特徴とする内燃機関のセタン価判定装置。
  3.  請求項1または2記載の内燃機関のセタン価判定装置において、
     上記気筒内のガス温度が燃料の低温酸化反応開始温度に達した時点から燃料の燃焼によるエネルギ量の計測を開始し、気筒内のガス温度が燃料の高温酸化反応開始温度に達した時点で上記エネルギ量の計測を終了して、その積算したエネルギ量を上記低温酸化反応エネルギ量として取得する構成となっていることを特徴とする内燃機関のセタン価判定装置。
  4.  請求項1、2または3記載の内燃機関のセタン価判定装置において、
     上記噴射燃料総エネルギ量に対する上記低温酸化反応エネルギ量の割合に基づく燃料のセタン価の判定は、上記燃料の高温酸化反応開始温度よりも更に低い低温酸化反応開始温度に達する前に燃料噴射弁からの燃料噴射が終了した場合に行われる構成とされていることを特徴とする内燃機関のセタン価判定装置。
  5.  請求項1~4のうち何れか一つに記載の内燃機関のセタン価判定装置において、
     上記低温酸化反応開始温度は約750Kであり、上記高温酸化反応開始温度は約900Kであることを特徴とする内燃機関のセタン価判定装置。
  6.  請求項1~5のうち何れか一つに記載の内燃機関のセタン価判定装置において、
     上記セタン価を判定する動作は、少なくとも、燃料噴射弁からの噴射燃料量の学習制御が完了していること、圧縮行程にある気筒の筒内温度が低温酸化反応開始温度未満であることを条件として実行される構成とされていることを特徴とする内燃機関のセタン価判定装置。
  7.  請求項1~6のうち何れか一つに記載の内燃機関のセタン価判定装置において、
     上記セタン価を判定する動作は、内燃機関の無負荷時に燃料噴射を行うことで実行される構成とされていることを特徴とする内燃機関のセタン価判定装置。
PCT/JP2011/074674 2011-10-26 2011-10-26 内燃機関のセタン価判定装置 WO2013061420A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013540544A JP5556970B2 (ja) 2011-10-26 2011-10-26 内燃機関のセタン価判定装置
PCT/JP2011/074674 WO2013061420A1 (ja) 2011-10-26 2011-10-26 内燃機関のセタン価判定装置
EP11874695.7A EP2772635A4 (en) 2011-10-26 2011-10-26 KETANZABE DETERMINATION DEVICE FOR A COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074674 WO2013061420A1 (ja) 2011-10-26 2011-10-26 内燃機関のセタン価判定装置

Publications (1)

Publication Number Publication Date
WO2013061420A1 true WO2013061420A1 (ja) 2013-05-02

Family

ID=48167287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074674 WO2013061420A1 (ja) 2011-10-26 2011-10-26 内燃機関のセタン価判定装置

Country Status (3)

Country Link
EP (1) EP2772635A4 (ja)
JP (1) JP5556970B2 (ja)
WO (1) WO2013061420A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234727A (ja) * 2013-05-31 2014-12-15 トヨタ自動車株式会社 内燃機関の熱発生率波形作成装置及び燃焼状態診断装置
DE102015101631A1 (de) 2014-02-10 2015-08-13 Denso Corporation Vorrichtung zur Erfassung der Kraftstoffentzündlichkeit
JP2016223324A (ja) * 2015-05-28 2016-12-28 ヤンマー株式会社 エンジン制御システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056895B2 (ja) * 2015-03-23 2017-01-11 マツダ株式会社 直噴エンジンの燃料噴射制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183466A (ja) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP2006226188A (ja) * 2005-02-17 2006-08-31 Nissan Motor Co Ltd ディーゼルエンジンの燃料性状検出装置
JP2008157160A (ja) * 2006-12-26 2008-07-10 Honda Motor Co Ltd 内燃機関の制御装置
JP2009144634A (ja) * 2007-12-17 2009-07-02 Toyota Central R&D Labs Inc 圧縮着火式内燃機関の燃料セタン価推定装置及び圧縮着火式内燃機関の制御装置
JP2009174322A (ja) 2008-01-21 2009-08-06 Denso Corp 内燃機関のセタン価検出装置
JP2010121453A (ja) * 2008-11-17 2010-06-03 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置及び制御方法
JP2010127257A (ja) 2008-12-01 2010-06-10 Nissan Motor Co Ltd セタン価判定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232568B2 (ja) * 2002-07-31 2009-03-04 株式会社豊田中央研究所 圧縮自己着火内燃機関とその燃焼制御方法
JP4027902B2 (ja) * 2004-03-24 2007-12-26 株式会社豊田中央研究所 内燃機関の混合気着火時期推定装置、及び内燃機関の制御装置
JP4075858B2 (ja) * 2004-06-01 2008-04-16 トヨタ自動車株式会社 内燃機関の燃料セタン価測定方法
JP5056290B2 (ja) * 2007-09-12 2012-10-24 トヨタ自動車株式会社 ディーゼルエンジンにおける燃料のセタン価判別装置
US8473180B2 (en) * 2010-03-10 2013-06-25 GM Global Technology Operations LLC On-board fuel property detection using pattern recognition and power spectral analysis of cylinder pressure signal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183466A (ja) * 2004-12-24 2006-07-13 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP2006226188A (ja) * 2005-02-17 2006-08-31 Nissan Motor Co Ltd ディーゼルエンジンの燃料性状検出装置
JP2008157160A (ja) * 2006-12-26 2008-07-10 Honda Motor Co Ltd 内燃機関の制御装置
JP2009144634A (ja) * 2007-12-17 2009-07-02 Toyota Central R&D Labs Inc 圧縮着火式内燃機関の燃料セタン価推定装置及び圧縮着火式内燃機関の制御装置
JP2009174322A (ja) 2008-01-21 2009-08-06 Denso Corp 内燃機関のセタン価検出装置
JP2010121453A (ja) * 2008-11-17 2010-06-03 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置及び制御方法
JP2010127257A (ja) 2008-12-01 2010-06-10 Nissan Motor Co Ltd セタン価判定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2772635A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234727A (ja) * 2013-05-31 2014-12-15 トヨタ自動車株式会社 内燃機関の熱発生率波形作成装置及び燃焼状態診断装置
DE102015101631A1 (de) 2014-02-10 2015-08-13 Denso Corporation Vorrichtung zur Erfassung der Kraftstoffentzündlichkeit
DE102015101631B4 (de) 2014-02-10 2023-09-28 Denso Corporation Vorrichtung zur Erfassung der Kraftstoffentzündlichkeit
JP2016223324A (ja) * 2015-05-28 2016-12-28 ヤンマー株式会社 エンジン制御システム

Also Published As

Publication number Publication date
JP5556970B2 (ja) 2014-07-23
EP2772635A1 (en) 2014-09-03
JPWO2013061420A1 (ja) 2015-04-02
EP2772635A4 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
US9593634B2 (en) Heat release rate waveform generating device and combustion state diagnostic system for internal combustion engine
JP5392418B2 (ja) 内燃機関の着火遅れ期間推定装置及び着火時期制御装置
JP2015113790A (ja) 内燃機関の制御装置
JP2013204521A (ja) 内燃機関の制御装置
JP5196072B1 (ja) 内燃機関の制御装置
JP5556970B2 (ja) 内燃機関のセタン価判定装置
JP5110208B2 (ja) 内燃機関の燃焼制御装置
JP5224001B1 (ja) 内燃機関の制御装置
JP5177326B2 (ja) 内燃機関の燃料噴射制御装置
EP2778377B1 (en) Control device of internal combustion engine
JP5720479B2 (ja) 内燃機関の制御装置
JP2017020445A (ja) 内燃機関の制御装置
JP2012092748A (ja) 内燃機関のNOx発生量推定装置及び制御装置
JP5582076B2 (ja) 内燃機関の制御装置
JP5240417B2 (ja) 内燃機関の拡散燃焼開始時期推定装置及び拡散燃焼開始時期制御装置
JP5229429B1 (ja) 内燃機関の燃料性状判定装置
JP5196028B2 (ja) 内燃機関の燃料噴射制御装置
JP5672897B2 (ja) 内燃機関の燃焼制御装置
JP2013224616A (ja) 内燃機関のトルク推定装置および運転制御装置
JP5892144B2 (ja) 内燃機関の制御装置
JP2013224615A (ja) 内燃機関の筒内ガス量推定装置および故障診断装置
JP2017008897A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540544

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011874695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011874695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE